

-21-

[

v

Programming. 1984. np 184-197.

-17-

class my task : publ:l.c task { // not displayed

¢ g YR AR 1 N’“ R
-) TR o, L :
ol mypstuff oo o - T AT ou
): . D T DRI A B A

< St

- o G Yoot .
“class my_displayed : public displayed { // not a task -
// my stuff) , ,
}: PREF AN

Using (only) single inheritance on*y two of these three choices would be open to. the programmer.
This leads to either code rephcé‘t‘iou of loss of flexxblyty - and typically both: In“Gr+ this exam- -~ -
ple can be handled as’sfidwn dbové with to no significant overheads‘g(m time or; swc)) compared to* B2
single inheritande dhd wi‘thqix‘f sécriﬂ'smg static type qheckmg Sy
Ambiguities arehan(ﬂg!d dt cbmp.dé‘ gimc" g L A
class A (pu'bl.\.co f(), XY 31 ¥ .ﬂ .
class (ubl:.c' L£QOzgierenls o a1 . N o R T
class ¢ :“public A,’ public B { ... RISE _ s Lt LT - 7

0y

1%
o
2
e
-'\ .

CRt i SBT3 1500 5 SRR W ERASY" Crs
void (F¢ {2"’“3')” 1 inJ)'ﬂf s RN T PRI ! 441 : ’ BN
g : P ER T SN ot yors gt U2 LUWELE 3
r;;tg,sp, ok d e o e ton o st
. Foaklbpel /. erx:okz aMguouS . N e e e)
LR L2k P S T R GRS
} EERTN SRS B 923 Su Wy F N RN T R BETES VN LT e :

BTSN ‘s b

In this, C¢differs from the ohj%&t—onémcd Lxsp axalecss that support muluple mher:mm In
these Lisp dihlécts: abiguitids are resolved I by considering t};e; order of declargtions significant; by S8
considering objects-of the’ same nane i’ airferent ‘base Classes xdcpucal. or.by. eombmmg tnethods:
of the same.namé in base classés into’a inécé cbmplex method of the highest class. ¢4 tiso 1oneiid.

In G+ ;'0ne! would typically” rés%lvé‘d}e‘ar?blguny by adding a function: . .of ¢y now umide ;«;1 SRR

3 AP s ST I .‘;5', Tei s 2L
Class G P‘.‘;,b%&f:rﬁl.,;gub;i‘cﬂg,di RIS T T S T L e R IV ‘ ’

il
I 4 . IR Cogtie - PRTRRTI ;
P 'lil.c. iy A TIUPR ~({ i1 .‘»ud ,‘;'. [OT IR TTTE R I PRS: ¥ PRI SEL] .
B f(’ i y 2 i EGUTI IS N lr s ’:ﬁ” Y L Ay i|4 . g I sl JYRESS
: Mty | SRRLEIUR (S5 b SLED LW (AR LRV L) SR
Sy { KD i ey B %) ‘ fignnn B 2EPBICTL O st
omi He asidw o b, 007 w1202 8 228307 - .
ERSUNIE S AN v k,x Rav) "7 N2 . e e e pen 2mTh
| o ttdfff ey erc cotmns men will L BIn T e Lt GRS S
R A e LTI B ’ R LY T A ethl
| £0) 7 Sosdie B O) ey VY RO e TLe IS D2 A M L
Yyl Bnt (I v-» i ’ . . AL g S e }),.. . . »i'j“, o Cpg b
| T P RTINS ‘:«:i S o tin UYLl 22aat 0 T T L e e
V - o - P TR in Sy g
R TN 13 PRI (L S Shosd Do Y 3L SV 5
I FECRUN g . . . b e 5 RE
' uas s dulTES cakile AT ,L*j o

In addition to this fairly straightforward conccpt of indej)endent muluplc mhcmancc merc T
appears to be a need for a more géneral mechanism' for | vexpressng dependencm betwcen classgsin . . .
a multiple inheritance lattice. :Im-C¥+ , tiie requireméhit that'a sub-object should be shared by. al} o T
other sub-objects in a class object is expressed through the mechanism of a virtual base class:

ST I S LT N
class W { ... }; st e
class Bwindow % :i an/d window with borxder - <" -
¢ public v1rt LW, o odogme . . E ,.‘ e o 3 -
teee s v oilen ol DTG T U RN IS TR S LA 7303 D SRS
; P 180 e IRV ¢ B kb . -
O '[K)‘. 33 1o , R Vo SRR, SENLIRRAIA fT 54 3014 “ A .

clau Mwindow®. Y wmdou with menu e et sgnimekl 4w

\ P B i
¢ public virtua}.wa, SRR y T TR BT L R T TS
{ cee); L 3} b RTINS £ -k 0 DUPRIC R o ’ A .

LB

class BMW . /[window with border and menu.:_ 2o%n .:ii ' oF
: public Bwindow, publ.{c Mwindow DI
{ <0)2

Here the (single) window sub-object is shared by the Bwindow and Bwindow sub-objects of a
BMW. The Lisp dialects provide concepts of method combination to ease programming using such .

-16 -

class specifies an initial set of operations for objects (of any subclass). In other words, a Smalltalk
class is a minimal specification and the user is free to try operations not specified whereas a G++
class is an exact specification and the user is guarameed that only operauons specnfied in lhe class
declaranon will be accepted by the compiler.

