Unit 10

Object-Oriented Programming in C++

Static Members

Unit 10 - Static Members

CONTENTS

Exercises 10 Ex - Lab Exercises

...

Answers 10 Ans - Exercise Answers

iii

Objectives

At the end of this unit we will be abl_e to:
e Create static data members
e Write static member functions

Version 3.0.2
Copyright © 1000 ATT
Al Rights Reserved

Object-Oriented Programming in C++ | 10-3

Static Members
Static Data

A static data member is shared by all the objects of a class. Static data
members are created before the start of main, and exist until the return from
main.

A static data member may be accessed in two ways: a member of any object of
the class (any_object.member), or as a part of the class itself (
class_name: :member). Static data members in a class’s private section can
only be accessed from the class’s defining operations.

Version 30.2
Copyright © 1060 AT&T
All Rights Reserved

10-4 Object-Oriented Programming in C++

Static Data

A static data member is shared by all the
objects of a class.

It can be accessed:
e With the "class-name::"

class_name: :static_data

e as part of any object of the class

any_object.static_data

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++

10-5

Static Members

Declaring Static Data

Now that we have a simple class string working, we may want to try to change
the implementation to make it more flexible, or more efficient, or both. The most
efficient implementation may depend on which functions are called most often.
For example, if operator+ is called frequently, and the other functions only
rarely, then we might choose to represent a string as a collection of small pieces
of text (rather than one large block).

In our example, we will use a static data member to count the total number of
calls to operator+. We will initialize this static member with the value 0, and
each time the operator+ function is called, it will increment concat_calls.
We can then determine if a user’s application is calling operator+ frequently,
and use that information to guide our choice of implementation of class
String.

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

10-68 Object-Oriented Programming in C++

Declaring Static Data

class String {

public:
String():
String(const char *);
String(const String &) ;
“String() :

const char *as_char_pointer () const;

String &operator=(const String &) ;
int 1length() const;

int read():

void print () const;

const char &operator [j(int) const;
char & operator [] (int):
String substring(int start, int len) const;

friend String operator+ (const String &, const String &)
private: '

// a String is a sequence of up to

// max_string_length non-null characters

// followed by a null character

char text[max_string_length+1l]:
static int concat_calls;

}:

Versicn 30.2
Copyright © 1000 ATET
All Rights Reserved

Object-Oriented Programming in C++ 10-7

Static Members

Working with Static Data

Static members of a class must be defined in some source file!. At the point of
definition, they may be initialized. Even though this initialization is not done
inside one of the class’s member functions, users can not change the initial value
provided. If the users tried to provide a different initial value, the program could
not be linked, because there would be two initial values for the same variable.

Member functions of the class can refer to the static member with just the
member name (i.e., concat_calls). Friend functions must use the class name
or an object to show which class’s member they are referring to (i.e.,
String: :concat_calls or lhs.concat_calls).

1. In C++ releases before 2.0, the declaration in the class served as the definition, of a static
data member and initialization was impossible. Release 2.0 of C++ allows the omission of
the static member definition, for compatibility with earlier releases.

Version 302
Copyright © 1000 AT&T
All Righte Reserved

10-8 Object-Oriented Programming in C4++

Working with Static Data

#include "String.h"
#include <string.h>
#include <stdio.h>

#include <stdlib.h>

int String::concat_calls = 0;

String operator+ (const String &lhs, const String &rhs)

{
String both;

if (lhs.length() + rhs.length() > max_string_length) {
fprintf (stderr, "RUN TIME ERROR: String too large\n"):
exit (1) . ~
+
String::concat_calls++;

strcpy (both.text, lhs.text):
strcat (both.text, rhs.text)
return both;

Versicn 3.0.2
Copyright © 1000 ATET
Al Rights Reserved

Object-Oriented Programming in C4++ 10-9

Static Members
Static Member Functions

Static member functions are accessed with the same syntax as static data
members. Since a static member function can be called without an invoking
object, it can not use the keyword this, and it can not refer to non-static
members of its "invoking object". It may, however, access non-static data
members of objects of its class (local variables or arguments of the class type, for
example), or static data members of its class.

