}

int operator!=(String &sl, String &s2)

{
return strcmp(sl.text, s2.text);

}

int operator==(String &sl, char *s2)
{
return !strcmp(sl.text, s2);

}

int operator!=(String &sl, char *s2)
{

return strcmp(sl.text, s2);

}

int operator==(char *sl, String &s2)
{
return !strcmp(s2.text, sl);

}

int operator!=(char *sl, String &s2)

{
return strcemp(s2.text, sl);

Lab Answers Object-Oriented Programming in C++ 6 Ans-6

1

return (_x != p._x I _y !=p._y)?1:0;
}

Point &Point::operator+=(Point &p)
{

*this = *this + p;

return *this;

If we change the comparison operators to use call by reference, they will run more
efficiently, since they do not need to make copies of their arguments. The test
programs must be re-compiled, but we do not have to change the source code.

FILE: String.h

const int max string length = 128;

class String {

return (_x != p._x ll _y != p._y)?l:O;

The operator+= has a reference parameter, corresponding to the Point on the right
hand side of an expression like "a += b". The operator+= function will not change
its parameter, so it will not affect the right hand operand. The left hand operand
will become the invoking object of operator+=. When operator+= changes its
invoking object, it will affect the left hand side of the assignment. To retumn the
value assigned to the left hand operand, operator+= can simply retumn the value of
its invoking object (*this). Since the invoking object will still exist after the call to
operator+=, operator+= can return a reference to its invoking object.

FILE: Point.h

class Point {
public:
int x();
int yO;
void set_to(int x, int y);

Point operator+(Point &);
Point operator-(Point &);

friend Point operator*(int, Point &);
friend Point operator* (Point &, int);

Point operator/(int);

int operator==(Point &);
int operator!=(Point &);

Point &operator+=(Point &);
private:

int _x;

F . xy e

Lab Answers

#include "Point.h"
#include <stdio.h>

void Point::set_to(int x, int y)
{
= x

%
Y =Y

Ne e

}

Point Point::operator+(Point &p)
{

Point temp;

temp. x = _x + p._Xx;

temp. v = _y + p._V?

return temp;

}

Point Point::operator-(Point &p)
{

Point temp:;

temp. X = _X = P._X;

temp. ¥y = Y ~- P-_Y?

return temp;
}

Point operator* (int i, Point &p)
{

Point temp;

temp. x = i * p._x;

temp. y = i * p._y;

return temp;
}

Point operator* (Point &p, int i)
{

Point temp;

temp. x = i * p._x;

temp. y =i * p._y;

return temp;

}

Point Point::operator/ (int i)
{
Point temp;
temp. x = _x / i
temp. y = vy / i
return temp;

e e

}

int Point::operator==(Point &p)
{
return (_x == p._x && _y == p._y)?1:0;

int Point::operator!=(Point &p)

{

FILE: point.c

Object-Oriented Programming in C++

6 Ans-2

UNIT 6

Lab Exercises (Answers)

1. All the functions that have Point arguments, and do not change those arguments,
would be more efficient with call by reference. The int arguments do not need to
be passed by reference, as copying an int is just as fast as passing a reference to an
int. Arguments that are changed by the function should not be passed by reference

unless the function is supposed to change the actual argument passed by the calling
function.

Since all the functions of class Point return local variables, none should return a
reference.

FILE: Point.h

class Point {
public:
int x();
int y();
void set_to(int x, int y);

Point operator+(Point &):
Point operator—(Point &);

friend Point operator*(int, Point &);
friend Point operator* (Point &, int);

Point operator/(int);

int operator==(Point &):;
int operator!=(Point &);

private:
int _x;
int _y;
}:

inline int Point::x()
{

return (_x);

}

inline int Point::y()
{

return(_y);
}

Lab Answers Object-Oriented Programming in C++ 6 Ans-1

SUMMARY
DIRECTORY unitQ6/string
DECLARATION String.h (modify)
IMPLEMENTATION | same.c (modify), string.c
TEST PROGRAM str_same.c

Lab Exercises Object-Oriented Programming in C++ 6 Ex-3

FILE: use_ point.c

#include "Point.h"
#include "print.h"
#include <stdio.h>

main(int, char *[])
{

Point a, b, c;

a.set_to(l, 1);

b.set_to(10, 10):

c.set_to(100,100);)
printf(" initially, a, b, and c are:\n");
print (a);

print (b);

print(c);

a=>b+¢c;

printf (" after \"a = Db + c;\"\n");
print (a);

print (b):

print(c):

a += b;

printf (" after \"a += b;\"\n");
print(a);

print (b);

print (c);

a=b += c;

printf(" after \"a = b += ¢;\"\n");
print(a):;

print (b);

print (c);

return O;

