CONVEX FORTRAN User’s Guide

Document No. 720-000030-203

Eighth Edition

J ﬁctober 1988
>4 AL~ AR UNPLARNAL

CONVEX Computer Corporation

Richardson, Texas

| AUVU. 1 21UV ALUIVOWLU V1 UVILILU AIICVIIUCLE.






Table of Contents

1 Compiling Programs

1.1 OVEIVIEW +ereeereeeeeeeeeeeeusesseasseeseanseeesasnneessansssasaasss e et oot s s a e e e e e b e Lt e s s s ug-1-1
1.2 File-Naming CONVENEIONS .....ooiureiiririieriteitemiiiis ettt ug-1-1
1.3 ComPpiling PTOGIAINS ....oiioviuriruiieiesir et ug-1-2
1.4 L0AdING PIOGIAIIS ....eoutiteieeuiaieiieeseese ettt ug-1-6
1.5 EXeCUting PTOZTAIMNS ..c.oiuiiiiititit it eetest ettt et ug-1-7
1.6 MESSBEES ...vvvereeeseeeemeuesuenestiseseseses s ss e e ug-1-7
1.6.1 COmPIler MESSABES ...ocvvtirireiresieatt ettt ug-1-8
1.6.2 Optimization Report ......... T TTTT T T TR U T TR OO OO PP UUPUPURPPPPPPUPPPPPRPRPPPRRPRY ug-1-8
1.6.2.1 Loop Table, Part 1 ....ccooooiiimiiiiiiiiiiiiiir i ug-1-8

1.6.2.2 Loop Table, Part 2 ..occociiiiiiiieiiieiiiis i ug-1-9

1.6.2.3 Array Table ..oocoiiiiiiiiiiiiii i ug-1-10

1.6.3 Runtime Error MeSSages .....ceeioieeiciiiirmmiiiiienniiiie e ug-1-10

1.7 Program INEEIfACES ......cocooiiirimiriestrieseet et ug-1-11

Input/Output Operations
D 1 TUMUIES oot e e e e e e e e eae e e e s eeeeaeneeseaae e e e e r e e e e s ug-

g-2-1
2.2 LOGICAl NAIMES ...eueiiuiiiiiriniiei st ug-2-1
9.3 The OPEN SEALEIMEN .eoeeeiiiiirrrrteeeaaatuieaereeeaeaaisnsesraess s e aorss s ta st s s et ug-2-2
2.4 Assigning Logical NAIMES .....ooooiiiriiiiiiiiiiiic s ug-2-3
2.5 Forms of INPUb/OUEDUE «.e.vviviiiiesierit ettt ug-2-4
2.6 THLE TYPE «ovvrrrerememesemereeecaeasieseseses s st ug-2-5
D T ACCESS MOUES eneereeeereeiteee e e eeestaaee e e e e e eeeeee e e e e s s e e bt e e e e n e et ug-2-5
2.7.1 SeQUENEIAL ACCESS ...ouviurriiitiiesers ettt bbb ug-2-5
D 7.2 DIHTECE ACCESS eneeeeeeeeeeeinnnsnereeeesesaeneeneteaeesiars s et e ee s s sa s a e s s s s s s s s e s s siubs s s s st ug-2-5
2.8 LOGICAl RECOTAS -vuruveuitiretisi ettt ug-2-6
981 Direct-Access External FIle ...oceooiiiiiiiii ug-2-6
2.8.2 Sequential-Access External File ..o ug-2-6
2.8.3 Namelist-Directed Input/OUEPUL ......ooommiimiimiiieeiiciii bt ug-2-6
D84 TNLEINIAl FHLES eeeeieeiieeeeeeseeeeeeteereae i e n e e e e e e eeaaa s s e e e s e e e e e e e s e e a bt ug-2-6
2.9 Input/Output Statement SUMMATY ...oc.ooiimirirmmimnstssi st s ug-2-6
Character Data
3.1 Character CODSLANDS ...oeoiiiirrrrreesasiaeereeeetseroinseseeeasaaian e e s e e s s s e sttt ug-3-1
3.2 Declaring Character Variables ... ug-3-2
3.3 Initializing Character Variables ... ug-3-2
3.4 Character SUDSEIIIIES ..oioovreeeietieieete ettt e ug-3-2
3.5 Concatenating Character SEIINES ...ooovoorereiiiiiiii ug-3-3
3.5.1 Character Input/OUBPUL .....ooiiiiiiiiiiii i ug-3-3
3.6 Character Library FUNCEONS ....oooiiriiiiiiiiiii i ug-3-4
3.6.1 ICHAR TUNCEION .eueneiiieimneeeeiie e eeraii e e eeiis s e e e e ettt e e st st reeia e e ———— ug-3-4
3.6.2 CHAR FUDCEION  ouetoiiriiiieeeeeeeeeeeeeeeeii e e e i e e e e s e s e e e e e e e e et in e e e e e e n e e sttt ug-3-4
3.6.3 LEN and LNBLNI FUNCEIONS ...eitiiieieiiiaiiiiiiiiiiiiiiiee i ug-3-4
3.6.4 INDEX and RINDEX FUNCEIONS «oevvviiiiiiiiiiiiiiiiiiree e ug-3-5
3.6.5 Lexical Comparison FUNCLIONS ....oooviiiiiiiiiiiiiiii ug-3-5
Optimization
4.1 Types of OPIMIZALION ..o.iiiiiiiir ittt ug-4-1
4.9 VECEOTIZALION «everereeteeeeeteeeeeaeeesae st es s e s e m s et g-4-1
4.2.1 Basic OPeration ...c..oo.iiiiiiim ottt ug-4-1
422 SEEIP MIIIIE +vrtetteetttete oot ug-4-2
4.2.3 LoOp DISEFIDUBION .oooviriitiieies et ug-4-2
4.2.4 Loop INEEFCRHANEE «..teiiiiiiiiii ettt ug-4-3
4.2.5 Semantic Differences With VectoriZation .......ccocerniriiiiiiiiiiie ug-4-3
4.96 Vectorizer LIMILALIONS ..ouuuieiieieneiiiiieierii e s s e s e e et s e st et ug-4-4
.97 TRECUITEIICE oo e e e e ettt et e e aeaa et e e e e e e e e e e e et e e et e e e e s e e s e e e e e et bt e e s et ug-4-4




iv

4.2.9 Conditional Induction Variables .............cccooemvmmeoeoeeeeeeeoeoooeeooo ug-4-6
4.3 Parallelization ............ccoooiiiiiiiniiioieieeeee e e ug-4-6
4.4 Global OPtimization ......cocooioiiiiioieieiiieeeeceeeeeeeee e ug-4-7
4.4.1 Constant Propagation and Folding ...........c.oocomooumioviooioooooooo ug-4-7
4.4.2 Dead-Code ENMINAtION ..c.oviuiiiiitiiiiiieeeeee et ug-4-8
4.4.3 Copy Propagation .......c..cccovieiiuiiiiiiiccee e e ug-4-8
4.4.4 Redundant-Assignment ERmination ...............occoeoovovoevovoomoeoooooo ug-4-9
4.4.5 Redundant-Subexpression ENmination .............coccoeoevevooeeeoosooooooo ug-4-9
4.4.6 Code MOION ...c.ovieiiiiiiieiieeeeeeeeeeeeeeee e e ug-4-10
4.4.7 Strength Reduction .........o.ooooiiiiiiioiieioeeeeeeeeee oo ug-4-11
4.5 Local OPtimiZation ........ccoeueiiiiuieieiteoieeeeeeeeeeeeeeee e ug-4-12
4.5.1 Assignment SubStibUtION ...........cooovoviiiiuieeeeeieeie oo ug-4-12
4.5.2 Redundant-Assignment ENmination ................cooooovooeovvoeoeooooo ug-4-12
4.5.3 Redundant-Use ENMINation ............oooooremovommooieoooo oo ug-4-12
4.5.4 Common Subexpression Elimination ..............ccococoooooooio ug-4-13
4.5.5 Constant Propagation and Folding ..............o.oocooveioeioiii o ug-4-13
4.5.6 Algebraic SImplification ..............ococooiiiiinine e ug-4-14
4.5.7 Simple Strength Reduction ...................ocooiomnimmioe oo ug-4-14
4.6 Inline SubStibUtion .........ccocooooviiooiiiii i ug-4-14
4.6.1 When to Use Inlining ......coocooooviiiiiiiiioeoeieeee oo ug-4-15
4.6.2 How to Use INIINING ..c.oovoveviioiiioeiiceee oo ug-4-15
4.6.3 Creating .fil Files .....occoooioiiiiiiiiiiiee oo ug-4-15
4.6.4 Using the -5 OPION .....ccooviiniitiiiiiiiii e oo ug-4-16
4.6.5 Restrictions on INIINING ....oo.ovooviviiiiiiiee oo ug-4-17
4.7 Loop RePCation ........c.cccoeiouiuiiieiieiietieeeeeeeeeeeeeeeeeeeeoe ug-4-17
4.7.1 Loop Unrolling ......c.cccoooiioioiiiiiiioioeee oo ug-4-17
4.7.2 Dynamic Loop Selection ..........coc.ooiouiuiioeeeeeeieeeeo oo ug-4-18
4.8 Machine-Dependent Optimization .................ccoooewoueeomeeoioieooooooo ug-4-18
4.8.1 Instruction ScheduliNg ........ccocovuiieuiiiiiimieeieeeeeee oo ug-4-19
4.8.2 Span-Dependent INStructions ...............ccvoeeueereemeoeeeosoeoeooo ug-4-19
4.8.3 Branch Optimization ...........occoooiiuiiiieieieeeeeeeeeees oo ug-4-19
4.8.4 Register ALIOCatION ......cccoocomvieuiiuiiuiiiieieeeee oo ug-4-19
4.8.5 Hoisting Scalar and Array References ............occoooooveoieeoooiooooo ug-4-20
4.8.6 Paired Vector References .................o.coooovumimmmmmooiooeoo ug-4-20
4.8.7 Strength Reduction and the Code Generator ..............oooovoivoooo ug-4-20
4.8.8 Tree-Height Reduction .............occoooiiiiiieoioiaeeooeoo ug-4-20
Calling Conventions
5.1 FORTRAN Subprogram Calling Convention ................ococoeooooooooo ug-5-1
5.1.1 FORTRAN Argument Packets .............. e e ug-5-1
5.1.2° Argument-Passing Mechanisms ................c.ccoocooemi o ug-5-2
5.1.3 Argument Packet Built-in Functions ..............ccooooooooii ug-5-3
5.1.3.1 Z0VAL .ottt ug-5-3
5.1.3.2 BREF .....ooiiiiiiiiioieee e ug-5-3
5.1.3.3 Function Return Values ...............c.occoooonmmnoi o ug-5-4
5.1.3.4 BLOC ..ot ug-5-4
5.2 Non-FORTRAN-to-FORTRAN Calling Sequence ...............oocoooooooooooo ug-5-4
5.2.1 Procedure Names ........cocooooiiiiiiiiiiiioieeeeeee oo ug-5-5
5.2.2 Data Representations ..........occoooiuioiiiiiiii oo ug-5-5
5.2.3 Return Values ...........cccoiiiiiiiiiiiiiiiie oo ug-5-6
5.2.4 Argument Packets ...........ccoooiiiiiiiiiiiii e ug-5-6
5.3 EXaMPIeS ..o.oiiiiiiiii e ug-5-7
System Utilities
6.1 How to Call Utility ROUSINES ...oovovevitiisiee oo ug-6-1
6.2 UNIX USIHEIES ©.eoiieiiiieiiee e ug-6-1
6.3 Using the system Uity ......ccoooiiiiiiiiiii oo ug-6-3
6.4 VAX-11 FORTRAN System Utilities .........cocvoevoioveoeoeo oo ug-6-3



B.4.1  aEE oot ettt et e e et ettt e ettt a e e s s es e et e e e e ranas ug-6-3

B.4.2 ZAAEE oo et ee et —e e et e eettn—— e e teaaaaeanne ug-6-4
R R T LT X SO ug-6-4
B ELE oot e e e e e ettt e e e e et e e aeeeertaan e rae s ug-6-4
B.4.5  SECTAS iiiveieeiiie e ettt eee et e et e e e et e e e tae e eeaa e etan e e ananeernan e eaeneeas ug-6-4
I I 7177 7 O U OO ON ug-6-4
B a7 TAI e et ug-6-4
B8 MIUDIES oo ettt e et e e et e e e a et e e eeeen ug-6-5
7 Debugging Programs
7.1 General Consideratlons ........oeeiiueieeiii et ettt et e e s e e et e aas ug-7-1
7.2 Cross-Reference Generator ......oooooiiiiiiieieiiii e e et e et et e e e e eeaii e s enei e enna e e caaeeaes ug-7-1
7.3 Post-Mortem Dump (pmd) ....oococoiiiiiiiiiiiiii e ug-7-2
7.4 CONVEX Symbolic Debugger (¢sd) .....ooooviiiiiiiiiiiiiiii ug-7-4
7.5 Assembly-Language Debugger ... ug-7-5
8 Runtime Errors and Exceptions
8.1 /O Error Processing .......oc.ooiiiiiiiiiiiiiiiiiie et ug-8-1
8.1.1 ERR and END Specifiers ....coooooiiiiiiiiiiiiiiinii i ug-8-1
B.1.2 TOSTAT SPECIAET ettt ug-8-2
8.2 Signals and EXCePtIONS .....iiiiiiii e e ug-8-2
B2 L SIS oo e ug-8-2
B.2.2 EEXCEPUIONS 1eieiiiiiiiiiiiieee et ettt ettt e et e e e e e e ug-8-3
8.3 Error-Processing UIHEIES .....oiiiiiiiieriee i e ug-8-4
8.3.1 setymp and longgmp ULIHIEIES .ooooiiiiiire et ug-8-4
8.3.2 errtrap ULHHLY oottt e e ug-8-5
8.3.3 signal UtIIbY, ..o ug-8-5
8.3.4 traceback UIIEY .oovviiiiiiiiiieeeiee s eeee et e ug-8-6
8.3.5 traper ULIIEY oot ug-8-6
8.3.6 perror, gerror, and rerrno UtIHbIES ...coccvvvieiiiiiereeniiiieee et ug-8-7
8.4 Examples of Signal Handling .....cc.eiiiiiiiiiiiiiiii ettt ug-8-8
Appendices
A FORTRAN Data Representations ...........ccoiiiiiiiiiiiiiiir ettt eae e A-1
A.l Logical Representation ........ocoooiiiiiiiiii e ug-A-1
A2 Integer Representation ..ottt e e e e e et et e et s e et e e e et e e e e eans ug-A-1
A.3 Real Data Representabion .......ooiiiiiiiiii e ug-A-2
A4 Complex Representation .....cccccoiiiiiiiiiiiiiiiiiiiieteere e ug-A-4
A.5 Character Representation ......o..ooiiiiiiiiiiiiei ettt e ug-A-4
A.6 Hollerith Representation ......cccccooiiiiiiiiiiiiiiii e ug-A-5
B Compiler and Runtime MeSSages ..............ouuuuiiiiiiiiiiiiiiiir ettt B-1
B.1l CompPiler MESSAZES «ooiiveiiiei ittt ettt ettt e e e e ug-B-1
B.2 Runtime Error MeSSAges .....ccooieeioiiieeiiiiiiieiiii et ug-B-2
C Runtime LIDTaries ... et e C-1
C.1 FORTRAN Intrinsic Library and CONVEX Math Library .......cccccooevemmiinnn ug-C-1
C.2 FORTRAN I/O LIBTary ceeeciiiiiiiiiiiiiiii e ug-C-15
D Problem Reporting ... e D-1
D1 INEPOAUCION .oeiiiii ittt ettt e e e et e e e e ug-D-1
D.2 Information Required to Report a Problem ... ug-D-1




1 ] 1 1
B b= b b QO DY b b QO DD e e

(?O(?OTI??"O‘\?OO(\D[\D[OM
iT

QQaa
e WD

LA
JUREOCN O

vi

List of Tables

FORTRAN Runtime LIDTAries ........coooiiveeiiiiiiicieeccciirciceeeecesietteaeeeas e s e e s sssesneesaeeensene ug-1-7
TMPLEIt UNIS ooiiieiiei et e e e e ug-2-1
Default Logical NAIMES .....oooiueeiiiiiiiiiii ettt te et seaseeesaeasennnes ug-2-2
Input/Output SEALEINENES ..eeevieeiiiiieeeiiiieeiiiiteeeetieeertieeeiceeeneteesteeeasneeeennreesanenessereeeesennnnees ug-2-7
Lexical Intrinsic FUNCEIONS ......eceiiiiiiiiiiiiiiii et e s s e e e e e e cenenannes ug-3-6
Built-in Functions and Argument TYDPes .......ccccocviiiiiieieiieieiiiiieeeee e e eeseseeerreeeceeneeeneeees ug-5-3
Function Return ValUes .....cccooiiiiiiiiiiiiiiioiiii e e e s e e e e e e e e aaeenennaaenas ug-5-4
FORTRAN and C Declarations .......ccccccieeiiiinrsioieriiieeeeieeeeietnreeeeeeeeeeeeeeesensneessseesssssereseens ug-5-5
Calling Sequences for CONVEX UNIX UBIEIES ..ooocviieeiiiiiiiiiierieeeeeiiieiieieireereereeeeeeeeaaeens ug-6-2
Commonly Used csd Commands ........coooiiiiiiiiiieeiiieriiieiiiieieeee et reeeee e e e e eeeeenannaas ug-7-5
Signal Names and NUMDEIS ..........ooiiiiiii e e e e e e eaer e e e saaaes ug-8-3
Mapping Exceptions to Signals and Codes ........cccccviiiiiiiiiiiiiiiiiiiiiiee e ug-8-4
Function Naming COnvention .........ccc...cooiiiiiiiiiiiioiiieeiiieecieeeeieteeeaee e eebee e e teeeesnees ug-C-2
INtPINSIC FUNCUIONS .oiivieiiiii et e e e eeeaaanas ug-C-3
Exponentiation ROULINES .......ooooiiiiiiiiiiiiiiiiiiii e e e e e eeeeae e ug-C-13
Complex Programmed OPerators .........cccccocueiemeiiieiiieeeeeeiiaiiiiiietiaeeseaeaee e eenneinbeeeeeeens ug-C-14
List of Figures
Argument Packet: Example 1 ...oooooiiiiiii et ees ug-5-1
Argument Packet: Example 2 ..o e ug-5-2
Calling a FORTRAN Subroutine .........occiiiiiiiiimiiiiiiiiiiiiiitciee e e eeeeeeee e ug-5-5
Sample cONEACE SESSIOM .o.evviiiiiiiiiiiiiieieeieeee et e e e e e ettt ra e e et e e e aaeaaaaeaaaaaas ug-D-3




Preface

This guide tells you how to use the CONVEX FORTRAN compiler. Subjects discussed include
compiling, loading, and executing programs. Other pertinent information includes input/output
operations, error processing, program optimization, utility libraries, and debugging.

It is assumed throughout that you are an experienced FORTRAN programmer. For further
discussion of the CONVEX FORTRAN language and other CONVEX software, please consult the
bibliography at the end of this Preface.

If you are unfamiliar with the CONVEX UNIX operating system, also consult the bibliography.
Although a detailed knowledge of the operating system is not necessary to an understanding of
this document, some familiarity with the system is beneficial.

Organization
This manual is organized into the following chapters and appendixes:

U Chajpter 1 contains an overview of the CONVEX FORTRAN compiler and describes

how to compile, load, and execute a program.

e Chapter 2 describes how to use the CONVEX input/output facilities. It describes the
I/O statements and their parameters, file specifications, record structures, and record
access.

® Chapter 3 discusses how to use character data: building character substrings, using
character constants, declaring character data, initializing character variables, and using
character library functions.

o Chapter 4 describes vectorization, parallelization, global optimization, local
optimization, inline substitution, and machine dependent optimization in CONVEX

FORTRAN.

e Chapter 5 describes the CONVEX FORTRAN calling conventions and describes how to
call routines written in languages other than FORTRAN.

e Chapter 6 describes the use of CONVEX UNIX system services.

e Chapter 7 presents an overview of the debugging tools available for use with CONVEX
FORTRAN.

e Chapter 8 discusses runtime error processing and describes how the runtime library
processes errors, what the defaults are, and how to override the defaults.

e Appendix A describes the data types supported by CONVEX FORTRAN and shows
their internal representations.

vil




e Appendix B lists the error and advisory messages that can occur during compilation or
runtime.

e Appendix C lists and describes the runtime library and routines.
e Appendix D tells you how to report software and documentation problems.

An index and reader reply forms are included at the back of the guide.

Notational Conventions
The following conventions are used in this document:
e Brackets { [ ] ) designate optional entries.
® A caret ( " )is used to represent the space character.

e Horizontal ellipsis ( . . . ) shows repetition of the preceding item(s). In an example,
horizontal ellipsis indicates that statements are omitted.

o Vertical ellipsis shows continuation of a sequence where not all of the statements in an
example are shown.

o References to the CONVEX UNIX Programmer’s Manual appear in the form fc(1F),
where the name of the manual page is followed by its section number enclosed in
parentheses.

® [talics within text denote commands, options, filenames, or programs.

o Within command sequences set apart from text, boldface type indicates literals.
Words appearing in boldface should be typed as they appear. Italics within command
sequences indicate generic information, such as options or filenames. Substitute actual
information for the italicized words. For example, the command sequence

1d [options| [object files| [libraries|
instructs you to type the command /d, followed by your choice of options, object files,
and/or libraries.

Assoclated Documents

The following documents, available from CONVEX Computer Corporation, are recommended to
the CONVEX FORTRAN programmer:

o CONVEX FORTRAN Language Reference Manual describes the FORTRAN language
and the CONVEX extensions to the language.

o CONVEX UNIX Primer contains basic self-instruction for learning and using the
CONVEX UNIX operating system.

e CONVEX UNIX Programmer’s Manual, Parts I and II, contains complete reference
material on the UNIX operating system for the CONVEX family of supercomputers.

o CONVEX adb Debugger User’s Guide, a tutorial and reference manual, describes the
functions and operations of the CONVEX adb debugger.

o CONVEX Consultant User's Guide (optional product) describes the functions and

viii



operations of the CONVEX csd debugger, post-mortem dump (pmd) utility, and the
gprof and prof profilers.

o CONVEX Loader User’s Guide, a tutorial and reference manual, describes the
CONVEX loader.

o CONVEX COVUEshell Reference Manual describes COVUEshell. COVUEshell is an
optional CONVEX product that provides a VMS-type interface, giving the user access
to a subset of Digital Command Language (DCL) commands.

e American National Standard Programming Language, FORTRAN manual (ANSI X3.9-
1978) defines the standard language.

Section 3F of the CONVEX UNIX Programmer’s Manual contains the FORTRAN runtime library

functions.

ix







Chapter 1

Compiling Programs

This chapter presents an overview of the CONVEX FORTRAN compiler and explains how to
compile, load, and execute programs written in CONVEX FORTRAN.

CONVEX FORTRAN is a high-level programming language that contains standard FORTRAN
as defined by the American National Standard FORTRAN-77 (ANSI X3.9-1978), VAX-11
functions, and unique CONVEX extensions. A complete description of the CONVEX FORTRAN
language is contained in the CONVEX FORTRAN Language Reference Manual.

1.1 Overview

The CONVEX FORTRAN compiler translates a source file containing one or more FORTRAN
program units into an object module. The object module can then be linked with library routines
or other object modules for execution on a CONVEX computer. Previously compiled programs
written in CONVEX assembly language, C, or Ada can interface with CONVEX FORTRAN

object code to produce an executable program.

The CONVEX FORTRAN compiler automatically generates code that takes full advantage of the
architecture of the CONVEX family of supercomputers. In addition, you can specify that the
compiler perform optimization, vectorization, and parallelization of your source code for
maximum efficiency of execution.

Compiler options let you request Cray FORTRAN, VAX FORTRAN, or Sun FORTRAN
compatibility, IEEE-standard representation of floating-point values, and inline substitution of
subroutines. IEEE functionality requires that the target machine be equipped with the IEEE
support hardware.

To enhance compilation speed, the CONVEX FORTRAN compiler generates object code directly.
At your option, however, the compiler can produce assembly-language code, which may be
inspected, modified, or assembled directly.

To assist in program checkout, the compiler interfaces with several debuggers and utility
routines, including a post-mortem dump utility, a source level debugger, and an assembly-level
debugger.

