int starting height)
: Shape (starting location), _height (starting height) -
{
}

int Vertical_line::height() const

{

return _height;

}

void Vertical line::change_height (int new_height)
{

_height = new_height;
}

void Vertical line::draw()
{

draw_with_char("'):
}

void Vertical line::draw_with char(Display char ch)

{
Display.add line(location(), location() + Point (0, height()), ch);

}

Rectangle::Rectangle (const Point &starting location,
const Point &starting size)
: Shape (starting location), _size(starting size)
{
}

Point Rectangle::size() const

return _size;

void Rectangle::change size (const Point &new_size)

_size = new _size;

void Rectangle::draw()

Display.add _line(location(), location() + Point (size().x(), 0), ’'=");
Display.add line(location(), location() + Point (0, size().y()), ‘I’);
Display.add_line(location() + size(), location() + Point(size().x(), 0), 'I’);
Display.add line (location() + size(), location() + Point (0, size().y()), '-'}):

void Rectangle::draw_with char(Display char ch)

Display.add line(location(), location() + Point(size().x(), 0), ch):
Display.add line(location(), location() + Point (0, size().y()), ch);
Display.add_line (location() + size(), location() + Point(size().x(), 0), ch);
Display.add line (location() + size(), location() + Point (0, size().y()), ch);

Lab Answers Object-Oriented Programming in C++ 17 Ans-4

FILE: shapes.c

$include "Shapes.h"
#include "Screen.h"

UNIT 17

Lab Exercises (Answers)

Since Window is publicly derived from Display medium and Display_object,
and Bottom Window is publicly derived from Window, we can use a
Bottom _ Window as an argument to either number_lines (which has a Window *
parameter), say_hello (which has a Display | medium parameter), or bounce
(which has a Display_object parameter), without any further changes to our code.

The first change we must make to our shape classes is to derive them from class
Display object. This will allow the use of a shape whenever a Display_object is
needed. If we list Display object as a base of Shape, all shapes will be derived
from Display_object indirectly. If we made only this change, we would not see a
Rectangle bouncing up and down on the screen, because bounce calls move, which
adjusts the _location member without displaying the Rectangle on the screen.

To make the Rectangle bounce up and down on the screen, we must modify the
move function so that it erases the Rectangle, adjusts the _location, and then
draws the Rectangle again. This can be done most easily by adding an erase
member function, and calling it from the new move:

void Shape::move(const Point &new_location)
{

erase();

_location = new_location;

draw();

]

To make shapes consistent with class Display_object, we must modify the move
function so that it erases the shape, changes its location, and draws the shape at the
new position. A shape can be erased by drawing over it with blank spaces. If we
change the way shapes behave, existing code that uses shapes (such as copies.c)
will no longer work. This is an mescapable result of making an incompatible
change.

The Shapes.h header file changes necessary to implement the above are:
1. Add a #include of "Display_obj.h" to the Shapes.h header file.

main(int, char *{])
{
Window w(Point (2, 1),
Point (30, 20),
"A Window");

Bottom _Window bw(Point (35, 1),
Point (30, 20),
"A Bottom Window");

number_ lines (&w);
number_lines (&bw);

sleep(2);
say hello(w);
say hello(bw);

sleep(2);
bounce (w) ;
bounce (bw) ;

sleep(2);
return 0;

2. This question does not use multiple inheritance, but it does illustrate some of the
subtle issues involved in using inheritance, whether single or multiple.

Change to the unitl7/shapes directory. The files Display obj.h, bounce.h,
bounce.c, and bounce_rect.c have been added to your unitl7/shapes directory.
Change your shape classes (Shape, Rectangle, etc.) so that the program
bounce_rect.c (shown following the SUMMARY) will show a rectangle bouncing
up and down on the screen. Getting this to work is harder than it may seem at first.

