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Preface

Introduction

This manual describes the CONVEX Vector C compiler and the C programming language as

implemented for the family of supercomputers produced by CONVEX Computer Corporation.

Although no official ANSI, NBS, or ISO standards for C exist at this time, the generally accepted
definition of the language appears in Appendix A of B.W. Kernighan and D.M. Ritchie’s The C
Programming Language (Prentice-Hall, 1978). This book is considered to be the standard for C
on most systems for which UNIX is available.

Intended Audience

It is assumed that the reader is familiar with the C language. Programmers familiar with other
programming languages, but not with C, should read Appendix A of The C Programming
Language.

Organization

Chapter 1 is an overview of CONVEX C. It covers the procedures for compiling,
linking, and executing a program.

Chapter 2 describes the CONVEX extensions to the C language.

Chapter 3 describes machine-independent and machine-dependent optimizations. Both
vectorization and optimization techniques are described. Sections on using argument
lists and vector intrinsic functions conclude the chapter.

Chapter 4 describes the CONVEX C call conventions that enable you to call routines
written in languages other than C. It details the CONVEX calling standards and shows
machine code examples of calling conventions.

Chapter 5 describes the services available in the C runtime library.

Chapter 6 describes how to debug C programs using the adb, ¢sd, and pmd debugging
tools.

Appendix A describes the C data representations supported by CONVEX C and shows
how they are stored in memory.

Appendix B describes the various sources of diagnostic messages: compiler, loader, and
runtime library.

Appendix C lists and describes the vepp preprocessor statements.
Appendix D lists the runtime libraries with pathnames.

Appendix E describes the compiler directives.

.




Notational Conventions

The following conventions have been used in this document:

1.

Mnemonics enclosed in “less than’® and ‘‘greater than’ signs designate ASCII
nonprintable characters. For example, <CR> stands for carriage return.

. Brackets ( [ ] ) designate optional entries.

Horizontal ellipsis ( . . . ) shows repetition of the preceding item(s).

Vertical ellipsis shows continuation of a sequence where not all the statements in an
example are shown.

References to the CONVEX UNIX Programmer’s Manual appear in the form csd(1),
where the name of the manual page is followed by its section number enclosed in
parentheses.

Italics within text indicate commands, filenames, or programs.

Within command sequences and text set off from regular text, boldface type indicates
literals. Words appearing in boldface should be typed just as they appear. Italics
within command sequences indicate generic commands or filenames. Substitute actual
commands or filenames for the italicized words.

Associated Documents

CONVEX provides the following related documents:

CONVEX Assembly Language User’s Guide - Describes the CONVEX Assembler.

CONVEX UNIX Programmer’s Manual, Parts I and II - Documents the UNIX operating
system.

CONVEX adb Debugger User’s Guide - Describes how to use the adb debugger to debug
programs at the assembly-language level.

CONVEX C Compiler User’s Guide - Describes how to use ce¢, the scalar CONVEX C
compiler.

CONVEX Consultant User’s Guide - Documents an optional program package that
includes the CONVEX c¢sd debugger.

CONVEX Guide to Software Development - Describes some of the available tools and
procedures for software development.

CONVEX Loader User’s Guide - Describes how to use the loader for specific
applications.

The C Programming Language, B. Kernighan and D. Ritchie, Prentice-Hall, Inc., 1978 -
Describes the C language and contains both a tutorial introduction and a reference
manual.



Reply Form

Information on how to request additional documentation and a reply form for questions and
comments are available at the back of this manual.

ix
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Overview

1.1 Introduction
C is a general-purpose programming language that provides many of the features of other modern
high-level languages. Subroutines written in C can be linked with both FORTRAN and assembly
language routines to run as a package. The data types and control structures of the C language
are efficiently supported by the architecture of the CONVEX computers.

The C language is closely associated with the UNIX operating system. In fact, the kernel of the
CONVEX UNIX operating system and its associated utilities are written in C.

The CONVEX Vector C Compiler (vc) provides a variety of features to improve programming
efficiency and to enhance the performance of programs written in C. These features include:

e Source code optimizations to eliminate unnecessary computations during program
execution.

e Vectorization to improve performance by eliminating loop overhead.

e Machine-dependent optimization to enhance the object code produced by the compiler.
The Vector C compiler generates reentrant object modules that can be shared and can include
symbol tables used by the CONVEX symbolic debugging tools. The runtime libraries support
calls for all UNIX system services.
The data types in Vector C exploit the internal data representations found on CONVEX
computers. All the vector and scalar data types defined by the CONVEX architecture are
supported in Vector C. In addition:

e C supports structured aggregate data (called struct) in multidimensional arrays.

e Structured variables may include bit-field definitions.

e Like FORTRAN, C allows several variables to have their storage locations made
equivalent via the unton construct.

e C also includes user-defined data types (called typedef).

o C supports an enumerated scalar data type, enum, that permits you to assign the
ordinal value of a set of scalar values to a variable.

e The values returned by C functions may be of any data type, except arrays, including
struct and uniton.

The C language passes arguments to functions using the “call-by-value’ approach; that is, it
sends functions the value of arguments, rather than the addresses of the arguments. You can also
pass variable addresses to achieve the effects of the FORTRAN “call-by-reference’ operation.
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1.2 Compiling C Programs

To invoke the Vector C compiler, enter the following command line:

ve [options] files [loader-options]
In the command line, options is one or more of the options specified in Table 1-1. The parameter
files can specify C source files, assembly language source files, object modules, or libraries. The

loader-options are certain of the options recognized by the loader (/d).

Files specified on the compiler command line have standard suffixes as shown in the following
table:

Filenames for... End With the Extension...

C source files

Compiled object module files
Symbolic assembly-language files
Libraries

b oo

The following loader options can be specified on the command line: A, D, E, |, M, m, o, r, s, T,
t, u, X, x, and y. These options are explained in the CONVEX Loader User’s Guide.

Examples:

The following command compiles the source file span.c performing local and global scalar
optimization and vectorization. The executable file is then loaded into a.out.

ve -02 span.c

The next example compiles the C source file mflops.c, assembles the assembly language file
timer.s, and links them together, generating the symbol table information necessary to run the
csd debugger. No optimization is performed and the executable file is written to a.out.

ve -no -db milops.c timer.s
The following command line compiles the C program therm.c, assembles the file assem.s, and
links the resulting object files with myobs.0 and functions from library mylth.a to form the
executable object file a.out.

vc therm.c assem.s myobj.o mylib.a

1.3 Linking C Programs

When compilation is complete, the compiler automatically calls the loader (Id) and passes to it
any loader options that were specified on the compiler command line.

The preferred method of invoking the loader for C programs is to use the ve command. This
approach ensures that the proper C libraries are loaded in the proper order. Any libraries
specified on the vc line with the -l loader option take precedence over the standard libraries.
Appendix D identifies the pathnames and contents of the C runtime libraries.

You can also invoke the loader using the /d command. For information on alternative methods of
invoking the loader, see the CONVEX Loader User’s Guide.
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Examples:

In the following example, the loader is automatically invoked by the compile command ve. The
resulting executable file is redirected to the file myprog.

vc parsec.c -0 Myprog
In the following example, the loader is invoked with the /d command to combine three modules,
which have already been compiled, with the standard startup routine and libraries. The output is

written to a.out.

1d /1ib/crt0.o moda.o modb.o modc.o -lvec-Bi -lc

1.4 Executing C Programs
To execute a program after it has been generated by the loader, simply type the name of the
executable file. The default name of the executable file is a.out. If the -0 name option was

specified on the compiler or loader command line, the name of the executable file is name.

Example:

The following line executes ¢.out, reading input from the file input and writing output on the file
output.

a.out < input > output
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Table 1-1: Command Line Options

Option

Description

—Bstring

-C

—Dname[=def

—db

-E

—fd

-fn

Finds substitute compiler (cocc and wvepp) in the
directory named string. If string is empty, use a
standard  backup version in  the  directory
/usr/convez/oldve. ~ For example, the command
-B/usr/new invokes /usr/new/cocc and /usr/new/vepp
instead of the default /usr/convez/cocc and

/usr/convez/vepp.

Tells the macro preprocessor not to delete comments.

Suppresses the loading phase of the compilation. The
compiled object module that is generated from the files
file.c or file.s is written to file.o.

Defines a name to the preprocessor as if the #define
preprocessor statement had been used. If no definition is
given, the name is defined as 1.

Produces additional information for use by the symbolic
debugger, csd, and the pmd utility. Also passes the -lg
option to the loader. This option can be used with all
levels of optimization.

If the -O option is used to specify optimization at some
level, there may be source statements for which no
debugging information is generated for csd.

Runs only the C preprocessor on the named C programs
and sends the result to standard output.

Causes generated code to operate on 32-bit (single-
precision) floating-point numbers. This option may
enhance program execution speed, but the results may
have less precision than if 64-bit floating-point numbers
were used.

Specifies that real constants are to be translated into
IEEE format and processed in IEEE mode. If you
specify this option, your machine must be equipped with
the IEEE support hardware or an error message occurs
and compilation terminates. If you do not specify a
floating-point format, your site default is used.

Specifies that real constants are to be translated into
native format and processed in native mode. If you do
not specify a floating-point format, your site default is
used.

1-4
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Table 1-1: Command Line Options (continued)

Option Description

-fx Specifies either that the routine contains no real
constants or that the routine is dual mode. If you use
this option and the routine does contain real constants,
they are translated into native format and processed in
native mode. For further information on dual-mode
programming, please obtain the dual-mode application
note from the CONVEX Technical Assistance Center
(TAC).

—Idir Names an alternate directory to search for #include files.
Several -I options can be used to create a search path for
#1nclude files. The directories are searched in the order
specified on the command line. The current working
directory is searched before any directories specified by
the -7 option.

-na Suppresses all advisory diagnostic messages.

—-no No optimization is performed.

-nv Suppresses all vectorization summary messages.

—-nw Suppresses all warning diagnostic messages.

—On Performs optimization at the level specified by n. The

levels are O (local scalar optimization), 1 (local and
global scalar optimization), and 2 (local and global
scalar optimization plus vectorization). If this option is
not specified, the compiler optimizes at the -O0 level.

—0 name Specifies that the executable program produced by the
loader (Id) is to be called name. The default name is
a.oul.

-p Causes the compiler to produce code that counts the

number of times each routine is called. If loading takes
place, replaces the standard startup routine by one that
automatically calls monitor(3) at the start and arranges
to write out a mon.out file at normal end of execution of
the object program. Also, a profiled library is searched
instead of the standard C library. An execution profile
can then be generated by use of prof(l) (optional
product).

—-pb Causes the compiler to produce statement-level counting
code that produces an execution profile named bmon.out
at normal termination. Listings of source-level execution
counts can then be obtained using bprof(1) (optional
product).
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Table 1-1: Command Line Options (continued)

Option

Description

~tl time

~Uname

Causes the compiler to produce counting code in the
manner of -p, but invokes a runtime recording
mechanism that keeps more extensive statistics and
produces a gmon.out file at normal termination. An
execution profile can then be generated by use of gprof{1)
(optional product).

Generates symbolic assembly code for each program unit
in a source file. Assembler output for the source file z.¢ is
put on file z.s; the assembly file is not assembled.

Instructs the compiler to check the program for
compilation errors. No optimization or code generation
is performed with this option.

Reduces the size of the windows that the compiler uses
in optimizing programs to n executable statements. This
option is useful for compiling large programs that might
otherwise compile very slowly.

Sets the maximum CPU time limit for compilation to
time minutes. If the CPU time exceeds the specified
time, compilation is aborted.

Removes any initial vepp definition of name. The only
built-in names defined by we are ¢“__LINE__”,
“__FILE__”, and “convexve’.

Performs potentially unsafe optimizations, i.e., moves
the evaluation of common subexpressions and/or
invariant code from within conditionally executed code.

Tells the compiler that formal array parameters of basic
types are to be treated as arrays rather than as pointers
and implies that actual array arguments do not overlap
each other or any external variable that is modified in
the function. If these rules are followed, the need for
no_recurrence directives in functions is reduced.

Identifies compiler version. Outputs the version number
of we, vepp, and cocc (the compiler). The version
numbers of ve, vepp, and cocc go to stderr.
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1.5 Diagnostic Messages

This section describes the diagnostic messages that you can receive from the compiler or during
runtime.

1.5.1 Compiler Diagnostic Messages

The compiler generates four kinds of user diagnostic messages: user errors, warnings, advisories,
and vectorization summaries. The compiler diagnostic messages are directed to standard error.
Appendix B lists the compiler diagnostic messages. Each messages consists of:

The compiler name (vc).

The line number on which the error occurred.

The character position within the line.

The pathname of the source file containing the line in error.
A brief description of the error.

Examples:

vc: Error on line 7.22 of test.c: label referenced but not defined.

vc: Warning on line 3.6 of zodiac.c: divide by zero is possible at runtime.

ve: Loop on line 1.7 of matrix.c (1 loop) fully vectorized.
Use a text editor to locate the line containing the error using the line number from the diagnostic
message. Alternatively, you can generate a listing with line numbers using the UNIX command
cat. ’ '
Example:

cat -n statfile

You may also use the error utility to insert diagnostic messages into your source file as comments.
This method is a convenient way to find errors while you are editing a source file.

The compiler places output files in the current directory. It directs a compilation summary to
standard output (stdout), and the vectorization summary and diagnostic messages to standard
error (stderr). You can redirect these messages to a file using standard UNIX redirection
commands. For further information, see csh(1) and sh(1).

Example:

vc stat.c |& error

This command compiles stat.c and sends the standard output and standard error output to the
error utility, which then inserts the diagnostic messages into the source file stat.c.

If the compiler has an internal error, it generates a message in the following format:

ve: >>>>> COMPILER ERROR <<<<<
>>>>> See your system manager for help <<<<<

The preceding lines are followed by a line that describes the nature of the error. Report such
errors to your system manager or to the CONVEX Technical Assistance Center (TAC).
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1.5.2 Runtime Error Messages

Runtime error messages are directed to standard error. A math routine error message has the
form:

routine_name: [error_number] description
Example:

mth$r_sqrt: [300] square root undefined for negative values

1.6 Program Interfaces

The following sections describe the interfaces between ve and the other programs it invokes to
produce an executable program. During the processing, error messages, warning messages, and
vector summaries are written to stderr. The individual steps by which a source file is converted
to an executable file are as follows:

1. The Vector C preprocessor (vepp) processes the source files and include files. The
resulting output file is passed to the compiler.

2. The Vector C compiler (cocc) receives the output from the preprocessor and generates
object code. Assembly language code is not produced unless you have specified the -S
option on the ve command line.

- 3. The loader (/d) produces an executable file from the compiled object code along with
any libraries that are required.

1.6.1 Preprocessor

The C compiler software package contains a preprocessor (vcpp) that is invoked automatically by
the compiler. The preprocessor processes symbolic constants and performs the expansion of
macros. The preprocessor also makes possible the inline substitution of constant expressions
referenced in C source files, and text-forming macro bodies. Macro arguments are substituted
one-for-one in the position specified in the macro definition.

The preprocessor supports positional argument substitution and includes a conditional
compilation facility. See Kernighan and Ritchie’s The C Programming Language or vepp(1) for a
detailed explanation of this facility.

The preprocessor statements begin with the # symbol in column 1 and are syntactically
independent of the rest of C. The preprocessor statements are described in Appendix C.

1.6.2 Runtime Support System

The runtime system provides both scalar and vector versions of the math functions. The
compiler determines which version of the routine to call. The standard calling sequences for the
runtime system are described in Chapter 4.
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1.6.3 Debuggers
There are three debugging tools that can be used with C programs. These tools are as follows:

® The source-level (csd) debugger provides statement-level execution control and access to
program variables through symbolic names. In order to use csd, you must compile your
program with the -db option on the ve command line.

e The object-level debugger (adb) requires no special support (such as recompilation of
programs) from the compiler. Unlike csd, you need not specify any options when
compiling programs for use with adb.

e The optional post-mortem dump (pmd) utility displays information about failed
programs that can be used for debugging. This information includes the signal that
caused the program failure, an approximate source line at which the failure occurred,
the contents of machine registers and global variables, and a summary of the resources
used by the program.

1.6.4 lint Utility

The lint utility examines C programs for potential portability problems and detects such errors as
uninitialized variables or mismatched argument types between separately-compiled programs.

Many C programs consist of separately compiled modules. Because the C compiler operates on
single source files, it does not check the number and data types of function arguments in function
calls to ensure that they agree with the arguments declared in-the function itself. The lint utility
accepts multiple input files and library specifications and checks them for consistency. It is
suggested that you run lint after any program changes. For more information, see lini(1).

1-9
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CONVEX Extensions to C

2.1 Introduction

The CONVEX Vector C compiler (vc) supports the use of four data types not specified in the
portable C compiler. Three of these data types (structure, void, and enumeration) are now
supported in most versions of C. The fourth data type, long long int, is a 64-bit integer data type
developed expressly for use on CONVEX computers.

In addition to the data type extensions, the following differences exist between the portable C
compiler and CONVEX Vector C:

e The portable C compiler treats the result of the sizeof operator as an int; the Vector C
compiler treats it as unsigned. This treatment causes differences in the generated code
if the result of the sizeof is subtracted from a smaller int value.

o The portable C compiler supports arrays with up to 14 dimensions. The Vector C
compiler supports arrays with up to 7 dimensions.