Inheritance

......

mechanism. Could that:’ language be said to suppon object-oriented prog(ammmg" I think not.
Clearly, you could do-interesting things with the method table to adap; the objects behavxor to suit
conditions. However, to avoid chaos, there must'be some systematrc way of assoclatmg methods
and the data structures they assume for their object representation. ' To enable a user of an object
to know what kind of behavior to expect, there would also have to be' some standard way of
expressing what is common to the different behaviors the ob_)ect mlght adopt. ' This “systematic
and standard way’’ would be an inheritance mechanism.

Consider a language having an inheritance mechanism without virtual functions or methods.
Could that language be said to support object-oriented programming? I think not: the shape exam-
ple does not have a good solution in such a language. However;.such a language would be notice-
ably more powerful than a “plain™ data abstraction language. This contention is supported by the
observation that many Simula and C++ programs are structured usmg class hierarchies without
virtual functions. ' The ability to- exprcss commonahty (factonng) is an exu-emely powerful. tool.
For example, the problems associated ‘with’the need to have a common representauon of all shapes
could be‘solved. : No union .would' be'needed. Howeéver, in the_ absonce of virtual functions, the
programmer would have to resort to ‘the ‘use of “type fiéldsf" to. detormu;e actual types of.objects, -
so the problems with the lack of modularity of the codé would remamt

This implies that class derivation (subclassing) is an important programmmg tool 'in xts own
right. It can be used to support object-oriented programming, but it has wider uses. This is partic-
ularly true if one identifies the use of inheritance in object-oriented programming thh the idea
that a base class expresses a general concept of which all derived classes are specializations. This
idea captures only part of the expressive power of inheritance, but it is strongly encouraged by
languages where every mcmber function is virtual (or a method). Given suitable controls of what
is inherited (see Snyder'’ and Stroustrup 1%, class derivation can be a powerful tool for creating
new types. Given a class, derivation can be used to add and/or subtract features. The relation of
the resulting class to its base cannot always be completely described in terms of spec:alxzauon fac-
toring may be a better term.

Derivation is another tool in the hands, of a programmer and lhere is: no foolproof way of
predicting hdw it is-going to be used - and it is too early (even after.20 years of Simula) to tell
which uses are snmply mxs—uses , Ly

Tk

Multiple Inheritance

N

When a class A is a base of class B, a B inherits the attributes of an a; that is, a B is an A in
addition to whatever else it might be. Given this explanation it seems obvious' tht it ‘might be use-
ful to have a class B inherit from two base classes A1 and A2. This is called multiple inheritance®.

A fairly standard example of the use of multiple inheritance would be to provide two library
classes displayed and task for representing objects under the control of a display manager and
co-routines under the control of a scheduler, respectively. A programmer could then create classes
such as

class my_displayed task : public displayed,‘public task {
// my stuff RIS T SO LSRN
}:

e

t This is the'problem with smula's'in;écg?ﬁlunmt and the reason it does not have ,qoounterpanm Cré.:

-15-

Type Checking

The shape example showedJ the power of virtual funcuons What, in addmonf to thxs. doe3‘
method invocation mechamsm do for you? You can attempt to invoke any method for any object.

The ability to invoke - any method for any object enables the designer.of general: purpose -
Naturally this simplifies the

libraries to push the responsibility for handling types onto the user.
design of libraries. For example:

class stack { \// assume class any hga a member next

any* v; AR s :
void: push(any* p) - e . e
(el oo i) “, o ¢
pcnest =i ¢ L ' R
ST T L
} P T S I SVICR IS ' S
anY* POP() .)) ;‘; : Y EAL . RNt i
if (¥ == 0) returr error Obe' , L FRRTIER SRS
anyt'x = v; ¢ ’ BT OP R T L R S
v = v->next;
return r;
}
}: .) . U T 0
It becomes the responsxbnlny of the user to avqnd type mnsmatches hke thm' B L o T
stack<any*> cs; s ” .)»; Y
T N (o e
: IS SRR PL P INE) i e
cs.prush(new Saab%00); ..v i LD i -
¢s.push (new Saab37B); .
plane* p - (plane*)cs pop(). T ot ol ;
p—>takeo£f () K . S ni L A
p= (plane*)cs.pop(), e ':1 Ja9n Al

p->takeoff ();

An attempt to use a car as a plane wnll be detected by the message handler and an appropn- :

/f Oops! Rufi‘time ‘error: a Saab 9b0 J.s a cer o
Y S AR -5 caxr: does ‘not have a- takeoff mét‘ﬁod.

S TTR R AT S

ate error handler will be called. However, that is only a consolation when the user is also the pro-

grammer.

The absence of static type' Checkmg makes it dxfﬁcult to guarantee. that errors. of thls

class are not present in 'systems dehvered to end-usexs Naturally, a language desxgned wnh
methods and without static types can éxpress this exgmple with fewer keystrokes. .

Combinations of parameterized classes and the use of virtual functions can approach the ﬂexx- :

bility, ease of design, and’ easeof use of lxbrgnes des:gned with._method lookup. without. relaxing

ple:

PRV T I i) i 3.
stack<plane*> €877 i, o T B B

cs.push (new saabsog) LA

the static type checkmg or uicﬁrring measurable Tun ume overhead,s gm time or space)s:. Eor exams

rs

M AALA e

N S

// Compilo time error: PR "
// typo mismatch: car*

passed, planvet_. oxpeccgci. y

cs.push (new Saab37Bj}. S &1t B

) eV C v il e
plane* p = cs.pap¥{); C el I ’ ‘H _l . , o
p->takeoff(); - y " //i fine: a Saab 37B is a plane ' - .

p = cs.popl); . . .

p->takeoff ();

- The use of static type checking dnd *hrtual function calls leads to a somewlrat different'siylé of { pro- | o

g, T

gramming than does dynamic type: checking and method invocation. For ‘Example a Simula or, o j '

C++ class specifies a fixed interface to a set of objects (of any derived clasé) wheféas'a ‘Smalltalk’

A

TR
L oo . T .

