

Reference

Stroustrup, Bjarne: "What is Object-Oriented
Programming?", IEEE Software, Vol 5, No. 3,
May 1988

Slides: Courtesy of Bjarne Stroustrup, AT&T Bell
Laboratories.

Versicn 21.0
Copyright © 1680 AT&T
All Rights Reserved

Object Oriented Programming in C++ ' 1A-65

Benefits of Object-Oriented Programming

All the benefits of data abstraction.

Explicit representation of concepts and
relations between concepts.

Greater modularity.

The ability to manipilulate objects of
different, but similar, types through
a single standard interface.

The ability to add new types to a system
without modifying existing code.

Version 21.0
Copyright © 1989 AT&T
All Rights Reserved

Object Oriented Programming in C++ 1A-63

Object-Oriented Programming Example

The problem:
design a graphics system so that shapes
can be manipulated without knowledge of
exactly what kind of shape is manipulated.

Example:

// rotate all members of vector "v" of size "size"
//"angle" degrees

void rotate_all(shape* v[], int size, int angle)

{
}

for (inti =0:i ¢ size; i+4) V[i]->rotate(angle);

Version 21.0
Copyright © 1989 AT&T
All Rights Reserved

Object Oriented Programming in C++ 1A-61

Object-Oriented Programming Example

class shape {
point center; // location
color col;

//
public:

point where() { return center; }

void move(point to) { center = to; draw(); }
virtual void draw();

virtual void rotate(int);

// .
|3

class circle : public shape { // circle is a shape
int radius;

public:

void draw(); // draw a circle - code elsewhere

void rotate(int) {} // yes, the null function

¥

class triangle : public shape {// triangle is a shape
point corner1; point corner2; //center is corner3
public:
void draw(); //draw a triangle - code elsewhere
void rotate(int); //rotate a triangle

¥

Version 2.1.0
Copyright © 1980 AT&T
All Rights Reserved

Object Oriented Programming in C++ 1A-59

Object-Oriented Programming Example

class shape {
point center;
color col;
/] -
public:
point where() { return center; }
void move(point to) { center = to; draw(); }
virtual void draw();
virtual void rotate(int);

/] -

Version 2.1.0
Copyright © 1080 AT&T
All Rights Reserved

Object Oriented Programming in C++ 1A-57

Object-Oriented Programming Paradigm

Design:

Decide which classes you want;
provide a full set of operations
for each class; make commonality
explicit using inheritence.

Key language features:

Mechanisms for defining new types,
data hiding mechanisms, .
inheritance mechanisms,
access mechanisms, |

Languages:

C++, Simula, Smalitalk

Versico 21.0
Copyright © 1980 AT&T
All Rights Reserved

Object Oriented Programming in C4++ 1A-55

Summary of Problems with Data Abstraction

Must modify existing code, so the programmer

needs access
needs understanding
needs re-testing

No specific shape types, implying

large functions
no compile time checking
no help from tools

Version 21.0
Copyright © 1980 AT&T
All Rights Reserved

Object Oriented Programming in C++ 1A-53

Problems With Data Abstraction

}/oid shape:rotate(int a)
switch (shape_type) {
case circle:

break;
case triangle:
// draw a triangle

case square.

}

Version 21.0
Copyright © 1980 AT&T
All Rights Reserved

Object Oriented Programming in C++ ’ 1A-51

Problems With Data Abstraction

// Data abstraction style solution:

class shape {
point center;
color col;
kind shape_type;
// ..
public:
point where() { return center; }
void move(point to) { center = to; draw(); }
void draw();
void rotate(int);

/] -
|3

Version 2.1.0
Copyright © 1080 AT&T
All Righte Reserved

Object Oriented Programming in C++ 1A-49

Problems With Data Abstraction

The problem:
design a graphics system so that shapes
can be manipulated without knowledge of
exactly what kind of shape is manipulated.

Example:

// rotate all members of vector "v" of size "size"
//"angle" degrees

void rotate__all(shape* v[], int size, int angle)

{
}

for (inti =0;i < size; i++) V[i]->rotate(angle);

Version 21.0
Copyright © 1089 AT&T
All Rights Reserved

Object Oriented Programming in C++ 1A-47

Benefits of Data Abstraction

Allows the designer to work directly
with application specific concepts.

Provides standard set of “natural”
operations for users.

Enables change in implementation with
out affecting users.

Eases debugging and maintanence by
localizing information (and errors).

Version 2.1.0
Copyright © 1980 AT&T
All Rights Reserved

Object Oriented Programming in C++ 1A-45

Data Abstraction Example

class char_stack {
int size;
char* top;
char* s;
public:

char_stack(int sz);
~char_stack();
void push(char c);
char pop();

char_stack s1(200);
void f(int x)
{
char_stack s1(x);
char_stack s2(X);

s2.push('P’);
s1.push('C);
char C = s1.pop();
char P = s2.pop();

Version 21.0
Copyright © 19890 AT&T
All Rights Reserved

Object Oriented Programming in C++

1A-43

Fake Types

typedef int stack_id:

extern stack_jd create_stack(int size);
extern destroy_stack(stack_jd);

extern void push(stack_jd, char);
extern char pop(stack_jd):

Versicn 21.0
Copyright © 1080 ATAT
All Rights Reserved

Object Oriented Programming in C++

1A-41

Data Abstraction Paradigm

Design:
Decide which types you want;

provide a full set of operations
for each type

Key language features:

Mechanisms for defining new types,
data hiding and access mechanisms.