2.2 Structure Data Type

Vector C allows the assignment of one structure to another via the ‘“‘="" operator. Given the
declarations,

struct employee {
char name [40];
int age;
char sex;
3
struct employee new_emp = {"john smith®*, 31, ’'m'},
old_emp;

old_emp can be assigned the values from new_emp with the single assignment statement:
old_emp = new_emp;
rather than the three statements:
strncpy (fold_emp.name, &new_emp.name, 40);
old_emp.age = new_emp.age;
old_emp.sex = new_emp.seX;
Vector C also extends the use of structures in function calls. Structures can now be passed to
functions by value. The entire structure is pushed onto the stack. If new_emp declared in the

previous example is passed to a function update_emp, 48 bytes are pushed on the stack. The
extra three bytes maintain stack alignment for performance reasons.
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Functions can also be declared to return structure values. For example,

struct employee update_emp();
new_emp = update_emp (old_emp);

2.3 Enumeration Data Type

In Vector C, enumerated variables are accepted as integers. The definition of the enum data type
permits the use of enumerated variables wherever integers can be used.

The ve compiler does not provide ¢sd support for enumeration data types. References to these
types are treated as integers.

2.4 Void Data Type

The void data type has no values and performs no operations. It is used to specify the return

type of a function that returns no value. You can also use votd to cast when you want to discard
a return value.

2.5 64-Bit Integer Data Type

The ve compiler supports the native 64-bit long integer data type that exists in the CONVEX

computer architecture. The compiler supports signed and unsigned 64-bit integer variables, 64-
bit integer literal constants, and 64-bit integer inputpt.

2.6 64-Bit Integer Variables

2-2

The long long int declaration specifier declares 64-bit integer variables. "The long int type is 32-
bits for backward compatibility with other UNIX implementations.

You may declare long long int variables to be either signed or unsigned. Signed 64-bit integers
may be declared wherever signed 32-bit integer variables may be declared, and are designated
either long long int or long long.

Unsigned 64-bit integer variables may be declared wherever 32-bit unsigned integer variables may
be declared, and are designated either unsigned long long int or unsigned long long.

Function arguments declared as long long integers are passed in 64-bit format. To avoid
argument misalignment, declare the corresponding parameter declaration in the function as a long
long int.

In Vector C, 64-bit integers have the same arithmetic properties as 32-bit integers. The 64-bit
integers also participate in the data-type conversions routinely performed for arithmetic, logical,
and assignment operations.

If either operand of an arithmetic or logical operation is a 64-bit integer, the other operand is
promoted to a 64-bit format before the operation is performed. Signed values are converted to
64-bit format via sign extension. Unsigned values are converted with zero extension. Quantities
assigned to a 64-bit integer quantity are converted to 64-bit format. Signed 64-bit integers
should not be used to contain pointer data, since their portability is not assured.
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2.7 64-Bit Integer Constants

The Vector C compiler supports the use of long long integer constants. The format of these
constants is nnnLL, where nnn is a digit string. Constants may be specified with either uppercase
LL, lowercase !, or mixed LI, IL; the uppercase designation is preferred because it is easier to
read.

As with smaller integer constants, you may use both octal (leading 0) and hexadecimal (leading
0x). The default radix for all numeric constants is decimal. Decimal constants with values that
exceed the largest signed 32-bit integer are taken to be type long long. Likewise, octal or
hexadecimal constants with values that exceed the largest unsigned 32-bit integer are taken to be
type long long.

2.8 64-Bit Integer Descriptors

Format strings that include specifications of the form Z%ll can be used for the input or output of
64-bit integer variables. Format modifiers, such as u, z, d, and o used with 32-bit integer values,
can also be used with 64-bit integer values. The number of significant digits maintained is 16 for
hexadecimal, 22 for octal, and 20 for decimal values. Larger fields are padded with blank values.

In printf and scanf, just as %ld, %lz, %lu, or %lo specify long (32-bit) conversions, %lld, %liz
%llu, or Bllo, specify long long integers.

You can use the library routines printf and scanf to manipulate 64-bit values. These routines are’
documented in Chapter 5 of this guide, and in Section 3S of the CONVEX UNIX Programmer’s
- Manual.
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Optimization

3.1 Overview

The CONVEX Vector C compiler optimizations produce code that results in enhanced
performance. Optimization involves carefully manipulating operations in the source programs
being compiled; the result is an object program that can run more efficiently. When you compile
programs using one of the optimization options (-00, -O1, -0O2), compilation time increases as
more optimizations are performed. Also, use of the optimization option can affect accuracy of the
¢sd symbolic debugger.

The Vector C compiler performs the following types of optimization:
e Local optimization
e Global optimization
° Vectorizatiog

® Machine-dependent optimization

3.2 Local Optimization

Local optimization is machine-independent scalar optimization performed on a sequence of
consecutive statements with one entrance and one exit. Scalar optimization uses information
within the source code to eliminate unnecessary computations during program execution. The
-00 option on the command line causes the compiler to perform local optimization only.

3.2.1 Assignment Substitution

Assignment substitution is the process by which the compiler removes redundant loads and stores.
The process involves substituting a preassigned value of a variable for all succeeding uses of the
variable. For example:

Effectively, the y-+c replaces all uses of = up to the next assignment to z. As a result, the
compiler can eliminate the loads on z if z can be retained in a register. Not only does this
optimization save space and time, but it also allows other optimizations such as constant folding
and redundant subexpression elimination.

3-1
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3.2.2 Redundant-Assignment Elimination

Redundant-assignment elimination removes redundant assignments to the same variable. An
assignment to a variable can be followed by another assignment to the same variable, overriding
the result of the first assignment. Since there is no need for the program to perform the first
assignment, the compiler eliminates it.

3.2.3 Redundant-Use Elimination

This optimization collapses all uses of a variable between two assigns into one use; it is a
simplistic form of redundant-subexpression elimination. As a result, the compiler can eliminate
loads provided it can retain the variable in a register.

3.2.4 Redundant-Subexpression Elimination

Redundant-subexpression elimination involves removing repeated evaluations of equivalent
arithmetic, logical, and relational operations that are recognized as common subexpressions.
When the compiler detects a common subexpression, it removes all but one common
subexpression from the program and replaces it with the one retained in a register. In the
following example, the first y+c replaces the second occurrence but not the third:

zl sy +¢;

22 =y + c;

y=x+1;
zZ2 =y + ¢c;

3.2.5 Constant Propagation and Folding

Constant propagation in a program means that when you assign a constant to a variable,
everywhere the variable occurs later, the compiler replaces it with the constant. For example, if
you assign z = 5, wherever z occurs later, constant propagation replaces it with the constant 5.

In constant folding, when the compiler comes across an operation on constants, like y = 5 + 7, it
replaces the operation with its value (here, 12). The compiler may assign the new value to y, so
that y can now be propagated.

Example:
Original Transformed
Program Program
i =65; 1=5
1 =0;
J=1+2 j = 2;
K=k +1*7]; kK =k + 10;

Compile-time type conversions cause the compiler to perform type conversions on mixed-mode
expressions. The conversion of constants and folded constants is performed as part of the
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constant propagation and folding optimization. For example, if the program contains the

assignment ¢ = 1, where z is the double data type, the compiler converts the 1 to double. The
effect is the same as if z = 1.0 had been written.

3.2.86 Algebraic Simplification

The compiler performs algebraic and trigonometric simplifications as shown in the following
table.

The expression... Is converted to...
x+0 b'd

x*1 x

X*0 0

x-0 x

x&-1 b 4

x&0 0

x|-1 -1

x|0 x

=1%x -X

b b 4 0

x/-1 -x

x/x 1

0-x -X

o/x ’ (o]

sin(x) *cos(x) .B*sin (2x)
sin(x)/cos(x) tan (x)
cos(x)/sin(x) 1/tan(x)

The obvious variants of these operations are performed for the cémmutative operators; for
example, z+0+y => z+y.

3.2.7 Simple Strength Reduction

The compiler attempts to replace time-consuming operations with those that execute faster, for
example, replacing a multiply operation with a shift.

Examples:

x/c => (1/c)*x
Bxx => (X<<2)+x

3.2.8 Common Subexpression Elimination

The compiler recognizes common subexpressions and retains the value in a register to avoid
repetitious load operations. For example, the compiler recognizes b+¢ as a common subexpression
of a+b+c+d and c+d+b.
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3.3 Global Optimization

3-4

Global optimization is machine-independent scalar optimization that is performed over an entire
program unit, including conditional statements and loops. The -O1 option on the ve command
line causes the compiler to perform both global and local optimization.

3.3.1 Constant Propagation and Folding

Global constant propagation and folding is similar to local constant propagation and folding,
except the folded constant is propagated across the function.

Example:
Original Program Transformed Program
main() main ()
{ {
int a, b, ¢, i; int a, b, ¢, 1;
a=2=5; a=25;
b = 16; b = 15;
scanf ("%4", &i); scanf (*%d*, &1);
if (1 <= 0) { if 1 <=0)
a = 8; a = 8;
c = a; c = 86;
b =a + c,; b = 12;
} else { } else {
c=a+b; c = 20;
b=a+ 8+ c; b = 33;
> }
printf(*%d %d %d\n", printf ("%d %d %d\n",
a, b, ¢); a, b, ¢);
b b4

3.3.2 Dead-Code Elimination

As a result of constant propagation and folding, the control expression of an if statement may be
folded. The alternative (if, else) that is now unreachable is eliminated.

An example of the use of dead-code elimination is conditional compilation. Code that is to be
conditionally compiled is enclosed by an if statement that tests a variable whose value is set to 1

(compile enclosed code) or 0 (do not compile enclosed code) by an assignment or a preprocessor
# define statement, or data initialization.
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Example:
Original Program Transformed Program
c = 0; c=0;
it () {
a=a+1;
b = 10;
}

3.3.3 Copy Propagation

Copy propagation occurs when the compiler replaces a variable with another variable to which it
has been equated. For example, if you assign r = y, the compiler may replace later occurrences

of z with y.
Example:
X =y; x =y;
becomes
t=2z - x; t=2z -y

3.3.4 Redundant-Assignment Elimination

Redundant-assignment elimination involves removing assignment statements (definitions) that are
not used. The final assignments to a dummy parameter, extern variable, or static local variable
of a function are never eliminated. Also, if the right side of an assignment statement contains a
function call, the function call is not eliminated.

Example:
Original Program Transformed Program
main() main ()
{ {
int a, b, ¢, X, ¥y, Z; int a, b, ¢, X, ¥y, Z;
¥
X = y * Z,
it (a > 0)
a =X *y;
else
X=2a-b=*c;
¥

Note that all the executable code in this function is removed because the values assigned to z and
a are never used.
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3.3.5 Redundant-Subexpression Elimination

Like local redundant-subexpression elimination, global redundant-subexpression elimination
involves the removal of common subexpressions. Instead of retaining the value of one common
subexpression in a register, however, the compiler assigns the value to a compiler-generated

temporary; all other occurrences are replaced by this temporary.

Example 1:

Original Program

{

main()

double a, b, ¢, e, £, k, §, 1;

scanf ("§1f*, &c);
if (k < 1)
a=b+ (c*x4) / (-(] *1b) + sqre(e));
else
e=9 - (b+ (c*x4) / (-(] *b) + sqrt(e)));
£ =0+ (c*4) / (-(] * b) + sqrt(c));

}
Transformed Program
main()
{
double a, b, c, e, f, k, j, 1, t1;
scanf ("%1f", &c);
tl1 =b + (c *4) / (-(§ * b) + sqrt(e));
if (x < 1)
a = ti;
else
e = e - t1;
f = t1;
>

The common subexpression is moved only if it is safe; that means the subexpression is always

evaluated.
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Example 2:

Original Program

main ()

{
double a, b, c, e, £, J, k, 1;

scanf ("%1d4", &c);
a=b+ (¢ *4) / (-(] * ) + sqrt(c));

if (k < 1)
1 =25;
else
1 =286;

f=e-(b+ (c*4) / (-(J *b) + sqrt(c))):

>
Transformed Program
main ()
{
double a, b, c, o, £, §, k, 1, t1;
scanf ("%1d", &c);
ti = b + (c * 4) / (-(J * b) + sqrt (c));
a = t1;
i1 (k < 1)
1 =25;
else
1 =8;
f =e - t1;
>

In certain cases, it may be advantageous to move redundant subexpressions out of if blocks or
loops, even if it is unsafe (for example, if the alternative that did not evaluate the expression is
seldom executed). The compiler can be directed to perform unsafe optimizations with the -uo
option. Use this option only if you know that no exceptions will be generated by moving
redundant subexpressions.

3.3.6 Code Motion

Code motion involves taking invariant computations in a loop and moving them before the loop.
An invariant computation is one that yields the same result independent of the number of times
the loop is executed. The computation can be a subexpression or assignment. For safety reasons,
no code motion is performed on an invariant expression whose evaluation point does not lie on a
path to all loop exits.
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Example 1:

Original Program

£(a, b, ¢)
double a, b, c;
{

double ar[10], d;
int 1;

scanf (*%14", &d);

for (1 = 0; 1 < 10; 1++) {
a=b+ (c *4) / (-(e * b) + sqrt(c));
ar[i] = 2 + b * ¢;

Transformed Program

f(a, b, ¢)

double a, b, c;

{
double ar[10], e, ti;
int 1i;

scanf ("%1d"®, &e);

a=b+ (c *4) / (-(e * b) + sqrt (c));
t1 =2 + b *x ¢;

for (1 = 0; 1 < 10; i++)

arfi] = t1;
>
Example 2:
Original Program
£(a, b, ¢)
int a, b, c[10];
{
int i;
for (1 = 0; 1 < 10; 1i++) {
a =b;
cl[i] = o;
}
>
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f(a, d
int a,
{
int
a =
for

, )

b, cl10];

i;

b;

(1 =0; 1 < 10; 1i++)
c[i] = 0;

3.3.7 Strength Reduction

Optimization

Strength reduction involves replacing an operator whose operands are either a loop induction
variable or a loop constant, with an operator that executes faster. A loop induction variable is
one whose value is changed within the loop linearly, that is, incremented by a constant amount.
A loop constant is a constant or variable that is loop invariant, i.e., whose value is not changed
within the loop. Typical operators subject to strength reduction are multiplications involved in
the address calculation of subscripted variables.

Strength reduction of mixed-mode multiplies is not performed. The reduced operations are not
numerically equivalent because of the imprecision of floating point for large numbers. For safety
reasons, no strength reduction is performed on an expression whose evaluation point does not lie
on a path to all loop exits. .

Example:

Original Program

main ()
{
int
i =

do

c, 1, x;
1; /* 1 is a loop induction variable */
{

x =1 *%c¢c; /¥ c is a loop invariant */

1 =1+ 2;

} while (1 <= 100);

.
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Transformed Program

main()
{
int 1, ¢, x, %1, t2;
i=1;
tt =1 % ¢;
t2 = 2 % c;
do {
X = t1;

t1 = t1 + t2;
i=1+2;
} while (i <= 100);

If 1 is dead (not used before being assigned) on exit from the loop and there are no other uses of ¢
in the loop except in the incrementation and test, the incrementation can be eliminated. The test
can be replaced by a test on the induced induction variable—the induced temporary. This
optimization is known as linear-function test replacement. After linear-function test replacement,
the equivalent transformed program is shown in the next example.

Example:
main ()
{
int 1, ¢, x, t1, t2, t3;
i=1;
t1 =1 * ¢c;
t2 = 2 * ¢;
t3 = 100 * ¢;
do {
X = ti;

t1 = t1 + t2;
} while (ti <= t3);

3.4 Vectorization

Vectorization converts scalar operations on data arrays into equivalent vector operations. Vector
operations use the vector registers in the CONVEX processors to perform operations on arrays of
data simultaneously. Vector operations can manipulate up to 128 operands with a single
instruction.

The -O2 option on the ve command line causes the compiler to perform vectorization, global
optimization, and local optimization.

The vectorizer vectorizes innermost for loops directly. For example, vector code is generatcd for
the following loop:

for (1 = 0; 1 < 100; i++)
ali] = b[i] + clil;
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Instead of generating a loop to load elements of & and ¢, add them, store into g, and advance ¢,
vector code is generated to load 100 elements of b into a vector register, load 100 elements of ¢
into another vector register, add them, and store the 100 resulting elements from the result vector
register into a.

The algorithms that the CONVEX vectorizer uses are general. Loops containing nested ¢f
statements and nonlinear subscripts (subscripts whose values on succeeding iterations of a loop do
not form arithmetic progressions) can be vectorized. For example, the following loop is fully
vectorized:

for (1 = 0; i < 100; i++) {
al1] = blxk([i] + c[i*1]];
it (afi] < 0)<{
if (a1l < -100)
ali] = 0;
} else
al1] = sqrt(alil);
>

The vectorizer does have some limitations, however, which are described later in this chapter.
Figure 3-1 shows examples of vectorizable loops in C.

Figure 3—1: Vectorizable Loops in C

main()

{
double a[10], b[10], c[10];
int i;

/*
* for loop to do multiple array initialization
*/
for (1 = 0; 1 < 10; 1++) {
afi] = b[i] = c[1] = 1;
}

/*
* for loop, similar to a FORTRAN DO loop
*/
for (1 = 0; 1 < 10; i++) {
a1l = b[1] + e[i];

}
/*
* while loop,
* the compiler must be able to
* find an induction variable
*/
i=0;
while (i < 10)
{
ali] = b[1] + c[i];
i +=1;
}
/*
* do while loop,
* the compiler must be able to
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* find an induction variable

do {
afi] = b[i] + c[i];
} while (++1 < 10);

3.4.1 Strip Mining

The vector registers of the CONVEX processor holds up to 128 elements. When the number of
iterations of a vectorizable loop exceeds (or could exceed) 128 elements, the vectorizer “strip
mines”” the loop before vectorizing it. Strip mining replaces the loop with two loops, the
innermost of which has an iteration count that never exceeds 128. For example, strip mining
makes the conversion shown in the following example:

Example:
Original Loop Converted Loop
for (1 = 0; 1 < n; i++) i =0;
ali) = b[i] + c[1]; for (v = n; 1v > 0; 1v -= 128) {

j =1+ (Q1v < 128 ? 1v : 128);
for (iv = 1; 1v < §; ++iv)

alivl = dliv] + c[iv];
i=1+ 128;

Here, lv is a variable introduced by the compiler to count the number of elements remaining to be
processed, and the loop on v represents a vector operation.