You may also compile CONVEX FORTRAN programs under COVUEshell. COVUEshell is a
CONVEX product that provides a VMS-like interface and supports many of the Digital
Command Language (DCL) commands. For further information, please refer to the CONVEX
COVUEshell Reference Manual.

1.2 File-Naming Conventions

The compiler distinguishes a file type by the extension added to the end of the filename. A
FORTRAN source file is identified either by the extension .f or by the extension .FOR. The
compiled object file has the same name as the source file except that it ends with .o.

ug-1-1




Compiling Programs

When you compile and load a single source file during one invocation of the compiler, the object
file is normally deleted. Unless you specify otherwise on the compiler command line, the
executable module produced by the loader is placed into the file a.out.

Although the compiler normally produces object code directly, you may request that symbolic
assembly code be generated. In this case, the name of the file that is produced is the same as that
of the source file except that it ends with .s.

The following table summarizes the file naming conventions used by CONVEX.

Filenames for... End with the extension...
FORTRAN source files .for .FOR

Object files .0

Symbolic assembly-language files .8

Libraries .a

Inline intermediate files Al

1.3 Compiling Programs
To invoke the CONVEX FORTRAN compiler, use the following command line:
fc [options| files [loader-options]

In the command line, options is one or more of the compiler options described in the following
sections. Any options contained in an OPTIONS statement within a program override those
specified on the command line.

The parameter files represents one or more FORTRAN source files to be compiled, object files to
be loaded, or symbolic assembly-language files to be assembled.

The parameter loader-opiions is one or more loader options as described in the CONVEX Loader
User’s Guide. If specified, these options are passed to the UNIX loader when compilation is
complete.

Language-Compatibility Options

-cfc Causes the compiler to use the Cray FORTRAN language definition instead of
the standard CONVEX FORTRAN definition. This option cannot be used
with the -7 or -r options.

-Fé6 Selects FORTRAN-66 language interpretation rules in cases of incompatibility.

-sa Prevents FORTRAN from generating pre-compiled argument packets in the
text segment. All arguments are placed on the stack. This option should only
be used when an application contains user-supplied C programs called from
FORTRAN. Using it with applications coded only in FORTRAN slows down

the application.

-sfc Causes the compiler to use the available subset of Sun {77 language features
instead of the corresponding CONVEX FORTRAN features. The subset is
described in Appendix I of the FORTRAN Language Reference Manual.

ug-1-2



-vfc

Compiling Programs

Causes the compiler to accept certain language extensions implemented in VAX
FORTRAN instead of the corresponding CONVEX FORTRAN features.

Optimization Options

-ep n

-l

-is directory

-On

Specifies the expected number of processors (n) on which the program is going
to run. If the value of n is not an integer from 1 to 4, the behavior of the
compiler is indeterminate.

The compiler parallelizes a loop whenever doing so appears to decrease the
turnaround time, assuming the given number of processors. Use this option
with caution since it may lead to inefficient use of processors.

Instructs the compiler to prepare an intermediate language (.fil) file for a
subprogram that is to be used for inline substitution. The -:/ option cannot be
used with the -c, -¢s, or -5 options. Optimization levels are ignored.

Instructs the compiler to perform inline substitution of each subprogram for
which there exists a .fil file in the specified directory. This option must be
repeated for each directory containing .fil files to be used for inline
substitution.

Specifies that the compiler is to perform no optimization. This option is the
default if the -O option is not specified.

Performs machine-independent optimizations at the specified level. You can
specify the following optimization levels:

Level Description
-00 Local scalar optimization
-01 Local scalar optimization and global scalar optimization
-02 Local scalar optimization, global scalar optimization,

and vectorization

-03 Local scalar optimization, global scalar optimization,
vectorization, and parallelization

If this option is not used, the compiler performs no machine-independent
optimization.

Causes the compiler to perform loop-replication optimizations on loops selected
by the compiler on the basis of profitability. The loop-replication options
include loop unrolling and dynamic loop selection.

This option may not be used unless the -O2 option is also specified. When the
-O2 option is specified, the compiler generates scalar and vector versions of
eligible loops and selects the best version at runtime.

Performs potentially unsafe optimizations, e.g., moves the evaluation of

common subexpressions and/or invariant code from within conditionally
executed code. Such moved code may be executed unconditionally.

ug-1-3




Compiling Programs

Code-Generation Options

-C

-fi

-tm larget

Suppresses the loading phase of the compilation. For example, output from the
file file.f or file.s is written to file.o.

Specifies that real constants are to be translated into IEEE format and
processed in IEEE mode. If you specify this option, your machine must be
equipped with the IEEE support hardware, or an error message occurs and
compilation terminates. If you do not specify a floating-point format, your site
default is used.

NOTE: The CONVEX hardware and software only support the processing of
data encoded in IEEE format and do not conform to the IEEE 754
specifications for arithmetic.

Specifies that real constants are to be translated into native format and
processed in native mode. If you do not specify a floating-point format, your
site default is used.

Controls how the compiler interprets INTEGER and LOGICAL declarations
with unspecified lengths. The default interpretation is INTEGER*4 and
LOGICAL*4. The option changes the interpretation to INTEGER*2 and
LOGICAL*2, or INTEGER*8 and LOGICAL*8. n may be 2, 4, or 8.

Controls how the compiler interprets REAL declarations having unspecified
lengths. The default interpretation is REAL*4. n may be 4 or 8.

Causes the compiler to generate reentrant code for parallel or recursive
invocation of subprograms. This option makes it possible to call subroutines
from inside parallel loops.

Each invocation of a subroutine has its own copy of local variables. Arguments
are passed on the stack instead of by means of argument packets. Common
variables and saved or initialized variables are still shared among invocations.

If you compile a program using the -re option, you must initialize all local
variables.

Generates symbolic assembly code for each program unit in a source file.
Assembler output for source myfile.f is written to myfile.s. The assembly file is
not assembled to produce object code.

Specifies the target machine architecture for which compilation is to be
performed. The value for target can either be c1 or ¢2 (C1 or C2 may also be
used). If you specify a target machine, the instruction set for that machine is
used regardless of the machine on which the compiler is running. If you do not
specify a target machine, the compiler generates instructions for the class of
machine on which it is running.

Debugging and Profiling Options

-al

ug-1-4

Causes noncharacter arrays declared with a last dimension of 1 to be treated as
if they were declared assumed-size (last dimension of *). Subscript checking

can then be performed if the -cs option is also specified. The -af option can be
used in the OPTIONS statement.



-pb

Compiling Programs

Compiles code to check that each subscript is within its array bounds. Does
not check the bounds for arrays that are dummy arguments for which the last
dimension bound is specified as * or 1. The -cs option can be used in the
OPTIONS statement.

Produces additional information for use by the symbolic debugger, csd, and
passes the -lg option to the loader. This option can be used with all levels of
optimization. If the -O option is specified, there may be source statements for
which no debugging information is generated for csd.

Specifies that a line with a D in column 1 is to be compiled and not treated as
a comment line. Statements with a D in column 1 can be conditionally
compiled, making this feature a useful debugging tool.

Produce code that counts the number of times each routine is called. If loading
takes place, the standard startup routine is replaced with one that
automatically calls monitor at the start and arranges to write out a mon.out
file at normal termination of the object program.

Also, a profiling library is searched instead of the standard FORTRAN library.
An execution profile can then be generated by use of prof (optional product).

Causes the compiler to produce source-level counting code that produces an
execution profile named bmon.out at normal termination. Listings of source-
level execution counts can then be obtained with the use of bprof (optional
product).

Causes the compiler to produce counting code in the manner of -p but invokes
a runtime recording mechanism that keeps more extensive statistics and
produces a gmon.out file at normal termination. An execution profile can then
be generated by use of gprof (optional product).

Provides a syntax check. Stops compilation of each program unit in a source
file after the program has been determined to be a valid FORTRAN program.
Using this option during program development reduces compilation times.

Message and Listing Options

-or table

Suppresses all advisory diagnostic messages.

This option is no longer available. Use -or instead.

Suppresses all warning diagnostic messages.

Specifies the contents of the optimization report to be produced; either the loop
table, the array table, or both, can be displayed. The value for table can be all,

none, loop, or array. If this option is not specified, only the loop table is
displayed. Section 1.6.2 of this manual describes the optimization report.

ug-1-5




Compiling Programs

-xrl

Calls the frref cross-reference generator. The following options are related to
this option:

Option Description
-tw n Specify the column width for identifiers. n can range
from 8 to 32. The default is 16.
-pw n Specify the logical page width used by the output
formatter. The default is 132.
-sl Produce a source listing with line numbers that precedes
the cross-reference table.

Calls the frref cross-reference generator and puts all objects (such as variables
and arrays) into one table, rather than printing a separate table for each class
of objects.

Miscellaneous Options

-Bstring

-0 name

-tl n

-72

Finds the substitute compiler (fske!/ and fpp) in the directory named string.
The default directory is /usr/convez/oldfc, which contains the previous version
of the compiler for use as a backup.

Assigns name as the name of the executable file produced by the loader. The
default name is a.out. If the loader is not invoked because the -c¢ option is
specified and if there is only one file to compile or assemble, then name
becomes the name of the object module.

Sets the maximum CPU time limit for compilation to n minutes. If the time
limit s exceeded, compilation terminates with the message System error in

Jusr/convez/fskel.

Display information concerning the version of the compiler that is being used.
Output goes to stderr.

Causes the compiler to process only the first 72 characters of each program
line. (The compiler normally processes all characters.) Continued Hollerith
and character constants are not padded. A line with fewer than 72 characters
ending with a Hollerith constant is padded with blanks until the constant is
completed, or until 72 characters are processed for that line. A line with fewer
than 72 characters ending with the first characters of a character constant is
padded with blanks until 72 characters have been processed. A tab counts as
one character.

1.4 Loading Programs

Two types of files, object files and libraries, are used as input to the UNIX loader ({d). Object
files contain the binary output produced by the compiler. Library files contain frequently used
object modules that are inserted into programs by the loader as necessary.

The preferred method of invoking the loader for FORTRAN programs is to use the fe command.
This approach ensures that the proper FORTRAN libraries are loaded in the proper order. The
compiler, in turn, passes any loader options on the fe command line to the loader. You can
suppress the loading phase of the compilation with the -¢ option. For information on invoking
the loader directly, see the CONVEX Loader User’s Guide.



Compiling Programs

Any libraries specified on the fc line with the -/ loader option are searched before the standard
libraries. Table 1-1 lists the names and contents of the standard FORTRAN runtime libraries.

Table 1-1: FORTRAN Runtime Libraries

Name Contents
/usr/lib/libF77.a Intrinsic function library
/usr/lib/libF77_p.a Profiled intrinsic function library
/usr/lib/1ibl77.a FORTRAN /O library
/usr/lib/1ibl77_p.a Profiled FORTRAN I/O library
/usr/lib/1ibU77.a UNIX interface library
/usr/lib/1ibu77_p.a Profiled UNIX interface library
/usr/lib/1ibl86.a FORTRAN-66 I/O initialization
/usr/lib/1ibV77.a Constants for VAX FORTRAN compatibility
/usr/lib/libvfn.a VMS-to UNIX filename translation routines
/usr/lib/libD77.a Dummy VMS-to-UNIX filename translation routines
/lib/libe.a C library (system utilities)
/usr/lib/libc_p.a Profiled C library
/usr/lib/libm.a Math library
Jusr/lib/libm_p.a Profiled math library
/usr/lib/libmathCl.a Math library optimized for C1 architecture
/usr/lib/libmathC1_p.a | Profiled math library optimized for C1 architecture
/usr/lib/libmathC2.a Math library optimized for C200 architecture
/usr/lib/libmathC2_p.a | Profiled math library optimized for C200

architecture.

The /usr/lib/libI66.a library is required only for FORTRAN-66 compatibility. This library is
included automatically if the -F66 option is specified on the compiler command line. Appendix C
contains detailed information on the FORTRAN intrinsic library.

1.5 Executing Programs
To execute your program after it has been processed by the loader, type the name of the

executable file. The default name for the executable file is a.out. If you have included the -o
name option on the fe command line, the name of the executable file is name.

1.6 Messages

This section presents an overview of the messages that can result during compilation and at
runtime. The messages are grouped into the following categories:

e Compiler messages
e Optimization report

o Runtime messages

ug-1-7




Compiling Programs

1.6.1 Compiler Messages

The compiler produces various messages during compilation—error messages, warnings,
advisories, vectorization, and parallelization messages. Messages produced by the compiler are
directed to the standard error file (stderr). A compiler message consists of the line number of the
text in which the error occurs, the pathname of the source file containing the line of text in error,
and a brief description of the error.

The following examples show typical compiler messages.

fc: Error on line 7.1 of testprog.f: Label defined but never referenced.

fc: Warning on line 3.4 of myprog.f: Divide by zero may occur at runtime.

If an internal compiler occurs, the compiler outputs a message that begins with the words
“COMPILER ERROR.” Such a message should be reported to the CONVEX Technical
Assistance Center (TAC).

1.6.2 Optimization Report

If a program is compiled with the -O2 or -O3 option, the compiler generates an optimization
report for each program unit. This report consists of a loop table, an array table, or both. You
can specify which tables are to be included in the optimization report by means of the -or
compiler option.

1.6.2.1 Loop Table, Part 1

The loop table lists the optimizations that were performed on each loop and, if appropriate, the
reasons while a possible optimization was not performed. The loop table can consist of one or
two parts. Part 1 of the loop table is always printed and contains the following information:

¢ Line Num.

Specifies the source line of the beginning of the loop. If the line number has two parts,
separated by a hyphen, the second number is the distributend number (due to loop
distribution).

e Iter. Var.

Specifies the name of the iteration variable controlling the loop or *NONE*. 1If the
iteration variable has two parts, separated by a colon, the second part is the inline
substitution instantation of that variable.

¢ Reordering Transformation

Indicates which reordering transformations were performed. A reordering
transformation does not eliminate operations from a program or replace them by
simpler operations, but rearranges them so they can be more efficiently executed. This
column contains one of the following values:

ug-1-8



Compiling Programs

PARALLEL

Dist
Inter

FULL VECTOR

PARA/VECTOR

Value Explanation
Scalar No transformation of this type was performed.
nn% VECTOR The loop was partially vectorized, with the percentage

(nn) specified being executed in vector mode.

The loop was fully vectorized, with all operations being
executed in vector mode.

The loop runs in parallel mode.

The loop was vectorized, and the strip mine loop runs in
parallel mode.

Loop distribution was performed.

Loop interchange was performed.

e Optimizing/Special Transformation

Indicates which

optimizing transformations were performed.

An optimizing

transformation reduces the number of operations executed, or replaces operations with

simpler operations.

A special transformation allows the compiler to vectorize or

parallelize code under special circumstances. This column contains one of the following

values:
Value Explanation
Unroll The loop was completely or partially unrolled.
Reduction The compiler recognized a reduction and vectorized the
loop.
Pattern The compiler recognized a special pattern and vectorized
the loop.
Synch The compiler inserted synchronization code to ensure
correct execution of a parallel loop.
e Mode

If used, this column refers to multiple execution modes controlled by dynamic selection.
This column can contain the following values:

Value Explanation
S Specifies scalar execution.
\'% Specifies vector execution.
P Specifies parallel execution.
Z Specifies parallel-outer execution, vector-inner execution.

1.6.2.2 Loop Table, Part 2

Part 2 of the loop table is only printed if there is relevant information to be shown. Part 2 of the
loop table contains the following information:

e Line Num.

Source line of the beginning of the loop

e Iter. Var.

Name of the iteration variable controlling the loop or *NONE¥*.

ug-1-9




Compiling Programs

e Analysis

Why a transformation or optimization was not performed, or additional information on
what was done.

1.6.2.3 Array Table

The array table lists array references that prevented optimization or on which special
optimizations were performed. The array table contains the following information:

¢ Line Num.

Source line on which the reference occurs.

e Var. Name
Name of the array being referenced
e Optimization

Contains one of the following values:

Value Explanation

Hoist The vector load was found to be loop invariant and was
moved outside the loop.

Sink The vector store was found to be loop invariant and was
moved outside the loop.

e Dependencies

Shows the names of other variables in a recurrence, in the form name® linenumber. If
the reference could be to any memory location, it is in the form *MEM*@ linenumber.

1.6.3 Runtime Error Messages

Runtime error messages are directed to the standard error file (stderr). Error messages can
be generated by math routines, I/O operations, or trap errors. I/O error messages can
contain up to four lines of information depending on the type of I/O operation involved.

The following examples show typical runtime error messages. The numbers in brackets
indicate an error number associated with a particular error condition.

mvh$r_sqrt: [300] square root undefined for negative numbers

mth$r_sqrt: [300] square root undefined for negative values
sqrt( -1.7014117E+38)= 1.3043818E+19

write sfe: [100] error in format

logical unit 6, named 'stdout’

lately: writing sequential formatted external IO
part of last runtime format: (£6.2,x,v5},x,i

dofio: [115] read unexpected character
logical unit 7, named ‘fort.7’
lately: reading sequential formatted external IO

part of last pre-compiled format: (14,F7.2,E10.4],E10

Some runtime errors also produce a stack trace.

ug-1-10




Compiling Programs

1.7 Program Interfaces

The calling sequences for the runtime system include the use of the short-form call
instruction (eallg) and additional conventions related to the use of registers and the values in
registers after calls. The compiler provides versions of the intrinsics that use the standard
calling sequence. This feature allows you to pass intrinsic names as arguments to
subprograms.

NOTE

There is a performance penalty for invoking
intrinsics passed as arguments.

The runtime system provides scalar and vector versions of the math intrinsics. The compiler
determines which version of the routine to call.

If you code part of your program in a language other than FORTRAN, such as C or assembly,
you must use the same names that are output by FORTRAN or the program cannot link
properly. The naming conventions are as follows:

main program _MAIN__ (1 preceding underscore and 2 following)
blank common ___bink_ (3 preceding underscores and 1 following)
named common  __name_ (2 preceding underscores and 1 following)
subprogram _hame_ (1 preceding underscore and 1 following)

where bink and name represent the symbolic name.
To get names generated by FORTRAN, you must append and prefix the appropriate number of

underscores. For example, since C prefixes a single underscore on function names and external

variables, a call to a FORTRAN routine FFT must use FFT_.

ug-1-11







Chapter 2
Input/Output Operations

This chapter describes the particulars of FORTRAN input/output operations as they are
performed under CONVEX FORTRAN and presents specific information pertaining to UNIX
files.

2.1 Units

The unit number in a CONVEX FORTRAN input/output statement can range from 0 through
255. A unit number can be specified either explicitly or implicitly. The following WRITE
statement, for example, specifies an explicit unit of 9.

WRITE (9, 100) I, X, Y
In certain forms of the READ and WRITE statements and in statements such as ACCEPT,
PRINT, or TYPE, the unit number is implicit. Table 2-1 shows the general forms of CONVEX

FORTRAN 1/0O statements in which the unit is specified implicitly. In the table, f indicates the
FORMAT statement number.

Table 2-1: Implicit Units

FORTRAN Statement Implicit Unit
READ (*, f) list 5
READ f, list 5
ACCEPT f, list 5
WRITE (*, /) list 6
PRINT f, list 6
TYPE f, list 6

UNIX defines the terms ‘‘standard input” (stdin), ‘“standard output” (stdout), and “standard
error’’ (stderr). By default, a program looks at stdin for input, writes output to stdout, and sends
error messages to stderr. All three of these designators are normally assigned to your terminal
but can be redirected by UNIX commands or by the OPEN statement.

By default, CONVEX FORTRAN assigns unit 5 to stdin, unit 6 to stdout, and unit 0 to stderr.
If you use an asterisk (*) in a READ or WRITE statement, unit 5 or 6 is always assigned,
regardless of whether or not these units have ever been specified in a CLOSE or OPEN statement.

2.2 Logical Names

Every unit in CONVEX FORTRAN, except unit 0, is associated, by default, with a logical name
of the form FORnnn, where nan is the unit number. This logical name is used to create a default
UNIX filename in the form fort.nnn to which the unit is automatically “preconnected.”
Preconnected means that the file is connected to the unit when the program begins executing and
can be referenced by input/output statements without prior execution of an OPEN statement.

ug-2-1




Input/Output Operations

The following statement opens and writes to file fort.35.
WRITE (35,10) data

Table 5-2 shows examples of units, the logical names associated with the units by default, and the
UNIX filenames to which they are preconnected by default.

Table 2-2: Default Logical Names

Unit Default Logical Name Default UNIX File Name

8 | FORO0O0S fort.8
52 | FORO052 fort.52
230 | FOR230 fort.230

Units 5 and 6 (stdin and stdout) are not automatically preconnected to files fort.5 and fort.6. You
must perform explicit CLOSE and OPEN statements to get this connection as shown in the
following example. In the example, since no filename is specified in the OPEN statement, the
default filename (fort.5) is assigned.

Example:

CLOSE (5)
OPEN (5) ! Unit 5 (stdin) is now connected to fort.S

You can usually override the preconnection of a unit by means of an explicit OPEN statement or
with environment variables as described later in this section. If, however, the logical name
specified in an OPEN statement is of the form FORnnn, the UNIX file actually generated has the
corresponding fort.nn name.

Example:

The following statement generates a file named fort. 4.

OPEN (UNIT=1, FILE='FOR004’)

The files stderr, stdin, and stdout can also be redirected from the command line as described in
the description of the C shell (¢sh) in the CONVEX UNIX Programmer’s Manual.

2.3 The OPEN Statement

The OPEN statement connects a unit to a UNIX file so that any subsequent input/output
operations to that unit access the specified file. An OPEN statement may contain a FILE=
clause whose value can either be a logical name or the name of a UNIX file. The value specified
in the FILE= clause overrides the default logical name or filename associated with the unit.

An OPEN statement without a FILE= clause opens the default file for that unit unless
STATUS='SCRATCH' is specified. If STATUS='SCRATCH' is specified, a temporary file is
generated with the name tmp.Fepppppnnn, where ¢ is a special character, ppppp is the process ID
and nnn is the unit number. By default, a temporary file is deleted when the program terminates.
Examples:

The following example opens a file named fort.94 in the current home directory.

OPEN (94)

ug-2-2



Input/Output Operations

The following example opens a temporary file, tmp.Fepppppnnn, in the current working directory
and deletes it when program execution is complete.

OPEN (24, STATUS= 'SCRATCH")
The following example opens the specified UNIX file.

OPEN (10, FILE='/usr/tmp/myfile’)

2.4 Assigning Logical Names
You can customize your CONVEX UNIX working environment to assign FORTRAN logical
names to UNIX files. You can also change the default name assigned to scratch files by changing
the environment variable FORTEMP. For a discussion of the UNIX working environment, please
refer to the CONVEX UNIX Primer or to environ(7).
In the most commonly-used UNIX command interpreter, the C shell (csh), the commands setenv
and unsetenv control the setting and resetting of variables in your working environment. The

format of these commands is

setenv name value
unsetenv name

To examine the environment variables that are currently set, use the ¢sh command printenv.
When a unit is opened, the logical name associated with the unit is compared to the environment
variables. The logical name can be specified in the FILE= clause of an OPEN statement or can
be the default logical name associated with the unit. If an environment variable matches the
logical name, the value assigned to that variable is substituted for the logical name and the
comparison process Is repeated.

Examples:

The following UNIX command causes the compiler to generate scratch filenames in the current
directory of the form MYFILEcpppppnnn instead of tmp.Fepppppnnn:

setenv FORTEMP MYFILE

The following UNIX command causes the compiler to generate scratch filenames in the directory
/tmp of the form TEMP cpppppnnn instead of tmp.Fepppppnnn:

setenv FORTEMP /tmp/TEMP

The following example causes data to be written to the file output.dat in the current working
directory.

setenv FOR021 ~/output.dat
WRITE (21.,%) A, B, C
The following example causes data to be written to the file /acct/smith/data.

setenv FORO55 OUTPUT
setenv QOUTPUT /acct/smith/data

WRITE (55,%) BASELINE

ug-2-3




Input/Output Operations

The following example writes data onto stdout. You must use the backslash (\) as an escape
character.

setenv FOR021 SYS\$OQUTPUT
WRITE (2i,i05 IOLIST

The following example causes data to be written to the file /acct/smith/printfile.
setenv PRINT /acct/smith/printfile

OPEN (21,FILE='PRINT’)
WRITE (21,50) I, J, A

The following example causes data to be written to ./PRINT.
unsetenv PRINT

OPEN (21,FILE='PRINT’)
WRITE (21,50) I, J, A

2.5 Forms of Input/Output

CONVEX FORTRAN supports formatted, list-directed, namelist-directed, and unformatted
input/output (I/O). Formatted I/O statements have explicit format specifiers that control data
translation from internal binary form within a program to external, readable-character form in
the records, or vice versa.

