
Digital Technical Journal

) * a m .

a . 4 I . . . ,
Number 4

Fcbruary 1987

Edi to r ia l Staff

Iiditor - Richard W' Beane

Cover Design

This issue ,/emtirres /he VAX 8800 ,/arnill~. Ozlr c.oile?. depicls
!he grozuth oJ a c.harnher.ed r?azililzrs as a metaphor ,/or lhr
grouilh o / the VAX Jclrnii],. A s /hose c.harrzbers s/)iral Jrorr~
the (.errlet; so /he /)ou~er o/ lhe VAX Jurnilv grows , from the
/Micr.o VAX syslerns. Ihrolrgh tho VA X 8200 a n d 8.900 CPOs,
lo lhe n('z11 VAX 8800 ~n~rlti/)?.oc.essoi~. Tk~e image w a s cre-
ated r ~ s i r ~ g the Lightspeed s.]lsfern.

7;be corler was designed b y Deborah Falck, Eddie Lee a n d
fizrneo Taniz~chi oJ the Graphic Design I)cpartmenl.

P r o d u c t i o n Staff
Production Editor - Jane C. Blake

Designer - Charlotte Dell

Inter;tctivc 1':rgc iM:tkeup - 1.eslie K Schocmaker

A d v i s o r y Board

Sarnuel H Fuller. (;hairman
Robert M Glorioso

John W McCredie

Mahcndra R I'atel

I: Grant Sav~ers
W~l l i am 1) Strecker

l ' l ie Digilcrl Tec'hnic'crl Joirrr~nl is publislicd I)y
Uig~taI Ccluipmct~r <:orpor;ttion. 77 Rcetl Road,
Hudson. illassacht~setts 0 1 7 4 9

<;li;tngcs ot address s11o11ld be bent to D~gi ta l
Lquipmcnt Corporation, attcntlon. Mctlia Response
Manager, 200 Baker Ave.. CFO1-I/M94, Concord,
MA 0 1 7 4 2

(;on~ments o n the content of any paper arc w e l ~
comcd Write to the editor at Mail Stop HI.02-3/KI 1
at the publiblied-by addrcas (:omments can also bc
sent on the ENlil' t o RD\/AX.:DEANE or on the
ARI'AN1:T to IIEANI:"c,R[)VAX I)LCcdI)ECWRL

Copyright O 1987 I)~gital L q u ~ p m e n t Corpora t~on
Copying without tee is permitted provided thnt such
copres are made for uae in educ:ttion:tl institutions
by faculty niembcrs and arc not dis t r i l~uted for com-
merci;tl ;td\,antage Abstracting with credit of' Digital
Equipment Corporation's authorship is permitted.
Rccl~csts for other copies for a fce may be made to
the I) ~ g ~ t a l Press of 01g1tal Equipment Corporation
All rights rescl~rcd

l ' h c information in this jo11rt1:tl is subject to change
w ~ t h o u t notice and shoultl not he construed as a
commitmen[by 1)iglt;ll E q u ~ p m e n t Corpora t~on L) I ~ I -
tal Equipment (:orpor:ttion ass t~mes no responsibility
tor any errors that niay appcar in this d o c l ~ m e n t .

ISBN 1-55558-001-7
Document:~tioti Number LY-67 I I L-UP

'l'hc tollouring arc tratlcmarks of Digital Equipment
(:orporauon UEC, DliCnct the Iligital logo. I.NO3
I'lus, iMicro\'AX I. MicroVAX 11 , NMI, 1'I)P-1 1.
PI)I'- I 1/2-I. PI)P- 11/44, RSX, RSX- I IM,
RSX-I I M-PLIIS. SOL. IJNIBliS, \'AX. \ ' S - l 1/750.
VkY- 1 1/780. VAX- 1 1 /782. VAX 8 2 0 0 . VAX 8 3 0 0 ,
VAX 8 5 0 0 . \'AX 8 5 5 0 . \'AX 8 6 0 0 . \'AX 8 6 5 0 ,
\'AX 8 7 0 0 . VIU(8 8 0 0 . VMLII, VtLXlIl 78732 .
V S c l u b t c r . VA>;st:ttion. \'AXstation 11, VMS

AIM IS a rcglstcred tradernark of the L!.S. C;ovcrnnicri~

I>ata (;enera1 i \ :I registered tradem:trk ot Data
General Corporation

Harris is ;I tradernark of H:trris <:orporatlon

ll5il1 is a regrstcred tradcrnark of International
IIus~ncss ~M;rcli~ncs Corpora t~on

1.ightspecd is a tradcm;trk of Liglitspccd (;o~nputers ,
Inc

illotorola I S ;I rcg~stcred trademark of' ~Motorol;~. Inc

SCAI.Dbystcrn and Valid(;Ll) arc trademarks ol V:alid
I .og~c, Inc

'I'K!Solver IS :I trademark of Sottwarc h t s . Inc

I'NIX i s a tratlemark of American 'I'clephone bi
l'clcgr;tpli Company Bell Laboratories

Hook p r o d u c t ~ o n was donc by Educational Scrv~ces
 media (;o~nmunica~ions Group in Bcdtorti, M A

Contents

Foreword
Donald J . Mclnnis

N e w Products
An Overview of the Four Systems in the VAX 8800 Family
Robert M. Burley

The VAX 8800 Microarchitecture
Sudhindra N. Mishra

The CPU Clock System in the VAX 8800 Family
William A. S a m a r ~ s

Aspects of the VAX 8800 C Box Design
John Fu, James B. Keller, and Kenneth J . Haduch

The Memory System in the VAX 8800 Family
Paul J . Natusch, David C. Senerchia, and Eugene L. Yu

Floating Point in the VXX 8800 Family
John H.P Zurawski, Kathleen L. Pratt, and Traccy I.. Jones

The VAX 8800 Input/Output System
James P. Janetos

The V D I Bus - A Randomly Configurable Design
Paul C . Wade

A Logical Grounding Scheme for the VAX 8800 Processor
Michael W. Kement and Gerald J . Drand

The Simulation of Processor Performance for the VAX 8800 Family
Cheryl A. Wiecek

VMS Multiprocessing on the VAX 8800 System
Stuart J . Farnham, Michael S. Harvey, and K x h l e e n D. Morsc

A Parallel Implementation of the Circuit Simulator SPICE on
the VAX 8800 System
Gabriel P. Bischoff and Steven S. Greenberg

The Impact of VAX 8800 Design Methodology on CAD Development
Dennis T . Bak

On-line Manufacturing Data Access on the VAX 8800 Project
Andrew J . Matthews

- Editor's Introduction

Richard W. Beane
Editor

This issue features papers about the design of
the VAX 8 8 0 0 family of CPUs, written by mem-
bers of the design team. The technology used in
Digital's latest high-end machine, the VAX 8800
mult iprocessor , also forms t h e basis for t h e
other three family members: the 8 7 0 0 , 8 5 5 0 .
and 8500 CPUs.

Rob Burley's overview relates the processes
used in the 8800 design and the functions of the
memory interconnect (NMI), the VAXBI 1 / 0
bus, and the four logic boxes forming the five-
stage pipel ine. The early discovery of design
flaws and the use of automated tools hclpecl to
achieve an aggressive completion schedule.

The micromachine implements the microar-
chitectiire and contains four of the five pipeline
stages. Sudhin Mishra describes how microin-
structions are handled, emphasizing the use of
m i c r o b r a n c h e s a n d m i c r o t r a p s t o e n s u r e
coherency.

The VAX 8 8 0 0 clock system, discussed by Bill
Sarnariu. was designed using an automated tim-
ing verifier. He describes the trade-off between
using the verifier and maximizing the accuracy
of timing signals by minimizing their skew.

The C Box and the M Box are two parts of the
pipeline. John Fu, Jim Keller, and Ken Haduch
describe the C Box's no-write allocate cache and
the delayed-write algorithm that ensures correct
wr i t e - th rough . The C Box must also handle
p ipe l ine stall condi t ions and maintain data
coherency between processors. The M Box han-
dles read and write requests for the memory
arrays. Paul Natusch, Dave Senerchia, and Gene
Yu explain how the Besigns of the NMl and the

cache affected their design, and why they used
TTL in the memory controller.

The VAX 8 8 0 0 family does not have a separate
floating point accelerator. As John Zurawski,
Kathy Pratt, and Tracey Jones point ou t , how-
ever, a custom ECL unit achieves high perfor-
mance through the normal datapaths. Thus less
hardware is needed, and operands are fetched
faster.

I/O devices a re l inked t o t h e CPU by t h e
VAXBI bus. In his paper, Jim Janetos discusses
the NBI adapter, which contains logic to handle
CPU references and DMA requests. Then Paul
Wade describes how the VAXBI design team had
to abandon the traditional approach and use a
variety of techniques to specify the bus. Some
chip problems were resolved only after a thor-
ough analysis of the physical configuration.

Jerry Brand and mike Kement discuss t h e
importance of using ground correctly as a signal
conductor to achieve high performance. They
describe the sources of ground-related noise in
the CPU, and what they did to isolate and con-
trol those sources.

Many VMS features support multiprocessing.
Stu Farnham, Mike Harvey, and Kathy Morse first
describe the hardware that supports multipro-
ccss ing , then t h e in te r locked ins t ruc t ions ,
exception handlers, and traps that implement
VMS multiprocessing. To show how rnultipro-
cess ing d e c r e a s e s e x e c u t i o n t i m e . Gabr ie l
Bischoff and Steve Greenberg converted t h e
SPICE circuit simulator into CAYENNE, a paral-
lel progr;lm. They created master and slave pro-
cesses that ran CAYENNE 1.7 times faster than
SPICE.

The final two papers relate some of the auto-
mated tools and techniques used on the 8 8 0 0
project. Dennis Bak first describes building the
CAD suite from existing tools, newly developed
ones, and modifications. The methodology was
truly innovative, serving as a f ramework for
future projects. Then Andy Matthews discusses
the on- l ine system that transformed CAD data
into specifications used by Manufacturing. This
system minimized the product start-up time by
eliminating paperwork.

Biographies

Dennis T. Bak Dennis Bak is a principal software engineer in the
Advanced VAX Development Group. As a project leader, he is currently
developing new CAD tools to improve designer productivity on future
design projects. In other positions, Dennis performed configuration testing
for PDP- 1 1 and VAX systems. Prior to joining Digital in 1980, he worked as
a research engineer at Ford Motor Company, doing advanced development
on electronic engine-control systems. Dennis earned a B.S. degree in elec-
trical engineering from the University of Michigan in 1974.

Gabriel P. Bischoff In 1985, Gabriel Bischoff joined Digital after receiv-
ing a Diploma of Engineer and a Diploma of Advanced Studies in device
physics from the Ecole Centrale de Lyon (1980) and a Ph.D. degree in E.E.
from Cornell University (1985). As a senior software engineer in the Semi-
conductor Engineering Group, he is investigating the application of paral-
lel computing architectures for VLSI CAD tools, particularly circuit simula-
tors. Gabriel developed a parallel version of the circuit simulator SPICE for
shared-memory multiprocessors. A member of IEEE, he has published
papers on device modeling and circuit simulation.

Gerald J. Brand Jerry Brand is a principal engineer currently developing
high-density, high-availability power systems. Prior to working on the
power and packaging team for the VAX 8800 family, he designed two MPS
power modules that are widely used in Digital's products. Before joining
Digital in 1980, Jerry worked for over 1 4 years in disciplines ranging from
oceanography to gas-turbine instrumentation. He holds a B.S.E.E. degree
from the University of Illinois and participated in the M.S.E.E. program at
the University of New Hampshire. Jerry teaches circuit analysis and elec-
tronics in the continuing education program at the University of Lowell.

Robert M. Burley As a senior product management manager, Bob Burley
was the engineering product manager for the four systems in the VAX 8800
Family. As a program manager in the LSI Acquisition and Test Group, he was
responsible for relations with external vendors and acquiring technologies
for the advanced gate arrays used in new CPU designs. Prior to joining Dig-
ital in 1980, Bob was a product and business development manager at Colt
Industries, Inc., and a product and manufacturing manager at Scott Paper
Company. He earned his B.S. degree in mathematics and economics from
Hobart College in 1965.

f

Biographies

Stuart J. Farnham As a principal software engineer in the VMS Develop-
ment Group, Stu Farnham is currently working on future directions in mul-
tiproccssing. Earlier, h e provided VMS suppor t at t he corporate level for
Software Services. St11 was a developer and instructor for the VAX/VMS Sys-
tems Seminar. He joined Digital in 1982 after working as a software engi-
neer at Pitney Bowes, Inc.

John Fu Currently earning his M.S. degree in compute r sc ience a t t he
LJnivcrsity of Illinois, John Fu was a principal engineer on the VAX 8 8 0 0
project. H e worked o n the design of the C Box and configurations for the
\'AX 8 8 0 0 family. Formerly, he worked o n large-systems designs at Interna-
t ional C o m p u t e r s Limited a n d o n mic roprocesso r con t ro l sys tems fo r
Siemens Limited. John was also a project manager at Systems and Software,
lnc. He reccivcd a 13.S~. (Hons) in computer science (1977) from the Uni-
versity of Manchester in England. John is a member of the British Computer
Society and the IEE in England.

Steven S. Greenberg As a team leader in t h e CAD Department of t h e
Sernicondilctor Engineering G r o u p , Steve Greenberg codeve loped t h e
CAYENNE program. An early providcr of circuit and process simulators at
Digital, h e did research in timing verification and circuit simulators. As a
Digital industrial fel low at the University of California a t Berkeley, Steve
performed research on iterated timing analysis. Before joining Digital in
1976, he was a member of the technical staff at RCA and a CAD engineer at
Texas Instruments. Steve received a B.S.E.E. degree (1966) from M.I.T. and
an M.S.E.E. degree (1979) from Northeastern University. He is a member of
IEEE and Tau Beta Pi.

Kenneth J. Haduch In 1974. Ken Haduch joined Digital after earning
his Associate in Electronic and Computer Technology degree from the Elec-
tronic Institutes, Pittsburgh. He worketl as a technician in Manufacturing
o n t h e POP-1 1/70 a n d VAX- 11/780 CPUs a n d in Engineer ing o n t h e
OR750 and FP750 dcsigns. Ken hclped to develop the C Box as a hardware
designer o n the VAX 8 8 0 0 project. He is currently a hardware engineer in
the Advanced VAX Development Group, working on the hardware design
for a new VAX processor. Ken is also pursuing a B.S. degree from Northeast-
ern University.

Michael S. Harvey Mike Harvcy joined Digital in 1978 after receiving
his B.S. degree in compute r science from the Univcrsity of Vermont. He
worked on developing the RSX- 1 1 M and RSX- 1 I M-PLUS operating systems
and then led the team that developed the VAX- 1 1 RSX layered product for
the VMS system. Since joining the VMS Development Group, Mike has par-
ticipated in new processor suppor t for the VAX 8 3 0 0 and 8 8 0 0 systems,
specializing in multiprocessing. As a principal software engineer, h e is cur-
rently working on future directions for VMS multiprocessing and suppor t
for high-end VAX CPUs.

d
J a m e s P. Janetos Jim Janetos is currently studying computer architec-
ture as a graduate student at Purdue University. He joined Digital in 1 9 8 0
after receiving his B.S.E.E. degree (Summa Cum Laude) from the University
of Michigan, where he was elected to Tau Beta Pi. As a design engineer, Jim
worked o n memory upgrades for the PDP-11/24 and 11/44 systems, o n
memory system designs, and on dynamic RAM evaluations. O n the VAX
8 8 0 0 project, he initially worked on the diagnostic software for the 1 / 0
adapter, the NBI. Later, he designed the NBIB module, one of the two mod-
ules in the NBI.

Tracey L. Jones Earning her B.S. degree in computer engineering from
Boston University, Tracey Jones joined Digital after graduation in 1982. As
a firmware engineer in the Advanced VAX Engineering Group, she wrote a
major portion of the microcode that performs floating point operatiolis in
the VAX 8 8 0 0 family of processors. After promotion t o senior engineer,
Tracey enrolled in Digital's Graduate Engineering Education Program and is
now pursuing an M.S. degree in electrical engineering at Brown University.

J a m e s B. Kel ler Jim Keller is the project leader for the instruction-fetch
and execution units, the I and E Boxes, and the console for a new VAX pro-
cessor. On the VAX 8 8 0 0 project, he worked on the design of the C Box.
Prior to joining Digital in 1982 , Jim worked on fiber optics and the designs
of several microprocessor boards at Harris Corporation. He earned a B.S.
degree in electrical engineering in 1980 from Pennsylvania State Univer-
sity, where he was elected t o Eta Kappa Nu. Jim has appl ied for three
patents on the technology in the VAX 8 8 0 0 design.

Michae l W. K e m e n t Mike Kement is a senior design engineer in the
Power System Technology Group, currently working on EM1 and EMC. He
was the design engineer for the power system on the VAX 8 8 0 0 project.
Mike has worked on the power systems of many products since joining Dig-
ital in 1 9 7 4 , including the LA36 and LA180 terminals, the PDP-11/44,
VAX-11/780 and 11/750 systems, and the VAX 8 6 0 0 CPU.

A n d r e w J. Mat thews As a senior software manager in the Advanced VAX
Systems CAD Group, Andy Matthews is currently automating the CAD to
CAM transition. He has managed the development of surface-mount CAD
processes and a pilot program of advanced CAD to CAM data methods. Andy
designed the prototype and first release of VLS, the VAX layout software
Digital uses for module design He worked for Adage, Inc. , as the manager
of applications programming before coming to Digital in 1977 . Andy holds
a B.S. degree in C.S. and M.E. (1968) from Boston University. He has pre-
sented two papers at the Design Automation conference.

Biographies

a Sudhindra N. Mishra Sudhin Mishra is a project leader in the Advanced
VAX Development Group, currently developing a design verification CAD
tool. AS a principal engineer on the VAX 8 8 0 0 project , h e designed and
implemcntcd most of the I Box and originated the system-level simulation
of the CPU. Before joining Digital in 1 9 8 2 , he was a senior research engi-
neer at Prime Computers, Inc. Sudhin has worked o n projects ranging from
radar and heat-seeking missiles to computers. He earned a B.Sc. degree in
engineering from Ranchi University and an S.M. in E . E . and C.S. from M.I.T.
Sudhin has applied for a patent o n the technology in the VAX 8 8 0 0 design.

Kathleen D. Morse As a consult ing software engineer , Kathy Morse is
responsible for all low-end CPUs and peripherals . She is also one of the
designers for fu ture directions in VMS multiprocessing. Kathy provided
VMS support for the VAX-11/782 and MicroVAX 1 and I1 systems, and the
MA780 mcmory . She joined Digital after rece iv ing h e r B.S.C.S. deg ree
(1976) froni Worcester Polytechnic Institute, where she also earned her
M.S.C.S. degree (1 9 8 5) . Kathy is a member of IEEE, the Professional Coun-
ci l , ACM, Tau Beta Pi, and Upsilon Phi Epsilon. She has published in the
Con lpu te r Measurement G r o u p ' s Confe rence Proceedings , t h e Digital
Technical Jozlrnal, and DATAMATION.

Paul J. Natusch As a principal hardware engineer, Paul Natusch is cur-
rently managing the hardware development for a new VAX processor in the
Advanced VAX Development Group . O n the VAX 8 8 0 0 project , he was a
member of the memory system team and later took over as its leader. Ear-
l ier , h e worked o n an upgrade to the VAX-l 1 / 7 5 0 memory cont ro l ler ,
wh ich expanded it from 2MB to 8MB. Paul joined Digital in 1 9 8 0 from
Storage Technology Corporation, where hc was a diagnostic engineer. He
received his B.S.E.E. degree from Cornell University in 1 9 7 9 and an M.B.A.
degree froni Northeastern University in 1985 .

Kathleen L. Pratt Educated at Rensselaer Polytechnic Inst i tute, Kathy
Pratt came to Digital after receiving her B.S. degree in computer and sys-
tems engineering in 1 9 8 0 . She worked on hardware designs for networks in
the Local Area Networks Group, then on the design of the floating point
hardware for the VAX 8 8 0 0 central processor in the Advanced VAX Devel-
opment Croup . Kathy is currently a senior engineer working o n the float-
ing point design for a new \'AX processor.

William A. Samaras Bill Samaras is a pr inc ipal eng inee r working t o
design a n e w VAX processor. He joined Digital in 1 9 8 2 to design the clock
system on the VAX 8 8 0 0 project . Formerly, at Accutest Corporation, Bill
designed VLSI testers and t iming systems. He holds an Associates degree
(1 9 7 3) from Northern Essex Community College, and B.S. degrees in engi-
neering technology (1375) and electrical engineering (1 9 7 6) , both from
Southeastern ~Massachusetts University. Bill teaches digital electronics for
continuing education at the University of Lowell. He has applied jointly for
a patent on the technology in the 8 8 0 0 clock system.

David C. Senerch ia Davc Scnerchja is currently a senior engineer In the
Electronic Storage Development Group. He is a member of the design team
working on the main memory for a new micl-range VAX system. O n the VAX
8 8 0 0 team, Dave designed the initial array module for main memory and
participated in the architecture and design of the memory system, the
M Box. He joined Digital in 1982 after earning a B.S. degree in electrical
engineering from Washington Ilniversity.

Paul C. W a d e As a principal engineer, Paul Wade is working on advanced
development for future VAX CPUs. He was responsible for the electrical
design, verification, and testing for the VAXBI bus. Paul also designed parts
of the VAX 8 2 0 0 system. Before joining Digital in 1980 , he worked as a
project engineer at Microwave Semiconductor Corporation, RCA, and Lock-
heed Electronics. Paul earned a B.S.E.E. degree (1773) from Newark Col-
lege of Engineering. He holds a patent on gallium arsenide technology and
has written nine papers on that topic. One paper won the Beatrice Winner
Award at the 1980 ISSCC.

C h e r y l A. Wiecek Cheryl Wiecek is the engineering manager of the Sys-
tems Architecture Group and is responsible for the VAX architecture and a
number of Digital's interconnect architectures. She worked on VAX instruc-
tion-set characterization and performance simulation for the VAX 8 8 0 0
CPU. Cheryl also workecl on PDP- I I performance simulation after coming
to Digital in 1978. She was a programmer/analyst at the Connecticut Edu-
cation Association and taught mathematics in Connecticut. Cheryl holds a
R.A. degree in mathematics (1 074) and an M.S. degree in computer science
(1 979) from the University of Connecticut. She has published five papers
on computer performance in ACM and IEEE journals.

E u g e n e L. Yu Gene Yu is a senior design engineer in the Workstation
Engineering Group at Palo Alto. On the VAX 8 8 0 0 project, he designed the
memory system interface to the memory interconnect, the NMI. Before
joining Digital in 1982, Gene worked at Prime Computer as a hardware
designer on their 400 and 9900 systems, and at Data General Corporation
on Nova products. H e earned a B.S. degree in electrical engineering from
the University of Massachusetts. Gene has applied for a patent as coinventor
of the NMI and memory design for the VAX 8 8 0 0 CPU.

John H.P. Zurawski John Zurawski is a consulting engineer working as
the project leader for computer arithmetic in the Advanced VAX Develop-
ment Group. He led the team that designed the floating point strategy and
hardware for the VAX 8 8 0 0 family. John joined Digital in 1 7 8 2 from the
University of Manchester, where he was a post-doctoral research associate.
He holds a B.Sc. degree in physics (1776), and M.Sc. (1977) and Ph.D.
(1 7 8 0) d e g r e e s i n c o m p u t e r s c i e n c e , a l l f r o m t h e Univers i ty of
Manchester. A member of IEEE, John has published four papers on com-
puter technology.

Foreword

Donald J . McInnis
Group Mar?rrge,;
Adr)r~nc.ed VA.X Etrg inec~rirrg

Since the announcement of thc VAX- 1 1/780 sys-
ten1 in November 1977. Digital Equipment Cor-
poration has steadily expanded the VAX family
with new VAX products: the VAX- 1 1/750. V t X -
11/730, MicroVAX I , VAX-11/725, VAX-I I /
785, VAX 8600, MicroVAX 11, VAX 8650. VAX
8200. and VAX 8300 systcnls. The market accep-
tance of the VAX family has beeti excellent across
;~l~riost all computing applications. This remark-
able and steady incrcase in the use of VAX sys-
tems crc;itcs a continuous dcn~and by the VAX
customcr base for enhanced products across all
scglncnts of the computing industry. In the fill1
of 1982, the development team for the 8800
project (known internally as "N;~utilus") was
;~ssignetl the responsibility of designing new sys-
tems to enhance the mid-to-high end of the \'AX
E~ruily.

'This issue of the Digital Technical Journcil
represents a sampling of the types of design engi-
neering that went into the VAX 8800 family. I t
t;tkcs an amazingly large number of different
cngi~iecring disciplines to design ant1 ~ i i ;~nuk~c-
tilrc a protluct of this complexity. As timc moves
o n , c;ich successive development project seems
to reqilire a bigger investment in a larger number
of disciplines to produce a product attr:~ctivc to
thc marketplace. It is unfortunate th;~t ncither
timc nor sp;~cc permits us to give proper visibil-

to ; ~ l l the design, manufacturing, and cus-
tomcr-scnicc engineering efforts t l i ;~ t let1 to the
shipment o f the VAX 8800 Fdmily.

The VAX 8800 family consists of four new pro-
cessors: the VAX 8800, VAX 8700. VAX 8550,
and VAX 8500 CPUs. The VAX 8800 family and
the VAX 8200 system introduced a major new
1/0 bus, tlic VAXI3I. We also introduced a com-
pletely new set of I/O adapters for the VAXBI
bus. which will be the new foundation I/O chan-
nel for many future mid- to high-end VAX sys-
tems. The VAXBI bus wi I I replace the UNIBUS on
this class of system. The VAXBI offers a six-fold
increase in performance and substantially better
reliability and m;~intain;~bility features in com-
parison to thc UNIBUS.

The 8800 represents a significant advance into
new areas of high-performance computing for
the VAX family. A customer can replace a V&X-
11/780 CPU with a VAX 8800 CPU in the same
footprint and effect an order of magnitude
increase in the amount of work done. The VAX
8500 CPU is really a replacement product for the
Vm-1 1/785 CPlJ kernel. However, the 8500 has
the same price. twice the performance, and one-
third the footprint.

To produce a product that has a good price/
performance ratio in the marketplace, you have
to push hard on sorue dimensions of technology.
A number of new pieces o f teclitiology were
introduced on the VAX 8800 project, such as the
22-l;l)~er backplane and a 480-pin, zero insertion
force connector. In the VLSI tcclinology area,
one 8800 includes a total of 186 emitter-cou-
pled logic (ECL) gate ;IrrJyS and a total of 28 cus-
tom-designed I:C:L parts.

The cycle timc of ;I VAX CPU is a large determi-
nant in its performance. The challenge of meet-
ing a 45-nanosecolid cycle time (versus 200
nanoseconds for the 11/780) required signifi-
cant advancements in technology implcrnenta-
tion and in CAD tools for analysis.

Enhancements were made to the base operat-
ing system software for the VAX 8800 processor.
These software enhancements represent a basic
technological changc that is available to our cus-
tomers. The VlLlS operating system was improved
significantlj, to provide much bctter throughput
for customers using the VAX 8800 dual proces-
sor as a general-purpose system. The ULTRIX-32
operat ing systeni was enhanced to suppor t
tightl!. coupled mul t iprocess ing . Software

library structurcs wcre also developed for cus-
tomers who might want to improve the through-
put of a single job by decomposing it to run in
parallcl on the tightly coupled dual processors
of an 8800.

To meet the performance goals, the overall
design of the VAX 8800 system is necessarily
quite complex and was potentially difficult to
implement quickly and correctly. We under-
stood this from the beginning of the project,
based on our understanding of the experiences
of previous projects (e.g., the VAX- 1 1/750, VAX
8600, and J11 VLSI CPU chip projects). To
manage that conlplexity in a timely manner, we
selected some key strategies and stuck with
them through the completion of the project.
They proved to be very successful since the
hardware prototypes were relatively error free,
and the manufacturing start-up was very smooth
and rapid. Some of these strategies are as fol-
lows:

The project followed a structured design
methodology that ensured the completion of
comprehensive specifications before any
detailed design was done.

We made a large investment in our CAD team
and in CAD tools to automate the design pro-
cess.

'The basic dcsign was managed by a chief
architect.

The system was simulated extensively before
we built any hardware. (We finished the pro-
ject with 14 VAX-11/780 and 11/785 sys-
tems in our.cluster. During our peak simula-
tion effort, however, over 30 dedicated VAX
systems were ilsed for a period of several
months.)

Since many different engineering and manu-
facturing locations were involved, we made
extensive use of Digital's worldwide network
for electronic mail and data exchange.

of people to have a broad engineering focus
proved to bc invaluable, especially in the simu-
lation and prototyping phases. The core rnanage-
ment team started with very experienced peo-
p l e , m o s t of w h o m had VAX-11/780 o r
VAX- 1 1 /750 development experiencc: Sas Dur-
vasula, VAX 8500 project manager; John Hittell,
manufacturing manager; Steve Jenkins, engineer-
ing manager; Nancy Kronenberg, VMS engineer-
ing; Bob Kusik, CAD manager; Steve Omand,
customer service engineering; and Bob Stewart,
chief architect. Many contributors at the next
level also had similar backgrounds, and all
remained in place for the duration of the pro-
ject. This continuity was a major factor in com-
pleting a very successful project and a very suc-
cessful family of products.

A more important factor than any of the above
e x a m p l e s , h o w e v e r , was t h e p e o p l e w h o
worked on the project. We attempted to build
an excellent team that worked well together.
'The attribute of teamwork and the willingness

Robert M. Burley I

An Overview of the Four Systems
in the V M 8800 Family

The VAX 8800 nrultiprocessor and the VAX 8700, 8550, and 8500 systems
all derive from the same fundamental design. Their sustained appli-
cations throughput ranges from 3.0 to 12 times that of tbe VAX-11/780
system. In the design process, automated tools helped to correct design
bugs early. ECL technology and a two-phase clock system achieve a
45-nanosecond cycle time. Microinstructions are processed simulta-
neously through four logic boxes that implement a five-stage pipeline. A
high-speed memory interconnect, the NIW 62% links CPUs to memory and
the I /O subsystem, which connects to V M I buses. Many reliability fea-
tures, including extensive diagnostics, are implemented.

Design work on the VAX 8800 system began in
September 1782 and concentrated on develop-
ing a balanced, high-perforn1;ince system bascd
upon the use of ECL components and multipro-
cessing. Although performance was the primary
product goal, many technology, packaging, and
implementation decisions rcflected the equally
pressing business req~~irements for reliability
and ease of manufacturing.

The flexibility of the dcsign ultimately
spawned four CPU systems: the VAX 8800. VAX
8700, VAX 8550, and VAX 8500 models. These
systems share many common functional and
design attributes yet maintain noticeable imple-
mentation differences in the areas of perfor-
mance, multiprocessing, expansion capability
(memory and I/O), and packaging. As a result of
these implementation variations, the sustained
applications throughput (SAT) rates for these
systems range from approximately 3.0 to 12
times the rate for a VAX-1 1/780 system. Sus-
tained applications throughput is more indica-
tive of usable performancc for a given system
than thc more frequently reported peak num-
bers that can be derived from ideal or biased
conditions. Table 1 comparcs the physical ancl
performance attributes of these four VAX pro-
cessor systems.

Design Enuironrnent
Traditional design environments have placcd
the greatest emphasis on discovering and elimi-

nating design errors in the physical hardware.
'The complexity of the VAX 8800 design cou-
pled with the new technologies involved would
have created costly delays in the development
schedule had traditional approaches been used.
Early in the project, goals were defined to iden-
t i h logic design problems and to solve all tinl-
ing problems through the use of extensive
design verification tools.

A hierarchical design and simulation environ-
mcnt allowed the cngincers to move freely
throughout the design at any level from gates,
layouts, and behavioral models through com-
plete system simulation and timing verification.
Considerable computing resources were required
to ;illow that freedoni. This environment, with
its carefully managed libraries and databases,
allowed this work to be done before any hard-
ware was actually assembled.' As a result, the
tlesign matured within our VAXcluster systems,
evolving to hardware prototypes only after it
was essentially complete and stable. In addition
to the expected savings in prototype costs and a
reduction in overall development time, the per-
vasive use of software tools significantly shifted
the tr;tditional debug effort to an earlier point in
the dcsign process. Cumulative bug-detection
plots were used extensively to provide insight
into the stability of the design.

The effect of this shift was to provide stable,
early prototypes for extensive system characteri-
zation and testing, leading to earlier design

Digital Technical Journal
A'o. 4 February 1987

New Products

Table 1 CPU and Memory Attributes of the VAX 8800 Family

VAX 8500 VAX 8550 VAX 8700 VAX 8800

CPU Attributes

SAT (compared
to VAX-111780)

Cycle Time

Number of
Processors

Upgrade
Potential

None None

15K in each CPU Writable Control
Store (Words)

User Control
Store (Words)

1 K in each CPU

143 Bits 143 Bits 143 Bits Microword Size

CACHE Size

143 Bits

64KB (in each CPU)

32 Bits Internal Datapath 32 Bits 32 Bits 32 Bits

16 Byte
Look Ahead

16 Byte Look Ahead
in each CPU

Instruction Buffer
Type

16 Byte
Look Ahead

16 Byte
Look Ahead

Over 30MB/s Maximum Total
I/O Data Rate

Over 30MB/s

Maximum I/O
Channels

Memory Attributes

Maximum Physical 80MB
Memory Size

Cycle Times:
Hexword Read 495 ns min. 495 ns min. 495 ns min. 495 ns min.
(256 bits) 1260 ns max. 1260 ns max. 1260 ns max. 1260 ns max.
Octaword Write 270 ns min. 270 ns min. 270 ns min. 270 ns min.
(1 28 bits) 540 ns max. 540 ns max. 540 ns max. 540 ns max.
Longword Write 135 ns min. 135 ns min. 135 ns min. 135 ns min.
(32 bits) 495 ns max. 495 ns max. 495 ns max. 495 ns max.

acceptance. This strictly controlled design envi-
ronment allowed us to complete physical debug
along with the required system evaluation and
testing in only eight months.