Languages:

Ada, Clu

Version 21.0
Copyright © 1980 ATET
All Rights Reserved

Object Oriented Programming in C++ 1A-39

Data Hiding Paradigm

#include "stackh"

void some__function()
{
push('c’),
char ¢ = pop();
if (c I="c’) error("impossible"):

}

Versico 21.0
Copyright © 1980 AT&T
All Rights Reserved

Object Oriented Programming in C++ ' 1A-37

Data Hiding Paradigm

// declaration of the interface of module
//stack of characters

char pop();

void push(char);

const stack_size = 100;

#include "stack.h"

// ‘static” means local to this file/module

static char v[stack_size];

static char* p =v; // the stack is initially empty

char pop()

// check for underflow and pop

}

void push(char c)

// check for overflow and push |

}

Versicn 2.1.0
ight © 1988 AT&T
All Rights Reserved

Object Oriented Programming in C++ 1A-35

Data Hiding Paradigm

Design:

Decide which modules you want;
partition the program so that
data is hidden in modules.

Languages:

Modula-2

Version 2.1.0
Copyright © 1989 AT&T
All Rights Reserved

Object Oriented Programming in C++ 1A-33

Procedural Programming Example

C++:
double sqgrt(double); // declaration of sqgrt

double sqgrt(double d) // definition of sqgrt
{

}

double sgrt(double);

"éqrt(); // compile time error
sart(2); // correct: 2 coerced to 2.0
sqgrt("asdf");// compile time error

Version 21.0
Copyright © 1080 ATAT
All Rights Rewerved

Object Oriented Programming in C++ 1A-31

Procedural Programming Paradigm

Design:

Decide which procedures you want:
use the best algorithms you can find.

Key language features:

Procedures, functions, argument passing
mechanisms, returning mechanism

Languages:

Algol, C, Fortran, Pascal, PL/1

Version 21.0
Copyright © 1080 ATT
All Rights Reserved

Object Oriented Programming in C++ 1A-29

Programming Paradigms

What is a paradigm?

A programming language supports a paradigm
if programs can be written using that
paradigm

without exceptional skill
without exceptional effort

A programming language can support more than one
paradigm.

Versicn 21.0
Copyright © 10890 AT&T
All Rights Reserved

Object Oriented Programming in C++ 1A-27

What Should Programs Reflect ?

The program should reflect the concepts of
the application as directly as possible

Engineering:

complex, fnatrix, polynomial
Telephone Switching:

line, trunk, switch, digit_buffér
Graphics: ‘

shape, circle, triangle, floor_plan

Object Oriented Programming in.C++ 1A-25

This is True

It is possible to write
truly awful

Object-Oriented Programs

Version 2.1.0
Copyright © 1989 AT&T
All Rights Reserved

Object Oriented Programming in C+4++

1A-23

C++:

is a Better C
supports Data Abstraction

supports Object-Oriented Programming

Version 21.0
Copyright © 1080 AT&T
All Rights Reserved

Object Oriented Programming in C++ 1A-15

Programming is more than Just Language Issues

Education

Methods Libraries
C++

Tools Language
Support

Version 21.0
Copyright © 1089 AT&T
All Rights Reserved

Object Oriented Programming in C++ 1A-13

Typical C++ Application Areas

computer aided design
data base management
image processing
operating systems
networks

simulation

visi design

compilers

graphics

music systhesis
programming environment:
robotics |
switching

Version 2.1.0
Copyright © 1980 AT&T
All Rights Reserved

Object Oriented Programming in C++ 1A-11

C++ is Designed for Both:

Management of Complexity (from Simula):

classes
hierarchies of classes
strong (static) type checking

Efficiency (from C):

run-time

space

access to hardware

access to system resources

Version 21.0
Copyright © 1080 ATET
All Rights Reserved

Object Oriented Programming in C4++ 1A-9

Origins of C++

Problem:

Event-driven simulator for software on
distributed hardware

Simula version:

elegant

relatively easy to write,
easy to debug,
prohibitively slow

BCPL version:

ugly
hard to write,
very hard to debug,

fast
C++ ideal:

as elegant as Simula and
as fast as BCPL

Version 21.0
Copyright © 1080 AT&T
All Rights Reserved

Object Oriented Programming in C++

1A-7

Origins of Object-Oriented Programming Languages

1960 Lisp Algol
1967 Simula
1974 | C Clu
1980 Smalltalk
1984 OOLisp Cix Owl

Version 21.0
Copyright © 1080 AT&T
All Rights Reserved

Object Oriented Programming in C++ 1A-5

Contents

Programming and Programming Languages

Programming Paradigms
Procedural
Data Hiding (Modules)
Data Abstraction
Object-Oriented Programming

Version 2.1.0
Copyright © 1980 AT&T
All Rights Reserved

Object Oriented Programming in C++ 1A-3

Appendix A

Object-Oriented Programming in C++

Alternate Introduction

