Unit 3

Object-Oriented Programming in C++

Overloaded Functions

Overloaded Functions

Objectives

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

3-2 Object-Oriented Programming in C4++

Objectives

At the end of this unit we will be able to:

Define the term "overloaded"
Explain the importance of overloading
Overload a function name

Provide default values for function
arguments

Call a C function from C++

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++

3-3

Overloaded Functions
Overloading

If a function name or operator has different meanings when applied to different
types, that name or operator is overloaded.

Function names are overloaded by declaring several functions with the same
name but different argument types. Note that the functions must differ in the

number or type of arguments, or in the type of invoking object, so that C++ can
identify which function should be called.

Overloading relieves the programmer from the burden of making up different
names for several functions that all take the same action on arguments of
different types. It also lets you choose the most meaningful name for a function,

without fear that the name will be confused with a function from an unrelated
library.

Macros that rely on overloaded function names or operators may be used with
any type for which that function or operator is defined. For example, the
average macro on the facing page can be used with arguments of type int type
float, or any other type for which addition, and division by an integer have
been defined. Code that works for many different types of arguments is know as

polymorphic code. We will see how to create polymorphic functions later in this
course.

Version 802
Copyright © 1900 AT&T
All Rights Reserved

3-4 Object-Oriented Programming in C++

Overloading

C++ allows overloading of function names and
operator symbols:

e One name or symbol for several functions

e Functions must have different parameter
types or be members of different classes

e Function selection based on types of

~ arguments and invoking object
Overloading

e allows more meaningful function names

e allows polymorphic code

#define max (a, b) (@) > (b) 2 (a) : (b))
#define min(a, b) ((a) > (b) 2 (®) : (a))

#define average(a, b) (((a) + ()) / 2)

Version 83.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 3-5

Overloaded Functions

Overloading a Function Name

We may need to concatenate either a String variable or a quoted group of
characters onto a String, so we will provide a second concatenation function. In
C, we would have to make up 2 different names for these 2 functions, and we
would have to remember to use the right name in each function call. In C++, we
can simply write 2 functions named concat. The C++4 compiler will select the
appropriate function by looking at the type of the argument.

Version 3.0.2
Copyright © 1960 AT&T
All Rights Reserved

3-6 Object-Oriented Programming in C++

Overloading a Function Name

const int max_string_length = 128;

class String {

public:
void set_to (char *);
int length():
int read():
void print () ;

String substring(int start, int len);

String concat(String *); [/ for sl.concat(8s2);
String concat(char *); [/ for s2.concat("text");

private:

// a String is a sequence of up to

// max_string_length non-null characters
// followed by a null character

char text[max_string_length+1];

}:

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++

3-7

Overloaded Functions

String::concat

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

3-8 Object-Oriented Programming in C++

String::concat

#include "String.h"
#include <string.h>
#include <stdio.h>

#include <stdlib.h>

String String: :concat (String *other)

{
// original concat function
by
String String: :concat (char *ptr)
{
String both;
if (length() + strlen(ptr) > max_string_length) {
fprintf (stderr, "RUN TIME ERROR: String too large");
exit (1)
}
strcpy (both.text, text) ;
strcat (both.text, ptr);
return both;
}

Version 302
Copyright © 1960 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 3-9

Overloaded Functions

Using String::concat

When we use the function name concat, C-4+4 will select one of the concat
functions based on the types of the invoking object and arguments.

Version 3.0.2
Copyright © 1960 AT&T
All Rights Reserved

3-10 Object-Oriented Programming in C++

Using String::concat

#include "String.h"
#include <stdio.h>

main (int, char *[])

{
String firstname, lastname, name;
firstname.set_to ("Zaphod") ;
lastname.set_to ("Beeblebrox") ;
name = firstname.concat (" ")
name = name.concat (&lastname) ;
// or: name = firstname.concat (" ") .concat (&lastname) ;
printf ("name is: ");
name.print ()
return O;

}

Versicn 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ _ 3-11

Overloaded Functions

Overloading a Non-member Function

With releases 1.0, 1.1, and 1.2 of C++, the keyword "overload" is used to
introduce an overloaded function name, if that function is neither a member
function nor an operator function (we will study operator functions later). To

overload the name sentence on one of those releases, we must place the
declaration

overload sentence;

before the declaration of any of the sentence functions.