I n a software-intensive design environment,
the product ion o f actual hardware is deferred
solnewhat in favor o f design s t a b ~ l ~ t y , result ing
i n a sl ightly longer soft-design period. The delay
i n hardware availability, however, is more than
balanced b y the stability o f the hardware proto-
types, wh i ch can then be accelerated through
the evaluation and qualification-testing phases.

The design schedule recovers dur ing these later
phases, and substantial cost savings are realized
because fewer engineering changes are made
and stable manufacturing can begin quickly.

CPU Design Overview
The VAX 8800 family o f designs were structured
around the functional elements, o r "boxes," o f
the system. The CPU, memory, I/O, and bus
subsystems were all matched to provide the nec-
essary system balance. One simple model is to
trcat performance as a funct ion o f two variables:

Digital Tecbrrical Journal
No. 4 February I987

An Overview of the Four Systems in the VAX 8800 Furnily

the instruction execution rate, and the amount
of "work" each instruction can perform. The
design of the VAX 8 8 0 0 family focused on what
we call the "short tick" approach to achieve the
necessary, sustained performance.

In this approach , t h e ins t ruct ion and data
s t r e a m s a r e k e p t s i m p l e and a r e e x e c u t e d
quickly. Any design trade-offs were resolved in
favor of speed and simplicity, thus reducing
design complexity. The use of high-speed cus-
tom and semicustom VLSI components com-
bined with several n e w internal bus architec-
tures resulted in a family of processors with a
45-nanosecond (ns) cycle t ime . All mode ls
e m p l o y a f ive -s tage i n s t r u c t i o n e x e c u t i o n
pipeline, integral floating point acceleration (F,
D, G , H formats), and the VAXBl bus as the pri-
mary 1 / 0 s u b s y s t e m . T h e e x t e n s i v e u s e o f
microcode con t ro l s w i t h minimal hardware
assist a u g m e n t s c u r r e n t pe r formance w h i l e
providing flexibility for future enhancements.
'The block diagram in Figure 1 (using the VAX

M E M O R Y 0
CONTROL

8 7 0 0 and VAX 8 8 0 0 systems) illustrates the key
functional elements common to the VAX 8 8 0 0
family design.

Technology
The raw speed, off-chip drive capabilities, and
availability of bipolar emi t te r -coupled logic
(ECL) logic c o m p o n e n t s provided t h e most
straightforward means of achieving the desired
performance of the VAX 8800 family. Most logic
is implemented in 1200-gate ECL arrays. Cus-
tom logic chips designed by Digital provide fur-
ther performance gains for floating point opera-
tions and general-purpose registers. The cache is
implemented in 10-ns and 1 5 - n s ECL RAMS.
Nine-layer, control led- impedance CPU logic
modules and a 22-layer, controlled-impedance
CPlJ backplane were developed to meet the sig-
nal-integrity and signal-propagation require-
ments crucial to an ECL design. Other multi-
layer backplanes were designed for the private
memory array bus and 1/0 subsystems.

CONSOLE 0 - - - - - - - 7
I

PROCESSOR I PROCESSOR I
(STANDARD -1 (UPGRADE I
VAX 8700) I VAX 8800) I t ' vAx

I
I

HIGH SPEED MEMORY INTERCONNECT BUS (N M I)

I
I

BUS INTERFACE -- 17 I I I I I ; BUS INTERFACE \-- r-1 (OPTIONAL) I I
I
I I I I
I L ------- -l I
I I
I I

VAXBl
I10 BUS
STD 8700/8800

,,-- J--- r--- 1--- 1 ----- L ---,
I I
I VAXBl I I VAXBl I I VAXBl I
I I/O BUS I 1 I/O BUS I I/O B U S I

I (OPTIONAL I I (OPTIONAL I
I STD 8800 1
I I

I 8700/8800) I I 8700/8800) I

Digital Techtricnl Journul
No. 4 Fc~:ehrrirr?:1' 1957

Figure I VAX 8700/8800 Block Diagram

An innovative scheme of bus bars and ribbon
straps routes the appropriate power to each of
the backplanes, minimizing cable management
problems for system power. The eight CPLJ logic
modules, all memory arrays, and all 1 / 0 con-
trollers attach to their respective backplanes by
Incans of x r o insertion force (ZIF) connectors,
which improve our ability to manufacture and
service the system. Figure 2 shows the two dif-
ferent module typcs (CPIJ and VAXBI) used in
the VAX 8 8 0 0 family.

An extensive environment;ll monitoring sub-
systcm, callecl the EMM, has been implcmcntcd
throughout t h e system. T h e EMM constantly
monitors c ~ l r r e n t f luc t~~; l t ions , air flows, ; ~ n d
temperature variations, providing warnings at
thc system console. The EMM can ;~utomatically
power clown the systcm in the event th ;~ t safe
operating limits are violated.

CPU Subsystems
The designs o f the CPIJs in the VAX 8 8 0 0 family
are partitioned along the logical functions per-

formed within each processor. There are four
logical boxes the instruction unit (1 Box), the
cache (C Box), the execution unit (E Box), and
the memory subsystem (M Box). Each processor
contains these functional units and their related
buses. Five buses are implemented within each
CPIJ: the c;~che/ALU bypass bus, the cache data
bus, the instruction-buffer data bus, the virtual-
address bus, and the write data bus. Figure 3 is a
block dl;~grarn of the processor conf~guration

SUBSYSTEM
INTERFACE

$-
VISIBILITY BUS

t t t

t t l
CACHEDATABUS

I

t

HIGH SPEED MEMORY INTERCONNECT BUS (NMI)

4 4

I

MEMORY
ADAPTER 1 I I NBIA

CONTROLLER

IBD BUS

TO NBlB ADAPTERS

4

CIA BUS - CACHEIALU BYPASS BUS
IBD BUS - INSTRUCTION BUFFER DATA BUS
VA BUS - VIRTUAL ADDRESS BUS
WD BUS - WRITE DATA BUS

Figure 3 Processor Block Diagrum

A short o v e n ~ i e w of c;ich functional box fol-
lows. Othcr papers in this issue of the Digital
Technical Journal and t h e VAX Hardware
Ifundhook contain substantially more detail.'

Digital Technicctl Jortrracal
No. .f I:cbrr~rrr:), 1987

13

New Products

An Overview of the Four Systems in the VAX 8800 Family

Pipelining the VAX 8800 Family
Pipelining, m~hich functionally involves the
E Box, the C Box, and the M Box, is primarily
controlled by the I Box. Pipelining is a proven
method to improve performance. The incorpo-
ration of pipelining, in conjunction with faster
microcode instruction execution rates, or cycle
times, increases aggregate throughput more than
can be achieved by improvements of the cycle
time alone. The concept of pipelining is based
upon part i t ioning instruction execut ion t o
allow simultaneous operations upon multiple
mic ro ins t ruc t ions . T h e VAX 8 8 0 0 fami ly
employs a five-stage pipeline. In this design a
new microinstruction executes every 4 5 ns,
with five microinstructions executing simulta-
neously. A simplified schematic of the VAX
8800 family pipeline is represented in Figure 4.

D N A - DECODE/NEXT ADDRESS
CS - CONTROL STORE LOOK-UP (MICROCODE INSTRUCTION)
R - REGISTER R E A D
A - A L U OPERATION
W.C - REGISTER WRITE. CACHE OPERATION

Figure 4 The Pipeline in the VAX 8800
Family

The I Box
The I Box contains the microcode store and con-
trol center and performs five prima^ functions.

Buffering the prefetched VAX instruction-
stream data received from the cache

Decoding and controlling the execution of
microinstructions

Monitoring and servicing microtraps, inter-
rupts, and exceptions

Supplying instruction-stream embedded data

Interfacing between the console interface
module and tlie processor

For each processor, a writ;~blc control storc of
1 6 K words by 143 bits is loaded directly from
the intelligent console subsystem upon system

start. A segment of control store with 1K words
by 143 bits, the user-writable control store, is
provided for the system user to optimize appli-
ca t ions . T h e logical func t ion of t he I Box
includes the following:

'l'he instruction buffer

'l'he instruction decoder

'I'he condition code and microbranch logic

The interrupt and processor-register logic

The file-address generator

Figure 5 depicts the implementation of the
I Box.

The C Box
The C Box for each processor is built around a
64-k i lobyte (KB) wri te- through data cache
memory that is physically indexed and direct
mapped. Functionally, the C Box provides very
h igh - speed phys ica l memory , h igh - speed
acldress translations, and a con~munication path
for the processor to the NMI bus. The compara-
tively large cache size was specifically selected
to allow large applicatio~is to remain fully resi-
dent in the cache, substantially reducing mem-
ory traffic and processor wait states. The com-
p l c t c C Box implementation i n c l u d e s a
1 KB translation buffer, a 64KB cache data store,
and an NMI interface. The translation buffer
consists of a 1K-entry cache of virtual-to-physical
address translations. This translation buffer con-
tains a tag store and a data store organized into
5 12 process-translation slots and 5 12 system
region-translation slots. Using a portion of the
vir t i~al address to compare the tag-store and
data-store addresses, tlie translation buffer con-
caten;ltes thc page frame number with the low-
ortlcr virtual-address bits to form the physical
;~dtlrcss for the data storc cache.

kata rcacl from the cache data store (a cache
"hi t") requires no memory request . If t he
rcqi~irccl clata is not in the cache data store (a
cache "miss"), logic embedded in the NMI
interface uses the cache-miss address to spawn a
comm:~nd/address transaction that is sent to the
mcmon subsystem. Upon return, the requested
data from memory is passed to the requesting
CPIJ antl then placed in the cache data store for
subscque~it use. This design allows the translation

Digital Tecbnicnl Journal
l\'o. 4 Fc.&rtra#:j1 1987

CACHE DATA BUS JIJ TO CONSOLE INTERFACE

7

I GATEWAY
CONTROL

CONSOLE .C f

DECODER CONTROL IL

TO INSTRUCTION
4 BUFFER DATA BUS

DATAjCONTROL

CONDITION
CODE 8,
BRANCH

A A
OPCODE

SPECIFIER

INSTRUCTION
BUFFER

-

-
INSTRUCTION
BUFFER
MANAGER

INTERRUPT
LOGIC

WRITE
P

READ *
ALIGN *

INSTRUCTION
DECODER

INTERRUPT PENDING

FILE
ADDRESS

SEQUENCING
CONTROL

E BOX

VIRTUAL ADDRESS '

1

Figure 5 I Box Block Dirlgrrrn~

M I C R ~ W O R D t 1 4 7
STORE STORE

I TRANSLATION BUFFER I

I I

1 PHYSICAL ADDRESS 1
I CACHF I -

MEMORY

INTERFACE

WRITABLE
CONTROL
STORE

CACHEDATABUS

' FROM EXECUTION BOX
t FROM INSTRUCTION BOX

Figure 6 C Box Block Iliagram

buffer and the cache data store to b e free to
process other processor requests until the
requested data arrives from memory.

A block cliagram of the C Box i s shown in
Figure 6.

New Products

The E Box
The E Box receives data from the I Box and the
C Box. processes that data, and returns it to the
C Box. The E Box performs five primary func-
tions reql~iret l by the processor.

Handles ; i l l ar i thmetic, logical and bit-shift
operations

Maintains the program counter and gerier;~l
registers

Maintains the processor registers

Controls d;~t;r transfers between the <: Box,
the I Box, and the clock-module registers

Provitles condit ion-code information to the
I Box ~nicroscquencer

An Overr~iez~~ of the Four Systems in the KIX 8800 Fr~r?~il)~

TO C BOX
7

WRITE DATA BUS 0
FROM I BOX
v

t
INSTRUCTION BUFFER DATA BUS

FROM C BOX I
CACHEDATABUS %=

t * t
CACHEIALU BYPASS BUS

LATCH

A

Figure 7 1:' liox Block. Dirlgrnm

FROM C BOX

7
VIRTUAL ADDRESS BUS

The major ele~nellts of the 13 Box, located phyh-
ically on the data-slice modules and the shi ftcr
modulc. consist of a rcgister file, a data filc, the
program-countcr logic, the main ALIJ, and a
shifter. The logic of the E Box includes integr;~J
floating point operations that are optimized and
a 64-bit multiplier (implcmented in custom-
designed VLSI chips) that augments the speed o f
both integer and floating point multip1ic;ition.
Figure 7 is a block diagram o f the E Box.

The M Box
Thc M ljox, the memory subs)~stern, consists of
mc~lior)/ control logic, memory arrays, xntl ;I

detlic;~ted memory array bus that provides a
usable data rate of over 5 0 M D per second to the
memory subsystem. The control logic optimizes
m ~ ~ l t i p l c memory read and write operations.
implements three-way interleaving, ant1 buffers
memory transactions for optimum datil move-
ment. 'I'hc dctlicated memory array bus, coupled

v 1 1 I

L)igital Technical Jorrntal
No 4 l+;eDr~rnt:)~ 1987

SLOW
DATA
FlLE

J
- ARITHblETIC AND LOGIC UNIT 4

REGISTER
FlLE

PROGRAM
COUNTER

New Products

with the memory control logic, effectively off-
loads the NMl bus, providing balanced bus
access and loads. The interleaving algorithms
are based upon array boundaries. making the
memory control logic technology independent.
The result is that as increasingly dense memory
arrays become available, few if any controller
modifications will be required.

The error checking and control (ECC) is built
around 7 check bits for every 32 bits of data.
This protocol provides automatic single-bit cor-
rection and double-bit detection.

In the VAX 8800 multiprocessor, all memory is
fully sharable. Current systems in the VAX 8800
family are offered with 16MB per memory array,
giving thc VAX 8700 and VAX 8800 systems a
maximum memory capacity of 128MB, and the
VAX 8500 and VAX 8 5 50 systems a maximum of
80MB. Figure 8 is a block diagram of the M Box.

t \
HIGH SPEED M E M O R Y INTERCONNECT BUS 1NMI)

INSTRUCTION r k

t t t l
A R R A Y BUS

4 I I 4

F U T I O N

t POWER SUBSYSTEM

ARRAY M O D U L E L , , - - -, , - - - - - - J

I

Figure 8 M Box Block Diagram

=

r------- ------ 1
MEMORY CONTROL I

MEMORY INTERCONNECT INTERFACE I

i%e Clock Subsystem
The clock subsystem generates, controls, and
distributes timing signals to ;ill the components
of the processor system. The clock subsystem
contains the console interface, an oscillator, a
phase generator, clock-control logic circuits, and
the logic circuits for clock signal distribution.

The VAX 8 8 0 0 family implements a two-
phase, nonoverlapped clock subsystem operating
at a cycle time of 45 ns. A stable, high-frequency
oscillator (120 MHz nominal with variable out-
put) , c o ~ ~ p l e d with a phase generator, provides
the signal. The implementation of a two-ph;~se
design with matchcd signal-length distribution
throughout the CPU is most efficient for the
pipelined, latch-based dcsign of the VAX 8800
family. This design avoids the inefficiencies
associated with the co~nprcssed signill-assertion
times resulting from approachcs that specify
minimum delays for givcn logic elements.

A-clock and B-clock signals arc distributed to
alternate latches in a givcn logic stream. All data
transfers occur bctwecn latches clocked by dif-
ferent phases to assure a racc-free design. The
essence of fast-processor design is managing and
controlling skew. In this regard, signal propaga-
tion and distribution prcscntcd significant chal-
lenges in the areas of controlled etch lengths.
controlled impedance, routing, and placement.
To assure a stable, reliable design, all design
activity was predicated on worst-case design
rules rather than using the typical-case limits.

CACHE BOX

I I
I

POWER
I

ARRAY I CONTROL -) IlATAPATH

-)

INTERFACE
I

I I
I t l I t I
I ECL TO mL

I
I

The NMI Bus
Integral to the design of this family of proccs-
sors was the development of a high-speed mem-
ory interconnect bus called the NMI bus. This
bus, analogous to the syncl~ronous backplane
interconnect (SBI bus) in the V U - 1 1/780 CPU,
links the subsystems for CPU logic, central
memory, and I/O. The NMI bus is ;I 32-bit syn-
chronous bus, physically implemented within
the 22-layer backpla~ie. This bus provides the
control and datapath functions as well as the
distribution of clock signals for the VAX 8800
family.

One fundamental problem in the design of
high-performance systems revolves around bal-
anc ing the bus acccss needed a t any given
instant with the raw bandwidth available. To
provide the corrcct balance, the NlMl bus was
iniplemented as a pcnded (vs. intcrlockcd) bus,
resulting in very high bus-access availability.

Digital Technical Journal
No. 4 Fc.bruai:y 1987

17

A n O~~erview of the Four Sjlslerns in the VAX 8800 F c [n ~ i Q

Since lnemory is the critical resource in sus-
tained operations, the NMI bus uses a modified
round-robin arbitration that gives the memory a
higher priority when there is contention for the
bus. This arbitration priority eliminates any
lock-step conditions and also provides for reco\I-
ery of states and data in the event of preemp-
tion. This high bus-access cap;~bility, coupled
with usable data rates of up to 6OiMB per sec-
ond, provides the necessary balance to support
CPU, memory, and 1 /0 transactions. The inclu-
sion of write buffers within each CPU, coupled
with the large cache size, effectively reduces
the number of transactions presented to the bus.
Measurements on a VAX 8 8 0 0 system in our
Engineering VAXcluster environment have indi-
catccl that the NMI bus is rarely busy more than
50 percent of the time; the CPUs use approxi-
mately 25 percent of the available access time
and bandwidth. Other applications may see
somewhat different ratios.

VAXBI Bus
The VAX 8800 family uses the VAX bus inter-
connect, called the VAXBI bus, for the I/O sub-
system in order to provide adequ;~te balance for
the CPU performance. The VkYBI bus, a 32-bit
clocked bus with distributed arbitration, is capa-
ble of usable data rates in the VAX 8800 family
up to 8 M D per second, depending upon word
size ant1 ;~ppl ica t ion . Custom logic on each
interface module provides all bus protocols, :IS

well as integral data-integrity features, including
master transmit and command acknowledge.

The VAX 8800 and VAX 8700 systems can be
configured with up to four VAXBI channels.
whereas the VAX 8550 and VAX 8500 systems
accept up to two. Therefore, fully configured
Va 8800 and VAX 8700 systems can support
aggregate 1/0 bandwidths up to 30MB per sec-
ond. Similarly, fully configured VAX 8550 and
VAX 8500 systems can support aggregate band-
widths up to I 6 M B per second. Each VAXBl bus
c a n s u p p o r t u p t o 1 6 n o d e s , o r l o g i c a l
adtlrcsscs, which connect to any combination of
ne tworks , i n t e l l i gen t and non in t e l l i gcn t
devices, DMA devices, and VAXcluster systems.
as well as providing for connection to existing
LJNIBUS-based devices.

Al l of Digital's network protocols interface
directly to the VAXBI on the VAX 8800 family.
'l'hus, VAXcluster. Ethernet, DECnet and DSA

(Digital Storage Architecture) devices are all
ported directly to this high-performance 1 / 0
subsystem.

Reliability
Reliability was one of the primary goals of the
VAX 8 8 0 0 design. Numerous features were
implemented that more than doubled the basic
computing kernel availability compared to the
VLY-1 1/780 system Some of the key functions
~nclude

Environmental and power monitors that
query the system and maintain safe system
operating levels

Automatic verification of hardware, firmware,
and software revision compatibility

Electrically keyed n~odules and module slots
that prevent improper installation and dam-
age to the modules or the system

Automatic electrostatic discharge (ESD) pro-
tection of modules during installation and
removal

ECC on main memory

Parity checking on internal RAiMs

Bus protocol checking for the memory inter-
connect

Timing and voltage margining

Remote diagnostics capability

Dual-to-single processor reconfiguration
(VAX 8800 system only)

Diagnostic Development
Similar to t he hardware deve lopmen t , the
des ign m e t h o d o l o g y fo r t h e d i a g n o s t i c s
depended very heavily on simulation. Almost all
the diagnostic tests were debugged on behav-
ioral and structural models of the design before
the initial prototype was powered up . There
were three major benefits of this methodology.

1 . Microdi;~gnostic and macrodiagnostic
tests were useful for design verification
testing.

2 Test vectors for automatic test equipment
(module test) were extracted from the
s~mulation database

3. A comprehensive diagnostic package was
available shortly after the prototype was
powered up.

18 Digiral Technical Journal
No. 4 February 1987

New Products

The diagnostic for the VAX 8800 family con-
sists of tests specific to this processor and
generic to the VAX architecture. The processor
is tested primarily with microdiagnostics. These
tests execute from the processor's writable con-
trol store and are governed by the console.

VAX generic diagnostics are included to test
the UNIBUS and VAXBI adapters and options. Al l
the diagnostic code fits on the console ' s
Winchester disk. When the system is powered
up, a subset of the microdiagnostic tests are
executed.

Balanced Systems
The VAX 8800 design effort delivered four dif-
ferent systems, the 8800, the 8700, the 8550,
and the 8500, all reflecting the overriding con-
cept of balanced system design. While the CPUs
themselves demonstrate excellent internal bal-
ance between their logical and functional sub-
systems, they are also balanced members of the
extended system that can span much larger
physical distances. Monolithic or isolated corn-
p i ~ t i n g resources arc no longer capable of
accessing, manipulating, and distributing the
volumes of information needed for complex or
extended solutions. In this light, the VAX 8800
family should be viewed in the context of a bal-
anced network. The movement of data is gov-
erned by spccd and distance. An inverse rela-
tionship exists as shown in Figure 9. The VAX
8800 family fits on the top bound of the band-
width rangc throughout the distance function.

C
A a COMPLEX TECHNOLOGY

+SIMPLE
v, 1001

HIGH - SPEED

a I I I I I m 1 10 100 1000

DISTANCE - METERS (LOG SCALE)

Figure 9 Bandwidth versus Distance

Summary
The VAX 8800 family of products merges fast
instruction-execution rates, large physical mem-
ories, large high-speed data caches, VAXBl 1 / 0
channels, pipelining, and balanced internal-bus
architectures to provide high system-applica-
tions throughput. Spanning an applications
throughput range that is from 3 to 12 times that
of the VAX-11/780 system, the VAX 8500, VAX
8550, VAX 8700, and VAX 8800 systems are
matched to the network and applications strate-
gies offered by Digital Equipment Corporation.

References

I . D. Bak, "The Impact of VAX 8800 Design
Methodology on CAD Development,"
Digital Technical Journal (February
1987, this issue): 129-1 35.

2 . VAX Hardware Handbook (Maynard:
Digital Equipment Corporation, Order
No. EB-217 10-20, 1982).

Digital Technical Jorrrnal
A'o. 4 Febrlrro:l- I OX7

19

S u d b i n d r a N. M i s b r a 1

n e V M 8800 Microarchitecture

The VAX 8800 processor has a simple but eflcient microarchitecture. Its
pipelined micromachine has a one-cycle next-address loop and four-cycle
latencies for both microbranches and microtraps. Instruction prefetch
and decode are done in parallel with microcode execution. The instruc-
tion bufler is a bit-sliced, four-longword circular queue. The decoder is
primarily a RAM-based table. For special events, hardm'red logic is used
for decoding. A bit-sliced microsequencer provides up to 32-way condi-
tional microbranching, using a collection of about 80 branch conditions.
A hardware microstack provides up to 15 levels of nested subroutine calls
and returns. Microtrap conditions are prioritized over 16 levels, and
microtraps are chained, not nested.

The term "microarchitecturc" means the speci-
fication or description of the interrelationships
between the parts of the micromachine that
implements the instruction set proccssor. I11
terms of this definition, the microarchitecture of
the VAX 8800 processor will be described by
elucidating the organization of its micromachine
and the interaction between its componcnts.

Figure 1 shows a simple three-stage statc-
machine model of an abstract micromachinc
appropriate for implementing the control unit
of a typical von Neumann processor. Figure 2
shows a block diagram depicting the essential
elements of such a micromachine. This state-
machine is capable of executing microcode rou-
tines to implement an instruction set processor.
In such a system, e17ery macroinstruction is
decoded by the hardware to produce the start-
ing addresses of a small set of microprograms,
which execute sequentially t o produce the
desired effect . Barring some except ions , a
microprogram or rnicrocodc routine can exr-
cute rather independently in the sense that e ;~ch
microinstruction produces the address of the
next microinstruction. Thc last microinstruction
causes thc selection of an external address, such
as one produced by the dccoder, to start the
execution of another routine.

In Digital's vernacular, the 1 Box is the logical
partition containing the instruction-processing
hardware. Figure 3 shows a block diagram of the
VAX 8800 I Box with the basic elements of its
micromachine.

FETCH
MICROINSTRUCTION

Figure I State-machine Model of an
Abstract Micromachine

From thc carly 1BM and CDC computers to the
modern CRAY machines, computer designers
havc ~ ~ s e t l a technique called "pipelining" to
obtain higher performance. Pipelining overlaps
the executjon of instructions in time; that is,
several instructions can be executing at the
same time. This technique provides a higher
throughput when the pipcline is fully loaded,
bur there is a cost involved. I f the pipeline is
brokcn, extra processing is required to refill i t .
Moreover, if any active instructions have par-
tially executed, information about their states
may havc to be saved to continue processing
after an abrupt interruption.

The degree of pipel ining varies from one
machine to another depending upon the design
choices and trade-offs made by the system archi-
tects. A mctaphor often used to indicate the
degrcc of pipelining is the length of the pipeline

Digital Technical Jounral
AIA ,< ~ ~ , , A + + , ~ S . S P 1 0 5 2 7

New Products

Figure 2 Block Diagram of an Abstract Micromachine

BRANCH CONDITIONS,
TRAPS. INTERRUPTS

CACHE

I

-
MICRO-
DATA
INTERPRE-
TATION
LOGIC

-
EXTERNAL
ADDRESSES -
A N D CONTROLS

I ~ ~ ~ ~ & C T I O N iB DATA

- -
CONTROL

+ SIGNALS -
MICRO-
ADDRESS
GENERATION
LOGIC

SPECIFIER.
CONTROL SPECIFIER

NUMBER

PC
DECODER INCREMENT

TO E BOX

-

4 7 DECODERCONTROL

CONTROL
STORE

CONTROL MICROWORD I STORE F F , CONTROL TO E BOX

CONTROL TO C BOX

MICRO-
ADDRESS

gCH
REGISTER

MICROSEQUENCER CONTROL 1

_,

Figure 3 VAX 8800 1 Box

-

--t -

stated as the number of stages, for example, a
three-stage pipel ine o r a four-stage pipel ine.
The number of stages conveys the extent of time
overlap for typical operations in a compute r .
In a machine with a pipelined microarchitec-
ture, these operations are executions of microin-

MICRO-
DATA
LATCH
OR
REGISTER

structions. A higher degree of pipelining makes
shor t cycle t imes possible , thus leading to a
higher throughput w h e n the pipel ine is fully
loaded. But longer pipel ines entail increased
overhead in terms of their ability to resume oper-
ations after a break in the pipeline caused by any
abnormal event. Therefore, an architect's goal is
to design the system so that the pipeline remains
loaded most of the time and recovery from a bro-
ken pipeline is not too inefficient. The VAX 8800
CPU is a pr ime example of a processor with a
pipe lined microarchitecture.

System Considerations
The design philosophy of the VAX 8800 proces-
sor was t o o p t i m i z e t h e hardware s o that it
w o u l d execu te t h e microcode efficiently. A
large control store (1 44 bits by 16,000 entries)
holds the entire microcode. Using fairly general-
ized datapaths , t h e microcode execu tes t h e
logic of the instructions. However, special hard-
ware is used to speed u p performance in critical
areas. The processor logic is primarily designed
with latches, which are clocked with a g[obally
distributed, two-phase, nonoverlapping clock-
ing scheme. The two clock phases are called the
A-clock and the B-clock. A typical example of
logic design, based on the above approach, is
shown in Figure 4.

CL - COMBINATORIAL LOGIC

Figure 4 A Typical Section of the VAX 8800

INPUT- A-LATCH r~

Digital Technical Journal 2 1
No 4 Fehrt~ur:y 1987

I
0 C L A-LATCH B-LATCH - OUTPUT

The VAX 8800 Microcrrchitecture
I

It is apparent from Figurc 4 that the data flow
in such a logic system occurs through the per-
petual data transfers between the latches con-
nected to the A-clock and those connected to
the B-clock. Each data transfer may bc consid-
ered atomic in the sense of hardware operation.
A microoperation may be envisioned as a logical
operation that is atomic in terms of the execu-
tion of ;I microinstruction, such as a register
read, a register write or an ALU function. Hence
a microoperation constitutes one or morc data
transfers, and the microinstruction execution
simply constitutes a time sequence of micro-
opcrations. as shown in Figure 5.

CLOCK

Figrsrre 5 Example of n Microitzstrzrction

R E A D

In high-performance machines, like those in
the VAX family, there is usually a mismatch
between CPU cycle times and memory-acccss
times. For example, consider an A D D instruc-
tion. I f the operands are in registers, tlie A D D
can be done rather quickly. But i f one of the
operands has to be read out of memory, the ADD
cannot be performed until thc desired d;lta
arrives from memory. Most VAX processors havc
a fast cache memory, tightly bound to the pro-
cessor's arithmetic units, to alleviate the mem-
ory-latency problem. In the case of a cache miss
on a required datum. however, the only ;iltcrna-
tivc for a von Neumann processor is to wait A
processor in such a state is said to be "stallcrl."
IJnclcr such conditions, the state of the proces-
sor must be "frozen" ~ ~ n t i l the c;~usc of tlie stall
no longer persists and the stall is broken. The
two-phase clocking scheme provides :I conve-
nient way to implement stalls, in which one of
thc clock phases (the A-clock in the 8800) may
be blocked. Stalls are controlled by the cache
through a special hardware signal distributed
globally to block the A-clock. Thus, thc proces-
sor logic contains two flavors of A-latchcs:

Stalled A-latches, which are affected by ;I st;ilJ

TIME
b

tbl& FUNCTION

Unstalled A-latches, which are not affected by
a stall

STORE RESULT
IN REGISTER

The micromachine is implemented only with
stalled A-latches. Hence the effect of stalls on
the execution of the micromachine is largely
transparent.

A mechanism is also required to deal with
hardware exceptions when the results of the
execution of a microinstruction have to be
undone. In a pipelined microarchitecture, sev-
eral microinstructions may have partially exe-
cuted when an exception condition is detected.
In that case i t is necessary to undo the effects of
all those microinstructions. The most common
technique used to deal with such situations is
called a microtrap. Since microtraps relate
closely to t.hc micromachine execution, every
processor has its own scheme to implement
them. In every case, however, microtraps must
permit the "roll back" of some number of
microinstructions because the detection of a
trap condition usually occurs quite late with
respect to microinstruction execution.

In the VAX 8800 processor, microtraps are
implemented so that the offending micro-
instruction is allowed to complete, but subse-
quent niicroinstructions in the pipeline are
blocked. Since tlie offending microinstruction
may have c a ~ ~ s e d some undesirable results, the
trap-handler microcode must fix the problem.
Depending on the particular situation, either
the microinstruction execution flow is resum-
ed from the blocked state or a new flow is
originated.

System Buses and Datapatb
Figure 6 is a block diagram of the VAX 8800
CPU datapath, showing all the major buses. The
hardware organization of the CPU provides a
two-cycle operation between the cache and the
M U , as shown. Thc processor has several func-
tional units in addition to the main ALU. These
additional units perform high-speed multiply
and divide, shifting, and floating-point arith-
metic operations.

There are several possibilities for selecting
inputs to these functional units. For operations
involving two inputs, both can be presented
simultaneously onto the two legs of the main
ALU as well as most other functional units. The
results from these functional units are sent on
the W bus for writing to either the multiport

Digital Technical Jortrnrd
No. 4 February 1987

New Products

Figure 6 VAX 8800 Datapatb

Digital Technical Journal
No. 4 February 1987

2 3

The VAX 8800 Microarchilecture

register file (IMPR) or the cache. However, since
the write actu:~lly occurs in the following cyclc.
the bypass bus provides a shortcut (s ;~ \~ ing ;I

cycle) in casc the write d;~turn is read I)!, the
very next microinstruction.

The virtual address bus carries the virtual
address of any data-strc;~m (d-stream) refer-
ences. whereas the progr;lm-counter bus has the
current program counter (PC). The instruction-
buffer data bus provides the instruction-strca~n
(i-stream) data. The instructions and dat ;~ from
the cache are returned 011 the cache da t ;~ l)us.
However, a cache d ; ~ t ; ~ bypass bus provitles a
direct path to the functional units for the d:it:~
returned by the cache, in case the processor is
or will be stalled for that data.

