Unit 8

Object-Oriented Programming in C++

Data Encapsulation

CONTENTS

Unit 8 - Data Encapsulation

Data Encapsulationccccccccveevieeiniieeiiciiieeiciesnsieesseieeesenneesssseesesnnessnnns
Built-in OPErationscccccevecveeerrerserreesireersreesessseeseessasssasssesssaessesseesaes
Controlling ASSIENINENTcccccviieriiuireeiieeerirrresrieeeesereesesaeesersressssnsenessnrees
Constructor and Destructor FUnctionscccccceeevveevevineeereneeerereveeennns
INitiaHZATION ..oucviiiiiiieiiiiiiieeieecccriireesceretre e s e seseanreeessesssserenesessssasansesssssans

Unit 8 Appendix - Class-type Members

Class-type Data Memberscccocviivvemviereereensiveesseresssereessrescssesseenns
Built-in OPerationscceveevveiiiiirrienireresseessssereessssesesssessssesesssssesssssessns
Overriding Built-in Operationsc.ceeceeeveeeevieeerienserecereseseseseeseesenens

Exercises 8 Ex - Lab Exercises

.....................

8 Appendix-33
8 Appendix-35
8 Appendix-37

Answers 8 Ans - Exercise Answers

iii

Objectives

At the end of this unit we will be able to:
o list some benefits of data encapsulation

e provide complete data encapsulation for a
class with

— an assignment operator
— a constructor

— a destructor

— a "copy" constructor

Version 30.2
Copyright © 1080 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 8-3

Data Encapsulation
Data Encapsulation

There are many advantages to using a language that provides data
encapsulation. Since the representation of an object type can only be
manipulated by a limited set of operations (those listed in the object’s class), only
that limited set of operations depends on the representation. If we change the
representation, we only need to re-write the class’s defining operations.

Data encapsulation can also allow the author of a class to enforce rules about
consistency within the class’s private data. The author of a class for doubly
linked lists might enforce the rule that the previous pointer of the next
element in the list must point back to this object. The author of a class
representing sets might enforce the rule that no element can appear twice in the

a set. A rule that will always be true for any "legal” object is often called a
representation tnvariant.

If a class’s defining operations generate only objects that obey the representation
invariant, there is no way for a user of the class to create an illegal object.
Therefore, all the class’s operations can be coded with the assumption that the
objects they work with must have started in a legal state. Thus, the enforcement
of a representation invariant is a powerful tool for managing subtle dependencies
between the data members of a class, without fear that users will create objects
that are not consistent with the author’s rules.

The representation invariant for our class String is described by the comment
in the private section. Note that many of our member functions are written with
the assumption that the text array will be null terminated.

class String {

/.

private:
// a String is a sequence of up to
// max_string_length non-null characters
// followed by a null character

char text[max_string_length+1];

}:

Version 30.2
Copyright © 1060 AT&T
All Rights Reserved

8-4 Object-Oriented Programming in C++

Data Encapsulation

Benefits of data encapsulation
e limits implementation dependence
o facilitates change of implementation
e ensures consistency of data
o allows control of subtle dependencies
between data

but only if functions listed in class are the only
ones that depend on implementation.

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 8-5

Data Encapsulation
Built-in Operations

A language supports data encapsulation if only the operations used in the
definition of a class can access the implementation of the class. In C, all objects
(including structure type objects) can be created (e.g., with a variable
declaration), destroyed (e.g., at the end of the function in which they were
declared), assigned, and passed to functions or returned.

C++ resolves the conflict between data encapsulation and the legal C operations
with the following rule: The C definitions of assignment (by copying the object),
creation (allocation of un-initialized memory), destruction (freeing of memory),
and initialization (by copying the object) are built into the C++ language as
defaults, but a class may take control of them.

If the built-in mechanisms for assignment, creation, destruction, and
initialization do not allow the user to create objects that violate the
representation invariant, then the author of a class need not worry about taking
control of these operations. If, however, one of these built-in mechanisms allows
the creation of an illegal object, the author of the class must override the built-in
mechanism by providing code that is appropriate for the class.

Version 3.0.2
Copyright © 1090 ATET
All Righte Reserved

8-6 Object-Oriented Programming in C++

Built-in Operations

C++ allows several operations not listed in the
class:

e assignment

e creation (variable declaration)

e destruction (at end of functions)
e initialization w/ same type

#include "String.h"

main (int, char *[])
{
// Object creation:
String s, t;
// use of operator=(const char *):
s = "Zaphod Beeblebrox";

// Initialization:
String u = s;

/[Assignment of same type:
t=s;

// Object Destruction (automatic upon exit from block)
return 0;

Version 302
Copyright © 1960 AT&T
All Rights Reserved

Object-Oriented Programming in C+4+ 8-7

Data Encapsulation
Controlling Assignment

You can control the assignment of objects of a class by creating a special
operator= for that class. If class String declares operator=(String),
then that operator will be used to handle assignment of one string to another. If
class String does not declare this operator, then C4+ will copy all the data
members from the String on the right into the String on the left (as is done
with structure assignment in C).