3.4.2 Loop Distribution

Nests of loops are vectorized by first distributing the outermost loop, then vectorizing each of the
resulting loops or loop nests; e.g., consider the following nest of loops:

for (1 = 0; 1 < n; i++) {
p{i]J 0] = o;
for (§ = 1; J < m; j++)
afi] = af1] + dv[J1[1] * c[J1[1];
d[i] = e[i] + al1];
b4

Distribution of the outer loop yields intermediate code equivalent to the following three loops:

for (1 = 0; 1 < n; i++)
b[il 0] = o;

for (1 = 0; 1 < n; 1++)
for (j =1; § < m; j++)
afil = a[1] + b[JI[1] * c[3I(1];

for (1 = 0; 1 < n; 1i++)
d(i] = e[1] + ali];
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3.4.3 Loop Interchange

The first and last loops on ¢ and the loop on j of the previous example are all innermost loops and
can be vectorized directly. However, to yield additional performance improvement, the vectorizer

performs loop interchange optimization on the middle nest replacing it with the following nest:

for (3 = 0; § < m; J++)
for (1 = j; 1 < n; 1+4)
ali]l = ali] + b[J1[4] * c[§I[1i];

When the vector code is generated for the ¢ loop, elements of b and ¢ are accessed contiguously as
they are loaded into vector registers.

3.4.4 Vectorization Summary

When a program is compiled with the -O2 option, the compiler produces summary information
that tells you what vectorization was performed and indicates any conditions that prevented a
particular loop from being vectorized.

Two types of summary information are produced—vectorization messages and the vectorization
summary report. Vectorization messages, Figure 3-2, are produced for the source file as a whole.
The vectorization summary report, Figure 3-3, contains more detailed information and is
produced for each subroutine.

Figure 3—2: Vectorization Messages

ve: Loop on line 8.5 of sort.c (i-loop) fully vectorized
vc: Loop on line 15.5 of sort.c (i-loop) fully vectorized
vc: Loop on line 25.5 of sort.c (i-loop) fully vectorized
vc: Loop on line 36.5 of sort.c (i-loop) fully vectorized
ve: Loop on 1line 47.1 of sort.c (i-loop) fully vectorized

Figure 3—3: Vectorization Summary Report

Vectorization Summary for Routine main

Source Iter. Vector-
Line Var. Start Stop Step ization Reason
71 *EXPR* 10 1 FULL Vector
13 1 *EXPR* 10 1 FULL Vector
20 1 *EXPR* 10 1 FULL Vector
28 1 *EXPR* 10 1 FULL Vector

3.4.5 Limitations on the Vectorizer
The vectorizer has the following limitations:

1. Loops containing function calls or that have more than one exit or entrance cannot be
vectorized.
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2. If an outer loop contains a nested loop with an induction variable whose start value,
stop value, or step value varies with iterations, the outer loop is not vectorized. (An
induction variable is a variable that is incremented or decremented by the same amount
on each iteration of the loop.)

3. A vectorized loop may give incorrect results if one of its induction variables has zero-
stride. For example:

zZero = 0;

for (1 = 0; 1 < n; 1++) {
] =] + zero;
b1l = aljl;
alj] = cli};

>

If vectorized, all resulting values of b are identical. In a scalar loop, 5/2/ would equal
¢[1/, b/8/ would equal ¢/2/, and so on.

4. A vectorized loop may fail if the indexes for a conditionally referenced array fall outside
the array bounds. For example:

int a[100];
for (1 = 0; 1 < 10000; 1i++) {
it (1 < 100)
x += a[i];

}

Here the vectorized version of the loop tries to load a/10000/, yet a has only 100
elements. A scalar version of the loop executes properly, since ¢ never exceeds 100 when
the conditionally executed statement z += afi/ is executed.

5. Optimization is disabled if you use assembly-language statements in your C code.

3.4.6 Recurrence

In addition to these limitations, a loop may not be vectorized or may be only partially vectorized
if a recurrence (real or apparent) is present. A recurrence is present when an assignment stores a
value that is used during a later iteration to compute the value on the right side of the same
assignment. For example:

for (1 = 1; 1 < n; i++)
ali] = a[i-1] + 1;

Here, on the first iteration a/I/ = a[0/+1, and on the second iteration a/2/ = a1/ + 1, using the
value of a/1] computed on the first iteration. Such a computation is inherently serial and cannot
be vectorized.

More generally, vectorization is inhibited if two array references are so related that neither could
validly be placed first in vectorized code, or the compiler cannot determine which to place first.
Situations like these are also referred to as recurrences.
For example, the following loop cannot be vectorized if the sign of n is unknown:

for (1 = 0; 1 < 100; 1++){

ali+n] = 1;
afi] = 0;
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If n were +1, the value of @/2/ on termination of the loop would be 0, implying that the
assignment to aft/ would have to follow the assignment to aft+n/. However, if n were -1, the
value of af2/ on termination would be 1, implying that the assignment to a/i+n/ would have to
follow the assignment to afi/.

The previous example illustrates the most common reason for the compiler failing to vectorize a
vectorizable loop—the addition of a loop constant quantity of unknown sign to a subscript.
Another frequent cause of apparent recurrences is the use of array references in subscripts. For
example:

for (1 = 0; 1 < 100; 1i++)
aljli]] = alj[i]1] + 1;

This loop is vectorizable but the compiler cannot ignore the possibility that elements of the j
array may be repeated. Therefore, the assignment to a/j/i// could produce a value that would be
used in computation of its right side on a later iteration, and the compiler must assume that the
references to afj/i/] are in a recurrence.

You can use the no_recurrences directive to vectorize loops where vectorization would otherwise
be prevented by apparent recurrences. (See Appendix E.)

The compiler vectorizes a special class of recurrence called a reduction. In general, a reduction
has the form:

X=X0py
where z is a scalar variable (or scalar relative to the loop in question); y is any expression not
involving z (z is not assigned or used elsewhere in the loop); and op is one of the operators +, -, *,

&, |, or

For example, the following loop computes the sum of the first 100 elements of the array a with a
sum reduction:

for (sum = 1 = 0; 1 < 100; 1i++)
sum += a[i];

The vectorizer sometimes inserts vector temporaries to enable a loop with a recurrence to be
partially vectorized. For example, the following loop cannot be vectorized as is:

for (1 = 0; 1 < n; i++)
ali] = a[i-1] + b[1] * c([1];

The vectorizer recognizes, however, that the multiplication b/i/*cfi/ can be vectorized. To do 5o,
it introduces a temporary array (here represented by t/i/) and splits the loop into two loops:

for (1 = 0; 1 < n; 1++) {
t[1] = b[i] * c[i];
>

for (1 = 0; 1 < n; 1i++)
ali) = ali-1] + t[i];

The first loop is then vectorized and a sequential loop is generated for the second loop.
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3.4.7 Examples

1. Use of a scalar temporary does not inhibit vectorization. The following loop is fully
vectorized.

for (1 = 0; 1 < n; 1++){
x = a[1] + b{i];
ali] c[1];
z[1] yli]l + x;

}

2. A loop containing only a scalar reduction is fully vectorized. For example,

k=1,
for (1 = 0; 1 < 10; 1i++)
k += §;

is fully vectorized. The loop is replaced by the equivalent code:

k = 11;

3.5 Machine-Dependent Optimization

Machine-dependent optimization enhances the object code produced by the compiler to take
advantage of the machine architecture. Machine-dependent optimization is always performed
regardless of the optimization level.

3.5.1 Instruction Scheduling

Instruction scheduling determines an order of instructions that effectively uses the function units
on the computer. You have no control over this scheduling. The compiler rearranges the
instructions in the program to achieve a high level of concurrent operation. In debug mode,
instruction scheduling is done only within (not between) statements, so that csd can correlate
instructions with the lines in the original program.

The compiler schedules instructions across numbers of statements instead of in one statement
only, thereby achieving substantial performance improvements. For example:

a
d

b + ¢c;
e — I;
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Regular Code Optimized Code
ld.w b,s0 l1d.w b,s0
1d.w c,sl1 1d.w c,si
add.s s0,s1 1d.w e,s2
st.w si,a 1ld.w f.s3
ld.w e,s0 add.s s0,s1
ld.w f,s1 sub.s s3,s2
sub.s s1,s0 st.w sl,a
st.w s0,d st.w s2,d

In the left example, the subtraction cannot execute until the addition is completed. In the right
example, these two operations proceed almost concurrently.

3.5.2 Span-Dependent Instructions

The compiler attempts to generate a 2-byte branch or a 4-byte jump instruction for conditional
and unconditional transfers of control within a program. These short form instructions, which
conserve memory and improve execution speed, can be generated when the span (that is, the
distance from the branch or jump instruction to the target location) is within the limits defined
for these instructions.

3.5.3 Branch Optimization

Many compilers generate branch instructions that branch to the next sequential instruction. The
CONVEX Vector C compiler generates such branches internally, then removes them by branch
optimization before the object code is produced.

3.5.4 Register Allocation :

Register allocation is an optimization that is performed automatically. The register allocation
scheme in the CONVEX Vector C compiler is different from other machines because of the
machine’s unique architecture. Most machines try to minimize the number of registers allocated
for a given expression; the CONVEX compiler attempts to maximize the number to achieve more
parallelism. Register declarations do not affect register allocation except in the presence of asm
statements.

The only time you should be aware of this optimization is when you are invoking an assembly-
language routine. The compiler assumes on any call that all the registers are destroyed; as a
result, it saves and restores any that are active. Therefore, you need not be concerned about the
contents of the registers when coding an assembly-language routine.

When an asm statement is encountered, you can assume that the value of the first register

variable in the scope is loaded into S7, the second into S6, the third into S5, and the fourth into
S4. Any other register variables are treated as automatics.

3.5.5 Hoisting Scalar and Array References
The compiler “hoists’ scalar and array references out of innermost loops if the value referred to

does not change during the execution of the loop. Array references may be hoisted out of
vectorized loops if:
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® The array is indexed only by constants, some combination of variables that do not
change within the vectorized loop, and the iteration variable of the vectorized loop.

® There are no intrinsic calls within the loop.

3.5.6 Matching Paired Vector References

Under certain circumstances, a vector register can be treated as a set of accumulator registers,
making it possible to move loads and stores of that vector register outside of a vectorized loop.
The simplest situation under which this can occur is a matrix multiply.
Array references may be matched in vectorized loops if:

® The vectorized loop is part of a nest of loops.

® There is only one use and one assign to the array within the vectorized loop.

o The array use and array assign have identical subscripts.

e The array use can be hoisted, either as is or after the interchange of two of the scalar
loops in the nest.

3.5.7 Strength Reduction and the Code Generator

The code generator performs certain strength-reduction operations on instruction-level operations.

For example, instead of multiplying by a power of 2, the code generator transforms the operation
into a shift.

3.5.8 Tree-Height Reduction

Tree-height reduction is best explained by example. Consider the following expression:
at+btc+d+e+f+g+h

Two ways of evaluating this expression are as follows:

Method 1 Method 2

(CCC(((atb) +c) +d) +e) +L) +g) +h) (((a+b) +(c+d))+((e+f) +(g+h)))

Method 1 requires that a+b be evaluated first. The result of that calculation is then used to
compute (a+b) + ¢, and so on. None of the additions can proceed simultaneously, because each
must wait for the result of the addition to its right.

Method 2 allows four additions to execute in parallel: (a+b), (c+d), (e+f), and (g+h) can be
computed simultaneously, because none of these additions requires the results from any other
addition. Furthermore, when the results from these additions become available, the additions
(a+b)+(c+d) and (e+f)+(g+h) can also execute in parallel.

In general, the time required to evaluate a particular parenthesization is roughly proportional to
the depth of the expression, i.e., the deepest nesting level of parentheses. The nesting level is 6
for the first method, but only 3 for the second.
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When the compiler has a choice, as in the previous example, of what order in which to evaluate
expressions, it chooses the order that yields the least depth and therefore the highest degree of
parallelism. (Internally, the compiler represents expressions as ‘“‘trees,” the height of which
corresponds to the depth of the expression.) This may result in a slightly different numerical
result for floating-point operators because of rounding off in the least-significant bits.
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4

Calling Conventions

4.1 Introduction

When C function calls are executed, the current state of several hardware registers used by the
calling function must be preserved. The contents of these registers are pushed onto the runtime
stack as a part of an activation record. The called function may then alter the machine registers
as it runs. The hardware, as part of the return to the original calling function, restores the old
values of the saved registers.

The CONVEX Vector C compiler does not preserve the value of registers across function calls.
Called functions that restore the frame pointer (fp) register to its original state are allowed to
modify any register passed to them.

4.2 Function Stack Layout

Figure 4-1 shows the top of the runtime stack. The stack pointer (sp) register contains the address
of the topmost location on the runtime stack. The fp register contains the address of the last
frame pushed on the runtime stack by a call or calls instruction. The ap register contains the
address of the arguments to the current function.

Figure 4-1: Top of the Runtime Stack
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4.3 Standard Calling Sequence
The general steps that the compiler generated code performs for a function call are:

1. Push the values of the arguments to the function onto the runtime stack in reverse
order.

2. Update the ap register. The updated register should point to the first argument in the
argument list. (The first argument in the list is the last one pushed.)

3. Push an additional word. This word should contain the count of the number of
arguments passed.

4. Call the function with a calls instruction.

Executing a calls instruction places a stack frame on the runtime stack. The stack frame contains
the current values of the program counter (pc) (return address), the program status word (psw),
the fp, and the ap. The fp is set equal to the sp, then the sp is updated to point to the new top
of stack.

The conventions that apply to function calls are as follows:

1. The called function can allocate storage for local variables on top of the runtime stack.
No stack references in Vector C code are made relative to the top of the runtime stack.
Storage allocated on the stack by a called function is automatically deallocated when
the function returns.

2. The called function need not preserve the contents of any register except the fp. The
called function uses the current value of the ap to access the arguments passed to the
function by its parent.

3. The fp points to the context block pushed by the caller. The called function references
the local storage it has allocated on the runtime stack by referencing negative offsets
from the fp.

4. The called function references arguments passed to it by its parent by referencing
positive offsets from the ap. The word with an address of -4 relative to the ap contains
a count of the number of arguments passed to the function.

Figure 4-2 shows the layout of the stack as seen by a function after it has been called, and after it

has allocated some storage for local variables on the top of the runtime stack. The stack is shown
as a series of 32-bit words.

4-2
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Figure 4-2: Stack Layout
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Called functions return to their parents by placing a return value in register sO, then executing
the rtn instruction.

When the rin instruction is executed, automatic storage allocated by the called function is
automatically deallocated. This instruction also restores the program status word register and the
frame pointer to their previous states, and then returns control to the location immediately
following the calls instruction that called the function.

After control returns to the parent, the stack pointer register points to the location that contains
the pushed argument count. The parent function adds a positive number offset to the value in
the stack pointer to remove the argument count and any pushed arguments. The value added is
the total number of bytes pushed before the call. Finally, before the parent can access any of its
own arguments, it must reload its own argument pointer register from the current frame on the
stack. This value is at 12 (fp).

4.4 Code Generated for Standard Calls

The following example shows a section of sample CONVEX assembly language code used for a
function call. Generally, C functions are called as shown in the example.
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Example:
psh.w lastarg ; value of rightmoé% argument
psh.w  otherargs ; value of arguments in
psh.w  otherargs ; reverse order
psh.w firstarg ; value of first argument
mov sp,ap ; arg pointer points at first arg
pshea #argcount ; push count of # of args passed
calls’ _child ; use ‘calls’ to call function
add.w #bytecount, sp ; remove bytes pushed for args
ld.w 12(1p) ,ap ; reload our argument pointer

The code shown below is used in the called child function:

.globl _child ; called function
_child:
sub.w #localsize,sp ; allocate bytes for local variables
ld.w (0)ap,s0 ; load the value of the first arg
; assuming 32-bit size
1ld.w (-4)ap,s1 ; load count of the args passed
st.w 80,-4(fp) ; first local int is at -4(fp)
sub.w s0,80 ; value returned in SO
rtn ; return to caller

4.5 Standard Function Names

Function names and global variables produced by the compiler in object code should be limited to
32 characters. An underscore character is prefixed to each global variable. Include this character
when using the assembly language debugger or when writing assembly language functions to be
called by C functions.

4.6 Standard Function Arguments and Return Values

C arguments are passed using the ‘“call-by-value’” method; that is, the value (rather than the
address) of an argument is passed. C programs may pass addresses as arguments to functions by
using pointer variables or the & address operator. Note that arrays are passed by address.

Structures in C are passed by value. All the elements of the structure are pushed onto the
runtime stack before the call. The calling process is faster when structure pointers, rather than
the structures themselves, are passed.

Results returned from functions are returned in scalar register SO. Functions that return
structures as results place the function result in an area on the stack and return a pointer to that
area in SO.
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5.1 Introduction

This chapter describes the standard C library functions provided with the CONVEX Vector C
compiler. The C library contains interfaces to the system calls and various specialized functions
(e.g., cursor manipulation functions) that are not described in this chapter. See Section 3 of the
CONVEX UNIX Programmer’s Manual for descriptions of the library functions and Section 2 for
a list of system calls.

The functions in this chapter are listed in alphabetical order within the following categories:

Character handling functions
libm math functions

Other math functions
Nonlocal jump functions
Signal handling functions
Standard buffered I/O functions
Low-level I/O functions
General utility functions
String handling functions
Date and time functions
Error handling functions

Each section contains a description of each function, examples of function use, and a reference
section. Appendix D contains a list of libraries with their locations and contents.