Microinstruction Pipeline
The top part of Figure 7 shows the execution o f
microi~istr~~ctions as a function of time in a n o n -
pipclinetl microarchitccture; the bottom depicts
that in ;i pipelined microarchitecture.

The I~asic data flow in a processor occurs in
the following scquencc:

1 . Read the rcgistcr operands into a func-
tional unit, such as the M U .

2. Perform some M.IJ function.

CLOCK -

3 . Writc the results into the destin;ction
rcgister.

4. I f there is a cache, start a cache operation
;it ;~pproxi~natclp the same time as a regis-
ter write since memory references are
bulfcred through special-purpose mem-
ory d i ~ ~ i l registers (MDRs or MDs) in most
high-performance processors.

Figure 5 shows that the s equence above
occurs in a natural order in time as a conse-
qucncc of the microinstruction execution. With
pipelined microarchitectures, a time reference
is needed to corrclatc the microoperations per-
formed by various micro ins t ruc t ions w i th
respect to each other. The notion of canonical
times is very convenient for this purpose. The
clock ticks of the reference microinstruction
may be 1;tbcled with a monotonically increasing
set of T numbers starting at To as shown in
Figure 8. Thcsc T numbers are c;~lled the canon-
ical times of a particular microinstruction. 'The
microoperation labeled T,, marks the start of a
microinstruction exccution cycle. Figure 8
shows the basic microoperations of a VAX 8800
nlicroinstruction with their canonical times.

We shall use the simple model of a microma-
chine in Figure 1 to describe the VAX 8800 micro-

CYCLES t

A B A

MICROINSTRUCTION EXECUTION IN
A NONPIPELINED M I C R O M A C H I N E

B A B A B A

I MICROINSTRUCTION 2 1

I MICROINSTRUCTION 1 I

MICROINSTRUCTION 2

MICROINSTRUCTION EXECUTION IN
A PIPELINED MICROMACHINE

I MICROINSTRUCTION 3 I

MICROINSTRUCTION 3

MICROINSTRUCTION 4

Figure 7 iMicroinstruction Execution

Uigiful Technical J o u ~ ~ u I
N o 4 rebrrrarrl I 987

I

New Products

CYCLE - TO

I
CLOCK - A

TI Tz T3 Td TS T6 TI TB Tg TIO TII T12 T13

1 1 1 1 1 1 1 1 1 1 1 1 1
B A B A B A B A B A B A B

r------- --------
I

CACHE MISS
ACTION

CACHE
I
L - - - - - - - - ---- ----

Figure 8 Cc~~zonical Times of a VAX 8800 Microinstruction

instruction format as a sequence of basic micro-
operations like those in Figure 8. The first stage
in the microinstruction execution cycle is the
microaddrcss fetch. The n~icroinstruction execu-
tion cycle bcgins with a decoder operation. The
decoder produces the starting microaddress for
every new microinstruction sequence and pre-
sents it t o t h e microsequencer . T h e d e c o d e r
determines that address on the basis of the con-
tents and current state of the instruction buffer
(1B). Each microinstruct ion spec i f i es t o t h e
microsequencer whe ther o r not to accept the
decoder's microaddress. If not, the microinstruc-
tion must either specify the address of the next
m i c r o i n s t r u c t i o n d i r e c t l y , a s a p a r t of t h e
microword, or indicate an alternate source for
the address within the microsequencer. Since the
d e c o d e r ' s opera t ion is c o n c u r r e n t w i t h t h e
microsequencer's, the decoder always has a start-
ing microaddress for the microsequencer. It is
convenient to think of this IB-decoder concur-
rency as a "hidden decoder cycle."

The next stage in the microinstruction execu-
tion sequence is thc fetch of the microinstruc-
t ion , performed by a look-up in the control
store. In the VAX 8 8 0 0 system, the rnicroaddress
is pipelined, not the microdata. Consequently,
the microdata from a segmented control store
appears at the appropria te t ime for t h e three
basic operations to occur in the indicated order.

The microdata looked u p causes a sequence
in which the register read occurs between the
times T5 and T6, the ALU function between T6
and Tn, and the register write between T8 and
T,o. The cache operations also occur between
the times Tn and T l o . The section beyond T l o
denotes cache activity with respect to the mem-
ory if there is a cache miss. (The cache/memory
interface is controlled by an independent micro-
machine.) During every cycle, a microinstruc-
tion produces the address of the next microin-
s t ruc t ion , w h i c h is then e x e c u t e d . Figure 9
depicts the generic microinstruction pipeline of
the VAX 8 8 0 0 processor.

CLOCK -

CYCLE -

MICROINSTRUCTION A: DECODER LUK XOS RD ALU WR.CACH
L-----------

C' DECODER I LUK I XOS I RD I ~ L U 1-1

: -----------

D I DECODER I LUK I XOS I RD I ALU I WR.

! DECODER

Figure 9 Microinstruction Pipeline of the VAX 8800 CPU

LUK

r----------

Digital Technical Journal
N o 4 Febrtrrtry 1987

2 5

E: 1 DECODER

XOS RD ALU WR.CACH

DECODER - DECODER OPERATION ----------
LUK - CONTROL STORE LOOK-UP (CONTROL STORE 0 SEGMENT)
XOS - BOARD CROSSING SEGMENT (OVERLAPS CONTROL STORE 1 LOOK-UP)
RD - REGISTER READ (OVERLAPS CONTROL STORE 2 SEGMENT LOOK-UP)
ALU - ALU FUNCTION
WR - REGISTER WRITE
CACH - CACHE OPERATION

LUK XOS RD ALU

The VAX 8800 Microarchitecture

Micro branch Latency
One consequence of pipelining is that any inter-
vening micro ins t ruc t ions must be spaced
between the instruction that procluces a branch
condition and the instruction that can branch on
i t due to latency in the deve lopn~en t of the
branch condition. Obviously, the execution of
the intervening microinstructions must be indc-
pendent of the branch. Usually, microcoders are
able to code some useful operations during the
inevitable wait. Otherwise, the intervening
instructions must be NOPs (no operat ion) .
Figure 10 shows the microbranch latency in the
VAX 8800 CPU.

Microtrap Latency
A hardware exception causes a microtrap. How-
ever, the trap conditions, like the branch condi-
tions, may develop after some execution cycles
have been completed. Once again there must be
some intervening microinstructions between the
trap-causing microinstruction and the trap-han-
dling routine. Moreover, the state of the micro-
machine must be saved so that the current exe-
cution can be resumed in such a way that the
in te rvening execu t ion of t he t rap rou t ine
appears to be transparent. This state consists pri-
marily of microbranch conditions that result
from the execution of microinstructions in the
pipeline since those could influence subse-
quent microaddresses and hence the execution
sequence. Therefore, on interruption of the cur-
rent sequence by the trap routine, the branch

CLOCK -

CYCLE -
i i i 2 3 4

conditions from the earlier execution are essen-
tial to reproduce thc same sequence.

To simplify the hardware design, all. early
traps are delayed to a fixed canonical t ime
(T,o). Some trap conditions, however, develop
later than the canonical time with the conse-
quence that those traps cannot be returned
from. In such cases the microcode must roll
back the state to the beginning, which causes a
reexecution of the entire macroinstruction.

Figure 1 1 shows a s e q u e n c e in w h i c h a
microinstruction at address T provokes a micro-
trap. At the earliest, the trap-handling routine
can begin at microinstruction X . Meanwhile.
microinstructions U, V, and W follow T, quite
unaware of the impending trap. In fact, they are
in partial execution when the trap condition is
detected. These microinstructions are said to be
in the trap shadow, and they must be blocked
from writing any registers, thus making i t appear
as if they had never executed. When control is
returned from the trap-handling routine, these
trap shadow microinstructions are reexecuted,
continuing the sequence that would have arisen
had the trap not occurred.

Instruction Bufler and Decoder
The IB buffers the prefetched VAX i-stream
delivered by the cache and in turn delivers the
opcode and specifier to the decoder. The IB also
delivers the i-stream data to the execution unit,
the E Box. The decoder expects to receive the
current opcode and the current specifier byte.

D: ! DECODER (L U K I XOS (R D I A L U I WR,CACH I --+ POTENTIAL NOP

G E N E R A T E S
BRANCH CONDITION

I-----------
MICROINSTRUCTIONC: / DECODER

L-----------

r-----------
POTENTIAL
NOP

E. j DECODER ------------

LUK

BRANCH
I

MICROINSTRUCTION - F: I DECODER L U K

Figure I 0 Microbranch Latency

L U K

TARGET OF

CONDITIONAL * G: j DECODER L U K XOS R D

26 Digital Technical Journal
No. 4 Februnly I987

XOS

L-----------
XOS

ALU

XOS

MICROBRANCH -----------

RD

R D

R D

ALU

ALU

WR,CACH

A L U

WR.

WR.CACH

CLOCK -

CYCLE -

New Products

TRAP
SHADOW

I
MICROINSTRUCTION T: I DECODER

L-----------
L U K

I

U: / DECODER LUK I XOS I R D I ALU

r-----------
V: DECODER I LUK I XOS (R D (ALU

XOS

WR,CACH

WR,CACH

r-----------
W: I DECODER L U K I XOS I R D

Figure I I Microtrap Latency

A L U

TRAP HANDLER
(OVERLAYS X) XI / DECODER

Hence the IB saves the opcode for the duration
of the instruct ion execut ion and shifts the
buffered i-stream along to send each specifier in
turn to the decoder. The goal of the VAX 8800
decoder is to produce a starting microaddress
corresponding to the opcode and the specifiers.
The sequence of microcode execution caused
by the decoder is first to process all the specifi-
ers, making all the operands available, and then
to e x e c u t e t h e ope ra t ion spec i f ied by t h e
opcode. If an instruction has no specifiers, the
execution microcode is initiated directly. In any
case the decoder always has a microaddress
ahead of time for the microsequencer . This
microaddress is the starting address of either a
specifier rout ine o r t he execut ion rout ine ,
based on the contents and the state of the IB.

If at any time the IB does not contain enough
i-stream data for a successfu l d e c o d e , t he
decoder will produce a special microaddress.
The microinstruction at that address is simply a
NOP that again requests the selection of the
decoder's address. The micromachine thus waits
in a loop for sufficient i-stream data to arrive in
the IB so that the decoder can again dispatch a
useful microaddress. This wait-loop state of the
micromachine is commonly referred to as the IB
stall, which is different from the stall described
earlier. Note that clocks to stalled A-latches are
not blocked for an IB stall. On the contrary, the
micromachine runs normally as does the rest of
the processor hardware. I B stalls may occur
when the instruction prefetch pipeline is bro-

RD

L-----------
WR,

ken due to macroinstruction branches. This con-
dition requires the current contents of the IB to
be d iscarded and new i - s t ream data t o be
prefetched into the IB.

The VAX 8800 IB is a four-longword circular
queue, which is usually long enough to hold an
entire instruction. The data is consumed out of
the IB from the position pointed to by the read
pointer. However, new data could be written
concurren t ly by the cache a t t he pos i t ion
pointed to by the write pointer. Whenever it has
room, the IB is loaded by the cache if the cache
has no other higher priority job to do. Occasion-
ally, the IB becomes full (the write pointer
catches u p with the read pointer), and then it
does not accept the datum from the cache. If a
datum is not accepted by the I B , t he cache
keeps repeating the transfer until the datum is
accepted. Occasionally, the IB becomes empty
if the cache is busy doing other things and the
decoder has consumed all the data from the IB
(the read pointer and the write pointer point to
the same location).

The IB in the VAX 8800 family is implemented
with four identical gate arrays with 8-bit slices
designed to use a rather clever bit-scattering/
gathering scheme. The IB also contains logic to
extract and format i-stream data, making it avail-
able to the E Box. A common silo holds the
opcode history for the duration of a macro-
instruction's execution, as well as for recov-
ery from microtraps. The VAX 8800 decoder is
a RAM-based look -up t ab l e for genera t ing

----------- LUK

Digital Technical Journal
No. 4 February I987

27

ALU

XOS

WR.CACH - CAUSES A MICROTRAP

RD ALU

I

The VAX 8800 Microarchitecture

THINGS THAT MAKE
SPECIAL ADDRESSES ADDRESS

ENCODER

MICROADDRESS
ENABLE

OPCODE - n
SPECIFIER BlTS
AND STATE j(I

OPCODE

OPCODE -
SPECIFIER BlTS
AND STATE

OPCODE

DECODER ADDRESS
RAM

OPCODE
ADDRESS

ADDRESS OPCODE
. - e m - - -

IB STATE
CONTROL

SPECIFIER
ASSISTS

RELATED

I I I I 6 DATA -
SPECIFIER
STATE FLAGS

L * FORMAT
CONTROL

Figure 12 VAX 8800 Ilecoder

microaddresses. In the case of special events,
however, hardware logic is provided for gener-
ating special microaddresses, as shown in Fig-
ure 12 , thus bypassing the RAM look-up. The
decoder ;~ l so provides controls for the IB state-
machine as well as some other hardware assists.

Microsequencer
The state-machine responsible for generating thc
next microaddress for a microinstruction s c -
quence is commonly called the microsequencer.
As shown in Figure 13, this s ta te-machine is
realizcd collectively by the control store. the next

NEXT MICROADDRESS GENERATION LOGIC
r------------------------------------

! I

NEXT ADDRESS. ADDRESS SELECTION CONTROLS

EXTERNAL I I I

CONTROLS
4

I
I

TRAP I

I 1

MICROTRAP I , MICROTRAP TRAP I I

CONDITIONS LOGIC ADDRESS I
I

Figure 13 An Ah.slrcrct Microsequencer

2 8 Digital Technical Journal
No . 4 Frhrrrnrll 1987

ADDRESSES - MICRO-
!- BRANCHING

I
I I

I AND
MICROBRANCH / , ADD^^^^

- I

CONDITIONS

MICRO-
DATA
LATCH
OR
REGISTER

-
I I

I
I
I *
I

EXTERNAL I

-
MICRO-
ADDRESS
LATCH
OR
REGISTER

- CONTROL
STORE

microaddress generation logic, and the microad-
dress and microclata latches (or registers).

The goal of the VAX 8 8 0 0 microsequencer is
to produce the address of the next microinstruc-
tion during every cycle. Figure 14 depicts how
the microsec~uencer achieves this goal.

Each microinstruction may modify its next-
microaddress field through a microbranch com-
mand t o p r o d u c e t h e address of t h e t a rge t
microinstruction. Microbranch conditions are
delivered by other sections of the machine, such
as t h e ALU. T h e s e c o n d i t i o n s a r e g r o u p e d
together in ways convenient for microprogram-
ming so that multiway branches can be taken.
 micro subroutines can be called and returned
from by means of a hardware microPC stack.

Stalls cause the microseqi~encer state t o b e
frozen on a cycle boundary (i .e. , the clocks on
microaddress and microdata latches are effec-
tively blocked). Microtraps allow the microcode
to deal with unusual events that would be too
slow or inconvenient to check normally with
microbranches, such as TO misses and address
misalignments. The VAX 8 8 0 0 processor does
not permit traps to be nested. Instead, traps are
"chained," meaning that trap routines and hard-
ware trap priorities are carefully arranged s o
that a second trap is taken only when the first
trap routine finishes. (Machine check traps can-
not be controlled in this way.)

Sources of Microaddresses
There are five sources for microaddresses:

The dccodcr

The next-address field in the microword

The microstack upon returning from a sub-
routine

The microPC silo for a saved microtrap

The micromatch register for an address from
the consolc

An address from the console is selected in
response to an exp l ic i t console request and
t a k e s p r e c e d e n c e o v e r e v e r y t h i n g e l s e .
A d d r e s s e s f r o m t h e s i l o a r e r e q u c u c d i n
response to a trap-return command. Addresses
from the microstack are selected in response to
a subroutine-return command. 11 decoder-gener-
atcd address is selected whenever the current
sequence ends and a new specifier o r execution

New Products

routine should begin. Normally, this selection is
caused by the assertion of a microword bit in
the very last microinstruction of the current
sequence. The next-address field is selected as
the default for normal sequencing. This field is
also used to provide an offset in case of subrou-
tine returns.

Micro branching
In normal cases, part of the selected microad-
dress can be modified according to the branch
conditions, that is, whenever the next-address
f i e l d i s s e l e c t e d . A c o m b i n a t i o n o f t w o
microword fields, branch type and branch mask,
selects the branch conditions, which are then
ORed into part of the target microaddress. In
the VAX 8 8 0 0 system, the microbranch logic is
implemented with five identical gate arrays,
each of w h i c h generates a 3 -b i t s l ice of the
microaddress. O n e microaddress bit is branch
sensitive in cach slice. This organization permits
up to 32-way branching. Branchings of 2 , 4 , 8,
and 16 ways are also made possible by a sepa-
rate mask bit, called the branch mask, to every
slice. This bit is used to turn off the sensitivity
to branch conditions in a particular slice.

There are 16 basic recipes for conditional
branching in each s l ice . This arrangement of
slicing, masking, and branch-condition selection
in every slice requires that all the microbranch
c o n d i t i o n s b e o r g a n i z e d i n t o 5 g r o u p s of
16 conditions each. The branch conditions are
classified as either static o r dynamic. Static con-
ditions, once captured, are available for branch-
ing in any later cycle as long as those conditions
remain unchanged . Dynamic condi t ions a re
asserted for just one cycle and must be branched
on in that cycle.

Some special trap-related branch conditions
are saved at the time of the trap so that the trap
routine may use them. For speed reasons, the
basic hardware mechanism for multiway branch-
ing is that the selected condition is ORed rather
than added to the branch-sensitive microaddress
bit . The OR implies that the branch-sensitive
bits of a microaddress must be "zeros" by con-
vention. If branching is masked in any s l ice ,
however, only unmasked branch-sensitive bits
need t o b e zeros . T h u s t h e branch-masking
schcmc leads to a substantial increase in the
number of conditional branch-target addresses,
c o n s t r a i n e d by t h e r e q u i r e m e n t f o r z e r o s .

Digital Technical Journal
N o . 4 Februmr:y 1987

29

The VAX 8800 Microarchitecture

MICRO-
MATCH
REGISTER n

MICROWORD NEXT ADDRESS

MICROBRANCH
CONDITIONS

DECODER'S
MICROADDRESS

30 Digital Technical Joun~al
No. 4 Fr6rrtnt:y 19R7

15

B

TOP-OF-MICROSTACK

SILO ADDRESSES

/I4
/ +

T

CONSOLE ADDRESS

A

PUSH

BRANCH
CONDITION
LOGIC

/ c B

-

A
-

CONTROL STORE 1
STORE 1

T

MICRODATA

I B

CONTROL STORE 2
STORE 2 MICRODATA

CONTROL
STORE 0

A
B

C A
7- o c -

A

A

MICRO-

//I 0

t t t L A
/ 5 0 B

A

-
A

M

/
15

B

- CONTROL STORE 0
MICRODATA

I

5
/ / 5

/

I L

ADDRESS
SOURCE
SELECTION
LOGIC

/
TRAP VECTOR

1 +
MICROSTACK

TRAP POINTER MICROSTACK POINTER
MICROSTACK

MICROTRAP
CONDITION

New Products

Table 1 Microbranch Conditions

Slice
Number Microbranch Conditions

1 State flags
2 WBUS low-order bits
3 WBUS high-order bits
4 SALU condition codes
5 PSL condition codes
6 XALU condition codes
7 Priority encoder condition codes
8 ALU condition codes
9 TB-status
10 Cache command
11 M D number
12 AC low
13 Digit valid
14 NMI ID
15 lnterrupt pending
16 Interval timer carry
17 Halt pending
18 Console mode
19 lnterrupt ID
20 Non-Retry flag

Table 1 shows an example of several micro-
branch conditions.

Microsubroutine Call and Return
As in the normal case just discussed, the default
microaddress, the next-address field, is selected
as the starting address of a microsubroutine.
However, a subroutine-calling microinstruction
pushes its own address onto the microstack.
During the subroutine return, the microstack is
selected as the source and then popped. Thus
the address of the calling instruction is used as a
base for the return. The returning instruction
may OR an offset from the next-address field to
tha t base , t h u s y i e ld ing t h e ta rge t r e tu rn
address. The fact that bits are ORed rather than
added constrains the calling addresses to have
zeros in the low-order bit positions.

The write path to the microstack (PUSH) is
pipelined by a cycle for timing reasons. How-
ever, a bypass path saves what would be the top
entry of the microstack in the read latch (POP)
so that PUSHs and POPS occur in a fairly unre-
stricted manner. There a re , however, some
minor coding restrictions with respect to traps
and decoder-made addresses.

Subroutine calls and returns are unaffected by
stalls. In the VAX 8800 CPU, the microstack is
16 entries deep and is used exclusively for sub-
routine calls and returns (i.e., microtraps do not
use the stack). Subroutine calls may be nested u p
to 15 entries deep, beyond which the microstack
wraps a round and overwri tes previous cal l
addresses. Since the next-address field is condi-
tionally ORed into the calling address to make
the return address, a conditional multiway return
becomes feasible.

Microtrap and Return
A mic ro t r ap is caused w h e n t h e hardware
detects a condition that would not allow the
current microinstruction to complete its execu-
tion successfully. The hardware forces the next
microaddress to a fixed location that depends
on the particular condition, thus overriding the
address that would otherwise be selected. This
special location is the starting address of the
trap-handling microcode routine specific to that
trap condition. Microtraps are used extensively
by the memory management system to imple-
ment the virtual memory architecture. Micro-
traps are also caused by serious system faults
(i .e., machine checks), such as control-store or
bus parity errors. Table 2 lists the microtrap
conditions and their priorities. The priorities are
arranged so that i f more than one microtrap
occurs during a cycle, the one with the highest
priority will be serviced and the others ignored.

Table 2 Microtra~ Conditions and Priorities

Microtrap Condition Priority

Digital Technical Journal
N o 4 Febr i~ t t r)~ 1987

3 1

Microbreak Highest
Machine check
VA parity error
TB tag parity error
Reserved for ECO
Reserved float operand
Add rounding
Multiply rounding
Integer overflow
TB miss
Access violation
Modify bit
Page cross
Unaligned page cross
Unaligned trap

A

Conditional VAX branch Lowest

The VAX 8800 Microarchitecture

Figure 1 1 shows the microtrap latency and its
consequences o n pipelining. As described ear-
lier, 21 trap-causing microinstruction, even if it
writes the wrong results, is allowed to complete
because i t is too late to block it anyway. (The
canonical time of register write is T9, whereas
the microtrap signal occurs at canonical t ime
T,,). The only recourse is to let the trap-han-
dling microcode correct any problerns caused
by the trapping microinstruction. The microtrap
signal occurs in time to block all three microin-
structions in the trap shadow. Therefore, thc
microtrap logic generates two global signals, the
global microtrap (one-cycle long) and the block
writes (three-cycles long), at time T,,,. The pur-
pose of the global-microtrap signal is to trigger
any necessary trap-contingent actions in various
par t s of t h e p rocessor . T h e p u r p o s e of t h e
block-writes signal is to block register writes at
canonical times T I I , TI3, and TI=,, thus rendering
ineffectual microinstructions U, V, and W in Fig-
ure 1 1 . In other words the blocking of writes by
hardware is in effect until the trap-handling
microcode takes control of the micromachine.

A silo is generally used to save the state of the
machine across a microtrap. In most cases the
l e n g t h of t h e s i l o is e q u a l t o t h e d e p t h of
pi pelining. Since there are many Inore branch-
condition bits than microaddress bits, it is more
economical to save microaddresses in the trap
silo than to save the conditions causing those
addresses. Microaddresses U, V, and W must be
saved in t h e s i l o s i n c e they may b e b ranch
targets of some previous microinstructiot~s. For
the same reason, however, the address X (over-
ridden by X', the starting address of the trap rou-
tine) must be saved as well. During the execu-
t i o n of t h e t r a p r o u t i n e , t h e t r a p s i los a r e
"frozen" (blocked from loading), thus saving
the state of t h e micromachine at the t ime of
trap.

After the trap routine has completed, two con-
ditions are possible:

1. The recovery from the trap is impossible,
and hence the ~nicroinstruction sequence
c a n n o t b e c o n t i n u e d . T h e n t h e only
recourse is to roll back and reexecutc the
macroinstruction. That is, the macroPC is
backed u p from its silo, the IB is flushed.
and if necessary, any register changes are
u n d o n e . In t h i s c a s e t h e last m i c r o -

instruction of the trap routine performs a
trap release, which unblocks the silos so
they can resume loading the new states.

2. Microcode can remedy the cause of the
t r a p s o t h a t t h e m i c r o i n s t r u c t i o n
sequence can be continued. In this case
the last microinstruction of the trap rou-
tine performs a trap return, causing the
hardware to recycle microaddresses U, V,
W, and X through the microaddress pipe.
This action results in the reexecution of
aborted ~nicroinstructions from the trap
shadow.

In t h e case of a t r ap re tu rn , t h e hardware
selects the microPC silo as the microaddress for
the next four cycles. As shown in Figure 1 4 ,
however, the microPC silo does not contain the
microaddresses made by the decoder. Therefore,
i t is necessary to resynchronize the microin-
structjon execution sequence with the decoder,
whi le requeuing the t rapped microaddresses
from the silo. This is made possible by keeping
a tag bit in the silo to identify the positions of
the microaddresses made by the decoder in the
sequence . If a microaddress from the s i lo is
found to be tagged. the requeuing is terminated
immediately and the microaddress generated by
the decoder is selected. A complete recovery
thus occurs since the state of the IB has by this
t i m e b e e n b a c k e d u p , a n d t h e r e f o r e t h e
decoder-generatcd microaddress can be used for
the continuation.

Chaining of Microtraps
By convention, microtraps are not allowed to
nest; instead, they are chained. In other words
the trap-handling microcode must ensure that i t
will not cause any microtraps itself. The sole
except ion is its last nlicroinstruction, which
may cause a second microtrap to follow imme-
diately, even as the saved microaddresses froin
the silo are being requeued to resume the origi-
nal flow. Note that this second microtrap does
not take effect until four cycles later, whereas
intervening microinstructions are blocked by
the hardware as a result of this second micro-
trap. Consequently, the same ~nicroaddresses
end u p in the microPC silo once again during
the execution of the second trap routine. The
original sequence may finally resume after the
last of such chained traps has been serviced.

Digital Technical Journal
No. 4 February 1987

New Products

Acknowledgments
The specification and design of the VAX 8800
1 Box was a team effort. Dave Laurello con-
tributcd to the IB design, the i-stream data for-
matter, and the interrupt logic. Bei Pong Wang
was responsible for the decoder, the PC incre-
ment logic, and the IB-state manager. Jack Ward
looked after the physical construction of the
scquencer and the control store. The entire
development was carried out under the excel-
lent leadership of Doug Clark. Many thanks also
go to both Doug Clark and Bob Stewart for their
suggestions and guidance during thc course of
this development.

DigituJ Technical Journal
No. 4 Frbrrtar?, 1387 3 3

William A. Samaras I

Tibe CPU Clock System in the
V2lX 8800 Family

The clock system in the VRX 8800 CPU sends timing signals to every state
device every 45 nanoseconds. The lack of accuracy of these timing signals
is called skew, which must be minimized. Two skews exist: global, between
modules; and local, within a module (the lower of the two). The design
complexity of the overall system dictated the use of an automated timing
uerj?er. Although advantages accrue from designing for local skew, the
verper could not segregate between skew types. To gain the benefit of the
venper, a unique hardware trade-oJ was made to minimize total skew:
local was made equal to global. The result was that 83percent of the cycle
time is used productively.

All synchronous computers must provide some
means of generating and distr ibuting accura te
timing signals. The goal of the timing system in
t h e \'AX 8 8 0 0 family is t o provide l o w - s k e w
(therefore, accurate) timing signals to all parts
of t h e processor w i t h o u t any manufac tu r ing
a d j u s t m e n t s . F u r t h e r m o r e , t h e des ign t eam
wanted to automate the verification of thc urn-
ing during the design phase. Therefore, design
trade-offs in the clocking system were necessary
to accomplish that automation. This paper dis-
cusses how the hardware designs of the clocking
system were influenced to provide a good cnvi-
ronment for the automatic timing verification.

Clocking System Requirements
The design of the clocking system required u s to
address many interrelated problems that had to
culminate in a common solut ion. This clesign
depended on certain fundamental specifications
that were established for the VAX 8800 CPU by
the system architects. 'The two primary require-
ments are described below.

Cycle Time
The cycle time of thc VAX 8800 family of pro-
cessors is 4 5 nanoseconds (ns), wh ich means
tha t a CPU c a n a c c o m p l i s h s o m e a m o u n t of
work during that period. Looking at it another
w a y , t h e s e p r o c e s s o r s c a n d o 2 2 . 5 m i l l i o n
actions cvery second. Ilsiully, a number of these
45-11s cycles are required by a processor to pro-

duce just o n e V M instruction. The clocking sys-
tem must keep the thousands of circuits in thc
processor "t icking" in perfec t s t e p toge the r
every 4 5 ns.

The 8 8 0 0 was designed to contain two com-
p l e t e CPUs in t h e s a m e c a b i n e t . S ince b o t h
CPUs share a common memory, it is beneficial
to make the memory system and both CPUs syn-
c h r o n o u s w i t h e a c h o t h e r . T h e c lock system
must keep all three items running togcthcr, pre-
cisely locked in time.

Modules
All t h e c i r cu i t ry f o r b o t h processors a n d t h e
memory controller is contained on 2 0 16- inch
by 12- inch modules, o r printed circuit boards.
These modules occupy slots in a 21-inch-wide
backplane. Each module contains u p to 2 0 ECL
gate arrays and miscel laneous ECL logic. T h e
state devices, called latches, reside both in the
gate arrays and the ~niscel l ;~neous logic of each
module.

The Clocking Problem
The basic difficulty for this (and any) clocking
system is to get the timing signals to every state
dev ice in t h e m a c h i n e a t p rec i se ly t h e s a m e
t i m e . Every s y n c h r o n o u s m a c h i n e faces th i s
problem. However, in faster computers, like the
VAX 8 8 0 0 system, the tolerances placed on the
t iming signals a r e m o r e scverc . In a physical
sense, it is simply not possible to send all the

34 Digital Tecbniccil Jorrrnal
No. 4 F c ~ b ~ . r i r ~ , : ~) I YX7

timing signals to every part of each module at the
same instant. There is some precision, however,
that should and can be achieved. We now discuss
how important this tolerance is to the VAX 8800
systems, and what w e did to minimize it .

The tolerance, o r t ime difference, that w e
encounter in attempting to provide timing signals
to every state device at the same time is called the
clock skew. Clock skew is the uncertainty in the
time of a particular event. As an analogy, consider
an airline flight that is scheduled to arrive at an
airport at precisely 5:02 P.M. Now, w e know this
flight will not arrive at 5:02 P.M. on the dot; it
will probably arrive within a minute o r two of
that published arrival time. This uncertainty in
the time of arrival is the skew of that time If the
uncertainty of arrival is 30 seconds, this skew
would probably be a very acceptable value and
w e would say t h e fl ight is r ight o n t ime: i t
arrived with low skew.

On the other hand, if the uncertainty of arrival
is large, say 30 minutes, w e would probably try
another airline. Why? Not simply because we are
impatient but for a more fundamental reason.
When the uncertainty is Large, we have less time
to do other things that are valuable to us. Usually,
we are committed to the entire time of the uncer-
tainty. Put another way, this uncertainty, o r skew,
is wasted time. Enough of this analogy - how
does this skew affect the operation of a digital
computer?

As mentioned earlier, since the cycle time of
each CPU is 4 5 ns, all state devices are "sched-
uled" to clock at the start of that period. Any
uncer ta in ty in th i s t i m e f rom o n e la tch t o
another is called clock skew. As in our airline
example, clock skew is wasted time. There are
many factors that increase the clock skew; let us
consider one of the most important ones.

Since the backplane width is 21 inches, all the
CPU hardware modules are separated by no more
than that distance. Since all the wiring in the sys-
tem is composed of controlled-impedance trans-
mission lines, the logic signals can travel at close
to the speed of light. At that speed a logic signal
could circle the earth about 4.5 times in 1 sec-
ond, or it takes about 4 nanoseconds to travel the
2 1 inches across the processor backplane. Now
we can begin to understand the skew problem.
The minimum uncertainty of any signal traveling
through the entire processor would be at least
4 ns, which is almost 10 percent of the 45-11s
cycle. And that is only one source of skew.

New Products

Since skew can be wasted time, our goal was to
make it as small as possible. In the 5800 system,
there are three major contributors to clock skew:
variations in t h e semiconductor components ,
variations in the wiring lengths (described above),
and different manufacturing tolerances of the
modules. One common way to remove skew from
a system is to make some type of adjustment dur-
ing the assembly of the hardware. Theoretically,
at least, all the skew could be removed through
this method of adjustment. To keep the cost of
manufacturing low, however, another of our goals
was to require n o adjustments of any kind. That
goal placed an extra burden on the clock system
to deliver accurate signals without excessive
skew. By carefully designing the circuits of the
clocking system and controlling the skew sources
mentioned above, we held the overall clock skew
in the \'AX 8800 family to 7.5 ns. Thus, on aver-
age, 83 percent of our 45-11s cycle is utilized. The
remainder of the paper explains some of the trade-
offs we made to achieve this figure.

Clock Hardware Overview
Figure 1 depicts the hardware in the clock sys-
tem of the VAX 8800 family.