After making the changes, you can compile and execute the test program by
entering 'make prob2’ or you can compile and execute it directly using the
commands:

$cc -1../../pre_windows shapes.c \
bounce rect.c bounce.c -L../../pre_windows \
-lpre wind -lcurses -o bounce_rect

$ bounce_rect

HINT: If class Shape is to be publicly derived from Display object, class Shape
must work in a way that is consistent with a Display_object (see page 17-10 in the
Student Guide). The shape classes should already obey the rule "location returns
the point the object was last moved to,"” but the shapes are inconsistent with class
Display object in a more subtle way. When we call the move function for a
Display object, the Display_object will disappear from its original location on
the screen, and re-appear at the new location. The move function for a Shape
simply updates the _location member without re-drawing the shape.

Lab Exercises Object-Oriented Programming in C++ 17 Ex-2

UNIT 17

Lab Exercises

1. Change to the unitl7/window directory. In unit 17, class Window is derived from
both class Display medium and class Display_object, so Bottom_ Window is
indirectly derived from these classes. The files Bot Wind.h and bot wind.c are
copies of the solutions from the unitl3/windows directory. Compile and execute
the test program use_bot_w.c. Do you need to change either of your files to make
the test program work?

You can compile and execute this program by entering ‘'make probl’ or you can
compile and execute it directly using the commands:

$cC -1../../pre_wind use_bot_w.c bot_wind.c \
say hello.c bounce.c window.c -L../../pre wind \
-lpre wind -lcurses -o use_bot_w

$use_bot_w

SUMMARY

DIRECTORY unitl7/window
DECLARATION pre_windows/Point.h, pre_windows/Screen.h,
pre_windows/max.h, pre_windows/Display_med.h,
Window.h, Display obj.h, Bot_ Wind.h,
bounce.h, say_hello.h
IMPLEMENTATION | pre_windows/libpre_wind.a, window.c,
bot_wind.c, bounce.c, say_hello.c

TEST PROGRAM use_bot_w.c

FILE: use bot w.c

#include "say hello.h"
#include "bounce.h"
#include "Bot_Wind.h"
#include <libc.h>
$include <stdio.h>

void number_ lines (Window *w)

{

int i;
char buf(4];
for (i=0; i<w->size().y(); it++) {

w->move_cursor (Point (0, i));
sprintf (buf, "%34", i);
w->add (buf) ;

Lab Exercises Object-Oriented Programming in C++ 17 Ex-1

Lab Exercises

Version 8.0.2
Copyright © 1000 AT&T
All Rights Reserved

17 Ex-24 Object-Oriented Programming in C++

Exercises 17 Ex

Object-Oriented Programming in C++

Lab Exercises

Object-Oriented Programming in C++ 17-23

Multiple Inheritance

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

17-22 Object-Oriented Programming in C++

Summary

A class may have more than one base.

o class should do what is expected of each
public base

e ambiguities may arise
— resolved in each call with :;
— prevented with overridding function

Versica 3.0.2
Copyright © 1060 AT&T
All Righte Reserved

Object-Oriented Programming in C++ 17-21

Multiple Inheritance

Summary

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

17-20 Object-Oriented Programming in C++

Preventing Ambiguities

class Display_medium {
public:
virtual void clear ()

}:

class Display_object {
public:
virtual void clear ().

}:

class Window : public Display_medium, public Display_object {
public:

void clear () ;

>
void Window: :clear ()
{
Display_medium: :clear () ;
Display_object::clear ()
by

main (int, char *[])

{
Window w(Point (1, 1), Point (10, 10), "test"):
w.clear () ;
return O;

}

Version 8.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Proecrammine in O+ 17.10

Multiple Inheritance

Preventing Ambiguities

Alternatively, the ambiguity can be avoided if the function is overridden in the
derived class. There are some situations in which the compiler forces the author
of a class to avoid potential ambiguities in this way!. If the derived class
overrides the base class functions, then the derived class function will be used for
derived class objects in functions like blank (unless the keyword virtual was
not used in the base class member function declarations).

We recommend overriding functions that are inherited from more than one base
class unless there is some reason why the user should be forced to choose one
function or the other. If we override potentially ambiguous functions while
creating the derived class, we not only make coding easier on the users, but also
avoid a potential maintenance problem. If a derived class does not override the
function, and later we need to add an overriding function, the users will have to
go back and remove the explicit references to base class functions from their
code.