Although similar to formatted statements in function, list-directed and namelist-directed 1/O
statements use data types rather than explicit format specifiers to control data translation from
one form to another.

Unformatted (or binary) I/O statements do not translate the data being transferred and can be
used when output data is later to be used as input. Unformatted I/O saves execution time; it
eliminates the translation process, maintains greater precision in the external data, and conserves
file storage space.

[/O statements transfer all data as records. How much data a record can hold depends on
whether unformatted or formatted I/O is used for data transfer. With unformatted I/O, the I/O
statement determines how much data is to be transferred. With formatted I/O, the I/O
statement and its associated format specifier determine how much data is to be transferred.

Usually, data transferred by an 1/O statement is read from or written to a single record. A

formatted, list-directed, or namelist-directed I/O statement, however, can transfer more than one
record.

ug-2-4



Input/Output Operations

2.6 File Type

There are two types of files: external and internal. An external file is associated with a disk file,
terminal, or some other device. An internal file is associated with internal storage space and
consists of a character variable, array element, array, or substring.

An internal file that contains a single character variable, array element, or substring consists of
one record whose length is the same as that of the character variable, array element, or substring.
An internal file that contains a character array consists of a sequence of records, each of which
consists of a single array element. The order of subscript progression determines the record
sequence in an internal file.

Before data is transferred, an internal file is always positioned at the beginning of the first record.

2.7 Access Modes

The method for retrieving and storing records in a file is the access mode, which is specified by
each I/O statement. CONVEX FORTRAN supports sequential and direct access modes.

2.7.1 Sequential Access

Sequentially accessed records are written to or read from the file starting at the beginning and
continuing through the file, one record after another. You can access a particular record only
after all the records preceding it have been read and can write new records only at the end of the
file.

Example:

READ (10,*) A, B

In this example, the READ statement causes the next two real values to be read into A and B.

2.7.2 Direct Access

This mode allows you to choose the order in which records are read and written. Each READ or
WRITE statement must include the record number.

Examples:

WRITE (10,REC=28) I
WRITE (10,REC=15) J

The first statement writes the value I to record 28, and the second statement writes the value J to
record 15.

ug-2-5




Input/Output Operations

2.8 Logical Records

The definition of a logical record depeﬁds on the combination of the I/O form and the mode
specified by the FORTRAN I/O statement. Each execution of a FORTRAN unformatted 1/O
statement causes a single logical record to be read or written.

Each execution of a FORTRAN formatted I/O statement causes one or more logical records to be
read or written.

2.8.1 Direct-Access External File

A logical record in a direct-access external file is a string of bytes, the length of which you specify
when you open the file. READ and WRITE statements must not attempt to access more data
than fits into one record. Shorter logical records are allowed. Unformatted direct WRITE
statements leave the unfilled part of the record undefined. Formatted direct WRITE statements
pad the unfilled record with blanks.

2.8.2 Sequential-Access External File

A logical record in a sequentially accessed external file may be of any length. The size of the
items in the list of I/O values (the I/O list) determines the logical record length for unformatted
sequential files. For formatted WRITE statements, the format statement interacting with the 1/0
list at execution time determines the logical record length. Formatted sequential access causes
one or more logical records ending with the “newline” (hexadecimal 0A) character to be read or
written.

2.8.3 Namelist-Directed Input/Output

Namelist-directed 1/O statements are similar to list-directed statements in function. For
variable-length files the namelist-directed statement uses data types instead of explicit format
specifiers to control data translation and formatting. For fixed-record-length files, the namelist-
directed statement reads and writes records of a fixed length.

2.8.4 Internal Files

The logical record length for an internal READ or WRITE is the length of the character variable
or array element. Thus, a simple character variable is a single logical record.

2.9 Input/Output Statement Summary

Table 2-3 summarizes the input/output statements available in CONVEX FORTRAN. The
CONVEX FORTRAN Language Reference Manual describes these statements in detail.

ug-2-6



Input/Output Operations

Table 2-3: Input/Output Statements

Type Statement ' Use
Input READ Transfers data from an external file into internal
storage or between internal storage locations.
ACCEPT Sequentially reads data from the implicit input
unit.
DECODE Transfers data between arrays or variables in

internal storage and translates the data from
character to internal form.

Output WRITE Transfers data from internal storage to an
external device or between internal storage
locations.

PRINT Transfers formatted records to the implicit
output device.

TYPE Same as PRINT.

ENCODE Transfers data between arrays or variables in

internal storage and translates the data from
internal to character form.

Auxiliary OPEN Connects an existing external file to the specified
unit, changes the attributes of a connected file,
or creates a new file and connects it to the
specified unit.

CLOSE Disconnects a file from a unit.
REWIND Positions a file at its initial point.
INQUIRE Determines the specified properties of a file or of

a unit on which a file can be opened.
BACKSPACE Positions a file to the preceding record.

ENDFILE Writes an endfile record on the file connected to
the specified unit.

FIND Positions a direct-access file to a particular
record.

The ACCEPT, DECODE, TYPE, ENCODE, and FIND statements are CONVEX extensions to
the FORTRAN-77 standard.

ug-2-7







Chapter 3
Character Data

This chapter describes the use of character data and shows you how to build character strings,
substrings, and constants, and how to declare character data, initialize character variables,
manipulate data for longer arguments, and build character library functions.

3.1 Character Constants

A character constant is a string of characters enclosed in apostrophes. A space is considered as a
valid character. To include an apostrophe as part of a character constant, use two consecutive
apostrophes with no intervening blanks. The following examples show how to assign a character
value to a character variable:

Examples:

STRING = * ab ¢’

ABC = 'BAR’

CANNOT = *CAN'’T’
If the size of the variable is smaller than the number of characters being assigned to the variable,
the string is truncated on the right; if the size of the variable is larger than the number of
characters being assigned, the string is padded on the right with blanks up to the designated
length of the variable.

Examples:

CHARACTER*2 ABC
ABC = 'BAR’ ! The value BA is stored in ABC

CHARACTER*6 ABC
ABC = ’BAR’ | The value BAR™"~ (= = blank) is stored in ABC

You can use the PARAMETER statement to give character constants symbolic names. Ior
example:

CHARACTER* (*) POEM
PARAMETER (POEM = ’*BEOWULF')

You can now use the symbolic name POEM anywhere a character constant is allowed.

CONVEX FORTRAN does not allow the variable on the left hand side of a character assignment
statement to appear on the right hand side.

Example:

CHARACTER*30 A

i

A(1:10)
A(1:10)

A(5:15) ! This statement is invalid
A(20:30) ! This statement is valid

ug-3-1




Character Data

3.2 Declaring Character Variables

The CHARACTER statement is used to declare character variables or arrays as shown in the
following examples.

Examples:
CHARACTER*8 GAME(10), TENNIS ! Declare the array GAME with ten 8-character
! elements and the variable TENNIS, which is

! 8 characters long

CHARACTER*8 TEAM, POLO*2, GAME ! Declare TEAM and GAME as 8-character variables
! and POLO as a 2-character variable

For more information on the CHARACTER statement, please refer to the CONVEX FORTRAN
Language Reference Manual.

3.3 Initializing Character Variables
You can use the DATA statement to initialize a character variable.
Examples:

CHARACTER*8 GAME(10), TENNIS
DATA GAME(1), TENNIS /'HOCKEY’, 'CONNORS'/

CHARACTER*10 TEAM
DATA TEAM /’'COWBOYS'/

You can also initialize character variables in the CHARACTER declaration statement.
Example:
CHARACTER*10 TEAM /'COWBOYS'/

If necessary, the value used to initialize the variable is extended with blanks or truncated in the
same manner as for the assignment statement (see Section 3.1).

3.4 Character Substrings

A character substring is a portion of a character string and is consists of the name of a character
variable or array element followed by delimiters that define the leftmost and rightmost characters
in the substring. Substrings have the form:

v (el:¢2) ! Substring of a character variable

or
a(s,5...) (el:e2) ! Substring of an array element
where
v is a character variable name.
a(s,s...) is a character array element name.



Character Data

el, e? are integer expressions and are called substring expressions.
The value el specifies the leftmost character position of the substring, and the value e2 the
rightmost character position. These values allow you to select certain segments (substrings) from
a character variable or array element. For example, assume the following character string:

POE = °*ONCE UPON A MIDNIGHT DREARY’

The following examples show how to extract various substrings.

Examples:
POE(13:20) ! Extracts the substring MIDNIGHT
POE(:11) ! Extracts the substring ONCE UPON A
POE(13:) ! Extracts the substring MIDNIGHT DREARY

3.5 Concatenating Character Strings

Use double slashes ( // ) to concatenate strings from two or more separate strings. Thus, to
create a variable called BUDGET from the following strings:

‘'FOUR’

"BILLION’

‘DOLLARS’
define each as a character variable with a specified length:

CHARACTER*20 BUDGET

CHARACTER*5 S1/'FOUR'/

CHARACTER#*8 S2/'BILLION'/

CHARACTER*7 S3/°'DOLLARS’/
Next, use the double slashes to create your new string:

BUDGET = S1//S2//S3
This string contains all the values assigned to each of the substrings. You can select a given
substring using a character substring reference. The following character substring references
access those portions of BUDGET containing the concatenated values:

BUDGET (:5)

BUDGET (6:13)
BUDGET (14:20)

3.5.1 Character Input/Output

The CHARACTER data type enables you to read and write character strings of any length.
Example:

CHARACTER*20 HEADER

READ (6,100) HEADER
100 FORMAT (A)

ug-3-3




Character Data

The preceding code causes 20 characters to be read from unit 6 and stored in the variable

HEADER.

3.6 Character Library Functions

There are eight character intrinsic functions and two character utility functions:

Character Intrinsic Functions |Utility Functions

ICHAR RINDEX
CHAR LNBLNK
LEN

INDEX

LGE, LGT, LLE, LLT

3.6.1 ICHAR Function

The ICHAR function returns the decimal value of a specified ASCII character. This function has
the form:

ICHAR (c)

where ¢ is an ASCII character expression. If ¢ is longer than one character, only the value of the
first character is returned; the rest of the expression is ignored.

Example:

CHARACTER*5 STATE/'TEXAS'/
I=ICHAR(STATE(1:1)) !sets I to 84, the ASCII value of 'T°

3.6.2 CHAR Function

The CHAR function returns the ASCII character corresponding to a specified decimal value.
CHAR returns an ASCII value from 0 through 255. This function has the form:

CHAR (?)
where ¢ is an integer expression equivalent to an ASCII code. Unlike FORTRAN, C strings are
usually null terminated. You can get this effect in FORTRAN by concatenating a CHAR(0) at
the end of the string.
Example:

CHARACTER*80 CSTR

PRINT *, CHAR(84) 'prints the letter T
CSTR = 'ABC’ //CHAR(0) !places a null at the end of a string for C

3.6.3 LEN and LNBLNK Functions

The LEN function returns an integer length to show the length of a character expression. This

function is useful for finding the true length of an object declared CHARACTER *(*). The LEN
function has the form:

ug-3-4




Character Data

LEN (¢)
where ¢ is a character expression.
Example:
I=1len('A’//'B’//'C’) lsets I to 3
The LNBLNK function finds the position of the rightmost nonblank character:

I=LNBLNK (‘ABC~~""' ) lsets I to 3

3.6.4 INDEX and RINDEX Functions

The INDEX function searches a specified string for the occurrence of a substring; the RINDEX
function finds the last occurrence of a string.

If the substring exists, INDEX returns an integer value corresponding to the character position at
which the substring begins. If no substring exists, INDEX returns a value of zero. If the
substring appears more than once, INDEX returns the starting position of the leftmost substring.
This function can be used to search for specific characters, words, or sentences located in a given
text. The INDEX function has the form:

INDEX (c1,c?)

where
cl is a character expression that specifies the string to be searched.
c? is a character expression representing the substring for which a match is
desired.
Example:

CHARACTER#*20 STRING /’'NOW IS THE TIME'/

I=INDEX(STRING, 'THE’) ! sets I to 8
J=INDEX (STRING, 'TIME") | sets J to 12
R=INDEX(STRING,'I") | sets R to 5

INTEGER RINDEX,R
R=RINDEX(STRING,'I') ! sets R to 13

3.6.5 Lexical Comparison Functions

Four intrinsic functions (LGE, LGT, LLE, and LLT) are used for comparing the standard lexical
relationships of two character strings and returning a logical value of . TRUE. or .FALSE.

You can get the same results by using the arithmetic relational operators (such as .GE.) instead
of the lexical functions because CONVEX machines store strings in ASCIL

Table 3-1 describes the lexical comparison functions.

ug-3-5




Character Data

ug-3-6

Table 3-1: Lexical Intrinsic Functions

Function | Value is true if...

LGE(c1,c2) | The string cl follows or equals the string ¢2 in the ASCII
collating sequence.

LGT(c1,c2) | The string c1 follows the string ¢2 in the ASCII collating
sequence.

LLE(c1,c2) | The string cl precedes or equals the string ¢2 in the ASCII

LLT(cl,c2)

collating sequence.

The string cl precedes the string ¢2 in the ASCII collating
sequence.




Chapter 4

Optimization

The CONVEX FORTRAN compiler offers several types of optimization that you can use to
produce more efficient code and to enhance the speed of execution of your program. You can
specify the optimization to be performed on your program by means of compiler directives,
command line options, and the OPTIONS statement.

4.1 Types of Optimization
The types of optimization that can be performed are

o Vectorization
Parallelization
Scalar optimization
Inline substitution
Loop replication

Regardless of the optimization level you specify, the compiler always performs machine-dependent
optimization as described later in this chapter.

Higher levels of optimization usually require more compilation time. The use of optimization also
affects the use of the csd debugger. Many of the optimizations described in this chapter are not
performed if your program uses equivalenced variables and arrays.

NOTE

Be sure to read the descriptive text before
attempting to use either inline substitution or
loop replication.

4.2 Vectorization

Vectorization converts scalar operations on data arrays into their equivalent vector operations.
Vector operations use the vector registers in the CONVEX processors to perform simultaneous
operations on multiple elements of a data array. For example, vector operations can add up to
128 elements of an array with a single instruction.

The -O2 option on the fc command line causes the compiler to perform vectorization as well as
global optimization and local optimization on the program being compiled.

4.2.1 Basic Operation

An innermost DO loop is vectorized directly. For example, vector code is generated for the
following loop:

DO 10 I = 1,100

A(I) = B(I)+C(I)
10 CONTINUE

ug-4-1




Optimization

Instead of generating aloop to load elements of B and C, add them, store them into A, and
advance I, vector code is generated to load 100 elements of B into a vector register, load 100
elements of C into another vector register, add them, and store the 100 resulting elements from
the resulting vector register into A.

DO loops containing nested IF statements and nonlinear subscripts (subscripts whose values on
succeeding iterations of a loop do not form arithmetic progressions) can be vectorized. For
example, the following loop is fully vectorized:

DO 10 I =1, 10
A(I) = B(KK(I))+C(I*D)
IF (A(I).LT.0)THEN
IF (A(I).GT.-100) A(I) = 0
ELSE
A(I) = SQRT(A(I))
ENDIF
10 CONTINUE

4.2.2 Strip Mining

The vector registers of the CONVEX processor hold up to 128 elements. When the number of
iterations of a vectorizable loop exceeds (or could exceed) 128 elements, the vectorizer ‘“‘strip
mines’’ the loop before vectorizing it. Strip mining replaces the loop with two loops, the
innermost of which has an iteration count that never exceeds 128. For example, the following
code:

PO 10 I =1,N
A(I) = B(I)+C(I)
10  CONTINUE

becomes
I =1
DO 10a LV = N, 0, -128
DO 10b IV = I, I + MIN(128,LV)-1

10b A(IV) = B(IV) + C(IV)
I =1+ 128
10a CONTINUE

where LV is a variable introduced by the compiler to count the number of elements remaining to
be processed, and the 10b loop on IV represents a vector operation.

If you request parallelization, the compiler may select a strip-mine length other than 128. The
compiler determines the strip-mine length to achieve a balance between parallelization and vector
length for fastest execution. Among the factors examined are the iteration count of the loop and
the amount of code contained in the loop body.

4.2.3 Loop Distribution

Nests of DO loops are vectorized by first distributing the outermost loop, then vectorizing each of
the resulting loops or loop nests. For example, consider the following nest of DO loops:

DO 20 I = 1,N
B(I,1) =0
DO 10 J = 1,M
A(I) = A(D)+B(I,D=*C(I. D

ug-4-2



Optimization

10 CONTINUE
D(I) = E(D)+A(D
20  CONTINUE '

Distribution of the outer loop yields intermediate code equivalent to the following three loops:

DO 202 I = 1,N
B(I,1)=0
202 CONTINUE
DO 20b I = 1,N
DO 10 J = {,M
A(I) = A(D) + B(I,J) * C(I,D
10 CONTINUE
20b CONTINUE
DO 20c I = 1,M
D(I) = E(I) + A(I)
20c  CONTINUE

where 20a, 20b, and 20c represent labels created by the compiler.

4.2.4 Loop Interchange

The 20a and 20c loops and the 10 loop of the preceding example are all innermost loops and can
be vectorized directly. To yield additional performance improvement, however, the vectorizer
performs the loop interchange optimization on the middle nest of loop 20b and loop 10, replacing
it with the following nest:

DO 10 J = 1,M

DO 200 I = 1,N

A(I) = A(D) + B(I,J) * C(I.D)
20b CONTINUE
10 CONTINUE

When the vector code is then generated for the 20b loop, elements of B and C are accessed
contiguously as they are loaded into vector registers. This procedure provides a substantial
performance improvement over the noncontiguous access that results if the interchange is not
performed.

4.2.5 Semantic Differences With Vectorization

When using a vectorized loop, you may get incorrect results if one of its induction variables has
zero-stride. For example:

do 10 i = 1,n
j =13 + zero
b(i) = a(j)
a(j) = c(i)

10 continue

A vectorized loop may also fail if the indexes for a conditionally referenced array fall outside the
bounds of the array. For example:

ug-4-3




Optimization

dimension a(10000), b(10000), c(10)

data a/10%-5, 9990%0/

do 10 1 = 1,10000

if (a(1).1t.0)b(1) = a(i) + c(i)
10 continue

4.2.6 Vectorizer Limitations
The vectorizer has the following limitations:

e Loops containing computed or assigned GOTO statements or more than one exit cannot
be vectorized or partially vectorized.

® Loops containing function or subroutine calls or I/O statements can be partially
vectorized; the calls or I/O statements cannot themselves be vectorized.

o If an outer loop contains a nested loop with an induction variable whose start value or
step value varies with iterations, the outer loop is not processed. An induction variable
is a variable that is incremented or decremented by the same amount on each iteration
of the loop and is usually the DO loop control variable.

e Although loops containing multiple entries cannot be vectorized, the compiler attempts
to vectorize any loops contained within the multiple entry loops.

4.2.7 Recurrence

In addition to the previously noted limitations, a loop may not be vectorized or may be only
partially vectorized if a recurrence (real or apparent) is present. A recurrence is present when an
assignment stores a value that is used during a subsequent iteration to compute the value on the
right side of the same assignment. For example:

DO 10 I = 2,100
A(I) = A(I-1)+1
10 CONTINUE

On the first iteration A(2) = A(1)+1; on the second iteration A(3) = A(2)+1, using the value of
A(2) computed on the first iteration. Since such a computation is inherently serial, it cannot be
vectorized.

More generally, vectorization is inhibited if two array references are so related that neither could
validly be placed first in vectorized code or the compiler cannot determine which to place first.
Such situations are also referred to as recurrences.

For example, the following loop cannot be vectorized because the sign of N is unknown:

DO 10 I = 1,100
AC(I+N) =1
10 A(D) =0

If N were +1, the value of A(2) on termination of the loop would be 0, implying that the
assignment to A(I) would have to follow the assignment to A(I+N). If N were -1, however, the
value of A(2) on termination would be 1, implying that the assignment to A(I+N) would have to
follow the assignment to A(I).

The previous example illustrates the most common reason for the compiler failing to vectorize a
vectorizable loop—the addition of a loop constant quantity of unknown sign to a subscript.

ug-4-4



Optimization

Another frequent cause of apparent recurrences is the use of array references in subscripts. For
example:

DO 10 I = 1,100
AJ(I)) = AQI(I)) + 1
10  CONTINUE

This loop can probably be vectorized but the compiler cannot ignore the possibility that elements
of the J array may be repeated. Therefore, the assignment to A(J(I)) could produce a value to be
used in computation of its right side on a subsequent iteration, and the compiler must assume
that the references to A(J(I)) are in a recurrence.

The NO_RECURRENCE directive can be used to vectorize loops in which vectorization is
otherwise prevented by apparent recurrences.

4.2.8 Reductions

The compiler vectorizes one important special class of recurrences known as reductions. In
general, a reduction has the form

T =z opery

where
T is a scalar variable (or scalar relative to the loop in question).
y is any expression not involving z, and z is not assigned or used elsewhere

in the loop

oper is one of the operators +, -, *, .AND., .OR., . EQV., NEQV., or one of the
intrinsic functions for maximum or minimum.

For example, the following loop computes the sum of the first 100 elements of the array A with a
sum reduction:

SUM = ©
DO 10 I = 1,100
SUM = SUM + A(D)
10 CONTINUE

The vectorizer sometimes inserts vector temporaries to enable a loop with a recurrence to be
partially vectorized. For example, the following loop cannot be vectorized as is:

DO 10 I = 1,N
A(I) = A(I-1) + B(I)*C(D
10 CONTINUE

The vectorizer recognizes, however, that the multiplication B(I)*C(I) can be vectorized. To do so,
it introduces a temporary array, in this case T(I), and splits the loop into two loops:

DO 10a I = 1,N

T(I) = B(I)* C(I)
102 CONTINUE

DO 10b I = 1,N

A(I) = A(I-1)+T(D
10b CONTINUE

ug-4-5




Optimization

The first loop is then vectorized and a sequential loop is generated for the second loop.

4.2.9 Conditional Induction Variables

Conditional induction variables are variables that are incremented by a constant amount within a
loop but not on each iteration of the loop. The compiler can frequently recognize conditional
induction variables and generate vector code for expressions involving them. For example:

k=0

do 10 i=1,10

if (cond(i)) then
k=k+1
a(i)=b(k)
c(k)=d (i)

endif

10 continue

In the preceding example, & is a conditional induction variable. A vector of length less than 10 is
fetched from b, expanded with the merg instruction, and stored into a. A vector of length 10 is
fetched from d, compressed with the ¢prs.t instruction, and stored in c.

This feature is useful in dealing with calculations on sparse vectors. You can create compressed
copies of the vectors to be worked on, perform the necessary computations with the compressed
vectors, then merge the results of the compressed computations with the original result vectors.
If the compressed vectors are much shorter than the original vectors and extensive computations
are to be performed, a substantial performance improvement can be achieved.

4.3 Parallelization

If you specify the -O3 option, the compiler attempts to generate parallelized code for all eligible
loops in the program. This code allows the processor to execute independent, nonsynchronized
iterations of a loop in parallel on separate processors. A loop can be parallelized without
synchronization if there are no dependencies between iterations; that is, if the results computed
by one iteration do not depend on the results of earlier iterations. A loop cannot be parallelized
if it includes

e Loop-carried dependencies
o Exits
e Calls to subroutines

When you specify the -O3 option on the fc command line, the compiler performs parallelization as
well as vectorization, global optimization, and local optimization on the program being compiled.

Parallelization is generally performed on the outer loop of a nest of loops or to the strip-mine
loop generated by vectorization. Consider the following example:

DO 10 J = 1,M

DO 10 I = 1,N

AC(I,D =BT, +CU, D
10 CONTINUE

In the preceding example, the I loop is vectorized but the J loop is parallelized. Up to N
processors can be simultaneously executing vector operations. The compiler may further perform
parallel strip mining on the outer loop to minimize the synchronization overhead required for
scheduling iterations.

ug-4-6



Optimization

Parallel strip mining breaks the parallel loop into two loops, then parallelizes only the outer loop.
Each processor executes a contiguous strip of iterations of the original parallel loop.