5.1.1 Calling Format

The easiest way to call runtime library functions is to use the associated header. The header is a
file that declares a group of functions along with any types and # define macros needed to use the
functions. To include a header, use the #include preprocessor control line in the following
format:

#include < file.h >

where < file.h> is the name of the header. The header always ends with the .A suffix and must
be surrounded by angle brackets << > on the command line as shown.

To use a library function with its header, include the header file before referencing the function.
For example, you can use the getc and feof functions as follows:

#include <stdio.h>

main ()

{
FILE*F;
char*p;
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while (!feof(F)){
*p++= getc(F) ;
>

}

Some functions do not use header files and this fact is so noted in the text. (See the CONVEX
UNIX Programmer’s Manual.)

5.2 Character Handling Functions <ctype.h>

The character handling functions are used for classifying ASCII-coded integer values by table
lookup. Each function returns nonzero for true or zero for false. The character-handling
functions are as follows:

isalnum true for any letter or digit.

isalpha true for any letter.

isascii true for any ASCII character.

iscntrl true for any control character. Control characters are nonprinting and are

implementation-defined.

isdigit true for any decimal digit.

islower true for any lower-case letter.

isprint true for any printing character (including space).

ispunct true for any punctuation character. These characters are defined as all printing

characters except spaces, digits, controls, or letters.

isspace true for any space, tab, carriage return, newline, or form feed.
isupper true for any uppercase letter.
isxdigit true for any hexadecimal digit.

In the following list, tolower and toupper are character-mapping functions; _tolower, _toupper, and
toasctt are macros.

tolower returns the corresponding lowercase letter when the argument is an uppercase
letter. If the argument is not an uppercase letter, it returns the argument
unchanged.

toupper returns the corresponding uppercase letter when the argument is a lowercase
letter. If the argument is not a lowercase letter, it returns the argument
unchanged.

_tolower returns the same data as tolower, except it has a restricted domain and runs
faster. If the argument to _tolower is not an uppercase letter, its result is
undefined.

_toupper returns the same data as toupper, except it has a restricted domain and runs
faster. If the argument to _toupper is not a lowercase letter, its result is
undefined.
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toascii returns the argument with all bits turned off that are not part of the standard

ASCII character.

5.2.1 Examples
The following function converts all uppercase letters in str to lowercase.

#include <ctype.h>
lowercase (str)
char *str;
{
while (¥str)
*Str = tolower (kstr++);

}

Another way to accomplish the conversion is to use the macro _tolower as shown below. The
check for an uppercase letter must occur before you use _tolower in order to avoid conversion of
non-letter characters. This example is more efficient than using the tolower function because it
does not include function call overhead.

#include <ctype.h>
lowercase (str)
char *str;

{
while(xstr)
if (isupper (xstr))
*StT = _tolower (*str);
Str++;
>
}

5.2.2 References

For further information about these functions, see ctype(3) and asciy(7).

5.3 libm Math Functions <fastmath.h> and <math.h>

The include file <fastmath.h> enables the fast calling sequence for scalar math functions and
provides access to the vector math functions. In the fast calling sequence, the callg/rtng
mechanism is used and arguments are passed in registers rather than on the stack. <fastmath.h >
contains a #define statement for each CONVEX math function accessible from C. For example,
the double- and single-precision tangent functions are defined as:

#define tan(x) _mth$d_tan((doudble) (x))
#define stan(x) _mth$r_tan((float) (x))

The compiler recognizes these symbols as keywords for functions with the fast calling sequences.
The C vectorizer uses this feature to generate calls to vector functions. For example, if

a(1) = tan(b(1));
appears in a vectorizable loop, and the file <fastmath.h> is included, the compiler recognizes

_mth$d_tan as a function with the fast calling sequence and generates a call to the corresponding
vector function, _mth$vd_tan.
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The _mth$ functions are located in the C library that is automatically loaded by wve.

If you want to use the standard C calling convention (Chapter 3), the library ltbm.e must be
loaded using the -Im option on the ve command line. The header <math.h> contains
declarations for this library. The following functions always use the standard C calling
convention and cannot be vectorized: cesl, floor, gamma, 30, j1, jn, y0, y1, and yn. If these
functions are used, you must include -/m on the ve command line.

A portable way to include <fastmath.h> when compiling with Vector C, and <math.h> when
using other C compilers, is to use the predefined preprocessor name convezve. For example:

#ifdef convexvc
#include <fastmath.h>
#else

#include <math.h>
#endif

5.3.1 Math Errors

Math errors are grouped into two categories: domain errors (EDOM) and range errors
(ERANGE). Domain errors occur when a function argument is out of the domain of that
function. Range errors result when the computed value cannot be represented within the machine
precision or when the size of the argument would lead to significant inaccuracy of function
performance. The math errors are listed in the include file <errno.h>, and are generally more
specific than EDOM and ERANGE. When an error occurs, the global integer errno is set to the
appropriate error code and a message is printed to stderr.

5.3.2 Special Constants
The include files <fastmath.h> and <math.h> define the following special constants:
o HUGE—the largest double-precision floating-point number for native format.
e HUGEI—the largest double-precision floating-point number for [EEE format.
If used, these constants must be in the proper context. That is, HUGE must be used if you are

compiling for native mode and HUGEI must be used if you are compiling for IEEE mode so that
internal representations are correct.

5.3.3 Function List

The libm math functions are as follows (trigonometric functions assume arguments in radians
unless otherwise noted):

abs integer absolute value.

acos double-precision arc cosine.
asin double-precision arc sine.
atan double-precision arc tangent.




atan2
cabs
ceil
cos

cosh

logl10
Ipow
pow
sacos
sasin
satan
satan2
scabs
scos
scosh

sexp
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double-precision arc tangent of two arguments.

double-precision Euclidean distance function (complex absolute value).
ceiling function returning the smallest integer not less than the argument.
double-precision cosine.

double-precision hyperbolic cosine.

double-precision exponential.

double-precision absolute value.

floor function, returns the largest integer not greater than the argument.
log gamma function.

double-precision Euclidean distance function (complex absolute value).
integer power function of two arguments.

Bessel functions of the first kind (j1, order 0).

Bessel functions of the first kind (j1, order 1).

Bessel functions of the first kind (j1, order n).

double-precision natural logarithm.

double-precision base 10 logarithm.

long long integer power function of two arguments.

double-precision power function of two arguments.

single-precision arc cosine.

single-precision arc sine.

single-precision arc tangent.

single-precision arc tangent of two arguments.

single-precision complex absolute value.

single-precision cosine.

single-precision hyperbolic cosine.

single-precision exponential.
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sfabs single-precision absolute value.

shypot single-precision Euclidean distance function.

sin double-precision sine.

sinh double-precision hyperbolic sine.

slog single-precision natural logarithm.

slogl0 single-precision base 10 logarithm.

spow single-precision power function of two arguments.
sqrt double-precision square root.

ssin single-precision sine.

ssinh single-precision hyperbolic sine.

ssqrt single-precision square root.

stan single-precision tangent function.

stanh single-precision hyperbolic tangent

tan double-precision tangent function.

tanh double-precision hyperbolic tangent.

yO Bessel functions of the second kind (y1, order 0).
vl Bessel functions of the second kind (y1, order 1).
yn Bessel functions of the second kind (y1, order n).

5.3.4 Examples

The following is an example of a single-precision complex sine function. It uses single-precision
math functions. The inclusion of <fastmath.k> enables the fast calling sequence.

#include <fastmath.h>
typedef struct {
{loat real;
float imag;
} complex;

csin(y.x) /* single-precision complex sine */
complex *X, *y;
{

/* real part of result */

y->real = ssin(x->real) * scosh(x->imag);

/* imaginary part of result */

y->imag = scos(x->real) * ssinh(x->imag);
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The next example computes the square root of a vector of double precision values. If compiled
with level 2 optimization (-O2), the for loop is vectorized, resulting in calls to the vector square
root function.

#include <fastmath.h>
vsqrt(a,b,n) /* double precision vector square root */

int n; /* length of vector */
double *a, *b; /* input vector in a, result in b */
{

int 1;

for(i=0;i<n;i++) {
b[i] = sqrt(alil);
>

5.3.5 References

For further information about these functions, see abs(3), ezp(3M), floor(3M), gamma(3M),
hypot(3M), jO(3M), sin(3M), and sinh(3M).

5.4 Other Math Functions

The other math functions do not use a header file. All these functions, except random, are used
in the formatted I/O runtimes. For example, atof performs ASCII to floating-point conversion for
scanf, sscanf, and fscanf. The math functions are as follows:

atof performs ASCII to floating-point conversions.

atoi performs ASCII to integer conversions.

atol performs ASCII to long integer conversions.

atoll performs ASCII to long long integer conversions.

ecvt performs floating-point to ASCII conversions.

fevt performs floating-point to ASCII conversion using FORTRAN F format.
frexp extracts mantissa and exponent from a double precision float.

gevt performs floating-point to ASCII conversion using FORTRAN G format.
ldexp loads a mantissa and exponent into a double float.

modf extracts the integer and fractional parts of a double float.

random generates a pseudo-random number.

5.4.1 Examples

The following example shows how the runtimes srandom and rendom can be used to generate
random floating-point values in the range 0 to 1.
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#define RANDMAX 2147483647.0 /* 2%%31-1 */
main ()
{

int random(), srandom(), seed;

float x;

/* initialize random number generator */
seed = 1;
srandom(seed) ;

/* get next random number and scale
to the range [0,1] */
x = ( (float) random() / RANDMAX) ;

5.4.2 References

For further information about these functions, see atof{3), ecv(3), frezp(3), and random(3).

5.5 Nonlocal Jump Functions <setjmp.h>

5-8

The nonlocal jump functions enable nonlocal goto statements and are useful for handling errors
and interrupts that occur in low-level subroutines within a program. The nonlocal jump
functions are as follows:

longjmp restores the environment saved by the last call of the setymp function. It then
returns so that execution continues as if the call of setymp had just returned the
value val to the function that invoked sefymp, which must not itself have
returned in the interim. All accessible data have values as of the time longimp
was called.

setjmp saves its stack environment in env for later use by longgmp. It returns the value
0.

5.5.1 Example

This example shows how setymp and longymp can be used to process error conditions. First,
setymp is called to save the current environment in env. Next, pO is called and, in turn, calls p1l.
If either function fails, a longymp is executed, restoring the environment saved by sefymp. The
call to longymp causes control to return to the beginning of the switch statement as if the call to
setymp had just returned the second argument to longymp.

#include <stdio.h>

#include <setjmp.h>
#define PASSED 0
#define PO_FAILED 1
#define P1_FAILED 2

jmp_buf env;
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main()
{
switch(setijmp(env)) {
case PASSED:
po ()
printf(*"p0 and p1 passed\n®);
break;

case PO_FAILED:
printf("po0 failed\n");
break;

case P1_FAILED:
printf(®p1 failed\n");

break;
}
}
poQ
{
int error;
/* if error condition, return to beginning
of switch stmt */
if (error)
longjmp (env,PO_FAILED) ;
else
. return(pi1());
>
pLO
{
int error;
/* if error condition, return to beginning
of switch stmt */
if (error)
longjmp (env,P1_FAILED);
else
return (PASSED) ;
}

5.6 Signal Handling Flunctions <signal.h>

The signal handling functions allow signal manipulation within a program. Signals are generated

by the user at the terminal, by a program error, by request of another program, or by a process
in background needing access to its control terminal.

psignal produces a short message on the standard error file describing the indicated
signal. psignal prints the argument string s, then a colon, then the name of the
signal and a newline.

signal establishes a condition handler that allows signals either to be ignored or to cause
an interrupt to a specified location. When a process receives a signal, the default
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action is to cleanup and abort. You may write an alternative signal-handling
routine by making a call to stgnal and specifying the signal number, the
condition handler, and a flag. You may not, however, override the default action
for the SIGKILL and SIGSTOP signals. Table 5-1 contains a list of the signals

and their meanings.

Table 5-1: Signal Names

Signal Name No. Meaning

SIGHUP 1 Hangup

SIGINT 2 Interrupt

SIGQUIT 3* Quit

SIGILL 4* Illegal instruction

SIGTRAP 5% Trace trap

SIGIOT 6* IOT instruction

SIGEMT 7* EMT instruction

SIGFPE 8* Floating-point exception

SIGKILL 9 Kill (cannot be caught or ignored)

SIGBUS 10* Bus error

SIGSEGV 11* Segmentation violation

SIGSYS 12* Bad argument to system call

SIGPIPE 13 Write on a pipe with no one to read it

SIGALRM 14 Alarm clock

SIGTERM 15 Software termination signal from kill

SIGURG 16** Urgent condition present on I/O channel

SIGSTOP 17*** | Stop (cannot be caught or ignored)

SIGTSTP 18*** | Stop signal from keyboard

SIGCONT 19*%* Continue a stopped process

SIGCHLD 20** Child status has changed

SIGTTIN 21*** | Background read attempted from
control terminal

SIGTTOU 22*** | Background write attempted to
control terminal

SIGIO 23** I/0 is possible on a descriptor

SIGXCPU 24 CPU time limit exceeded

SIGXF'SZ 25 File size limit exceeded

SIGVTALRM 26 Virtual time alarm

SIGPROF 27 Profiling time alarm

SIGWINCH 28 Window changed

SIGLOST 29 Resource lost

SIGUSR1 30 User-defined signal 1

SIGUSR2 31 User-defined signal 2

(*) the default action for the signal is to terminate the program with a core dump; (**) the
default action is to ignore the signal; (***) the default action is to stop the program. The default

action for all other signals is to terminate the program.

Examples:

Define condition handler for keyboard-generated interrupts.

sigc = sigral (SIGTSTP, sigdie);

Restore default action for keyboard-generated interrupts.

sige = signal (SIGTSTP, SIG_DFL);

5-10




Runtime Library

Ignore keyboard-generated interrupts.

sigc = (SIGTSTP, SIG_IGN);

5.6.1 Exceptions

An exception is an event that disrupts the running of a program. Exceptions occur because of
problems in the currently executing program (e.g., arithmetic inconsistencies or address
translation faults) or as a result of some asynchronous event (e.g., an interrupt or hardware
failure). Exceptions result in the transfer of control to a predetermined address known as an
exception or signal handler. Table 5-2 defines the mapping of exceptions to signals and codes.

Condition handlers receive three arguments that describe the signal and the state of the program
when the signal occurred. The first argument is the signal number; the second argument is the

exception code; the third argument describes the state of the program when the trap was taken
and is defined in the include file <signal.h>.

Example:

In the following example, the function newhandler is established as the condition handler for
keyboard-generated interrupts.

#include <signal.h>

main()

{
/* use newhandler for keyboard-generated exceptions */
oldhandler = signal (SIGTSTP, newhandler);

b2

newhandler(sig,code,scp)

int sig, code;

struct sigcontext *scp;

{

}
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Table 5-2: Mapping Exceptions

Hardware Signal Code
Arithmetic Traps: SIGFPE(8)
Integer overflow SIGFPE FPE_INTOVF_TRAP (1)
Integer division by zero SIGFPE FPE_INTDIV_TRAP (2)
Floating overflow SIGFPE FPE_FLTOVF_TRAP (3)
Floating division by zero SIGFPE FPE_FLTDIV_TRAP (4)
Floating underflow SIGFPE FPE_FLTUND_TRAP (5)
Reserved Operand SIGFPE FPE_RESOP_TRAP (6)
Segmentation Violations: SIGSEGV (11)
Read access violation SIGSEGV SEG_READ_TRAP (1)
Write access violation SIGSEGV SEG_WRITE_TRAP (2)
Execute access violation SIGSEGV SEG_EXEC_TRAP (3)
Invalid segment descriptor SIGSEGV SEG_INVSDR_TRAP (4)
Invalid page table reference SIGSEGV SEG_INVPTP_TRAP (5)
Invalid data reference SIGSEGV SEG_INVDATA_TRAP (6)
I/O access violation SIGSEGV SEG-IOACC_TRAP (7)
Ring Violations: SIGBUS (10)
Inward ring address reference | SIGBUS BUS_INWADDR_TRAP (1)
Outward ring call SIGBUS BUS_OUTCALL_TRAP (2)
Inward ring return SIGBUS BUS_INWRTN_TRAP (3)
Invalid syscall gate entry SIGBUS BUS_INVGATE_TRAP (4) B
Invalid return frame length SIGBUS BUS_INVFRL_TRAP (5)
Illegal Instruction: SIGILL (4)
Error exit instruction SIGILL ILL_ERRXIT_TRAP (0)
Privileged instruction SIGILL ILL_PRIVIN_TRAP (1)
Undefined op code SIGILL ILL_UNDFOP_TRAP (4)
Trace pending SIGTRAP(5)
Bpt instruction SIGTRAP (5)

5.7 Standard Buffered I/O Functions <stdio.h>

The standard buffered I/O functions constitute a user-level buffering scheme. A file associated
with buffering is called a stream, and is declared to be a pointer to a defined type file. There are
three normally-open streams with constant pointers declared in the include file and associated
with the standard open files: stdin (standard input file), stdout (standard output file), and stderr
(standard error file). The constant pointer NULL means no stream at all. The integer constant
EOF is returned at end of file or error by integer functions that deal with streams. Any routine
that uses the standard input/output functions must include the header file <stdio.h>.