-14 -

change become important. It is essential that the linker/loader is capable of bringing a program
into memory. for execution without also bringing in large amounts of related, but unused, code. In
particular, a library/linker/loader system that brings the code for every operation on a type into
core just. becausc the programmer used one or two operauons on the type is worse than useless.

4 Support for ObJect-Onented programming

The basic support a programmer needs to write object-oriented programs consists of a class
mechanism with inheritance and a mechanism that allows calls of member functions to depend on
the actual type of an object (in cases where the actual type is unknown at compile time). The
design of the member function calling mechanism is critical. In addition, facilities supporting data
abstraction techniques (as described above) are important because the arguments for data abstrac-
tion and for its refinements to support elegant use of types are equally valid where support for
object-oriented programming is available. The success of both techniques hinges on the design of
types and on the ease, flexibility, and efficiency of such types. Object-oriented programming sim-
ply allows user-defined types to be far more flexible and general than the ones desrgned using only
data abstraction techniques.

Calling Mechanisms

The key language facility supporting object-oriented programming is the mechanism by which a
member function is invoked for a given object. For example, given a pointer p, how is a call
p->f (arg) handled? There is a range of choices.

In languages such as G++ and Simula, where static type checking is extensively used, the type
system can be employed to select between different calling mechanisms. In G++ , two alternatives
are available: ' '

(1] A normal function call: the member function to be called is determined at compile time
(through a lookup in the compiler’s symbol tables) and called using the standard function.
call mechanism with an argument added to identify the object for which the function is
called. Where the “standard function call” is not considered efficient enough, the program-
mer can declare a function inline and the compiler will attempt to inline expand its body.
In this way, one can aclueve the ofﬁcxency of a macro:expansion without compromising the
standard function semanucs Thrs opumxzatxon IS cqually valuable as a support for data
abstraction. - : - E '

[2] A virtual function call. The funcuon to be called depends on the type of the objcct for which
it iscalled. This type cannot in general be determmed until run time. Typncally, the pointer
p will be of some base class B and the object will be an object of some derived class D (as
was the case with the base class shape and the derived class circle above). The call
mechanism must look into the object and find some information placed there by the com-
piler to determine which function £ is to be called. Once that funcuor;. is found, say D: : £,
it can be called using the mechanism described above. The name f is at ‘compile time con-
verted into an index into a table of pointers to functions. This virtual call mechanism can be
made essentially as efficient as the “normal function call” mechanism. In the standard C++
implementation, only five additional memory references are used.

In languages with weak static type checking a more ¢laborate mechariism must be employed.
What is done in a language like Smalltalk is to store a list of the names of all member functions
(methods) of a class so that they can be found at run time:

{3] A method invocation: First the appropriate table of method names is found by examining the
object pointed to by p. In this table (or set of tables) the string "£*" is looked up to see if
the object has an £ (). If an £() is found it is called; otherwise some error handling takes
place. This lookup differs from the lookup done at compiler time in a statically checked
language in that the method invocation uses a method table for the actual object.

A mcthod mvocanon is inefficient comparcd with a virtual funcuon call, but more ﬂexxble Since

methods must be supportcd by dynamic type checking. PSP

-13 -

class vector_iterator {

vectoré v;

int i;
public: ;

vector_iterator(vector& r) { i = 0; v = r; }

int operator() () { return i<v.s;ze() ? v.elem(i++) : 0; } _ e
}: Y - 2l

A vector_iterator can now be.declared and used for a vector like this:

vector v(sz); o
vector_iterator next(v).
int i;

while (i=next()) print(i):;

More than one iterator can be active for a single object at one time, and a type may have several
different iterator types defined for it sp that different kinds of iteration may be performed. An
iterator is a rather simple control structure. More general mechanisms can also be deﬁned For
example, the C++ standard library provides a co-routine class'. » I U 5

For many “‘container” types, such as vector, one can avoid mtroducmg a.separate iterator
type by defining an iteration mechamsm as part of the type itself. A vector mxght be deﬁned to
have a “‘current element”: - 3.0 %

class vector {
int* v;
int sz;
int current;) L.
public: T e o ' ' T
// ... 1 ctmme s, et . T P
int next () { return (current++<sz) ? v[current] : 0; } S
int prev() { return (0<-—current) ? v[current]..: 0; } : T
}s v tod =t ot :

~veee v o E s AT P
o .- :

Then the iteration can be performed hke tlps.,, e
vector v(sz); T o sl R S SN SIS VN B A
int i; [R : : " sty L v
while (i=v. next()) pr;nt(z), ot R LRI :

This solution is not as general as the iterator solution, but avoids overhead:in-the important special -

case where only one kind of iteration is needed and where only one itération at-a time is needed -

for a vector. If necessary, a more general solution can be applied in addition to this simple one. ; .