When no loop is outside the vector loop, the strip-mine loop is usually parallelized. The following
example:

DO 10 I = 1,N
10 A(I) = B(I) + c(I)

becomes

DO 10 I = 1,N,128
DO 10 II = I,MIN (N,I+128)
10 A(II) = B(ID + C(ID

In the preceding example, a nest of two loops is created, which can be vectorized and parallelized.
If N is a relatively small constant, but larger than 64, the compiler may generate a strip-mine
length smaller than 128 to ensure that enough iterations are in the outer loop to make it worth
parallelizing. If N is a variable, the compiler performs dynamic vector strip mining to select the
best strip-mine length at runtime.

The compiler can also handle most scalar assignments and reductions within parallel loops. For
example, the following loop will be both vectorized and parallelized:

DD 10 I = 1,N
IF (A(I) .GT. 0) GOTO 10
§ = 8§ + B(I)*C(D)
X = B(D
10 CONTINUE

4.4 Global Optimization

Global optimization is machine-independent scalar optimization that is performed over an entire
program unit—in particular, conditional statements and loops. The -Ol1 option on the fc
command line causes the compiler to perform global optimization as well as local optimization on
the program being compiled.

The following sections describe the various types of global optimization that are performed.

4.4.1 Constant Propagation and Folding
Global constant propagation and folding is similar to local constant propagation and folding,

except that the folded constant is propagated across the program unit, provided the constant
appears later in the program and is actually used.

ug-4-7




Optimization

Example:
Original Program Optimized Program
PROGRAM GFOLD1
INTEGER A,B.C INTEGER A,B,C
A=5 A=5
B=15 B=15
READ *,I READ *,I
IF (I) 10,10,15 IF (I) 10,10,15
10 A=6 10 A=8
C=A c=6
GOTO 20 GOTO 20
15 C=A+B 15 C=20
GOTO 25 GOTO 25
20  B=A+C 20 B=12
GOTO 30 GOTO 30
25 B=A+8+C 25 B=33
30  PRINT *,A,B,C 30  PRINT *,A,B,C
END END

4.4.2 Dead-Code Elimination

As a result of constant propagation and folding, the arithmetic or logical expression of an IF
statement may be folded to .TRUE. or .FALSE.. The alternative that is unreachable is
eliminated.

Conditional compilation is a good example of the use of dead-code elimination. Code that is to be

conditionally compiled is enclosed by an IF statement that tests a variable whose value is set to
.TRUE. (compile enclosed code) or statement, or data initialization.

4.4.3 Copy Propagation

Copy propagation occurs when the compiler replaces a variable with another variable to which it
has been equated. For example, if you assign x = y, the compiler may replace later occurrences
of = with y.

In the following example, a substitution is performed if, by doing so, the assignment to z becomes
redundant and can be eliminated.

x=y
t=z-x
becomes

t=z-y

ug-4-8



Optimization

4.4.4 Redundant-Assignment Elimination

Redundant-assignment elimination removes assignment statements (definitions) that are never
used. Label assignments (i.e., ASSIGN statements) and assignments to a dummy parameter,
name of a function, common variable, or local variable of a subprogram are never eliminated.
Also, if the right side of an assignment statement contains a function call, the assignment is not
eliminated because the function could have side effects.

Example:

Original Program

Optimized Program

program grael

X=y*z

program grael

if(a.gt.0) then

if (a.gt.0) then N
R else

* X not used C.
asx*y+ ... end if

else .
s end

* X not used
X=. .

end if

* 2,X not used
end

4.4.5 Redundant-Subexpression Elimination
Global redundant-subexpression elimination removes common subexpressions. Instead of retaining
the value of a common subexpression in a register, the value is assigned to a compiler-generated

temporary; all other occurrences are replaced by use of this temporary.

Example 1:

Original Program Optimized Program
program gcsel program gcsel
read *,cC read *,c
if (k .1t. 1) then t1=b+(c*4) /(- (j*b) +sqrt(c))
a=b+ (c*4) /(- (j*b) +sqrt(c)) if (kx .1t. 1) then
else a=tl
e=e-(b+(c*4) /(- (j*b)+sqrt(c))) else
end if eze-(t1)
f=b+(c*4) /(- (j*b)+sqrt(c)) end if
f=t1
end .
end

ug-4-9




Optimization

Example 2:

Original Program

Optimized Program

program gcse2

read *,c
a=b+(c*4) /(- (j*b) +sqrt(c))
if (kx .lt. 1) then
1=5
else
1=6
end if

f=e-(b+(c*4) /(- (j*b)+sqrt(c)))

end

program gcse2
read *,cC

a=tl1

if (k .1t. 1) then
1=5

else
1=6

end if

f=e-t1

end

t1=b+ (c*4) / (- (j*b) +sqrt(c))

4.4.6 Code Motion

Code motion moves Invariant computations in a loop to a position in front of the loop. An
invariant computation is one that yields the same result independent of the number of times
through the loop. The computation can be a subexpression or assignment. For safety reasons, no
code motion is performed on an invariant expression whose evaluation point does not lie on a

path to all loop exits unless the -uo option is specified.

Example 1:

Original Program

Optimized Program

program cml
common a,b,e
dimension ar(10)

read *,c
do i=1,10

ar(i)=a+b*c
enddo

end

a=b+(c*4) /(- (exb) +sqrt{c))

program cmi
common a,b,e
dimension ar(10)

read *,c
a=b+(c*4) /(- (exb) +sqrt(c))
ti1=a+b*c

do i=1,10
ar(i)=u1

enddo

end




Optimization

Example 2:

Original Program Optimized Program
subroutine cm2 subroutine cm2

common 2a,b,c(10) common a,b,c(10)
do i=1,10 a=b

a=b do i=1,10

c(i)=0 c(i)=0
enddo enddo
end end

4.4.7 Strength Reduction

Strength reduction replaces an operator whose operands are either a loop induction variable or a
loop constant with an operator that executes faster. A loop induction variable is one whose value
is changed within the loop linearly, i.e., incremented by a constant amount. A loop constant is a
constant or variable that is loop invariant, i.e., whose value is not changed within the loop.
Thus, for a loop on # containing j=j+1, j is not an induction variable. A typical operator subject
to strength reduction is multiplication, such as multiplications used to calculate the address of
subscripted variables.

Strength reduction of ¢*r is not performed. The reduced operations are not numerically
equivalent due to the imprecision of floating point for large numbers. For safety reasons, no
strength reduction is performed on an expression whose evaluation point does not lie on a path to
all loop exits.

Example:
Original Program Optimized Program
program sril program srl
i=1 ! i is a loop induction variable i=1
10 x=i*c ! ¢ is loop invariant ti=i*c
AN t2=2%c
i=i+2 10 x=t1
if (i .le. 100) goto 10 c
.. t1=t1+t2
end i=i+2

if(i .le. 100) goto 10

end

If is dead on exit from the loop, i.e., is not used before being assigned, and there are no other
uses of ¢ in the loop except in the incrementation and test, the incrementation can be eliminated
and the test replaced by a test on the induced induction variable—the induced temporary. This
optimization is known as linear-function test replacement. After linear-function test replacement,
the equivalent transformed program is:

program sri
i=1
ti=i*c
t2=2%cC
t3=100%cC

10 x=t1

ug-4-11




Optimization

ti=t1+t2
if (1 .le. t3) goto 10

end

4.5 Local Optimization

Local optimization is machine-independent scalar optimization performed on a sequence of
consecutive statements with one entrance and one exit. Local optimization uses information
within the source code to eliminate unnecessary computations during program execution. The
-O0 option on the fc command line causes the compiler to perform local optimization on the
program being compiled..

The following pages describe the various types of local optimization that can be performed.

4.5.1 Assignment Substitution

Assignment substitution eliminates redundant loads and stores. The compiler substitutes a
preassigned value of a variable for all succeeding uses of the variable. For example:

X=y+c
x
x
x=f (2)
Effectively, the y+c replaces all uses of z up to the next assignment to 2. As a result, the
compiler can eliminate the loads on z if z can be retained in a register. Not only does this

optimization save space and time, but it also opens up opportunities for other optimizations, such
as constant folding and redundant subexpression elimination.

4.5.2 Redundant-Assignment Elimination

This optimization removes redundant assignments to the same variable. An assignment to a
variable can be followed by another assignment to the same variable, wiping out the result of the
first assignment. Thus, there is no need for the program to perform the first assignment and the
compiler eliminates it.

4.5.3 Redundant-Use Elimination

This optimization collapses all uses of a variable between two assigns into one use; it is a
simplistic form of redundant-subexpression elimination. As a result, the compiler can eliminate
loads provided it can retain the variable in a register.

ug-4-12



Optimization

4.5.4 Common Subexpression Elimination

The compiler recognizes common subexpressions and retains the value in a register to avoid
repetitious load operations. For example, the compiler recognizes b+c as a common subexpression
of a+b+c+d and c+d-+b.

4.5.5 Constant Propagation and Folding

Propagating constants in a program means that when a constant is assigned to a variable,
everywhere the variable occurs later the compile.; replaces it with the constant. For example, if
you assign X = 5, wherever z occurs later it is replaced with the constant 5.

In constant folding, when the compiler encounters an operation on constants, such asy = 5 + 7,
it replaces the operation with its value (here, 12). The compiler may assign the new value to ¥, so
that y can now be propagated.

The most frequently-used intrinsics are folded at compile time if applied to constant arguments;
for example, sin(0.0) => 0.0. Constant folding is also applied to ** at compile time.

Example:
Original Program Optimized Program
i=65 i=6
j=0
o= 3+2 j=2
K=K+1i%] k=K+10

Compile-time type conversions operate on mixed-mode expressions. The conversion of constants
and folded constants is performed as part of the constant propagation and folding optimization.
For example, if the program contains the expression x = 1, the compiler converts the 1 to REAL
data type as if x = 1.0 had been written.

If during constant folding an integer overflow occurs, you get a user-error message (“Integer
constant truncation’). If floating-point underflow occurs, the folded result is zero. If floating-
point overflow occurs, a user-error message displays (“Real constant either too large or too
small”’). The user cannot override these compiler actions. It is necessary to modify the source,
replacing the operator or constants with the correct constant.

ug-4-13




Optimization

4.5.6 Algebraic Simplification

The compiler performs algebraic and trigonometric simplifications as shown in the following
table.

The expression... Is converted to...
x+0 X

x*1 x

x*0 0

x-0 x

x .and. -1 b

x .and. 0 0

x .or. -1 -1

x .or. 0 X

-1%x -x

X-X 0

x/-1 -X

—1%%x 1-(x .and. 1)*2
X*¥* .5 sqrt(x)
X*¥*0 1

1%*x 1

x/x 1

0-x -X

0/x 0
sin(x)cos(x) .5*sin (2x)
sin(x)/cos(x) tan (x)

cos (x)/sin(x) 1/tan(x)

The obvious variants of these operations are performed for the commutative operators; for
example, x+0+y is converted to x+y.

4.5.7 Simple Strength Reduction

The compiler attempts to replace time-consuming operations with those that execute faster, for
example, replacing a multiply operation with a shift.

Examples:

In the first example, ¢ is constant so that I/c can be folded. The first optimization is not
performed unless the -wo option is specified.

x/c => (1/c)*x
5%i => ISHFT(i,2) + i

4.6 Inline Substitution

Inline substitution (inlining) replaces a subroutine or function call with the actual body of the
subprogram. During the substitution, actual arguments are mapped to dummy arguments and
local identifiers are assigned unique names.

ug-4-14




Optimization

Inlining can improve the performance of a program because inlined code can be fully optimized
by the compiler. The inlined code can be customized for a particular call based on the actual
arguments passed in the call. Portions of inlined code can become ‘“‘dead” code, the vectorization
of loops can be enhanced, and call overhead is removed.

If a subprogram is to be inlined, a specially-compiled version of the subprogram must reside in an
intermediate language (.fi) file from which it can be accessed by the compiler.

Inlining can be performed to any depth, that is, a subprogram that is inlined can itself call a
subprogram that is to be inlined, and so on. Recursive inlining is not permitted; that is, a
subprogram cannot call itself, either directly or indirectly.

4.6.1 When to Use Inlining

It may not be advantageous to inline every call in your program. Before compilation you should
determine which, if any, subprograms or functions should be inlined. To make this
determination, profile your program using the prof utility and inline those subprograms that are
called most often. Repeat the profiling once more to determine if additional subprograms should
be inlined.

You should not attempt to inline very large subprograms, especially if these programs are called

several times. The speed of compilation could be significantly reduced and the size of the
program could be significantly increased.

4.6.2 How to Use Inlining

In order to perform inlining, you must do the following:
e Make certain that a .fil file exists for each subprogram to be inlined.

e Specify the -2s option on your fe command line.

4.6.3 Creating .fil Files

To create .fil files, specify the -i option on the fc command line. The compiler generates a
separate .fil file for each subprogram in the source file. The -il option cannot be used with the -c,
-¢s, or -S options. Optimization levels are ignored.

The name assigned to a .fil file is the name of the subprogram with the extension .fil. For
example, if a file contains subprograms a, b, and ¢, the files created are a.fil, b.fil, and c.fil. After
compilation, if you do not want a particular subprogram to be inlined, you must delete its

NOTE
Whenever you upgrade to a newer release of the

compiler, you must regenerate all your .fil files
before they can be used for inlining.

ug-4-15




Optimization

If .fil output cannot be produced, the compiler generates an explanatory message. No .fil file is
generated if the subprogram:

e Contains alternate entry points.

Contains a SAVE statement.

Contains a NAMELIST statement.

Is compiled with the -¢s (check subscript) option.
Uses an adjustable array.

Contains a character dummy argument
Function returns character type

Contains DATA statements or type statements with initial values

4.6.4 Using the -7s Option

The -is option on the fc command line instructs the compiler to perform the actual inline
substitution of subprograms for which there exists a . fil file. The format of this option is:

-is directory
where directory is the name of a user or library directory to be searched for the .fil files. If you
want to specify more than one directory, repeat the ¢ -is directory 7 pair as many times as
necessary on the command line. Directories are searched in the order specified.
If you want to inline only specific subprograms, copy their .fil file(s) into a special directory and
specify that directory name with the -is option. Once you have specified the -is option, inlining is
performed on every subprogram call for which a corresponding .fil file exists. It is not possible to

exclude specific calls.

If inlining cannot be performed, the call is retained and the compiler generates an explanatory
message. Inline substitution is not performed on subprograms:

e When a name in a common block conflicts with a name in the main program.
® When data types and sizes in common do not match.

o When the actual arguments to the called routine do not agree in number and type with
the corresponding dummy arguments.

e When the actual argument is an array name whose number of dimensions is not the
same as the number of dimensions of the corresponding dummy argument.

e When the actual argument is an array name whose lower and upper dimension bounds
are not the same as the corresponding lower and upper bounds of the corresponding

dummy argument.

e When the dummy argument is referenced as a subroutine and the actual argument is
not a subroutine name.

e When the dummy argument is referenced as a function and the actual argument is not
a function name.

e When the actual argument is a function whose type does not agree with the type of the
dummy argument.

ug-4-16



Optimization

e When the actual argument is an intrinsic function and the arguments of the dummy
function reference do not agree in number and type with that defined for the intrinsic.

4.6.5 Restrictions on Inlining

Incorrect results may occur if the same subprogram is inlined in different, separately-compiled
program units but relies on the retention, between calls, of a local static variable. Local static
variables are not global between separately-compiled program units but can be made global by
putting them into a common block.

The use of a SAVE statement suppresses inlining. To allow a subprogram that contains SAVE
statements to be inlined, variables that occur in SAVE statements should be put into a common
block and the SAVE statement should be removed.

Inline substitution affects the use of the csd debugger because the user breakpoints at the start of
the inlined code instead of at the start of the subprogram. It is not possible to breakpoint within
the inlined code; breakpoints are specified in terms of line numbers of the source file. In addition,
the symbols of the inlined routine are compiler-generated names and cannot be referenced.

A cross-reference listing is produced in terms of the original source program and is not based on
the results of inline substitution.

4.7 Loop Replication
The CONVEX FORTRAN compiler offers a set of optimizations that replicate the body of a loop.
To request these optimizations, you must specify both the -O2 and the -rl compiler options. The
loop replication optimizations are
e Loop unrolling
e Dynamic loop selection
NOTE
When the compiler performs loop replication, your
program requires more memory due to the additional
code being generated.
The compiler automatically selects loops for which replication is appropriate. Individual loops

may be selected manually by means of the UNROLL and SELECT directives described in the
CONVEX FORTRAN Language Reference Manual.

4.7.1 Loop Unrolling

Loop unrolling reduces loop overhead by replicating the body of the loop. Loop unrolling is
performed on both scalar loops and vector loops. An individual loop can be flagged for unrolling

by means of the UNROLL directive.

Unrolling may either be complete or partial. Complete unrolling unrolls a loop before
vectorization, from the innermost loop outward, to facilitate outer loop vectorization.

ug-4-17




Optimization

Example:

DO I =1,3
C(I) = D(D)

ENDDO

becomes
C(1) = D(1)
C(2) = D(2)
C(3) = D(3)

Partial unrolling is attempted after vectorization on loops that have not been vectorized.
Example:
DO I = 1,N
A(I) = B(D
ENDDO
becomes
DO I = 1,IAND (N,3)
A(I) = B(D)
ENDDO

DO J = I,N,4

A(D) = BWD

A(J+1) = B(J+1)

A(J+2) = B(J+2)

A(J+3) = B(J+3)
ENDDO

4.7.2 Dynamic Loop Selection

Dynamic loop selection causes the compiler to create multiple versions of a loop and to select at
runtime which version to execute. As required, the compiler can generate scalar and vector
versions of a loop.

You can control dynamic loop selection in one of two ways: by means of the -r/ compiler option
and by means of the SELECT directive. The -1/ option operates on all loops in the program unit
according to internal compiler algorithms. The SELECT directive operates on the loop
immediately following the directive according to the parameters supplied in the directive.

The SELECT directive 1s described in the CONVEX FORTRAN Language Reference Manual.

4.8 Machine-Dependent Optimization

Machine-dependent optimization, as described in the sections that follow, enhances the object
code produced by the compiler to take advantage of the machine architecture. Machine-
dependent optimization is always performed regardless of the optimization level.

ug-4-18



Optimization

4.8.1 Instruction Scheduling

Instruction scheduling determines an order of instructions that effectively uses the function units
on the computer. You have no control over this scheduling. The compiler rearranges the
instructions in the program to achieve a high level of concurrent operation. In debug mode,
instruction scheduling is performed only within (not between) statements, so that csd can
correlate instructions with the lines in the original program.

Instruction scheduling on CONVEX processors schedules instructions across numbers of
statements instead of in one statement only, often achieving substantial performance
improvements. For example,

a=b+c

d=e-f
Regular Code Optimized Code
1d.w b,s0O 1d.w b,s0
1d.w c,s1 1d.w c,si
add.s s0,s1 1d.w e,s2
st.w sil,a 1d.w f,s3
1d.w e,s0O add.s s0,st
1d.w f,s1 sub.s s3,s2
sub.s s1,s0 St.w si,a
st.w s0,d sSt.wW s2,d

In the left example, the subtraction cannot execute until the addition is completed. In the right
example, these two operations are nearly concurrent.

4.8.2 Span-Dependent Instructions

The compiler attempts to generate a 2-byte branch or a 4-byte jump instruction for conditional
and unconditional transfers of control within a program. These short form instructions, which
conserve memory and improve execution speed, can be generated when the span (that is, the
distance from the branch or jump instruction to the target location) is within the limits defined
for these instructions.

4.8.3 Branch Optimization

Many compilers generate branch instructions that branch to the next sequential instruction. Such
branches are generated internally by the CONVEX FORTRAN compiler but are removed by
“branch optimization” before the object code 1s produced.

4.8.4 Register Allocation

Register allocation is performed automatically. The register allocation technique used by the
CONVEX compiler takes advantage of the unique architecture of CONVEX supercomputers.
Most machines try to minimize the number of registers allocated for a given expression; the
CONVEX compiler attempts to maximize the number in order to achieve more parallelism.

ug-4-19




Optimization

You only need to be aware of this optimization when you are invoking an assembly-language
routine. The compiler assumes on any call that all registers are destroyed; as a result, it saves
and restores any that are active. You need not be concerned about what is in the various
registers when coding an assembly-language routine.

4.8.5 Hoisting Scalar and Array References
The compiler “hoists” scalar and array references out of innermost loops if the value referred to
does not change during the execution of the loop. Array references may be hoisted out of

vectorized loops if:

e The array is indexed only by constants, variables that do not change within the
vectorized loop, and the iteration variable of the vectorized loop.

e There are no intrinsic calls within the loop.

4.8.6 Paired Vector References

Under certain circumstances, a vector register can be treated as a set of accumulator registers,
making it possible to move loads and stores of that vector register outside of a vectorized loop.

The simplest situation under which this can occur is a matrix multiply. The innermost loop of
such an operation contains code similar to the following:

C(I,K) = C(I,K) + A(I,J) * B(J,K)

If the DO I or DO K loops are vectorized, the C(IK) references form a matching pair. The
matching pair perform a reduction in parallel in each of the cells of the vector register.

Array references may be matched in vectorized loops if:

o There is only one use and one assign to the array within the vectorized loop.
e The array use and array assign have identical subscripts.

e The array use can be holisted, either ‘“‘as is’’ or after the interchange of two of the scalar
loops.

4.8.7 Strength Reduction and the Code Generator

The code generator performs certain strength-reduction operations on instruction-level operations.
For example, instead of performing integer multiplies by a power of 2, the code generator
transforms them to shifts.

4.8.8 Tree-Height Reduction

Tree-height reduction is best explained by example; consider the following expression:
a+b+c+d+e+f+g+h

Two methods of evaluating this expression are

ug-4-20



Optimization

Method 1 Method 2
(a+(b+(c+(d+(e+(£+(g+h)))II)) (((a+b) +(c+d) )+ ((e+f) +(g+h)))

Method 1 requires g+h to be evaluated first. The result of that calculation is then used to
compute f+(g+h) and so on. None of the additions can proceed simultaneously, because each
must wait for the result of the addition to its right.

Method 2 allows four additions to execute in parallel. That is, (a+b), (c+d), (e+{), and (g+h) can
be computed simultaneously, because none of these additions requires the results from any other
addition. Furthermore, when the results from these additions become available, the additions
(a-+b)+(c+d) and (e+f)+(g+h) can also execute in parallel.

In general, the time required to evaluate an expression is about proportional to its depth, i.e., the
deepest nesting level of parentheses in the expression. This is 6 for the first method, but only 3
for the second.

When the compiler can choose the order in which to evaluate expressions, it chooses the order
that yields the least depth and therefore the highest degree of parallelism. {Internally, the
compiler represents expressions as trees, the height of which corresponds to the depth of the
expression, and hence the name of the optimization.) This may result in a different numerical
result for floating-point operators due to rounding off in the least-significant bits. The compiler
cannot, however, override an order of evaluation made explicit by the use of parentheses. For
example, if you write a+(b+(c+(d+(e+(f+(g+h)))})), the compiler generates code to evaluate first
g+h, then f+(g+h), and so forth. To get faster code, omit the parentheses.

ug-4-21







Chapter 5
Calling Conventions

Subprogram calls in CONVEX FORTRAN use the same calling convention as that used by other
CONVEX language processors. This CONVEX standard permits routines written in CONVEX
assembly language, C, or Ada to be called from a FORTRAN program and vice versa.

5.1 FORTRAN Subprogram Calling Convention

The basis of the calling standard is the passing of actual arguments or parameters. The standard
supports two argument-passing mechanisms: call by value and call by reference. Although
FORTRAN arguments are passed by reference, CONVEX FORTRAN provides built-in functions
(% VAL and %REF) to support both mechanisms. A routine call involves passing a pointer to the
list of arguments, called the “argument packet”.

5.1.1 FORTRAN Argument Packets

An argument packet is a sequence of word (4-byte) entries. Only precompiled argument lists are
allocated space in memory statically. When possible, the compiler creates argument list entries at
compile time. The compiler cannot precompile an argument list if any argument is a dummy
argument or array element with nonconstant subscripts. Figure 5-1 shows the layout of an
argument packet in memory.

Figure 5-1: Argument Packet: Example 1

low # of arguments -4(ap) (ap = argument pointer)
first word 0(ap)
second word 4(ap)

high nth word 4{n-1)(ap)

The first word is normally the address of the first argument; the second word is the address of the
second argument; and so on. For character arguments, an extra by-value word is added to the
end of the list containing the length of the character entity. There is one extra word for each
character argument, occurring in the same order as the addresses of the character arguments.