The oscillator section is the time base of the
whole machine. The implementation is a custom
phase-locked-loop design that allows the clock
period to be varied for test purposes during the
manufacturing process. Using a phase-locked
loop makes it possible to have a very accurate
timing source at many specific clock periods.

The output of the oscillator section connects
to a phase generator that provides two clock
phases w i t h t h e p r o p e r t iming re la t ionsh ip
between them. The outputs (called the A-Clock
and the B-Clock) of the phase generator are the
ac tua l c lock s ignals d i s t r ibu ted t o a l l s t a te
devices in the machine. The phase generator is
implemented digitally by high-speed, 100K ECL
shift registers. This technology creates very accu-
rate timing without requiring any manufacturing
adjustments.

Since there is only o n e phase generator and
thousands of state devices requiring the clocks,
or timing signals, a method is needed to get the
o u t p u t of t h e phase generator to every state
device without adding very much skew. That is
the purpose of the distribution stage of the clock
system. The actual circuitry used for the distribu-
tion consists of 1 OOK ECL differential devices
and 1 OKH ECL devices. The distribution was

Digitul Technical Journal
No. 4 February I987

3 5

The CPU Clock System in the VAX 8800 Fc~nzily

CLOCK MODULE

BACKPLANE
INTERCONNECT

A CLOCK
DISTRIBUTION 1 I

OSCILLATOR
LOGIC

PHASE

CLOCK
PHASE

133.5 MHz
22 25 MHz
NOMINAL

B CLOCK
DISTRIBUTION

20 A,B CLOCK
PAIRS, ONE TO
EACH CPU
MODULE, ONE
TO THE MEMORY
CONTROLLER,
AND ONE
TO EACH
I10 CONTROLLER

CPU 1 (8 MODULES)

TYPICAL MODULE

ARRAYS

CLOCK
DISTRIBUTION

CPU 2 (8 MODULES)

TYPICAL MODULE

MEMORY

MEMORY CONTROLLER
MODULE-

ARRAYS

CLOCK
DISTRIBUTION

I10 CONTROLLER (UP TO 2)

ARRAYS L'

Figure I Clock System in VAX 8800 Fnrnily

36 Digital Technical Jozrrrral
h'o 4 February I987

New Products

heavily influenced by our desire to use an auto-
matic timing verifier. The following discussion
of the timing verification environment gives a
clearer view of the reasoning behind the clock
distribution scheme.

Clock System and the Timing
Verification Environment
Traditionally, timing verification was accom-
plished by hand calculations using component
specifications A designer would simply add all
the component propagation delays in a particu-
lar path and determine if all timing cr~teria were
met. In the past, this method worked fairly well
for several reasons. First, the designer usually
knew which paths in a circuit were critical and
could give special attention to them. Second,
components generally behaved better than their
worst-case vendor specifications.

Marginal t~ming problems, or ones that were
simply overlooked, would often be less serious
than the difference between the worst-case
specifications and how the components actually
worked. Finally, timing errors were expected to
appear during the hardware debug phase of a
project. Therefore, timing errors that were bla-
tantly missed during the design could be cor-
rected (with a lot of hard work) during that
phase. That was possible because the overall
complexity of the design could be compre-
hended by the designers.

From the beginning of the VAX 8800 design
effort, we knew that the timing of the design
would be difficult to analyze manually. First,
the sheer complexity of the machine created
over four million different timing paths. It was
impossible to analyze every path manually or to
discover every "critical" one with either man-
ual or intuitive analysis methods.

Second, hardware circuit loops are widely
used in the design; these are circuits that feed
s ignals back t o themselves d u r i n g a la te r
machine cycle These circuits are very difficult
to analyze, especially when loops cross physical
boundaries or are nested within other loops. Just
thinking about t he t iming ramifications of
nested loops taxes the mind. Manually analyzing
thousands of these cases would be impossible.

Finally, the hardware design made heavy use
of gate arrays, which contain most of the logic.
Our ambitious development schedule and the
large number of gate array designs simply could

not tolerate unanticipated timing errors. A tim-
ing error in a gate array meant that a new gate
array must be produced to fix the problem. The
fabrication overhead for another semiconductor
device, usually taking months, was not consis-
tent with our development schedule. Moreover,
while that new gate array was being fabricated,
the debugging of the entire system could be
jeopardized since it was just not possible to
"fix" an LSI chip.

Therefore, the hardware design group wanted
to design the processor with the aid of an auto-
matic CAD tool for timing verification. Such an
automatic method for verifying the timing was
essential to the success of the project. Since the
entire design was to be "soft" (the schematics
were contained i n compu te r databases), it
seemed logical that some type of software tool
for automatic t iming verification cou ld be
applied.

We decided that the most appropriate timing
verifier for this project was produced by Valid
Logic, Inc. Although this automatic tool solved
the problems caused by manual timing verifica-
t ion, it also created some very special new
restrictions.

I t was apparent from the beginning of the
design effort that some restrictions had to be
placed on the design styles of individual engi-
neers to reduce the timing-analysis problem to a
manageable level. CPU hardware designers, like
any other creative persons, often assume large
degrees of freedom in their work. Usually, no
two designers will arrive at the same solution to
a p r o b l e m , a l t hough al l so lu t ions may be
acceptable. When ten or more designers work
independently, as happened on this project, it is
likely that ten unique design styles will emerge.

Therefore, we placed restrictions on the tim-
ing environment for the following two reasons:

Some standardization of timing had to take
place for electrical signals to communicate
properly between designs generated by dif-
ferent people.

Since the automatic timing verification soft-
ware was new, several important features
were lacking.

The usefulness of an automatic timing verifier
depends largely on how well timing-rule viola-
tions are reported. Knowing that a design con-
tains timing errors is useful only if it is easy to

Digital Technical Journal
N o . 4 F ~ D ~ I I L I I - 1 1 1987

37

The CPU Clock System in the VAX 8800 Family

find them. One way to aid the reporting of timing
errors is to create an environment that clocks all
state dev~ces in the processor the same way. This
means that all logic designs in the processor must
follow consistent and strict rules for the clocking
of state devices. That was the method we d e c ~ d e d
to pursue in this design project.

me Timing Environment
The clock system necded strict constraints on its
circuit design and physical layout to guarantee

accuracy. Therefore, the generation and use of
clocking signals were tightly controlled to mini-
mize the different ways in which the circuits
could communicatc. The timing control of state
devices had to b c consistent throughout the
design. Moreover, any arbitrary timing control
of the state devices would have been an impossi-
ble task for the timing verification software.

The timing signals in the VAX 8800 processor
were carefully distributed to every state devicc.
This distribution was accomplished by carefully

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 LEVEL 5

Digital Techrtical Jounzal
No. 4 F r h r r r a ~) ~ 1987

Figure 2 Clock Expansion Groups

New Products

CLOCK MODULE BACKPLANE TYPICAL CPU MODULE -
1 r------1

7

I
I I
I I
I I
I I
I I
I I
I I
I P H A I I GEN I

I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I I I

L -------------------------------- J

I u u- I
FANOUT FANOUT FANOUT FANOUT FANOUT
LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 LEVEL 5

Figure 3 Minimized Globc~l Skew Distribution

expanding the clock signals at strategic physical
positions in the processor. A simple example of
this expansion, or fan-out, is shown in Figure 2 .

Each time the clock signals are expanded,
more timing uncertainty is introduced into the
resulting signals. The 8800 design required up
to five levels of expansion to produce enough
clock signals for every state device. As shown in
Figure 2 , some signals are in common distribu-
tion groups. Signals existing in the same group
will have low timing uncertainty between them,
a characteristic called skew correlation. The
timing uncertainty between signals in different
distribution groups has no correlation; there-
fore, these signals have the highest skew. Signals
from the same group have a skew, called local
skew, lower than the overall group-to-group
skew, called global skew.

I t is very tempting for designers to take advan-
tage of the lower local skew, which is often only
half that of the global skew. Each clock distribu-
tion group is usually contained entirely on one
logic module due to the natural physical parti-
tioning of the hardware. Therefore, communica-
tion between circuits on any particular module
can take advantage of the lower local skew. If all
signal communication occurs within the local-

skew environment, the timing analysis can be
consistent and easily managed. However, com-
plications arise when trying to analyze signals
that cross from the local-skew environment to
the global-skew environment. Signal communi-
cation between logic modules will have to pay
the penalty of using the higher global skew
because the timing signals at each end of the
communication are derived from different dis-
tribution groups. Managing the timing interface
across this partition between local and global
skews was beyond the capabilities of the timing
verification software.

As discussed earlier, a timing analysis of the
entire processor was beyond human capacity;
therefore, it had to be performed with timing
verification software. The timing verification
tool chosen for the 8800 development had no
facility for distinguishing between local and
global skews. Moreover, we wanted to use the
timing verifier to analyze the timing of the entire
CPU as one entity. This decision forced us to dis-
allow the use of any local-skew computations in
our timing analysis. Now, from a design point of
view this decision made the environment very
easy to work with. Al l timing transactions any-
where in the CPU could be analyzed the same

Digital Technical Journal
No. 4 Febr.ilnry 1987

3 9

! The CPfJ Clock Sj~.s/em in the VAX 8800 F~znlill l

I
CLOCK MODULE BACKPLANE TYPICAL CPU MODULE

I

I I

way with the same set of specifications. Ever).-
thing comes at :I price, however. and the obvious
neg;rtive side of this tlecision was tlie loss of the
ability to apply the lower local skew. At that
po in t , some performance of the processor
seemed to I>c compromised just to simplify the
t iming analysis . The fo l lowing discussion
explains how this problem was solved.

me Clock Distribution Solution
Since we wantctl to timc the CPlJ ;IS one cntinr.
we had to make thc global skcw as small as possi-
ble to rnaximizc CPU performance. In the acti~al
implementation, the global skew was lowered by
removing one gating level from the clock distri-
bution. The gating level rcmovcd was necessary
for producing low local skcw. Figurc 3 illustrates
the five levels of fan-out that wcrc required to
produce enough signals when the global-skew
distribution was minimized. Figure 4 shows the
same fan-out to proclucc enough signals in the
case in which the local-skew distribution would
be minimized. Tdble I illustrates the impact of
this optimization for global skew.

Table 1 Distribution Changes

Global Skew Local Skew

Optimized Local Skew 9 ns 2 ns
Optimized Global Skew 7.5 ns 7.5 ns

Altiough using the lower local skew would
have been valuable, it was sacrificed by making it
e q ~ ~ a l to the global skew.

In short. the hardware of the clock syswm was
designed t o allow the maximum exploitation of
the timing verification software. Of course, hard-
ware and software trade-offs are ;i common
occurrence in any design projcct. In this case.
however. the value of thc hardware involved
nrith operating the machine was balanced against
the software analysis ncedecl during the design
phase of the machine.

Summary
Producing the clocking system for a high-speed
computer is best described as an cxcrcisc in min-
imizing and managing skew. In the VAX 8 8 0 0
project. we avoided exotic hardware techniques
so that we could gain thc bcncfit of using an
automatic timing verifier. The resulting skew of
17 percent of the cyclc timc was a figure that
could be tolcratcd. This balance was a fair tradc-
off since the sirnplicit)~ of thc timing environ-
ment allowed us to decrease the time to clesign
and build the VAX 8800 family of systems.

4 0 Digital Technical Journal
N o . .+ F~,~.~,' I IO,:IJ I987

John Fu
James B. Keller

Kenneth J. Haducb

Aspects of the V M 8800
C Box Design

In each processor in the VAX 8800 family, instructions and data are sup-
plied to the execution units by the C Box. Employing a simple structure
with a translation bufler, cache, and address and data buflers, this logic
unit is an integral part of the processor's five-stage pipeline. The no-
write allocate cache uses a write-through scheme featuring a unique
delayed-write algorithm. The C Box has control logic to accommodate
pipeline stall conditions caused by memory accesses. The C Box also
maintains data coherency within a processor and between processors. A
dynamic priority-arbitration scheme solves the lock-out problem between
I/O and processor requests.

The performance of a high-speed computer
depends to a large extent on how fast data can be
passed from its memory to its execution units. If
the computer is pipelined, the unit responsible
for memory acces se s may have t o h a n d l e
pipeline stall conditions. And if the computer is
a multiprocessor, that unit in each processor may
also have to handle data coherency problems. In
processors wi th t he VAX a rch i t ec tu re , data
accesses are further complicated by the fact that
virtual addresses are normally specified. These
addresses r e q u i r e t r ans l a t i on t o phys ica l
addresses before a data access can even b e
attempted.

to avoid that is to store the result of this address
calculation in a small , fast memory called a
translation buffer. Since each translation can
access a page of data (5 1 2 bytes in the VAX
architecture), it is likely that the translation will
be used again in the program being executed.
Rather than recalculating the physical address
(PA) on those subsequent accesses, it can be
retrieved from the TB.

The translation buffer in the VAX 8800 pro-
cessor ho lds 51 2 system and 5 1 2 p roces s
address translations. The following summarizes
the characteristics of the TB.

In the VAX 8800 system, which is a multipro-
cessor with pipelined CPUs, the unit that per-

Characteristics of the Translation Buffer
. .

forms address translations and data acccsses is . Direct Mapped
the C Box. . 1024 Lines

C Box Description
The C Box consists of three subunits: the transla-
tion buffer (TB), the cache, and the NMI inter-
face. Figure 1 is a schematic diagram of this unit.

The translation of a VAX virtual address to a
physical address is a complicated process.l
Accesses to system and process page tables are
required, and shifting and adding must be done
to obtain the final physical address. Performing
this address translation process for every data
reference significantly increases the data access
time and reduces the read bandwidth. One way

- 51 2 System Lines
- 51 2 Process Lines
Allocation on Translation Buffer Miss

A common approach to the problem of data
access latency for high-speed processors, and
the one used in the VAX 8800 CPU, is to use a
cache.2 A cache is a small, fast memory located
between the processor and the main memory
system. If the data requested by the CPU is not
contained in the cache, that data is accessed
from main memory and loaded into the cache.

Digital TecbnicaJ Journal
No. 4 Febrttaql I987

4 1

Aspects of the VAX 8800 C Box Design

- ADDRESS

- A - - -
CACHE - TB TAG > B

A DATA - ADDRESS
CACHE
HIT

-
V A PA

READ STREAM
TB TB - ADDRESS -
TAG HIT BUFFERING -

\
v

TRANSLATION BUFFER

BUFFERING

TB - TRANSLATION BUFFER
VA - VIRTUAL ADDRESS
PA - PHYSICAL ADDRESS
A, B - A AND B PHASES OF TWO PHASE CLOCK

NMI IN~ERFACE

Figure 1 Block Diagram of C Box

Thus, in the majority of cases, the cache will
contain recent ly referenced data i tems, and
future references to those data items will b e
fetched from the cache. The intent is to mini-
mize the number of longer latency accesses to
the main memory subsystem. The success of a
cache memory relies o n the locality of refer-
ences in both time and space.

The data cache in each VAX 8800 CPU holds
64 kilobytes (KB) of both data and instructions.
The list on the right summarizes the characteris-
tics of the cache.

The TB and the cache are very similar in con-
cept and structure, except that the TB is used to
accelerate address translations and the cache to
accelerate data accesses. Each consists of a tag
section and a data section. The tag section holds
the unique identifier, or tag, for the data itcm
held in the corresponding data section. The TB
and the cache are direct mapped, meaning that

Characteristics of the Cache

Direct Mapped with Physical Address

Read Allocate Only

Delayed-Write Cache Update

Write-through Memory Update with Write Buffering

1024 Blocks

64-byte Block Size

4-byte (one longword) Line Size

32-byte (one hexword) Cache Refill Size

each address can po in t to only o n e location;
however, each location can potentially be allo-
cated to o n e of many addresses. A tag permits
the identification of a data item in either the TB
or a cache location. The tag in the VAX 8 8 0 0
processor is an unmodified selection of bits

Digital Technical Journal
No. 4 Febr~rnrv 1987

VA(31-0)

VA(8-0)

TB TB

~ ~ (3 1 s TAG DATA

VA(30-18)

1 v I
P PA(29-0)

TB HIT
4

CACHE HIT

VA - VIRTUAL ADDRESS
PA - PHYSICAL ADDRESS
TB - TRANSLATION BUFFER

Figure 2 Translation Buffer and Cache
Address mapping

f r o m t h e a d d r e s s of t h e d a t a i t e m b e i n g
accessed. This concept is depicted in Figure 2.

As ment ioned ea r l i e r , a memory access is
r e q u i r e d if t h e c a c h e d o e s n o t c o n t a i n a
requested data item. In the 8800, both proces-
sors are connected to the memory and the 1 / 0
subsystems through the NMI bus. All read and
write references that go to these subsystems are
processed by the NMI interface. This interface
maintains a set of buffers for both read and write
reference streams. For the read stream there are
actually two sets of address buffers: one for data
reads, the other for instruction reads.

C Box Operations
A C Box reference consists of a function codc,
an address, and in the case of writes, 32 bits of
data. In general, that address is a 32-bit virtual
address (VA). The VA translation process begins
with a check to see if the PA is available in the
TB. If the PA is available, called a TB hit, the
data is read out and concatenated with the lower
nine bits of the VA to form the PA. As part of the
translation process, the TB also performs page
access checking. If the PA that pertains to the VA
i s n o t i n t h e T B , c a l l e d a TB m i s s , t h e n
microcode must perform t h e translation. The
microcode then writes the data into the TB for

s u b s e q u e n t use . (If t h e address s u p p l i e d is
already a PA, then the TB is not used.)

Only physical addresses access the cache. I f
the data referenced is contained in the cache,
called a cache hit, then the data can be accessed
from there. If the cache does not contain the
data, called a cache miss, then the data must be
accesscd from memory.

Read Operations
Cache-miss addresses for reads are passed to the
NMI interface, where they are held in the read
a d d r e s s b u f f e r s . A h e x w o r d r e a d r e q u e s t
(32 bytes), with the address of the missed loca-
tion, is then made to memory. The memory data
is passed to the requesting unit, and the address
held in the read address buffer is used to update
the missed cache location. A read miss is the
only occasion upon which a cache location is
allocated.

There are two read streams in the C Box for
requests to memory: the data stream, called the
d-stream, and the instruction stream, called the
i-stream. The i-stream requests the memory to
send data des t ined f o r t h e ins t ruc t ion u n i t
(I Box), which interprets that data as macroin-
s t ruct ions . I-stream fe tches a r e ini t ia ted by
microcode, which loads a C Box register called
the physical instruction buffer address (PIBA).
The PIBA holds t h e address of the next long-
word of the i-stream to be fetched. If the execu-
t ion of macroinstructions is sequent ia l (i .e . ,
there are n o branches, page crosses, etc.) , the
C Box can increment the PIBA contents automat-
ically after each fetch. However, should the pro-
gram branch or a page cross occur, microcode
m u s t bc used t o re load t h e PIBA. D-stream
fetches are made only by the microcode, which
must specify one of eight memory data (MD)
registers as i ts dest inat ion. D-stream data is
always returned to the execution unit.

Write Operations
In general, the performance of a cache is mea-
sured by its hi t rate when reading data. The
selection of the update mechanisms for both
cache and memory, however, can have a major
influence on the design of the cache. There are
two well known strategies for updating a cache:
write allocate, and no-write allocate. A write-
a l l o c a t e s c h e m e u p d a t e s a c a c h e l o c a t i o n
whether o r not the write is a hit or a miss. This
scheme is generally implemented with a write-

Digital Technical Jountal
No. 4 Febrtta~:y 1987

4 3

Aspects of the VAX 8800 C Box Design

back memory arrangement (discussed later). In
a no-write allocate scheme, the cache is updated
only if the write was a hit. The VAX 8800 pro-
cessor uses a no-write allocate scheme.

The no-write allocate scheme does, however,
present a problem. Since only writes that hit
will update the cache, cache updates take two
pipel ine cycles in the C Box - the first t o
check for hit or miss, the second to update the
cache for a hit . The C Box was designed to
enable one read reference to complete in each
cycle. If two consecutive cycles are needed to
update the cache, the second cycle could block
a read reference, thus causing a pipeline stall.

To solve this problem, the C Box implements
a delayed-write algori thm. This mechanism
delays writes that must update the cache from
doing so until the first cycle of the next write
reference. The second cycle of the delayed
write does not need to be the next consecutive
cycle.

The delayed-write algorithm in the C Box
takes advantage of the fact that the first cycle of
a write i~tilizes only the tag section of the cache
to d e t e r m i n e w h e t h e r a h i t o r a miss has
occurred. The second cycle uses only the data
section. A write that must update the cache has
its address and data placed into the delayed-
write address and data buffers respectively. On
the next write access, during the cache-tag look-
up cycle, the data section of the cache will be
updated from the address and data contained in
those buffers, but only if the previous write
access was a hit. Since reading a data item after
one has been written is common, this design sig-
nificantly reduces the potential for stalls.

Write Buffer
All write references, whether or not they hit in
the cache, must eventually go to memory. There
are tn7o general strategies in cache design with
respect to memory updating: write-through, and
write-back. In the wri te- through approach ,
write references are sent to the memory system
immediately. Conversely, in the write-back
approach, writes are held until the cache block
is deallocated (made ready to receive different
data).

There are several major problems wi th a
write-back strategy. First, i t requires ei ther
microcode or hardware to accomplish all the

write-back functions. Adding that code or hard-
ware to the C Box would have considerably
increased its complexity.

Second, if there is a wri te miss wi th this
scheme, a cache block that might be full of
valid data could be displaced by a block whose
only valid data was that just wri t ten to the
cache. For a cache having a large block size, like
the 8800 has, this action is undesirable. More-
over, in most cases microcode reads data before
i t is written; therefore, writes will generally hit
in the cache.

Finally, the write-back strategy requires a
complex algori thm t o maintain coherency
between caches within a multiprocessor system.
Therefore, for all those reasons, we chose to use
the write-through approach in the cache.

One disadvantage of write-through is that it
tends to generate a lot of write traffic to the
memory. In a shared-bus system like the 8800,
this traffic can limit performance. To reduce
memory-write traffic, writes in the VAX 8800
processor are buffered in a write buffer con-
tained in the NMI interface. This write buffer is
really a one - l i ne , oc taword , wr i te -a l loca te
cache. A write going out to the NMI bus is held
in the write buffer. Subsequent writes to the
same octaword update only the write buffer so
that no memory requests are sent on the NMI
bus. A write that is outside the octaword cur-
rently in the write buffer deallocates it; that is,
the contents of the write buffer are sent to mem-
ory, and the next write replaces those contents
in the buffer.

Like the cache, the success of the write buffer
in reducing bus traffic relies on the locality of
programs in space and t ime. For example ,
sequential writes, such as pushes to the stack,
will get collected in the write buffer even if the
writes occurred in different macroinstructions.
This collected "package" of writes can then be
sent to the memory more efficiently than can
individual writes.

Another advantage of the write buffer is that it
decouples the processor from memory activity.
When the memory is busy processing transac-
tions from the other processor or from the 1 / 0
subsystem, a processor will not stall due to
writes. The write buffer is actually implemented
as a two-deep buffer, which further reduces the
potential for stalls.

4 4 Digital Tecbtrical Journal
No 4 Febrirary 1987

Pipeline Stalls
In a pipelined implementation, how well the
pipelinc performs is determined both by how
oftcn i t is flushed clear and how often i t is
stalled. Stall conditions are generally related to
thc lack of some physical rcsource or data.

In some implernentations, some pipeline
stages can take more cycles to complete than
others for certain functions. I f a shorter stage
precedes a longer one, the longer one will be
unable either to accept fresh data or to pass its
result to the next stage until finished with its
cycle. In turn, other portions of the pipelinc
cannot procccd with their operations; therefore,
the pipeline will stall. In this stalled condition,
all stages preceding the "bottleneck" maintain
their input and output conditions until the stage
responsible for the stall completes its function.
Some in~plementations have a combination of
stages that may exhibit these characteristics,
leading to complex pipeline stall conditions.

In the VAX 8800 CPU, the design simplicity
of the pipelinc ensures that each pipeline
stage - except the C Box - always completes
its function in one cycle.' Since the C Box also
controls data accesses, all stalls in the 8800 are
related to the operation of this un i t . The
pipeline will experience two types of stalls: the
MD stall, and the VA stall.

CYCLES

M D Stalls
When making a read reference, a microinstruc-
tion must specify one of eight MD registers to be
used as its destination. When data is made avail-
able, either from the cache or from memory, it
is written into the specified MD register. Subse-
quent rnicroinstr~~ctions then use the data from
this register. I f a microinstruction attempts to
use an MD register that is not "valid" (i.e., the
data has not yet been fetched by the C Box), the
pipeline will experience an MD stall.

The MD stall condition is a data-dependency
type of stall that is generally seen in pipelined
machines. On the \'AX 8800 processor, certain
steps are taken to either avoid such stalls or
rcduce their effects. For example, consider two
consecutive microinstructions, R and S, as illus-
tratcd in Figure 3 . R is a microinstruction that
performs a read and puts data into an MD regis-
ter. S then accesses and uses the data fetched by
R. If R and S are adjacent, the pipeline will stall
in the 8800. The reason for the stall is that the
pipeline stage accessing the MD data and the
stage fetching that data (the C Box) are sepa-
rated by one other stage, the arithmetic and
logic unit (ALU). When S tries to use the MD
data, R is just starting to make the read reference
in the C Box. S must therefore stall the pipeline,
waiting for data to be supplied by R.

INSTRUCTION R ACCESS
FOR ALU T B CACHE
DATA

b
1 R STARTS READ REFERENCE

INSTRUCTION S

S REQUIRES DATA READ BY R.
MUST STALL AT LEAST ONE
CYCLE FOR THE DATA.

M D
ACCESS
FOR
DATA

MD - MEMORY DATA REGISTER
TB - TRANSLATION BUFFER

Figure 3 Instructions R and S Are Adjacent

k

ALU

New Products

Digital Technical Jotrrnal
No, 4 Fe61.11crr:)~ 1987

4 5

TB CACHE

Aspects of the VAX 8800 C Box Design

CYCLES

I AVAILABLE
I

MD
INTERVENING ACCESS
INSTRUCTION FOR

DATA

\ S REQUIRES DATA.
DATA SENT DIRECTLY INTO
ALU, BYPASSED MD
UPDATE NO STALL

MD

INSTRUCTION S ACCESS
FOR
DATA

Figure 4 instruction.^ K r ~ n d .S .Sepcirrrtcd by Another Itzstructio~z

ALU

On the other hand, if R and S are separated by
one other instruction, then when S attempts to
use the data read by R , that data is just being
made available by the C Box (assuming, of
course, a read hit in the cache). I f S were to wait
for the MI1 registers to be updated before using
the data, the pipeline would stall. To eli~ninatc
that type of stall, a path has been designecl from
the C Box directly into thc input of the AI.0.
bypassing the MD registers. 'T'hcrefore, the dat;~
coming from the cache is sent both to the MD
registers for updating and directly to the A L l J ,
where S can use the data. 'T'he net effect is th ;~ t
this bypass path removes the one-cycle latency
that S would have experienced had i t waited for
the data to come out of the MD registers. Figure 4
illustrates these concepts.

Had R caused a read miss, S would still cause
an MD stall since the C Box must make a memory
fetch for the data. Notice that an MD stall hap-
pens only when S attempts to use an MI1 registcr.
Therefore, a general rule for making microcode
accesses to the C Box is to make read references
early ;rncl to use the MD registers late. Should the
read reference miss, sorne part of the mcmory-
fetch latency will be hidden by the microinstruc-
tions bctwccn the read ;ind the MD rcgistcr

ALU

access. When data rcturns from a read miss and
the pipeline is either undergoing or about to
undergo an MU stall, the bypass path can be used
to rccluce the cffccts of the st;~ll or even prevent i t .

TB

VA Stalls
A VA stall condition occurs when the C Box can-
not ~>rocess a requested reference. This can be
due to either an invalidation cycle in the C Box
(discussed in the final section of this paper) or
the cap;~bilities of the address and data buffers
in thc N M I interface being exceeded.

As mcntioned earlier, for reads there is a set of
buffers for d-stream and i-stream references. The
d-stre;~m buffering is one deep, meaning there
can onl18 be one read 111iss oi~tstanding in the
C Box. However. the i~nple~nentat ion will not
allow the pipeline to stall should subsequent
re;~ds hit in the cache. I-stream reads never stall
the pipeline ;IS do VA and MD stalls, which stop
the clock. 'The instruction buffer can "stall" if it

does not have enough data for the decoder to
complete the decode of the current VAX instruc-
tion o p e r m d This condition causes the CPIJ to
pcrform ;I no-operation microword. That cloes
not stop the clock, however, and thus is not a
p i ~ ~ e l i ~ i e st:~ll.

CACHE

TB CACHE

The C Box can still receive commands even if
it contains one read miss. Of course, there is the
potential that the command being received will
miss in the cache. That will require the NMI
interface to request the data from memory, thus
resulting in a VA stall. That stall lasts from the
time the command is received until the time the
previous read-miss data returns from memory. If
the second command is a read that hits in the
cache, a VA stall will be generated for the one
cycle that it takes to determine whether o r not
there is a cache hit. The read data will then be
taken from the cache and returned to the MD,
after which the stall will be released.

Since writes go to memory more than reads,
the buffering for writes is more extensive. The
delay-write buffer and the double buffering in
the write buffer are used to reduce the possibility
of write stalls. These buffers enable the C Box to
hold a maximum of n i n e longwords of data
before the pipeline will experience a VA stall on
a write.

Stalled and Unstalled Logic in
the C Box
If an instruction is stalled, the C Box has either
not returned the data o r cannot take another ref-
erence. Therefore, all stages prior to the C Box
(the I Box and the E Box) must be stalled. The
TB is part of the last stage of the pipeline; there-
fore, it must be capable of being stalled. When
the pipeline stalls, the TB holds the address of
the stalled reference. Only the NMI interface
can resolve a stall, either by supplying the read-
miss data o r by freeing u p its buffers. Thus this
interface can never be stalled. However, the
c a c h e , b e i n g p a r t of t h e l as t s t a g e o f t h e
pipeline, is also the path for supplying data to

the stalled instruction. This situation leads to an
interesting control characteristic of the C Box.
O n e of its sec t ions , t h e TB, can b e s ta l l ed ;
another, the NMI interface, must never stall; and
t h e t h i r d s e c t i o n , t h e c a c h e , m u s t r e m a i n
unstalled but maintain stalled input and output
condi t ions in its logic . Figure 5 dep ic t s t h e
logic for stalled and unstalled conditions in the
C Box.

Coherency Problems in the C Box
In general, data coherency means that a read
should always get correctly modified data when
a se r ies of reads and w r i t e s is m a d e i n any
sequence. One way to maintain coherency is to
perform all reads and writes to completion in a
purely sequential manner, thus strictly main-
taining their sequence of reference. However, in
a pipelined machine, not only can there be sev-
eral sources of read and write references, but
there can also be more than one copy of the data
item. This duplication often leads to very com-
plex solutions to achieve coherency.

This complexity has been simplified some-
what in the VAX 8800 pipeline by having the
C Box b o t h c o n t r o l a n d s e q u e n c e a l l d a t a
accesses. The C Box itself, however, is pipelined,
having a d-stream and an i-stream for reads, and a
stream for writes. This fact also presents some
coherency problems. Coherency for the C Box
means that two conditions must be met.

1. After a sequence of reads and writes has
completed, any valid blocks in the cache
must match the data in the memory.

2. Whenever the processor writes to a loca-
tion in memory and then reads that loca-
tion, the data has to be what was written.

\ /

STALLED

J PHYSICAL

STALLED/
UNSTALLED

-
UNSTALLED

NMI
INTERFACE NMI l BOX

Figure 5 Stalled a n d Unstalled Logic in C Box

New Products

E BOX

Digital Tecbnical Journal
No. 4 Februai:y 1987

4 7

TRANSLA-
TlON
BUFFER

PHYSICAL
ADDRESS

CACHE

ADDRESS

DATA

Aspects of the VAX 8800 C Box Design

Two types of coherency problems exist in the
VAX 8800 system: coherency within a proces-
sor, and coherency between processors.

The first type of problem in the C Box arises
from the implementation of the delay-write
algorithm discussed earlier. A problem occurs
when a read is attempted to the cache location
waiting to be updated by the write held in the
delay-write buffers. The read will hit, but the
cache data will be stale. One solution to this
problem is to stall the pipeline while the cache
is updated, performing the read for the corrcct
data. The trouble here is that the sequence of
writing to and reading from the same location is
a common occurrence. Thus to stall would sig-
nificantly reduce the read bandwidth.

The C Box solves this problem by comparing
selected bits of the read and write addresses in
the delay-write buffer. If the bits match, then
the data content of that buffer is used as the read
data. This solution works because, to the read.
the delay-write buffer appears to be an exten-
s ion of t h e c a c h e . Since t h e read address
matched the address in this buffer, the data can
be taken directly from i t . Coherency is thus
assured, and no stall penalty is incurred.

The second type of coherency problem occurs
when the read is a miss and thus goes to the NMI
interface. To assure high performance, the NMI
interface maintains two streams of data requests,
the read and write streams. The buffering and
the control of these two streams operate inde-
pendently. If made to different data items, read
and write requests can be processed to memory
as quickly as possible, even out of sequence.
The coherency problem is to make sure that
subsequent reads and writes to the same data
item result in its correct state.