3. Change to the unit06/string directory. Change your operator!= and operator==
functions for class String to use call by reference. After making the changes, use
the str_same.c program to test your new version. This program is a copy of the
one you used in the Unit 5 Lab Exercises. Do you need to change the test
program? You can compile and execute this program by entering 'make prob3’ or
you can compile and execute it directly using the commands:

$CC -o str same str_ same.c string.c same.c
$ str same

Lab Exercises Object-Oriented Programming in C++ - 6Ex-2

UNIT 6

Lab Exercises

1. Change to the unit06/point directory. Decide which functions in your class Point
would benefit from the use of call by reference, and change them to use call by
reference. Should any of them return a reference? '

After making the changes, use the use_ref.c program to test your new version. You
can compile and execute this program by entering 'make probl’ or you can
compile and execute it directly using the commands:

$cC -o use_ref use_ref.c point.c print.c
$ use_ref

SUMMARY
DIRECTORY unit06/point
DECLARATION Point.h (modify), print.h
IMPLEMENTATION | point.c (modify), print.c
TEST PROGRAM use_ref.c

2. Your class Point includes a + operator to add two Points. Overload the
operator+=, and test it with the program use_point.c. Notice that the statement "a
= b + ¢" should change only a, the statement "a += b" should change a, and that "a
= b += ¢" should change a and b. Should operator+= have a reference argument?
Should it return a reference?

You can compile and execute the test program by entering ‘'make prob2’ or you
can compile and execute it directly using the commands:

$ CC -o use_point use point.c point.c print.c
$ use_point

SUMMARY
DIRECTORY unit06/point
DECLARATION Point.h (modify), print.h
IMPLEMENTATION | point.c (modify), print.c
TEST PROGRAM use_point.c

Lab Exercises Object-Oriented Programming in C++ 6 Ex-1

Lab Exercises

Version 30,2
Copyright © 1900 AT&T
All Rights Reserved

6 Ex-28 Object-Oriented Programming in C++

Exercises 6 Ex

Object-Oriented Programming in C++

Lab Exercises

Object-Oriented Programming in C++ 6-27

References

Versicn 302
Copyright © 1000 AT&T
All Rights Reserved

6-26 Object-Oriented Programming in C++

— T

Summary

o Call by reference
— Looks like call by value

— Efficiency and side effects of passing a
pointer

e Returning a reference

— Allows the use of function call as an
lvalue

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 6-25

References

6-24

Summary

Version 8.0.2
Copyright © 1000 ATZT
All Rights Reserved

Object-Oriented Programming in C++

Using the Subscript Operator

#include "String.h"
#include <ctype.h>
#include <stdio.h>

main (int, char *[])

{

String s
int i;
char ch;

printf ("enter a string: ");
s.read() ;

for (i=0; i<s.length(); i++) {
ch = s[i];
s[1i] = toupper (ch) ;
// or, s[i] = toupper (s[i]):
}

s.print () ;

return O;

Versico 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++

6-23

References
Using the Subscript Operator

Since the operator [] returns a reference, we can use it on the left side of an
assignment (it is an lvalue). Note that the statement s[i] = toupper (ch)
assigns a character value to a character in the String. Since this is an

assignment of one character to another, it does not require a user-defined
operator=.

Version 30.2
Copyright © 1000 ATET
All Rights Reserved

6-22 Object-Oriented Programming in C++

Defining a Subscript Operator

#include "String.h"
#include <stdio.h>
#include <stdlib.h>

//
// operator[] for Strings -- returns a reference
// to the appropriate character in the String
//
// s [index]
// 1is equivalent to
// s .operator[] (index)
// which is another name for
// s .text [index] '
// or an error if index is invalid
//
char &String::operator [] (int index)
{

if (index < O || index >= length()) {

fprintf (stderr,
"Illegal index (%d) for String \"%s\".\n",
index, text);
exit (1) .

}

return text [index];
>

Versicn 802
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++

6-21

References

Defining a Subscript Operator

The subscript operator finds the appropriate character within character array of
the String. If it returned a value, that character would be copied back to the
calling function, which would not be able to change the text of the String. Since
it returns a reference, the function call is treated as another name for the
character returned, so the calling function can change that character.