For functions that return character and complex values, an extra argument is added before the
first user-specified argument to receive the function result. For a character-valued function, this
extra argument consists of two words: the first is the address of the character string to receive the
value of the function; the second is its maximum length.

ug-5-1




Calling Conventions

Figure 5-2 shows an example of both the FORTRAN code and the resulting layout of the
argument packet in memory.

Figure 5-2: Argument Packet: Example 2

character*(*) function f (x, chi, a, b, i, ch2, j)
character*x10 chi

character*5 ch2

real a

real*8 b

complex x

integer*4 j

integer*2 i

end
low # of arguments (11) -4(ap) (ap is the argument pointer)
Address of result 0(ap)
Max. length of result 4(ap)
Address of x 8(ap)
Address of chl 12(ap)
| Address of a 16(ap)
Address of b 20(ap)
Address of 1 24(ap)
Address of ch2 28(ap)
Address of j 32(ap)
Length of chl 36(ap)
high Length of ch2 40(ap)

5.1.2 Argument-Passing Mechanisms
The CONVEX calling standard supports two methods of passing arguments to subprograms:

® Passing arguments by immediate value, where the argument-packet entry is the value.
e Passing arguments by reference, where the argument-packet entry is the address of the
value.

ug-5-2



Calling Conventions

Use the second of these mechanisms to pass all numeric arguments. For character arguments,
two words are actually passed—the string itself (by reference) and its length (by value).

Table 5-1 illustrates the different numeric actual arguments and the subprogram calling built-in
functions that pass these arguments. Numeric actual arguments can be logical, integer, or real.
The size of the argument is *4 for *1, *2, and *4 arguments; *8 arguments cannot be passed.
Each of these assignments is right justified. Complex is not allowed. The lengths are appended
to the argument packet in the order of the character arguments.

Table 5-1: Built-in Functions and Argument Types

Argument Type J%VAL %REF
Numeric Value Address
Character Not allowed Address
Array Not allowed Address of first element
Subprogram Not allowed Address of entry point

5.1.3 Argument Packet Built-in Functions

It is not always possible to pass arguments to routines not written in FORTRAN using the
default FORTRAN calling convention. In this instance, CONVEX FORTRAN provides the
built-in functions %VAL and %REF. These functions are not used to call a subprogram written
in FORTRAN and can only appear in actual argument lists.

5.1.3.1 %GVAL

This built-in function ensures that the argument packet entry uses the immediate value
mechanism. It i1s represented as:

6V AL(arg)

The argument packet entry is the value of the actual argument, arg. See Table 5-1 for details
concerning values and the size of the argument.

Example:
CALL SUB(3,%VAL(10))

In this example, the first constant is passed by reference, the second by immediate value.

5.1.3.2 %REF

This built-in function ensures that the argument packet entry uses the reference mechanism. It is
represented as:

Z%REF(arg)
The argument packet entry is the address of the actual argument, arg. The argument value can

be a numeric or character expression, array, or procedure name. See Table 5-1 for details
concerning values and the size of the argument.

ug-5-3




Calling Conventions

5.1.3.3 Function Return Values

The method of returning a value of a function depends on the data type of the value as
summarized in Table 5-2.

Table 5-2: Function Return Values

Data Type Return Method
LOGICAL Scalar register SO
INTEGER
REAL
COMPLEX If the function returns a complex, the first word of

the argument list is the address of the result.

CHARACTER | If the function returns a character, the first word of
the argument list is the address of the result and the
second word is the length of the result.

5.1.3.4 2%LOC

This function is used to assign the address of a storage element as an INTEGER*4 value, which
can be used in an arithmetic expression.

Example:
I = %LOC(J)-4

In the example, I now holds in storage the address of the word preceding J. %LOC is useful when
. p (=] . p o

passing argument data structures containing the address of storage elements to non-FORTRAN

routines.

5.2 Non-FORTRAN-to-FORTRAN Calling Sequence

If you are writing in assembly language or C and want to call a FORTRAN routine, follow the
procedures outlined below. Figure 5-3 is an example of code you might write in assembler or C to
call a FORTRAN subroutine. See the CONVEX Architecture Handbook for information on the
instruction set and calling procedures. The sequence of steps in the calling procedure is:

Push the arguments onto the runtime stack in reverse order.

Update the argument pointer to point to the top of the runtime stack.

. Push an additional argument, the number of arguments, onto the stack.
Call the subroutine (using the calls instruction).

e QO LD =

Where possible, the arguments are precompiled and the calling sequence is reduced to:

1. Load the address of the argument packet into the argument pointer.
2. Call the subroutine (using the calls instruction).

ug-5-4




Figure 5-3:

Calling Conventions

Calling a FORTRAN Subroutine

call sub

pshea
pshea
pshea
mov
pshea
calls
1d.w
add.w

sub_ (&a,&b,&c);

(a,b,c)

!FORTRAN call with three real arguments

equivalent assembler calling sequence

c
b
a

3
_sub_
12(fp)a
#16,sp

/* equivalent C call %/

!
! push the third argument’s address
! push the second argument’s address
! push the first argument’'s address
Sp,ap ! set up the ap
! push number of words in argument list
! call the subroutine
! restore ap
! restore sp

The arguments are pushed in reverse, because the stack grows toward low memory
addresses. Thus, the last argument pushed ends up at the top of the list.

5.2.1 Procedure Names

The compiler adds a leading and trailing underscore to the name of a common block or a
FORTRAN subprogram to distinguish it from a C procedure or external variable with the same
user-assigned name. FORTRAN library procedure names have embedded underscores to avoid
conflict with user-assigned subroutine names.

5.2.2 Data Representations

Table 5-3 shows the corresponding FORTRAN and C declarations.

logical, and real data occupy the same amount of memory.

FORTRAN C
INTEGER*1 x char x;
INTEGER*2 x short int x;
INTEGER x int x;
INTEGER*8 x long long int x;
LOGICAL*1 x char x;
LOGICAL*2 x short int x;
LOGICAL x long int x;
LOGICAL*8 x long long int x;
REAL x float x;
DOUBLE PRECISION x | double x;

COMPLEX x
DOUBLE COMPLEX x
CHARACTER*6 x

struct {float r, 1;} x;
struct {double dr, di;} x;
char x[6};

In FORTRAN, all integer,

Table 5-3: FORTRAN and C Declarations

ug-5-5




Calling Conventions

5.2.3 Return Values

A function of type INTEGER, LOGICAL, REAL, or DOUBLE PRECISION declared as a C
function returns the corresponding type. A COMPLEX or DOUBLE-COMPLEX function is
equivalent to a C routine with an additional initial argument pointing to where the return value
is to be stored. Thus, :

Complex function... Is equivalent to...

COMPLEX function f{...) void f_(temp,...)
struct {float r, i;} *temp;

A character-valued function is equivalent to a C routine with two extra initial arguments: a data
address and a length. Thus,

Character function... Is equivalent to... Can be invoked in C by..|

CHARACTERX*15 function g{...) | void g_(result,length,...) | char chars[15]
char result] J;
long int length; g_(chars,15L,...);

Subroutines are invoked as if they were integer-valued functions whose value specifies which
alternate return to use. Alternate return arguments (statement labels) are not passed to the
function but are used to do an indexed branch in the calling procedure. If the subroutine has no
entry points with alternate return arguments, the returned value is undefined. The statement

call nret(*1, %2, *3)
is treated as if it were the computed goto

goto (1, 2, 3), nret( )

5.2.4 Argument Packets

All FORTRAN arguments are passed by address. For every argument that is of type
CHARACTER or that is a dummy procedure, an argument giving the length of the value is
passed. (The string lengths are int quantities passed by value.} The order of arguments is:

1. Extra arguments for complex and character functions
2. Address for each datum or function
3. A long int for each character argument

Thus,
The call in... Is equivalent to the call in...
external [ int {( );
character*7 s char s(7];
integer b(3) long int b[3];
call sam(f, b(2), ) sam_(f, &b[1], s, 7L);

The first element of a C array always has subscript 0, while FORTRAN arrays begin at 1 by
default. FORTRAN arrays are stored in column-major order; C arrays are stored in row-major
order.

ug-5-6



5.3 Examples

Calling Conventions

The following examples illustrate how to interface to FORTRAN from other languages and

various argument-passing techniques.
Example 1:

This example shows a simple FORTRAN procedure
language for interfacing to FORTRAN.

FORTRAN Source Code:

subroutine sudb (i,r,d) !
integer i

real r

double precision d
d=1+r

end

in fortran

C Source Code:

sub(i,r,d) int *i;

and how it is written in C and assembly

real*8

float *r;

double *d;

{

*d = *¥1 + *r;

>

Object Code: :

sub: 1d.w @4 (ap) ,s1 ; s0 =1
ld.w @0 (ap),s0 ; st =r
cviw.s s0,s0 , convert i to real
add.s s1,s0 ; add it to r
cvts.d s0,s0 ; convert the result to
st.1 s0,e8(ap) ; store the result in d

Example 2:

This example shows a call involving
the compiler generated the object code:

FORTRAN Source Code:

subroutine subl
character*s a,b

real X,y

call charargs (a,x,y.,b)
end

Object Code:

ds.vw 6 ; 6 arguments
ds.w LU ; address of A
ds.w LU+12 ; address of X
ds.w LU+16 ; address of Y
ds.w LU+5 ; address of B
ds.w 5 ; length of A

two character arguments separated by other arguments and

ug-5-7




Calling Conventions

ds.w 5 ; length of B
ldea LC+4,ap ; load packet pointer
calls _charargs_ ; restore cp

Example 3:
This example illustrates a call to a function that returns a character value:

FORTRAN Source Code:

subroutine sub2
character*10 a,f
a=f£(1.7)

end

Object Code:

ld.w #0x000000a,s0 , #3, 10

pshea LC ; #3, 7LC
psh.w s0 ; #3
pshea  -10(fp) ; #3, 7chi
mov Sp.ap ; #3
pshea 3 ; #3

calls _f_ ; #3, F
add.w #0x0000010,sp . #3, 16
ldea LU, a5 , #3, A
ldea -10(fp).al ; #3, 7chi

1d.1 0x0(al),st
st.1 s1,0x0(ab)
1d.h 0x8(al),st
st.h s1,0x8(ab)

Example 4:
This example illustrates a call to a function that returns a complex value:
FORTRAN Source Code:

subroutine sub3

complex x,f

x = f (10)
end

Object Code:

pshea LC+32 ; address of argument 10
pshea -8(fp) ; address of function result
mov sp.ap ; packet address

pshea 2 ; number of arguments

calls _f;

1d.w 12(fp) ,ap ; restore ap

add.w #12,sp , restore sp

ug-5-8




Calling Conventions

Example 5:

This example shows how subprogram arguments are passed:
FORTRAN Source Code:

subroutine sub4
external f

call useit (f,x)
end

Object Code:

LC: ds.w 2 , 2 arguments
ds.w  _f_ ; address of user external function f
ds.w  LU+40 ; address of X

ldea LC+4,ap
calls _useit_

Example 8:
This example shows how an array argument is passed:
FORTRAN Source Code:

subroutine subb

real a(20)

call usearray (a,x,y)
end

Object Code:

LC:ds.w 3 ; 3 arguments
ds.w LU+44 ; address of A
ds.w LU+124 ; address of X
ds.w LU+128 ; address of Y

ldea LC+4,ap
calls usearray_
ld.w 12(fp),ap

ug-5-9







Chapter 6
System Utilities

The FORTRAN system utility routines provide a runtime interface between CONVEX
FORTRAN programs and the UNIX operating system. The library in which the utility routines
reside (/usr/lib/libU77.qa) also contains useful character and math functions. Any referenced
utility is automatically loaded during compilation.

6.1 How to Call Utility Routines

A utility routine is called in the same manner as a user-written subroutine. Take, for example,
the chdir function listed below and described in full in Section 3F of the CONVEX UNIX
Programmer’s Manual. (The manual page gives the name, synopsis, description, and file location
of each of the utilities.) The synopsis gives the information required for referencing the utility:

integer function chdir (dirname) character*(*) dirname

This synopsis tells you that chdir is a function that returns an integer value, and you must pass it
one parameter (a directory name) in a character variable of arbitrary length. The following
program uses chdir to change to the /tmp directory:

INTEGER*4 FUNCTION CHDIR
CHDIR (*/tmp")
END

The routines described in this chapter that accept INTEGER*4 arguments must always be passed
INTEGER*4 arguments regardless of the -il, -22, or -8 options. Similarly, routines that accept
REAL*4 arguments must be passed REAL*4 arguments regardless of which -r option is set.

6.2 UNIX Utilities

The calling sequences for the routines shown in Table 6-1 are also described in Section 3F of the
CONVEX UNIX Programmer’s Manual under the heading indicated in the Reference column of
the table.

ug-6-1




System Utilities

ug-6-2

Table 6-1: Calling Sequences for CONVEX UNIX Utilities

Name | Reference Description

abort abort terminate with memory image

access access determine accessibility of file

alarm alarm execute a subroutine after a specified time
bessel bessel calculate bessel functions of two kinds for integer orders
chdir chdir change default directory

chmod chmod change mode of file

ctime stime return system time

dffrac flmin return fractional accuracy of double-precision float
dflmax flmin return maximum positive double-precision float
dfimin flmin return minimum positive double-precision float
drand rand return random values

dtime etime return elapsed execution time since last call to dtime
errtrap errtrap enable or disable certain signal traps

etime etime return elapsed execution time

exit exit terminate process with status **

fdate fdate return date and time in ASCII string

firac flmin return fractional accuracy of single-precision float
fgete getc get a character {from a logical unit

flmax filmin return maximum positive single-precision float
fimin flmin return minimum positive single-precision float
flush flush flush output to a logical unit

fork fork create a copy of this process

fputc putc write a character to a FORTRAN logical unit
fseek fseek reposition file on logical unit

fstat stat get file status

ftell fseek reposition file on logical unit

gerror perror get system error message

getarg getarg return command line arguments

getc getc get a character from a logical unit

getcwd getcwd get, current working directory

getenv getenv get value of environment variables

getgid getuid get group ID of caller

getlog getlog get user login name

getpid getpid get process id

getuid getuid get user ID of the caller

gmtime stime return system time

hostnm hostnm return name of current host

iarge getarg return command line arguments

ierrno perror get system error messages

inmax flmin return the maximum positive integer value
ioinit 101nit change default settings of 1/O attributes

irand rand return random values

isatty ttynam find name of terminal port

itime idate return date or time in numerical form

kill kill send a signal to a process

link link make a link to an existing file

Inblnk rindex return index of last nonblank character in a string
loc loc return the address of an object

longjmp | longjmp restore stack environment

Istat stat get file status




System Utilities

Table 6-1 Calling Sequences for CONVEX UNIX Utilities (cont.)

Name Reference Description
ltime stime return system time
perror perror get system error messages
putc putc write a character to a FORTRAN logical unit
gsort gsort perform quick sort
rand rand3.f return random values
rename rename rename a file
rindex index return index of last occurrence of a substring
setjmp setjmp save stack environment
signal signal change the action for a signal
sleep sleep suspend execution for an interval
stat stat get file status
stime stime return system time
system system execute a UNIX command
symlnk link make a symbolic link to an existing file
time time return time in an ASCII string
topen topen provide low-level interface for magnetic tape devices
traceback | traceback | print names of routines in call stack
traper traper trap floating-point underflow and integer overflow
ttynam ttynam find name of a terminal port
unlink unlink remove a directory entry
walt wait wait for a process to terminate

6.3 Using the system Utility

To call UNIX utilities not included in Table 6-1, use the system utility. system executes a UNIX
command and is used as follows:

integer function system (string)
character®(*) string

The system call causes string to be given to the shell (/bin/sh) as input, where it is executed as if
it were a command. Consult the manual page for system in Section 3F of the CONVEX UNIX
Programmer’s Manual.

Example:

i = system (‘mv filel file2’)

6.4 VAX-11 FORTRAN System Utilities

These utilities are provided for VAX compatibility. If your program currently calls a VAX/VMS
system service, you must change it so that it can call one of the UNIX utilities listed in Table 6-1,
or one of the functions listed in the following subsections.

6.4.1 date

The date utility returns the current date as dd-mmm-yy.

SUBROUTINE date(buf)
CHAR™*9 buf

ug-6-3




System Utilities

6.4.2 :idate

The idate utility returns the current month (i), day (j), and year (k).

SUBROUTINE idate(i,j,)
INTEGER*4 1,5,k

6.4.3 errsns

The errsns utility is similar to the UNIX function ierrno and returns information about the last
runtime error.

SUBROUTINE errsns(fnum,rmssts,rmsstv,iunit,condval)
INTEGER*4 fnum, rmssts, rmsstv, iunit, condval

fnum is the most recent FORTRAN runtime error number. The remaining arguments are not
used.

6.4.4 ezt

The exit utility terminates a process and makes the argument status available to the parent
process. It is equivalent to the UNIX utility function of the same name.

SUBROUTINE exit(status)
INTEGER™*4 status

6.4.5 secnds
The secnds utility returns the system time in seconds, less the value of its argument.

FUNCTION secnds(x)
REAL*4 x

6.4.6 time

The time utility returns the current system time in an ASCII string as hh:mm:ss.

SUBROUTINE time(buf)
CHAR*8 buf

6.4.7 ran
The ran utility returns random values and is similar to the UNIX utility rand.

FUNCTION ran(i)
INTEGER*4 i

ug-6-4



System Utilities

6.4.8 mubits

The mubits utility transfers len bits from positions 7 through ¢+len-1 of the source location, m, to
positions j through j+len-1 of the destination location, n. The values of i+len and j+/en must be
less than 32.

SUBROUTINE mvbits(m,i,len,n,j)
INTEGER*4 m,i,len,n,j

ug-6-5







Chapter 7
Debugging Programs

This chapter contains a general overview of the tools and techniques that you can use to debug
FORTRAN programs. These tools include frref, a cross reference generator pmd, a post-mortem
dump analyzer csd, a source-level debugger adb, an assembly-level debugger.

7.1 General Considerations
Before using any of the debugging tools, consider the following strategies:
e [f runtime errors involve segmentation violations, reserved operands, or inner ring
references, try checking that array references do not exceed their array bounds. Try

recompiling the program with the -cs option. The -al option may also be helpful.

e If you are compiling at the -O3 or -O2 optimization levels, try recompiling at a lower
level of optimization.

e Check that the problem is not being caused by the use of floating-point numbers. Some

of the more common problems are truncation error, round-off error, and 1ill
conditioning.

7.2 Cross-Reference Generator
The cross-reference generator (fzref) produces identifier cross-reference tables for FORTRAN
source programs. Arguments whose names end with .f are assumed to be FORTRAN source
programs. The command to invoke fzref is:
fxref [options] filename

The options are:

-iw n Specifies the column width (n) for identifiers. The width can
range from 8 to 32; the default value is 16.

-pw n Specifies the logical page width used by the output formatter; the
default value is 132.

-sl Produces a source listing, with line numbers, preceding the
cross-reference table.

-xrl Puts all objects (such as variables and arrays) into one table,
rather than printing a separate table for each class of objects.

-72 Truncate the source at column 72.
The filename specifies the file for which a cross-reference table is to be produced. Names

longer than 32 characters are truncated. If two names differ only after the first 32
characters, they are treated as the same identifier.

ug-7-1




Debugging Programs

The cross-reference generator produces a 5-column table. The contents of the table are as
follows:

Column 1 Name of the identifier.

Column 2 Name of the program, function, subroutine, or block data
program in which the identifier was found.

Column 3 Data type of the identifier
R - real

I - integer

L - logical

C - character

Z - complex
blank - no type

Followed by an asterisk (*), then the width in bytes.

Column 4 The object class (applicable if the -2r1 option is used)

ARY - array

BLK - block data
COM - common block
DO - DO loop head
ENT - entry point
EXT - external

FUN - function

ITR - intrinsic

LAB - statement label
NML - namelist

PAR - parameter
PRG - program

STF - statement function
SUB - subroutine
VAR - variable

Column 5 Line number and usage class of each reference

d - defined (DIMENSION, EQUIVALENCE, COMMON)
1 - initialized (DATA, PARAMETER)

a - assigned

p - passed as argument to function or subroutine

blank - referenced

For further information, please refer to the CONVEX UNIX Programmer’s Manual, Section
frref(1F).

7.3 Post-Mortem Dump (pmd)

The post-mortem dump (pmd) generates information to assist your debugging efforts if the
program running under it aborts and dumps memory. To run a program under pmd, you
must first compile the program using the -db option on the compiler command line.

ug-7-2




Debugging Programs

The command to invoke pmd is:
pmd [options] program [arguments]
The options are:

-a Dereference the address registers and print their contents in
hexadecimal, decimal, and floating-point format.

-c Display data within the specified common block only.
-d nom... Print up to n elements of arrays up to the given subscripts for

each dimension. Up to seven dimensions can be specified; the
default is 100:10:1.

-1 Display a post-mortem dump in long format.

-s Generate a post-mortem dump in short format.

-S Exclude the approximate source code location.

-t time Limit the execution time to time seconds.

-v Include the contents of the vector registers in the dump.

The parameter program is the name of an executable module, compiled with the -db option,
containing the program to be run and arguments are the arguments to be used by the
program during execution.

Depending on the option specified, pmd produces either a short-form dump or a long-form
dump containing the information shown below. If no option is specified, the short-form
dump is the default.

Short Form The signal that caused the program to abort.
A runtime stack backtrace.

The approximate source line location at which the exception
occurred.

Long Form The signal that caused the program to abort.
A runtime stack backtrace.

The approximate source line location at which the exception
occurred.

The contents of the machine registers.

A dump of active local variables in each routine on the
runtime stack.

A dump of global, or common, variables.

The region of disassembled object code where the exception
took place.

A summary of resources used by the program (execution time,
elapsed time, percent of time in CPU, size of shared memory
and unshared memory, page faults, and swaps).

For further information, please refer to the CONVEX Consultant User’s Guide

ug-7-3




Debugging Programs

7.4 CONVEX Symbolic Debugger (csd)

The CONVEX symbolic debugger (csd) provides statement-level control of program
execution and access to program variables through symbolic names. To run a program
under ¢sd, you must first compile the program with the -db option on the compiler command
line.

The ¢sd program provides the ability to

® Debug the program at the statement level rather than at the machine level.

o Examine core dumps to find tne exact line at which the program failed.

L]

Debug multiple source program modules.

Access program variables by name rather than by absolute address.
e Debug optimized cods.
The command to invoke esd is

csd [-r] [-I dir] [...] [objfile] [corefile]

where

-r Instructs csd to execute objfile immediately (without waiting for
¢sd commands).

-1 dor Directs ¢sd to add the specified directory to the list of directories
searched when ¢sd looks for a source file.

objfile Is an executable file produced by the compiler with the -db
option.

corefile Is the pathname for a file containing a core dump generated as

the result of an abnormal program termination. The corefile is
usually named core.

The corefile contains an image of the state of the program at its termination. Once you
access the corefile. using ¢sd, you can use it to determine which routines were active, their
arguments, and the current value of all the active program variables. After csd loads the
core image, you can determine the final program state by examining stack traces and
variable contents.

Once you have invoked c¢sd, use the run command to start executing the program to be
debugged.

The run command has the following format:

run [args| [ < filename] [ > filename]
The run command arguments drive the program to be debugged. These arguments are the
same arguments used when the program is run as a shell command. You can redirect
standard input and output to the program using the last two arguments shown above.

Entering <filename reads data from the filename specified, while entering > filename writes
data to the file specified. There are no blanks between the symbols << and > and filename.

ug-7-4



Debugging Programs

If you invoke the run command more than once, the variables of the program are
reinitialized with each invocation before execution begins.

Table 7-1 lists some of the more commonly-used csd commands. For the syntax of these

commands and for a complete description of all the e¢sd commands, please refer to the
CONVEX Consultant User’s Guide or to the ¢sd(1) man page.

Table 7-1: Commonly Used ¢sd Commands

Command Use

cont Continue execution.

down Move routine environment down the call stack.
dump Print active variables and a stacktrace.

file Print or change source file environment.

func Print or change routine environment.

help Display a list of ¢sd commands.

list List source lines in current source file.

print Print variables, expression values, etc.

quit Exit ¢sd and return to shell.

return s Stop execution when routine s is on top of the stack.
status Display current trace and stop commands.
step n Execute n source lines.

stop Stop execution at specified point.

trace Print trace information while program is executing.
up Move routine environment up the stack.

use Set list of directories to search.

whatis s Print declaration of s.

where Print active routines on the call stack.
whereis s Print all environments where s exists.

which s Print full environment for s.