Note that the “simple” solution requires more foresight from the designer of the container class .

than the iterator solution does. The iterator-type technique can ‘also be used to define iterators ; -,
that can be bound to several 'différent container types thus providing a mechanism for iterating i
over different container types with a single ‘iterator type.

Implementation Issues . -

The support needed for data abstraction is primarily provxded in the form of language features
implemented by a compxler. However, parameterized types are best implemented with support -
from a linker with some- knowledge of the language semantics, and exception handling requires -
support from the run-time environment. Both can be implemented to meet the strictest cmenaio:
both compile time speed and efficiency thhout _compromising generality or programmer conveni-
ence. .
As the power to define types mcreases. programs to a larger degree depend on types from :
libraries (and not just those described in the language manual). This naturally puts greater
demands on facilities to express what is inserted into or retrieved from a library, facilities for ﬁnd- .
ing out what a library contains, facilities for determining what parts of a h’brary are aetually used
by a program, etc. a

vl

For a compiled language facilities for calculating the minimal compilation necessary after‘ n i

-12-

There are many ways of defining exceptions and the behavior of exception handlers. The facility
sketched here resembles the ones found in Clu and Modula-2+ . This style of exception handling
can be implemented so that code is not executed unless an exception is raised} or portably across
most C implementations by using set jmp () and longimp () .1t

Could exceptions, as defined above, be completely ‘“faked” in a language such as C++?
Unfortunately, no. The snag is that when an exception occurs, the run-time stack must be unrav-
eled up to a point where a handler is defined. To do this properly in-C++ involves invoking des-
tructors defined in the scopes involved. This is not done by a C longjmp () and cannot in gen-
eral be done by the user.

Coercions

User-defined coercions, such as the one from floating point numbers to complex numbers
implied by the constructor complex (double), have proven unexpectedly useful in G++ . Such
coercions can be applied explicitly or the programmer can rely on the compiler to add them impli-
citly where necessary and unambiguous:

complex a = complex(l):

complex b = 1; // implicit: 1 -> complexw(l)
a = b+complex(2);
a = b+2; // implicit: 2 -> complex (2)

Coercions were introduced into C++ because mixed mode arithmetic is the norm in languages for
numerical work and because most user-defined types used for “calculation” (for example, matrices,
character strings, and machine addresses) have natural mappings to and/or from other types.

One use of coercions has proven especially useful from a program organization point of view:

3

complex a = 2; _
complex b = a+2; // interpreted as operator+(a,complex(2))
b = 2+a; // interpreted as operator+(complex(2),a)

Only one function is needed to interpret *““+ ™ operations and thé two operands are handled identi-
cally by the type system. Furthermore, class complex is written without any need to modify the
concept of integers to enable the smooth and natural integration of the two concepts. This is in
contrast to a ‘“‘pure object-oriented system’ where the operations would be interpreted like this;

a+2; // a.operator+(2)
2+4a; // 2.operator+(a)

making it necessary to modify class integer to make 2+a legal. Modifying existing code should
be avoided as far as possible when adding new facilities to a system. Typically, object-oriented
programming offers superior facilities for adding to a system without modifying existing code. In
this case, however, data abstraction facilities provide a better solution.

Iterators

It has been claxmed that a language supporting data abstraction must provide a way of defining
control structures'’. In _particular, a mechanism that allows a user to define a loop over the ele-
ments of some type containing elements is often needed. This must be achieved without forcing a
user to depend on details of the implementation of the user-defined type. Given a sufficiently
powerful mechanism for defining new types and the ability to overload operators, this can be han-
dled without a separate mechanism for defining control structures.

For a vector, defining an iterator is not necessary since an ordering is available to a user
through the indices. I'll define one anyway to demonstrate the technique. There are several possi-
ble styles of iterators. My favorite relies on overloading the function application operator () t11:

1 except possibly for some initialization code at the start of a program.

$1 see the C library manual for your system.

41t This style also relies on the existence of a distinguished value to represent “end, of iteration™. Often, in particular for
C++ pointer types, 0 can be used.

-11-

example, the type vector<char> is unrelated to the type vector<complex>. Ideally one
would like to be able to express and utilize the commonality of types generated from the same
parameterized type. For example, both vector<char> and vector<complex> have a size()
function that is independent of the parameter type. It is possible, but not trivial, to deduce this
from the definition of class vector and then allow size () to be applied to any vector. An
interpreted language or a language supporting both parameterized types and inheritance has an
advantage here.

Exception Handling

As programs grow, and especially when libraries are used extensively, standards for handling
errors (or more generally: *“‘exceptional circumstances’) become important. Ada, Algol68, and Clu
each support a standard way of handling exceptions. Unfortunately, C++ does not. Where
needed exceptions are ‘““faked” using pointers to functions, “‘exception objects”, “error states’, and
the C library signal and longjmp facilities. This is not satisfactory in general and faxls even to
provide a standard framework for error handling.