Data can be transferred a character at a time (getc, putc, fgete, fpulc), a string at a time (gets,
puts, fgets, fputs), a word at a time (getw, putw, fgetw, fputw), or in large blocks (fread, fwrite).
Formatted I/O is supported by printf, fprintf, scanf, and fscanf. In-memory format conversions
are done with sprintf and sscanf.
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The standard buffered I/O functions are as follows:

clearerr
fclose
fdopen

ferror

flush

fgetc
fgets
fileno
fopen
fprintf

fpute

fputs

fread

fscanf
fseek
ftell

fwrite

gete
getchar
gets
getw

mktemp

popen

resets the error indication on the named stream.

empties any buffers for the named stream and closes the file.
matches a stream with a file descriptor obtained from open, dup, creat, or pipe(2).

returns non-zero when an error has occurred reading or writing the named
stream.

writes any buffered data for the named output stream to that file. The stream
remains open.

returns the next character from the named input stream.

reads n-1 characters, or up to a newline character, from the stream into a string.
returns the integer file descriptor associated with the stream.

opens a file specified by filename and matches a stream with it.

performs formatted output on the named output stream.

outputs a character to the named output stream. fputc performs the same
function as pute, except that fputc is a function, whereas putc is a macro.

copies the null-terminated string s to the specified output stream.

reads a block of data from the specified input stream. fread returns the number
of items actually read.

reads formatted input from stream.
sets the position of the next input or output operation on the stream.

returns the current value of the offset relative to the beginning of the file
associated with the specified stream. The value is measured in bytes.

writes a block of data to the named output stream. fwrite returns the number of
items actually written.

returns the next character from the named input stream.

returns the next character from stdin.

reads a string from the standard input stream stdin.

returns the next 32-bit word from the specified input stream.

replaces a template with a unique file name and returns a pointer to the
template. The template should look like a filename with six trailing Xs that are
replaced with the current process ID and a unique letter.

creates a pipe between the calling process and the command to be executed. The

value returned is a stream pointer that can be used to write to the standard
input of the command or read from its standard output.
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printf performs formatted output on the standard output stream, stdout.

pute outputs a character to the specified output stream.

putchar outputs a character to the standard output stream, stdout.

puts writes the null-terminated string to the standard output stream, stdout, and
appends a newline character.

putw outputs a word to the output stream.

rewind rewinds the named input stream.

scanf reads formatted input from the standard input stream, stdin.

setbuf assigns a new buffer of a predetermined size to a stream after it has been opened
but before it is read or written.

setbuffer assigns a new buffer of a specified size to a stream after it has been opened, but
before it is read or written.

setlinebuf changes stdout or stderr from block buffered or unbuffered to line buffered.

sprintf performs formatted output and places the output in a null-terminated string.

sscanf reads formatted input from a character string.

ungetc pushes a character back on an input stream.

5.7.1 Examples

The following function copies the contents of file f to file g. Both files have been opened before the
call to copy.

#include <stdio.h>

copy (f,g)
FILE *f, *g;
{

int c;

while((c = getc(f)) != EOF)
putc(c,g);
}

The function concat concatenates two files horizontally. That is, it reads a line from each file,
and stores the concatenation of the two lines in a third file. In all three files, each line is
terminated with a newline character. The files have been opened before the call to concat.
Although not shown in this example, the return values from the I/O functions are used to
indicate error conditions. For example, fwrite returns the number of items actually transferred if
the operation was successful; otherwise, 0 is returned.

#define n ... /* maximum record size */
concat(f,g,h) /* concat lines from f and g to h */
FILE *f, *g, *h;

{

char s{n], t[nl;
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while((fgets(s,n,f)) != EOF && (fgets(t,n,g))
/* write line from f %/
fwrite(s,sizeof (char),strlen(s),h);
/* write line from g */
fwrite(t,sizeof (char),strlen(t) , h);
/*terminate w/ newline*/
putc('\n’,h);
}

if(feof (£))
/* copy remaining lines from g */
while(fgets(t,n,g) {= EOF) {
fwrite(t,sizeof (char),strlen(t) , h);
putc('\n’,h);
}
} else if(feof(g)) {

/% copy remaining lines from f */
fwrite(s,sizeof (char),strlen(s),h);
while(fgets(s,n,f) i= EOF) {

fwrite(s,sizeof (char),strlen(s),h);
putc('\n’,h);

5.7.2 References

= EOF)

Runtime Library

For further information, see the description of the individual functions in Section 3S of the

CONVEX UNIX Programmer’s Manual.

5.8 Low-Level I/O Functions

The low-level I/O functions are system calls accessible from the C library. The buffered 'O
routines are optimized for the UNIX file system and their use is generally more optimal than the
low-level functions. The low-level I/O functions do not use buffering. These functions identify

files with integers called file descriptors.

The low-level I/O functions are as follows:

close closes the connection between an open file and a file descriptor, freeing the file

descriptor for use with other files.

creat creates a new file or prepares to rewrite an existing file.

Iseek moves the read/write pointer. lseek returns the pointer location as measured in

bytes from the beginning of the file.

open opens a file for reading or writing, or creates a new file.

descriptor for the requested file.

open returns a file

read reads data from the object referenced by a descriptor. read returns the number

of bytes actually read.
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unlink removes an entry for a file from its directory.

write writes data to the object referenced by a descriptor. write returns the number of
bytes actually written.

Example:

In this example, lseek and read are used for random access input. Here, the offset specified for
[seek is from the file beginning. It may also be from the current position or end of file, depending
on the value of the last argument.

#define RECLENGTH ... /* record length */
get_rec(fd,buf,n) /* read the n'th record from fd */
int f£d, n;
char *buf;
{

int cnt;

/* convert record number to byte count */
cnt = (n-1)*RECLENGTH;

/* position to count bytes from beginning */
lseek(fd,cnt,0);

/* read n-th record */
return(read (fd,buf,RECLENGTH)) ;

5.8.1 References

For detailed information about these functions, see close(2), creaf(2), Iseek(2), open(2), read(2),
seeM(2), unlink(2), and write(2).

5.9 General Utility Functions

The general utility functions use no header file. alloca, calloc, malloc, realloc, and free are used
for dynamic memory allocation. abort and ezit are used for nonstandard program termination,
where abort produces a core dump and ezit cleans-up any open files. The remaining general
utilities are getenw, gsort, sleep, and system.

abort executes an instruction that is illegal in user mode. This creates a signal that
terminates the process with a core dump useful for debugging.

alloca temporarily allocates memory. This space is freed in future calls to alloca.
calloe allocates memory. The space is initialized to zeros.
exit terminates a process after calling the standard I/O library function _cleanup to

flush any buffered output. ezit never returns.

free deallocates a block of memory allocated by malloc and friends.
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getenv searches the environment list for a string of the form name=wvalue. Returns a

pointer to the string value if such a string is present. If such a string is not
present, getenv returns the value 0 (NULL).

malloc allocates a block of memory and returns a pointer to the block. malloc, along
with free, is a simple general-purpose memory allocation package.

gsort is a quick-sort utility. The first argument is a pointer to the base of the data:
the second is the number of elements; the third is the width of an element in
bytes; the last is the name of the comparison routine to be called with two
arguments that are pointers to the elements being compared.

realloc changes the size of the block allocated by malloc and returns a pointer to the new
block. The contents are unchanged up to the lesser of the new and old sizes.

sleep suspends the current process from executing for the number of seconds specified
by the argument.

system issues a shell command. The current process waits until the shell has completed
the string, then returns the exit status of the shell.

5.9.1 Examples

The following function inserts a new element into the linked list, following element p. If malloc
cannot allocate the requested amount of memory, it returns 0.

typedef struct list {
struct list *next;
double x,y;

} 1list;

insert(p,x,y) /* insert new list item after p */
llist *p;
double x,y;
{
llist *q;

/* allocate list item %/
q = (1list *)malloc(sizeof(1l1list));

if(q) {
/* set x & y fields */
q->x = x;
q->y = ¥.

/% insert list item */
Q->next = p->next;
p->next = q;
b4
return(q) ;
>

The next example uses the function realloc to increase the size of an array.
main()

{
long long *arr, X;
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int ent, size, incr;

/* check for array full */

if(cnt >= size) {

size = size+incr;
arr = (long long *) realloc({(char *)arr,

size, sizeof (long long));

/* add new element */

arrcnt++] = x;

5.9.2 References

For detailed information about these functions, see abort(3), exi(3), getenu(3), malloc(3), gsory(3),
sleep(3), and system(3).

5.10 String Handling Functions <strings.h>

The string handling functions are used to manipulate character arrays and blocks of memory.
bemp, bcopy, and bzero are block memory functions optimized for execution on the CONVEX
hardware. The remaining functions perform operations on null-terminated character strings.

The string handling functions are as follows:

bemp

becopy

bzero

ffs

index

rindex

strcat

stremp

strepy
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compares two byte strings, returning zero if they are identical, nonzero if they
are not.

copy a block of data.

places ““0” bytes into the specified string.

finds the first bit set in the argument received and returns the index of that bit.
Bits are numbered starting at 1. A return value of 0 indicates the value passed is

Zero.

returns a pointer to the first occurrence of a character in a string or zero if the
character does not occur in the string.

returns a pointer to the last occurrence of a character in a string or zero if the
character does not occur in the string.

appends a copy of a string to the end of another string.
compares two strings and returns an integer greater than, equal to, or less than
0, depending on whether the first string is lexicographically greater than, equal

to, or less than the second string.

copies a null-terminated string.



strlen

strncat

strncmp

strncpy

5.10.1

#inc
main
{

Runtime Library

returns the number of non-null characters in a string.

appends a copy of a string to the end of another string. At most n characters are
copied.

compares its arguments and returns an integer greater than, equal to, or less
than 0, depending on whether the value of the first string is greater than, equal
to, or less than the value of the second string. Unlike stremp, this function
compares no more than n characters.

copies exactly n characters from the second string to the first string, truncating
or null-padding if necessary.

Examples

lude <strings.h>

0O

char *s, *t, *v;

/* concatenates s and t, with the
lexicographically smaller one first */
if(stremp(s,t) <= 0)

v = strcat(s,t);
else

v = streat(t,s);

5.10.2 References

For detailed information about these functions, see bstring(3) and string(3).

5.11 Date and Time Functions <time.h>

The date and time functions return CPU and real time and perform conversions on these times.

asctime converts a broken-down time returned by localtime or gmtime into ASCIL.

ctime converts into ASCII a time pointed to by c¢lock as returned by time(3C).

ftime fills a timeb structure with the current time.

getdate converts most common time specifications as returned by ftime to standard UNIX
format.

getrusage returns information about process resource use, including process CPU time.

gettimeofday returns current system time and time zone.

gmtime

converts time returned by time(3) to a structure containing the broken-down
time using GMT, the standard UNIX time.
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localtime converts time returned by time(3) to a structure containing the broken-down
time, correcting for time zone and possible daylight savings time.

time returns the date and time of day measured in seconds.

timezone returns the name of the time zone associated with its first argument, measured in

minutes westward from the Greenwich meridian; ftime(3C) supplies the zone and

ds = arguments.

5.11.1 Example

This example computes elapsed real time and CPU time.

For real time. gettimeofday returns

time since January 1, 1970. Therefore, two calls are required to get the program elapsed real
time. For CPU time, getrusage returns the CPU usage in seconds for the executing process.

#include <sys/time.h>
#include <sys/resource.h>
main ()

{

struct timeval realtimeO, realtimen;
struct timezone zone;

struct rusage *ru;

unsigned long t;

float cputime;

/* starting real time */
gettimeofday(2realtime0, 2zone);

/* ending real time */
gettimeofday(&realtimen, &zone);

/* print elapsed real time in seconds */
t = realtimen.tv_sec - realtime0.tv_sec;
printf("elapsed real time: %d secs\n*, t);

/* print cpu time in seconds */
getrusage (RUSAGE_SELF, &ru);
cputime = (float) ru.ru_exutime.tv_sec
+ Tu.ru_exutime.tv_usec/1000000.0
+ (float) ru.ru_stime.tv_sec
+ ru.ru_stime.tv_usec/1000000.0;
printf("elapsed cpu time: %f secs\n®, cputime);

5.11.2 References

For further details about these functions, see ctime(3), getdate(3),
getrusage(2), and gettimeofday(2) .
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5.12 Error Handling Functions <errno.h>

The error handling function, perror, retrieves system error message numbers. When an error
occurs, the global integer errno is set to the appropriate error number, and an error message Is
written to stderr. The header file <errno.h> contains a complete list of all errors and their
names. These errors are also listed in Appendix B, and intro(2).

perror produces a short error message on the standard error file describing the last error
encountered during a call to the system from a C program. perror uses the following variables:

® sys_errlist—a table that simplifies variant formatting of messages. errno can be used as
an index in this table to get the message string without the newline.

® sys_nerr—the number of messages provided in the sys_errlist table.
Example:
#include <stdio.h>
main ()
{
FILE *f;
f = fopen("data*, "r");
if (f==NULL)
perror(“failed open");
}

If the file data does not exist, the following error message is output.

failed open: No such file or directory

5.12.1 References

Ifor further information about these functions, see perror(3).
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6
Debugging C Programs

6.1 Overview

This chapter presents an overview of the methods available for debugging C programs. For
complete information on this subject, please see the CONVEX adb Debugger User’s Guide and the
CONVEX Consultant User’s Guide (optional product).

There are three tools for debugging C programs: pmd, a post-mortem dump analyzer, csd, a
source-level debugger, and adb, an assembly-level debugger. Both c¢sd and pmd require special
support from the compiler and loader and are probably the best tools for debugging. On the
other hand, adb requires no support from the loader or compiler and is most useful for examining
core dumps from failed programs.

Before beginning debugging, make certain that the problem is not being caused by the use of
floating point numbers. Some of the more common problems are:

e Truncation error—Although it is not feasible to run an algorithm indefinitely, the more
iterations of the series you can run, the greater the reliability of the answer. Conversely,
the fewer iterations you run, the larger the possible error is likely to be.

® Round-off error—For exact representation, floating point numbers sometime require
more space than the fixed word length provided. Rounding the least significant portion
of the number can introduce errors. Although using single-precision numbers is
considerably faster, using double-precision greatly reduces the significance of the
introduced error.

® Propagated error—An error in the original data can be aggravated by either of the
previously mentioned errors.

If you think that your errors may be related to floating point arithmetic, you may want to
consult a numerical analysis textbook for more information on floating point errors and possible
solutions.

6.2 Post-Mortem Dump Analyzer (pmd)

The post-mortem dump analyzer (pmd) displays formatted listings when your program terminates
abnormally. You run pmd at the same time you run your program. If the program aborts, pmd
displays information that can help you locate the problem.

The pmd output is written to stderr, so that it appears on your screen. If you need to re-examine
the post-mortem information, you can do so using the dump command in csd (see “The Dump
Command” later in this Chapter). The information displayed includes:

1. The signal that caused the program to abort.

2. A runtime stack backtrace and the approximate source line location of where program
took the exception.
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3. The contents of the machine registers.

4. A dump of active local variables in each routine on the runtime stack.

5. A dump of global, or common, variables.

6. The region of disassembled object code where the exception took place.

7. A summary of resources used by the program (execution time, elapsed time, percent of
time in CPU, size of shared memory and unshared memory, page faults, and swaps).

6.2.1 Invoking pmd

To use pmd, compile your program using the -db option on the compiler command line. Then
invoke pmd as follows:

pmd [-a] [-d n:n...] [-]] [-S] [-8] [-t limt] [-v] command [args)

where

-a

-d n:n

-1

-8

-t n

Print the contents of the address registers in hex, decimal, and floating point
formats.

Prints up to n elements of arrays in the post-mortem dump listing. Up to seven
dimensions for arrays can be specified.

Displays a post-mortem dump in long format. The long format includes items 1
through 7 described in the previous section.

Excludes from the post-mortem dump the approximate source code location where
command took the exception.

Displays a post-mortem dump in short format. The short format, which is the
default format, includes:

1. The signal that caused the program to abort.

2. A runtime stack backtrace.

3. The approximate source code location of the exception.

Limits the cpu time for command to n seconds.

Includes the contents of the machine vector registers in the post-mortem dump
listing.

6.2.2 Restrictions on pmd

You must compile your program with the -db option in order for pmd to obtain information
about the runtime stack backtrace, source line locations, and active local variables.

The higher the optimization level specified when compiling the program, the greater the
uncertainty of variables and source line location accuracy. The following assumptions can be

made:
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1. Regardless of the optimization level, memory locations of common block variables are
accurate at the call to a subprogram.

2. The validity of memory location contents of active local variables cannot be
guaranteed. In most code, however, the memory locations for local variables are likely
to be accurate.

3. The mapping of object code to source code is granular to the basic block. A basic block
is defined as a sequence of statements with no branches.

4. The values of subprogram arguments at entry points to subprograms are accurate.

Since the core file must be created for pmd to produce post-mortem dump information, you must
have write permission in your current working directory. In addition, you cannot exceed the
maximuim core file size. Set the maximum core file size in your shell with the limit parameter (see

esh(1)).

6.3 csd Debugger

csd was designed specifically for debugging C and FORTRAN programs executing on the
CONVEX UNIX operating system. Its features include:

® Statement-level execution control—csd debugs programs at the statement level, rather
than at machine level.

e Enhanced capabilities for examining core files and program files in a variety of
formats—you can examine core dumps with csd to find out the line on which the
program failed.

e Ability to debug multiple source-module applications—csd automatically updates the
debugging environment as execution branches from module to module.

® Symbolic access to program variables—csd can access program variables by name rather
than by absolute address.

The information that follows summarizes some of the features of c¢sd. For a complete description.
please refer to the CONVEX Consultant User’s Guide.