7.5 Assembly-Language Debugger

The assembly-language debugger {adb) is an object-code debugger that requires no

recompilation or special compiler options.

The adb debugger allows you to examine core

dumps from failed programs and to perform interactive debugging of programs at the
assembly-language level.

Since the adb debugger runs programs under its control, it is always aware of the state of the
program and the values of all variables. Using adb, you can

Display the assembly-language instructions of the program

Stop program execution at any point

Examine the values of program variables

Modify the value of any program variable

Execute a program one line at a time

Display the values of machine registers

Modify the values of machine registers

ug-7-5




Debugging Programs

The adb debugger can be used to debug programs at all optimization levels, including vector
code and programs running on multiple processors. For a detailed description of the adb
debugger and complete instructions on its use, please refer to the CONVEX adb (Assembly-
Language Debugger) User’s Guide.

ug-7-6



Chapter 8

Runtime Errors and Exceptions

This chapter discusses runtime error processing and describes how the runtime library processes
errors, what the defaults are, and how to override the defaults.

The runtime system contains software modules required to support features of FORTRAN that
are not handled by the compiler itself. The modules that make up the runtime system are
packaged in precompiled files called libraries, which are accessible by the CONVEX loader, [d.

During runtime, error or exception conditions may occur during I/O operations, from system-
detected errors, invalid input data, arithmetic errors, or argument errors in calls to the
mathematical library. The runtime library provides default processing for errors, sends the
appropriate messages, and takes steps to recover from errors, if possible. To override default
actions, use the following:

e ERR (error) and END (end-of-file) specifiers in I/O statements to transfer control to
error-handling code within the program.

e TOSTAT (I/O status) specifier in I/O statements to identify FORTRAN-specific errors
based on the values of IOSTAT.

o CONVEX signal-handling facility to modify error processing to your needs.

8.1 I/O Error Proéessing

When an I/O error occurs during program execution, the runtime default action is to print an

error message and terminate the program with a core dump. Error numbers lower than 100 are
generated by UNIX.

8.1.1 ERR and END Specifiers

To override program termination upon detection of an I/O error, use the ERR or END specifier
in I/O statements to transfer control to a specified point in the program. Execution continues at
the specified statement and no error message prints. For example, in a program containing the
WRITE statement:

WRITE (8,50,ERR=400)

if an error occurs during its execution, the runtime library transfers control to the statement at
label 400. You can also use the END specifier to treat an end-of-file condition that otherwise
might be treated as an error. For example:

READ (12,70,END=550)

ERR can also be specified as a keyword in an OPEN, CLOSE, or INQUIRE statement, as in the

following example:

OPEN (UNIT=10, FILE='FILNAM', STATUS='OLD’, ERR=999)

ug-8-1




Runtime Errors and Exceptions

Detection of an error while this statement is executing transfers control to statement 999.

8.1.2 IOSTAT Specifier

To continue program execution after an I/O error and return data on I/O operations, use the
IOSTAT specifier. This specifier can augment or replace the END and ERR transfers. Executing
an [/O statement containing the IOSTAT specifier suppresses printing of an error message and
defines the specified integer variable or integer array element as one of the following:

® A value of -1 when an end-of-file condition occurs
e A value of 0 when no error condition or end-of-file condition occurs

® A positive integer value when an error condition occurs. This value is one of the system

errors or FORTRAN [/O errors.

After the I/O statement executes and an IOSTAT is assigned a value, control transfers to the
END or ERR statement label, if one exists. When no control transfer occurs, normal execution
continues.

Example:
READ (5,*,IOSTAT=IERR,ERR=10,END=20)I,J,K
&é;ocess input record)
10 ééiNT *,'ERROR DURING READ:’, IERR
STOP

20 PRINT *,’END OF FILE’
STOP

8.2 Signals and Exceptions

This section describes the signals and exceptions that can occur at runtime.

8.2.1 Signals

A signal is generated by an abnormal event, a user at a terminal (quit, interrupt, stop), a program
error (e.g., bus error), the request of another program (k:ll), or when a process is stopped to access
its control terminal while in background mode. Signals can also be generated when a process
resumes after being stopped, when the status of child process changes, or when input is ready at
the control terminal.

Table 8-1 lists the name, number, and meaning of each of the runtime signals. Each signal has a

default action associated with it. Except for the SIGKILL and SIGSTOP signals, the signal
utility allows this default action to be overridden.

ug-8-2



Runtime Errors and Exceptions

Table 8-1: Signal Names and Numbers

Signal Name No. Meaning
SIGHUP 1 Hangup

SIGINT 2 Interrupt

SIGQUIT 3* Quit

SIGILL 4* Illegal instruction

SIGTRAP 5* Trace trap

SIGIOT 6* IOT instruction

SIGEMT 7* EMT instruction

SIGFPE 8* Floating-point exception

SIGKILL 9 Kill (cannot be caught or ignored)
SIGBUS 10* Bus error

SIGSEGV 11* Segmentation violation

SIGSYS 12* Bad argument to system call
SIGPIPE 13 Write on a pipe with no one to read it
SIGALRM 14 Alarm clock

SIGTERM 15 Software termination signal
SIGURG 16%* Urgent condition present on socket
SIGSTOP Stop (cannot be caught or ignored)
SIGTSTP 18*** Stop signal generated from keyboard
SIGCONT 19** Continue after stop

SIGCHLD 20%* Child status has changed

SIGTTIN ) Gl Background read attempted from control terminal
SIGTTOU Qo%** Background write attempted to control terminal
SIGIO 23%* I/O is possible on a descriptor
SIGXCPU 24 CPU time limit exceeded

SIGXFSZ 25 File size limit exceeded
SIGVTALRM | 26 Virtual time alarm

SIGPROF 27 Profiling timer alarm

SIGWINCH 28 Window changed

SIGLOST 29 Resource lost

SIGUSR1 30 User-defined signal 1

SIGUSR2 31 User-defined signal 2

In the table, * indicates that the default action for the signal is to terminate the program and
produce a core dump; ** indicates that the default action is to ignore the signal; *** indicates
that the default action is to stop the program. The default action for all other signals is to
terminate the program.

8.2.2 Exceptions

An exception is an event that disrupts the running of a program. Exceptions occur because of
problems in the currently executing program (e.g., arithmetic inconsistencies or address
translation faults), or as a result of some asynchronous event (e.g., an interrupt or hardware
failure). Exceptions result in the transfer of control to a predetermined address known as an
exception or signal handler. Table 8-2 shows the mapping of exceptions to signals and codes.

ug-8-3




Runtime Errors and Exceptions

Table 8-2: Mapping Exceptions to Signals and Codes

Hardware Signal Code
Arithmetic Traps SIGFPE(8)
Integer overflow SIGFPE FPE_INTOVF_TRAP (1)
Integer division by zero SIGFPE FPE_INTDIV_TRAP (2)
Floating overflow trap SIGFPE FPE_FLTOVF_TRAP (3)
Floating division by zero SIGFPE FPE_FLTDIV_TRAP (4)
Floating underflow trap SIGFPE FPE_FLTUND_TRAP (5)
Reserved Operand trap SIGFPE FPE_RESOP_TRAP (6)
Segmentation Violations | SIGSEGV (11)
Read access violation SIGSEGV SEG_READ_TRAP (1)
Write access violation SIGSEGV SEG_WRITE_TRAP (2)
Execute access violation SIGSEGV SEG_EXEC_TRAP (3)
Invalid segment SIGSEGV SEG_INVSDR_TRAP (4)
Invalid page table page SIGSEGV SEG_INVPTP_TRAP (5
Invalid memory reference SIGSEGV SEG_INVDATA_TRAP (6)
I/O access violation SIGSEGV SEG_IOACC_TRAP (7)
Ring Violations SIGBUS (10)
Inward address reference SIGBUS BUS_INWADDR_TRAP (1)
Outward ring call SIGBUS BUS_OUTCALL_TRAP (2)
Inward ring return SIGBUS BUS_INWRTN_TRAP (3)
Invalid syscall gate SIGBUS BUS_INVGATE_TRAP (4)
Invalid return frame length | SIGBUS BUS_INVFRL_TRAP (5)
Illegal Instruction SIGILL (4)
Error exit instruction SIGILL ILL_LERRXIT_TRAP (1)
Privileged instruction SIGILL | ILL_LPRIVIN_TRAP (2)
Undefined op code SIGILL ILL_UNDFOP_TRAP (4)
Trace pending SIGTRAP(5)
Bpt instruction SIGTRAP (5)

8.3 Error-Processing Utilities
This section describes the general error-processing utilities you can use to attach your own signal
handler, enable or disable certain arithmetic traps, and retrieve error numbers. The error-

processing utilities are located in /usr/lib/libU77.a and are described in the CONVEX UNIX
Programmer’s Manual, Section 3F.

8.3.1 setymp and longymp Utilities

The setymp and longymp utilities save and restore the stack environment and the signal mask
(sigmask), respectively, and can be used in processing errors and interrupts encountered in a low-
level subroutine. These utilities provide a mechanism for performing statement-level recovery
from errors.

Example

integer*4 env(10), val
i = setjmp(env)

call longjmp(env,val)

ug-8-4



Runtime Errors and Exceptions

The first time that setymp is called, it returns a value of 0; otherwise, the value returned is the
second argument to longymp..

The _setymp and_longjmp utilities save and restore the stack and registers but not the signal mask
(sigmask). You cannot use longymp to restore the environment saved by _setymp and you cannot
use _longymp to restore the environment saved by setymp.

8.3.2 erritrap Utility

The errtrap utility allows you to enable or disable signal trapping. The following signals can be
trapped:

integer overflow
floating-point underflow
intrinsic errors

integer divide by zero
floating-point divide by zero
floating-point overflow
reserved operand fault

The errtrap utility enables or disables trapping for the designated errors by setting or resetting
the appropriate bits in the process status word. If trapping is enabled for a particular error and
that error occurs, signal SIGFPE is sent to the process. Upon completion of errtrap, the previous
value of the flags is restored.

The argument to errtrap is produced by summing the appropriate flags from the following table:

Flag Meaning Default
01X Trap integer overflow off
02X Trap floating underflow off
04X Trap intrinsic errors off
'08"’X Trap integer divide by zero on
10X Trap floating point (divide by zero,
overflow, reserved operand fault) on

By default (if you do not use errtrap), the following error traps are enabled during execution:
integer divide by zero, floating-point overflow, floating-point divide by zero, and reserved operand
fault. By default, the following traps are disabled during execution: floating-point underflow,
integer overflow, and intrinsic errors.

The errtrap utility supersedes traper, which is maintained for upward compatibility purposes.

Example

The following code enables integer overflow and floating-point underflow and disables intrinsic
errors, integer divide by zero, and floating-point trap:

i = errtrap('3'X)

8.3.3 signal Utility

The signal utility allows you to designate a signal-handling routine. The signal utility has three
parameters: the signal number, the condition handler, and a flag.

ug-8-5




Runtime Errors and Exceptions

Example 1:
sigf = signal(18, sigdie,-1)

This statement establishes the condition handler, si¢gdie, for stop signals generated from the
keyboard. The old handler is returned in sigf.

Example 2:

sigf = signal(18,0,0)
This statement restores the default action for stop signals generated from the keyboard.
Example 3:

sigf = signal(18,0,1)

This statement causes stop signals generated from the keyboard to be ignored.

8.3.4 traceback Utility

The traceback utility prints out the names of the routines currently in the call stack. Control
then returns to the calling program.

Example 1:
This example shows traceback as the result of an exception.

*** Floating Point Exception: Floating divide by zero: at 800010d8.

signal(8,4,8002bf84,80001262) from ffffd084 [ap 8002b174]
curbrk+6d0(80018000,80018004) from 800010d8 [ap = 800010fc]
_MAIN__() from 80001230 [ap = ffffce54]
_main(l,ffffce98,ffffceald) from 80001074 [ap = ffffce8c]

Example 2:
This example shows traceback called by the user.

_sub2_(80001148,80001154) from 800010de [ap = ffffcdeO]
_subl_(80001148) from 800010ba [ap = 80001150]
_MAIN__() from 800012f4 [ap = ffffcelc]
_main(1,ffffce60,ffffce68) from 80001074 [ap = ffffceb54]

8.3.5 traper Utility

The traper utility enables traps for floating-point underflow and integer overflow by setting status
bits in the process status word. (Also see the description of the errtrap utility.)

If you enable trapping for integer overflow and integer overflow condition occurs, signal SIGFPE
is sent. Likewise, if you enable trapping for floating-point overflow and floating-point overflow
occurs, signal SIGFPE is sent. By default, an intrinsic error does not terminate execution of the
program. If the intrinsic error trap is set, however, the program terminates on the first intrinsic
error encountered. The intrinsic error trap value applies to the entire program.

ug-8-6



Runtime Errors and Exceptions

NOTE
Integer overflow is not detected for multiplies and
divides of the constants 2, 4, and 8 at optimization levels
-00, -01, and -02.

The argument to traper is produced by summing the appropriate flags from the following table:

Flag Meaning

X Trap integer overflow
farx Trap floating underflow
47X Trap intrinsic errors

If you enable trapping of math errors, when a math error occurs an error message is printed to
stderr and the program terminates with a core dump. Using the default setting (trap disabled)
causes an error message to print and the program to continue with an appropriate default value.
For example, using the default setting as shown in the following example produces an error
message but no core dump.

x = -1
y = sqru(x)
print *, 'x: ', 'y: ', ¥y

The following message is produced:

mth$r_sqrt: {300) square root undefined for negative values
X: -1.0000000 y: 1.000000

Enabling the trap as shown below, however, produces an error message and terminates the
program with a core dump.

x = -1

i = traper (4)

y = sqrtu(x)

print *, 'x: °, ‘y: ', ¥y
end

The following message is produced:

mth$r_sqrt: [300] square root undefined for negative values
Illegal instruction (core dumped)

8.3.6 perror, gerror, and terrno Utilities

The perror, gerror, and terrno utilities retrieve the system error message numbers. perror writes
a message to FORTRAN unit O appropriate to the last detected system error. gerror returns the
system error message in a character variable and may be called either as a subroutine or as a
function. ierrno returns the error number of the last detected system error. This number is
updated only when an error actually occurs. Most routines and I/O statements that might
generate such errors return an error code after the call that indicates what caused the error
condition.

ug-8-7




Runtime Errors and Exceptions

8.4 Examples of Signal Handling

The following examples illustrate the use of the error processing utilities.

Example 1:

¢ This example establishes a signal handler for interrupts

c
integer signal ! integer function
integer oldhandler ! save old signal value
integer newhandler ! new handler address

external newhandler

oldhandler = signal (2, newhandler, -1)

print *,’Hit control-C (°C) to generate a SIGINT signal...’
read *,1i ! wait here until user enters ~c

end

¢ Subroutine to intercept signals

c
subroutine newhandler (sig, code, scp)
integer sig ! signal number
integer code ! signal subcode
integer scp(5) ! signal context

! (1) /* sigstack state to restore */
! (2) /* signal mask to restore */
! (3) /* sp to restore */
! (4) /* pc to restore */
! (5) /* psw to restore */
write (*,00002) sig,code,scp(4)
00002 format(/,

$ * Signal number [SIGINT]....:',I10,/,

$ '’ Signal 1lsubcode [0].......:',I10,/,

$ ' Program counter [pe}......:",Z10,/,

$ B e D)
end

Example 2:

program pr3527f

external sighandler

integer*4 env(10),1i,code,setjmp,longjmp
common env

¢ Establish a signal handler for arithmetic exceptiomns
oldhan = signal(8,sighandler,-1)

c Establish an environment for recovery in case an error occurs

c within the routine work. 1In case of error, routine fixup is

¢ called to repair the program state soO execution may continue.
i = setjmp(env)

c Initially, setjmp returns 0. If a subsequent longjump is performed,
c the value returned is the second argument to longjump.
c Returning a value of zero is not recommended.
if (i .eq. 0) then
call work ()
else

ug-8-8



call fixup QO
endif

end
subroutine sighandler (sig,code,scp)
c Intercept (SIGFPE) floating point exceptions

integer*4 sig,code,scp(5),env(10)
common env

c Return the error subcode and execute global goto
call longjump(env,code)
end

subroutine work

integer a,b,c

print *,'Doing meaningful work.’
read *,a,b,c

a = b/c

end

subroutine fixup
print *,'Fixing results.’
end

Runtime Errors and Exceptions

ug-8-9







A
FORTRAN Data Representations

This appendix describes the data types supported by CONVEX FORTRAN and shows how each is
stored in memory. The numbers on top of the figures are the bit ordering; the numbers on the
bottom are the byte ordering.

A.1 Logical Representation

LOGICAL*1 7 0 FALSE. = all 0’s
.TRUE. = all 1'’s
LOGICAL*2 15 0
|
0 1
LOGICAL*4 31 0
| | |
o 1 2 3
LOGICAL*S 63 0
I S T T T

01 2 3 4 5 6 7

The leftmost byte (8 bits) is always stored in memory at the lowest byte address.

A.2 Integer Representation

Integer data is declared with the INTEGER*1 (BYTE), INTEGER*2, INTEGER*4, and
INTEGER*8 keywords. In the internal representations, the sign bit (S) is 0 for positive integers
and 1 for negative integers. INTEGER data types use the two’s complement format.

INTEGER*1 7 0
BYTE
S
INTEGER*2 15 0
S
]
0 1

ug-A-1




FORTRAN Data Representations

INTEGER*4 31 0
S
T
0o 1 2 3
INTEGER*8 63 0
S
I Y N R S B

01 2 3 4 5 6 7

INTEGER*1 values are in the range -128 to +127. INTEGER*2 values are in the range -32,768
to +32,767. INTEGER*4 values are in the range -2,147,483,648 to +2,147,483,647. INTEGER*8
values are in the range -2 to +2%-1.

A.3 Real Data Representation

Single-precision (32-bit) floating-point variables are declared with the REAL*4 keyword; double-
precision (64-bit) floating-point variables are declared with the REAL*8 keyword. Both types of
floating-point data can be represented in either native format or in IEEE format. If you want to
process floating-point data in IEEE mode, your machine must be equipped with the IEEE support
hardware.

NOTE

The CONVEX hardware and runtimes only support the
processing of data encoded in IEEE format and do not
conform to the IEEE 754 specifications for arithmetic.

The following figure shows the internal representations of single-precision and double-precision
floating-point data. The positioning of the sign, exponent, and mantissa apply to both native and
IEEE formats; the particulars of each format are described following the figure.

REAL*4 31 30 23 22 0
S| Exponent Fraction

REAL*8 63 62 52 51 0
S Exponent Fraction

ug-A-2



FORTRAN Data Representations

A.3.1 Native Floating-Point

The CONVEX native floating-point repfesentation defines the following types of operands:

Operand Explanation

Normalized The exponent is not all zeros or all ones.

Reserved operand(Rop) The exponent is 0, the sign is 1, and the fraction
can have any value.

Zero The exponent is 0, the sign is 0, and the fraction
can have any value. True zero has a sign of 0,
an exponent of 0, and a fraction of 0.

In single-precision native floating point, the range of numbers that can be represented is:
2.9387359x10™ through 1.7014117x10™%

In the internal representation the sign bit (S) is O for a positive number and 1 for a negative
number. The exponent is an 8-bit binary field with a bias of 128; that is, 128 must be subtracted
from the exponent to give the actual power of 2. The mantissa is the fractional portion of the
number and has an implicit 1 bit to the left of bit position 22. The binary point is to the left of
the implicit 1 bit.

In double-precision native floating point, the range of numbers that can be represented is:
5.562684646268003x10™ through 8.988465674311584x10”

In the internal representation the sign bit (S) is 0 for a positive number and 1 for a negative

number. The exponent is an 11-bit binary field with a bias of 1024; that is, 1024 must be

subtracted from the exponent to give the actual power of 2. The mantissa is the fractional

portion of the number and has an implicit 1 bit to the left of bit position 51. The binary point is
to the left of the implicit 1 bit.

A.3.2 IEEE Floating-Point

The CONVEX IEEE floating-point representation defines the following types of operands:

Operand Explanation
Normalized The exponent is not all zeros or all ones.
Denormalized The exponent is 0, the fraction is nonzero, and

the sign 1s 0 or 1. This number is always
treated as true zero.

Not a number (NaN) The exponent is all ones, the fraction is nonzero,
and the sign is 0 or 1.

Infinity (Inf) The exponent is all ones, the fraction is 0, and
the sign is 0 or 1.

In single-precision IEEE floating point, the range of numbers that can be represented is:

1.1754944x10°% through 3.4028235x10™

ug-A-3




FORTRAN Data Representations

In the internal representation the sign bit (S) is 0 for a positive number and 1 for a negative
number. The exponent is an 8-bit binary field with a bias of 127; that is, 127 must be subtracted
from the exponent to give the actual power of 2. The mantissa is the fractional portion of the
number and has an implicit 1 bit to the left of bit position 22. The binary point is to the right of
the implicit 1 bit.

In double-precision IEEE floating point, the range of numbers that can be represented is:
2.225073858507201x10°% through 1.797693134862317x107**

In the internal representation the sign bit (S) is 0 for a positive number and 1 for a negative

number. The exponent is an 11-bit binary field with a bias of 1023; that is, 1023 must be

subtracted from the exponent to give the actual power of 2. The mantissa is the fractional

portion of the number and has an implicit 1 bit to the left of bit position 51. The binary point is
to the right of the implicit 1 bit.

A.4 Complex Representation

COMPLEX*8 31 0
Real Part Two 32-bit
REALS
Imaginary Part
COMPLEX*16 63 0
Real Part Two 64-bit
REALS

Imaginary Part

A.5 Character Representation

A character string is stored internally as a sequence of bytes.

char 1

char L

A character constant is limited to 4000 characters. Character strings formed at runtime may be
of arbitrary length.

ug-A-4



FORTRAN Data Representations

A.6 Hollerith Representation

A Hollerith constant is stored internally as a sequence of bytes and is limited to 2000 characters.

ug-A-5







B

Compiler and Runtime Messages

The CONVEX FORTRAN compiler issues four kinds of diagnostic messages: error, warning,
advisory, and vector summarization. All messages are output to stderr.

When the compiler has completed the syntactic and semantic analyses of a program, it aborts

the compilation if user errors remain. An abort can also occur during optimization, e.g., integer
truncation during constant folding.

B.1 Compiler Messages

The compiler messages are error, warning, advisory, and vector summarization. You can
redirect these messages to any specified file using the UNIX output redirection characters: >& file
name. If you do not redirect the messages, they appear on your screen.
Example:

fc file.f
sends the messages to the screen, while

fc file.f >Zout
sends the messages to the file out. You may also use the error utility to insert diagnostic
messages into your source file, where they appear as comments. This is a particularly convenient
way to find the bugs while editing your source file.
Example:

fc foo.f |& error
This command compiles foo.f and pipes the standard output and standard error output to the
error utility, which then inserts the diagnostic messages back in the source file foo.f. You can
write a simple ¢sh script using the error utility to produce listings with embedded error messages

that do not modify the source file itself. Refer to the UNIX documentation supplied with the
system for details on writing ¢sh scripts.

ug-B-1




Compiler and Runtime Messages

B.2 Runtime Error Messages
The runtime Iibrary reports errors encountered during execution. Runtime errors can be system-
detected, arithmetic, or I/O errors. The runtime library provides default error processing and

generates the necessary error messages to the user. All error messages are written to unit O,
stderr.

B.2.1 System Errors

System errors can be returned either by the FORTRAN I/O library or by the FORTRAN utility
library. In the former case, system errors are in the form of an I/O error message; in the latter
case, the error number is returned as the value of the utility function (see Section 3F of the
CONVEX UNIX Programmer’s Manual). The system errors generated by the UNIX operating

system are described in the CONVEX UNIX Programmer’s Manual, Part Il under the section
INTRO(2).

B.2.2 I/O Errors Generated by Runtime Library
The following system error messages are generated by the FORTRAN I/O runtime library:
100 error in format

See error message output for the location of the error in the format. Can be caused by more
than 10 levels of nested (), or an extremely long format statement.

101 illegal unit number
You cannot close logical unit 0. Valid unit numbers are in the range 0 to 255.
102 formatted 10 not allowed
The logical unit was opened for unformatted I/0O.
103 unformatted io not allowed
The logical unit was opened for formatted I/0O.
104 direct io not allowed

The logical unit was opened for sequential access, or the logical record length was specified as
0.