Version 30.2
Copyright © 1080 AT&T
All Rights Reserved

6-20 Object-Oriented Programming in C++-

The Subscript Operator

const int max_string_length = 128;
class String {

public:
String &operator=(char *);
int 1length():
int read|():
void print () ;

char & operator [|(int);
String substring(int start, int len);

friend String operator+ (String &, String &):
friend String operator+ (String &, char *);
friend String operator+(char *, String &)

private:
// a String is a sequence of up to
// max_string_length non-null characters
// followed by a null character

char text [max_string_length+l]:

Versicn 302
Copyright © 1900 ATET
All Rights Reserved

Object-Oriented Programming in C++ 6-19

References

The Subscript Operator

Another useful String operation is subscripting. We would like to allow the use
of the subscript operator on either the left or right side of an assignment. This is
not legal if it returns a copy of the character, since that copy will be stored in
compiler generated temporary space (i.e. it is not an lvalue). If, on the other
hand, operator[] returns a reference to the character, we can use the
subscript operator to change the character within a String.

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

6-18 Object-Oriented Programming in C++

String::operator=

#include "String2.h"
#include <string.h>

// use: s = "hello world"

String &String: :operator=(char *rhs)

{
strncpy (text, rhs, max_string_length) ;
text [max_string_length] = '\O';
return *this;

}

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C4+ 6-17

References
String::operator=

The only change to the definition of operator= is the return type.
operator= can still be used in the same way:

#include "String2.h"

main (int, char *[])

{
String first, last;

first = "Zaphod";

last = "Beeblebrox";

// both of the above call

// String: :operator=(char *)

return O;

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

6-16 Object-Oriented Programming in C++

Returning a Reference from operator=

const int max_string_length = 128;
class String {

public:
String operator=(char *);
int 1length():
int read():
void print () ;

String substring(int start, int len);

friend String operator+ (String &, String &)
friend String operator+ (String &, char *);
friend String operator+ (char *, String &) ;

private:

// a String is a sequence of up to
// max_string_length non-null characters
// followed by a null character

char text[max_string_length+1]:

Versicn 30.2
Copyright © 1900 ATT
All Rights Reserved

Object-Oriented Programming in C++ 6-15

References

Returning a Reference from operator=

We can improve the efficiency of our operator= by returning a reference. Since
the returned String is no longer copied, the return from the function will be
faster.

Version 3.0.2
Copyright © 1000 AT&T
All Righte Reserved

6-14 Object-Oriented Programming in C++

Returning a Reference

Returning a reference
e return value is not copied back
e calling function can change returned object
e may be faster than returning a value
e can not be used with local variables

int &max (int &i, int &j)

{
if (L > 3j)
return i;
else
return j;
}
main (int, char *[])
{
int x = 42, y=7500000, z;
z = max(x, Yy):
// z is now 7500000
max (x, y) = 1;
// Y is now 1
return O;
}

Version 3.0.2
Copyright © 1900 ATET
All Rights Reserved

Object-Oriented Programming in C++ 6-13

References

Returning a Reference

Versicn 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

6-12 Object-Oriented Programming in C++

#include "String.h"

main (int, char *[])

{

String first, last, full;

first = "Zaphod";

last = "Beeblebrox";

// both of the above call

// String: :operator=(char *)

full = first + " " + last;
// calls operator+ (String &, char *)
// and operator+ (String &, String &)

("Name is: " + full) .print():;
// calls operator+ (char *, String &)
// and prints the result

return O;

Versicn 30.2
Copyright © 1960 ATET
All Rights Reserved

Object-Oriented Programming in C++

Using Operators with Reference Arguments

6-11

References

Using Operators with Reference Arguments

At last, we can use the "+" symbol to denote concatenation of Strings,
‘without the inefficiency of an unnecessary call by value. We can add Strings
to each other, or to groups of quoted characters. Now that these operations use
call by reference, they are just as fast as the original concat functions.

Version 3.02
Copyright © 1000 AT&T
All Rights Reserved

6-10 Object-Oriented Programming in C++

Defining operator +

#include "String.h"
#include <string.h>
#include <stdio.h>
#include <stdlib.h>

String operator+ (String &lhs, String &rhs)

{

}

String both;

if (lhs.length() + rhs.length() > max_string_length) {
fprintf (stderr, "RUN TIME ERROR: String too large\n"):
exit (1) ;

}

strcpy (both.text, lhs.text);

strcat (both.text, rhs.text);

return both;

String operator+ (char *lhs, String &rhs)

{

String both;

if (strlen(lhs) + rhs.length() > max_string_length) {
fprintf (stderr, "RUN TIME ERROR: String too large\n");
exit (1) ;

}

strcpy (both.text, 1lhs);

strcat (both.text, rhs.text);

return both;

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 6-9

References

Defining operator +

The declaration of a function must match its definition, so we must change the
declaration of the addition operations in class String to show that they use call
by reference.