6.3.1 Invoking csd

To use csd, you must first compile your program with the -db compiler option. The command to
invoke csd has the format:

esd [-r] [-I dir] [...] [objfile] [corefile]

where

-r instructs csd to execute objfile immediately (without waiting for csd
commands). If the program terminates successfully, csd exits. Otherwise, csd
reports the reason for termination, and you can enter ¢sd commands. Csd
reads from /dev/tty when you specify -r and the standard input is not a

- terminal. If you do not specify this option, e¢sd displays a prompt and waits
for a command.
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-I dir directs csd to add the specified directory to the list of directories searched
when c¢sd looks for a source file. Note that a space is required between -1 and
the directory name.

objfile  is an object file that has been directed with the appropriate option to produce
symbol table information. If you do not specify objfile, csd produces a query.

corefile refers to the pathname for a file containing a core dump generated as the
result of an abnormal program termination. The corefile is generally named
“core”’.

The corefile contains an image of the state of the program at its termination.
Once you access the corefile using ¢sd, you can determine which routines were
active, their arguments, and the current value of all the active program
variables. After csd loads the core image, you can determine the final
program state by examining stack traces and variable contents.

6.3.2 Running csd

Once you have invoked csd, use the run command to start executing the program to be debugged.
The program that you are debugging is known as the “child”.

The run command has the following format:
run [ args | [ <filename | | > filename ]

The run command arguments control the execution of the programs to be debugged. These
arguments are the same arguments used when the program is run as a shell command. You can
redirect standard input and output to the child using the last two arguments shown above.
Entering < filename reads data from the filename specified; entering > filename writes data to the
file specified. Note that there are no blanks between the symbols << and > and filename. If you
invoke the run command more than once, the child variables are re-initialized with each
invocation before execution begins.

NOTE

If you compile your program using some level of
optimization, the optimized object code may not
always match the original source code. Portions
of your original program may have been
optimized out or rearranged. To avoid this
problem for debugging purposes, you can
compile your program using the -no option on
the ve command line.

6.3.3 Stopping csd

csd stops executing the child and asks for user input when the program being debugged exits,
when an interrupt signal occurs, when breakpoints are encountered, or when a fatal program
error occurs. Fatal errors return you to the e¢sd command interpreter rather than to the UNIX
shell. c¢sd lists the number of the line containing the error, enabling you to locate the position in
the source file at which the error occurred.

You may also use the quit command to exit csd. When you exit csd, program control passes to
the program that invoked csd (often the UNIX shell).
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6.3.4 help Command

You can display a short menu of commonly used csd commands with the Aelp command. The
menu includes the syntax and function of the basic csd command groups. To use the help
command, enter

help

at the csd command level.

6.3.5 Other Basic Operations

The following commonly used ¢sd commands perform basic operations. Invoke each of these
commands by entering the name of the command at the ¢sd command level.

Use the cont command to resume execution of the program after a stop (such as encountering a
breakpoint). You cannot continue execution if a standard program exit or abnormal termination
has occurred. You can use the run command, however, to restart the program.

Use the step command to execute one or more high-order language source lines. The format of
the step command is

step [ count |

where count is an optional step count; the default is one source line. Note that you must start
the child with the run command before single-stepping can be performed. The next command
also enables you to execute source lines. However, next skips over subroutine calls and stops at
the next line in the calling routine, while step stops at the first line of the subroutine block. The
format for the next command is

next | count |

where count is an optional step count (default is one source line).

6.3.6 Current Address

csd maintains a current address that is similar in function to the current pointer in the UNIX text
editor, ed(1). The csd current address pointer is a line number in a given source file. To move
from this address, use the step command, which executes one source line. Similarly, the next
command executes the next source line, but stays in the current file. The cont command also
modifies the current address. If execution stops in another source file, ¢sd automatically updates
the current address within that file.

6.3.7 Environment

The environment, or scope, of a symbol refers to the subroutines and modules in which it is
declared. In C, the scope of a variable may be further defined in terms of nesting levels, or
blocks, inside the subroutine. csd automatically assigns a name to nested blocks. This name,
which begins with “$b” and ends with a nesting level number, qualifies references to these
variables.

For program variables, the environment describes how to access a particular variable on the
runtime subroutine stack. For data declarations, the environment defines how references to that
declaration are resolved.




Debugging C Programs

Specify the scope or environment of a symbol in the following formats:
[module_name.][function_name.][block_name.]symbol_name

The default environment is the function currently executing.

To reference nonunique variables in functions other than the one currently executing, you must

use the full environmental pathname. Modify the default environmental pathname with the file

and func commands.

The file command, has the following format:

file [ filename.c |

This command changes the current source name to the name specified in the filename argument.
If you do not specify an argument, csd displays the current source file pathname. Use the [list
command described in the next section to display source lines from this file. The fune¢ command
changes the current subroutine environment in which csd is working, thereby changing the default
pathname. The command has the following format:

func [ function_name |
If you do not specify a function name, csd displays the current function name.
In cases where subroutines call one another recursively, both subroutines are on the runtime stack
at the same time. To move the current subroutine up or down the stack in order to resolve

names, use the up or down commands. The formats for these commands are:

up [count|
down [count|

where count is the argument for the number of levels to move on the stack. If no count argument
is specified, the default is 1.

The vregs command dumps the contents of the vector registers. If the vector registers are empty,
vregs dumps all zeros. c¢sd displays the output of these commands in hex on the terminal screen.

6.3.8 print Command

The print command displays data values, symbol addresses, and expressions. Its format is:
print expression |, expression || ... ]

Expression is a list of constants or variables and operators. You can perform basic arithmetic
operations on the constants and variables within the expression.

The print command displays the current value of the selected expression. Variables having the
same name as the one in the current block may be fully qualified. You can use the field reference
(SRR

operator “.”” with pointers and records, making the C operator “->"" unnecessary (although it is
supported).

6.3.9 whatis Command

The whatis command prints the data type of a variable. The format of this command is as
follows:
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whatis name

on the command line, where name is any variable name.

6.3.10 which Command

The which command prints the default qualified pathname for a symbol. The format of this
command is as follows:

which name

where name is the name of a variable or symbol.

6.3.11 whereis Command

The whereis command displays the environmental pathname of each symbol name matching the
given identifier. The format of this command is as follows:

whereis name

6.3.12 where Command

The where command displays a stack trace of the subroutine calls that led to the current program
state. The output consists of subroutine arguments and return addresses. You can redirect
output to a specific file by using the > symbol. The format of this command is as follows:

where [> filename]

6.3.13 [li:st Command

The list command lists lines from the current source file. The list command can be entered in
several formats, including those listed below.

Entering the command in the following format lists lines in the current source file from the first
specified line number to the second specified line number, inclusive. If you do not specify line
numbers, the next 10 lines are listed.

list [source_program_line-number [ | , |
source_program_line-number | |

Entering the command with the name of the function displays a small region of text around the
first line of the function named.

6.3.14 dump Command

There are several different listings that the dump command can generate. If you are using csd
without having run pmd, the dump command generates a listing consisting of a stack backtrace,
the signal that caused the abort, and the approximate source code location of the exception.
Output goes to stdout if you do not specify a file.
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If you have run your program with pmd before using csd, the dump command generates a listing
according to the pmd options you specify.

The dump command can be used on active programs as well as programs that ended abnormally.
For instance, running csd on a program, you can use dump to examine the variable values up to a
set breakpoint. If your program has aborted, you can use dump to examine the state of the
program at that time.

This command has the [ollowing format:
dump [> filename |

where filename is the name of the file to which output is directed.

6.3.15 Setting Breakpoints

The stop command is used to set breakpoints. When csd encounters a breakpoint, it stops
execution of the program and returns to command mode. ¢sd commands are then used to
instruct csd to display information for monitoring the progress of a program.

You can instruct csd to stop execution either at a specific line number or when a particular
subroutine is called. In both cases, csd stops program execution at the beginning of the line. You
can also instruct csd to stop at a particular location only if a certain user-defined condition is
encountered. Condition here is a Boolean expression. Table 6-1 shows alternative forms of the
command with brief explanations.

Table 6-1: Forms of the stop Command

Command Result

stop at source-line [if condition] Program execution stops at the specified
source line number (if the condition is
true).

stop in function [if condition] Program execution stops at the first line
of the function named (if the condition
is true).

stop variable [if condition] Program execution stops when the value
of the named variable changes (if the
condition is true).

stop if condition Program execution stops when the
condition is true.
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6.3.16 Setting Tracepoints

Tracepoints, like breakpoints, instruct ¢sd to print information that can be used to monitor the
progress of the program. Unlike breakpoints, however, tracepoints do not return control to you
when this information is displayed. Program execution continues until the program terminates
normally or until it encounters a breakpoint or fatal error or is stopped. Condition is a Boolean
expression evaluated before printing the tracing information; if the expression is false, ¢sd does
not display the tracing information. The condition can involve any program variables and can be
as comp]ex as necessary.

To set tracepoints, use the trace command. The first argument used with the trace command
describes the program element to be traced. If you do not specify an argument, each source line
is displayed before processing, resulting in slow program execution. Table 6-2 shows alternative
forms of the command.

Table 6-2: Forms of the trace Command

Command Result

trace [ in function_name ]
[ if condition | Prints trace information only
when the given function is being
processed (if condition is true).

trace source_line_number
[ if condition | Prints the line  identified
immediately before being
processed (if condition is true).

trace funclion_name
[ in function_name | [ if condition | Prints lines of information each
time the function 1is called,
including the name of the calling
routine, parameters passed and
value returned if argument is a
function (if the condition is true).

trace expression at source-program
line number [ if condition ] Prints the value of the expression
each time the identified source
line is reached (if the condition is
true).

trace variable [ in function_name |
[ if condition | Prints the name and value of the
variable each time it changes (if
the condition is true).

6-9
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6.3.17 Deleting Breakpoints and Tracepoints

The delete command deletes breakpoints and tracepoints. This command has the following
format:

delete command-number
where command-number is the unique number identifying the breakpoint or tracepoint.

The status command is used to determine the command number of currently active trace or stop
commands. This command has the following format:

status [ > filename ]
c¢sd routes output from the command to any filename used as an argument. If you do not specify

a filename, output is routed to stdout. Output includes a list of breakpoints and tracepoints and
their command numbers.

6.4 adb Debugger

addb is an object-code debugger that requires no special support (such as the recompilation of
programs) from the loader or compilers. The two major uses of the adb debugger are:

® To examine core dumps resulting from failed programs

® To enable interactive debugging of programs at the assembly-language level
adb can also be used to run programs with embedded breakpoints, to patch files, and to print
output in a variety of formats. Since adb does not require special support from the compiler, its

only effect on optimization is to make your program run more slowly.

The information that follows summarizes some of the features of adb. For a complete description,

please refer to the CONVEX adb Debugger User’s Guide.

6.4.1 Command Formats
The command to invoke adb is as follows:

adb [-w|[objfil [corfil]]

where
-w creates both objfil and corfil, if necessary, and opens them for reading and writing
so that adb can modify files. If you specify either 0bjfil or corfil as ©“-”’, that file is
ignored.

objfil is an executable UNIX file (default is a.out).

corfil is a core image file produced by the operating system when a job terminates
abnormally (default is core).

Once you have invoked adb and receive the prompt (adb), you can enter requests for various
functions. The basic format for these requests is:

[address] [,count] [command] [;]
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If you specify address, adb sets the current address (referred to as dot) to the specified address.
Address is explained later in this chapter.

Count specifies the number of times that adb executes the command. Use a semicolon to separate
multiple command statements. Table 6-3 lists some of the most commonly-used requests.

Table 6-3: General adb Requests

Command Meaning

? Print contents from program file.
/ Print contents from core file.
= Print value of dot.

: Breakpoint control.

$ Miscellaneous requests.

3 Request separator.

! Escape to shell.

6.4.2 Displaying Memory Locations

Usually, the object file contains the text portion of the program and the core file contains data.
The ? command display texts (instructions) and the / command displays the data as found when
the core file was created.

These two requests generally have the following format:

address ? format

or
address / format

where format is the format of the output.
adb can print output data in several formats. Specify the format using a collection of letters and

characters. If you do not specify a format, output will appear in the previously requested format.
Table 6-4 shows the most commonly used format letters; for a complete list, consult adb(1).

Table 8-4: Format Letters

Format Letters Definition

bx One byte in hex

c One byte as a character
wo One word in octal (4 bytes = 1 word)
wt One word in signed decimal

f One word in floating point

i CONVEX instruction

S A null terminated character string
a The value of dot

u One word as unsigned decimal

) Backup dot
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6.4.3 Current Address and Expressions

adb maintains a current address, called dot, that is similar in function to the current pointer in

the UNIX editor, ed(1).

Specifying an address causes dot to be set to that location. A set of

expressions in the program being debugged is used to represent addresses. These expressions are
composed of decimal, octal, and hexadecimal integers and may be combined with operators to
alter the location of dot. Note that all arithmetic in adb is performed with 64 bits of precision.
Table 6-5 lists the expression operators. The expressions are described following the table.

Table 6-5: Expression Operators

Expression Description

. The value of dot

+ The value of dot incremented by the
current increment

The value of dot decremented by the
current increment

» The last address typed

% Integer division

The contents of the location addressed
by ezp in corfil

N

& Bitwise AND
| Bitwise OR
# Round up to the next multiple

Some of the major expressions within adb are as follows. For a complete list of expressions,

consult adb(1).

integer

integer.fraction

<name

symbol

_symbol

(ezp)
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is a number. adb interprets integers according to the prefix. Integer
prefixes are: 0o or 00 (zero oh) for octal radix, Ot or OT for decimal
radix, and Ox or 0X for hexadecimal radix. Thus, 0020 = 0t16 = 0x10
= 16. If you do not specify a prefix, the default radix is used. The
default radix is initially hexadecimal, but you can change it with the $r
command.

is a 32-bit floating-point number.

is either a variable name or a register name. If name is a register
name, then adb gets the value from the system header in corfil. Display
the register names using the $r command.

is a sequence of uppercase or lowercase letters, underscores, or digits.
The symbol cannot start with a digit. You can use the backslash (\)
character to escape other characters. adb takes the value of symbol
from the symbol table in objfil, and prefixes an initial underscore

character if needed.

is the true name of an external symbol in C. You may have to specify
the underscore before the symbol to distinguish it from internal or
hidden variables in a program.

is the value of the expression exp.
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6.4.4 Examining Core Dumps

The most common use of adb is to examine core dumps from failed programs. The first step to
examine a core dump is to invoke adb with the command:

adb a.out core

Once adb is running, you can enter requests to determine why your program failed. The
command

$c
will print a C or FORTRAN backtrace through the functions that were called. (This command

may not work if the failure is such that it scrambles the state of the runtime stack.) You can
then examine the values of the arguments displayed to determine where the error occurred.

6.4.5 Finding Variables

When examining a core dump, it can be helpful to look for certain variables. You can use the
command

$e

to display a list of all known global variables and their current values. These are the only
variables that you can examine by name using adb.

6.4.6 Miscellaneous Operations
Requests of the form
f

print locations starting at the address in objfil in the format specified by f. adb increments dot by
the sum of the increments for each format letter given.

Requests of the form

/f

print locations starting at the address in corfil in the format specified by f. adb increments dot by
the sum of the increments for each format letter given. Requests of the form

=f
print the value of address itself in the format specified by f Since adb uses current address to
remember its current location, you can use this command to reference locations relative to the
current address. For example

.-0T10,0T10/wt
prints 10 decimal numbers starting at dot -10 in the corfil.

To enter UNIX requests from adb, type

tcommand
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where command is a UNIX command.
If you invoked adb from csh(1), you can suspend adb return to ¢sh by typing:
“z

You may return to adb later by typing:

fg

6.4.7 Running and Debugging With adb

Breakpoints are used to instruct adb to print information that can be used to monitor the
progress of a program. When adb encounters a breakpoint, it stops execution of the program and
returns to the adb command mode. To set breakpoints, you must first invoke adb. Once you
have done this, the command to set breakpoints is
address [,c|:b [request]
where address is the address of a function. (You should only set breakpoints at function entry
points unless you are familiar with the code generated by the compiler.) If you specify a value as
the ¢ (count) modifier, adb bypasses the specified breakpoint c-1 times before stopping.
If you specify request, adb executes the specified requests each time it encounters the breakpoint.
If you do not specify request, or if the request sets dot to zero, the breakpoint stops the program.
Separate multiple requests on a single line with semicolons. For example, the request:
_main+10,10:Db
stops the program the 10th time it reaches the address _main+10. The request
_fopen:b $c
stops the program at _fopen and prints a stack backtrace.
To delete a breakpoint at address, use the command:

address:d

To display all the breakpoints in a program, use the command:
$b

Output from this command is similar to Figure 6-1.

Figure 6—1: Display Breakpoint Output

$b

breakpoints

count bkpt command

1 _Settab settab,571i; input?s
3 _fgetc

1 _fopen
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The :r request runs the objfil as a subprocess. If you specify an address with this request, the
program begins execution at that point; otherwise, the program starts executing at the standard
entry point. The format for this request is:

[address|:r [arguments]
If you specify arguments, they are passed to the program as command-line arguments.

Arguments may include < and > to specify input and output redirection. Use the k request to
terminate the process you are currently debugging. The format of this request is:

:k
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Vector C Data Types

A.1 Introduction

This appendix describes the basic CONVEX data types and specifies the requirements for the
proper alignment of code and data in memory.

The data types supported by Vector C exploit the internal data representations found on the

CONVEX family of supercomputers.

architecture are supported in Vector C.

Vector C supports the following data types:

Integer data types: short int, int, long int, long long int. To declare 16- , 32- , and
64-bit integer variables, use the short int, long int, and long long int keywords,
respectively. The 32-bit ¢nt data type is the same as long int, and is the default integer
data type. Two’s-complement arithmetic is used for all signed arithmetic on CONVEX
computers. Integer types may also be unsigned.

Character data type: char. char data may be considered to be a fourth integer data
type. Character data is stored as bytes. The char representation contains a single
ASCII character. Integer arithmetic operations can be performed on characters.
Characters can also be signed and unsigned.