1. We will learn about these situations in the next unit.

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

17-18 Object-Oriented Programming in C++

Resolving Ambiguities

class Display_medium {
public:
virtual void clear ().

}:

class Display_object {
public:
virtual void clear ().

}:

class Window : public Display medium, public Display_object {
public:

// No clear function

}:

main (int, char *[])

{
Window w (Point (1, 1), Point (10, 10), '"test");
w.Display_medium: :clear () ;
w.Display_object::clear ()
return O;

bs

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 17-17

Multiple Inheritance

Resolving Ambiguities

Such ambiguities can be resolved with the scope resolution operator, when the
function is called. If the function is called with a base class pointer or reference,
the scope resolution operator is not needed:

example (Display_object &d_o)
{

}

d_o.clear(): // Display_object::clear

The example function will call the Display_medium::clear function if
called with a Window argument.

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

17-16 Object-Oriented Programming in C++

Ambiguities

class Display_medium {
public:
virtual void clear () ;

}:

class Display_object {
public:
virtual void clear ().

}:

class Window : public Display_medium, public'Display_object {
public:
// No clear function

}:

main (int, char *[])

{
Window w(Point (1, 1), Point (10, 10), "test");
w.clear (), // error -- which clear?
return O;

}

Versico 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 17-15

Multiple Inheritance

Ambiguities

If a class inherits several functions with the same name and parameter types
from different bases, calls to those functions may be ambiguous. For example, if
both Display_medium and Display_object had a clear function, the call
to clear shown on the facing page would be ambiguous, and therefore illegal.

Version 8.0.2
Copyright © 1900 AT&T
All Righta Reserved

17-14 Object-Oriented Programming in C++

Using Windows

#include '"say_hello.h"
#include "bounce.h"
#include "Window.h'"
#include <stdlib.h>

main (int, char *[])

{
Window w (Point (2, 2), Point (60, 10), "test");

say_hello (w) ;
sleep (2) ;

bounce (w) ;
sleep (2) .

return O;

Versicn 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C4++ 17-13

Multiple Inheritance

Using Windows

Since Window is derived publicly from both Display_medium and
Display_object, a Window can be used when either a Display_medium or
a Display_object is expected. Since class Window obeys the abstraction
invariants of both of its base classes, functions written for those bases will work
with Window arguments.

void say_hello (Display_medium &m)

{
m.add ("hello, world\n"):
>
void bounce (Display_object &d)
{
Point at = d.location():
Point up = at - Point (O, 2);
Point down = at + Point (O, 2):
d.move (up) ;
d.move (down) ;
d.move (up) ;
d.move (down) ;
d.move (at) ;
}

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

17-12 Object-Oriented Programming in C++

Window::location

#include "Window.h"

Point Window::location() const
{
return upper_left () ;

>

Versian 3.0.2
Copyright © 1960 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 17-11

Multiple Inheritance

Window::location

When we override a member function, we must be consistent with both the
declaration and the meaning of the base class function. Even if the base class
function is a pure virtual function (with no implementation), the base class’s
documentation may still describe, on an abstract level, what the functions will
do. Such a rule is often called an abstraction tnvariant, because it is defined in
terms of the abstraction, not any particular representation. Abstraction
invariants may be stated explicitly in comments or documentation, or they may
be implicit in the programmer’s understanding of the class. If the abstraction
invariants are not stated explicitly, we run the risk that not all programmers will
have the same understanding of what the class is supposed to do.

The location function must return the last legal value given as an argument to
move, no matter how the derived classes implement location and move. We
must, therefore, define a window’s location as its upper left corner.