105 sequential io not allowed

The logical unit was opened for direct-access 1/0.
106 can’t backspace file

The file associated with the logical unit cannot seek. May be a device or a pipe.
107 off beginning of record

The format specified a left tab off the beginning of the record.

ug-B-2



108

109

110

113

114

115

116

117

118

119

Compiler and Runtime Messages

can’t stat file

The system cannot return status information about the file. Perhaps the directory is
unreadable.

no * after repeat count
Repeat counts in list-directed I/O must be followed by an * with no blank spaces.
off end of record

A formatted write tried to go beyond the logical end-of-record. An unformatted read or
write also causes this.

incomprehensible list input
Bad input data for list-directed read.
out of free space

The library dynamically creates buffers for internal use. Not enough memory was available
at the time of the request.

unit not connected

The logical unit was not open.

read unexpected character

Certain format conversions cannot tolerate nonnumeric data. Logical data must be T or F.
blank logical input field

'new’ file exists

You tried to open an existing file with status='new’.
can’t find ‘old’ file

You tried to open a nonexistent file with status='old’.
unknown system error

Contact the Technical Assistance Center (TAC).
requires seek ability

Direct-access requires seek ability. Sequential unformatted I/O requires seek ability on the
file due to the special data structure required. Tabbing left also requires seek ability.

illegal argument

Certain arguments to OPEN, etc., are checked for legitimacy. Often only nondefault forms
are looked for.

negative repeat count

The repeat count for list-directed input must be a positive integer.

ug-B-3




Compiler and Runtime Messages

123

124

—
[ )
~

128

130

131

ug-B-4

illegal operation for unit

new record not allowed

Encode and decode can only write and read single records.
numeric keyword variable overflowed

A keyword variable such as ASSOCIATEVARIABLE overflowed.
record number is out of range

A direct-access was attempted to a record number less than one or greater than MAXREC
specified in the OPEN statement.

file 1s read-only

Writing is not permitted to files opened with the READONLY keyword.
variable record format not allowed

Direct-access files may not have variable-length records.

record length exceeded

A read was attempted past the end of a record in a sequentially accessed file with RECL set
on OPEN.

exceeds maximum number of open files
A maximum of 255 files may be open at one time. This is a system-dependent limit.
data type size too small for REAL

Format code of variables less than 4 bytes cannot be read or written with the E, O, F, or G
format code.

infinite loop in format
fixed record type not allowed for print files
attempt to read nonexistent record

Returned for direct-access reads when an attempt is made to read a record that does not
exist.

reopening file with different unit not allowed

1o list item type is incompatible with format code
unknown record length

A record length must be specified for the file.
asynchronous io not allowed on this file

synchronous io not allowed on this file



140

141

142

143

144

145

Compiler and Runtime Messages

incompatible format structure - recompile

The internal representation of parsed format strings has changed. The routine must be

recompiled.

namelist error

An error has been detected in the use of namelist-directed 1/O.
apparent recursive logical name definition

recursive input/output operations

out of free space, possibly from performing unformatted I/O

Error in conversion of string to numeric

ug-B-5







C

Runtime Libraries

This appendix describes the FORTRAN intrinsic library, the CONVEX math library, and the
FORTRAN input/output (I/O) library.

C.1 FORTRAN Intrinsic Library and CONVEX Math Library

This section summarizes the runtime entry points in the FORTRAN Intrinsic Library and the
CONVEX Math Library. These libraries include runtimes for FORTRAN intrinsics,
mathematical programmed operators, and character-string programmed operators. They are
loaded automatically by the FORTRAN compiler.

C.1.1 Calling Conventions

The CONVEX Math Library runtimes are accessible to all language processors. The functions
must be called via the callg/ring mechanism (in assembly language) with arguments passed by
value in the scalar and/or vector registers and function results returned in the appropriate type
register(s). Runtimes, which accept multiple vector arguments, e.g., complex division, restrict all
arguments to the same length, and the length of the resultant vector is the same as the argument
vector length.

Complex values are represented as pairs of registers, with the real part in the low-order register
and the imaginary part in the high-order one. Since vector arguments and results are passed in
registers, vector lengths are restricted to a maximum of 128. This requires strip-mining by the
compiler prior to a vector runtime call.

The functions in [{bF'77 use the standard FORTRAN calling conventions. For many intrinsics,
there are entry points in both the intrinsic library and the math library. The {6F'77 entry points
are provided for compatibility with the standard FORTRAN calling convention and must be used
when intrinsics are referenced as dummy arguments. In most cases, l{bF'77 routines do not
perform the intrinsic operation but call the corresponding CONVEX math runtime. Not all

intrinsics require runtime routines. For example, scalar truncation can be accomplished with a
single convert instruction, and, as such, is implemented as inline code.

C.1.2 Function-Naming Convention
The runtime names are constructed as follows:

< prefix > <argument—type(s) >_<function-type>_<result-type>
The prefix is either:

mth$ (CONVEX Math Library) or for$ (FORTRAN Intrinsic Library)

ug-C-1




Runtime Libraries

The function-type is typically the generic intrinsic name. For example, mth$d_sqrt is the REAL*8
scalar square root entry point in the CONVEX Math Library.

Scalar intrinsics have entry points in both the FORTRAN Intrinsic Library (“for$” prefix) and
the CONVEX Math Library (“‘mth$” prefix); vector intrinsics have entry points only in the math
library.

If the argument and result types are the same, the result type is omitted from the function name.
If the function has multiple arguments all of the same type, then a single argument code is used

rather than a sequence of codes.

The codes in Table C-2 are used to indicate the result and argument types.

Table C-1: Function Naming Convention

Code | Type of Result/Arguments
h INTEGER*1

i INTEGER*2

] INTEGER*4

k INTEGER*8

r REAL*4

d REAL*8

¢ COMPLEX*8

Z COMPLEX*16

s CHARACTER*N

| LOGICAL*4

vh vector of INTEGER*1
vi vector of INTEGER*2
vj vector of INTEGER*4
vk vector of INTEGER*S
vr vector of REAL*4

vd vector of REAL*8

ve vector of COMPLEX*8
vz vector of COMPLEX*16
vm vector mask register

ug-C-2



Runtime Libraries

When multiple arguments of different types are used, the order of the arguments conforms to the
intrinsic definition. For example, the scalar/vector KISHIFT intrinsic is implemented with the
following runtime: '

mth$jvj_shft  performs a logical shift an INTEGER*4 scalar by
an INTEGER*4 vector and returns the result as
an INTEGER*4 vector.

This runtime is used in the following situation:

DO I=1,N
K(I) ‘= KISHFT(L,M(I))
ENDDO

C.1.3 Intrinsic Runtimes

Table C-3 summarizes calling sequences for the intrinsic runtimes. Braces { } indicate the
prefixes that are available for each runtime. The specific intrinsic names are provided for cross-
reference purposes. There is not always a one-to-one correspondence between intrinsic references
and runtimes. In some cases, two different intrinsics generate a call to the same runtime (these
are separated by commas) or the application of multiple intrinsics generates a call to a single
runtime (this is denoted by the use of parentheses). Some of the runtimes listed in this table are
used as programmed operators. For example, the assignment of an INTEGER*4 vector to a

REAL*4 vector generates a call to a mth$vy_cvt_vr.

Table C-2: Intrinsic Functions

Intrinsic Runtime Name Arguments | Result
Square root
SQRT {for,mth}$r_sqrt r r
mth$vr_sqrt vr vr
DSQRT {for,mth}$d_sqrt d d
mth$vd_sqrt vd vd
CSQRT {for,mth}$c_sqrt ¢ ¢
mth$ve_sqrt ve ve
CDSQRT {for,mth}$z_sqrt 2 z
mth$vz_sqrt vz %/
Natural logarithm
LOG {for,mth}$r_log r r
mth$vr_log vr vr
DLOG {for,mth}$d_log d d
mth$vd_log vd vd
CLOG {for,mth}$c_log c ¢
mth$ve_log ve ve
CDLOG {for,mth}$z_log z z
mth$vz_log vz vz
Common logarithm
LOG10 {for,mth}$r_log10 r r
mth$vr_logl0 vr vr
DLOGI10 {for,mth}$d_log10 d d
mth¥vd_logl0 vd vd

ug-C-3




Runtime Libraries

Table C-3: Intrinsic Functions (continued)

Intrinsic Runtime Name | Arguments | Result
Exponential
EXP {for,mth}$r_exp r T
mth$vr_exp vr vr
DEXP {for,mth}$d_exp d d
mth$vd_exp vd vd
CEXP {for,mth}$c_exp ¢ ¢
mth$ve_exp ve ve
CDEXP {for,mth}$z_exp z z
mth$vz_exp vz vz
Sine
SIN {for,mth}$r_sin r r
mth$vr_sin vr vr
DSIN {for,mth}$d_sin d d
mth$vd_sin vd vd
CSIN {for,mth}$c_sin c c
mth$vc_sin ve ve
CDSIN {for,mth}$z_sin z z
mth$vz_sin vz vz
Sine (degree)
SIND {for,mth}$r_sind r T
mth$vr_sind vr vr
DSIND {for,mth}$d_sind d d
mth$vd_sind vd vd
Cosine
COSs {for,mth}$r_cos r T
mth$vr_cos vr vr
DCOS {for,mth}$d_cos d d
mth$vd_cos vd vd
CCOSs {for,mth}$c_cos c ¢
mth$ve_cos ve ve
CDCOS {for,mth}$z_cos z z
mth$vz_cos vz vz
Cosine (degree)
COSD {for,mth}$r_cosd r T
mth$vr_cosd vr vr
DCOSD {for,mth}$d_cosd d d
mth$vd_cosd vd vd
Tangent
TAN {for,mth}$r_tan r T
mth$vr_tan vr vr
DTAN {for,mth}$d_tan d d
mth$vd_tan vd vd
CTAN {for,mth}$c_tan c ¢
mth$ve_tan ve ve
CDTAN {for,mth}$z_tan z 7
mth$vz_tan vz vz




Table C-3: Intrinsic Functions (continued)

Runtime Libraries

Intrinsic Runtime Name Arguments | Result
Tangent (degree)
TAND {for,mth}$r_tand r r
mth$vr_tand vr vr
DTAND {for,mth}$d_tand d d
mth$vd_tand vd vd
Arc sine
ASIN {for,mth}$r_asin r r
mth$vr_asin vr vr
DASIN {for,mth}$d_asin d d
mth$vd_asin vd vd
Arc sine (degree)
ASIND {for,mth}$r_asind r r
mth$vr_asind vr vr
DASIND {for,mth}$d_asind d d
mth$vd_asind vd vd
Arc cosine
ACOS {for, mth}$r_acos r r
mth$vr_acos vr vr
DACOS {for,mth}$d_acos d d
mth$vd_acos vd vd
Arc cosine (degree)
ACOSD {for,mth}$r_acosd r T
mth$vr_acosd vr VT
DACOSD {for,mth}$d_acosd d d -
mth$vd_acosd vd vd
Arc tangent
ATAN {for,mth}$r_atan T r
mth$vr_atan vr vr
DATAN {for,mth}$d_atan d d
mth$vd_atan vd vd
Arc tangent (degree)
ATAND {for,mth}$r_atand r T
mth$vr_atand vr vr
DATAND {for,mth}$d_atand d d
mth$vd_atand vd vd
Arc tangent with two arguments
ATAN2 {for,mth}$r_atan?2 r,r r
mth$vr_atan?2 VI,Vr vr
mth$vrr_atan?2 vI,r vr
mth$rvr_atan? r,vr vr
DATAN2 {for,mth}$d_atan?2 d,d d
mth$vd_ata2n vd,vd vd
mth$vdd_atan2 vd,d vd
mth$dvd _atan? d.vd vd

ug-C-5




Runtime Libraries

Table C-3: Intrinsic Functions (continued)

Runtime Name Arguments | Result
Arc tangent with two arguments (degree)

ATAN2D {for,mth}$r_atan2d r,r r
mth$vr_atan2d vr,vr vr
mth$vrr_atan2d vr,r VT
mth$rvr_atan2d T,V vr

DATAN2D {for,mth}$d_atan2d d,d d
mth$vd_atan2d vd,vd vd
mth$vdd_atand2 vd,d vd
mth$dvd_atand?2 d,vd vd

Hyperbolic sine

SINH {for,mth}$r_sinh T r

‘ mth$vr_sinh VT vr

DSINH {for,mth}$d_sinh d d
mth$vd_sinh vd vd

Hyperbolic cosine

COSH {for,mth}$r_cosh T r
mth$vr_cosh vr vr

DCOSH {for,mth}$d_cosh d d
mth$vd_cosh vd vd

Hyperbolic tangent

TANH {for,mth}$r_tanh T T
mth$vr_tanh vr vr

DTANH {for,mth}$d_tanh d d
mth$vd_tanh vd vd

Absolute value

IIABS {for,mth}$i_abs 1 i
mth$vi_abs vi vi

JIABS {for,mth}$j_abs ] ]
mth$vj_abs vj V]

KIABS {for,mth}$k_abs k k
mth$vk_abs vk vk

ABS {for,mth}$r_abs r r
mth$vr_abs vr vr

DABS {for,mth}$d_abs d d
mth$vd_abs vd vd

CABS {for,mth}$c_abs_r c r
mth$ve_abs_vr ve vr

CDABS {for,mth}$z_abs_d z d
mth$vz_abs_vd vz vd

Float-to-fix conversion

INT1(IINT) mth$vr_cvt_vh vr vh

IINT, IIFIX {for,mth}$r_cvt_i T i
mth$vr_cvt_vi vr vi

JINT, JIFIX {for,mth}$r_cvt_j r j
mth$vr_cvt_vj vr V]

KINT KIFIX {for,mth}$r_cvt_k r k
mth$vr_cvt_vk vr vk

INT1{IIDINT) mth$vd_cvt_vh vd vh

HIDINT,IIDINT {for,mth}$d_cvt_i d i
mth$vd_cvt_vi vd vi

ug-C-6




Table C-3: Intrinsic Functions (continued)

Runtime Libraries

Intrinsic Runtime Name Arguments | Result
JIDINT,JIDINT {for,mth}$d_cvt_j d j
mth$vd_cvt_vj vd V]
KIDINT KIDINT {for,mth}$d_cvt_k d k
mth$vd_cvt_vk vd vk
Integer conversion
INT1 mth$vi_cvt_vh vi vh
mth$vj_cvt_vh V] vh
mth$vk_cvt_vh vk vh -
INT2 mth$vh_cvt_vi vh vi
mth$vj_cvt_vi V] vi
mth$vk_cvt_vi vk vi
INT4 mth$vh_cvt_vj vh vj
mth$vi_cvt_v] vi vj
mth$vk_cvt_vj vk vj
INTS mth$vh_cvt_vk vh vk
mth$vi_cvt_vk vi vk
mth$vj_cvt_vk V] vk
Nearest integer
ININT {for,mth}$r_nint_i r i
mth$vr_nint_vi vr vi
JNINT {for,mth}$r_nint_j r j
mth$vr_nint_vj vr v]
KNINT {for,mth}$r_nint_k r k
mth$vr_nint_vk vr vk
IIDNNT {for,mth}$d_nint_i d i
mth$vd_nint_vi vd vi
JIDNNT {for,mth}$d_nint_j d ]
mth$vd_nint_vj vd V]
KIDNNT {for,mth}$d_nint_k d k
mth$vd_nint_vk vd vk
ANINT {for,mth}$r_nint r r
mth$vr_nint vr vr
DNINT {for,mth}$d_nint d d
mth$vd_nint vd vd
Fix-to-float conversion
FLOATI (INT2) mth$vh_cvi_vr vh vr
DFLOTI (INT2) mth¥vh_cvt_vd vh vd
FLOATI {for,mth}$i_cvt_r i T
mth$vi_cvt_vr vi vr
DFLOTI {for,mth$i_cvt_d i d
mth$vi_evt_vd vi vd
FLOATJ {for,mth}$j_cvt_r j r
mth$vj_cvt_vr V] vr
DFLOTJ {{for,mth}$j_cvt_d j d
mth$vj_cvt_vd vj vd
FLOATK {for,mth}$k_cvt_r k r
mth$vk_cvt_vr vk vr
DFLOTK {for,mth}$k_cvt_d k d
mth$vk_cvt_vd vk vd

ug-C-7




Runtime Libraries

Table C-3: Intrinsic Functions (continued)

Intrinsic Runtime Name | Arguments | Result
Integer part of real
AINT {for,mth}$r_int r r
mth$vr_int vr vr
DINT {for,mth}$d_int d d
mth$vd_int vd vd
REAL*4 to REAL*8 conversion
DBLE {for,mth}$r_cvt_d | r d
mth$vr_cvt_vd vr vd
REAL*8 to REAL*4 conversion
SNGL {for,mth}$d_cvt_r | d T
mth$vd_cvt_vr vd VT
Real part of complex
REAL,SNGL {for}$c_real c c
DREAL ,DBLE {for}$z_real z z
Imaginary part of complex
AIMAG {for}$c_imag c ¢
DIMAG {for}$z_imag z z
Complex conjugate
CONJG {for}$c_conjg c ¢
DCONJG {for}$z_conjg z z
Maximum
(pairwise operation—not a reduction)
IMAXO0 mth$vi_max vi,vi vi
mth$vii_max vii vi
JMAXO0 mth$vj_max vi,vj V]
mth$vjj_max vl V]
KMAXO0 mth$vk_max vk,vk vk
mth$vkk_max vk, k vk
AMAX1 mth$vr_max vr,vr vr
mth$vrr_max vr,r vr
DMAX1 mth$vd_max vd,vd vd
mth$vdd_max vd,d vd
Minimum
(pairwise operation— not a reduction)
IMINO mth$vi_min vi,vi vi
mth$vii_min vi,i vi
JMINO mth$v)_min vj,v] vj
mth$vjj_min vi,] vj
KMINO mth$vk_min vk, vk vk
mth$vkk_min vk k vk
AMIN1 mth$vr_min vr,vr vr
mth$vrr_min vr,r vr
DMIN1 mth$vd_min vd,vd vd
mth$vdd_min vd.d vd

ug-C-8




Table C-3: Intrinsic Functions (continued)

Runtime Libraries

Intrinsic Runtime Name | Arguments | Result
REAL™*8 product of REAL*4’s
DPROD {for,mth}$r_prod_d | r d
mth$vr_prod_vd vr vd
mth$vrr_prod vI,r vd
Positive difference
IIDIM {for,mth}$i_dim 1,i i
mth$vi_dim vi,vi vi
mth$vii_dim vi,i vi
mth$ivi_dim 1,vi vi
JIDIM {for,mth}$j_dim 1i ]
mth$vj_dim Vi, V] vj
mth$vjj_dim v}, V]
mth$jvj_dim 1,v] vj
KIDIM {for,mth}$k_dim kk k
mth$vk_dim vk vk vk
mth$vkk_dim vk,k vk
mth$kvk_dim k,vk vk
DIM {for,mth}$r_dim r,r r
mth$vr_dim vI,vr vr
mth$vrr_dim VI,T vr
mth$rvr_dim r,vr vr
DDIM {for,mth}$d_dim d,d d
mth$vd_dim vd,vd vd
mth$vdd_dim vd,d vd
mth$dvd_dim d,vd vd
Remainder
IMOD {for,mth}$i_mod ii i
mth$vi_mod vi,vi vi
mth$vii_mod vii vi
mth$ivi_mod i,vi vi
JMOD {for,mth}$j_mod 3 j
mth$vj_mod vj,v] V]
mth$vjj_mod viJ vj
mth$jvj_mod 1,v] v]
KMOD {for,mth}$k_mod k,k k
mth$vk_mod vk,vk vk
mth$vkk_mod vk k vk
mth$kvk_mod k,vk dvk
AMOD {for,mth}$r_mod r,r r
mth$vr_mod vr,vr vr
mth$vrr_mod vI,r vr
mth$rvr_mod F,Vr vr
DMOD {for,mth}$d_mod d,d d
mth$vd_mod vd,vd vd
mth$vdd_mod vd,d vd
mth$dvd_mod d.vd vd

ug-C-9




Runtime Libraries

Table C-3: Intrinsic Functions (continued)

Intrinsic Runtime Name | Arguments| Result
Transfer of sign
IISIGN {for,mth}$i_sign 1,1 i
mth$vi_sign vi,vi vi
mth$vii_sign vi,i vi
mth$ivi_sign ivi vi
JISIGN {for,mth}$;j_sign i j
mth$vj_sign vi,vj vj
mth$vjj_sign Vi, vj
mth$jvj_sign 1,v] V]
KISIGN {for,mth}$k_sign k,k k
mth$vk_sign vk, vk vk
mth$vkk_sign vk, k vk
mth$kvk_sign k,vk vk
SIGN {for,mth}$r_sign r,r r
mth$vr_sign Vr,Vr vr
mth$vrr_sign vI,r vr
mth$rvr_sign I,Vr vr
DSIGN {for,mth}$d_sign d,d d
mth$vd_sign vd,vd vd
mth$vdd_sign vd,d vd
mth$dvd_sign d,vd vd
Bitwise AND
IIAND {for,mth}$i_and i i
JIAND {for,mth}$j_and ji j
KIAND {for,mth}$k_and k,k k
Bitwise OR
IIOR {for,mth}$i_or 1,1 1
JIOR {for,mth}$j_or 1 j
KIOR {for,mth}$k_or k,k k
Bitwise XOR
[IEOR {for,mth}$i_xor 1,1 1
JIEOR {for,mth}$j_xor IR j
KIEOR {for,mth}$k_xor k,k k
Bitwise complement
INOT {for,mth}$i_not 1,1 1
JNOT {for,mth}$j_not 1] ]
KNOT {for,mth}$k_not k,k k
Bitwise shift
[ISHFT {for,mth}$i_shft i1 i
mth$vi_shft vi,vi vi
mth$ivi_shft 1,vi vi
JISHFFT {for,mth}$j_shft 1)) ]
mth$vj_shft vj,vj vj
mth$jvj_shft 31,v] V]
KISHFT {for,mth}$k_shft k,k k
mth$vk_shft vk,vk vk
mth$kvk_shft k.vk vk

ug-C-10




Table C-3: Intrinsic Functions (continued)

Runtime Libraries

Intrinsic Runtime Name | Arguments | Result
Bitwise extract
IIBITS {for,mth}$i_bits 1,1,1 1
mth$vi_bits vi,vi,vi vi
mth$vivii_bits vi,vi,i vi
mth$viivi_bits vi,i,vi vi
mth$viii_bits vi,i,i vi
JIBITS {for,mth}$;_bits i i
mth$vj_bits Vi, vi,v] V]
mth$vjvjj_bits vi,vij V]
mth$vjjvj_bits vi,i,vi vj
mth$vjjj_bits vi,ii V]
KIBITS {for,mth}$k_bits k.kk k
mth$vk_bits vk,vk,vk vk
mth$vkvkk_bits vk,vk,k vk
mth$vkkvk_bits vk, k,vk vk
mth$vkkk_bits vk, k k vk
Bitwise set
IIBSET {for,mth}$i_set 1,1 i
mth$vi_set vi,vi vi
mth$vii_set vi,i vi
mth$ivi_set i,vi vi
JIBSET {for,mth}$j_set 1] j
mth$vj_set vj,vj V]
mth$vjj_set v1,j V]
mth$jvj_set 1,v] vj
KIBSET {for,mth}$k_set kk k
mth$vk_set vk,vk vk
mth$vkk_set vk k vk
mth$kvk_set vk,vk vk
Bitwise test
BITEST {for,mth}$i_test 1,1 1
mth$vi_test vi,vi vi
mth$vii_test vii vi
mth$ivi_test 1,vi vi
BJTEST {for,mth}$j_test 3] j
mth$vj_test vi,vj V]
mth$vjj_test vij V]
mth$jvj_test 3,vj vj
BKTEST {for,mth}$k_test kk k
mth$vk_test vk,vk vk
mth$vkk_test vk, k vk
mth$kvk_test k,vk vk

ug-C-11




Runtime Libraries

ug-C-12

Table C-3: Intrinsic Functions (continued)

Intrinsic Runtime Name Arguments | Result
Bitwise clear
IIBCLR {for,mth}$i_clr i1 i
mth$vi_clr vi,vi vi
mth$vii_clr vii vi
mth$ivi_clr i,vi vi
JIBCLR {for,mth}$j_clr IR j
mth$vj_clr V},V] vj
mth$vjj_clr Vi, vj
mth$jvj_clr 3,v] V]
KIBCLR {for,mth}$k_clr k,k k
mth$vk_clr vk,vk vk
mth$vkk_clr vk,k vk
mth$kvk_clr k,vk vk
Bitwise circular shift
I[ISHFTC {for,mth}$i_shftc 11,1 i
mth$vi_shftc vi,vi,vi vi
mth$vivii_shfte vi,vii vi
mth$viivi_shftc vi,i,vi vi
mth$viii_shfte viii vi
JISHFTC {for,mth}$j_shftc 3,0,] j
mth$vj_shftc v}, vi,V] V]
mth$vjvij_shftc v],v),] vj
mth$vjjvj_shfte vi,i,vi V]
mth$vjjj_shftc vi,d,] vj
KISHFTC {for,mth}$k_shftc kkk k
mth$vk_shftc vk,vk,vk vk
mth$vkvkk_shftc vk,vk,k vk
mth$vkkvk_shftc vk,k,vk vk
mth$vkkk_shftc vk k k vk
String length
LEN for$s_len_j s i
String index
INDEX for$s_index_j s ]
Character relationals
LLT for$s_l1t_l s 1
LLE for$s_lle_] s 1
LGT for$s_lgt_l s 1
LGE for$s_lge_l s 1
IEEE /Native conversions
RCVTIR {for,mth}$r_cvti r r
mth$vr_cvti vr vr
DCVTID {for,mth}$d_cvti d d
mth$vd_cvti vd vd
IRCVTR {for,mth}$r_icvt r r
mth$vr_icvt vr vr
IDCVTD {for,mth}$d_icvt d d
mth$vd_icvt vd vd




Runtime Libraries

C.1.4 Exponentiation Programmed Operators

The following runtimes perform exponentiation (**). In the argument column, the base type is
listed, followed by the exponent type.