Floating-point data types: float, double. Declare 32-bit single-precision data with the
keyword float, and 64-bit double-precision data with the keyword double. Floating-
point numbers may be represented in either native format or IEEE format.

Enumerated (scalar) type: enum. Each enum datum holds the integer value of a
member of a set of enumerated values.

Pointer (address). Each pointer datum holds a virtual memory address.

Void. The void data type is used to declare functions that do not return a useful value.
Using this data type ensures that undefined values returned by void functions are not
used.

Record structure: struct. Record structure data differs from the basic data types in
that it is an aggregate of data type fields. Structure data may be of any size.

Union. This data type uses the syntax of structures to reserve space in memory for
variables whose data types may vary.

Array (matrix). Array data is also an aggregate, although each item of an array must
be of the same data type. Array data is not documented in this guide since the
CONVEX implementation of array data is identical to the specification found in The C
Programming Language.

All the scalar data types defined by the CONVEX




Vector C Data Types

You may create user-defined data types out of combinations of the data types described above.
Logical (Boolean) operations may be performed on signed or unsigned data of the following types:
char, short int, int, long int, and long long int.

A.2 Vector C Data Representations

The following data representations are internal representations of the data types supported by
Vector C.

A.2.1 Short Integer Data Representation

Use the designations short int or short to declare 16-bit integer variables in Vector C. Short int
variables may be declared to be either signed or unsigned. Unsigned 16-bit integers range in

value from 0 to 65,535 (0 to +2'-1). Signed 16-bit integers may range in value from -32,768 to
+32,767 (-2 to +2"-1).

Figure A-1 illustrates the internal representation of the short tnt data type. Note that the least
significant bit in the data representation is numbered 0. The numbers shown at the top of the
figure represent bit numbers. Byte offsets are shown at the bottom of the figure. A similar layout
is used in all the figures in this chapter.

Figure A-1: Short Integer

15 8|7 0

short int

ADDR|  ADDR+1 |

A.2.2 Integer Data Representation

A 32-bit integer variable is declared as int (or long int) and may be elt,her signed or unsigned.
UnSIgned int variables range in value from 0 to +4,294, 967 295 (0 to +2° -1) Signed nt variables
range in value from -2,147,483,648 to +2,147,483,647 ( 2" to +2%-1). Figure A-2 shows the int
data representation.
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Figure A—2: Integer

31 24|23 16|15 8|7 0]

int

ADDR | ADDR+1 | ADDR+2 | ADDR+3 |

A.2.3 Long Integer Data Representation

In Vector C, both the long int and int data types have 32-bit representations. Long integers are

defined as 32-bit integers to provide maximum compatibility with C compilers designed for 32-bit
minicomputers.

Long integers may be declared with the designations long int or long. The long integer data
representation is shown in Figure A-3.

Figure A-3: Long Integer

31 24|23 16|15 8|7 0|

long int

ADDR | ADDR+1 | ADDR+2 | ADDR+3 |

A.2.4 Long Long Integer Data Representation

In Vector C, a 64-bit integer is declared with one of two designations: long long int or long long.
You may declare long long variables to be either signed or unsigned. Unsigned 64-bit integers
range in value from 0 to +18,446,744,073,709,551,615 (0 to +2%-1). Signed long long variables
range in value from -9,223,372,036,854,775,808 to -+9,223,372,036,854,775,807 (-2° to +2%1).
Figure A-4 shows the long long data representation.
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Figure A-4: Long Long Integer

63 56|55 48|47 40|39 32|

long long int 1

ADDR | ADDR+1 | ADDR+2 | ADDR+3 |

31 24|23 16|15 8|7 0|

long long int 2

ADDR+4 | ADDR+5 | ADDR+6 | ADDR+7 |

Although a long long integer may normally be used wherever a long integer may be used, you
cannot pass long long integers as arguments to functions that do not expect to receive them. In
general, char and short values can be passed to routines that expect int or long values. wve
converts 8- and 16-bit quantities to a 32-bit format before pushing them onto the runtime stack.
Since 64-bit values are not truncated, however, improper stack alignment results when long long
tnt values are passed to routines that expect in¢ arguments.

A.2.5 Single-Precision Floating-Point Data

Single-precision (32-bit) floating-point variables are declared with the float keyword and can be
represented in either native format or in IEEE format. If you want to process your floating-point
data in IEEE mode, your machine must be equipped with the IEEE support hardware.

Figure A-5 shows the internal representation of single-precision floating-point data. The

positioning of the sign, exponent, and mantissa apply to both native and IEEE formats: the
particulars of each format are described following the figure.

Figure A-5: Single-Precision Floating

31|30 23|22 0]

S|Exponent Mantissa

ADDR | ADDR+1 | ADDR+2 | ADDR+3 |

A.2.5.1 Single-Precision Native
In single-precision native floating point, the range of numbers that can be represented is:

2.9387359x10°° to 1.7014117x10%%
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In the internal representation, the sign bit (S) is O for a positive number and 1 for a negative
number. The exponent is an 8-bit binary field with a bias of 128; that is, 128 must be subtracted
from the exponent to give the actual power of 2. The mantissa is the fractional portion of the
number and has an implicit 1 bit to the left of bit position 22. The binary point is to the left of
the implicit 1 bit.

A.2.5.2 Single-Precision IEEE
In single-precision IEEE floating point, the range of numbers that can be represented is:
1.1754944x10™ to 3.4028235x10"™

In the internal representation, the sign bit (S) is O for a positive number and 1 for a negative
number. The exponent is an 8-bit binary field with a bias Of 127; that is, 127 must be subtracted
from the exponent to give the actual power of 2. The mantissa is the fractional portion of the
number and has an implicit 1 bit to the left of bit position 22. The binary point is to the right of
the implicit 1 bit.

A.2.6 Double-Precision Floating-Point Data

Double-precision (64-bit) floating-point variables are declared with the long float or with the
double keyword and can be represented in either native format or in IEEE format. If you want to
process your floating-point data in IEEE mode, your machine must be equipped with the IEEE
support hardware.

Figure A-6 shows the internal representation of double-precision floating-point data. The
positioning of the sign, exponent, and mantissa apply to both native and IEEE formats; the

particulars of each format are described following the figure.

Figure A—6: Double-Precision Floating

6362 52|51 32|

S{Exponent Mantissa 1

ADDR | ADDR+1 | ADDR+2 | ADDR+3 |

31 0

Mantissa 2

ADDR+4 | ADDR+5 | ADDR+6 | ADDR+7 |
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A.2.6.1 Double-Precision Native
In double-precision native floating point, the range of numbers that can be represented is:
5.562684646268003x10° to 8.988465674311584x10™

In the internal representation, the sign (S) bit is O for a positive number and 1 for a negative
number. The exponent is an 11-bit binary field with a bias of 1024; that is, 1024 must be
subtracted from the exponent to give the actual power of 2. The mantissa is the fractional
portion of the number and has an implicit 1 bit to the left of bit position 51. The binary point is
to the left of the implicit 1 bit.

A.2.6.2 Double-Precision IEEE
In double-precision IEEE floating point, the range of numbers that can be represented is:
2.225073858507201x10™ to 1.797693134862317x101"®

In the internal representation, the sign (S) bit is 0 for a positive number and 1 for a negative
number. The exponent is an 11-bit binary field with a bias of 1023; that is, 1023 must be
subtracted from the exponent to give the actual power of 2. The mantissa is the fractional
portion of the number and has an implicit 1 bit to the left of bit position 51. The binary point is
to the right of the implicit 1 bit.

A.2.7 Character Data Representation

Character data is stored in 8-bit bytes. Each byte can contain one of the ASCII character codes.
In Vector C, char data items may be treated either as 8-bit integers or as ASCII characters.

You may declare char variables as either signed or unsigned. Unsigned character variables may
range in value from 0 to +255 (0 to +2%1). Signed character variables may range in value from
-128 to +127 (-27 to +2"-1). Figure A-7 shows the representation of this data type.

Figure A-7: Character

char

ADDR |

Single-character constants in C are surrounded by apostrophes. ASCII codes are specified as char
variables when you place the one- to three-digit octal number representing the desired character
code between apostrophes preceded by a backslash ( \ ) character.

Arrays of character data are stored in ascending memory addresses, regardless of 32-bit word
boundaries. By convention, C character strings are terminated by a null (0) byte. Thus, the
character string ‘‘abcde’ would appear in memory with the configuration shown in Figure A-8.
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Figure A-8: Character String

(a’ (b? ‘C, Ld) (e) 4\07

ADDRIADDR+1|ADDR+2/ADDR+3|ADDR+4|ADDR+5|

A.2.8 Enumerated Data Representation

In Vector C, an enumerated data type is a user-defined data type that has a finite number of
possible values. You specify each of the possible values. Declare enumerated scalar data as enum.
For example, you might declare the enumerated data type “color’ as:

enum color { red, blue, green } hue;

_In this example, the variable hue could take on only one of the values (red, blue, or green) at any
instant.

Internally, enum values are stored as integer representations. By default, the first enumerated
value (red in the above example) is represented with the ordinal value of zero. Subsequent
enumerated values are represented by sequential integer values. In the example shown above,
blue = 1, and green = 2. The default ordinal values are overridden when they are followed by
an equal sign and a new ordinal, for example:

enum color {red=10, blue=20, green=30};

Overriding default ordinal values affects the values of the following members. In the following
example, green assumes a value of 21:

enum color {red, blue, yellow=20, green};

A.2.9 Pointer Data Representation

A pointer is a variable that contains a 32-bit address, such as the address of another variable.
For example, the declaration:

char *cp

designates a pointer named cp that may be assigned the address of a char variable. All pointers
defined in Vector C are byte-granular virtual addresses (that is, they refer to the location of a
byte in memory). Pointers have the same range of possible values as unsigned integers. All
possible unsigned integer values may not be used as valid pointers, however. A pointer may
contain the address of a memory location that has been specially protected by UNIX. While it is
not an error for a pointer variable to contain the address of an invalid memory location, it is an
error for the program to attempt to access the contents of the address to which the pointer refers.
It is an error for a program to access the contents of a null (0) pointer. Figure A-9 is an example
of pointer data representation.
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Figure A-9: Pointer

31 24|23 16[15 8|7 0|

byte pointer

ADDR|ADDR+1|ADDR+2]ADDR+3|

Word-aligned pointers have zeros as the two least-significant bit positions; halfword-aligned
pointers have a zero in the least-significant bit position. Aligned addresses usually result in faster
program execution, since data with aligned addresses can be encached in high-speed memory by
the CONVEX hardware. ve attempts to keep addresses properly aligned.

A.2.10 Structure Data Representation

Structures are collections of data items that are related in some way. Structures are analogous to
records in PASCAL, or to Level 1 data items in COBOL. Structures may contain bit fields whose
length is less than or equal to 64 bits.

The alignment of fields within a structure depends on the data types of the fields. No field in a
structure lies on an alignment boundary of that field type. That is, an int field does not cross a
32-bit aligned boundary. This does not imply that all ¢nt fields are aligned on 32-bit boundaries.
For example, two 16-bit ¢nt fields fit in the same 32-bit package.

Boundaries for fields within structures are the same as the alignment values for variables on the
runtime stack.

A.2.11 Union Data Representation

The union data type uses the syntax of structures to reserve space in memory for variables whose
data types may vary. A union is aligned with its largest member. The most significant bit of all
the union members are aligned.

A.2.12 Void Data Representation

Since the void data type allocates no storage, there are no alignment considerations related to this
data type.

A.3 Storage Alignment Requirements

This section describes the requirements for alignment of instructions and data in memory. In
general, if you use only high-level programming languages you need not be concerned about the
alignment of either code or data. This information is useful, however, if you are interested in
avoiding the performance penalties that result from misaligned data in assembly language code.
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A.3.1 Data Alignment

Data is properly aligned when it resides in memory at an address that is a multiple of the size of
the datum in bytes.

e 8-bit data items are always aligned, regardless of their addresses.

® 16-bit data items are aligned when their addresses are multiples of 2 bytes; that is,
when they are aligned on even address boundaries.

e 32-bit data items are aligned when their addresses are multiples of 4 bytes.
e 64-bit data items are aligned when their addresses are multiples of 8 bytes.

Generally, the Vector C compiler and the UNIX runtime system can keep program variables
aligned to take maximum advantage of the hardware.

Align data on runtime stacks using these same guidelines. To maximize performance for push
and pop operations, align the top of the runtime stack on a 32-bit boundary.

Data stored within C structures should also be properly aligned. Note that the alignment of data
within structures may cause ‘‘holes’ in the structures.

A.3.2 Code Alignment

Code is properly aligned when:
o The starting addresses of the instructions lie on an even address boundaries, and
e The least significant bit of the program counter is 0.

Since each instruction in the CONVEX instruction set is a multiple of 16 bits, the program
counter becomes misaligned only after it has been altered. When control is transferred by a
branch instruction, the least-significant bit in the program counter is usually ignored. Executing
instructions loaded on odd address boundaries produce unpredictable results. To avoid this
occurrence in assembly language code, use the .align assembler directive to force the alignment of
instructions if odd-length data is stored in the text segment of the program.

A.3.3 Bit Field Alignment

Bit fields within structures in C programs are allocated from the most-significant bit in a 32-bit
word (bit 31) toward the least-significant bit in the word (bit 0). The most-significant bit in a
word is the leftmost bit; the least-significant one is the rightmost bit.

Bit fields should be no longer than permitted by the type declaration. Bit fields spanning a
natural address alignment boundary are realigned to start at the next available alignment
boundary. This realignment results in a ‘“hole’” between the bit fields in the least-significant bit
positions.
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For example, consider this bit field structure:

struct {
int partno:7;
int locn:19;
int qty:8;
int status:10;
} bitz;

Two 32-bit words are needed to contain an instance of the structure b:¢z. If the field named gty
appeared in memory immediately after locn, it will span a 32-bit boundary. Therefore a 6-bit hole
is inserted by the compiler to align the gty bit field on a 32-bit boundary. Fourteen bits remain
unallocated in the second word of the structure and form a second hole. Figure A-10 demonstrates
that the compiler allocates bit fields beginning with the most-significant bit in a word and
extending to the least-significant bit. The compiler assigns fields to words beginning with the first
bit field that appears in the structure declaration.

Figure A-10: Bit Field Alignment Example

31 25|24 615 0|
partno locn HOLE
31 24123 1413 0]
qty status HOLE
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Compiler and Runtime Messages

B.1 Introduction

This appendix describes the types of error messages that can occur when you compile a C
program. First, there are messages generated by the Vector C preprocessor, vepp. Next, the
Vector C compiler, cocc, issues four kinds of diagnostic messages: error, warning, advisory, and
vector summarization. All messages are output to stderr.

When the compiler has completed the syntactic and semantic analyses of a program, it aborts the
compilation if user errors remain. This can also occur during optimization, e.g., integer
truncation during constant folding.

The message may contain a parameter indicated by %s or %c. For example, in the vcpp error
message %s redefined, the %s is filled in with the macro name.

B.2 vcpp Messages

The Vector C preprocessor, vepp, generates the C-specific error messages and warning messages.
All vepp error and warning messages have the form:

file: line_number: error message

B.3 Compiler Messages
The compiler messages are error, warning, advisory, and vector summarization. You can
redirect these messages to any specified file using the UNIX output redirection characters: >&
filename. If you do not redirect the messages, they appear on your screen.
Example:
ve options file.c
sends the messages to the screen, while
ve options file.c > &out
sends the messages to the file out.
Another option available to you is the error utility. You can use error to insert diagnostic

messages into your source file, where they appear as comments. This is a convenient way to find
the bugs while editing your source file.
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Example:

vc titan.c | & error
This command compiles titan.c and pipes the standard output and standard error output to the
error utility, which then inserts the diagnostic messages back in the source file titan.c. You can
write a simple csh script using the error utility to produce listings with embedded error messages
that do not modify the source file itself.

An error message typically generates as:

Error on line 53 of filexxx: “Illegal pointer subtraction”’

B.4 Runtime Error Messages

The runtime library reports errors encountered during execution. Runtime errors can be system-
detected or mathematical. The runtime library provides default error processing and generates
the necessary error messages.

All error messages are written stderr. Please consult the CONVEX UNIX Programmer’s Manual,
introduction to Section 2 for detailed information on UNIX-generated system calls and error
numbers.

B.4.1 System Errors

System errors are returned by either the C I/O library or the C utility library. If it is the C I/O
library, the system errors appear as I/O error messages. If the error is returned by the C utility

library, the error number is returned as the value of the utility function (see Section 3 of the
CONVEX UNIX Programmer’s Manual.)

Table B-1 lists system errors generated by the UNIX operating system. Table B-2 lists the math
errors.

Table B-1: System Errors Generated by UNIX

1 Not owner
Typically this error indicates an attempt to modify a file in some way forbidden except to its
owner or super user. It is also returned for attempts by ordinary users to do things allowed
only to the super user.

2 No such file or directory

This error occurs when a file name is specified and the file should exist but does not, or when
one of the directories in a path name does not exist.

3 No such process

The process whose number was given to kill and ptrace does not exist, or is already dead.
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4 Interrupted system call
An asynchronous signal (such as interrupt or quit), that the user has elected to catch,
occurred during a system call. If execution is resumed after processing the signal, it appears
as if the interrupted system call returned this error condition.

5 I/O error

Some physical I/O error occurred during a read or write. This error may occur on a call
following the one to which it actually applies.

6 No such device or address
I/O on a special file refers to a subdevice that does not exist, or is beyond the limits of the
device. It may also occur when, for example, an illegal tape drive unit number is selected or
a disk pack is not loaded on a drive.

7 Arg list too long
An argument list longer than 10240 bytes is presented to ezecve.

8 Exec format error

A request is made to execute a file that, although it has the appropriate permissions, does
not start with a valid magic number, see a.ou#(5).