String s1, s2;

sl = "hello world"; // String::operator=(char *)
s2 = sl; // String: :operator=(String),
// or default mechanism for compatibility

Even though the default mechanism for assignment will work for our class
String, we'll override that default in our class, to show how it is done. Later,
we will see an example class for which the default mechanism for assignment
creates an illegal object.

If you wish to make assignment illegal for objects of your class, declare the
operator= as a private member function of the class. Users will not be able to
assign objects, since that would require access to the private member function.

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

8-8 Object-Oriented Programming in C++

Controlling Assignment

const int max_string _length = 128;
class String {

public:
String &operator=(const String &);
String &operator=(const char *);

int 1length() const;
int read():

void print () const;

const char &operator [] (int) const;
char & operator [] (int):

String substring(int start, int len) const;

friend String operator+ (const String &, const String &) ;
friend String operator+ (const String &, const char *);
friend String operator+ (const char *, const String &) ;

private:
a String is a sequence of up to
g q

// max_string_length non-null characters
// followed by a null character

char text[max_string_length+1l].

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 8-9

Data Encapsulation

String Assignment

Note that our operator= copies only the bytes before the null, but the default
mechanism copies all max_string_length + 1 bytes.

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

8-10 Object-Oriented Programming in C++

String Assignment

#include "String.h"
#include <string.h>

// use: s = "hello world"

String &String: :operator=(const char *rhs)

{ .
strncpy (text, rhs, max_string_length) ;
text [max_string_length] = '\O';

return *this;

+
// use: s = t

String 8String::operator=(const String &rhs)

{
strepy(text, rhs.text);

return *this;

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++

8-11

Data Encapsulation

Constructor and Destructor Functions

To ensure that all objects always satisfy the representation invariant stated in their class, we

must ensure that objects are created in a legal state, and that no legal object can ever be
corrupted.

To ensure that objects are created in a legal state, the author of a class can write a function that
will control the creation of objects. C++ provides a special kind of member function, known as a
constructor function, for this purpose. If a class has one or more constructor functions, C++ will
automatically call one of them whenever an object of that class type is created (unless C++ is
using the built-in rule for initialization with an object of the same type). The constructor function

is used after the memory for the data members has already been allocated. The constructor does
not have to allocate this storage.

To ensure that no legal object is ever corrupted, we need only ensure that none of the class’s
defining operations can change a legal object into an illegal one. Objects may enter an illegal
state temporarily, during the execution of the defining operations, as long as (1) they have been
restored to a legal state by the end of the function, and (2) no other functions that depend on the
representation invariant will be called while the object is in an illegal state.

If only legal objects can be created, and there is no way to make a legal object into an illegal one,
then all objects will always satisfy the representation invariant stated in their class'. When an
object is destroyed, the mechanism that destroys it must be able to handle any legal object. If the
representation invariant states that the object has a pointer to some additional storage, that
storage may need to be freed, so the rule "free the storage for the data members" (used by C for
structures) is not always correct for class-type objects. To ensure that any legal object will be
destroyed properly, the author of a class can write a function that will control the destruction of
objects. C++ provides a special kind of member function, known as a destructor function, for this
purpose. If a class has a destructor, C++ will automatically call it whenever an object of that
class type is destroyed. The destructor function is used before the memory for the data members
has already been freed (the destructor does not have to free this storage).

If a class has no constructors, you may still create objects of that class. C++ will simply allocate
enough memory for the data members in the class (as C would do for a struct type variable). This
memory may not be initialized, so there is no guarantee that objects created in this way will obey
the class’s representation invariant. Note that this is not a problem for built-in types (e.g., int),
since any piece of memory of the appropriate size is a legal object.

If a class has no destructor, you can still destroy objects of that type. C++ will simply free the
memory for the data members (as C would do for a struct type variable).

1. In a language that allows unrestricted use of pointers, we can never be absolutely sure of the state of objects in
memory, since a programmer could corrupt any value by making a mistake with pointers. So when we say that
objects will always be legal, we mean they will be legal unless there is a pointer mistake in the program.

Versicn 30.2
Copyright © 1800 AT&T
All Righte Reserved

8-12 Object-Oriented Programming in C++

Constructor and Destructor Functions

Constructor functions

e member functions with the same name as
the class

o automatically called when an object is
created, just after memory allocation

e allow the class to control object creation

Destructor functions
e member functions named “class-name

o automatically called when an object is
destroyed, just before memory is freed

o allow the class to control object
destruction

func () {
String s
// constructor called automatically

// work with s...