If it is not possible to define our class function in a way that is consistent with the
abstraction invariant of the base class, then our class should not be derived from
that base. If we did derive it from the base, it could be passed to functions

requiring base type arguments, and such functions often rely on the base’s
abstraction invariant.

class Display_object {
public:
virtual void move (const Point &new_location) = O;
virtual Point location() const = O;
// location returns the point the object was last moved to

}:

Version 3.0.2
Copyright © 1000 AT&T
Al Rights Reserved

17-10 Object-Oriented Programming in C4++

Class Window Revisited

#include "Display_med.h"
#include "Display_obj.h"

class Window : public Display_medium, public Display_object {
public:
Window (const Point &upper_left,
const Point &size,
const String &title)
“Window () ;

void move (const Point &new_upper_left) ;
Point location() const;

Point upper_left () const;

Point lower_right() const:

Point size () const;
virtual void change_size (const Point &new_size) ;

int move_cursor (const Point &where) ;
Point cursor () const;

Display_char character () const; // char under cursor

String line() const; // line cursor is on
void add (Display_char c); // put c in window
void add(const String &str) ; // put str in window

void clear () ;

void scroll_up():;
void scroll_down () ;
private:
}:
Versicn 3.0.2

Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programmine in C+-+ 17.0

Multiple Inheritance

Class Window Revisited

To derive class Window from two bases, we simply list both bases, separated by a comma, in the
declaration of class Window. Each base class may be either public or private. Class Window
must override any pure virtual functions of its base. Class Window already provides all the
functions required by Display_medium, and the move function required by
Display_object. We need only add a location function to our class Window to make it
compatible with its abstract base Display_object.

#include "Point.h"
#include "String.h"
#include "Display_ch.h"

class Display_medium {
public:
virtual Point size() const = O;

virtual Point cursor () const = O
virtual int move_cursor (const Point &p) = O:

virtual Display_char character () const =0 ;
virtual String line() const = 0 :

virtual void add (Display_char ch) = O;
virtual void add(const String &s) = O

virtual void add_line(const Point &start,
const Point &end,
Display_char ch):
virtual void clear():

private:
}:

class Display_object {
public:
virtual void move (const Point &new_location) = O:
virtual Point location() const = O;
// location returns the point the object was last moved to

}:

Version 3.0.2
Qopyright © 1000 AT&T
All Rights Reserved

17-8 Object-Oriented Programming in C++

Class Display_object

class Display_object {
public:
virtual void move (const Point &new_location) = O;
virtual Point location() const = O;
// location returns the point the object was last moved to

}:

void bounce (Display_object &d)

{
Point at = d.location|() ;
Point up = at - Point (0, 2);
Point down = at + Point (0O, 2);

.move (up) ;
.move (down) ;
.move (up) ;
.move (down) ;
.move (at) ;

o 0 o 2 9

Version 80.2
Copyright © 1900 ATET
All Rights Reserved

Object-Oriented Programming in C++ 17-7

Multiple Inheritance
Class Display_object

All objects that can be displayed must have a location, and they can be moved
around. The abstract class Display_object lets us write polymorphic
functions to move any kind of object around on the screen.

Version 3.0.2
Copyright © 1960 AT&T
All Rights Reserved

17-6 Object-Oriented Programming in C++

Multiple Inheritance

A class may have more than one immediate
base
Window can be derived from:

e class Display_medium

e Cclass Display_object

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C4+

17-5

Multiple Inheritance

Multiple Inheritance

Once we develop a rich set of base classes, we may find that a class that we are
writing can be derived from more than one base. For example, our class library
might contain both the class Display_medium, that we created earlier, and
also a class Display_object, to group the common features of all kinds of
objects that can be displayed (such as text and graphics).

We will see that both Display_medium and Display_object could be used
as base classes for Window. A window is a kind of Display_medium because
we display things on it, and it is a kind of Display_object because the
windows are themselves displayed on the terminal screen.

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

17-4 Object-Oriented Programming in C++

Objectives

At the end of this unit we will be able to:;
e Derive a class from more than one base

o Resolve ambiguities if two base’'s members
have the same name

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 17-3

CONTENTS

Unit 17 - Multiple Inheritance

Multiple Inheritance

Class Window Revisited

..

...

Unit 17

Object-Oriented Programming in C++

Multiple Inheritance