If a read request occurs that was a miss, the
cache will send it to the NMI interface upon dis-
covering that fact. Once in the NMI interface,
the read address is compared to the address of
t he oc taword in t he wr i t e buffer . I f those
addresses are different, the cachc will send the
read directly to memory. Thus the data in the
write buffer will be unaffected. If the addresses
match, however, the write data will be sent to
memory, followed by the read request. Since the
memory subsystem processes references in a
sequential manner, the read will always access
the correct data. (Of course, this case is fairly
simple. A more complicated one is that in which

a read is sent to memory, and the processor per-
forms a write while waiting for that read.)

I f the addresses of the read and write match,
the cache can give the processor the requested
data but cannot mark the returned data valid in
thc cache. 'This situation occurs because the
read-miss data being fetched from memory has
been made stale for subsequent reads.

The microcode is designed so that it wil l
never read a data item and then writc to i t with-
out first accessing the MD registers. However, a
cache block is 64 bytes long. The microcode
could write to any other data item in the block
before coming to the missed data item. There
can be as many as three writes and two reads
(one each for the d- and i-streams) buffered
si~nultaneously in the C Box, all referencing the
same cache block. Even worse, the C Box can
send an arbitrary tlumher of writes to memory
while waiting for the data returned by the read
to memory. To maintain coherency, the C Box
performs a sct of address matches between the
rcad and writc streams. Then it "remembers"
whether or not any write addresses matched the
outstanding reads and marks them invalid as
appropriate.

C Box Design for a
Multiprocessor System
The VAX 8800 system consists of two identical
VAX 8800 processors o n the NMI bus connected
to the memory and 1 /0 subsystems. Within a
proccssor, only the design of the C Box has been
affected by the requirements of a mu ltiproces-
sor arrangement. That is because the C box is
the CPU's interface to the NMI bus and contains
the central arbitration logic for that bus.

There are three key issues in designing a
memory interconnect for a multiprocessor sys-
tem: bus arbitration, bus bandwidth, and data
coherency between processors.

Bus Arbitration on the NMI Bus
Two major problems were encountered in the
design of an arbitration scheme for the NMI bus.
The first was the fact that between the CPUs and
the 1/0 subsystems, called the NBIs, there was a
possibility that a high-priority device could lock
out a low-priority device from the bus. This is
certainly possible with a fixed priority-arbitra-
tion scheme. To address this problem, the C Box
implements a dynamic priority-allocation

Digital Technical Journal
N o . 4 Febrzrcrr)~ 1987

New Products

scheme that causes priori ty to be assignecl
between two groups: the 1 /0 devices, and thc
CPUs. Within thcsc groups, the priority shifts
between the two CPUs and thc two I/O devices.
For example. i f all four devices wanted to usc
the bus all the time, the order in which the bus
wo~1Ic1 be granted to the devices would be

first CPU, first I/O, scconcl CPU, second 1 /0 .

first CPLJ, first I/O, second CPU, second I/O,
etc.

'I'his schemc guarantees that all devices on the
bus will have nearly equal access to the bus,
thus solving the lock-out problem.

The second problem involves thc "mcmory
busy" situation. Whenever the memory subsys-
tem cannot process more requests, it sends a
"memory busy" signal. It could happen, for
ins tance , that a CPU accesses t he bus and
attempts to write to mcmory. Upon receiving a
memory-busy signal, the CPU will abort the
write. When memory is rcle;ised, some other
tlcvicc will access the bus and perform a writc.
thus filling the write qileue in memory. Once
again, the first CPLl rc-arbitrates, accesses the
bus, and tries to writc. Once again, that CPU
rcccivcs a memory busy signal. And so on.

The NMI arbitration schemc mentioned above
solves this problem in which a device might get
locked-out of memory. As implemented, the
;irbitration scheme saves the priority state at thc
t i m e be fo re t h e memory -busy s igna l was
asserted. The arbitration logic then restores that
state so that the device that received the signal
will get the bus when the memory-busy signal is
dcasscrted.

BLLS Bandwidth
For the processors o n the interconnect, bus
Ix~ndwidth involves two components: read band-
width, and write bandwidth. The problem of
inatlccll~ate read bandwiclth is addressed by hav-
ing a high hit-rate cachc. The higher thc hit rate,
the fewer the requcsts to memory. The problem
of inadequate write bandwidth can be treated in
two ways. The first way is to have a write-back
c;~che like the one on the VAX 8650 processor.'
Such a cachc writes a block to memory only
whcn the cachc block is deallocated. This tcch-
n iq~ic can significantly rcducc the writc lxintl-
width requirements.

In multiprocessor systems like thc 8 8 0 0 ,
however, in which cach processor has an inter-
nal cachc, this technique becomes complicated.
In these systems, a data item can exist not only
in memory but also in all the caches. To main-
tain coherency, each write-back cache would
have to notify the other cache whcn the first
cachc writes. This technique usually lcads to a
complex protocol and design implementation.

Another approach in a multiprocessor system,
the one used in the 8 8 0 0 , is t o implement
write-through caches. In such an approach, all
write references go directly to memory so that
cach cachc on the bus can "see" all write activ-
ity. The caches can then be invalidated. Such an
;ipproach greatly simplifies the protocol for
cache coherency but, as discussed earlier, gen-
erates a high dcgree of write traffic. The unique
design of the write buffer helps to reduce this
traffic, although not as much as a writc-back
cache would. In the 8800 processor, however,
the write buffer reduces traffic enough so that
the two VAX 8800 processors can write at their
maximum bandwidths on the NMI bus.

Coherency in a Multiprocessor System
A multiprocessor system, with internal caches,
presents a number of interesting coherency
issues when sharing data. Ideally, if one proces-
sor writes to a location and the other processor
reads that location, the read will always get the
data that was written. In practice, achieving this
condition is difficult. Several major questions
arise: Did the read happen before the write or
after it? What happens j f both processors write
to the same location at the same time? Unless
controlled, thcsc situations can produce unpre-
dictable results.

If programs on the processors want to share
data, they must use the interlock instructions in
the VAX a r ~ h i t c c t u r c . ~ Only after an interlock
instruction is processed will the memory loca-
tion be guaranteed to have the correct data. The
general method is ;is follows. Processes must
decide to share a block of memory. One mem-
ory location is called the software lock, and only
one process at a time is allowed to write to (or
lock) that location. This is accessed with an
interlock instruction, for example, the branch
on bit set and set interlocked (BBSSI) or the add
aligned word interlocked (ADAWI) instructions.

- - Aspects of the VAX 8800 C no.^ I)es i~ i?

Upon gaining the software lock, a given process
can proceed to write any location in the shared
block. Read-write coherency will be ;issured
only i f the other processes sharing that tlata
observe the protocol of obtaining the softw;irc
lock before modifying the data structure.

The VAX interlock instructions are imple-
mented using inter lock microinstruct ions.
These enable a processor to lock and unlock the
memory subsystem. Once locked, this subs)rs-
tem excludes further attempts to lock i t until an
~ ~ n l o c k has occurred. Thus onl!, one processor
or I/O system can lock the memory s~rbsyste~n at
any one time.

When each processor has ;in internal cache.
there is one more mechanism th:it keeps the two
processors coherent. While one processor is
performing a write to memory and while the
write command is on the N M l bus, the other
processor will examine its cache store to see i f
i t cont;iins a copy of that data. I f the d;it;i is
there, i t is marked invalid. The next recluest for

LEFT
PROCESSOR

this data will then result in a cache miss and ;I

s ubsequen t fetch to memory . This s imp le
approach is possible because the VAX 8 8 0 0
caches are write-through. Although all writes
are sccn on the bus, the write buffer packs
togcthcr consecutive writes within an octaword.
Therefore, rhc number of invalidation cycles
performetl by a processor wil l he reduced .
When an interlock write is performed, the con-
tents of the write buffer are sent to mernor)r.
'I'hus the interlock mechanism ensures that dat;~
coherent!, will work under all conditions. Fig-
ure 6 i l l u s t r ; ~ t e s t h e e v e n t s t ha t a c h i e v e
coherency in the 8800.

Summary
The general concepts iised in the design of the
C Box arc \veil known to computer designers.
Our goal was to achieve a simple yet high-per-
formancc design that avoided unnecessarily
complex solutions that did not give comparable
increases in performance. The choices made

RIGHT
PROCESSOR

CACHE

5 0 Digifnl Technical Jortrnal
No. 4 Febr7rcrr1~ 1987

+

OTHER PROCESSOR

1
A

SEES WRlTE ON
WRITE INTERLOCK NMl A N D LOOKS
FORCES WRITE BUFFER IN CACHE FOR
CONTENTS TO M E M O R Y INVALIDATION

+

t

CACHE

NMI

I

New Products

have y~eltlcd ;I d e s ~ g n that fully supports the
niult~processor concept The VAX 8800 systenl
can translate addresses and access data faster
than any previous \TAX processor.

Acknowledgments
All those who worked on the VAX 8800 system
contributed to the thinking that went into the
C Box design. Special thanks go to Dave Sager
for keeping things going.

References

1 . VAX Architecture Hundbook, (Maynard:
Digital Equipment Corporation, Order
No. EB-26115-46. 1986): 7-1 1 to 7-10.

2. A. Smith, "Cache Men~ories," Computing
.Yurue.ys, v o l . 1 4 , no . 3 , (September
1082): 473-530.

3. S. Mishra, "The VAX 8800 Microarchitec-
ture." Digital Technical Journal (Fcbru-
ary 1987, this issuc): 20-33.

4. T. Fossum, J . McElroy, and M. English,
"An OVCN~CW of the VAX 8600 System,"
Digital Technical J o u r n a l (August
1985): 8-23.

5. S. Farnham, M. Harvcy, and K . Morse,
"VMS Multiprocessing on the VAX 8800
System," Digital Technical Journal
(February 1987, this issue): 1 1 1- 1 19.

Digital Technical Juut-nu1
No. 4 Febrrtrr~:v I987

5 1

PaulJ. Natusch
David C. Senerchia

Eugene L. Yu

m e Memory System in the
VAX 8800 Family

The memory system in the V ! 8800 family can send data at 71MBper sec-
ond and receive it at 59MBper second. The 8800 and 8700 CPUs can con-
tain up to 128MB of memory, the 8550 and 8500 up to 80MB. Commands,
addresses, and dataflow between the memory interconnect (NMI bus)
and the memo ry controller, away bus, and array modules. Read, write,
and masked-write commands are executed. The designs of the NMI bus
and write-through cache affected the memory system design. Although
ECL is used in the controller, TTL is used in the array bus. The array
modules of 4MB and l6MB contain 256K MOS dynamic RAM chips.

All members of the VAX 8800 family of proces-
sors (the 8800, 8700, 8550, and 8500) use the
s a m e t y p e of m e m o r y s y s t e m . S i n c e t h e
VAX 8800 system is a multiprocessor, that mem-
ory system must connect to both CPUs and both
1/0 adapters, called the NBLAs. The bus connect-
ing these devices is called the NMI bus, and each
connection on the NMI bus is called a nexus
Thcse connections are illustrated in Figure 1 ,
which shows five nexuses: one for each CPU, one
for each NBJA, and one for the memory system.

The memory system can deliver 7 1 megabytes
(MB) per second of read bandwidth and 59MB
per second of write bandwidth.

Since the VAX architecture has a 32-bit for-
mat, all datapaths i n the memory system must
also handle 32 bits. These datapaths are com-
bined by pipelined and parallel operations to
produce the read and write bandwidths. 'The
most significant occurrence of parallel operations
is two-dimensional interleaving. The first dimen-
sion interleaves between longwords (32 bits) of
data on a single array module; the second inter-
leaves between octawords (4 longwords) on dif-
ferent array modules. As many as three array
 nodules can be active s in~ul taneous ly with
eithcr a read or a write. There are three cases:

Each module can do one read.

One module can do a read while the other
two can do as many as four writes.

Two nlodules can each do a read while the
third can do as many as four writes.

Figure I Memory Interconnect Structure The selcction of the array modules can be
programmed from the console when the system

The memory system itself consists of three is powered up . 'Thus the rnemory system can
major parts, as depicted in Figure 2: support a variety of array module sizes and

A memory controller based on ECL technology speeds without the need to modify the hardware
in the memory controller. Moreover, thc nlem-

A high-speed TTL bus connecting that mcm- ory can address 5 2Mf3 of physical
ory controller to a m;~ximum of eight array memory, the l imit of the VAX architecture, ~h~
modules 8 8 0 0 is t he first VAX system to b e ab le t o
The array modules themselves address this much physical memory.

5 2 Digital Technical Jourtzrtl
No 4 Pebrrra~:)' I987

COMMAND BUS-INPUT COMMAND AND CLOCK - - I

MEMORY
CONTROLLER

DATA BUS - WRITE DATA w
t t

C O M M A N D BUS - ARRAY STATUS
I

ARRAY
MODULE
1

f

T

A R R A Y
MODULE
8

5
I I

A R R A Y
MODULE
2

Figure 2 Plan of Memory System

DATA BUS - READ DATA
I I

Owing to the limits of the existing technol-
ogy, however, the init ial machine was intro-
duced with 32MB for the 8 8 0 0 and 8 7 0 0 sys-
tems, and 20MB for the 8 5 0 0 and 8 5 5 0 systems.
T h e 32MB c o n f i g u r a t i o n c o n s i s t s of e i g h t
4MB modules with 256K MOS dynamic RAMS
packaged in DIPS. To increase the density of the
machine without using a different semiconduc-
tor technology, a 2MB daughter module was
developcd after the initial announcement. This
module uses double-sidecl surface-mount tech-
nology and plastic leadless chip carriers. Eight
of these daughter modules are mounted o n a
mother module to produce a 16MB array mod-
u l e . T h i s n e w m o d u l e h a s i n c r e a s e d t h e
machine's memory to 128MB for the 8 8 0 0 and
8 7 0 0 systems, and to 80MB for the 8 5 5 0 and
8500 systcms.

Memory System A rcbitecture
As shown in Figures 1 and 2 , the memory con-
troller communicates with the CPUs and the
N B k over the memory interconnect, called the
NMI b u s . C o m m a n d s , a d d r e s s e s , a n d d a t a
requests are all first received by the NMI inter-
face and then passed to other sections of the
memory c o n t r o l l e r . Addresses a n d da ta a r e
stored in custom multiport RAMS, where eight

protocol has to be changed to that of the array
bus. Reads and writes of data fields with various
sizes are received by the NMI interface. The NMI
bus supports a very robust se t of commands.
Reads and interlocked reads are supported for
longwords (4 bytes), octawords (4 longwords),
and hexwords (2 octawords). Masked writes and
masked-write unlocks are supported for long-
words. quadwords (8 bytes), and octawords.
Writes are supported for longwords and octa-
words.

T h e r e a d - i n t e r l o c k e d a n d m a s k e d - w r i t e
unlock commands are used to implement VAX
i n s t r u c t i o n s in w h i c h mutiral e x c l u s i o n is
required. For example, t h e VAX instructions
ADAWI, BBCCI, BBSSI, I N S Q H I , INSQTI ,
INSQUE, REMQHI, and REMQTI all need these
commands. Since a n inter locked instruction
locks the entire memory system, the interlock
bit must reside in the memory controller. This
bit restricts the execution of subsequent inter-
lock commands until the lock has been released
by a maskcd-write unlock instruction.

After receiving a m e m o r y reques t from a
nexus, the memory controller must transfer that
request to the appropriate array module. This
transfer is accomplished using the array bus.
This bus consists of

locations arc reserved for addresses and eight for
A unidirectional set of command and address da ta . T h e NMI in te r face e n c o d e s c o m m a n d
lines from the memory controller to the array information, passing it to the command-control
modules portion of the memory controller.

Since the memory controller communicates Another unidirectional set of data lines from
with the NMI bus and the array bus, the NMt the memory controller to the array modules

Digital Technical Journal
No. 4 Febrtraq~ I987

5 3

The Memory System in the VAX 8800 Family

A set of data lines (capable of assuming three
states) that can be driven by any o n e of the
array modules and received by the memory
controller

Various status and control lines that commu-
nicate in both directions

T h e array b u s has a min ima l r e p e r t o i r e of
conimands, consisting of longword reads, octa-
word reads, and longword writes, but not hex-
word reads. Since t h e NMI suppor t s hexword
reads, the memory controller must convert them
into two octaword reads and then send them to
the array modules. Thus the two octawords of a
hexword read can reside on different array mod-
ules. That fact increases the memory bandwidth
because parallel accesses can be executed. The
array bus supports only longword writes; there-
fore, octaword writes must also be converted. As
mentioned earlier, the array bus has one line for
commands and addresses and another for data.
Therefore, an octaword write, which takes five
cycles to transfer on the NMI (one for the com-
mand, four for the data), can be transmitted in
five cycles on the array bus to an array module.
Figure 3 shows the corresponding actions dur-
ing each cycle o n the NMI and o n the array bus.

In addition to commands, the memory system
must also execute maintenance tasks, including
memory ref resh , e r ro r repor t ing, and bat tery
backup.

Since physical memory is implemented wi th
MOS dynamic M s , every array row must b e

NMI

ARRAY BUS

COMMAND
OR
A D D R E S S

CYCLE

3

DATA I DATA

refreshed once every 4 milliseconds. This func-
t ion can b e done by refreshing o n e row every
14 microseconds. To facilitate this activity, the
memory control ler sends signals to each array
module from a 14-microsecond oscillator. Upon
receiving a refresh signal, an array module will
handle the refresh arbitration and execu te the
operation.

Occasionally, a bit wil l be lost d u e to ei ther
alpha particles o r a device failure. In that ease
the Inernor). controller must handle those errors
and o t h e r types i n a graceful m a n n e r . T o d o
that, the memory system uses a 7-bit modified
h a m m i n g c o d e t o g e n e r a t e t h e ECC, w h i c h
allocr7s all single-bit errors to be corrected and
all double-bi t errors to b e detec ted . After cor-
recting each error the memory system logs the
error 's physical page address and the bit . The
memory system then interrupts the CPU to call
an er ror service rout ine , wh ich logs in a VlMS
file the necessary information to isolate the fail-
ure. The memory system can also interrupt the
CPU to handle internal parity errors and inter-
locked time-outs. An interlocked t ime-out hap-
pens when a nexus executes a read interlock but
never issues a masked-write unlock. The system
software can enable o r disable these interrupts.

Battery backup, standard equ ipment on both
t h e 8 8 0 0 a n d 8 7 0 0 sys tems , c a n p o w e r t h e
refresh operation when the system is down. That
power allows the memory system to continue to
refresh the RAMS s o that data will not b e lost.
Note that the entire system is not backed up ;

1 DATA 1 DATA

COMMAND COMMAND COMMAND COMMAND 1 OR 1 OR 1 OR 1 OR 1 A D D R E S S ADDRESS A D D R E S S ADDRESS

DATA
LINE

Figzrre 3 cycles 01% N M l Bus and Array Bus

5 4 Digital Technical Journal
No 4 February 1987

New Products

ARRAY MODULE

Figure 4 Datapaths in Memory Controller and Array Modules

therefore, all components must be in quiescent
states before the memory system enters battery
mode. Upon sensing that power is eroding, the
8800 will write all its data to the memory sys-
tem. The memory controller will then complete
all commands and send signals to the array mod-
ules informing them to enter battery mode. In
this mode only five MSI chips on the memory
controller and approximately half the control
logic on the array module will be active.

Command Execution
The execution of any command received by the
memory system is a joint effort between the
memory controller and the array modules. Fig-
ure 4 depicts the datapath in each memory corn-
ponent. After a nexus places a command on the
NMI bus, the interface in the memory controller
ascertains if the command is a valid memory ref-
erence and, if so, decodes it. The interface then
places the command in a queue of commands
waiting to be executed.

Since one array module can execute multiple
write commands simultaneously, and since mul-
tiple array modules can also execute commands,
the memory controller must maintain the status
of the array modules. The status control logic to

monitor activity must "remember" which por-
tions of which arrays are "bus~l ." This status
control logic can best be described by showing
how the threc basic operations, writes, reads,
and masked writes, are executed.

Write Commands

For a write command, the control portion of the
memory controller performs only three actions:
it determines the capability of the array module
to accept the command, it sends the command,
and it waits for the array module to signal its
readiness to receive another command.

The write datapath is that portion of the logic
responsible for the flow of data from the NMI bus
to the array modules. This path comprises both
electrical interconnects (buses and cables) and a
considerable amount of logic. The major storage
element for the datapath is a 9-bit by 32-location
custom multipart RAM (MPR) with two ports for
reads and two for writes. Data received from the
NMI bus is placed in the next available location
of the MPR. Upon determining that the required
array module is available, the control logic sends
the data from the MPR to that array module over
the array bus. Each array module holds the data
un t i l i t is s t r o b e d i n t o t h e dynamic RAMS

Digital Technical Journal
No. 4 Februrtr-y 1987

5 5

The ~ M e m o r ~ ~ System in the VAX 8800 F C L ~ ~ ~ / J '

(DRAMS). The array module can load four long-
words of data with their associated ECC bits 011

four consecutive cycles.
Some writes are called masked because there

is a 4-bit byte mask associated with cach data
word. The byte mask informs the memory sys-
tern as to which bytes are to be written. The
memory system executes this command by first
doing a read and correcting any single-bit errors
that may exist. It then merges the Incmory data
with the data received from the NMI bus, and
finally does a write command. This sequence
easily allows the implementation of longword
and octaword masked writes. Masked writes for
quadwords (8 bytes) are executed by perform-
ing an octaword masked write in which the data
of two of the longwords remains unchanged.

Rend Conzmands

For read commands, the memory controller pcr-
forms four actions: i t determines if the selected
array module is ready to accept the read, it
sends the command, it waits for a data-ready
response, and it transfers the data from the array
module. Imbedded in the command field of the
read are address bits that select the longword of
the octaword that is required first. This action
;~llomis wrapped reads to be imp lemen ted .
(Wrapped reads are described later in the sec-
tion "Impact of the Cache.")

The read datapath originates at the DRAM,
which sends the requested data. As in the case of
write commands, cach array module stores an
octaword of rcad data. Once the data has been
loaded into the latches, the array module signals
to the memory controller thar the data is ready.
As mentioned earlier, the read datapath between
the array module and the memory controller is
tristatable. Therefore, the memory controller
must ensure that only one array nodule at a
time drives this clatapath. Once the data has
been requested by the mernory controller, the
array rnodule must send the longwords sequen-
tially, beginning with the starting address that
was sent with the command. This action allows
the memory controller to request any one of the
four longwords as the first to be read. The array-
~nodulc portion of the read datapath can transfer
one longword of data during every cycle.

The error-correction logic in the memory con-
troller receives each longword of data plus the
seven ECC bits. This logic detects single- and
double-bit errors, but only single-bit errors can

be corrected. A significant feature of this pro-
cess is thar error detection and correction i s per-
formed as the rcad data is pipelined through the
memory controller. Thus no additional cycles
are needed to correct read data.

iMnsked- ujrite Commands
The execution of a masked write involves both a
read and a write sequence. The memory con-
troller executes a masked-write command by
first issuing a read to the selected array module.
Assuming that there were no memory errors, the
data returned is sent to the MPR, where the
bytes arc merged with those sent to the memory
controller over the NMI bus. The memory con-
troller must ensurc that no commands to the
same array come between the read and write
portions of a masked write. Mter all the bytes
have been merged into the data buffer, the
memory controller will write the data to the
array module. The array module then generates
new ECC data, adds i t to the other data, and
strobes the composite data into the DRAMS.

If a single-bit error is detected, the process is
quite similar to the one with no errors, except
that the data rnust be corrected. Since corrected
data and NMI traffic both share the same data-
path on the memory controller, the NMI inter-
face must be free to correct errors found during
masked wri tes . This freedom is ensured by
asserting a signal that stops all activity on the
NMI bus. Once activity has stopped, the data
can be routed through the NlMI interface, cor-
rected, and then merged with the NMI data in
the data buffer. The process then continues as it
would have if there were no errors.

If a double-bit error is detected, the process is
similar to the case in which no error occurred,
except that the write is prevented from happen-
ing. When the array location is read the second
time, the double-bit error will still be present,
thus alerting the system that the data is unusable.

Memory Address Path
The memory controller continuously latches all
addresses from the NMI bus. Once an address is
latchcd, the memory controller must verify it as
a valid memory address. That verification is
d o n e by c o m p a r i n g t h e a d d r e s s t o va l id
addresses of both the control status registers
(CSRs) and physical memory.

The CSR addresses are hardwired into the NMI
interface logic; therefore, only a simple compare

Digital Technical Journal
No 4 Febrzrarj~ 1987

of the addresses is requiretl. Thc compare for ;I

valid Inemor) address r e q ~ ~ i r e s a reference to a
"decode" RAiM. This RAM is loaded by consolc
software when the system is powered up and is
used to configure memory. Loading the RAM
from softwarc ;~llows the memory controller to
support several different sizes of array modules
without modifying any hardware.

Once the address has been verified as being
valid. i t is placed in one of eight storage loca-
tions allocated to address buffering in the MPR.
Thc address rcmains in that buffer until its com-
mand is sent tc.) an array modulc.

Even though eight locations are allocated to
address buffering, only seven of them can be used
for temporary storage. One location is reserved
for the error's page address, a pointer to a physi-
cal page of memory containing an error. Since
the location of the error page-address buffer is
not fixed, the control logic for the address-buffer
control must look ahead and not allow a new
address to ovenvritc that error page address.

The control of the address buffer is further
complicated by masked writes and error logging.
Since a masked write is implemented as a read
followed by a write, the address in the buffcr
cannot be overwritten until the write has com-
pleted. A similar situation exists for error logging
on read t ransac t ions . Since an e r r o r is no t
de tec ted unt i l the read has comple t ed , t he
address cannot be overwritten until the data has
been checkcd.

Design Requirements of the
VAX 8800 System

Impact of the NMI Bus
As stated earlier, the VAX 8800 memory system
interfaces wi th t he CPUs and 1 / 0 systems
through a synchronous bus ca.llcd the NMI bus.
This bus is highly efficient and operates in a
pended fashion similar to the synchronous back-
plane interconnect (SBI bus) in the VAX-11/780
processor. The NMI bus allows several transfers
to be in progress simultaneously.

'There are Four nexuses in the 8800 system
that can require memory: the two CPUs, and the
two NBWs. Each nexus is allowed to have two
commands outstanding at any time. The proto-
col supports this arrangement by allocating two
codes in a 4-bit I D field to each nexus.

The CPUs use one of their references for pro-
gram clata, c ~ l l c d the d-stream, and the other for

New Products 1

instruct ions, cal led t he i-stream. The CPUs
alwaj~s requcst a hexword of data; the NBLAs may
request cithcr longwords or octawords. Thus
there can be as many as e ight s imultaneous
requesters of memory data. These simultaneous
events recluire that the memory system buffer
several commands while executing. In the 8800
implementation, the memory system can access
three array modules in parallel and store two
commands.

Moreover, s i nce t he memory system can
accept multiple read commands, i t must store
the ident if icat ion of t he reques te r and the
length of the transaction. The NMI interface
does the actual storing and returns the identifi-
cation with the correct data. This action is possi-
ble because all commands are processed in
sequence; therefore, the read returned first is
the one stored the longest. However, hexword
reads are returned to the NMI interface as two
separate octaword reads; therefore, that inter-
face must ensure that both octawords have been
returned before discarding the identification.

To prevent a deadlock condition, the memory
system is givcn the highest priority during arbi-
tration. This priority guarantees that the memory
system will be able to return data to a requester.
When full, the memorysystem notifies any poten-
tial requesters that i t cannot process any more
commands and to try again later, thus preventing
the memory system from overfilling.

Impact of the Cache
The design of the cache affected the design of
the memory system. The write-through design of
the cache guarantees there will be a large num-
ber of longword writes directed at memory.' A
write buffer was installed to bundle a series of
longword writes into octaword writes; however,
the write buffer is only effective i f multiple
longwords arc written in the same octaword.

Extra logic is always required to increase per-
formance. The extra write bandwidth for this
memory system, however, required more logic
than what would have been required to irnple-
ment extra read bandwidth. The added com-
plexity was needed to facilitate interleaving on
longwortl boundaries for write operations.

When the 8800 project was first initiated, the
goal of the memory system was to maximize
read bandwidth, thus producing a relatively sim-
ple array-module design. In that design, any
operation, regardless of its size, kept an entire

Digital Technical Journal
No. 4 Frhrr~nj:)] 1987

57

The Memorjl .'fystem in the VAX 8800 Fc~mi!y

array module busy unt i l t h e operat ion c o m -
pletccl. The control logic o n the array n ~ o d i ~ l e
was simple and required a reasonable amount of
board s p a c c and p o w e r . W h e n t h e d e s i g n
changed to the write-through concept, howevcr,
highcr write bandwidth was required. Therc-
fore, the control logic in each array module had
to be replicated for each bank (longword) of
memory to allow independent write operations.
This replication permitted four longwortls to bc
written on four consecutive cycles to the same
array module.

This increase in design complexity was not
l imi ted t o t h e a r ray m o d u l e . In t h e ini t ia l
design, when n ~ a x i m u m read bandwidth was
critical, the memory control logic was relatively
simple. It had only to track the state of an arm!
module as being busy or not. However, with the
i n t e r l e a v i n g c a p a b i l i t y r e q u i r e d f o r t h e
increased writc bandwidth, thc memory control
logic now has to track simultaneously the status
of as many as eight write operations in progress
on two array modules.

Al though maximizing t h c longword wr i te
bandwidth was important, minimizing the read
latency to the first longword required was criti-
c a l . W r a p p e d reads w e r e i m p l e m e n t e d t o
reduce this latency. A wrapped read is a hex-
word or octaword command that reques t s a
specif ic longword to be re turned first , wi th
o t h e r longwords in tha t b lock t o fo l low in
"wrapped" fashion.

Other Design Trade-ofls and Options
As in 2111 design processes, we considerctl many
trade-offs and options bcforc committing to a
particular design architecture. O n e area with
s e v e r a l a l t e r n a t i v e s w a s t h e i n t e r c o n n e c t
between thc memory controller and the array
modules. The array modules and the controller
reside in physically separate backplanes intcr-
connected by a cable. We had to decide whether
to make this interconnect with ECL or TTL.

T h e overal l project goal was t o make t h c
8800 an all-ECL machine. Thereforc, our first
choice for this interconnect was ECL, which
provides enhanced signal integrity, reduced
skews, and overall speecl advantages over TTL.
As the system and memory design progressed,
however, some real problems arose that altered
our opinion. The first problem became apparent
as the array-module design coalesced enough to

a l low s o m e accura te p o w e r es t imates t o be
n ~ a d c . We found that, with an ECL bus, the array
moclule would requirc - 5.2 V in excess of its
a l l o c a t i o n . T h e n e x t p r o b l e m s u r f a c e d in
response to an architectural requirement that
the memory system function with less than eight
array modu lcs and , preferably. wi thou t load
cards . This requ i rement made i t difficult to
implement a termination scheme for an ECL
intcrconnect.

With these problems in mind, we investigated
a T?'I. interconnect, which clearly offered some
dcsign cha l lenges , t h e least of w h i c h w e r e
spccd and skew. Using the SPICE simulator, w e
constructed an accurate model to verify that a
TTL electrical interconnect could indeed meet
o u r signal integrity, speed, ancl skew require-
ments.' While the simulation results showed
that a TTL interconnect could work, the associ-
atctl skews certainly increased the complexity of
the nicrnory design. While alleviating the prob-
lems of limitetl - 5.2 V power o n the array mod-
ulc and the termination of varied loatling, this
TTI. scheme rcquiretl ECL-to-TTL translators in
the memory controller to drive the array bus.
We finally decided to accept the added com-
plexity and use TTL for the intcrconnect. The
sole exception was the clocks, which were dif-
ferential ECL, reccivcd and translated o n the
array module.

There were logical trade-offs as well as elec-
trical ones. The original specification for the
NiMl did not support quadword masked writes.
They were added aftcr the implementation o f
the memory system had progressed consider-
ably. Since the array bus supported only long-
word and oc taword reads. t h e r e w e r e t h r e e
options to support this change:

'I'he first was to change the array bus proto-
col, the command generator on the memory
controller, and the array module.

The second was to execute the command by
performing two longword masked wr i tes .
'This option would take almost twice as long
as a quadword masked write if implemented
like the first option, yet still require changes
to the command generator in the memory
controller.

Thc third was to execute an octaword masked
write in which the data of two of the long-
words remains unchanged.

New Products

Since the design was well advanced, we chose
the last method to ease the problems of imple-
mentat ion; this dec is ion actual ly has l i t t l e
impact on system performance. The logic to
accomplish this addition already existed on the
array module. Only small changes were required
to the command generator of the memory con-
troller and the datapath control. In practice, the
f r e q u e n c y of q u a d w o r d masked w r i t e s is
extremely low since they are executed only by
the N B k .

Technology Description
A number of different module and component
technologics were used for the memory con-
troller, backplane, and two array modules.

Memory Controller
The memory controller is a 9-layer, controlled-
impedance, extended hex module (1 5 inches by
11 inches). The Pay-up consists of 6 routing layers,
2 power layers (- 5.2 V and - 2 V), and a ground
plane. Since there is a minimal amount of TTL,

both the + 5 V power and the + 5 V battery are run
on the surface with 50-mil ctch. With the mixed
technology on the module, we took special care
to keep the TTL signals properly spaced from the
ECL signals to avoid signal intcgrity problems.