3 // destructor called automatically

Versicu 8.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 8-13

Data Encapsulation
Declaring Constructors & Destructors

Constructor functions for class String are member functions named String.
We will see that a class can have many constructors, to handle the creation of
objects with different types of initializers. The destructor function is named
~String. Since these functions are called automatically, we can not declare a
return type (not even void).

Version 302
Copyright © 1000 AT&T
All Rights Reserved

8-14 Object-Oriented Programming in C++

Declaring Constructors & Destructors

const int max_string_length = 128;
class String {

public:
String();
“String();

String &operator=(const String &) ;
String &operator=(const char *);
int 1length() const;

int read():

void print() const;

const char &operator [] (int) const;
char & operator [] (int):;

String substring(int start, int len) const;

friend String operator+ (const String &, const String &) ;
friend String operator+ (const String &, const char *);
friend String operator+ (const char *, const String &) ;

private:
// a String is a sequence of up to

// max_string_length non-null characters
// followed by a null character

char text[max_string_length+1l]:

Version 80.2
Copyright © 1000 ATZT
All Rights Reserved

Object-Oriented Programming in C++ 8-15

Data Encapsulation

Defining Constructors & Destructors

When an object is created, the constructor will be called just after the storage
has been allocated. The newly allocated storage will be used as the invoking
object for the constructor, so when the constructor puts a null byte at the
beginning of the invoking object’s text, it is working with the newly created

String. This will ensure that the representation invariant for class String
holds for the newly created object.

When an object is destroyed, the destructor will be called just before the storage
is freed. The object being destroyed will be the destructor’s invoking object. The
class String doesn’t need to do anything when a String is destroyed, so we
have provided an empty destructor. We could have left out the destructor, as it
is legal to have a constructor with no destructor, or a destructor with no
constructor. Later, we will see an example of a class that requires a destructor.

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

8-16 Object-Oriented Programming in C++

Defining Constructors & Destructors

#include "String.h"

//

// constructor function
// called automatically when a string is created.

//

// ensure the string is null terminated

//

String: :String()

¢ text[0] = "\O';
}

//

// destructor function
// called automatically when a string is destroyed.

//

String::“String()
{
// nothing needed here yet

}

Version 302
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 8-17

Data Encapsulation

Calls to Constructors & Destructors

Constructors and destructors are used to create objects of all storage classes.

External and nonlocal static objects, such as extrn and statc on the facing
page, will be created before they are used. Typically, they are all created before
the execution of the first statement in main. Thus, constructors may be run
before the beginning of main. The destructors for external and nonlocal static
variables will be called upon return from main, or when exit is called.

Automatic and local static objects, such as autom and loc_statc, are
created when the flow of control reaches the variable definition. Therefore, the
String constructor will be called for autom and loc_statc after the first call

to printf in example. Note that, in C++, declarations may be interspersed
with statements.

Automatic objects are destroyed upon exit from the block in which they were
created, so the destructor for autom will be called just after the second call to
printf in example. When the example function is called the second time,
autom will be re-created, and the String constructor will be run again.

Static objects last until the end of the program, so the destructor for
loc_statc will not be called until exit is called or the program returns from
main. When the example function is called the second time, the constructor
will not be called for loc_statc, because loc_statc will already exist. If -
the example function had not been called by our main program, and
loc_statc had not been created, then the destructor would not be called for it.

The constructor and destructor will be used for each element in an array, if the
elements are of a class with a constructor and destructor. The constructor is
used on each element, in order of increasing addresses, when the array is created.
The destructor is used when the array is destroyed, and is applied to the elements
in order of decreasing addresses.

Objects can also be created on the free store with the new operator, and
destroyed with the delete operator (these operators will be discussed in a later
unit -- they are used for management of free store, as the functions malloc and
free are used in C). When such objects are created and destroyed, their
constructors and destructors are used.

Version 30.2
Copyright © 1800 AT&T
All Righte Reserved

8-18 Object-Oriented Programming in C++

Calls to Constructors & Destructors

#include "String.h"
#include <stdio.h>

String extrn;
static String statc;

void example ()

{
printf ("entering example function.\n"):
String autom;
static String loc_statc;
String array[30];
printf ("leaving example function.\n");
}
main (int, char *[])
{
printf("start of program.\n'");
example () ;
example () ;
printf ("end of program.\n"):
}

Versicn 802
Copyright © 1060 AT&T
All Rights Reserved

Object-Oriented Programming in C++

8-19

Data Encapsulation

Initialization

In C++, the word "initialization" is used to describe code that provides a value for an object

during the creation of that object (e.g., in a declaration). The word "assignment" is used for code
that stores a value in an object that already exists.

int 1 =7; // initialization
int k;
k = 7500000; // assignment

i

0: // assignment

C++ uses constructor functions for initialization, and assignment operators for assignment.