Consider again the vector example. What ought to be done when an out of range index value |
is passed to the subscript operator? The designer of the vector class should be able’ to provide a
default behavior for this. For example:

class vector { e
except vector_range {
// define an exception called vector_range
// and specify default code for handling it .,
error (“global: vector range error"):;
exit (99);

}

Instead of calling an error function, vector: :operator([] () can invoke the exception handling
code, ‘“‘raise the exception”: n

o
NN

LR TOURY S DR AR)

A i LSRR VAN

int& vector::operator() (int i) e : i

{ . Lo
if (0<i || sz<=i) raise vector_range; N
return v([i];

}

This will cause the call stack to be unraveled until an excepuon handler for vector_range is
found; this handler will than be executed. :
An exception handler may be defined for a specific block:

void £() {
vector v(10); .
txy { : // errors here are handled by the local
// exception handler defined below
// .. N
int i = g{(); // g might cause a range error using some vector
. vii] = 7; // potential range error o
} . .
except { . ' ~
vector::vector_range: . AL
error("f(): vector range error”) —
return;
} // errors here are handled by the global
// exception handler defined in vector
int i = g{(); // g might cause a range error using'éohe vector

v[i] = 7; - // potential range error

P

-10 -

class X {
void operator=(X&):; // only members of X can

X (X&) // copy an X
/7 ...
public:
/...
}i
Ada does not support constructors, destructors, overloading of assignment, or user-defined con-
trol of argument passing and function return. This severely limits the class of types that can be
defined and forces the programmer back to “‘data hiding techniques™; that is, the user must design
and use type manager modules rather than proper types.

Parameterized Types

Why would you want to define a vector of integers anyway? A user typically needs a vector of
elements of some type unknown to the writer of the vector type. Consequently the vector type
ought to be expressed in such a way that it takes the element type as an argument:

class vector<class T> ({ // vector of elements of type T
T* v;
int sz;
public:
vector (int s) .
{ . -
if (s <= 0) error("bad vector size"); v
v = new T[sz = s]; // allocate an array of "s" "T"s
} .
T& operator[] (int i);
int size() { return sz; }
‘ﬁ‘.// cee
Yo
Vectors of specific types can now be defined and used:

vector<int> v1 (100); // vl is a vector of 100 integers
vector<complex> v2(200); // v2 is a vector of 200 complex numbers

v2[i] = complex(vl([x],vl{[yl):

Ada, Clu, and ML support parameterized types. Unfortunately, C++ does not; the notation used
here is simply devised for illustration. Where needed, parameterized classes are ‘‘faked” using
macros. There need not be any run-time overheads compared with a class where all types involved
are specified directly.

Typically a parameterized type will have to depend on at least some aspect of a type parameter.
For example, some of the vector operations must assume that assignment is defined for objects of
the parameter type. How can one ensure that? One solution to this problem is to require the
designer of the parameterized class to state the dependency. For example, ‘T must be a type for
which = is defined”. A better solution is not to or to take a specification of an argument type as a
partial specification. A compiler can detect a “‘missing operation™ if it is applied and give an error
message such as. For example: ,

cannot define vector(non_popy)::operatcr[](noq_copy&):
type non_copy does not have operator=

This technique allows the definition of types where the dependency on attributes of a parameter
type is handled at the level of the individual operation of the type. For example, one might define
a vector with a sort operation. The sort operation might use <, ==, and = on objects of the param-
eter type. It would still be possible to define vectors of a type for which * <’ was not defined as
long as the vector sorting operation was not actually invoked.

A problem with parameterized types is that each instantiation creates an independent type. For

vector::vector (int s)

{
if (s<=0) error ("bad vector size");
sz = 8;
v = new int(s]; ' // allocate an array of "s" integers

}
The vector destructor frees the storage used:

vector: :~vector ()

{
delete v; // deallocate the memory pointed to by v
}

GC++ does not support garbage collection. This is compensated for, however, by enabling a type to
maintain its own storage management without requiring intervention by a user. This is a common
use for the constructor/destructor mechanism, but many uses of this mechanism are unrelated to
storage management,

Assignment and Initialization

Controlling construction and destruction of objects is sufficient for many types, but not for all.
It can also be necessary to control all copy operations. Consider class vector:

vector vl (100); :
vector v2 = v1; // make a new vector v2 initialized to vl
vl = v2; // assign v2 to vl

It must be possible to define the meaning of the initialization of v2 and the assignment to vi.
Alternatively it should be possible to prohibit such copy operations; preferably both alternatives
should be available. For example:

class vector {
int* v;
int sz;
public:
// ...
void operator=(vector&); // assignment
vector (vectors&) ; // initialization
}:

specifies that user-defined operations should be used to interpret vector assignment and initializa-
tion. Assignment might be defined like this:

vector: :operator=(vectoré& a) // check size and copy elements
{

if (sz != a.sz) error(“"bad vector size for =");

for (int i = 0; i<sz; i++) v[i]) = a.v[i];

}

Since the assignment operation relies on the “old value™ of the vector being assigned to, the initial-
ization operation must be different. For example:

vector: :vector (vectoré af // initialize a vector from another vector
{ X

8z = a.s82; // same size

v = new int[sz]; // allocate element array

for (int i = 0; i<sz; i++) v([i] = a.v[i]}); // copy elements
}

In G++, a constructor of the form X (X&) defines all initialization of objects of type X with another
object of type X. In addition to explicit initialization constructors of the form X (X&) are used to
handle arguments passed *by value™ and function return values.

In C++ assignment of an object of class X can be prohibited by declaring assignment private:

-8-

Finding commonality among types in a system is not a trivial process. The amount of com-
monality to be exploited is affected by the way the system is designed. When designing a system,
commonality must be actively sought, both by designing classes specifically as building blocks for
other types, and by examining classes to see if they exhibit similarities that can be exploited in a
common base class.

For attempts to explain what object-oriented programming is without recourse to specific pro-
gramming language constructs see Nygaard13 and Kerr’. For a case study in object-oriented pro-
gramming see Cargill®.