The logic o n this module is implemented
using nine unique macrocell-array designs from
Motorola, Inc.. and one custom ECL multiported
RAM There are 16 custom and semicustom
devices on the module. I t also contains some
lOKH MSI logic, some ECL-to-'TTL converters,
and some CMOS logic used for operating with
battery backup.

Array Module Backplane
The array module backplane in the VAY 8800
and 8700 CPUs is a 12-layer, 8-slot pressed-pin
backplane. The one in the VAX 8550 and 8500
CPUs is a 5-slot backplane. Since a TTL bus was
chosen to communicate between the memory
controller and the array modules, a good termi-
nation strategy had to be developed. Using the
SPlCE simulator, we evolved the termination
strategies shown in Figure 5.

- - - - - - - - - - - - - - - - - -
I MEMORY I
I CONTROLLER I ARRAY MODULES

I

I I
I

(TO 8 MODULES) I

i ECLTOITL
I

I
I
I NAB COMMAND/ADDRESS-WRITE DATA BUS -

I - D l DO 3
I

I c c s
I 470 1
I - HLD OHMS I
I I
I -
I - - I L

I
I
I

I -
I

I
I C

I

Figure 5 Termination Strategies in Memory Controller and Array Modtlles

I I

Digital Technical Journal
No. 4 Febr~tar-y 1987

59

I I

F374

DO
Dl

I I
I
I

I -
I

I +5 VOLT I

I' -

F374

DO
Dl

CLK

EN

I I 1
1 I CLK - CLK - CLK F374 Dl - ... Jq

F374

DO
Dl

8481 4700 1
I

-

-
C

DO

OHMS I
I TTLTO ECL I

I C O O Dl
T - 1 J

I I NAB R E A D DATA BUS

I
CS - I

I
I

HLD - I
I I Dl - DATA IN HLD- HOLD (CLOCK)
I I DO- DATA OUT EN -ENABLE
L ------------------ _J CS - CHIP SELECT CLK - CLOCK

EN

F374

DO

Dl

CLK
EN

...
- CLK

0 EN

3

- DO

EN 3 EN 0

The Memory System in the VAX 8800 Family

Figure 6 Sixteen Megub-yte Army Module

Four Megabyte Array Module
Thc 4MB array module was designed using an
8-layer, controlled-impedance, printed circuit
board. The lay-up consists of 4 routing layers,
2 power layers, and 2 ground layers. To support
battery backup, the module has separate power
planes for + 5 V power and the + 5 V battery.
Since only a limited amount of - 5 . 2 V and
- 2 \I power is needed, these voltages sharc
space on the other power planes. To eliminate
discontinui t ies that could cause unwanted
reflections, we ensured that signals did not cross
the power-p lane sp l i t s by sur rounding t h e
power planes with solid ground planes.

Approximately half of the logic technology on
the array module consists MOS dynamic RAMS;
the other half is FAST MSI logic. The clock system
is implemented in ECL to minimize the skew.

Sixteen Megabyte Array Module
A 16MB array module was developed to increase
the available memory to 1 2 8 M B for the 8800
and 8700 systems and 80MB for the 8550 and
8500 systems. This array module consists of an
8-layer mother board (similar to the 4 M B mod-
ule) and eight 2MB surface-mounted daughter
boards. The l 6 M B array module is picturcd in
Figure 6.

Sumnzary
Thc VAX 8800 memory system was designed to
provide 7 1 MB per second of read bandwidth
and 59 MB per second of write bandwidth to the
multil~rocessor system. The system architecture,
processor performance needs, and high 1 /0
activity combined to make a high-performance
memory a requirement.

Since the 8800 contains ECL components, the
memory system has to provide a high-speed path
between the ECL logic in thc CPUs and the high-
density dynamic RAMS used for main storage.
Although the memory system does not play a
direct role in the execution of a VAX instruc-
tion, its perfor~nancc has to match closely that
of the multiprocessor system. If the memory sys-
tem were under designed, the processors would
stall frequently, thus reducing their usable per-
formance. I f the memory systcm were over
designed, i t would contain extra complexity,
with the attendant extra cost, that could not be
used by the system. Thus the melnory strategy
played an important role in the price/perfor-
mance trade-offs that had to be made.

Acknowledgments
Although done by a small group of engineers,
the design of the rncmory system was greatly

6 0 Digitul Technical Journal
No. 4 Febrrrary 1987

influcncctl by t he efforts o f rn;lnjr pcople from
the Electronic Storage Development Group and
t h e Advancct l VAX E n g i n e e r i n g G r o u p . W c
would especial ly l ike to ;~cknowledgc thc cre-
ativity, leadership, and energy level of the late
John Henry, Jr.

New Products

References
1. J . Fu. J . Keller, and K. Haduch. "A-pects

of the VAX 8800 C Box Design," Digitcll
TechnicalJournul (February 1987, thi4
issue: 4 1-5 1.

2 . SPICE was developed by Lawrence Nagel
a n d Ellis C o h e n of t h c D c p a r t ~ n c n t o f
Electrical Engineering and Computer Sci-
cncc , University of California, Berkeley.

Digital Technicril Journal
No. 4 F c b r r / f / ~ .] ~ 1087

6 1

John H.P. Zurawski
Kathleen L. Pratt

Tracey L. Jones

Floating Point in the
VAX 8800 Family

The processors in the VAX 8800 family were designed with particular
emphasis on cost-eflectiveness. These CPUs do not contain separatefloat-
ing point accelerators. Their performance is not compromised, however,
especially for the double-precision instructions. High performance is
achieved, in part, by a custom ECL multiplier and divider unit and by
specific hardware for exponent manipulation and normalization. The
main advantages of this integrated approach are less hardware to repli-
cate and a tightly coupled interface to each CPU, thus less time is wasted
fetching the operands. Microcode branch problems are minimized by
using a prediction strategy and extensive hardware assistance.

Unlike other VAX families, the processors in the
VAX 8800 family do not contain separate float-
ing point accelerators (FPAs). Instead, their FPA
is integrated into each processor's ~ n a i n data-
path. Therefore, no distinction is ~nade between
instructions that are executed in the FPA and
those that are not: the hardware is available to
be ~ ~ s e d for all functions. For example , the
extended arithmetic logic unit (XALU) is also
used as a counter for the move character instruc-
tion (IMOVC). This usage differs from that in the
VAX 8600 and VAX-11/780 systems, where the
XALU is used only for floating point instruc-
t ions . Fur thermore , a l l t he f loa t ing poin t
instructions, from the most complicated (POLY
and EPIOD) to the s implest (MOVF), have
access to the FPA hardware.

There are a number of advantages to this
approach. First, logic is not duplicated; only
one arithmetic logic unit (ALU) and one shifter
unit is shared between the floating point and the
normal arithmetic. Second, the design is tightly
integrated with the rest of thc computer; there
is no overhead involved in starting the floating
point computation.

Clearly, since all other VAX families use FPAs,
there are also disadvantages with our approach.
Shared logic is more complex than specialized
logic. Performance may also suffer since the
design cannot be optin~izecl toward one class of
p ~ o b l e ~ n . Those disadvantages can be overcome,
l-lowever, as we shall relate in this paper. The

problern of optimization was ameliorated by
providing dedicated hardware for the main
operations of multiplication and addition. A cus-
tom multiplier and divider chip is provided
together with exponent manipulation logic and
a shifter unit optimized for floating point. These
logic elements handle those floating point oper-
ations that take the longest times to execute.

The floating point logic resides in the execu-
tion unit, the E Box, of the VhY 8800 CPU. That
logic is controlled by microcode in the instruc-
tion unit, the I Box.'

V M Formats and Instructions
The VAX architecture supports four floating
point formats: F, D, G , and H. These formats are
discussed at length in references 2 and 3 . The
F format is 32 bits wide, the D and G formats are
both 64 bits wide, and the H format is 128 bits
wide. Although the D and G formats have the
same width, the exponent field is larger in the
G format, and its fractional field is commensu-
rately smaller. This format allows a larger range
but with slightly lower precision. The fractions
are always normalized and the leading bit - the
hidden bit - is not stored.

E Box Operation
Physically, floating point operations are per-
formed on three modules: two slice modules
and a shifter module. The slice modules contain
the cache, the main ALU, and a register file. The

6 2 Digital Tecbnical Journal
No. 4 Febrzrnry 1987

New Products

shifter module contains the custom multiplier.
the shifter uni t , the exponent manipulat ion
logic (the two ALUs), and the priority encoder.
Figure 1 shows this par t i t ioning. T o a large
extent, the shifter module strongly resembles an
FPA but without the ALU and register file.

The source operands are fetched from either
the 64 kilobyte (KB) cache or a general-purpose
register (GPR). The operands are sent o n the
A and B ports to the ALU on the slice modulcs
and to the shifter module. All the components
o n the shifter module are driven in parallel by
the A and B ports.

From Figure 1 i t is clear that the datapath is
highly parallel; the shifter, X U . multiplier,
and ALU can all operate simultaneously. This
parallelism is used extensively to gain perfor-
mance ant1 to save cost. For example, in multi-
plication operations, the XALU determines the
exponent of the result , the multiplier multi-
plies. and the shifter absorbs the low-order bytes

of the product that are discarded each cycle by
the multiplier.

The main problem with designing an inte-
grated FPA is that the VAX formats for integer
and floating point numbers must all be handled
by the same shared units. Figure 2 shows the dif-
ferent bit orderings for two VAX formats, the
F floating point and the integer. In the integer
format, the bit ordering is from right to left. In
the F format, the mantissa begins at bit 16 and in-
creases in significance to bit 3 1 , then continues
from bits 0 through 6. The remaining bit positions
are used to hold the exponent and the sign.

This requirement for shared handling compli-
cates the carry path of the ALU. The carries out
of t h c 1 6 - b i t w o r d b o u n d a r i e s have t o b e
switched into the appropriate places, as shown
in Figure 3. The problem with shifting is similar
to the carry problem, except that now the carry
path of Figure 3 represen t s t h e f low of t h e
shifted bits.

I
I

SHIFTER MODULE I SLICE MODULES
BYPASS BUSc31:O> I

Figure I Block Diagram of the B Box

- A A I
I

A

I
I
I
I
I
I
I

SHIFT COUNT BUS <5:0;. I
I

CACHE DATA

Digital Technicul Journal
N o . 4 Febrtrnrv 1987 63

I
I
I

REGISTER FILE

I
I
I
I

A

I
I

Floating Point in the VAX 8800 Family

F FORMAT: BIT POSITION

MANTISSA
(LEAST SIGNIFICANT PART) I S I EXPONENT I MANTISSA

INTEGER FORMAT:

LEAST SIGNIFICANT BIT f
S - SlGN BIT

Figure 2 TZUO VAX Formats

T h e ALU a n d t h e s h i f t e r u n i t a r e b o t h
designed to handle all integer and floating point
formats. The multiplier expects operands to
come only in a floating point format. Therefore,
for integer multiplications, the data must first
be converted into a pseudo-floating point format
by swappi~lg the places of 16-bit words within
the integer format. This operation is performed
by the shifter unit.

Table 1 gives the execution times for the most
common floating point instructions. These times
include the overhead for fetching the operands.

The VAX 8 8 0 0 processor is designed so that
there is little. if any, difference in performance
between register and memory operands. The
execution times vary from 2 . 2 5 to over 5 times
the performance of the VAX- 1 1/780 CPU with
an FPA for the F and D formats. For multiplies,
one 8800 CPU is 2 . 5 times faster in F format
and 4 . 8 times faster in D format; divides are
3.0 times faster. The gain is even more substan-
tial for the G and H formats since they are not
accelerated on the 1 1/780.

D FORMAT:
(MOST SIGNIFICANT PART) BIT POSITION rr F l

MOST SIGNIFICANT BIT

D FORMAT:
(LEAST SIGNIFICANT PART)

MANTISSA MANTISSA

4

S - SlGN BIT

Figure 3 Floating Point Carry for LI Format

64 Digital Technical Journal
N o 4 Febrrr~ir1~ 1987

Table 1 Execution Times

Register to
Register

ADD 315 495 540 3314
MLlL 450 675 842 6306
DIV 1607 3197 3107 21649

In the 8800 the D format is slightly faster than
the G formiit wi th its longer o p c o d e , w h i c h
requires an extra cycle in the decoder. The singlc-
precision F format executes the fastest, and the
larger 128-bit H format executes the slowest.
However, the H format is intended as a backup
for intermccliate c a l c u l a t i o n s in t h e D a n d
G formats. Used thus, the H format ensures that
the final calculation result has sufficient preci-
sion and avoids overflow or underflow prob-
lems. Little hardware assistance is provided for
the H format; i t is driven mostly by microcode.

Technology
Component technology used in the VAX 8 8 0 0
processor is ;ln enhanced version of the macro-
cell array (M U) used in the VAX 8 6 0 0 CPU.2
This technology provides a b o u t 1 , 2 0 0 ga te
e q u i v a l e n t s w i t h a t y p i c a l g a t e s p e e d o f
I nanosecond (ns). MCAs utilize emitter-cou-
plcd logic (ECL) in a 72-p in package that is
1 square inch with a maximum power dissipa-
tion of 5 .5 watts. The GPR and the multiplier
are made with custom technology, which uses
the same package as the MCA but contains a
more advanced process . Around 1 , 8 0 0 ga te
equivalents are provided, and the gate speed is
5 0 percen t fastcr than the MCA. This higher
performance is achieved by using the following
fcat~ircs:

Smaller transistors and metal-oxide-walled
resistors

Current mode logic instead of the slower ECL

Four-level logic instead of the two-level logic
of the MCA

At 3 0 0 by 2 6 0 mils, the size of the custom
c h i p is larger than the dimensions of 221 by
252 mils for the MCA.

?'he shifter module contains 1 2 MCAs and
8 custom multiplier parts. Some lOKH parts ;Ire
uscd for clock distribution and for driving thc
bidirectional bypass bus.

A rithmetic Algorithm Processing

Addition and Subtraction
For an addition operation, the 32-bit words con-
taining the exponents are sent to the main ALU.
T I ~ e r e they a re passed t o t h e A and B por ts ,
w h i c h feed t h e shif ter m o d u l e . These por ts
drive all the gate arrays in parallel.

The exponents are then loaded into the X4LU
and the shift-amount M U (SALU), which com-
putes t h e alignment shift amount sent to the
shifter. The SALU also generates some 20 branch
conditions for the microcode. These conditions
indicate t h e s ize of t h e a l ignment shift and
w h e t h e r a n y s o u r c e o p e r a n d i s z e r o o r a
reserved opcriind. They also he lp to optimize
thc microcode flow.

The XALU, which selects the larger exponent
and saves it for later use, has a 12-bit datapath
and a register to hold the exponent. The size of
this datapath is sufficient for the F, D, and G for-
mats plus a guard bit for overflow or underflow
detection. An ALU is provided to perform arith-
metic operations o n the exponent . The SALLI.
with an I 1 -bit datapath, subtracts the exponents
to determine the alignment shift amount, which
is always positive. The sign manipulation logic
also resides in the SALU.

Next, the fractional part of the smaller operand
is aligned by the shifter. This operation involves
either o n e CPU cycle for F format operands o r
two CPU cycles for t h e D and G formats. The
shifter unit shifts in the floating point format and
can d o a full 64-bit shift. The logic that deter-
mines the round bits is related to the alignment
shift operation but is physically located in the
priority encoder gate array. This gate array also
contains some of the shifter functic.)nality.

Nine gate arrays are used for the shifter unit.
Of those, eight make u p the datapath, the ninth
is t h c control device. The shifter can accept
either a 64-bit operand o n the A and B ports or a
32-bit operand on either port. ?'he shifter gener-
ates a 32-bit result that can be either the high-
order or thc low-order part of the answer. The

Digital Technical Journal
No. 4 F r b r n r r ~ : ~ I987

6 5

Flouting Point in the VAX 8800 I ~ o n r i l ~ ~

shifter datapatli gate arrays are identical: each
effectively constitutes a bytc slice of the design
and pcrforms a bit shift of up to seven pl;iccs
Byte shifting is then performed by sc~iding tlic
correct sliifter output to the correct b ~ ~ t c posi-
tion. This operation is facilitated by having all
the outputs wired to the OR gates at all possible
byte positions ancl by enabling the correct output.

The shifter performs floating point. intcgcr.
and logical shifts, as well as a number of ~niscel-
laneous functions. These include converts from
decimal-format data into intcgcr format and \!ice
versa. The masking of the exponent ficltl and
the insertion of the hidden bit ;ire also done by
the shifter.

After the alignment shift, the o i~ tpu t of the
shifter is directed to the main ALU on the bypass
bits. Tlicre. the output is addcd to or subtracted
from the fraction of the larger operand. The out-
put of the ALIJ operation is now ready to be nor-
malized in the shifter. In most cases a small nor-
malize shift of at most onc bit position left or
right will be sufficient. The speci;~lized hard-
ware in the shifter handles this case ant1 then
rounds the resu l t . Should a larger shift be
required, then microcode will first direct the
AI,IJ rcsult to the priority encoder gate array.
There, the position of the leading 1 is fount1 and
used to determine the normalize amount for the
subsequent cycle.

The rounding operation in the VtiY 8800 CPU
is unusual in that i t is limited to the low-order
cight bits. Therefore, a s~n;111 8-bit ;idclcr ciin be
ilsed for this opcration. This adder is both faster
and cheaper than the usual rnetliod of itsing :I

f i l l 1 64-bit adder. The 8-bit ;idder is also suffi-
cient to calculate the correct answer in over
99.5 percent of the addition operations. Should
a carry-out be generated by this 8-bit rounding
atltl, thcn clearly the result created is incorrect.
In that case t h e c o m p u t e r is t rappct l xnd
rnicrocotlc invoked to correct the result.

Multiplication
As mentionctl earlier, the 8800 contains :I liigh-
performance, custom-designed niultiplicr and
tilvider unit. A number of factors impelled us to
use such a unit. First. multiplication is a v c n
frequent operation that is used extensively in
matrix manipulation. For example, in tlic [.IN-
PACK benchmark, the time-critical routine con-
tains an even mix of addition and niultipliciition
operations:'

Second, it was not possible to succumb to the
tcmpt;ition of using the miin ALIJ to provide the
tli.crision operation. This desire was natural sincc
cli\,ihion is ;in infrequent opcration, and the use
of ;in M.IJ it1 a rclxated subtract and shift mode
\va> ;ippealing. For example. the V M 8600 uses
the M U for just that purpose. In the 8800 the
main ALIJ also computes the virtual address.
Since this datapath is very time-criticiil (in the
8 8 0 0 as well. ;is in most o t h e r c o ~ n p u t c r
designs). i t cannot be allowed to go any slower.
Including ;in extra path to accommodate divi-
sion would have slowed down this critical path
b!, around 5 ns, resulting in a 1 0 percent perfor-
m;lnce degradation for all operations.

Moreover, the available space for the multi-
plier ant1 tlividcr unit was limited since tloating
point operations are integrated with the rest of
the machine. Approximately one-third of a mod-
ule (12 inches bj. 16 inches) was available. In
contrast, the VAX 8 6 5 0 CPlJ dedicates a full
module to multiplication.

'l'hc custom tlcsign of the mult ipl ier and
divitler unit is b;isically a bytc slice of a large
wortl-sized multiplier and dividcr unit. The
multiplier handles 8 bits per cycle, the dividcr
h;~ntllcs 1 bit. F ig i~re 4 shows the complete
56-bit by 8-bit multiplier with its cight byte-
slice custonl chips. Eight chips arc used to form
the required word size of 64 bits (5 6 data bits
plus 8 gi~iird bits). This arrangement is suffi-
cient to handle I:, D, and G format operations.
H for~uat operations are performed by partition-
ing the problem into many s~naller 56-bit multi-
plic;itions under n~icrocotle control.

Tlie multipliciind is loatled into the MD latch
after passing through the mask logic, which
clears the s ign and the exponen t field and
inserts the hidden bit . The P R latch and the
PR<;I3 are clearctl at the start of the ~ i l ~ ~ l t i p l y .
Tlie I'RGD contains the guard bits for the PR
latch. At the end of a multiply, this latch will
holtl the bits required for a possil~le normaliza-
tion shift and also for a rounding operation. The
least significant cight bits of the niultiplier arc
loatled into the tni~ltiplier latch. The first multi-
ply cycle is now ready to be performed.

A 56-bit by 8-bit multiplication is pcrformctl
between the contclits of the M D and multiplier
I:~tches. 'l'hc result is thcn addcd to the contents
of rlic PR latcli (which is initiall~, zero) and thcn
written b;ick into it with n right shift of 8 bits.
?'he PR 1;ttch is thus an accumulating latch and

66 Digilul Technical Jorrmal
No. 4 Fehrrrtr~:)? I 9X7

--rZl PR LATCH

464 BITS

MULTIPLICAND INPUT

MD LATCH F

MULTIPLIER INPUT

MULTIPLY/DIVIDE SELECT +l

(MULTIPLIER LATCH I
4 56 BlTS

BOOTH RECODE

64-BIT ADDER V
LEAST SIGNIFICANT 8 BlTS OF THE RESULT

RESULT LATCH

NORMALIZE LOGIC I
t

MULTIPLIER OUTPUT

Figure 4 Mtlltiplier and Diuider (Jnit

contains the 64-bit partial product of each mul-
t iplication operat ion. The next 8 bits of thc
multiplier are loaded into thc multiplier latch,
ready for the next cycle. This cycling continues
until the multiplicand has been multiplied by
all the multiplier bytes. This algorithm is similar
t o t h e o n e u s e d in t h e VAX 8 6 5 0 s c h e m e ,
except that that processor has a narrower data-
path of 32 bits.

Notice that the least significant byte of the
partial product is discarded after each cycle and
absorbed by the shifter uni t . These bytes are
requircd only for the H format multiply.

O n c e c o m p l e t e d , t h e r e s u l t i s s e n t o u t
through the result latch, then normalized and
rounded. The rounding carry is only propagated
into the lcast significant bytc of the result. This
procedure uses less logic s ince only an 8 -b i t
instead of a 64-bit incrementer is required. Thc
8-b i t incrementer will be sufficient for most

m u l t i p l i e s . Should a g r e a t e r i n c r e m e n t b e
required, then the multiplier will trap the rest
of the machine, and the correction will be per-
formed by the main ALU. This scheme is similar
to the one used for addition.

The provision of a 64-b i t adder inside the
main multiply path is unusual in a high-perfor-
mance machine. High-speed multiplier designs
typically L I S ~ carry-save adders, which d o not
propagate the carry signal but save them so they
can be absorbed by the subsecluent cycle. This
form of adder is indeed used in the custom mul-
tiplier to perform the 56-bit by 8-bit multiply
function illustrated in Figure 4 . However, thc
8 8 0 0 also uses a f~11164-bit adder for the follow-
ing reasons:

A 64-bit adder has to be provided somewhere
to propagate the carries from the carry-save
adders.

Digital TechtricalJourrml
No. 4 F e b r ~ l n r ~ ~ 1987

Floating Point in the VAX 8800 Family

With the 45-ns cycle time, the 64-bit adder
fits in the main tlatapath. A faster clock for
the multiplier would have compl icatetl the
clock distribution and been difficult to gener-
ate with low skew.

A full adder in the datapath allows the use of
a simple nonrcstoring division algorithm.

'The multiplier and divider c h i p contains a
12-b i t by 8 -b i t mul t ipl ier , t w o 8 - b i t adders ,
six latches with a total sizc of 72 bits, ;is well as
the rounding, normalizing, and control logic. A
comparable MCA design would require between
three and four of these elements.

Alternative Designs for the Multiplier
An M C 4 design was certainly possible and could
have been made to fit in the specified space.
The performance of such a design, however,
would not be as good as the custom design for
multiplication but comparable for division. An
MCA design would be 1.7 times better than an
11/780 with an FPA for a multiply in F format.
whereas the custonl logic chosen is 2.5 times
better. The performance would b e 2 . 5 t imes
better for the D format, whereiis the custom
design is 4 . 8 times better.

Another iilternative was to use a commercially
avail;tble multiplier. That was tempting bcc:iuse
such a product has the advantage of being rcad-
ily available and tested. Using it would h:~vc cir-
cumvented the high risk of a custom design.
However, there are a number of disadvanrages to
using general-purpose multipliers:

Extra logic is required to mask out the sign
and exponent of the data and to insert the
hidden bi t . T h e o u t p u t of t h e mul t ip l i e r
would have to be masked.

Most available products cannot handle divi-
s ion . Thus a separate divider woulcl have
been required, which was expensive. Even
division a lgor i thms using niultiplicii t ion
require a large amount of ROM to contain the
approximation constants.

Many of the available designs are intended for
integer applications, such as FFT butterflies
and digi ta l signal processors . Hence , t h e
designs are optimized for those applications.
Extending these 8- or 16-bit multipliers to a
larger word length, as required for the VAX
architecture, was neither straightforward nor
cost effective. Moreover, the normalization

; ~ n d rounding o f results entails either cxtra
logic or ;~tldition;il cycle5 if the floating point
h;~rdwarc in the E Box 1s used

Most designs have a clock system not consis-
tent with the rest of the machine. This fact
in t roduces t h e compl ica t ion of a spec ia l
clock distribution and difficulties in verifying
the design.

Very few designs are based on ECL technol-
ogy. Other technologies, such as TTL, would
rc t l l~ i re a different power rail and thus an
cxtra power supply.

'I'hc closest available multiplier to the 8 8 0 0
recl~~irernents is the 1090 1 made hy Motorola,
Inc. This MCA imple~nentation contains an 8-bit
by 8-bit multiplier together wit11 a 16-bit adder.
However, n o latches are included; they I I I L I S ~

thcrefore be provided externally, thus increas-
ing the cost substantially. On the other hand,
division could be provided by repc;itedly using
the 16-bit atlder of the 1090 1 .

The multiplier performs a nonrestoring division
algor i thm, 1 bi t p e r cycle . for t h e F, D, and
G formats. The divider can acccpt a n e w divi-
dent1 bit during every cyclc, thus permitting a
128-bit by 56-bit divide. A divide of this sizc is
usctl in the)-I format ;ilgorithm to form the start-
ing ;~pproximation.

The booth rccode of the multiplier is nlodi-
f ied s l i g h t l y t o a c c o m m o d a t e t h e d iv i s ion
decode.' In the case of multiplication, the mul-
tiplier recode selects the correct multiples of
the multiplicand to add to the partial product
dur ing each multiplication operat ion. ln the
case of division, the divisor is loaded into the
MD latch, and the booth recode selects either
+ 1 o r - I times the divisor for cach division
step.

In the nonrestoring division algorithm, the
sign bit of the previous result selects the correct
divisor multiple for the next cyclc. This selec-
tion is facilitated by feeding the sign signill into
thc modified booth recode so that it will se-
lect the multiples of either + 1 or - 1 times the
divisor.

?'he quotient bit generated every cycle is sent
to the shifter unit to be absorbed. The first quo-
tient bit generated corresponds to the most sig-
nificant bit of the answer. That bit is then nor-
malized and rounded by the shifter.

Digital Technical Joltma1
No. 4 P ~ ~ b r u r r r) ~ 1987

New Products

Microcode Design
Being integrated into t he logic in the main
machine, the floating point logic is also con-
trolled by the main microcode. The VAX 8 8 0 0
CPU is an ex tens ive ly p ipe l ined d e ~ i g n . ~
Although pipelining is a well known technique
for improving performance (for example, the
VAX 8600 CPU), it comes at a price: the micro-
code branch latency will increase. By that we
mean that the microcode cannot branch on a
condition or flag in the very next instruction;
instead, it must wait a number of cycles. This
delay is a consequence of the overlapping of the
microinstruct ions; each successive micro-
instruction starts before its predecessor has
completed.

Figure 5 shows a typical pipeline similar to
that used in the VAX 8800 system. The microin-
struction is subdivided into five components:

In NEXT ADDRESS, the address for the next
microinstruction is computed , as well as
those for any selected branch conditions.

In LOOK-UP, the microcode RAM is accessed
to fetch the microinstruction specified by the
current NEXT ADDRESS.

In READ, the register file is read to fetch the
specified operands (e.g., fetch RO and R l) .

In ALU, the operation in the arithmetic logic
unit is performed (e.g., RO + R l) .

In WRITE, the result of the ALU operation is
written back to the register file.

Thus when the next-address cycle has com-
pleted for the first microinstruction, A, the next-
address cycle for the microinstruction, B, in the
subsequent cycle is started. This cycle now
overlaps with the look-up cycle for A. As many
as five operations can proceed simultaneously in
this manner.

The branch latency of this pipeline is gov-
erned by the first microinstruction that can
"see" a branch condition set in an earlier cycle.
For example, if the ALU cycle of A sets a carry
condition, then the first instruction that can
possibly use this signal in its next-address cycle
is E. Thus the branch latency is three microin-
structions, as shown in Figure 5.

Naturally, this branch latency influenced the
way in which we designed the logic to perform
floating point operations. Clearly, we had to
avoid branching whenever possible as this
would result in an excessively slow algorithm.
Instead, we had to adopt a strategy based on
predict ion and provide extensive hardware
assistance.

Prediction is based on the fact that the speed
of algorithms for floating point adds are usually
data dependent. For example, for certain data
values, the result of a floating point add will
r e q u i r e cons ide rab l e normal iza t ion . That
requirement is always present when two values

r CONDITION CODE SET (E.G., CARRY OUT)

NA - NEXT ADDRESS
LU - MICROCODE INSTRUCTION LOOKUP

INSTRUCTION A: NA

C: I BRANCH
LATENCY

D:

J I I I I I

t- EARLIEST INSTRUCTION THAT CAN BRANCH
ON CONDITION CODE OF INSTRUCTION A.

LU

NA

Figure 5 Five-stage Pipeline

NA

Digital Technical Journal
No. 4 Febrzrnry I987

69

READ

LU

LU

ALU

READ

WRITE

READ

ALU WRITE

ALU WRITE

Floating Point in the VAX 8800 Family

of similar magnitude and large cancellation are
subtracted. In other cases little o r no normaliza-
tion is required. It is clearly preferable not to
pay the penalty of unnecessary normalizations.

The approach w e took in the 8 8 0 0 is to pro-
ceed down the most likely path, assuming that a
small normalization will be required while wait-
ing for the result of the branch signals. The add
and subtract algorithms in particular are struc-
tured that way. The SALU examines the expo-
nents of the operands and other signals; then it
sets approxinlately 2 0 branch conditions in the
first two cycles of the add/subtract datapath.

In certain situations all paths may be equally
probable. In these cases the microcode enables
hardware signals to control the datapath. A good
example of this processing is the select iot~ of
operands. For a floating point add, it is natural
to think in terms of the larger and the smaller
operands. For example, the smaller operand is
the one that is always aligned. However, the
microcode does not know which register loca-
tion holds the smaller value, and i t does not
want to wai t fo r t h e w h o l e b ranch- la tency
period to find out.

Therefore, the microcode will assume that the
larger operand is in a particular register. Should
this assumption be incorrect, then the SALU will
swap the register file read addresses (thus sort-
ing the operands). Not all locations have their
addresses modified in this manner s ince t h c
microcode still needs to be able to read and
write to specific locations.

Similarly, the SALU determines if the main
ALlJ is to do an add or subtract operation. At this
po in t in t h e computa t ion t h e microcodc is
unaware of which opcr;~tion will be required.
The p ipe l ine is st i l l wi thin t h e long branch
latency of the 8 8 0 0 and cannot branch until this
latency delay has elapsed. Note that one of the
most frequently performed instructions is m D F .
That instruction will have just completed by the
time the microcode can finally branch. Therc-
fore, the ADDF cannot execute any faster since it
is limited by the branch-latency delay. Conse-
quent ly , those instructions that are the most
probable cases are con~pletely hardware driven.

To allow fast paths in the add algorithms, it is
necessary to know that the result cannot possi-
bly overf low s ince overf lowed resul ts must
never be written. To prevent overflow the SALU
examines the exponents of the operands. It then

determines if the exponent of the result could
possibly overf low o r underf low, taking in to
account any possible norn~alization shift. There
is also the added complexity of a rounding oper-
ation provoking an extra normalization s tep .
That would happen when the rounding incre-
ment caused a carry to propagate throughout
the whole fraction.

Consequently, the use of a small 8-bit incre-
menter for the round operation is possible only
if i t is known that an overflow cannot happen.
The reason for this is that halting (trapping) the
machine is not instantaneous (for the same rea-
son that branch latency exists); therefore, the
result will always be written. Thus, although the
microcode can eventually correct the result, i t

cannot prevent that result from writing.

Performance Issues
W h c n a p r o g r a m w i t h many f l o a t i n g p o i n t
instructions - such as LINPACK - is run , its
performance is not totally dictated by the raw
floating point speed of the CPU. Having a more
profound effect are other factors, such as

The size and organization of the cache - This
factor is particularly important for programs
w i t h l a r g e a m o u n t s of d a t a b e c a u s e t h e
o p e r a n d s w i l l r es ide in m e m o r y . Having
supcrior register-to-register performance will
not help in this type of program. Clearly, the
larger the cache, the greater the chance that
the required data will be quickly available,
t h u s avoiding a lengthy t ransact ion w i t h
memory.

Thc performance of the integer and control
instructions - Even programs performing
extensive floating point operations still have
significant amounts of integer and control
instructions. Doing these quickly can con-
tribute substantially to thc program's perfor-
mance.