There are two ways to initialize an object of a class type: with the ’=’ symbol (as in C), or with a
list of initial values in parenthesis. The second syntax is needed when an object must be initialized
with more than one value, and it can only be used with class types:

#include "complex.h"

complex ¢ = 7.4; // initialization 7.4 + Oi
complex 4(8.5): // initialization 8.5 + 0Oi
complex e(9.1, 10.0): // initialization 9.1 + 10.04i
complex f;

When a class has constructor functions, you must provide a constructor function to handle the
case of a declaration that does not provide an initial value?, if you want that case to remain legal.
In other words, if class String has a constructor String(const char *) but no constructor
String (). then String s =" hello ";islegal, but String s: is not.

If a class does not provide a constructor to create an object from an initializing value of the same
type®, C++ will copy the data members from the initial value into the object being created (as C
would have done with a struct type variable). For example, if there were no constructor
String(const String &) . C++ would still allow String t = s;, for compatibility with C
(but if the constructor exists, C++ will use it). If you wish to make this form of initialization
illegal for objects of your class, declare the copy constructor as a private member function of the
class. Users will not be able to initialize objects with values of the class type, since that would
require access to the private member function.

2. A constructor that has no parameters (and therefore is used to create objects when no initial value is given) is
sometimes called a default constructor.

3. A constructor to initialize an object with a value of the same type is sometimes called a copy constructor

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

8-20 Object-Oriented Programming in C++

Initialization

#include "String.h"
#include <stdio.h>

main (int, char *[])
{
String output;
// String::String()

String firstname = "Irving":
String middleinit ("J.");
// String::String(const char *)

String lastname = firstname;

String name (firstname + " " + middleinit + " " + lastname) ;
// String::String(const String &)
// (or copies data members)

output = "name is: " + name;
// operator=(const String &)

output.print () ;

return O;

Version 8.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 8-21

Data Encapsulation

Additional Constructor Functions

The constructor functions shown on the facing page will allow the initialization of

Strings with either String values or char * values.

An example of multiple-value initialization is shown below:

class complex {
public:
complex () ;
complex (float real_part);
complex (float real_part, float imaginary_part)

private:
float real, imag:
// or: float angle, distance;

}:
#include "complex.h"

complex c = 7.4; // initialization 7.4 + Oi
complex d(8.5) ; // initialization 8.5 + Oi

complex e(9.1, 10.0); // initialization 9.1 + 10.

complex f;

Version 3.0.2
Copyright © 1990 AT&T
All Rights Reserved

8-22 Object-Oriented Programming in C++

Oi

Additional Constructor Functions

const int max_string_length = 128;
class String {

public:

String() ;
String(const char *);
String(const String &);

“String() ;

String &operator=(cohst String &) ;
String &operator=(const char *);
int length() const;

int read():

void print () const;

const char &operator [] (int) const;
char & operator [] (int);
String substring(int start, int len) const;

friend String operator+ (const String &, const String &)
friend String operator+ (const String &, const char *);
friend String operator+ (const char *, const String &) :

private:

// a String is a sequence of up to
// max_string_length non-null characters
// followed by a null character

char text[max_string_length+1l];

Version 80.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 8-23

Data Encapsulation

Defining Additional Constructor Functions

The new constructors are shown on the facing page. Note that both ensure that
the text member of the String being created will be null terminated.

Versin 30.2
Copyright © 1960 AT&T
All Rights Reserved

8-24 Object-Oriented Programming in C++

Defining Additional Constructor Functions

#include "String.h"
#include <string.h>

//

// constructor function
// called automatically when a string is created
// and initialized with a char* value

//

String: :String(const char *init)

{
strncpy (text, init, max_string_length) ;
text [max_string_length] = '\0';

>

//

// constructor function
// called automatically when a string is created
// and initialized with a String value

//
String: :String(const String &init)
{
strcpy (text, init.text);
}

Version 83.0.2
Gopyright © 1090 AT&T
All Righta Reserved

Object-Oriented Programming in C++ 8-25

Data Encapsulation

Summary

Versicn 3.0.2
Copyright © 1990 ATZT
All Rights Reserved

8-26 Object-Oriented Programming in C++

Summary

A class can control all the operations that
access its private data: |

o All member functions
e All friend functions
o Operations that were legal in C
— Assignment
String: :operator=(const String &)

— Creation
String::String() // "default'" constructor

— Destruction
String::"String() // destructor

— Initialization
String: :String(const String &)
// "copy" constructor

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 8-27

Data Encapsulation

replace with blank page

Version 3.0.2
Copyright © 1960 AT&T
All Rights Reserved

8-28 Object-Oriented Programming in C++

Unit 8 Appendix

Object-Oriented Programming in C++

Class-type Members

Object-Oriented Programming in C++ 8-29

Class-type Members

Objectives

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

8 Appendix-30 Object-Oriented Programming in C++

Objectives

At the end of this appendix we will be able to:

e create a class with a class-type data
member

e create for that class:
— an assignment operator
— a constructor
— a destructor
— a "copy" constructor

o understand what will happen without the
above functions

Version 302
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 8 Appendix-31

Class-type Members

Class-type Data Members

A class may have class-type data members. In this case, the class of the data
member must come first in the source file.