3 Support for Data Abstraction

The basic support for programming with data abstraction consists of facilities for defining a set
of operations for a type and for restricting the access to objects of the type to that set of opera-
tions. Once that is done, however, the programmer soon finds that language refinements are
needed for convenient definition and use of the new types. Operator overloading is a good exam-
ple of this.

Initialization and Cleanup

When the representation of a type is hidden some mechanism must be provided for a user to
initialize variables of that type. A simple solution is to require a user to call some function to ini-
tialize a variable before using it. For example:

class vector {

int sz;
int* v;
public:

void init(int size); // call init to initialize sz and v
// before the first use of a vector
// ...
};

vector v;

// don’t use v here
v.init (10);

// use v here

This is error prone and inelegant. A better solution is to allow the designer of a type to provide a
distinguished function to do the initialization. Given such a function, allocation and initialization
of a variable becomes a single operation (often called instantiation) instead of two separate opera-
tions. Such an initialization function is often called a constructor. In cases where construction of
objects of a type is non-trivial, one often needs a complementary operation to clean up objects after
their last use. In G++, such a cleanup function is called a destructor. Consider a vector type:

class vector {

int sz; // number of elements
int* v; // pointer to integers
public:
. vector (int); // constructor
~vector(); // destructor

inté& operator{] (int index): // subscript operator
};

The vector constructor can be defined to allocate space like this:

Object-Oriented Programming

The problem is that there is no distinction between the general properties of any shape (a shape
has a color, it can be drawn, etc.) and the properties of a specific shape (a circle is a shape that
has a radius, is drawn by a circle-drawing function, etc.). Expressing this distinction and taking
advantage of it defines object-oriented programming. A language with constructs that allows this
distinction to be expressed and used supports object-oriented programming. Other languages
don’t.

The Simula inheritance mechanism provides a solution. First, specify a class that defines the
general properties of all shapes:

class shape (
point center;
color col;
// ...
public:
point where() { return center; }
void move(point to) { center = to; draw();)}
virtual void draw();
virtual void rotate(int);
// ...
}:

The functions for which the calling interface can be defined, but where the implementation can-
not be defined except for a specific shape, have been marked *virtual” (the Simula and C++ term
for “may be re-defined later in a class derived from this one™). Given this definition, we can
write general functions manipulating shapes:

void rotate_all (shape* v, int size, int angle)
// rotate all members of vector "v" of size "size" "angle" degrees
{

for (int i = 0; i < size; i++) v([i).rotate(angle);

}

To define a particular shape, we must say that it is a shape and specify its particular properties
(including the virtual functions).

class circle : public shape {
int radius;

public:
void draw() { /* ... */ };
void rotate(int) {} // yes, the null function

};

In G++, class circle is said to be derived from class shape, and class shape is said to be a
base of class circle. An alternative terminology calls circle and shape subclass and super-
class, respectively.

The programming paradigm is:

Decide which classes you want;
.. provide a full set of operations for each class;
make commonality explicit by using inheritance.

Where there is no such commonality data abstraction suffices. The amount of commonality
between types that can be exploited by using inheritance and virtual functions is the litmus test of
the applicability of object-oriented programming to an application area. In some areas, such as
interactive graphics, there is clearly enormous scope for object-oriented programming. For other
areas, such as classical arithmetic types and computations based on them, there appears to be
hardly any scope for more than data abstraction and the facilitics needed for the support of object-
oriented programming seem unnecessaryt.

t+ However, more advanced mathematics may benefit from the use of inheritance: Fields are specializations of rings; vector
spaces a special case of modules.

-6-

Most, but not all, modules are better expressed as user defined types. For concepts where the
“module representation” is desirable even when a proper facility for defining types is available, the
programmer can declare a type and only a single object of that type. Alternatively, a language
might provide a module concept in addition to and distinct from the class concept.

Problems with Data Abstraction

An abstract data type defines a sort of black box. Once it has been defined, it does not really
interact with the rest of the program. There is no way of adapting it to new uses except by modi-
fying its definition. This can lead to severe inflexibility. Consider defining a type shape for use
in a graphics system. Assume for the moment that the system has to support circles, triangles, and
squares. Assume also that you have some classes:

class point{ /* ... */ };
class coloxr{ /* ... */ }:

You might define a shape like this:
enum kind { circle, triangle, square }:;
class shape {

point center;
color col;

kind k;
// representation of shape
public:
point where () { return center; }

void move(point to) { center = to; draw(); }
void draw() ;

void rotate (int);

// more operations

}:

The “type field” k is necessary to allow operations such as draw() and rotate() to determine
what kind of shape they are dealing with (in a Pascal-like language, one might use a variant record
with tag k). The function draw () might be defined like this:

void shape::draw()
{
switch (k) {
case circle:
// draw a circle
break:;
case triangle:
// draw a triangle
break;
case square:
// draw a square

}
}

This is a mess. Functions such as draw() must “know about” all the kinds of shapes there are.
Therefore the code for any such function grows each time a new shape is added to the system. If
you define a new shape, every operation on a shape must be examined and (possibly) modified.
You are not able to add a new shape to a system unless you have access to the source code for
every operation. Since adding a new shape involves “touching™ the code of every important opera-
tion on shapes, it requires great skill and potentially introduces bugs into the code handling other
(older) shapes. The choice of representation of particular shapes can get severely cramped by the
requirement that (at least some of) their representation must fit into the typically fixed sized
framework presented by the definition of the general type shape.

char ¢l = pop(sl,push(sl,’a’)):;
if (cl != ’c’) error("impossible"):

char c2 = pop(s2,push(s2,’a’));
if (c2 != ’'c’) error("impossible");

destroy(s2);
// Oops: forgot to destroy sl
}

In other words, the module concept that supports the data hiding paradigm enables this style of
programming, but it does not support it.