Versicn 8.0.2
Copyright © 1900 AT&T
All Rights Reserved

3-12 Object-Oriented Programming in C++

Overloading a Non-member Function

#include "String.h"

String sentence (String words, char *punctuation) ;
String sentence (String words) ;

‘main(int, char *[])

{
String statement, question;
statement.set_to ("Hello, Zaphod") ;
question.set_to ("Do you have any tea') ;

sentence (statement) .print () ;
sentence (question, "?") .print():
return O;

X

String sentence (String words, char *punctuation)
{

String result;

result = words.concat (punctuation) ;

return result;

}
String sentence (String words)
{

String result;

result = words.concat("."):;

return result;

// or, return sentence (words, "."):
by

Versicn 3.0.2

Copyright © 1900 ATET
All Rights Reserved

Object-Oriented Programming in C++ 3-13

Overloaded Functions

Default Function Arguments

When one function can easily be written in terms of another, as in the case of the
sentence functions on the previous page, it may be possible to use a default
argument to one of the functions instead. You can provide default values for
function arguments by giving an initial value for the formal parameter in the
function declaration, as shown on the facing page. If actual arguments are not
provided in the call, as in the case of sentence (statement), C++ will use
the default value.

Defaults may be provided for several arguments, but they may only be used "from
the right" of the argument list. That is, there is no way to use a default for one
argument without using the defaults for all arguments to its right:

void example (int argl = 1, int arg2 = 2, int arg3 = 3):;

// legal calls: *
example (4, S, 6). // no defaults

example (4, 5). // default for arg3

example (4) ; // defaults for arg2 and arg3
example () ; // default for all arguments

// example (4, ,6) IS ILLEGAL

Versicn 302
Copyright © 1900 AT&T
All Righte Reserved

3-14 Object-Oriented Programming in C++

Default Function Arguments

#include "String.h"

String sentence(String words, char *punctuation =".");

J

main (int, char *[])

{

}

String statement, question:
statement.set_to ("Hello, Zaphod") ;
question.set_to ("Do you have any tea');

sentence (statement) .print() ;
sentence (question, "?") .print():

return O;

String sentence (String words, char *punctuation)

{

String result;
result = words.concat (punctuation) ;

return result;

Versin 8.0.2
Copyright © 1960 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 3-15

Overloaded Functions
Calling C Functions

Since C++ must be compatible with existing program linkers, it can not produce
".0" files in which one name is used for several functions. To ensure that each
function has a unique name, the C++ compiler extends all function names in the
".0o" files it produces.

The C compiler, however, does not need to extend function names. If C++ is to
call a function that was compiled with a C compiler, the C++ compiler must
generate a call without an extended function name. It will do this for all
functions declared as extern "C".

Note that the C++ header files for the standard C libraries use the extern "C"
declaration. ‘

Versicn 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

3-16 Object-Oriented Programming in C+4+

Calling C Functions

extern "C" double sqrt(double) ;

extern "C" {
int printf(const char * ...);
int puts (const char *);

}

main (int, char *[])

{
float f = sqrt(2);
puts ("hello, world\n");
printf ("sqrt(2) = %f\n", f):
return O;

+

Versicn 8.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 3-17

Overloaded Functions
Summary

In C++, you can create many functions with the same name (or operator
symbol), as long as they have either: (a) different types of invoking objects, (b)
different types of arguments, or (¢) different numbers of arguments, so that C++
can tell them apart when a call is made. :

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

3-18 Object-Oriented Programming in C++

Summary

C++ will select a function based on:

o The name of the function

e The number of arguments

e The type of the invoking object
e The types of the arguments

You can provide default arguments.

Version 302
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++

3-19

Overloaded Functions

Version 3.0.2
Copyright © 1900 AT&T
All Rightes Reserved

3-20 Object-Oriented Programming in C++

Exercises 3 Ex

Object-Oriented Programming in C++

Lab Exercises

Object-Oriented Programming in C++ 3-21

Lab Exercises

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

3 Ex-22 Object-Oriented Programming in C++

UNIT 3

Lab Exercises

1. This exercise demonstrates why overloading makes it easier to use two or more
libraries together in one program. Change to the unit03/point directory. The files
print_pt.c and print_pt.h contain the function you developed as part of the Unit 2
Lab Exercises. This can be considered as the first library. The files print.c and
print.h are new and contain additional functions named print, to print out objects
of type int, float, or char *. This is the second library.