Versicn 3.0.2
Copyright © 1900 AT&T
All Righte Reserved

8 Appendix-32 Object-Oriented Programming in C++

Class-type Data Members

#include "String.h"

class Employee {

public:
void set_name (const String &)
String get_name () const;

void set_salary(float):
float get_salary () const;

/). ..

private:
String name;
float salary;

}:

Version 302
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++

8 Appendix-33

Class-type Members
Built-in Operations

The creation of an Employee includes the creation of that Employee's
name, which is a String. Since class String has constructor functions, a
String constructor must be called whenever a String is created, even if that
String is part of another object. When an Employee object is created,
memory is allocated, and the constructor String: :String() is called. Later,

we will see how class Employee can select one of the other String
constructors.

If a class does not provide an assignment operator, C++ will assign all the data
members from the object on the right to the corresponding members of the object
on the left. If any of the data members has an operator= that handles
assignment of that type of object (e.g., String: :operator=(const String
&)), then that member’s assignment operator will be used to assign that
member. Therefore, when the Employee el is assigned to e2,

String: :operator=(const String &) will be used to assign el.name to
e2.name.

If a class does not provide a copy comstructor, C++ will copy all the data
members from the initializer to the corresponding members of the object being
created. If any of the data members has a copy constructor, then that copy
constructor will be used to initialize that member. Therefore, when the
Employee e3 is initialized with the value e2, String::String(const
String &) will be used to initialize e€3.name with the value e2.name.

The destruction of an Employee includes the destruction of that Employee's
name, which is a String. Class String's destructor must be called
whenever a Stringis destroyed, even if that String is part of another object.
When an Employee object is destroyed, the String destructor will be used to
destroy that Employee's name before the memory for the Employee has been
released.

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

8 Appendix-34 Object-Oriented Programming in C++

Built-in Operations

#include "Employeel.h"

main (int, char *[])

{
String jones = "Jones";
Employee el, e2; // String: :String|()
// used on el.name and e€2.name
el.set_name (jones) ;
el.set_salary (30000) ;
e2 = el; // String: :operator=(const String &)
// used to assign el.name to e2.name
Employee e3 = e2; // String::String(const String &)
// used to copy e2.name to e3.name
return O; // String::"String|()
// used for el.name, e2.name, and e3.name
>

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C4++ 8 Appendix-35

Class-type Members

Overriding Built-in Operations

Class Employee can provide its own assignment operator, default constructor,
destructor, and copy constructor.

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

8 Appendix-36 Object-Oriented Programming in C++

| Overriding Built-in Operations

#include "String.h"

class Employee {

public:
Employee () ;
Employee (const String &, float);
Employee (const Employee &) ;
“Emplovyee () :

Employee &operator=(const Employee &) ;

void set_name (const String &) ;
String get_name () const;

void set_salary(float);
float get_salary () const;

/). ..

private:
String name:
float salary;
}:

Versicn 30.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 8 Appendix-37

Class-type Members

Defining the New Employee Functions

If class Employee creates its own constructor and destructor functions, then those functions will
be used together with the String constructor and destructor functions during the creating and
destruction of Employees. When an Employee is created, the String constructor is used
before the Employee constructor. When an Employee is destroyed, the String destructor is
used after the Employee destructor. This ensures that the Employee's name will already be a
legal String when the Employee constructor runs, and that it will still be legal while the
Employee destructor runs. If this were not true, then Employee constructor and destructor
could not use the String member functions on the name., since those member functions may
rely on the representation invariant.

If we wish to use a constructor other than the default constructor for the creation of a member, we
must provide arguments for that constructor. The arguments for the data members’ constructors
are listed in the definition of the constructor, before the body of the function, and separated from
the constructor’s parameter list by a single colon. The initializers for each member are listed in
parenthesis, after the member name. For example, the second Employee constructor on the
facing page initializes the name member with the value n, and the salary member with the
value f. The expressions used to compute the initial values can work with global variables and
functions as well as the constructor’s arguments. Members of built-in types, like float, as well
as those of class types with constructors, can be initialized.