Languages such as Ada, Clu, and C++ attack this problem by allowing a user to define types
that behave in (nearly) the same way as built-in types. Such a type is often called an abstract data
typet. The programming paradigm becomes:

Decide which types you want;
provide a full set of operations for each type.

Where there is no need for more that one object of a type the data hiding programming style

using modules suffices. Arithmetic types such as rational and complex numbers are common
examples of user-defined types:

class complex {
double re, im;
public:
complex (double r, double i) { re=r; im=i;)
complex (double r) { re=r; im=0; } // float->complex conversion

friend complex operator+(complex, complex);
friend complex operator—-(complex, complex); // binary minus
friend complex operator-(complex); // unary minus
friend complex operator* (complex, complex);
friend complex operator/(complex, complex);
/! ...

}

The declaration of class (that is, user-defined type) complex specifies the representation of a
complex number and the set of operations on a complex number. The representation is private;
that is, re and im are accessible only to the functions specified in the declaration of class
complex. Such functions can be defined like this:

complex operator+(complex al, complex a2)
{
return complex(al.ret+a2.re,al.im+a2.im);

}
and used like this:

complex a = 2.3;

complex b = 1/a;

complex ¢ = a+b*comp1ex 1,2.3):
/7 ...

c = —(a/b)+2;

t I prefer the term *“user-defined type™: “Thase types are not "abstract”; they are as real as int and float.” - Doug
Mcllroy. An ahemative definition of abstract data types would require a mathematical “abstract™ specification of all types
(both built-in and user-defined). What is referred to as types in this paper would, given such a specification, be concrete
specifications of such truly abstract entities.

-4-

local to the file/module in which they were declared). Such a stack can be used like this:

#include "stack.h"

void some_ function()
{
char ¢ = pop(push(‘c’));
if (¢ != 'c’) error("impossible");

}

Pascal (as originally defined) doesn’t provide any satisfactory facilities for such grouping: the
only mechanism for hiding a name from “the rest of the program” is to make it local to a pro-
cedure. This leads to strange procedure nestings and over-reliance on global data.

C fares somewhat better. As shown in the example above, you can define a “module” by
grouping related function and data definitions together in a single source file. The programmer
can then control which names are seen by the rest of the program (a name can be seen by the rest
of the program unless it has been declared static). Consequently, in C you can achieve a degree
of modularity. However, there is no generally accepted paradigm for using this facility and the
technique of relying on static declarations is rather low level.

One of Pascal’s successors, Modula-2, goes a bit further. It formalizes the concept of a
module, making it a fundamental language construct with well defined module declarations, expli-
cit control of the scopes of names (import/export), a module initialization mechanism, and a set of
generally known and accepted styles of usage.

The differences between C and Modula-2 in this area can be summarized by saying that C only
enables the decomposition of a program into modules, while Modula-2 supports that technique.

Data Abstraction

Programming with modules leads to the centralization of all data of a type under the control of
a type manager module. If one wanted two stacks, one would define a stack manager module with
an interface like this:

class stack_id; // stack_id is a type
// no details about stacks or stack_ids are known here

stack_id create_stack(int size); // make a stack and return its identifier
destroy stack (stack_id); // call when stack is no longer needed

void push(stack_id, char);
char pop(stack_id);

This is certainly a great improvement over the traditional unstructured mess, but ‘“‘types” imple-
mented this way are clearly very different from the built-in types in a language. Each type
manager module must define a separate mechanism for creating “‘variables’ of its type, there is no
established norm for assigning object identifiers, a “variable” of such a type has no name known
to the compiler or programming environment, nor do such *variables™ do not obey the usual scope
rules or argument passing rules.

A type created through a module mechanism is in most important aspects different from a
built-in type and enjoys support inferior to the support provided for built-in types. For example:

void £()

{
stack_id sl;
stack_id s2;

s8]l = create_stack(200);
// Oops: forgot to create s2

double sqgrt (double arg)
{
// the code for calculating a square root

}

void some_function ()

{
double root2 = sqrt(2):
// ...

}

From a program organization point of view, functions are used to create order in a maze of
algorithms.

Data Hiding

Over the years, the emphasis in the design of programs has shifted away from the design of
procedures towards the organization of data. Among other things, this reflects an increase in the
program size. A set of related procedures with the data they manipulate is often called a module.
The programming paradigm becomes:

Decide which modules you want;
partition the program so that data is hidden in modules.

This paradigm is also known as the ‘“‘data hiding principle”. Where there is no grouping of
procedures with related data the procedural programming style suffices. In particular, the tech-
niques for designing ‘“‘good procedures’ are now applied for each procedure in a module. The
most common example is a definition of a stack module. The main problems that have to be
solved for a good solution are:

[1] Provide a user interface for the stack (for example, functions push () and pop ()).

(2] Ensure that the representation of the stack (for example, a vector of elements) can only be

accessed through this user interface.

[3] Ensure that the stack is initialized before its first use.