9 Bad file number

Either a file descriptor refers to no open file or a read (or write) request is made to a file that
is open only for writing (or reading).

10 No children
Wait and the process has no living or unwaited-for children.
11 No more processes

In a fork, the system’s process table is full or you are not allowed to create any more
processes.

12 Insufficient free swap space
During an ezecve or break, a program asks for more core or swap space than the system is
able to supply. A lack of swap space is normally a temporary condition but a lack of core is
not. The maximum size of the text, data, and stack segments is a system
parameter.

13 Permission denied

An attempt was made to access a file in a way forbidden by the protection system.
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14 Bad address

The system encountered a hardware fault in attempting to access the arguments of a system
call.

15 Block device required
A plain file was mentioned where a block device was required.

16 Mount device busy
An attempt was made to mount a device that was already mounted or to dismount a device
on which there is an active file directory (open file, current directory, mounted-on file, active
text segment).

17 File exists
An existing file was mentioned in an inappropriate context.

18 Cross-device link
A hard link to a file on another device was attempted.

19 No such device

An attempt was made to apply an inappropriate system call to a device; e.g., read a write-
only device.

20 Not a directory

A nondirectory was specified where a directory is required, for example in a path name or as
an argument to chdir.

21 Is a directory
An attempt was made to write on a directory.
22 Invalid argument
Some invalid argument: dismounting a nonmounted device, mentioning an unknown signal
in signal, reading or writing a file for which seek has generated a negative pointer. Also set
by math functions.
23 File table overflow
The system table of open files is full, and temporarily no more opens can be accepted.
24 Too many open files
Customary configuration limit is 20 per process.
25 Not a typewriter
The file mentioned in an foctl is not a terminal or another device to which these calls apply.

26 Text file busy

An attempt was made to execute a pure-procedure program that is currently open for
writing (or reading). Also an attempt was made to open for writing a pure-procedure
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program that is being executed.
27 File too large

The size of a file exceeded the maximum allowed (about 10¥*9 bytes).
28 No space left on device

During a write to an ordinary file, there is no free space left on the device.
29 Illegal seek

An lseek was issued to a pipe. This error may also be issued for other nonseekable devices.
30 Read-only file system

An attempt to modify a file or directory was made on a device-mounted read-only.
31 Too many links

An attempt was made to make more than 32767 hard links to a file.
32 Broken pipe

A write was made on a pipe or socket for which there is no process to read the data. This
condition normally generates a signal; the error is returned if the signal is ignored.

33 Argument too large
The argument of a function in the math package (3M) is out of the domain of the function.
34 Result too large

The value of a function in the math package (3M) cannot be represented within machine
precision.

35 Operation would block

An operation that would cause a process to block was attempted on an object in nonblocking
mode. See foctl (2).

36 Operation now in progress

An operation that takes a long time to complete (such as a connect) was attempted on a
nonblocking object. For more information, see ioctl(2).

37 Operation already in progress

An operation was attempted on a nonblocking object that already had an operation in
progress.

38 Socket operation on non-socket
Self-explanatory.
39 Destination address required

A required address was omitted from an operation on a socket.
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40 Message too long
A message sent on a socket was larger than the internal message buffer.
41 Protocol wrong type for socket

A protocol was specified thats does not support the semantics of the socket type requested.
For example, you cannot use the ARPA Internet UDP protocol with type SOCK_STREAM.

42 Protocol not available

A bad option was specified in a getsockopt (2) or setsockopt (2) call.
43 Protocol not supported

The protocol has not been configured into the system or no implementation for it exists.
44 Socket type not supported

The support for the socket type has not been configured into the system or no
implementation for it exists.

45 Operation not supported on socket
For example, trying to accept a connection on a datagram socket.
46 Protocol family not supported

The protocol family has not been configured into the system or no implementation for it
exists.

47 Address family not supported by protocol family

An address incompatible with the requested protocol was used. For example, you would not
necessarily expect to be able to use PUP Internet addresses with ARPA Internet protocols.

48 Address already in use
Only one usage of each address is normally permitted.
49 Can’t assign requested address
Normally results from an attempt to create a socket with an address not on this machine.
50 Network i1s down
A socket operation encountered a dead network.
51 Network is unreachable
A socket operation was attempted to an unreachable network.
52 Network dropped connection on reset

The host you were connected to crashed and rebooted.
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53 Software caused connection abort
A connection abort was caused internal to your host machine.
54 Connection reset by peer

A connection was forcibly closed by a peer. This normally results from the peer executing a
shutdown(2) call.

55 No buffer space available

An operation on a socket or pipe was not performed because the system lacked sufficient
buffer space.

56 Socket is already connected

A connect request was made on an already connected socket; or, a sendto or sendmsg request
on a connected socket specified a destination other than the connected party.

57 Socket is not connected
A request to send or receive data was disallowed because the socket is not connected.
58 Can’t send after socket shutdown

A request to send data was disallowed because the socket had already been shut down with a
previous shutdown call.

59 Too many references: can’t splice
Currently unused.
60 Connection timed out

A connect request failed because the connected party did not properly respond after a period
of time. (The timeout period depends on the communication protocol.)

61 Connection refused

No connection was made because the target machine actively refused it. This usually results
from trying to connect to an inactive service on the foreign host.

62 Too many levels of symbolic links
A path name lookup involved more than 8 symbolic links.
63 File name too long

A component of a path name exceeded 255 characters, or an entire path name exceeded 1023
characters.

64 Host is down
Self-explanatory.
65 Host is unreachable

Self-explanatory.
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66 Directory not empty

A directory with entries other than . and .. was supplied to a remove directory or rename
call.
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Table B-2: Math Error Messages

300

301

303
304
305
306
307
308
309
310

311

313
314
315
316
317

318

square root undefined for negative values
exponential overflowed

logarithm undefined for nonpositive values
power undefined with negative base

power undefined with zero base and nonpositive exponent
power overflowed

argument for sin is too large

argument for cosine is too large

argument for tangent is too large
argument for cotangent is too large
tangent overflowed

cotangent overflowed

argument is out of range for arc sin
argument is out of range for arc cosine
arc tangent of 0.0/0.0 is undefined
hyperbolic sin overflowed

hyperbolic cosine overflowed

complex log undefined for 0.0

complex divide undefined for divisor = 0.0
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Preprocessor Statements

The compiler contains a preprocessor that allows macro substitution, inclusion of file names, and
conditional compilation. Preprocessor statements begin with the # symbol and are syntax-
independent of the compiler. You can extend long statements over more than one line by entering a
backslash ( \ ) at the end of the line to be continued.

The preprocessor statements are described in the following paragraphs.

C.1 #define Statement

The #define statement causes the preprocessor to replace subsequent instances of an identifier
with a given string of tokens. The format of this statement is as follows:

#define identifier token-string

or

#define identifier(identifier,..., identifier) token-string
The token string in the definition replaces the identifier. The arguments in the call in the second
form are token strings separated by commas. Note that commas within quoted strings or
protected by parentheses do not separate arguments. The corresponding token string from the
call replaces every identifier mentioned in the formal parameter list of the definition, and the

number of formal and actual parameters must be the same. Text inside a string or a character is
not replaced.

Blanks are significant in # define statements. For example, #define z(y,z) y+=2 is not the same as
#define z (y,z) y+z. The argument list must immediately follow the macro name.

C.2 #undef Statement

The #undef statement causes the identifier preprocessor definition to be deleted. The format of
this statement is as follows:

#undef identifier

C.3 #include Statement

The #include statement causes the replacement of the specified line by the contents of a specified
file. The format of this statement is as follows:

#include " filename"

or
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#include <filename>

The first form searches for the specified file in the directory of the original source file and then in
a sequence of standard places. The second form searches for the specified file in only the standard
places. Note that #include statements may be nested.

C.4 #if Statement

The #if statement checks whether a C-style constant expression evaluates to nonzero (#if),
whether the identifier is currently defined in the preprocessor (#ifdef), or whether the identifier is
currently undefined in the preprocessor (#ifndef). The format of this statement is as follows:

#if constant-expression

or

#ifdef identifier

or

#ifndef identifier
These forms are followed by an arbitrary number of lines, which may contain a control line
#else. The last line must be #endif. If the specified condition is true, the lines between the # else

and the #endif are ignored. If the checked condition is false, the lines between the #if and an
# else (or the # endif, if no # else exists) are ignored. These constructs may be nested.

C.5 #line Statement

The #line statement tells the compiler that the number of the next source line is given by the
constant and the current input file is named by the identifier. If no identifier is specified, the
current file name does not change. The information resulting from the #/ine command provides
more informative error messages for use in diagnostics. The format of this statement is as
follows:

#line constant identifier



The runtime libraries and initialization routines are shown in Table D-1.

D

Runtime Libraries

purpose of each library or routine, and the directory in which each resides.

Table D-1: Runtime Libraries

Library/ | Location Purpose

Init. Routine

libc.a /lib Contains standard C library
functions, stdio functions,
network functions, interfaces to
system calls, and programmed
operators (e.g., udiv64).

libm.a Jusr/lib | Contains C interface to math
functions.

crt0.0 /lib C program initialization routine
(no profiling).

mert0.0 /usr/lib | C program initialization routine
(used with prof).

gert0.0 /usr/lib | C program initialization routine
(used with gprof).

bert0.0 Jusr/lib C program initialization routine
(used with bprof).

libc.a i1s loaded automatically by wve.

command line.

The table includes the

libm.a i1s loaded when you include the -/m option on the wve

The initialization routines are loaded automatically by ve unless you choose to load your program
manually. (The CONVEX Loader User’s Guide describes the manual loading process.) If you specify

profiling with prof using the -p option on the ve command line, mcrt0.0 is used.

If you specify

profiling with gprof (-pg option), gert0.0 is used. Programs profiled with bdprof (-pb option) use the
bert0.o routine. crt0.o is used if you do not specify profiling.
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Compiler Directives

E.1 Introduction

A compiler directive provides information that the compiler cannot deduce and instructs the
compiler to override conditions that inhibit optimization or vectorization. A compiler directive
has the form

/*$dir directive |, directive]*/
where

/*$dir Indicates that the comment is a compiler directive. The characters $dir
must be the first characters in the comment notation.

directive Is a compiler directive. Do not include other comments in the same
comment delimiters with a directive. Use a separate set of comment
delimiters (/* */) if you want to put comments near the directive.

The scope of a compiler directive is the program unit in which it appears. For directives having
to do with vectorization, the scope is the loop that immediately follows the directive in the
program text; it does not apply to loops nested within that loop. Since the compiler ignores
comments, you may surround directive lines by any number of comment lines.

E.2 no_side_effects Directive
This directive has the following format:
no_side_effects (func [,func| )
where func is a user-defined function.

This directive can be used to increase the amount of optimization in a function. This directive is
only legal within a function, and applies from the point it appears in the text to the end of the
function. Use the directive if the compiler gives the advisory message ‘‘“More optimization is
possible if this function call has no side effects.”

The “no_side_effects” directive instructs the compiler that the named functions have no side
eflects, i.e., they do not modify the value of a parameter or external variable, or perform a read
or write. This permits scalar optimization to remove a function call if it occurs in an expression
assigned to a scalar variable that does not reach a use. The function call can be removed since
the function has no side effects—it does not matter whether the call is made. Such optimization
opportunities usually arise after other optimizations are performed and rarely occur in the
original source text.
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Example 1:
/*$dir no_side_effects (F1,F2)*/
X =y * F1(5,2) - w;
/*if the x= does not reach a use of X, the assignment*/
/*statement may be removed#/

A function call with no side effects is invariant with respect to a loop if its arguments are loop
invariant. The call may then be moved out of the loop.

Example 2:

A function call may inhibit code motion. Here, the directive is not applicable, and you must
perform the optimization at the source level. (The source would have to be modified anyway to
add the directive.)
for (1 = 0; 1 < n; 1++) {
/* 1f £(3) has no side effects and is
invariant, z = can be
removed from the loop which

may make z loop invariant */

z = £(3);
>

Equivalent code is:

t1 = £3(a);
for (1 = 0; 1 < n; i++) {

zZ = vl
>

Code motion moves the z=.

E.3 scalar Directive
This directive has the following format:

scalar

When placed just before a loop, this directive prevents that loop from being vectorized. The
body of the loop may still be vectorized if an outer loop interchanges with the scalar loop.

The scalar directive is useful in preventing vectorization when the iteration count for the loop is
too low to compensate for the vectorization overhead or when the numerical results must be
exactly the same as for a scalar loop.

The results of a vectorized loop can differ from its scalar equivalent. For example, floating-point
sum and product reduction operators may give different answers because of rounding off in the
least-significant bits. That is, the result depends on the order in which the operands are processed.
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The scalar directive can also prevent loop interchange, which may make incorrect decisions when
it cannot deduce the iteration counts of the loops involved.

Example 1:

Here, the compiler normally interchanges the i loop with the j loop so that elements of a, b, and ¢
are accessed contiguously. The directive ensures that the loop of greater iteration count is
retained as the innermost loop:

/*$dir scalarx/
for (i = 0; i < n; i++) /*where n
for (j = 0; j < m; j++) /*where m
alil{j] = v[i1[j] + c[11[j]);

28%/
1000%/

Example 2:
Here, neither iteration count is enough to warrant vectorizing the loops:

/*$dir scalar*/

for (1 = 0; 1 < n; 1i++) /*where n = 2%/
{

/*8$dir scalarx/

for (j = 0; § < m; j++) /*where m = 2%/

ali1(j] = pli1 03] + cli1 (3]

E.4 no_recurrence Directive

This directive has the following format:
no_recurrence

Place this directive just before a loop if the loop was not vectorized because of an apparent
recurrence but each statement could have been vectorized in the order specified in the original
source program.

Use caution when using this directive. You may get incorrect results if you mistake a real
recurrence for an apparent one. Test vector results versus scalar results if you are unsure
whether a recurrence is real or apparent.

This directive applies only to the loop immediately following it. It does not affect recurrences
caused by a contained loop. You could use the directive on each loop of a nest to give the
vectorizer maximum opportunity for improving the performance of the nest.
Example:
Here, if } is positive, there is no recurrence:

/*$dir no_recurrencex*/

for (i = 0; i < n; i++)
alil = ali+j];
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Reporting Problems

F.1 Introduction

The contact utility is the recommended way to report software and documentation problems to
the Technical Assistance Center (TAC). It is an interactive tool that prompts you for the
information necessary to report a problem to the TAC.
You must have a UNIX-to-UNIX Communications Protocol (UUCP) connection to the TAC to
use contact. A UUCP system allows communication between UNIX systems by either dial-up or
hard-wired communication lines. See uucp(1l) or the entry in info(1) (online information system)
for more information.
You must know the name and version number of the product involved. If you do not know the
version number of the program or utility you are having trouble with, use the vers command.
The syntax for the command is

vers filename

where filename is the the full pathname of the program. If you don’t know the full pathname of
the program, type

which program

For more information on these commands, see vers(l) and which(1) in the CONVENX UNIX
Programmer’s Manual, Part 1.

F.2 Information Required to Report a Problem
contact requires the following information:
1. Your name, title, phone number, and corporate name.

3. The name and version of the product involved. Use the wers command if you don’t
know the version number of the program or utility.

3. A short (1 line) summary of the problem.

4. A detailed description of the problem. Include source code and a stack backtrace
whenever possible. (See adb(1) or csd(1) for information on obtaining stack backtraces.)
The more information provided, the quicker your problem can be isolated and solved.

5. The priority of the problem. You are shown a list of six levels from which to select.

6. Instructions on how to reproduce the problem, including the command syntax used, any
flags invoked, or anything else you attempted to make your program run.




7. Any other comments about the problem or files you wish to submit.
You will have a chance to review your report before you submit it. You can edit the report if

you find an error in what you have typed. If you change your mind and don’t want to submit

the report, you can abort the contact session; the file is saved in your home directory in a file
named dead.report.

The following figure is a sample contact session. User input is in bold lettering, and the system
response is in constant-width lettering.
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Figure F-1: Sample contact Session

%contact
Welcome to contact version 0.11 ()

Enter your name, title, phone number, and corporate name ("D to terminate)
> Margaret Atwood, systems programmer, 814-4444, University r

> of Chicago RETURN)

> CIRLD)

Enter the name of the product involved
> CONVEX UNIX Programmer’s Manual, Part I

Enter the version number (in the form X.X or X.X.X.X) of the product
> Revision 4.0 RETURN)

Enter a short (1 line) summary of the problem
> The finger command manual page lists nonexistent bug RETURN)

Enter a detailed description of the problem (D to terminate)

> The finger(l) man page says, under the BUGS section, that “Only the first
line of the .project file is printed.”” Happily, this is not true! RETURN)

> CRLD

Enter a problem priority, based on the following:

1) Critical — wWork cannot proceed until the problem is resolved.

2) Serious ~ work can proceed around the problem, with difficulty.
3) Necessary - problem has to be fixed.

4) Annoying - problem is bothersome.

5) Enhancement - requested enhancement.
6) Informative - for informational purposes only.
> 4 RETURN)

Enter the instructions by which the problem may be reproduced ("D to terminate)

> a) put more than one line in .project
> b) read the man page for finger(1)
>

Enter any comments that are applicable (“D to terminate)
> CRLD)

Do you have any suggestions or comments on the documentation that you
referenced when you were trying to resolve your problem (for example,
additions, corrections organization, accessibility)? ("D to terminate)
> The man page should be updated. RETURN)

>

Are there any files that should be included in this report (yes | no)?
> no RETURN)

Please select one of the following options:
1) Review the problem report.

2) Edit the problem report.

3) Submit the problem report.

4) Abort the problem report.

> 3 RETURN)

Problem report submitted.
%
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