&& (in >> x) // got x value

&& (in >> c) && ¢ == "',"’ // got ' ,!
&& (in >> y) // got y value
&& (in >> c) && c == "')') [/ got ")’

{
p-set_to(x, y);

}

else { // input failure
in.clear(ios::failbit);

}

return in;

3. Since the I/O operations have parameters of type ostream & and istream &, they
can be used with ofstreams and ifstreams. Therefore, we do not need to add any
code to our class to read and write Points to files.

Lab Answers Object-Oriented Programming in C++ 14 Ans-4

}

Point Point::operator/(int i) const

{

Point temp;
temp. x = _x / i;
temp. y = y / i;

return temp;

int Point::operator==(const Point &p) const

{

return (_x == p. x && _y == p._y)?1:0;

int Point::operator!=(const Point &p) const

{

return (_x != p. x [_y !=p._y)?1:0;

Point &Point::operator+=(const Point é&p)

{

*this = *this + p;

return *this;

}

Point::Point (int x, int

{

<~ =¥

other_ctor_count++;

=X

Point::Point ()

{

y)

default ctor_ count++;

void Point::print_stats(ostream &out)

{

out << "There were
" calls to the
out << " and
" calls to the
out << " totalling

" all together.

" << default_ ctor_count <<
default constructor, \n";

" << other_ ctor_count <<
other constructor,\n";

" << default ctor_ count + other ctor_ count <<

\n";

ostream & operator<<(ostream &out, const Point &p)

{

return out << /' (! << p.x() <<« ", " KK p.yY() <«)';

istream & operator>>(istream &in , Point &p)

{

Lab Answers

int x, y;
char c;
if ((in >> ¢c) && c == " (’ // got ' ('

Object-Oriented Programming in C++

14 Ans-3

Note that the input and output operations can be written in terms of the existing
defining operations, so we do not need to add them to the class itself. We have
chosen to declare them in the Point.h header file to make them available to users of
class Point. We have also modified the print_stats function to work with an output
stream rather than a FILE * argument.

The output operator can be written in terms of output of integers and characters.
The input operator can read in the x and y values of the point, and it should check
to make sure the proper characters surround these values. If it encounters bad
input, it sets the failbit in the state of the stream, so that users who later check the
state of the stream will be alerted to the error.

FILE: point.c

#include "Point.h"
#include <stdio.h>

int Point::default_ctor count = 0;
int Point::other_ ctor_count = 0;

void Point::set_to(int x, int y)
{
= x

_x
Y=Y

N “o

}

Point Point::operator+(const Point &p) const
{

Point temp;

temp. x = _x + p._x;

temp. y = _y + pP-_Y;

return temp;

}

Point Point::operator—(const Point &p) const
{

Point temp;

temp. x = X - pP._X;

temp. y = ¥y -~ P-_Y¥/

return temp;

}

Point operator*(int i, const Point é&p)
{

Point temp;

temp. x = i * p._x;

temp. y = i * p._y;

return temp;

}

Point operator*(const Point &p, int i)
{

Point temp:

temp. x =i * p._x;

temp. y = i * p._y;

return temp;

Lab Answers Object-Oriented Programming in C++ 14 Ans-2

UNIT 14

Lab Exercises (Answers)

1. The new class Point, for exercises 1 and 2 (containing input and output operations)
looks like this:

FILE: Point.h

#include <iostream.h>

class Point {

public:
Point (int x, int y);
Point ();

int x() const;
int y() const;
void set_to(int x, int y);

Point operator+(const Point &) const;

Point operator—-(const Point &) const;

friend Point operator*(int, const Point &);
friend Point operator* (const Point &, int);
Point operator/(int) const;

int operator==(const Point &) const;
int operator!=(const Point &) const;

Point &operator+=(const Point &);

static void print_stats(ostream &out = cout);

private:
int _x;
int _y;

static int default ctor_count;
static int other_ ctor_count;

}s

// Read & Print points in the format "(x, y)"
ostream & operator<<(ostream &out, const Point &p);
istream & operator>>(istream &in , Point &p);

inline int Point::x() const
{
return (_x);

}

inline int Point::y() const
{
return(_y)

Lab Answers Object-Oriented Programming in C++ 14 Ans-1

' SUMMARY I
DIRECTORY unit14/point

DECLARATION | Pointh
IMPLEMENTATION | point.c
TEST PROGRAM | point_file.c

FILE: point_ file.c

$include <fstream.h>
#include "Point.h"

int create_file()
{

ofstream test ("point_io.test");
test << Point(l, 1) << " " << Point (10, 10) << "\n";

return test.good();
// file closed upon return from function

}

int read file()