Versicn 30.2
Copyright © 1000 AT&T
All Rights Reserved

10-10 Object-Oriented Programming in C++

Static Member Functions

Static member functions
e May be invoked
— with "class-name::"

class_name: :static_function(args) ;

— with any object of the class

any_object.static_function (args) ;

e may not use the keyword this

o may not refer to non-static members of its
"invoking object"

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 10-11

Static Members
Static Member Functions (example)

The static member function n_concatenations will return the count of
concatenations. We have chosen to write n_concatenations as a static
member function because it does not need an invoking object. Why should we
use the syntax string_variable.n_concatenations() to call this
function, when it has no need for the variable string_variable ? We should
be able to call it without using a String variable, in case we wish to discover
the number of concatenations in a function that has no String variables.

Version 3.0.2
Copyright © 1960 AT&T
All Rights Reserved

10-12 Object-Oriented Programming in C++

Static Member Functions (example)

class String {

public:
String() :
String(const char *);
String(const String &) ;
“String() ;

const char *as_char_pointer () const;

String &operator=(const String &) :
int 1length() const;

int read():

void print () const;

const char &operator [](int) const;
char & operator [] (int):
String substring(int start, int len) const;

static int n_concatenations();
friend String operator+ (const String &, const String &)
private:
// a String is a sequence of up to
// max_string_length non-null characters
// followed by a null character

char text[max_string_length+1l]:
static int concat_calls;

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 10-13

Static Members

Writing Static Member Functions

A static member function may refer to the static members of its class without
specifying which class they belong to. It may also access the private members of
any object of its class. For example, if n_concatenations declared a local
String variable s, it would have access to s.text.

Version 3.0.2
Copyright © 1990 AT&T
All Rights Reserved

10-14 Object-Oriented Programming in C++

Writing Static Member Functions

#include "String.h"

int String::n_concatenations ()
{
' return concat_calls;

b

Version 83.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 10-15

Static Members

Using Static Members

Versicn 3.0.2
Copyright © 1000 ATET
All Rights Reserved

10-16 Object-Oriented Programming in C++

Using Static Members

#include "String.h"
#include <stdio.h>

main (int, char *[])

{

String firstname = "Zaphod",
lastname = '"Beeblebrox",

name;

name = firstname + " " + lastname;
("Name is: " + name) .print():

printf ("There were 9d concatenations.\n",
String: :n_concatenations ()) ;

return O;

Versico 30.2
Copyright © 1960 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 10-17

Static Members

Summary

Versicn 3.0.2
Copyright © 1900 ATET
All Rights Reserved

10-18 Object-Oriented Programming in C++

Summary

Static members
o are shared by all objects of the class
o may be either data or functions
e Obey scope rules (public/private)

Version 3.0.2
CQopyright © 1090 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 70-19

Static Members

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

10-20 Ohject-Oriented Proerammine in O+

Exercises 10 Ex

Object-Oriented Programming in C++

Lab Exercises

Object-Oriented Programming in C++ 10-21

Lab Exercises

Version 3.0.2
Copyright © 1960 AT&T
All Rights Reserved

10 Ex-22 Object-Oriented Programming in C++

UNIT 10
Lab Exercises

1. Change to the unitl0/point directory. Add private static data members to the class
Point to count the number of calls to each constructor. Add a static member
function that prints out the number of calls to each constructor, and the total
number of calls to all constructors. Name this member function print_stats, and
test it with the programs test_stats.c and test_stats2.c. These programs are in your
unitlO/point directory. The print_stats member function should be added to the
point.c implementation file.