To illustrate the effect of these factors, com-
pare the performance of the VAX 8 8 0 0 system
w i t h tha t of t h e VAX 8 6 5 0 w h e n b o t h r u n
LINPACK, as shown in Table 2.-' The 8 6 5 0 has
fastcr raw floating point speed , especially for
the F format (over twice as fast). Yet the two
systems r u n this benchmark wi th almost t h e
same performance. Clearly, in programs with
these characteristics, factors o t h e r than raw

Digital Technical Journal
N o . 4 February 1387

c

New Products

speed will havc a greatcr inf luence o n perfor-
mance. Of course, in applications without thcm.
t h e raw s p e e d advantage of t h e 8 6 5 0 wi l l b c
more pronounced.

Table 2 LINPACK Performance

Performance (MFLOPS)

Computer F Format D Format

VAX 8800 1.35 0.99
VAX 8650 1.30 0.70

Summary
T h e a rch i t ec tu re of a processor l ike t h e VAX
8 8 0 0 CPU is all a mat ter of tr;idc-offs. Where
does the pcrformance makc a d i f ference? For
e x a m p l e , w e c o u l d havc s u p p l i e d t h e 8 8 0 0
wi th a separa te f loating po in t uni t t o achieve
faster perform;~ncc. Doing that, however, wou ltl
have r equ i r ed a t least o n e ex t r a m o d u l e . To
keep the cost of the system constant, this extra
modulc would have entailed removing a module
of logic from some other part of the computer .
P e r h a p s r e m o v i n g t h a t m o d u l e w o u l d have
resulted in a hlnaller cache o r a simpler decoder
with n o optimizations for the frequent instruc-
t ions . In any case t h e n e t e f fec t w o u l d havc
been to sacrifice the perforlnance of t he c o m -
puter in some other area. All things considered.
w e feel that the design is well balanced for the
mult i tude of different comput ing tasks that ~ L I S -

tomers will perform wi th the VAX 8 8 0 0 system.

Acknowledgments
The authors would like t o thank Ron Melanson
and his team for the circuit design of the custom
multiplier. In addition, w e would like t o thank
Dave Sager for his he lp and guidance.

References
1. R. Burley, "An Overview of the Four Sys-

tems in thc VAX 8 8 0 0 Family," Digital
Technical Journal (February 1 987, this
issue): 10-19.

2. T. Fossum, W. Grundrnann, and V. Blaha.
"The F Box, Floating Point in t h e VAX
8600 Systcm," Digital Technical Jour-
nal (August 1785) : 4 3 - 5 3 .

3 . VAX Architectzrre Mrrnual (Maynard:
Digital E q u i p m e n t Corpora t ion . O r d e r
NO. EB- 17580 , 1781) .

4 . J . Dongarra , "Pe r fo rmance o f Var ious
Compute r s Using Standard Linear Equa-
t i ons Sof tware in a FORTRAN Environ-
ment." Argonne National Laboratory (May
1986).

5 . S. Mishra, "The VAX 8 8 0 0 Microarchitec-
turc. " 1)igital Technical J ournal (Febru-
ary 1987 , this issue): 20-33.

I Digital Tech~rical Journal
I N o 4 k h r r ~ r r r) ~ 1987 7 1

I

James P. Janetos I

me VAX 8800 Znput/Output System

The VAXBI bus links the processors in the VAX 8800 family to 1 /0 devices,
including clusters and networks. The VM 8800 nzultiprocessor can sup-
port four of these 32-bit synchronous buses, each of which connects up to
16 1/O devices. Each VAXBI bus connects to the memory interconnect, the
NMI bus, by an NBI adapter, ulhich contains an interface chip to imple-
ment the VAXBlprotocol. The NBI adapter logic handles CPU references
and direct memory accesses to and from the 1/0 devices. The adapter has
its own 200-nanosecond clock, which is completely asynchronous with
the 45-ns CPU clock.

The VAX 8800 family of systems is another
major step for Digital Eql~ipmcnt Corporation
into the realm of high-pc.rform;~ncc computing.
While increasing the computing capability of
the VAX line for scientific and tcchnic;~l appli-
cations. thcsc systems will undoubtedly play an
import;~nt role in commercial :ind office mar-
kets. In these markets, tlie ability to connect to n
computing clustcr , service ni;lnjr ilscrs, and
function in a nctwork arc as important :is a hst
CPII. Indccd, i t1 a multiuser, rnultiprogr;~rnming
systc~n, the cfficiency of "housckccping" opcra-
tions affects the perceived system performance
;IS tiii~cll as raw processor co~npu t ing speed .
'I'licsc opera t ions inc lude sharing memory
between many programs, swapping processes
into ;inti out of memory, paging, and rcspontling
to intcr:ictive user requests.

All members of the VAX 8800 hniily use Digi-
tal's new VAXBI bus as their conimunication
link to clusters, networks, and interactive uscrs.
W l i t h its ability to connect to four separate
VAX131 channels, the VAX 8800 system in partic-
u l i ~ r offers grcat flexibility in configuring
perip1icr;il dcvices and interfaces. This papcr
first discusses the characteristics of the system
communication buses in the VAX 8800 systcm.
1:ollowing that is a discussion of the interface,
callcd the NBI adaptcr, linking the primary sys-
tem bus to the VAXBI input/output (1/O) bus.
Figure 1 illustrates thc various components of a
\'AX 8800 system.

The Processor-to-Memory Bus
'I'lic two CPUs, the 1 / 0 subsystem, and mcmory
; i l l share the primary systcm bus, callcd the N M I

bus. This bus is a limited-length, high-spccd
synchronous communicatiotis path that provides
the data link bctween these four devices. The
NMI bus is completely contained in the main
system c;~binct; its cycle time is 4 5 nanoseconds
(ns), tlie s;lmc ;is the CPU's. The bus protocol
handles several 011tst;inding transactions at one
time, ~ I I L I S effectively increasing the bus's uti-
l ization. That is, once a device has issued a
transaction (e . g . , a read). that device relin-
qi~ishes the use of the bus until the responding
device is ready with the data. Other devices are
thcn free to start other transactions.

In this fash ion , t he bus usage is great ly
incrcascd. Thc two CPUs comnlunicate directly
with mcmory over the NMI bus; the 1 /0 devices
conliected to the VAXBI buses access memory
via the N n l adapters. A device on the NMI bus is
called a "nexus." Arbitration among nexuses
occurs in parallel with data transfers and is han-
dled by one CPIJ in a nearly round-robin fash-
jon. This guarantees that each nexus gains its
fair share of the bus resource. Data transfers on
the NMI bus occur in longword, octaword, and
hexaword lengths (4 , 16, and 3 2 bytes respec-
tively). Four levels of device interrupts are
supported.

The VAXBI Backplane Interconnect
The VAXBI bus is used as the 1 / 0 bus for the
\'AX 8 8 0 0 systcm. As shown in Figure 1 , from
one to four VAXUI buses can be interfaced to the
NMI bus. depending on a customer's needs and
his desired mix of peripheral devices. Each
VAXBI bus is a 32-bit-wide synchronous bus that
can connect up to 16 VAXBI deviccs. Each VAXBI

7 2 Digital Technical Journal
No. 4 February 1987

I~

New Products

device, called a "nodc," uses a chip called thc
VhXBl Interface Chip as its bus interface. This
chip provides a consistent logical and electrical
interface to the bus. The VAXBI Interface Chip
implcments most of the bus protocol for its
node, including bus arbitration and error check-
i ng The VAXBI cycle time is 200 ns, controlled
by an oscillator on the NBIB.

The NBI adapter acts as both a processor and a
memory on the VAXBI bus. The adapter pro-
vides the following three important functions:

1. A means for the master CPU to read and
write device registers

2 . A w i n d o w i n t o m e m o r y fo r \TAX01
devices

3 . The facility for VAXBI devices to inter-
rupt the processsor

Control of Peripheral Devices
To gain an appreciat ion of t he NBI adapter
architecture, it is worthwhile to discuss the con-
trol of peripheral devices.' To move data from a
disk into memory or to send program oiltput to
a peripheral device, a programmer must specify
the opwation to be carried out (read or write),
a niemory address to receive the data or that
contains data to be output to a device, and the
amount of data to be moved. In early machines,
the processor was required to control the entire
operation - executing instructions to move the
data, waiting for the slower device to complete
the operation, and then continuing in this fash-
ion until all the data had been moved. This pro-
cess wasted a great deal of processor time since
many instructions could have been executed
while waiting for an 1/0 operation to complete.

NBI ADAPTER

LOCAL DISKS

COMPUTERS

TERMINALS

Figure I VAX SS00 Configt~rntion

Digital Technical Journal
No. 4 Fehrrrn~:v 1987 7 3

Modern niacliines have 1/O controllcrs. which
arc special Iiardwarc intcrf;iccs t h ; i t 1i;intl le
device operations. A programmer must specify
to the controller the attributes o f the operation
to be ca r r i ed o u t . O n c e t h e o p e r a t i o n i:,
acceptetl by the controller, the processor is
freed from the details of actually moving the
tlata. In this way processing ancl 1 / 0 oper;itions
can be ove r l apped , increiising process ing
utiliz;~tion.

For slow devices, such as termin;ils, the con-
troller usually has a small buffer to lioltl tlie data
to be transferred to or received from the proces-
sor. 'I'his buffer is loaded by the proccssor when
i t h;is data to be transmitted to the device. 'l'he
device accepts the data, then signals when read).
for more. When having d;it:i to be t~unsrnittctl to
tlie proccssor, the device loads that data into the
buffer and then signals to the proccssor to
remove the data. This process is called pro-
grammed I/O.

For high-speed devices, such ;is disks, the I/O
controller normally performs direct memory
;iccess (D M) operatiions. The processor loads
special registers in the controller with informa-
tion ;ibout tlie transfer - the arnout of d;ita to
be moved and its location and destination. The
jxowssor is theti freed while the controller per-
forms the transfer. In this way large amounts of
data can be moved with rniinin1;tl proccssor
intervention.

A~ldressing in the VAX 8800 CPU
The master CPU manipul;ites the I/O controllers
with reads and writes of single lonwords to their
control and status registcrs. These registers have
addresses in physical address sp;ice and can be
manipulated by standard VAX instructions. This
tcchniqi~e contrasts with that used in m;iny com-
p u t u s i n which special instructions control
I/O. The address range of the VAX architecture
is shown in Figure 2, in which ;icldrcsscs ;ire
given in hexadecimal notation.

Physicill memory occupies the first 5 12 rneg:i-
bytes of the defined address range. The 1 / 0
a d a p t e r and t h e 1 / 0 c o n t r o l l e r r eg i s t e r s
;ire located in the range from 2000 0000 to
3FFF FFFF. In the I/O space, tlie address range
;illoc;~ted for each VAXBI bus is further subdi-
vided into space for each device on the bus.

BYTE ADDRESS

.... - - - ~

Figure 2 VAX Address Space

The NBI Adapter
A n ad:iptcr provides ;In interface between two
existing buses, each with its own addressing
protocol and data-transfer protocol. The adapter
is responsible for a11 communications between
the two buses. I t is a datapath for the processor
to access device registers and for devices to
access memory. This datapath is also lied to
interrupt the proccssor and for initialization
functions.

The NB1 adapter. consisting of an NBlA mod-
ule and either one or two NBIB modules, inter-
faces the VAX 8800 system to the VAXBI buses.
which arc 1 /0 buses in this application. That is,
the N R I adapter issues reads and writes on the
VAXBl buses in response to reads and writes that
are in the NBI atl(lrcss range initiated by the pro-
cessor on the Nkll bus . Likewise, t he N B I
adapter issues reads and wires to memory on the
NMI bus in response to reads and writes inj-
tiated by VtX'RI devices on the VAXBI buses.
The N R I adapter in the VAX 8800 system sup-
ports a new gener;~tion of high-performance.
native VAXBI devices.

Figure 3 contains a block diagram of the
NBW/NBIB adapter system. Basically. the data-
path of the N B l A niotlule contains an NMI Inter-
face, which provides buffering for addresses and
data transmitted and received during NMI trans-
actions. The NlMI interface is connected to a
transaction buffer, which is a 16-location, dual-
ported ECL/TTL M. The transaction buffer
provides five locations to buffer cornmands and
addresses and up to four longwords of read/
write data for direct memory access (DMA)

transfers by devices on the VAXBI-0 bus. A sec-
ond group of five locations is provided for DMA
transfers by devices on the VAXBI- 1 bus. Two
locations are used for the command/address
packet and the single longword of read/write
data transferred when the processor accesses the
VAXBI device registers. The NBIA/NBIB TTL
datapath indicating the layout of the transaction
buffer is shown in Figure 4 . The TTL port of the
transaction buffer connects to a set of two bi-
directional latches used to buffer commands,
addresses, and data for transmission across the
data-bus cable to and from an NBIB module.

The datapath of the NBlB module consists of a
set of four bidirectional latches used to buffer
both DlMA commands and addresses and CPU
commands and addresses, as well as data. These
latches connect to another set of latches known
as the BCI data buffer (one longword deep),
which connects to the VAXBI Interface Chip.
(Thc module side of the interface chip is known
as thc BCI.) Thc interface ch ip controls the
enabling of data onto the BCI for data transmis-
sion onto the VAXBI bus.

Data flows between the NMI bus and the
VAXBl bus by moving it between these two sets
of latches. Control logic moves data from stage
to stage, passing control successively to the next
stagc ;is each part of the transfer completes. The
VAXBI bus runs approximate ly fou r t imes
slower than the VAX 8800 processor and is asyn-
chronous with it. Therefore, the additional
problem exists of synchronizing control be-

tween the NBLA and NBIB modules. Facilities are
provided for delaying data transfer until a buffer
is free. thus preventing data corruption. Another
synchronization problem occurs when the mas-
ter processor wants to read from or write to a
VAXBl device when that device wants to make a
memory access. The control logic in the NBIA
and NBlB modules is carefully designed to ref-
eree such contention problems.

DMA Transfers

From VAXBI Devices to Memory
A DMA transfcr to memory by a VAXBI device is
shown in Figure 5 .

After winning the VAXBI bus, the device want-
ing to make a transfer initiates a command and
address cycle. In Figure 5, that device is a disk
controller. The VAXBI Interface Chip in an NBIB
is programmed to recognize memory addresses
on the VAXBI bus. The ch ip "awakens" the
NBIB control logic, decodes the command, and
stores the command/address packet, as shown in
Figure 4 . Control logic on the NBIB then sends a
"DlW request" signal to the NBIA. After a syn-
chronization delay on the NBIA, the NBLA TTL
controller begins to transfer the command and
address from the NBIB to the NBLA.

Meanwhile, the NBIB takes the longwords of
data as thcy appear on the VAXBl bus and stores
them in the NBIB's data buffers. The NBIA stays
;ipproximately one cycle behind the NBIB,
removing data from the NBIB buffers and storing

v
A
X
B
I

N
0

-
NMI NBI

@ INTERFACE TRANSACTION
BUFFERS BUFFERS

v
A
X

DATA DATA INTERFACE B
BUFFERS BUFFERS CHIP I

1

Figure 3 Block Diugram of NRI Adapter

Digital Technicrrl Jounral 75
No. 4 Febrria?:s I987

The VAX 8800 Input/Output System

it in the DMA locations in the transaction buffer.
After successfully transferring al l data into the
t ransact ion buffer , t h e NBIA a ler t s t h e NDIB,
which , after a synchronization delay, elids the
transaction o n the VAXBI bus. At this t ime the
NBW. TTL controller passes the DMA rcqucst t o
the NMI interface in the NBIA, which then pcr-
forms the writc to memory o n the NMI bus.

It s h o ~ ~ l d b e noted that a DMA write transac-
tion is considered to b e complc tc o n the VAXBI
bus bcforc the data is actually written t o mem-
ory. A VAXBI device is thus free t o start another
t r a n s a c t i o n i m m e d i a t e l y . T h i s p e r f o r m a n c e
e n h a n c e m e n t i s k n o w n a s a " d i s c o n n e c t e d
writc," in which the write operation is consid-
c red to b c c o m p l e t e d o n o n e b u s beforc tha t

TRANSACTION

NBIA --- ----------------- J

I
I
I H - H

I - I
I - BCI DATA I
I L BUFFERS I

I
A I
T I
C I

I I
I H I

I DATA BUS I
I I BUFFERS

I
I

TRANSACTION BUFFER ORGANIZATION NBlB I : -- 1

\I \ 1
DMA 0 DMA 1

Figure 4 A'HId/NBIB TTL llcrt~ipath

Digitul Technical Journal
No. 4 Februarv I987

MEMORY DiI
DATA
BUS

NBlA NBlB CONTROLLER

c D D D D 1 ARB 1 "2 I :" / DATA 1 DATA 1 DATA I DATA 1 ~;~~~~~~~~~
A A A A

VAXBI CYCLES NMl CYCLES

CIA - COMMAND/ADDRESS
ARB - ARBITRATION
EMB ARB - EMBEDDED ARBITRATION

Figure 5 DMA Tr~~nsfer to Memory

operation has actually taken place on the target
bus. The NBI atl;~pter is designed in such a WilJ1

that a write transaction could be waiting in thc
transaction buffer (e.g., while the NMI interface
controller services the other VAXBI bus) while a
s e c o n d t r a n s a c t i o n w a i t s i n t h e d a t a b u s
transceivers. Using two levels of buffering ancl
the disconnected wri te technique allows the
NBI adapter to support a wri te bandwidth of
8 megabytes per second.

I t is interesting to note that during the data
transfer from the NBIB to the NBIA, the NBlB
notifies the NBIA TTL control ler of the DMA
request immediately after storing the command/
address packet. However, the NBIA TTL con-
troller does not pass the DMA request to the
NBIA NMI interface controller until the com-
mand/address packet and all the write data have
been loaded into the transaction buffer. The rea-
son for this delay is that the NMI interface con-
troller runs at the same speed as the NMI bus, or
4 5 ns per cyclc.

T h e NBlA TTL c o n t r o l l e r r u n s f o u r t imes
slower, o r 180 ns p e r cycle, to closely match
the VAXBl cycle time of 200 ns per cycle. Thus

if the NBIA TTL controller were to signal the
DMA request after loading only the command/
address packet into the transaction buffer, the
NBIA NMI interface would attempt to read data
from thc transaction buffer before that data had
bcen loaded. That is obviously a bad thing to do.
Indeet l , t h e NMI in te r face of t h e NBIA c a n
empty the transaction buffer in approximately
the tinle it takes for the NBIA TTL controller to
load one longword.

From Memory to a VAXBI Device
A write request from a VAXBI device is similar
to the DMA operation just described. After win-
ning the VAXBI bus, the device wanting to read
data from memory on the NMl bus transmits
a c o m m a n d a n d address o n t h e VAXBI bus .
Figure 6 depicts this transfer.

The interface chip awakens the NBIB control
logic, which then decodes the command and
stores the command and address in a data-bus
buffer location. The NBIB then passes the DMA
request to the NBIA immediately after the com-
mand/address packet is loaded. Again similar to
the writc operation, the command or address is

New Products

Digital Technical Journal
No. 4 Februa~y 1987

The VAX 8800 Input/Outpzit System

transferred to t h e appropr i a t e location in t h e
transaction buffer by the NBIA TTL controller .
However, a DMA read is unl ike a wri te opera-
tion, in which the data is ready for transmission,
in that the data must he fetched from memory.
The DMA request is first passed to the NBIA NMI
interface con t ro l l e r , w h i c h arbi t ra tes for t h e
NMI bus . Upon winning t h e bus, t he interface
control ler initiates a read reques t t o memory.
When the the data is ready, the memory returns
it on the NMI bus to the NBIA. Thence the data
i s t ransferrcd i n t o t h e DMA loca t ions in t h e
transaction buffer, and the NBLA TTL controller
is notified by t h e NBIA NMI interface that the
data i s ready. T h e c o n t r o l l e r t h e n beg ins t o
transfer data to the NBIB, loading i t into succes-
sive locations in the NBIB buffers. This process
is illustrated in Figure 4 . A "DMA Done" notifi-
cation is sent to the NBIB after the first l o ~ i g -
word of data, rather than all the data, has been

MEMORY L-T:

transferred. That maximizes the read bandwidth
on the VAXBI bus. The NBI adapter has a maxi-
m u m DMA read bandwidth of fou r megabytes
per second.

The DMA read transfer illustrates o n e funda-
mental difference between the NMI bus and the
VAXBI bus . Referring to Figure 6 , o n e can see
that the VAXBI bus is unusable while the NBIA
and memory complete the read operation. (The
NBIB issues stall signals to the requesting device
during this time.) The NMI is a pended bus, but
the VAXBI bus is n o n p e n d e d , o r in ter locked.
That is, the NMI bus is immediately available for
use once a command has been transmitted and
acknowledged , whereas t h e VAXBI b u s mus t
wait. Thus "pending" transactions are al lowed
on the NMI bus. Indeed, the NBIA NMI interface
can respond to requests from t h e o the r VAXBI
bus whi l e a lso having an outs tanding read t o
memory o n behalf of the first VAXBI bus

EM0 STALLSTALL STALL STALL STALL STALLSTALL STALL STALL STALL STALL STALL STALL DATA DATA DATA DATA l C I A I A R B l I I I I I I I I I I I I I I I I I
VAXBl CYCLES .

MEMORY
READ -*

.
LATENCY

CIA - COMMAND/ADDRESS

I; I I I I I I I I 1 I IilHIilil
NMl CYCLES

EMB ARB - EMBEDDED ARBITRATION (NOT TO SCALE)

Figure 6 D M A Trclnsfer from lMernory

78 Digital Technical Journal
No. 4 Febrzlat?~ I987

New Products

NMl CYCLES
(NOT TO SCALE)

VAXBI CYCLES NMl CYCLES

C/A - COMMAND/ADDRESS
ARB - ARBITRATION
E M 6 ARB - EMBEDDED ARBITRATION

Figure 7 CPU Transfer from VAXBI Device

CPU Transfers to and from
VAXBI Devices
CPU transfers to and from VAXBI devices are
similar to VAXBI transfers to and from memory,
the obvious difference being that the transaction
is initiated on the NMI bus. CPU transfers arc
shown in Figure 7 .

Another difference is that CPU transactions
arc limited to longword lcngth when accessing
VAXBl devices. Since there is only one location
for a command/address packet for CPU transfers
and one location for read/write data in the trans-
action buffer, the NBI adapter can handle only
one CPU transaction at one time. These lirnita-
tions lower thc CPU-to-VAXBI bandwidth as
compared to the DMA bandwidth. An analysis of
b u s t raff ic , h o w e v e r , has s h o w n tha t CPU-
initiated transactions account for under 1 0 per-
cent of the VAXBI traffic in a VAX 8 8 0 0 system.
This finding could be anticipated since the CPU
must make only a small number of accesses to a

VAXBl device controller to cause it to transfer
large amounts of data.

Synchronization
In the earlier discussions of data transfers, the
term "synchronization delay" was introduced. In
g e n c r a l , s o m e t y p e of s y n c h r o n i z a t i o n is
required whenever more than one independent
clock exists in a system. This is the case in the
VAX 8800 system. Timing for t h e processors,
memory controller, and N B k is derived from a
sophisticated clock module that provides two-
p h a s c , nonover1; ipping c l o c k s w i t h a bas ic
period of 45 ns and tightly controlled skew.*
The VAXRI timing, on the other hand, is derived
from an oscillator and a clock-driver circuit on
the NBIB. This timing has a basic period of 200 ns,
completely asynchronous to the VAX 8 8 0 0 ker-
nel. The synchronization of control signals is
thus necessary for data transfer between the
NBIA and NBIB modules. A DMA read transfer

Digital TechnicdJournal
No. d Febrrrayv 1987

The VAX 8800 Input/Output System

i n v o l v e s t h e s y n c h r o n i z a t i o n o f a " D M A
request" and a "DMA complete" signal. Thcre-
fore, the synchronization overhead can account
for approximately 5 to 1 5 percent of the time it
takes to complete the operation.

Summary
The perforrnancc of the 1 / 0 subystem is critical
t o t h e opera t ion of high-performance systems
l ike those in t h e VAX 8 8 0 0 family . T h e 1 / 0
adapter provides a communication link between
t h c each processor, the memory, and the 1/0
dcvices. The NBI adapter is this link for these
systems, providing acccss to a n e w generation of
VAXBl devices and high-performance 1 / 0 opera-
tion for these important n e w machines.

References
1 . H . Lcvy a n d R . E c k h o u s c , Computer

Programming and Architect~rre: The
K4X- I I, (Bedford: Digital Press, 1080) .

2. W. Samaras, "The CPU Clock System in
the VAX 8800 Family," Digital Techizi-
cal Journal (February 1987, this ishue).
34-40.

8 0 Digital Tccbnical Journal
No . 4 Februaty I987

me VAXBI Bus - A Randomly
Configurable Design

The VAXBI bus provides a high-performance alternative to the UNIBUS
system as Digital's general-purpose bus. The VAXBI design was completely
specified before any hardware was built and is independent from any
physical configuration. The designers had to discard the traditional
small-perturbation approach and instead used many techniques to
specify the bus characteristics. Two custom chips, a dzflerential driver
and receiver, are used to clock the bus. The bus designs were tested exten-
sively with SPICE, but tests on the physical chips led to some unantici-
pated problems. Further analysis of waveforms, crosstalk, and switching
noise led to changes that met all the original goals.

The VLYBI bus is a new, high-performance, gen-
eral-purpose bus that providcs a common inter-
face to all of Digital's new VAX products, from
the VAX 8 2 0 0 CPU to t h e VAX 8 8 0 0 system.
This bus can also be used for future VAX sys-
tems. The VAXBI bus is a higher-performancc
replacement for the UNIBUS system and should
have a similarly long and productive lifetime.

The UNIBUS system was enhanced many times
during its long history. Since there was no for-
mal specification for this bus until 1986, these
many de facto enhancements led to numerous
compatibility and configuration problems. Hav-
ing learned from those problems, t h e VAXBI
design team decided to make a complete design
specification of the VAXBI bus before any hard-
ware was built . Thus compatibili ty problems
should not occur if all future designs comply
with thnt specification.

O n e of the most important aspects of that
specification - and the most difficult to imple-
ment - is that the VAXBI bus operates indepen-
dently from any particular physical configura-
t i o n . T h a t i s , t h e b u s m u s t b e r a n d o m l y
configurable. The achievement of that specifica-
tion was the most difficult part of the electrical
design. T.hc techniques and solutions involved
in solving this problem should be instructive to
future bus designers.

VAXBI Bus Description
T h e r e a re several e x c e l l e n t re fe rences that
describe in detail t h e operation of the VAXBI
bus and the VLSI chip that implements the bus
logic and arbitration.'.*.5 Therefore, only a short
description of the bus will be given here. The
VAXBI bus is a general-purpose bus with data
transfer rates high enough (u p to 13.3 mega-
bytes per second) to serve as a memory bus in
mid-range VAX systems, such as the VAX 8 2 0 0
CPU. A l l machines in the new generation of VAX
systems use the VAXBI bus for all I/O, commu-
nications, networks, and connecting adapters for
mass storage. Those high rates also allow it to
serve as an 1/0 bus in all sizes of VAX systems by
using n ~ u l t i p l e VAXBI channels in the largest
systems, such as the VAX 8800 multiprocessor,
shown in Figure 1

All t h e machines in the n e w generation of
VAX systems use the VAXBI bus for all I/O, con-
necting adapters for mass storage, communica-
tions, and networks. A VAXBI subsystem, con-
s i s t i n g of t w o s i x - s l o t c a r d c a g e s and t h e
backplanes, is shown i n Figure 2 . The back-
planes are connected with flexible interback-
plane jumpers with terminators at each end.

'The key to general-purpose operation is the
distributed nature of the VAXDI bus. A l l nodes
on i t contain identical interface hardware, and a

Digital Technical Journal
A'o. 4 Februni:~ 1987

I

The VAXRf K ~ i s - A Rfinf/on?/]l Cot?/(qtit.okle I>c~.sigt~

Figure I VAX 8 8 0 0 System with Iour VAXBI Ruses

CPU 1

distributed arbi t ra t ion s c h e m e p rec ludes t h e
nccd for ;I processor to act as a dedicated bus
mastcr. The VAXBl bus can suppor t both multi-
ple ;lnd nctworked proccssors. thus implement-
ing Digital's strategy of distributed computing.
'l'hc synchronous operation of the bus achieves
h igh p c r f o r ~ n a n c e by p r o v i d i n g p r e d i c t a b l e
commu~i icar ion delays. The distributed arbitra-
tion is embedded within each bus transaction s o
that further data transactions may follow wi th-
ou t delay.

T h c VAXBI b u s a r c l i i t c c t u r e is r igo rous ly
specified, and all designs that are verified to its
spccific;ition will be fully compat ib le wit11 the
bus. 'I'hc task of systcni clcsigners has been greatly
cased by the incorporation of all data-handling
and ~ rb i t r ; r t i on logic in o n e VLSI e lcrnent , t he

Figure 2 VAXIjl Sz~bsj!stern 7 8 7 3 2 c h i p , ca l led t h e VAXBI Interface Ch ip .

82 Digital Technical Jour~td
No. 4 Febrnnry 1987

CPU 2 MEMORY.

NMI

VAXBI BUS VAXBl BUS

VAXBl BUS VAXBI BUS

COMMUNI-
CATIONS
INTERFACE

I- DISKS

TO STAR UNIBUS ETHERNET
COUPLER

DISK
ADAPTER

UNIBUS
ADAPTER

ETHERNET
ADAPTER

That chip also performs self-test functions and
bus error detection and handling to improve sys-
tem reliability and robustness. The physical bus
interfaces are also rigorously specified, and the
bus c locking is control led by custom clock-
driver and receiver chips. Figure 3 shows the
VAXBI corner of a module, with all the compo-
nents required for the bus interface contained in
a standardized layout . These features f ree a
designer t o concentrate o n his unique design
rather than on the bus details.

Figure 3 VAXBI Corner of u Module

VAXBI Electrical Design
A randomly configurablc bus has many advan-
tages as a data bus in general-purpose computers
s i n c e t h e i r physical conf igura t ions a r e no t
known a priori and are subject to change during
repair or upgrading. The previous state of the
art within Digital was to use an artificial intelli-
gence program, called XCON, to calculate a
configuration for each unique set of UNIBUS
options. XCON is based on an extensive set of
bus configuration rules. Although it is a triumph
of applied artificial intelligence, the necessity
to use it for bus configurations was a bottleneck
we hoped to avoid by better bus design with the
VAXBl bus.

The design of a randomly configurable bus
involves essentially the design of a group of ape-
riodically loaded transmission lines. The charac-
teristics of regularly loaded transmission lines
are wel l def incd, bu t those of randomly and
unpredictably loaded lines are less well under-
stood. The design team evolvcd a design procc-

d u r e f r o m t h e i r w o r k o n t h e VAXBI b u s .
Although this procedure was derived from the
d e v e l o p m e n t ra ther than b e i n g p l a n n e d in
advance, it may he lp bus designers with their
projects in the future. Therefore, the remainder
of this paper describes that procedure, espe-
cially the activities and results that proved most
significant to the project.

The first s tep in designing this bus was the
realization that the problem was not completely
random but may be bounded. A bus is physically
implemented as a group of transmission lines in
a backplane. These lines are perturbed by the
loading of connectors for modules and by the
modules themselves. Each connector, or slot, in
which a module may be inserted causes a small
perturbation if empty and a larger one if popu-
la ted. A transmission l ine can also con t inue
through cabling and connectors on to another
backplane. In either case the transmission line is
terminated in some manner.

The classic method of dealing with transmis-
sion line loading is to make the characteristic
impedance s o low that perturbations wil l be
trivial. In that case any reflections from these
perturbations will be small, and the line can be
end terminated in its characteristic impedancc
so that there is no reflection. The loading is then
considered to b e predominant ly capaci t ive .
Thus the loaded impedance can be calculatcd as

O u r first approach was to determine if the
classic method could be used to deal with trans-
mission-line loading for the modules o n the
VAXBI bus. Z,, , the charactcristic impedance,
ranges from 35 to 1 0 0 ohms for the standard
dimensions of organic pr inted c i rcui t boards
made by Digital. Corresponding values of C, ,
the intrinsic line capacitance, range from 1.8 to
0 .6 picofarads per centimeter (pf/cm). How-
ever, C d , the distributed loading capacitance,
can be as much as 5 pf/cm for modules in this
implementation. That capacitance means that
Z,', t h e loaded impedance, would b e in t h e
range of 18 to 33 ohms, clearly a major pertur-
bation. Therefore, for n~odules with these char-
acteristics, the smal l -per turbat ion approach
could not be used.

In the case of the VAXBI bus, even if i t were
possible to produce lines whose characteristic
impedances were low enough (2, < 1 5 ohms),
massive drivers would be required to supply the

Digital Technical Journal
No. 4 Febvtmry 1987

The VAXRI Bus - A Ranrloml~~ Configrrrr!hlc 11e.vign

necessary current. Therefore, bus power would
b e c o m e a s ign i f i can t p o r t i o n of t h e sys t em
p o w e r d iss ipat ion, a n undes i r ab le s i tua t ion .
C o n s e q u e n t l y , w e had t o c o n s i d e r ;I de s ign
approach different from the classic one .