If we do not specify initial values for the data members, then the default constructor for that
member (e.g., String::String()) will be used. Note that if the data member’s class has one
or more constructors, but no default constructor, then we must provide arguments for one of those
constructors. If class String had no default constructor, we would get an error if we tried to
compile an Employee constructor that does not provide arguments to a String constructor, or
if class Employee had no constructor.

If Employee had the constructors below, then when an Employee variable was created, the
constructor String::String() would have been used to initialize the name to an empty
String, and then the Employee constructor would assign a new value to the name.

Employee: :Employee (const String &n, float f)

{
set_name (n) ;
set_salary(f):
}
Employee: :Employee (const Employee &initializer)
{ .
name = initializer.name?
salary = initializer.salary:
}

Note that the definitions of the default constructor, copy constructor, destructor, and assignment
operator are equivalent to the mechanisms used by C++, and therefore unnecessary in this
example. The only function that provides something new for the users of class Employee is the
constructor Employee: :Employee (const String &n, float f)

Version 30.2
Copyright © 1900 ATET
All Rights Reserved

8 Appendix-38 Object-Oriented Programming in C4++

Defining the New Employee Functions

#include "Employee2.h"

Employee: :Employee ()
{
B

Employee: :Employee (const String &n, float f)
: name (n), salary(f)

{
)
Employee: :Employee (const Employee &initializer)

: name (initializer .name), salary(initializer.salarvy)

{
+

Employee: : "Employee ()
{
}

Employee &Employee: :operator=(const Employee &rhs)
{

name = rhs.name;

salary = rhs.salary;

return *this;

Versicn 302
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 8 Appendix-39

Class-type Members

Using class Employee

Now that we have provided a default constructor, copy constructor, destructor,
and assignment operator, C++ will use them. The -constructor
Employee: :Employee (const String &n, float f£) lets users of class
Employee initialize Employee variables with a name and salary.

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

8 Appendix-40 Object-Oriented Programming in C++

Using class Employee

#include "Employee2.h"

main (int, char *[])

String jones = "Jones";

Employee el (jones, 30000); // String constructor and
// Employee: :Employee (const String &, float)

Employee e2; // String constructor and
// Employee: :Employee ()

e2 = el; // Employee: :operator=(const Employee &)
// (which calls String: :operator=)
Employee e3 = e2; // String constructor and
// Employee: :Employee (const Employee &)

return O; // Employee: :“Employee () and
// String::~String|()

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 8 Appendix-41

Class-type Members

8 Appendix-42

Summary

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++

Summary

The built-in definitions for:
o default constructor
e COpPYy constructor
e destructor
e assignment operator

will handle class-type members correctly.

They can be overridden.

Version 80.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 8 Apnendiv-43

Class-type Members

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

8 Appendix-44 Object-Oriented Programming in C++

Exercises 8 Ex

Object-Oriented Programming in C++

Lab Exercises

Object-Oriented Programming in C++ 8 Appendix-45

Lab Exercises

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

8 Ex-46 Object-Oriented Programming in C++

UNIT 8
Lab Exercises

1. Change to the unit08/point directory. Create a constructor for class Point that will
allow the initialization of Point variables with pairs of integer values. Even
though it may not do anything, add a destructor for the class Point. The
implementation for the constructor and destructor should be added to the file
point.c and the Point.h header file should be updated. A copy of the program
use_point.c from the unitO7/point directory has been placed in your unit08/point
directory. Use it to test your new class Point.

You can compile and execute this program by entering ’make’ or you can compile
and execute it directly using the commands:

$CC -0 use point use point.c point.c print.c

$ use_point

SUMMARY
DIRECTORY unit08/point

DECLARATION | Pointh (modify), printh

IMPLEMENTATION | point.c (modify), print.c

TEST PROGRAM use_point.c

FILE: use point.c

#include "Point.h"
$include "print.h"
$include <stdio.h>

main(int, char *[])

{

Lab Exercises

Point a;
Point b(10,10);
const Point < (100, 100);

printf(" initially, a, b, and c are:\n");
print(a):
print (b);
print (c);

a=D>b + c;

printf (" after \"a = b + <c;\"\n");
print(a);

print(b);

print (c);

return O;

Object-Oriented Programming in C++

8 Ex-1

2. Change to the unit08/string directory. The goal of this exercise is to determine
when constructor and destructor functions will be called. Add a call to printf to
each constructor, the destructor, and the assignment operator of the class String.
These functions can be found in the file encap.c. The printf function calls should
print the name of the function being called, and its argument types.

Try to predict when the constructors and destructor will be called in each test
program (lab2a.c through lab2fc), and test your prediction by compiling and
running the program.