You can compile and execute the test programs by entering 'make’ or you can
compile and execute them directly using the commands:

$CC -o test_stats test_stats.c point.c print.c

$ test_stats

$CC -o test_stats2 test_stats2.c point.c print.c
$ test_stats2

SUMMARY
“DIRECTORY " unit10/point
DECLARATION Point.h (modify), print.h
IMPLEMENTATION | point.c (modify), print.c
TEST PROGRAM test_stats.c, test_stats2.c

FILE: test_stats.c

#¢include "Point.h"

main(int, char *[])

{
Point pl(1, 1), p2(10, 10);
Point p3;
p3 = pl + p2;

Point::print_stats();

return 0;

FILE: test_stats2.c

#include "Point.h"
Point global _varl (0, 0), global_var2(0, 1):

real_main(int, char *[])

Lab Exercises Object-Oriented Programming in C++ 10 Ex-1

Point pl(l, 1), p2(10, 10);
Point p3;
P3 = pl + p2;

return O;

}
main(int argc, char *argv[])
{
real main(argec, argv);

Point::print_stats();

return O;

Lab Exercises Object-Oriented Programming in C++ 10 Ex-2

UNIT 10
Lab Exercises (Answers)

1. Static data have been added to count the number of calls, and a static function has
been added to print out the data. Note that the function takes a default argument of
type FILE * to allow the printing of statistics to a file.

FILE: Point.h

#include <stdio.h>

class Point {

public:
Point (int x, int y);
Point ();
“Point () ;

int x() const;
int y() comnst;
void set_to(int x, int y);

Point operator+(const Point &) const;
Point operator-(const Point &) const;

friend Point operator*(int, const Point &);
friend Point operator* (const Point &, int);

Point operator/(int) const;

int operator==(const Point &) const;
int operator!=(const Point &) const;

Point &operator+=(const Point &);
static void print stats(FILE *fp = stdout);

private:
int _x;
int _y;

static int default ctor_count;
static int other_ctor_count;

}:

inline int Point::x() const

{

return (_x);

}

inline int Point::y() const

{
return(_y);

}

Lab Answers Object-Oriented Programming in C++ 10 Ans-1

FILE: point.c

#include "Point.h"
$include <stdio.h>

int Point::default_ ctor_count = 0;
int Point::other_ ctor_count = O;

void Point::set_to(int x%, int y)
{

= x;

y:

_x
-4

Point Point::operator+(const Point &p) const
{
Point temp;
temp. x = x + p._X
temp. y = Yy + pP-_Y

return temp;

e v

}

Point Point::operator—(const Point &p) const
{

Point temp;

temp. x = X - p._X;

temp. ¥y = _Yy - P-_Y/

return temp;
}

Point operator*(int i, const Point &p)
{

Point temp;

temp. x = i * p._x;

temp. y = i * p._y;

return temp;

}

Point operator* (const Point &p, int i)
{

Point temp;

temp. x = i * p._x;

temp. y = i * p._y;

return temp;

}

Point Point::operator/(int i) const:
{
Point temp;
temp. x = _x / i
temp. vy = vy / i
return temp;

~ ~e

}

int Point::operator==(const Point &p) const

{
return (_x == p._x && _y == p._y)?1:0;

Lab Answers Object-Oriented Programming in C++ 10 Ans-2

int Point::operator!=(const Point &p) const
{
return (_x != p._x I _Y = p._y)?1:0;

Point &Point::operator+=(const Point &p)
{

*this = *this + p;

return *this;

Point::Point (int x, int y)
{
_X = x5
Y =y
other_ctor_count++;

}

Point::Point ()

{

default ctor_count++;

Point:: "Point ()
{
}

void Point::print_stats(FILE *fp)
{
fprintf(fp, "There were %4d calls to the default constructor,\n",
default ctor_count);
fprintf(fp, " and %4d calls to the other constructor,\n",
other_ ctor_count);
fprintf(fp, " totalling %4d calls in all.\n",
default_ctor_ count + other_gtor_pount);

Lab Answers Object-Oriented Programming in C++ 10 Ans-3