{
ifstream test2 ("point_io.test");
Point a, b;

test2 >> a >> b;
if (test2) {
cout << a << "+" << b << " is " << a + b << "\n";
if (a + b != Point (11, 11)) {
cerr << "wrong input.\n";
return 0;
}
return 1;

}

cerr << "failed to read input.\n";
return O;

}

main (int, char *[])
{
if (create_file() && read file())
cout << "Test successful\n";

return O;

Lab Exercises Object-Oriented Programming in C++ 14 Ex-3

can compile and execute it directly using the commands:

$ CC point_in.c point.c -o point_in
$ point_in

l SUMMARY
DIRECTORY unit14/point

DECLARATION Point.h (modify)

IMPLEMENTATION | point.c (modify)

TEST PROGRAM point_in.c

FILE: point_in.c

#include <iostream.h>
#include "Point.h"

main(int, char *[])
{

Point a, b;

cout << "Enter point a: ";
cin >> a;
if (!ein) {

cout << "input failure on Point a.\n";

return 1;

}

cout << "Enter point b: ";
cin >> b;
if (!ecin) {

cout << "input failure on Point b.\n";

return 2;

}

cout << a << "+" << b << " is " << a + b << "\n";

return O;

3. Do you have to write any additional functions to input or output Points to files?

Compile and run the test program point_file.c.

You can compile and execute the test program by entering ‘'make prob3’ or you

can compile and execute it directly using the commands:

$CC point_file.c point.c -o point file

$ point_file

Lab Exercises Object-Oriented Programming in C++

14 Ex-2

UNIT 14

Lab Exercises

1. Change to the unitl4/point directory. Create an operator<< function to output
Points. Declare the function in Point.h and write the implementation code in the
file point.c. Test the function with the test program point_out.c. While you are
modifying the files Point.h and point.c, modify the print_stats function to work
with an output stream (ostream) rather than a FILE * argument.

You can compile and execute the test program by entering ‘'make probl’ or you
can compile and execute it directly using the commands:

$ CC point_out.c point.c -o point_out
$ point_out

SUMMARY
DIRECTORY unit14/point
DECLARATION Point.h (modify)
IMPLEMENTATION | point.c (modify)
TEST PROGRAM point_out.c

FILE: point_out.c

#include <iostream.h>
#include "Point.h"

main(int, char *[])

{
Peint a (1, 1), b(10, 10);
cout << "a is " << a << "\n";

cout << "b is " << b << "\n";

return 0O;

2. Create an operator>> function to input Points, and test it with the file point_in.c.
Note that your input operation should accept as input anything that the output
operation prints (so that one could use the output of point_out.c as input to
point_in.c).

You can compile and execute the test program by entering 'make prob2’ or you

Lab Exercises Object-Oriented Programming in C++ 14 Ex-1

Lab Exercises

Versicn 302
Copyright © 1000 AT&T
All Rights Reserved

14 Ex-36 Object-Oriented Programming in C++

Exercises 14 Ex

Object-Oriented Programming in C++

Lab Exercises

Object-Oriented Programming in C+4+ 14-35

IO Streams

Version 8.0.2
Copyright © 1000 AT&T
All Rights Reserved

14-34 Object-Oriented Programming in C++

Summary

In this unit, we have seen how to:
o Use the C++ Stream 1/0 facility.
o Work with file streams
e Define |/O operations for a new type.

Versicn 302
Copyright © 1900 AT&T
All Rights Reserved

Obiect-Oriented Programmine in C4+ 14.22

10 Streams
Summary

In this unit, we have seen how to use this facility to perform I/O on variables of
built-in types or classes.

Versicn 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

14-32 Object-Oriented Programming in C++

String 1/0

#include "String.h"
#include <fstream.h>

main (int, char *[])

String firstname, lastname;
cerr << "Enter your first name, please: ";
cin >> firstname;
cerr << "and now your last name: ";
cin >> lastname;
cout << "Your name is: "
<< firstname + " " + lastname
<< 1" \n".
ofstream namefile (" /tmp/name'", ios::out | ios::app):
namefile << "Processed name: "
<< firstname + " " + lastname
<< n\nn’.
return O;

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 14-31

IO Streams

String 1/O

Now that we have defined an input operation and an output operation for
Strings, we can input and output Strings.