You can compile and execute each test program by entering ’'make prob2n’ (n = a,
b, ¢, d, e, or f); you can compile and execute all of them by entering 'make’; or,
you can compile and execute them directly using the commands:

$CC lab2a.c string.c encap.c -o lab2a

$ 1ab2a
$CC lab2b.c string.c encap.c —-o lab2b
$ 1ab2b
$ CC lab2c.c string.c encap.c -o lab2c
$ 1ab2c
$CcC lab2d.c string.c encap.c —-o lab2d
$ 1lab2d
$ CC lab2e.c string.c encap.c —-o lab2e
$ 1ab2e
$CC lab2f.c string.c encap.c -o lab2f
$ lab2f

SUMMARY
DIRECTORY unit08/string
DECLARATION String.h
IMPLEMENTATION | string.c, encap.c (modify)
TEST PROGRAM lab2x.c (x=a,b,c,d, e, f)

FILE: lab2a.c

$include "String.h"

main() // test 1

{
String sl = "hello\n";
sl.print();
return O;

Lab Exercises Object-Oriented Programming in C++ 8 Ex-2

Lab Exercises

FILE: lab2b.c
#include "String.h"
main() // test 2
{
String sl;
sl = "hello\n";
sl.print ();
return O;
}
FILE: lab2c.c
#include "String.h"
main() // test 3
{
String sl = "hello\n";
String s2 = sl;
sl.print ();
s2.print () ;
return 0;
}
FILE: lab2d.c
$include "String.h"
main() // test 4
{
String sl = "hello\n", s2;
82 = s81;
sl.print ();
s2.print () ;
return 0O;
}
FILE: lab2e.c
#include "String.h"
void do_nothing()
{
String tmp = "useless local variable\n";

tmp.print();
}

main() // test 5

{
String sl = "hello\n", s2;

do_nothing();
s2 = sl;
sl.print();

Object-Oriented Programming in C++

8 Ex-3

s2.print ()
return 0;

FILE: lab2f.c

finclude "String.h"

String &do_nothing(String &str)

{
String tmp = "useless local variable\n";
tmp.print();

return str;

}

main() // test 5

{
String sl = "hello\n", s2;
s2 = do_nothing(sl);
sl.print ();
s2.print () ;
return O;

3. Change to the unit08/employee directory. Compile the file use empl.c in this
directory. It uses the class Employee that is defined in Employeel .h, shown on
page 8-33 of the Student Guide.

You can compile and execute this program by entering ’'make prob3’ or you can
compile and execute it directly using the commands:

$CC use_empl.c string.c encap.c -o use_empl
$ use _empl

Class Employee will now use the String member functions that were modified in
the Unit 8 lab exercises. Predict the output of the program use_empl .c, and check
your results.

SUMMARY
DIRECTORY unit08/employee
DECLARATION Employeel.h, String.h
IMPLEMENTATION | string.c, encap.c
TEST PROGRAM use_empl.c

Lab Exercises Object-Oriented Programming in C++ 8 Ex-4

#include "Employeel.h"
main(int, char *[])
{

String jones = "Jones";

Employee el, e2;

el.set name (jones);
el.set salary(30000);

e2 = el;
Employee e3 = e2;

return 0;

FILE: use_empl.c

4. Remain in the unit08/employee directory. Repeat the previous exercise with the
file use_emp2.c, which uses the class Employee defined in Employee2.h (shown on
page 8-37 of the Student Guide). The member functions for this class Employee
are in employee2.c (which is shown on page 8-39 of the Student Guide). Predict
the output of the program use_emp2.c, and check your results.

You can compile and execute this program by entering ‘'make prob4’ or you can
compile and execute it directly using the commands:

$ CC use_emp2.c employee2.c string.c encap.c -o \

use_emp2
$ use_emp2

DECLARATION Employee2.h, String.h
IMPLEMENTATION | employee2.c, string.c, encap.c
TEST PROGRAM use_emp2.c

#include "Employee2.h"

main(int, char *[])

{

String jones = "Jones";

Employee el (jones, 30000);

FILE: use_emp2.c

Lab Exercises Object-Oriented Programming in C++

8 Ex-5

Employee e2;
e2 = el;
Employee e3 = e2;

return O;

5. Remain in the unit08/employee directory. The file emp2 var.c is a copy of the file
employee2.c. Change the constructors in this file (emp2_var.c) so that they do not
use the member initialization syntax. The file on page 8-38 of the Student Guide
shows how this can be done, so you can simply replace the constructor functions in
emp2_var.c with those shown on page 8-38. Recompile and execute the same test
program use_emp2.c used in the previous exercise. Predict the output of the
program, and check your results.