Now the operator+ functions will not have the overhead of copying their
String arguments. Note that there is no need to change the char *
arguments to use call by reference, since call by reference is no more efficient
than passing a pointer.

Since none of the operator+ functions made any changes to 1hs or rhs, the
change from call by value to call by reference will not "break"” code that uses our
operator+ functions (although such code must be re-compiled). If an
operator+ function had changed 1hs or rhs, that function would now cause
a change to a calling function’s variable, and possibly affect that function.

Versicn 3.02
Copyright © 1900 AT&T
All Rights Reserved

6-8 Object-Oriented Programming in C++

operator + with Call by Reference

const int max_string_length = 128;

class String {

public:

String operator=(char *);
int 1length():

int read():

void print () ;

String substring(int start, int len);

friend String operator+(String &, String 8);
friend String operator+(String &, char *);
Jriend String operator+(char *, String &);

private:

// a String is a sequence of up to
// max_string_length non-null characters
// followed by a null character

char text[max_string_length+1]:

Version 30.2
Copyright © 1900 AT&T
All Righte Reserved

Object-Oriented Programming in C++

References

operator + with Call by Reference

If we change the operator+ functions so that their parameters are references to
Strings, the arguments will not be copied when the function is called. Since
these functions do not change their arguments, this change will effect only the
efficiency, and not the result, of programs using operator+.

Versicn 3.0.2
Copyright © 1060 AT&T
All Rights Reserved

6-6 Object-Oriented Programming in C++

References

Areference is
e an additional name for existing object
e declared type &name
o Often used for function parameters:
— called function can change actual

argument
— faster than call by value for large
objects
void set_to_five (int &i)
{
i=25;
by
main (int, char *[])
{
int number = 78;
set_to_five (number) ;
// number is now 5.
return O;
}

Version 3.0.2
Copyright © 1060 AT&T
All Rights Reserved

Object-Oriented Programming in C++

References

Call by Reference

In C, when a variable is passed as an argument to a function, the function’s parameter becomes a
copy of the value passed. Any use of the parameter name inside the called function will refer to
the copy, and the called function can change this copy without affecting the variable of the calling
function. This mechanism is known as call by value, and it is used for all function arguments in C,
including pointers (in which case the pointer, but not the storage pointed to, is copied). If the
function on the facing page used call by value, i would become a name for a copy of main's
variable number. Changes to i would not affect number.

In C++, you can declare a parameter that is a reference, to the original value. In this case, the
original value is not copied. Any use of the parameter name inside the called function will refer to
the original value in the calling function. This mechanism allows the called function to change the
variable passed by the calling function, and it can reduce the storage and time needed to call the
function (since there is no need to copy the argument). On the facing page, i is a name for
number (not a copy of number),so set_to_five changes the value of number to 5.

To perform call by reference, C++ passes a pointer, and dereferences that pointer inside the called
function, to refer back to the original value in the called function. Call by reference combines the
efficiency of passing a pointer and the ability to change the calling function’s variables with the
syntax of call by value.

Since a call by reference looks like a call by value, it is not easy to tell which mechanism is used by
examining a function call. This ambiguity is useful in situations in which a you do not need to
know which mechanism is being used (for example, when a reference is used only for efficiency). If,
on the other hand, you do need to know which mechanism is being used (for example, if a function
is designed to change one of its actual arguments), the ambiguity may be confusing. We
recommend that call by reference not be used for such functions unless the function name suggests
that it will change the calling function’s variable.

References can be local, static, or global variables, as well as function parameters:

int i:
int &j = 1i: // j is another name for i

j=7: // now i is 7

The code above is legal, and serves to demonstrate that references are a general purpose
mechanism that can be used in many situations in C++. The code above does not, however, show
a useful example of references — having a local reference to another local variable will probably
only make a program more confusing.

Versico 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

6-4 Object-Oriented Programming in C++

Objectives

At the end of this unit we will be able to:
o Pass parameters to a function by reference
e Return references

Version 302
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 6-3

References

Objectives

Versicn 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

6-2 Object-Oriented Programming in C++

Unit 6

Object-Oriented Programming in C++

References