Here is a plausible external interface for a stack module:

// declaration of the interface of module stack of characters
char pop():

void push(char);

const stack_size = 100;

Assuming that this interface is found in a file called stack.h, the “internals” can be defined
like this:

#include "stack.h"

static char v{stack size]; // ‘‘static’’ means local to this file/module
static char* p = v; // the stack is initially empty
char pop()

{ : '
// check for underflow and pop
}

void push(char c)

{
// check for overflow and push

}

It would be quite feasible to change the representation of this stack to a linked list. A user
does not have access to the representation anyway (since v and p were declared static, that is

2 Programming Paradigms

Object-oriented programming is a technique for programming — a paradigm for writing *“‘good”
programs for a set of problems. If the term ‘‘object-oriented programming language™ means any-
thing it must mean a programming language that provides mechanisms that support the object-
oriented style of programming well.

There is an important distinction here. A language is said to support a style of programming if
it provides facilities that makes it convenient (reasonably easy, safe, and efficient) to use that style.
A language does not support a technique if it takes exceptional effort or exceptional skill to write
such programs; it merely enables the technique to be used. For example, you can write structured
programs in Fortran, write type-secure programs in C, and use data abstraction in Modula-2, but it
is unnecessarily hard to do because these languages do not support those techniques.

Support for a paradigm comes not only in the obvious form of language facilities that allow
direct use of the paradigm, but also in the more subtle form of compile-time and/or run-time
checks against unintentional deviation from the paradigm. Type checking is the most obvious
example of this; ambiguity detection and run-time checks can be used to extend linguistic support
for paradigms. Extra-linguistic facilities such as standard libraries and programming environments
can also provide significant support for paradigms.

A language is not necessarily better than another because it possesses a feature the other does
not. There are many example to the contrary. The important issue is not so much what features a
language possesses but that the features it does possess are sufficient to support the desired pro-
gramming styles in the desired application areas:

[1] All features must be cleanly and elegantly integrated into the language.

[2] It must be possible to use features in combination to achieve solutions that would otherwise

have required extra separate features.

[3] There should be as few spurious and “‘special purpose™ features as possible.

[4] A feature should be such that its implementation does not impose significant overheads on

programs that do not require it.

[5] A user need only know about the subset of the language explicitly used to write a program.
The last two principles can be summarized as “‘what you don’t know won’t hurt you.” If there are
any doubts about the usefulness of a feature it is better left out. It is much easier to add a feature
to a language than to remove or modify one that has found its way into the compilers or the litera-
ture.

I will now present some programming styles and the key language mechanisms necessary for
supporting them. The presentation of language features is not intended to be exhaustive.

Procedural Programming

The original (and probably still the most commonly used) programming paradigm is:

Decide which procedures you want;
use the best algorithms you can find.

The focus is on the design of the processing, the algorithm needed to perform the desired com-
putation. Languages support this paradigm by facilities for passing arguments to functions and
returning values from functions. . The literature related to this way of thinking is filled with discus-
sion of ways of passing arguments, ways of distinguishing different kinds of arguments, different
kinds of functions (procedures, routines, macros, ...), etc. Fortran is the original procedural
language; Algol60, Algol68, C, and Pascal are later inventions in the same tradition.

A typical example of “‘good style” is a square root function. It neatly produces a result given
an argument. To do this, it performs a well understood mathematical computation:

What is ‘‘Object-Oriented Programming®’?

Bjarne Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

“Object-Oriented Programming™ and *“Data Abstraction’” have become very
common terms. Unfortunately, few people agree on what they mean. I will offer
informal definitions that appear to make sense in the context of languages like
Ada, G++, Modula-2, Simula, and Smalltalk. The general idea is to equate ‘“‘sup-
port for data abstraction™ with the ability to define and use new types and equate
“support for object-oriented programming’ with the ability to express type hierar-
chies. Features necessary to support these programming styles in a general pur-
pose programming language will be discussed. The presentation centers around
G++ but is not limited to facilities provided by that language.

1 Introduction

Not all programming languages can be “object oriented”. Yet claims have been made to the
effect that APL, Ada, Clu, G++, LOOPS, and Smalltalk are object-oriented programming
languages. I have heard discussions of object-oriented design in C, Pascal, Modula-2, and CHILL.
Could there somewhere be proponents of object-oriented Fortran and Cobol programming? I think
there must be. “‘Object-oriented” has in many circles become a high-tech synonym for “good”,
and when you examine discussions in the trade press, you can find arguments that appear to boil
down to syllogisms like: :

Ada is good
Object oriented is good

Ada is object oriented

This paper presents one view of what “‘object oriented” ought to mean in the context of a general
purpose programming language.

§2 Distinguishes “‘object-oriented programming” and *“data abstraction™ from each other and
from other styles of programming and presents the mechanisms that are essential for sup-
porting the various styles of programming.

§3 Presents features needed to make data abstraction effective.

§4 Discusses facilities needed to support object-oriented programming.

§5 Presents some limits imposed on data abstraction and object-oriented programming by tradi-
tional hardware architectures and operating systems.

Examples will be presented in G++ . The reason for this is partly to introduce C++ and partly
because G+ is one of the few languages that supports both data abstraction and object-oriented
programming in addition to traditional programming techniques. Issues of concurrency and of
hardware support for specific higher-level language constructs are ignored in this paper.

Appendix B

Object-Oriented Programming in C++

Supplemental Materials