You can compile and execute this program by entering ‘'make prob5’ or you can
compile and execute it directly using the commands:

$ CC use_emp2.c emp2 var.c string.c encap.c -o \
use_ emp2 var
$ use_emp2

lﬁ SUMMARY
DIRECTORY | unit08/employee
DECLARATION Employee2.h, String.h
IMPLEMENTATION | emp2 var.c (modify), string.c, encap.c
TEST PROGRAM use_emp2.c

Lab Exercises Object-Oriented Programming in C++ 8 Ex-6

UNIT 8

Lab Exercises (Answers)

1. The constructor Point::Point(int, int) will allow the initialization of Points with
pairs of int values as in the declaration "Point b(10, 10);". If we still wish to allow
the declaration of uninitialized Points (e.g., "Point a;"), we must also provide a
constructor with no arguments: Point::Point().

FILE: Point.h

class Point {

public:
Point (int x, int y):
Point ();
“Point () ;

int x() const;
int y() const;
void set_to(int x, int y);

Point operator+(const Point &) const;
Point operator-(const Point &) const;

friend Point operator* (int, const Point &);
friend Point operator* (const Point &, int);

Point operator/ (int) const;

int operator==(const Point &) const;
int operator!=(const Point &) const;

Point &operator+=(const Point &);

private:
int _x;

int _y;

inline int Point::x() const

{
return (_x);

}

inline int Point::y() const

{
return (_y);

}

Lab Answers Object-Oriented Programming in C++ 8 Ans-1

Lab Answers

FILE: point.c

#include "Point.h"
#include <stdio.h>

void Point::set_to(int x, int y)
{
X = x

v =y

~e N

}

Point Point::operator+(const Point &p) const
{
Point temp;
temp. x = _x + p._X
temp. vy = vy + p. Yy
return temp;

AU T

}

Point Point::operator—(const Point &p) const
{

Point temp;

temp. x = X - p._X;

temp. y = _y - pP._¥’

return temp;
}

Point operator* (int i, const Point &p)
{
Point temp;

temp. y = i * p.— ;
return temp;

}

Point operator* (const Point &p, int i)
{

Point temp;

temp. x = i * p._x;

temp. y =i * p._y;

return temp;
}

Point Point::operator/(int i) const

{
Point temp;
temp._x = _x / i;

return temp;

}

int Point::operator==(const Point &p) const
{
return (_x == p._x && _y == p._y)?1:0;

int Point::operator!=(const Point &p) const

{

Object-Oriented Programming in C++

8 Ans-2

return (_x != p._x || _y !'= p._y)?1:0;
}

Point &Point::operator+=(const Point é&p)
{

*this = *this + p;

return *this;

}

Point::Point (int x, int y)
{
X = X;

=y

}

Point::Point ()
{
}

Point:: Point ()
{
}

2. The constructor, destructor, and operator= functions can be modified as follows:

FILE: encap.c

#include "String.h"
#include <string.h>
#include <stdio.h>

//

// constructor function

// called automatically when a string is created.
//

// ensure the string is null terminated

//

String::String()

{
printf ("called String::String()\n");
text [0] = '\0’;

}

String::String(const char *init)

{
printf ("called String::String(const char *)\n");
printf ("\twith argument %s\n", init);
strncpy(text, init, max string_ length);
text [max_string length] = '\O’;

}

/7

// constructor function

// called automatically when a string is created
// and initialized with a String value

//

String::String(const String &init)

Lab Answers Object-Oriented Programming in C++

8 Ans-3

printf ("called String::String(const String &)\n");
printf ("\twith argument %s\n", init.text);
strcpy (text, init.text);

}

// use: s = "hello world"

String &Strang::operator=(const char *rhs)
{
printf ("called String::operator=(const char *)\n");
printf ("\twith this = %s\n", text);
printf ("\tand argument %s\n", rhs);
strncpy (text, rhs, max_string_ length);
text [max_string length] = /\0’;

return *this;

}
//

// destructor function
// called automatically when a string is destroyed.

//

String::~String()

{
printf ("called String::~String() for string: %s\n", text);
// nothing needed here yet

// constructor function
// called automatically when a string is created
// and initialized with a char* value

// use: s =t

String &String::operator=(const String &rhs)

{
printf ("called String::operator=(const String &)\n");
printf ("\twith this = %s\n", text);
printf ("\tand argument %s\n", rhs.text):;
strcpy (text, rhs.text);

return *this;

5 The new constructors for the class Employee are:

FILE: emp2 var.c
#include "Employee2.h"
Employee: :Employee ()

{
}

Employee: :Employee (const String &n, float f)

Lab Answers Object-Oriented Programming in C++ 8 Ans-4

set_name (n);
set_salary(f);

}

Employee: :Employee (const Employee &initializer)
{

name = initializer.name;

salary = initializer.salary;

}

Employee::“Employee ()
{
}

Employee &Employee::operator=(const Employee &rhs)
{

name = rhs.name;

salary = rhs.salary;

return *this;

Lab Answers Object-Oriented Programming in C++ 8 Ans-5