Table C-3: Exponentiation Routines

Runtime Name | Arguments | Result
mth$j_pow P J
mth$k_pow kk k
mth$r_pow r,r r
mth$d_pow d,d d
mth$c_pow c,c ¢
mth$z_pow z,2 z
mth$rj_pow_r r,j r
mth$dj_pow_d d,j d
mth$cj_pow_c c,j c
mth$zj_pow_z 7, z
mth$vj_pow V},V] V]
mth$vk_pow vk,vk vk
mth$vr_pow VF,VT vr
mth$vd_pow vd,vd vd
mth$ve_pow ve,ve ve
mth$vz_pow vz,vz vz
mth$vrvj_pow_vr VI,Vj vr
mth$vdvj_pow_vd | vd,vj vd
mth$vevj_pow_ve | ve,vj ve
mth$vzvj_pow_vz | vz,vj vz
mth$vjj_pow vi.j vj
mth$vkk_pow vk, k vk
mth$vrr_pow vr,r vr
mth$vdd_pow vd,d vd
mth$vec_pow ve,ce ve
mth$vzz_pow V2,2 vz
mth$vrj_pow_vr VT, vr
mth$vdj_pow_vd vd,] vd
mth$vej_pow_ve ve,j ve
mth$vzj_pow_vz vZ,] vz
mth$jvj_pow R3] v]
mth$kvk_pow k,vk vk
mth$rvr_pow r,vr vr
mth$dvd_pow d,vd vd
mth$cve_pow ¢,ve ve
mth$zvz_pow 7,V v
mth$rv)_pow_vr r,vj vr
mth$dvj_pow_vd d,vj vd
mth$cvj_pow_ve c,vj ve
mth¥zvi_pow_vz z2.V] vz

ug-C-13




Runtime Libraries

C.1.5 Complex Programmed Operators

These runtimes perform complex multiplication and division. For division, the argument types
are listed as: dividend, divisor.

Table C-4: Complex Programmed Operators

Function Runtime Name | Argument | Result

Complex Division mth$c_div c,c ¢
mth$z_div 2,2 z
$ve_div ve,ve ve
mth$vz_div vZ,vz v
mth$vee_div ve,ce ve
mth$vzz_div vz,2 vz
mth¥cve_div c,ve ve
mth$zvz_div z,v2 vz

Complex Multiplication | mth$c_mul c,c
mth$z_mul 2,2 z
mth$ve_mul ve,ve ve
mth$vz_mul vz,vI vz
mth$vec_mul ve,c¢ ve
mth$vzz_mul vZ,2 \
mth$cve_mul c,ve ve
mth$zvz_mul 7,V vz

"C.1.6 Vector Mask Programmed Operators

The runtime mth$vm_lastnz finds the position of the highest-order nonzero bit of the vector mask
register.

This runtime is useful for conditional code, such as:
DO I=1,N

IF(A(D)) B = A(D
ENDDO

C.1.7 String-Manipulation Programmed Operators

The following are the string-manipulation programmed operators:

for$s_cat - string concatenation
for$s_copy - string copy

for$s_stop - STOP runtime

for$s_paus - PAUSE runtime

for$s_rnge - subscript out of range report
for$s_leq_l - string equal comparison
for$s_lne_l - string not equal comparison

C.1.8 Runtime Data Items

The following runtime labels are associated with data values used by the runtime libraries and
the FORTRAN compiler.

ug-C-14



Runtime Libraries

The label mth$vmones, which is two long words of all 1s, is used to load the vector mask register.
The values -2 through 130 are available in 6 data types:

mth$h_indx INTEGER*1
mth$i_indx INTEGER*2
mth$j_indx  INTEGER*4
mth$k_indx INTEGER*8
mth$r_indx REAL*4
mth¥r_indx  REAL*8

The following example shows a typical runtime code:

DOI=1,N
J(ID =1 -1
ENDDO

C.2 FORTRAN I/0O Library

This section summarizes the runtime entry points in the FORTRAN I/O library, {i6/77.a. The
FORTRAN compiler generates calls to the I/O runtimes to implement I/O statements, such as,
READ and WRITE. Runtimes from [ib/77 are loaded automatically by the FORTRAN compiler

(fe).

C.2.1 I/O Operation

FORTRAN file I/O to a logical unit consists of the following:
e Open (this may be implicit) (OPEN)
o Series of I/O statements (READ, WRITE, PRINT, ACCEPT, ENCODE, DECODE)
e Optional close (CLOSE)

Each I/O transfer (READ, WRITE, PRINT, ACCEPT, ENCODE, DECODE) is implemented as

a sequence of operations:

e Initialize I/O transfer
e Series of I/O transmissions
e Terminate transfer

For example, the I/O statement:
READ (5,100) a, b, ¢
is compiled into the following runtime references:
for$s_rsfe ; start read sequential formatted external
for$do_fio ; do formatted I/0 for a
for$do_fio ; do formatted I/0 for b
for$do_fio ; do formatted I/0 for ¢

for$e_rsfe ; end read sequential formatted external

If the I/O list is empty, as in READ (5,100), the for$do_fio calls are not used. But, the end-io-
call, for§e_rsfe in this example, is always required.

ug-C-15




Runtime Libraries

c.2.2 1I/0 Runtime Naming Convention

The type of I/O transfer is defined by the following attributes:

read or write: rorw
sequential or direct: sord
formatted, unformatted, list-directed, namelist: f, u,1, orn
external or internal: eori

Many of the runtime names are constructed using the letters listed above. For example, the
runtime for$s_rsfe initializes I/O for a read-sequential-formatted-external transfer. The following
two types of I/O are invalid:

ui—unformatted/internal  dl—direct/list-directed
dn—direct/namelist ni—namelist/internal

C.2.3 I/0 List Initialization

These runtimes prepare the unit for I/O. The following operations are performed:

If not currently open, opens file with default file attributes, e.g., RECORDTYPE
Initializes logical record buffer

Compiles runtime formats

Saves ERR and END flags

Checks for various error conditions, e.g., illegal unit number, formatted I/O to file open
for unformatted access

Entry points for I/O list initialization:

for$s_{r,w}s{f,u,l,n}e
for$s_{r,w}d{f,u}e
for$s_{r,wis{f,lh
for$s_{r,w}dfi
for$s_encode
for$s_decode

C.2.4 1/0 List Element Transmission

These runtimes perform the actual I/O transmission. There are two levels of buffering in the I/O
runtimes: logical record buffering and physical record buffering. The record buffers are filled and
flushed, as required by the I/O transmission runtimes. Each unformatted I/O statement transfers
a single logical record; formatted and list-directed I/O statements may transfer multiple records.
The physical record size corresponds to the file system block size.

Each call transmits a single value, except for arrays. Arrays are transmitted with a single
runtime call. If referenced in column major order, arrays in implied DO-lists are also transmitted
with a single runtime. Formatted transfer of complex values generates two runtime calls—one for
the real part and one for the complex part. List-directed transfer of complex values generates a
single runtime reference.

Entry points for I/O list element transmission:

for$do_{f,u,l}io

ug-C-18



Runtime Libraries

C.2.5 1/0 List Termination

These runtimes complete the I/O operation. This may require flushing the logical record buffer
and completion of formatting, if any elements remain in the format string.

for$e_{r,w}s{f 1 u}e
for$e_{r,w}d{f,u}e
for$e_{r,w}is{f 1}i
for$e_{r,widfi
for$e_encode
for$e_decode

C.2.6 Auxiliary I/O Operations

The following runtimes implement the auxiliary I/O statements. These statements perform 1/O
initialization (OPEN), perform I/O termination (CLOSE), position files (BACKSPACE,
ENDFILE, REWIND), and return information about a file or unit (INQUIRE). The auxiliary I/0
runtimes, along with the FORTRAN statements that they implement, are listed below.

I/O Runtime I/0O Statement

for$back BACKSPACE
for$close CLOSE
for$end ENDFILE
for$inqu INQUIRE
for$open OPEN
for$rew REWIND

ug-C-17







D
Problem Reporting

D.1 Introduction

The contact utility is the recommended way to report software and documentation problems to
the Technical Assistance Center (TAC). It is an interactive tool that prompts you for the
information necessary to report a problem to the TAC.
You must have a UNIX-to-UNIX Communications Protocol (UUCP) connection to the TAC to
use contact. A UUCP system allows communication between UNIX systems by either dial-up or
hard-wired communication lines. See uucp(1) or the entry in info(1) (online information system)
for more information.
You must know the name and version number of the product involved. If you do not know the
version number of the program or utility you are having trouble with, use the vers command.
The syntax for the command is

vers filename

where filename is the the full pathname of the program. If you don’t know the full pathname of
the program, type

which program

For more information on these commands, see vers(l) and which(1) in the CONVEX UNIX
Programmer’s Manual, Part 1.

D.2 Information Required to Report a Problem
contact requires the following information:
1. Your name, title, phone number, and corporate name.

2. The name and version of the product involved. Use the vers command if you don’t
know the version number of the program or utility.

3. A short (1 line) summary of the problem.
4. A detailed description of the problem. Include source code and a stack backtrace
whenever possible. (See adb(1) or csd(1) for information on obtaining stack backtraces.)

The more information provided, the quicker your problem can be isolated and solved.

5. The priority of the problem. You are shown a list of six levels from which to select.

ug-D-1




Problem Reporting

6. Instructions on how to reproduce the problem, including the command syntax used, any
flags invoked, or anything else you attempted to make your program run.

7. Any other comments about the problem or files you wish to submit.
You will have a chance to review your report before you submit it. You can edit the report if
you find an error in what you have typed. If you change your mind and don’t want to submit
the report, you can abort the contact session; the file is saved in your home directory in a file

named dead.report.

The following figure is a sample contact session. User input is in bold lettering, and the system
response is in constant-width lettering.

ug-D-2



Problem Reporting

Figure D-1: Sample contact Session

%contact
Welcome to contact version 0.14 ()

Enter your name, title, phone number, and corporate name ("D to terminate)
> Margaret Atwood, systems programmer, 814-4444, University

> of Chicago

>

Enter the name of the product involved
> CONVEX UNIX Programmer’s Manual, Part 1 RETURN)

Enter the version number (in the form X.X or X.X.X.X) of the product
> Revision 4.0

Enter a short (1 line) summary of the problem
> The finger command manual page lists nonexistent bug RETURN)

Enter a detailed description of the problem ("D to terminate)

> The finger(1) man page says, under the BUGS section, that “Only the first
line of the .project file is printed.” Happily, this is not true! RETURN

>

Enter a problem priority, based on the following:

1) Critical - work cannot proceed until the problem is resolved.

2) Serious - work can proceed around the problem, with difficulty.
3) Necessary - problem has to be fixed.

4) Annoying - problem is bothersome.

5) Enhancement - requested enhancement.
6) Informative - for informational purposes only.
> 4

Enter the instructions by which the problem may be reproduced ("D to terminate)
> a) put more than one line in .project

> b) read the man page for finger(1l) RETURN)

>

Enter any comments that are applicable ("D to terminate)
>

Do you have any suggestions or comments on the documentation that you
referenced when you were trying to resolve your problem (for example,
additions, corrections organization, accessibility)? ("D to terminate)
> The man page should be updated.

>

Are there any files that should be included in this report (yes | no)?
> no RETURN)

Please select one of the following options:
1) Review the problem report.

2) Edit the problem report.

3) Submit the problem report.

4) Abort the problem report.

> 3 RETURN)

Problem report submitted.
%

ug-D-3







Index

A constant propagation and folding ug-4-7,
absolute value ug-C-6 ug-4-13
access directly ug-2-5 contact, reporting problems ug-D-1
access modes ug-2-5 CONVEX FORTRAN  ug-1-1
access sequentially ug-2-5 CONVEX mat,'h library ug-C-1
adb debugger ug-7-5 copy propagation ug-4-8
algebraic simplification ug-4-14 cross-reference generator ug-7-1
arc cosine ug-C-5 csd debugger ug-7-4
arc cosine (degree) ug-C-5
arc sine ug-C-5 D
arc sine (degree) ug-C-5 data item runtime, example ug-C-15
arc tangent ug-C-5 data representation ug-A-1
arc tangent (degree) ug-C-5 data representations ug-5-5
arc tangent, two arguments ug-C-5 date ug-6-3
arc tangent, two arguments (degree) ug-C-6 dead-code elimination ug-4-8
argument packets ug-5-1, ug-5-6 debugger, assembly-language ug-7-5
argument pointer ug-5-1 debugger, symbolic ug-7-4
argument-passing mechanisms ug-5-2 debugging programs ug-7-1
array table ug-1-10 diagnostic messages ug-1-7
assembly-language debugger ug-7-5 direct access ug-2-5
assignment substitution ug-4-12 direct-access file ug-2-6
auxiliary I/O operations ug-C-17 dynamic loop selection ug-4-18

B E
bitwise AND ug-C-10 END specifier ug-8-1
bitwise circular shift ug-C-12 entry points, I/O list element transmission
bitwise clear ug-C-12 ug-C-16
bitwise complement ug-C-10 entry points, I/O list initialization ug-C-16
bitwise extract ug-C-11 entry points, scalar intrinsics ug-C-2
bitwise OR ug-C-10 entry points, vector intrinsics ug-C-2
bitwise shift ug-C-10 ERR specifier ug-8-1
bitwise test ug-C-11 error messages ug-1-7
bitwise XOR ug-C-10 error reporting ug-D-1
branch optimization ug-4-19 error utility ug-B-1
BYTE ug-A-1 error-processing utilities ug-8-4

errors, runtime ug-8-1

C errsns ug-6-4
C interface ug-1-11 errtrap utility ug-8-5
calling conventions ug-5-1, ug-C-1 examples  ug-5-7
calling utility routines ug-6-1 exception, runtime ug-3-1
CHAR function ug-3-4 exceptions ug-8-3 _
character constants ug-3-1 executing programs  ug-1-7
character data ug-3-1 extt ug-G-4
character I/O ug-3-3 exponentiation programmed operators
character library functions ug-3-4 ug-C-13
character relationals ug-C-12 external file type ug-2-5
character representation ug-A-4
character strings, concatenating ug-3-3 F
character substrings ug-3-2 fc command line ug-1-2
character variables, declaring ug-3-2 JSil files  ug-4-15
character-valued function ug-5-1 file type wug-2-5
code motion ug-4-10 file-naming conventions ug-1-1
common subexpression elimination ug-4-13 files, FORTRAN source ug-1-1
compiler features ug-1-1 fix-to-float conversion ug-C-7
compiler messages ug-1-8, ug-B-1 floating-point data representation ug-A-2
compiler options ug-1-2 floating-point, IEEE ug-A-3
compiling programs ug-1-2 floating-point, native ug-A-3
complex conjugate ug-C-8 floating-point representation, IEEE ug-1-1,
complex programmed operators ug-C-14 ug-1-4
complex representation ug-A-4 float-to-fix conversion ug-C-6

conditional induction variables ug-4-6 formatted I/O  ug-2-4




Page 2

FORTRAN argument packets ug-5-1
FORTRAN intrinsic library ug-C-1
FORTRAN I/O library ug-C-15
function-naming convention ug-C-1

G
gerror utility ug-8-7
global optimization ug-4-7

H
hoisting ug-4-20
Hollerith representation ug-A-5
hyperbolic cosine ug-C-6
hyperbolic sine ug-C-6
hyperbolic tangent ug-C-6

I
ICHAR function ug-3-4
idate ug-6-4
IEEE floating-point ug-A-3
IEEE floating-point representation ug-1-1,

ug-1-4

IEEE/native conversions ug-C-12
terrno utility ug-8-7
imaginary part of complex ug-C-8
INDEX function ug-3-5
Inf operand ug-A-3
inline substitution ug-4-14
inlining, how to use ug-4-15
inlining, restrictions on ug-4-17
inlining, when to use ug-4-15
input/output ug-2-1
instruction scheduling ug-4-19
integer conversion ug-C-7
integer part of real ug-C-8
integer representation ug-A-1
internal file type ug-2-5
internal files ug-2-6
intrinsic runtimes ug-C-3
invariant computation ug-4-10
invoking the compiler ug-1-2
I/O error processing ug-8-1
I/O forms ug-2-4
I/O list element transmission ug-C-16
I/0 list initialization ug-C-16
I/0O list termination ug-C-17
I/O operation  ug-C-15
I/O runtime naming convention ug-C-16
IOSTAT specifier ug-8-2
-ts option ug-4-16

L
ld ug-1-6
LEN function ug-3-4
lexical comparison functions ug-3-5
libraries, runtime ug-1-7
list-directed I/O  ug-2-4
LNBLNK function ug-3-4
loader, UNIX ug-1-6
loading programs ug-1-6

Index

%LOC ug-5-4

local optimization ug-4-12
logical names ug-2-1
logical records ug-2-6
logical representation ug-A-1
longjmp utility ug-8-4
loop distribution ug-4-2
loop interchange ug-4-3
loop replication ug-4-17
loop table ug-1-8

loop unrolling ug-4-17

M

machine-dependent optimization ug-4-18
matching paired vector references ug-4-20
maximum ug-C-8

messages ug-1-7, ug-B-1

minimum ug-C-8

muvbits ug-6-5

N
namelist-directed I[/O ug-2-6
NaN operand ug-A-3
native floating-point ug-A-3
nearest integer ug-C-7
non-FORTRAN-to-FORTRAN calling
sequence ug-5-4

NO_RECURRENCE directive ug-4-5

O
OPEN statement ug-2-2
optimization ug-4-1
optimization report ug-1-7, ug-1-8
options, compiler ug-1-2

P
packets, argument ug-5-1
paired vector references ug-4-20
parallel processing ug-4-6
parallelization ug-4-6
perror utility ug-8-7
pmd utility ug-7-2
pointer, argument ug-5-1
positive difference ug-C-9
post-mortem dump ug-7-2
preconnection of units ug-2-1
problem reporting ug-D-1
procedure names ug-5-5
program interfaces ug-1-11

R
ran ug-6-4
real data representation ug-A-2
real part of complex ug-C-8
REAL*4 ug-C-8
REAL*8 product of Real*4’s ug-C-9
REAL*8 to REAL*4 conversion ug-C-8
records, logical ug-2-6
recurrence ug-4-4
recurrences, array references ug-4-4



Index

reductions ug-4-5

redundant-assignment elimination ug-4-9,
ug-4-12

redundant-subexpression elimination ug-4-9

redundant-use elimination ug-4-12

%REF ug-5-3

register allocation ug-4-19

remainder ug-C-9

report, optimization ug-1-8

reporting problems ug-D-1

return values ug-5-6

RINDEX function ug-3-5

Rop (reserved operand) ug-A-3

runtime data items ug-C-14

runtime error messages ug-1-10, ug-B-2

runtime errors and exceptions ug-8-1

runtime interface wug-1-11

runtime libraries ug-1-7, ug-C-1

runtime messages ug-B-1

runtime prefixes ug-C-1

runtime stack ug-5-4

runtime utilities ug-6-1

scalar truncation ug-C-1
scalar/vector intrinsic example ug-C-3
secnds  ug-6-4

semantic differences with vectorization ug-4-3

sequential access ug-2-5

sequential-access file ug-2-6

setymp utility ug-8-4

signal handling examples ug-8-8

stgnal utility ug-8-5

signals and exceptions ug-8-2

source files ug-1-1

span-dependent instructions ug-4-19

stack, runtime ug-5-4

strength reduction ug-4-11

strength reduction and the code generator
ug-4-20

string index ug-C-12

string length ug-C-12

string-manipulation programmed operators
ug-C-14

strip mining ug-4-2

subprogram calling conventions ug-5-1

system errors ug-B-2

system utilities ug-6-1

system utility ug-6-3

T
table, array ug-1-10
tangent ug-C-5
time ug-6-4
traceback utility ug-8-6
transfer of sign ug-C-10
traper utility ug-8-6
tree-height reduction ug-4-20
trouble reports ug-D-1

Page 3

U
unformatted I/O ug-2-4
units, input/output ug-2-1
UNIX utilities ug-6-1
utilities ug-6-1
utility routines, how to call ug-6-1

v
%VAL ug-5-3

VAX-11 FORTRAN system utilities ug-6-3
vector mask programmed operators: ug-C-14
vectorization ug-4-1

vectorization, nested DO loops ug-4-2
vectorization restriction ug-4-3

vectorizer limitations ug-4-4

vers command ug-D-1

version of software, how to find ug-D-1

w

which ug-D-1







L N
. Software
A

Yy |
= CONVEX Documentation
A N
-
Index Enhancements

So that we can continue to provide better indexing in CONVEX documentation, please keep track of
the words or phrases you look up in an index, but don’t find. Then, list under which index entry you
ultimately found the information you were seeking. You can mail one of these postage-paid forms to
the CONVEX Software Documentation Department monthly, or you can submit the information to
the Technical Assistance Center in the form of a bug report. You can get more forms by writing to
CONVEX at the address below, or by calling us. You can also photocopy this form and mail it back
in an envelope. Thank you for helping us to serve you better.

Name: Company:

Phone: Date:

Manual Title/Rev. No. Looked Up Found Information
This Word Under This Word

CONVEX Computer Corporation — P.O. Box 833851, Richardson, TX 75083-3851 (214)952-0200




(Fold Here First.)

A— -_
— CONVEX
-‘“:'

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 1046 RICHARDSON, TEXAS

POSTAGE WILL BE PAID BY ADDRESSEE

CUSTOMER SERVICE
CONVEX Computer Corp.
P.O. Box 833851
Richardson, TX 75083-3851

(Fold Here Second)

(Tape or Staple)

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES




You are invited to submit your comments concerning the clarity and service of this manual.
Constructive critical comments are welcome and help us continue to generate quality customer

CONVEX FORTRAN User’s Guide
Document No. 720-000030-203, Eighth Edition

Reader’s Forum

documentation. (Please list the page number for questions and comments):

From:
Name Title
Company Date

Address and Phone No.

FOR ADDITIONAL INFORMATION/DOCUMENTATION:

Location

Phone Number

In Texas

Other continental locations
Outside continental U.S.

(214)952-0379
1(800)952-0379
Contact local CONVEX office

Direct Mail Orders to:

CONVEX Computer Corporation

Customer Service

Educational Department

P.O. Box 833851

Richardson, Texas 75083-3851 USA




(Fotd Hers First)

ena———

— R
& __ CONVEX
) ey

-

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 1048 RICHARDSON, TEXAS

POSTAGE WILL BE PAID BY ADDRESSEE

CUSTOMER SERVICE
CONVEX Computer Corp.
P.O. Box 833851
Richardson, TX 75083-3851

(Fold Here Second)

(Tape or Staple)

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES