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

14-30 Object-Oriented Programming in C+4+-

String input

#include "String.h"
#include <stdlib.h>

istream &operator>> (istream &in, String &s)
{

char nextch;

int size = 0; // current size

// free up old storage, allocate some space

while (1) ¢
in.get (nextch); // sets nextch
if (!'in || nextch == '\n') {
s .heap_ptr[size] = '\0';
return in;

}

s.heap_ptr [size++] = nextch;

// if in need of more storage, re-allocate

b

Version 302
Copyright © 1900 ATET
All Rights Reserved

Object-Oriented Programming in C++ 14-29

IO Streams

String input

Input is somewhat more complicated. There is no existing input operation to
read in a whole line of text, so we have to construct a loop that reads in 1
character at a time (using the "get" operation on iostreams). If it runs out of

storage, it allocates more (this code has nothing to do with I/O, so it is not shown
here).

We could have used an istream function that reads line of text into a fixed size
buffer of characters rather than reading one character at a time, but we would

still have to deal with re-allocation of storage if the line were longer than the
buffer.

Note that this operation does the two things all input operations must do: it
reads the input, and it returns the istream it read from.

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

14-28 Object-Oriented Programming in C4++

String output

#include "String.h"

ostream &operator<< (ostream &out, const String &s)
{

return out << s.heap_ptr;

// uses operator<< (char*)

Version 3.02
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C+4+ 14-27

IO Streams

String output

The output operation for Strings can easily be written in terms of output
operations on simpler types. The member heap_ptr of the String s has type
char *, so it will be output using the existing output operation for type char
* . All output operators are supposed to return the ostream they wrote on, so
our output operator must then return the ostream out. This could be done
with a second statement "return out;", or it could be done by simply returning the
result of "out << s.data", which must be "out".

This is a typical output operation -- it requires only a line or two of code that
simply outputs the data members of the object using simpler output operations.

Versicn 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

14-26 Object-Oriented Programming in C+-+

Adding I/O operations to a new class

Finclude <iostream.h>

class String {

public:
String():
String(const char *);
String(const String &)
“String():

const char *as_char_pointer () const;

String &operator=(const String &) :
int 1length() const;

// Replacements for read() and print():
Jriend ostream &operator<<(ostream &, const String &);
friend istream 8operator>>(istream &, String &);

const char &operator [] (int) const;
char & operator [] (int):

String substring(int start, int len) const;

friend int operator==(const String &, const String &)
friend int operator!=(const String &, const String &) ;

static int n_concatenations ()

friend String operator+ (const String &, const String &)
private: ' | ’

char *heap_ptr;
static int concat_calls;

}:

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 14-25

10 Streams
Adding I/O operations to a new class

To change class String to use stream 1/O, we need to do two things: First, we
must replace the read and print functions with operator>> and operator<<.
Second, we must change the other member functions of class string that did 1/0
so that they use the stream I/O library. Stream I/O and standard 1/O should
not be used together on the same file descriptor. Since cerr and stderr both
‘correspond to file descriptor 2, and we may wish to print error messages from our
main program, we should convert our String member functions to use cerr
rather than stderr.

Our new input and output operators need not be either friends or members of the
stream classes, because they will use only the public interfaces of those classes.
Operators must be friends of String if they will need to access the private data.
These will.

The member functions that use stdio can be located by removing the include of
stdio.h and watching to see which lines give warnings. For example, the line in
String::alloc_and_set(char *s) that reports an error if new fails will not get a
warning (because the function fprintf has not been declared):

fprintf (stderr, "Insufficient storage for string \"¥%s\'"\n". s):
It can be replaced by:

cerr << "Insufficient storage for string \"" << s << "\"\n":

Version 30.2
Copyright © 1000 ATET
All Rights Reserved

14-24 Object-Oriented Programming in C++

Using File Streams

#include <fstream.h>

main (int, char *[])

{
ifstream in ("/tmp/source") ;
ofstream out ("/tmp/dest") ;
int i;
double d;

if (in.good() && out.good()) {
in >> i >> d;
out << "read integer: " << i ‘
<< " and double: " << d << " .\n";

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 14-23

IO Streams

Using File Streams

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

14-22 Object-Oriented Programming in C++

Class ifstream

// Simplified class ifstream:

class ifstream : public istream {
public:
' ifstream()
ifstream(const char* name,
int mode=ios: :in,
int prot=filebuf: :openprot) ;
ifstream(int fd)
“ifstream()

void open (const char* name,

int mode=ios::in,

int prot=filebuf: :openprot) ;
void close() :

Versicn 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 14-21

IO Streams

Class ifstream

Class ifstream is similar to class ofstream. Its default mode is ios::in,
and it inherits from istream instead of ostream (and therefore has
operator>> functions instead of operator<< functions).

The stream I/O library also provides a type fstream, for input and output to
files, but we will not study it in this chapter for two reasons. First, because class
fstrean is defined with multiple inheritance, which we have not studied, and
second, because fstreams are are used less frequently than ifstreams and
ofstreams. Files are usually opened for both reading and writing when they
are being used to store a large amount of data that may need to be updated. It is
often easier to update a file by using class that treats a file as an array. Such a
class would provide an operator|] that allows access to different records in the file,
and might be used like this:

file_of_records F (filename) ;
record i, j;

i =F[3).; // read record #3
F[21) = 3: // write record #2

Version 30.2
Copyright © 1900 ATET
All Rights Reserved

14-20 Object-Oriented Programming in C++

Class ofstream

// Simplified class ofstream:

class ofstream : public ostream {
public:
ofstream()
ofstream(const char* name,
int mode=ios: :out,
int prot=filebuf: :openprot) ;
ofstream(int fd) ;
~ofstream() ;

void open (const char* name,

int mode=ios: :out,

int prot=filebuf: :openprot) ;
void close() »

Versicn 3.0.2
Copyright © 1960 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 14-19

IO Streams

Class ofstream

Class ofstream adds file access functions to the functions of class ostream.
An ofstream can be opened when it is initialized, or it can be opened later with
the open member function. The arguments to open and the constructor are:

e The name gives the name of the file to be opened.

e The mode gives the open mode, which can be any of the values given in the

enum open_mode given in the class ios. For output files, the default mode
is ios::out.

e The prot gives the protection mode that will be used for the file if it is
created by call to open.

When a file stream is created, the constructor automatically creates a buffer that
is appropriate for work with files (an object of class filebuf). The filebuf
is used as the argument to the ostream constructor. Since this buffer is
managed automatically, our code does not need to work with it. Note that the
default mode for file creation is defined by a static member of class filebuf.

Versian 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

14-18 Object-Oriented Programming in C++

Using class istream

#include <iostream.h>

main (int, char *[])

{
int i
char buffer [256] ;
double d;
cin >> i; // operator>> (int &) ;
cin >> buffer; // operator>> (char *);
cin >> d; // operator>> (double &) ;

// cin >> i >> buffer >> d; is equivalent to above

if (cin) {
cout << "i is: " << i
<< " buffer is: " << buffer
<< M d is: " << d << |\n|;
+
else {

cerr << "input unsuccessful.\n";

}

return O;

Versin 302
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 14-17

IO Streams

Using class istream

The input operators are all written so that they return a reference to the
invoking istream. For example, given an integer variable i, the expression:

cin >> i

returns "cin”. That means that we can use this expression anywhere we could use
" _. ” . . .
cin, such as on the left hand side of an input operation:

cin >> i >> "\n".;

Since cin >>>1 is equivalent to just "cin" (except for the fact that it read in i), the
above is equivalent to:

cin >> ji;
Cil’l >> "\n'l;

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

14-16 Object-Oriented Programming in C++

class istream

// Simplified class istream:

class istream : public ios {
public:
istream (streambuf*) ;
virtual “istream() ;

istream& seekg (streampos p) ;
istream& seekg(streamoff o, seek_dir d)
streampos tellg() .

.
4

istream& operator>> (char¥*) ;

istream& operator>> (unsigned char*) ;
istream& operator>> (unsigned char& c);
istream& operator>> (char& c) ;
istream& operator>> (shorté&) ;
istream& operator>> (inté&) ;

istream& operator>> (longé&) ;

istream& operator>> (unsigned shorté&) ;
istream& operator>> (unsigned int&) ;
istream& operator>> (unsigned longé&) ;
istream& operator>> (float&) ;
istream& operator>> (doubleé&) ;

istream& get (char* , int 1lim, char delim='\n')
istream& getline (char* b, int lim, char delim='\n'):
istream& get (char& c);

int get|():

int peek() ;

istream& putback (char c):;

Version 30.2
Copyright © 1900 ATET
All Rights Reserved

Object-Oriented Programming in C++ 14-1K8

IO Streams

class istream

Class istream has operations to input the primitive types using the right shift
operator (>>). These operations must use reference parameters for their right
hand operands, so that they can change the calling function’s variable.

We can also read characters from a stream with the "get" member functions.
The >> operators skip over "white space” when reading characters, but the get
functions return the spaces, newlines, and tabs they read. The peek function
returns the next character in the stream, but without removing it from the
stream (so a subsequent get() would get the same character). putback puts a
character back into the input stream. The next input operation will start by
reading the character put back.

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

14-14 Object-Oriented Programming in C++

Using class ostream

#include <iostream.h>

main (int, char *[])

{

cout << 42;
cout << "hello world\n";
cout << 3.1415;

float a = 4.56;

int b = 7;
cout << "the sum of " << a << " and " << b
<< " is: " << a + b << " \n";

if (cout.good()) {
cout << "all I/O successful.\n";

>

else {

cerr << "Some I/O operations failed.\n";

}

return O;

Version 8.0.2
Copyright © 1960 ATET
All Rights Reserved

Object-Oriented Programming in C++

14-13

IO Streams

Using class ostream

The output operators are all written so that they return the invoking ostream
object. For example, the expression:

cout << 42

returns cout. Note that cout is returned by reference, not by value, so "cout <<
42" refers to the original variable “"cout"”, not a copy of cout. The expression
"cout << 42" can be used anywhere the variable "cout"” could. For example, we
could use "cout << 42" as the left operand of another output operation:

cout << 42 << "\n";
// the above is just like:

cout << 42;
cout << "\n";

We can also use the operations declared in ostream's base class on an
ostream. For example, we can determine if the ostream is still in the "good"
state with the good member function.

Versicn 30.2
Copyright © 1000 AT&T
All Rights Reserved

14-12 Object-Oriented Programming in C++

class ostream

// Simplified class ostream:

class ostream

public:

ostream (streambuf*)

virtual

ostream& flush ()

: public ios {

.
’

“ostream() ;

ostream& seekp (streampos p)
ostream& seekp (streamoff o, seek_dir d)

streampos

tellp ().

ostream& put (char c);

ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&

operator<<(char c):
operator<< (unsigned char c):
operator<<(const char¥*);
operator<<(int a);
operator<<(long) ;
operator<< (double) ;
operator<< (float) .
operator<< (unsigned int a):;
operator<< (unsigned long)
operator<< (void*) ;
operator<< (short 1i):
operator<< (unsigned short i)

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++

.
’

14-11

IO Streams
class ostream

Class ostream has operations to output the primitive types using the left shift
operator (<<). C++ will automatically choose the appropriate << operator for
the type of operand used, just as it always uses the types of the operands to
select an overloaded operator. Individual characters can be output with either
the << operation or the put member function.

The ostream constructor requires an argument of type streambuf *, so
every ostream must be given a stream buffer when it is created. A stream
buffer handles the buffering of data moving to or from a stream. We will not need
to work with stream buffers directly, as they are created automatically by the
derived class constructors before the ostream constructor is called.

Class ostream also provides member functions for flushing the output from the
buffer associated with the stream, and seeking to a new position in the stream.
The types streampos and streamoff are both typedef’d to long, and are
used to represent offsets within a stream.

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

14-10 Object-Oriented Programming in C+4+

Class ios

// Simplified class ios:

class ios {
public:
// state of stream:
int eof();
int fail():
int bad():
int good():

enum io_state{ goodbit=0, eofbit=1, failbit=2, badbit=4 };
int rdstate():;
voidclear (int i =0) .

operator void* () ;
int operator! ():

// mode of stream

enum open_mode { in=1, out=2, ate=4, app=010,
trunc=020, nocreate=040, noreplace=0100} ;

enum seek_dir { beg=0, cur=1l, end=2 } ;

// other functions involving access to buffer

Versicn 30.2
Copyright © 1000 ATT
All Rights Reserved

Object-Oriented Programming in C4++ 14-9

IO Streams

Class ios

Class ios declares functions for determining the state of a stream. The eof
function can be used to determine if a stream has reached the end of a file. bad
will return true if an invalid operation has been performed (e.g., seeking past the
end of a file). If an i/o operation was unsuccessful or illegal, the fail function
will return true. good will return true if nothing is wrong with the stream (i.e.,
if none of the previous three functions would return true).