You can compile and execute the test program by entering ‘'make probl’ or you
can compile and execute it directly using the commands:

$cC -o print_test print_test.c point.c print _pt.c \
print.c
$ print_test

Note that the test program uses the print functions from both libraries (the one
declared in print.h and the one declared in the new print_pt.h). Does this cause
any problem? Would it cause a problem in a C program?

SUMMARY
DIRECTORY unit03/point
DECLARATION Point.h, print_pt.h (library 1),
print.h (library 2)
IMPLEMENTATION | point.c, print_pt.c (library 1),
print.c (library 2)
TEST PROGRAM print_test.c

FILE: print.h

// if using C++ 1.2 or before,
// then use "overload print;" here

void print (char *);
void print (double);
void print (int);

FILE: print_test.c
$include "Point.h"

#include "print_pt.h"

#include "print.h"

main (int, char *[])

{

Lab Exercises Object-Oriented Programming in C++ \ 3 Ex-1

Point pl, p2;

pl.set_to(3, 5);
p2.set_to(8, 2);

print ("printing (3, 5): "):
print (pl);

print ("\nprinting (8, 2): ");
print (p2):

print ("\n");

return 0;

2. Change to the unit03/string directory. The file same.c contains the String member
functions from the Unit 2 Lab Exercises. The file string.c has been updated to
include the second concat function discussed in the lecture. The declarations for
these functions have also been added to the String.h header file. Add two more
member functions to the same.c implementation file and the String.h header file to
allow the comparison of Strings and character arrays. The new member functions
should be named is_the_same_as and is_different_from, and each should have
one parameter of type char * . Test them with the new str_same.c program in the
unit03/string directory.

You can compile and execute the test program by entering *'make prob2’ or you
can compile and execute it directly using the commands:

$CC -0 str same str_same.c string.c same.c
$ str_same

I SUMMARY l

DIRECTORY unit03/string
DECLARATION String.h (modify)
IMPLEMENTATION | string.c, same.c (modify)
TEST PROGRAM str_same.c

FILE: str same.c

#include "String.h"
#include <stdio.h>

main(int, char *[])

{
String hl, h2, w;
hl.set_to("hello");
h2.set_to("hello");

w.set_to("world");

printf("\nString::is_the same_as ");

Lab Exercises Object-Oriented Programming in C++ 3 Ex-2

if (hl.is_the_same as(h2) && !hl.is_the_same_as (w))
printf ("works.\n");

else
printf ("doesn’t work.\n");

printf("\nString::is_different_from ");

if (!hl.is_different from(h2) && hl.is_different_from(w))
printf ("works.\n");

else
printf ("doesn’t work.\n");

printf ("\nString::is_the_same_as(char *) ");

if (hl.is_the same_as("hello") && 'hl.is_the_ same_ as("world"))
printf ("works.\n");

else
printf("doesn’t work.\n");

print£("\nString::is_different_from(char *) ");

if ('hl.is different_from("hello") && hl.is_ different_ from("world"))
printf ("works.\n");

else
printf("doesn’t work.\n");

return O;

Lab Exercises Object-Oriented Programming in C++ 3 Ex-3

UNIT 3

Lab Exercises (Answers)

1. The print functions from print.c and the print function in print_pt.c can be used

together in the same C++ program. This would not be possible in C.

2. The new String class:

FILE: string.h

const int max string_ length = 128;

class String {

public:

void set_to(char *);

int
int

length():;
read();

void print();

String substring(int start, int len):;

String concat (String *);
String concat (char *);

int
int

int
int

private:

is_the_same_gs(String 8);
is_different_from(String s);

is_the same_ as(char *);
is_different from(char *);

// a String is a sequence of up to
// max_string length non-null characters
// followed by a null character

char text[max string length+l];

// for sl.concat (&s2);
// for s2.concat ("text"):;

The new String member functions:

FILE: same.c

#include <string.h>

#include

"String.h"

int String::is_the same_as(String s)

{

return !strcmp(text, s.text);

}

int String::is_different from(String s)

{

return strcmp(text, s.text);

}

Lab Answers

Object-Oriented Programming in C++

3 Ans-1

int String::is_the_ same_as (char *s)
{
return !strcmp (text, s);

}

int String::is_different_ from(char *s)
{

return strcmp(text, s);
}

Lab Answers Object-Oriented Programming in C++ : 3 Ans-2