The clear function can be used to set the state of the stream to one of the
states given by the enumerated type io_state. rdstate returns the state of
the stream (which could also be determined by calling the four functions listed
above).

operator! and operator void* allow convenient access to the state of the
stream. The first will return a non-zero integer if the stream is not good, the
second will return a non-null pointer if the stream’s state ¢s good. These
operators allow the use of stream type values within an if statement, where an
arithmetic or pointer type value is required:

if (cout) // true if the stream '"cout" is good

if (!'cout) // true if the stream "cout" is not good

Class ios also declares enumerated types describing the modes that can be used
when a stream is opened (open_mode), and the direction of a seek operation (
seek_dir).

Versicn 802
Copyright © 1900 AT&T
All Rights Reserved

14-8 Object-Oriented Programming in C++

/O Stream Library Classes

CdasQ

class istream class ostream

class ifstreaD class ofstream

Version 302
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 14-7

IO Streams

14-6

I/O Stream Library Classes

Class ios contains the features common to both input and output streams:
information about the state of the stream, and modes that can be used
when opening a new stream.

Class ostream defines the output operations common to all output
streams. It is used as a base for different output stream classes, such as
ofstream. Class ofstream (output file stream) is a class for output
streams that write to files. It adds operations for opening and closing files
to the operations it inherits from ostream.

Class istream is the base class for input streams. It defines the input
operations. Class ifstream (input file stream) adds operations for
opening and closing files to the operations it inherits from istream.

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++

Streams

Stream | /O library
o Type-safe
o Extensible
o output to "output stream" object:

cout << "Exit program? ";
cerr << "Error encountered\n":

e input from "input stream" object:

char answer [10] ;
cin >> answer;

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 14-5

IO Streams
Streams

The left shift operator (<<) is used to send output to an output stream, and the
right shift (>>) to get input from an input stream. When they are used in this
context, << is sometimes called the output operator, and >> the input operator.
The library defines the streams cin, (an input stream corresponding to the
standard input), cout (an output stream corresponding to the standard output),
and cerr (an output stream corresponding to the standard error).

There are three major differences between the stream I/O library and the
standard I/O library:

When you use printf or scanf, you must specify the types of the arguments in the
format string, and there is no error checking. You could accidentally use the
format "%f" with an integer without getting any warning from the compiler. The
normal C++ rules for selecting an overloaded operator will automatically select
the correct output operation for the type of variable being printed or read in.

It is easy to extend the stream I/O library to include new types. Extending printf
or scanf to work with new types is much harder. In fact, it is so hard that most
programmers just create other functions to do I/O on new types. Code written in
this fashion uses printf for char, int, or float variables, a function like

"print_complex"” for complex numbers, and a function like "print_foo" for some
other type foo.

The stream [/O library also has new mechanisms for working with formatted
input or output, but these are outside the scope of this course. The original
formatting mechanism is described in Bjarne Stroustrup’s book, "The CH++
Programming language.” Other mechanisms have been added in later versions of
the library, and are documented in the release notes.

Versicn 30.2
Copyright © 1900 AT&T
All Rights Reserved

14-4 Object-Oriented Programming in C++

Objectives

At the end of this unit we will be able to:
o Use the C++ Stream | /O library:
— input data
— output data
— open and close files
— define |/O operations for new types

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++

14-3

CONTENTS

Unit 14 - IO Streams

I/0 Stream Library CLassesc.cccccveviiieerieniesieieeesieeseesseeseeeeeeseeesseseseseeessssssssssssssssssssssssssesns 14-7
BOS ettt ettt ettt a b s et st ae et e e et et eae s et e et e s e e et et e e e e s e e e s 14-9
OSTLEAIIL weeeeniieiiiiniiiiiiiieieeeee e et ttbtetre st eeeesaeraeesssnnsssssrsaessseessssessessnsssmnsannnsenenseesssssesesessssesssss 14-11
ISETEAIN Louvuiiiiiiciiice ettt ettt s s et e st eee et e e e e ee e se s e e e s e e e s et e e 14-15
OFSETEAIN oouvinitiiiiiiie ettt ettt vt eae e e e et s e e et e essa s e e eee s e s e s eaeese e s s e 14-19
HISUT@AIN .ottt e e e e e s e eee et e s e se e e e s s ee e e see e s 14-21

Adding I/O Operations t0 @ NEW CASSc.ceevueuiuiierieeieeeeeeeeeeeeeeeeseseeeeseseesesessesese s 14-25

SUIMMATY .ttt s eesae et et e s e seeeseseesessesessesesesseseseessemssseesesesesseas 14-33

Exercises 14 Ex - Lab Exercises

Answers 14 Ans - Exercise Answers

i

Unit 14

Object-Oriented Programming in C++

IO Streams