O u r a l ternat ive design ; tpproach was more
pr;lgmatic. Significant development investments
had already been made in several key compo-
nents, part icularly t h e rnodule connec to r and
t h e 7 8 7 3 2 c h i p . T h e r e f o r e , t h e r e s t o f t l ie
design hacl to be as comp;~tible as possil,lc with
the characterist ics of those key c o m p o n e n t s .
Particular ;ittention was paid to three areas: the
physical layout, to keep capacitance within thc
drive capability of the 7 8 7 3 2 ch ip ; the clock,
since it is the critical clement in bus timing; ;und
grounding, which is critical for signal integrity.

The VAXBI data lines arc driven directly by
t h e 787.32 c h i p , w h i c h is fal.>ricatcd u s i n g
advanced MOS technology. IMOS devices, how-
ever, are l in~i ted in their ability to drive CLIrrent.
Within the constraints of c h i p area and power
dissipation, open-drain drivers of about 2 1 mil-
liamperes (ma) are the 0n1)~ otics avail;~ble. 'l'lic
data cycle of tlie VAXBI is 2 0 0 t ianoseconds.
T h e r e f o r e , t h e r n ; t x i m u ~ i i b u s l e n g t h o f
1.5 meters (VAXBI specification) is short corn-
parcd to n wavelength, and a lumped-constant
approxim;~tion could be used for calculating the
delays. hi RC time-constant motlel was used for
this approxim;ltion, and the voJt:tge swing wits
limited to 3 V to accornmotlate a smaller termi-
nating resistor for fastcr switching. 'The resulting
resistance was 2 3 8 ohms (5 V/21 ma).

After calculating the tolerances and worst-c;~se
allowances, w e chose a standard value for this
resistancc of 2 7 0 ohms. By choosing an RC time
constant cclual to the maximum available propa-
gation delay (and after subtracting device delays
and allowing for c o m p o n e n t tolerances and a
10 percent t iming m;~rgin) , we calculated the
capacitance as 4 10 pf. This figure bec;tnie the
m a x i m u m c a p a c i t ; t n c e f o r e a c h d a t a l i n e .
including biickplanes, interbackplane jumpcrs,
connectors , modules , ancl bus tr;tnsceivers on
the ch ips . Obviously, t he KC t ime constant is
appl icable on ly o n t h e low-to-high tr;ansition.
w h e n t h e o p c n - d r a i n d e v i c e is t u r n i n g o f f .
Device turn-on, which is normally much fastcr,
is internally compensated for by controlling the
r i se t irnc t o ~ n i ~ l i ~ n i z e t h e t r ansmiss ion- l ine
reflections.

For the c lock lines, t he t iming requirements
arc critical enough to justify the use of very large
drivers since only two signals are involved. We
selectetl :I d ifferential configuration for c lock
s i g ~ ~ ; t l s in o rde r to min imize t h e s k e w , w h i c h
could dcgradc t iming accuracy. This configura-
tion also provides noise immunity by cornmon-
motlc r e j cc t ion . Since t h e c l o c k f r equency is
much higher than the data f requency. ECI. was
chosen fo r the logic technology, l ' h e maximum
d r i v e c ; t p a l - , i l i t) ~ o f s t a n d a r d d e v i c e s i s
25-ohm impeclance, however, s o :I custom clriver
is r rqui red . We also chose to use a custom differ-
ential receiver, for the following reasons:

Isoth p;trts can o p e r a t e f rom t h e avai lable
+ 5 V supl>ly rather t11;111 the - 5 2 V supply

norn1;tlly rcquirctl for ECL.

'I'he receiver sensitivity and common-mode
range can be optimized for the driver.

The receiver input can be designed for mini-
mal bus loatling c ;~paci t ;~nce .

'l'he receiver o u t j ~ u t levels can be standard
'1"rL Icvc.ls, thus c l imi~ ia t ing the need for a
separate i n t e g r a t e d c i r c u i t (I C) f o r l eve l
translation.

Altogether, these two custom clock chips d o
the work of five stantl;trd ICs, thus saving power
;lnd motlu le rc;tl estatt. whi le improv~ng perfor-
n i : ~ ~ i c e

Sincc tlie ch;~racter is t ics of ECL drivers a re
well untlerstood, w e require the clock driver to
use ;In output driver made froni three standard
50-ohm ECI. drivers in parallel. Thus the cffec-
rive tlrivc capal3ility is 17 ohms (50 ohms/.-3)
The design termination is intcntlctl to match the
estim;ltetl impetl;tncc of a maxim:~lly loaded sys-
t e m . a p p r o x i m a t e l y 2 5 o h m s d i f f e r e n t i a l
impedance. This impedance is composed of a
resistor to ground from each line and ;I resistor
be tween lines, chosen to sink the ;~ppropr i a t e
high- ancl low-s ta te cu r ren t s . ' l ' l ~e design was
extensivcl.y ~ l lode le t l us ing t h e SPICJ c i r cu i t
simulator, which indicatetl that t he driver had
adcqu;~tc currcnt cap;tbility for this load.' l 'he
characteristic irii1~ed:tnce of the clock lines was
m;ltlc as low as possible by n~axiniizing the line
width within tlic sp;lce constraints o f ;I 0 . I - inch
vi;l-hole (p1;itctl-throt~ghl~olc in ;I printed c i r c~ l i t
b o ; ~ r d) g r i d , l'o improve t h e c o m m o n - m o t l c

New Products

rejection, the two lines of each differential pair
are loc;~tetl one above the other on adjacent lay-
ers w i t h g round planes above and b e l o w t h e
pairs.

Finally, c ; ~ r c f u l a t t en t ion was g iven co t h e
g r o u n d r e t u r n p a t h f o r a l l VAXBI s i g n a l s .
Ground p1;lnc.s. t o min imize induc tance , a r c
provided on the modules, backplanes, and inter-
backplanc jumpers for data lines as well as the
c l o c k l i n e s d e s c r i b e d a b o v c . ?'he d a t a - l i n e
capacitance was constrained within the 4 10-pf
l imit tlcscribcd above hy control l ing the l inc
width and the ground-plane spacing. A particu-
larly diffici~lt problem is the ground inductance
of the 7 8 7 3 2 chip . The 787.32 ch ip can switch
as many as 4 8 data lines sirnultaneously, with a
total switching current of over o n e ampere. The
induced voltage, V, from siniult:incous switch-
ing is calcul;~tcd as

in which L is t h e inductance and d i / d t is the
ra te of c u r r e n t c h a n g e . For e x a m p l e . if t h e
ground intluct;~nce were 1 0 nanolienries ancl the
c h i p swi tchet l i n 10 n a n o s e c o n d s , 1 vo l t of
swi tching noise would result . Rased o n these
noise ca lcu l ;~ t ions , w e des igned t h e p a c k i ~ g e
wi th an intern;~l ground plane and 15 grountl
p i n s t o m i n i m i z e i n d u c t a n c e a n d s w i t c h i n g
noise.

Test Results
When the custom clock devices became avail-
a b l e , m e a s u r e m e n t s showct l t ha t t h e d r i v e r
could not power a 25-ohm differential loatl ant1
st i l l maintain t h e des i red 7 0 0 - m V ampl i tu t lc
ove r al l cond i t ions . There fo re , w e careful ly
n i e ; ~ s ~ ~ r e d the o ~ ~ t p u t char;~ctcristics in both the
high and low states to calcul;~te an optitnurn ter-
mination. '.['lie TK!Solver softwarc was used to
solve i tcr ;~t ively t h e dr iver equa t ions for t h e
piecemeal linear approximations of t h e driver
characterist ics. w h i c h d i d no t f i t any s i m p l e
curve . We then calculated thc optirnurn resis-
tances and chose the nearest standard resistor
values. We ;~ l so recalculated the output voltages
for normal tolerances of resistance, voltage, and
temperature, and a +/- 5 0 percent variation in
the internal resistance o f t he driver. The mini-
m u m ca lcu l ;~ ted ampl i tude was 6 9 5 mV, giv-
ing us a very high confidence of having at 1c;ist
700 mV for any actual hardwiirc.

The optimized termination has a differential
impedance of 37.6 ohms, which turns out to be
a better match for the measurctl impedances of
the rest of the hardware. An empty backplane
has a differential impedance of approxiniately
60 ohms, dropping to as low as 2 8 ohms when
fully populated; a jumper cable between back-
p l a n e s t y p i c a l l y has a 4 5 - o h m d i f f e r e n t i a l
i n~pedance . The various possible VAXBI configu-
rations yielcl ;I maximum reflection coefficient
at any point of 0 . 2 8 ; probable configurations
will have even smaller reflections.

Reflections of this magnitude could cause sig-
nificant t iming variations in s ingle-ended sys-
tems d u e to a fixed receiver threshold voltage.
However. they hiwe n o effect o n a differential
line since the reflection is the same on both lines
of the differential pa i r . 'l'he only variation w e
found was caused by the differences in imped-
anccs on d ifferent printed circuit layers. Subse-
quen t expcrimcnts indicated that improving the
matching of impedances by putting the differen-
tial pa i r o n t h e same layer r cduces t h e s k e w
more than the conimon-niodc noise reduction d u e
to the rnutu;ll coupling of adjacent layers. Further
experiments showed that the clock system oper-
a tes at f requencies a t least 2 5 percen t higher
than the design goal over all combinat ions of
bus configur;~tion. voltage, and temperature.

The data lines exhibi ted more sub t l e prob-
l ems . O u r init ial tes t ing yie lded resul ts very
silnil;~r to o u r design predictions. As sufficient
hardware was assembled for a maximum config-
uration wi th heavy bus traffic, however, unex-
pected waveforms were discovered. The wave-
f o r m s n o l o n g e r e x h i b i t e d t h e e x p o n e n t i a l
s h a p e of an RC t i m e c o n s t a n t ; i n s t ead , they
resembled s tep functions wi th exponential ris-
e rs . After d u e de l ibe ra t ion , w e realized that ,
although the full t ime constant was fairly slow,
the initial slope, d V / d t , was much faster. There-
fore. its higher-frequency components traveled
down the linc and were reflected several times
d u r i n g t h e c l i~ra t ion of an RC t ime cons tan t ,
resulting in the staircase effect. SPICE sirnula-
t i ons yiclt led a n iden t i ca l wavefo rm w h e n a
transmission l ine, originally considered unnec-
essary, was included in the model. The overall
tinling was not affected by the reflections. Fig-
u re 4 s h o w s this waveform w i t h its s t ;~ i rcase
effect c;~uscd by incomplete termination of the
transmission line.

Digital Techrricrrl Journal
N o . 4 Frbrrrrrr]? I987

85

The VAXIJI Rus - A Rclndombr Configurt~hlc~ lks ign

VOLTS

I I I I I I I I I

NANOSECONDS

Figzrre 4 Simul~ltecl Wcrveform from SI.'ICI:'

A secontl, more significant, effect was duc to
crosst;~.lk, or coupling bctwccn the lines. 'l'o
meet thc c;~l>acitance budget, the original physi-
cal design aimed to minimize the capacitance to
ground. An undesired result was that thc mutual
capacitance from line to linc. while still small.
became proportionally larger, thus incrcilsing
the coupling from line to line. The voltage on
one linc was affected by voltages on 11e;1rby
lines: transitions were aided by like transitions
and slowed by opposing transitions. In thc worst
case, the magnitude of this variation was as
much as 24 nanosecotlds.

This worst case occurred o n a group of lines
in closc proximity to a "spare" line, not con-
nected or terminated, which contributed addi-
tional mutual capacitance, thus enhancing the
coupling. This spare linc, included to reduce
the need for engineering change orders to the
backp lane , nearly neeclcd an ECO for i ts
removal, which could havc delayed sevcr;ll new
products. However, a timing analysis showcd
that its removal was unnecessary. It shoultl be
emphasized that this effect was not visible until
actual bus traffic, consisting of random data p;~t-
terns, was bcing transferrctl on a large bus con-
figuration. Test patterns were too small and too
regular to show these significant effects.

Simultaneous switching noise, described
above, was also investigated because its effect
was similar to the effect of crosstalk. All VAXBl
data signals except one wcrc switched sirnulta-
neously, ;i11d the induced voltage was monitored
on the remaining line, which was fixed in the
high (inactive driver) state. Ground pins were
then brokcn off one at a time, the voltage being

nicasi~recl after the removal of each pin. As a
result the induced voltage incrcased from an
insignificant levcl with I S ground pins to more
than one volt with only 3 ground pins remain-
i n g With one more pin rcmovcd, the chip no
longer pilsscd self-test. Thcsc results showed
that only ;I few ground pins arc necessary for the
chip to operate. but 15 are needed to prevent
thc atlclition of noise to the bus.

The tinling analysis involved fabricating spe-
cial lots of 7 8 7 3 2 interface chips with the
fatest and slowest possible process variations.
From these Lots chips were sclccted at the abso-
lute specification limits. These chips were care-
fully measured in a range of configurations.
including one beyond the specified limits. Then
the timing ~nargins were calculated over thc
specificcl range of operating conditions. When
all pos s i l~ l c worst-case condi t ions and the
effects dcscribcd above had been included, the
ca l cu l a t ed t iming margin was r e d u c e d to
0.5 nanoseconds. Design verification testing on
this worst-case system showcd that it could still
operate at a frequency 10 percent higher than
that specified over the full operating range o f
tempcratilrc and voltage.

Summary
The VAX'RI bus was designed to a rigorous bus-
architecture specification. After minor adjust-
rncnts during dcsign verification testing, the bus
met all the requirements of that specification.
In particular, this testing proved that thc VAXBl
bus can operate independently of system config-
uration.

Several other points should be noted by bus
designers for future products:

1 Designing a product to a rigorous specifi-
cation, called top-down design, can really
work.

2 I>~fferenrial signals are recommcndcd for
critic;il timing. They are best located on
t h e s ame p r i n t e d - c i r c u i t l ayer o n a
motlule.

3 . Testing should bc performed on real
h;~rdw;irc with real data, as closely as it
can be approximated during the dcsign
process. Too often. the test patterns run
o n test structures yield nothing but the
cxpected results. Testing should also
reveal i~nexpected problems, not simply
corroborate the dcsign

86 Digital Technical Journal
R'o. .I Februnrl! 1987

4 . Ground return paths require careful con-
sideration, particularly under conditions
of simultaneous switching.

Acknowledgments
The following people were invaluable in the
successful and timely conclusion of the VAXBI
project : Dana Blanchard, Frank Bomba, Bob
C h e n , Norm C o m m o , Ron Desharnais, Rick
Gillett, Glenn Herdeg, Bill Lin, Bill Schmidt, Jim
S tap les , Betty Ann Tyson , Bob W i l l a r d . Of
course, the VAXBI bus would not have been pos-
siblc without the contributions of the VLSI team
respons ib le fo r t h e 7 8 7 3 2 VAXBI Interface
Chip.

References

1. F. Bomba, R . Chen, and R. Gillett, "Gen-
eral Purpose Bus Eases Interaction of Dis-
tributed Resources," Computer Technol-
o g y Review, v o l . V1, no . 2 (S p r i n g
1986): 47-53.

2 . VAXBI Options Handbook (Maynard,
Digital Equipment Corporat ion, Order
NO. EB-27271-46, 1986).

3. R. Schumann and W. Parker, "A 32-bi t
Bus Interface Chip , " ISSCC Digest of
Technical Papers, vol. XXVII (February
1984): 147-148.

4 . SPICE was developed by Lawrence Nagel
and Ellis Cohen of the Department of
Electrical Engineering and Computer Sci-
ence, University of California, Berkeley.

New Products

Digital Technical Journal
No. 4 Febrzmry 1987

87

Michael W. Kement
Gerald J. Brand 1

A Logical Grounding Scheme for
the VAX 8800 Processor

The treatment of ground as a signal conductor is crucial in achieving
high-performance computer systems. The impact of system grounding on
signal integrity becomes even more important as systems are connected
into networks. For the VXX 8800 CPU design, the authors first idenhj?ed
the sources of ground-conducted noise from the four ground systems: the
power and logic systems, and the safety and RF grounds. They then iso-
lated and defined the ground elements in order to specify an intercon-
nection strategy to guarantee the CPU's performance. Then the I / O
subsystem grounding was established and finally a system-to-system
grounding scheme was completed.

The design of the ground interconnection is
often given little attention in system design, at
least until i t becomes crucial to systcni perfor-
mance and program tlevelopment schcdulcs.
The treatment of this interconnection as ;I signal
conductor greatly affects the electrical noise
levels. Ultimately, these noise levels are a criti-
cal factor in limiting the maximum clock speeds
and thus machine performance.

Field service personnel have long recognized
that many installation problems result from the
subtleties of grounding when cabling together
CPUs, mass storage devices, and peripherals.
Particularly difficult problems occur when
equipment comes from different vendors. 'l'he
traditional approach to solving these problems
has been to dispatch a seasoned field service
representative to the site with an assortment of
ground straps and other parts. Given the injunc-
tion to "make it work," he could, with enough
ingenuity and customer patience, bring ;tboilt
satisfactory rcsults.

As a consequence, early in the dcvclopmcnt
cycle the VAX 8800 project team set a high pri-
ority on the logical dcsign of the ground system.
We knew that the 8800 would be used in large
networks, thus intensifying any problems with
ground-conducted noise. In fact, the inclusion
of thc backplane interconnect, cal led thc VAXRI
bus, ensurecl that many 1 / 0 ports with high
bandwidths would exist in close electrical prox-
imity to the logic backplane. Moreover. many of

the applications targeted for the product would
preclude its installation in the controllcd envi-
ronment of a computer room, with its traditional
massive copper grounding grid beneath a raised
floor. The system components would be con-
nected for the first time at a customer's site. Our
goal was to require minimum site preparation
efforts; system components were designed to be
cabled together in a "plug-and-play" manner.

Thcsc product goals, coilpled with the EMI/
RFl and system safety requirements of the inter-
national regulatory agencies, required an inte-
grated system philosophy for grounding and
shielding. The approach that we followed on
the VAX 8800 project involved three separate
but interrelatecl steps:

First, we identified the sources of ground-
conducted noise within t he VAX 8 8 0 0 and
devised ways to reduce that noise to the lowest
practica: level. Next. we identified the intercon-
nections within the ground networks and con-
nectcd them in ways that controlled the grountl
noise. Thcrc are four ground networks:

1 . Power return

2. Logic return

3. Safety, or ac power-fault ground

4 Radio f r equency sh i e ld a n d chassis
ground

Finally. we extended the concept of system
grountl in thc VAX 8800 to large-system applica-

88 Digifnl Techrrical Journal
No. 4 Fvbrrrcir~~ 1987

New Products

tions and computer networks in an effort to
ensure optimal overall system performance. In
the majority of cases, these networks involve
mature products for which it is difficult to make
any internal configuration changes.

Ground Conducted Noise

Power System
The VAX 8800 power system consists of modu-
lar units of switching power regulators operat-
ing at 50 kilohertz (KHz). The total three-phase
ac power required for a typical application con-
figuration is about 5 kilowatts (KW). The hard-
ware imp1emcnt;ition uses units from a family of
products called the Modular Power System, or
MPS, designed by Digital. These units yield low
and tightly control led differential (normal
mode) noise levels for the dc power that sup-
plies voltages to run logic.

Through their high electrical efficiency of
power conversion, such switching power sys-
tems have made possible the small sizes and low
weights of present computers. This power cir-
cuitry, however, has current spikes (dI/dt) as
high as 1000 amperes per microsecond (ps) and
voltage slew rates (dV/dt) as high as 2000 volts
(V) per ps. These high s lew rates, a conse-
quence of the pursuit of high efficiencies, can
produce significant noise problems. The rest of
this section discusses five of the most important
noise sources that we identified and resolved in
the power system.

When high-voltage slew rates are present across
parasitic capacitances (i .e. , unintentional capac-
itance that is present as a consequence of a
physical metallic structure), a noise current I,,
will be generated:

in which C, is the parasitic capacitance.
One significant source of common-mode

noise in the MPS regulators is the parasitic
capacitance between the primary windings in
the high-frecluency power transformer and the
solid-foil safety shield between the priniary and
second;iry windings. The use of this shield, con-
nected to a sheet-metal "safety ground," is one
way of complying with the international safety
regulations. '

During normal switching-converter operation,
voltage pulses with rise times of approximately
1000 V per ps are applied to the primary. These
pulses cause capacitively coupled noise cur-
rents with peak amplitudes of approximately
200 ~nilliarnperes to be sent into the system
chassis, or safety ground. Figure 1 shows a sche-
matic representation of this process. The para-
sitic leakage inductance associated with the pri-
mary wind ing c o n ~ p r i s e s a se r ies - resonant
circuit with the shield capacitance. This noise
current has a decaying expo~iential waveform
with a frequency in the range of 5 to 10 mega-
hertz (MHz) and a repetition rate of twice the
switching frequency. Since many power con-
verters are used in the VAX 8800 system and
they are all synchronized to a common clock,
the noise currents tend to add. Current ampli-
tudes as high as 2 amperes were observed.

The most practical way to reduce this noise
source was to insert a damping resistance, Rd,
that would reduce the Q of this resonant circuit
at the specific frequency range. Q is tradition-
ally defined as the ratio of reactive impedance
to resistance, and represents a measure of reso-
nant efficiency. The international safety regula-
tions, however, strictly limit the fault-current
impedance in this path. To meet both require-
ments, we inserted a ferrite bead on the shield
ground lead. This bead is made of ceramic ferro-
magnetic material that is electrically lossy. It
acts as a small inductance at low frequencies
and as a nearly pure resistance at high frequen-
cies. The bead does not block the fault currents
from a short circuit but does reduce the noise
current to the desired level. The noise ampli-
tude is reduced by two to four times and the
ring frequency reduced to about 1 MHz. Thus a
potentially serious cause of common-mode
noise current in the system is reduced at the
source to acceptable levels.

In new des igns , more effect ive schemes
involving different shield configurations and
interconnections could be employed.

Power Line Filter

One of the more subtle (and ironic) sources of
common-mode noise current originates in the
power filter designed to reduce the electrical
noise emanating froni the power line. Figure 2
depicts a schematic of a typical l ine f i l ter ,

Digital Technical Journal
No 4 Febrzrrrry I987

8 9

A Logical Grounding Scheme for the VAX 8800 Processor

PRIMARY
- CURRENT

(IP)

PRIMARY
VOLTAGE
(VP)

--
fly RI

CI

m

LI, = 1.2 x 1 O ~ H primary leakage inductance

C, = C, = 200 x picofarads primary and secondary parasitic capacitance to shield

Rd is the damping resistance provided by a lossy ferrite bead
112 -1

Resonant frequency of In is FQ = [ZT (LI, x C,)] = 10.3 MHz

Resonant impedance Ro = (LI,/C~)"~ = 775 ohms

With Rd = 0, In (peak) = V, (peak)/& = 200 milliamps

With Ro = 500 ohms @ 10 MHz. In (peak) = 118 milliamps

Figure I Parasitic Capacitance of the Power Transformer

including the parasitic, o r leakage, inductance
of the common-mode choke, L , . The "Y" capac-
itors, C,,, are connected from either side of the
power line to the chassis, forming a high-Q res-
onant circuit with this leakage inductance. The
load current for this power filter is dominated
by t h e d i scon t inuous c u r r e n t p u l s e s of t h e
switching power converters , which provide

excitation for this resonant circuit. The result is
a resonant current pulse into the chassis with
each half-cyle of current in the power line.

O t h e r c o n s i d e r a t i o n s of s igna l i n t e g r i t y
demand that an inductor b e placed in series
with the power ground wire in the filter before
that wire is connected to the chassis. The resulting
ground impedance forces the resonant common-

Digital Tecbnicd Journal
No. 4 February 1987

New Products

POWER LINE FILTER r------------------------ 1

Figure 2 Power Line Filter

I I

mode current to flow through the chassis of the
system, probably through the logic returns. If
the filter design has taken this parasitic reso-
nance into account, a series resistor or ferrite
bead, R, , may be added to lower the circuit Q .
That reduces the common-mode current at the
expense of filter attenuation.

111 the case of the 8800, many of the system
components had been designed and released
before this problem was ful ly appreciated.
Therefore, our only viable strategy was to segre-
gate this noisy ground by separating the logic
returns and chassis grounds to the greatest
degree possible.

AC/DC
SWITCHING
POWER
CONVERTER

Noise Voltages

The electrical dual of the noise source just
described is the generation of noise voltages

+

V ~ " ~ ~

-

across both reaJ and parasitic circuit induc-
tances when rapidly changing currents flow
through them. This noise voltage is expressed as

-

LOW VOLTAGE
DC LOAD
(LOGIC)

I
I
I
I

GROUND

I INDUCTOR

in which L,, is the value of inductance.
The most common source of noise voltage in

switching power converters is parasitic induc-
tances excited by the rapid rise and fall of cur-
rent in the transistor power switch and by the
reverse charge recovery in the rectifier diodes.
These abrupt transitions between the conduct-
ing and nonconducting states generate a very
high d l / & . For example, the primary reset
diodes (D l and D2 in Figure 3) in the MPS con-
verters have very fast switching times of 30 to
50 nanoseconds (n s) . As the d iode cur ren t
rapidly goes to zero when the switch is turned

I
I
I
I
I d I h

Digital Technical Journal
No. 4 February I987

9 1

I I -
I 1 aH I
L ------------------------- 1

A Logical Grounding Scheme for the VAX 8800 Processor

L, 300 x IO-~H, Stray Inductance

COB - 100 x 10"' F, Collector - Base Capacitance of QI and Qz

-E The screened componenls are not active:
01 and 0 2 are off. The magnetizng current (IM) from TI is
resehlng to zero through DI and D2 to the 300 V source.

High-Frequency Equ~valent Model

Figure 3 Parasitic Induclunce of the Po.uler
Switching Stcige

off, t h e c i r cu i t parasi t ic i nduc tance wi l l r ing
w i t h t h e c a p a c i t o r i n t h e s w i t c h - p r o t e c t i v e
snubber , C, . The frequency range wil l be from
10 t o 30 MHz for typical c i r cu i t va lues . l ' h c
result is a differential noise voltage at the con-
verter o u t p i ~ t .

O u r solution to this noisc voltage sourcc was
t o instal l a n a p p r o p r i a t e f e r r i t e bead o n t h e
d iode lead t o d a m p the oscillations in this fre-
quency range.

Radiuted illugnetic Flux

A substantially more difficult problem is caused
by rapidly changing magnetic fields that radiate
from the high-current second;~ry circuits in the
power converters. The ou tpu t rectifiers can bc
conclucting as much as 2 0 0 amperes when they

s w i t c h o f f ; t h e r e s u l t i n g c l l / d t c a n e a s i l y
approach 1000 arnperes p e r microsecond. As
the current dies, the magnetic field surrounding
t h e secondary windings of these h igh -cu r ren t
concluctors wi l l collapse. That induces a voltage
in o the r conductors enclosed by this magnetic
f l u x . Accorcling t o E ' a r a d a) ~ ' ~ Law. t h i s no i se
vo1t;lgc is

V,, = N d 0 / d l

in which N is the number of turns in the other
contluctors, and d 0 / d t , which is proport ional
t o d l / & , is tlie rate of change of magnetic flux.
I t is q u i t e poss ib le t o t levelop volts of noise
across 2 inches of circuit I~oard etch o r ;I ahcct-
nieti~l panel through this cffcct.

? 'he or ig inal des igns of t h e MPS c o n v e r t e r
tried to minimize this noisc 1,roblem by making
the high-current loop areas ;is small ;IS possible.
thus minimizing the r;~tliatcd ~l iagnet ic flux. In
adclition, c o p p e r Faraday shie lds and g round-
plane circuit boards were 11scd. In spite o f this
cart, we encountered problcms with circulating
c u r r e n t s i n d u c e d in t h e ~ l i e c h a n i c a l s u p p o r t
s t r u c t u r e in t h e VAX 8800 sys tem dcs ign . As
with the power-l ine filter, w e could not reduce
t h e n o i s e a t i t s s o u r c e . ' l 'hcrefore , t h e o n l y
v i ;~blc solution was t o t;tke great care wi th the
chassis ground connection of these structures s o
that the noise currents are d i rec ted away from
sensitive circuits.

The Logic System
A significant s o u r c e of noise wi th in the logic
system is t h e ene rgy radia ted f rom t h e in ter -
c o n n e c t cab le s f rom t h e 1 / 0 b u s t o t h e d isk
controller . This noise radiates a t a fundamental
frequency of about 47 MHz. T h e bus itself is a
high-spced, mass-storage parallel interface. The
in terconnect cab le is composed of intlividual
coaxial signal pairs that a rc transformer coupled
a n d d r i v e n d i f f e r e n t i a l l y . H o w c v c r , t h e
in lpcdancc from t h e coaxial cen te r conduc to r
t o the ou te r overall shield is s l ightly different
from thc impedance from the coaxial shield t o
tlie outcr shield. That is, both signal conductors
d o n o t have e q u a l i m p e d a n c e s t o t h c o u t c r
shield. which is grountled to the chassis at cach
e n d . 'l'he result is a net noiae current th;it flows
on the outcr shield. Within tlie \TAX 8800 pro-
cessor , th is cu r ren t can c o u p l e in to ;rtlj;lccnt
cables.

New Products

The only practical method to minimize this
noise coupling was careful routing and dressing
of the interconnect cables relative to other com-
munication and power cables.

VAX 8800 System Grounding
This section describes the types of ground struc-
tures present in ;I large system like the VAX
8800 multiprocessor. As such a computer sys-
tem expands in size and complexity, its ground
connections also exparid and their interrelation-
ships grow in complexity. To appreciate the
grounding scheme as a total system, the various
components must be isolated by function and
location. I n that way the groutid system can be
broken into its constituent elements. The indi-
vidual components can then be viewed as f i~nc-
tional blocks that require interconnection.

Although a designer can choose how to inter-
connect the ground elements, he is always con-
strained by the existing international regulations
in the implementation of the grounds.

Types of Ground Topologies
There are three choices of ground interconnec-
tion topology: single point , multipoint, and
hybrid. The single-point ground looks like a
wagon wheel with the ground in the center and
the other devices connected radially around the
hub. That center becomes the absolute ground
point, callcd the zero-voltage potential refer-
ence, for all tlevices. Multipoint grounding has
each device individually connected to a single
ground plane, all of which is at the same zero-
voltage potential. The hybrid is some mixture of
the single-point and multipoint topologies in
which interconnections are made based on the
characteristic needs of the subsystem functional
elements.

The single-point topology is not practical to
implement on a large system like the VAX 8800.
The physical dis tances and associated im-
pedances of the interconnects begin to domi-
nate so much that an absolute ground point does
not really exist. The multipoint ground requires
a ground plane, or grid, to be effective. Again,
in a large system, i t is not practical to imple-
ment a ground plane into the physical layout.
The hybrid scheme has advantages over the
other two, but it requires a detailed evaluation
of the characteristics of each subsystem element
before an interconnection can be designed. That
was the approach we followed in designing the

interconnection for the different ground types
in the VAX 8800 system.

DC Power Return
The dc-to-dc converters in the system required a
d c c u r r e n t r e t u r n t h a t p r e s e n t e d a l o w
impedance through the frequency range of dc to
200 KHz. Our primary collsideration was to
specify a conductor with a sufficiently large
cross-sectional area to keep the I R losses and
heating effects to a minimum. A secondary con-
sideration - often overlooked - was to rnini-
mize the physical distance between the current
feed and the return. In a large system the cur-
rents involved can exceed 400 amperes. The
resulting flux can produce a large magnetic
field. This field is determined by the relation-
ship

Magnetic Flux = I X p X A / l

in which I is the current, p is the permeability
of air, and A the area and I the length of the con-
ductor . These leakage fields can couple into
adjacent devices, sheet metal, and cables. If the
flux has an ac component , a current may be
induced in adjacent conductors, as described
earlier.

A power supply in the MPS series used in the
8800 has a silver-plated bus as its main output.
That bus is mated to a large connector that is
mechanically mounted on the power backplane.
This connector is soldered to multiple epoxy-
coated copper strips that are 0.050 inch thick
by 2 inches wide. These strips are fusion welded
to a horizontal bar that is bolted to the inner lay-
ers of the CPU backplanes. The supply and
return straps are overlapped to minimize para-
sitic inductance and its consequent radiated
magnetic flux. The flat, wide geometry of the
connection is essential to minimize that flux.
(See Figure 4.) Minimizing this stray inductance
is also essential to obtaining rapid power-system
response to load transients with adequate stabil-
ity (phase margins).

Logic Return
The logic return provides a common signal ref-
erence for the logic within the system. To mini-
mize noise this reference must be designed with
a low impedance at the frequency correspond-
ing to the logic switching speed. With logic
operating at rise times of 1 V per ns, or 300 MHz,
this r e f e r ence is cons idered t o be a rad io

Digital Technical Journal
N o 4 Febrrrnr.)~ 1987

9 3

A Logical Grounding Scheme for the VAX 8800 Processor

frequency (RF) ground and thus can be mod-
eled as a frequency-dependent impedance. The
ground impedance at these frequencies is domi-
nated by the depth of penetration of current
into the conductor . The magnetic field sur-
rounding the current forces the density of cur-
rent to decrease from the surface value as the
depth into the conductor increases. In the limit-
ing case, as frequency becomes very high, the
current will flow as a sheet of charge at the sur-
face. The result is a steadily increasing real com-
ponent of impedance (resistance) with increas-
ing frequency. The point at which the current
density decreases to l / t of the surface rnagni-
tude (approximately 37 percent) is one "skin
depth."

Therefore, the first step in calculating the
ground impedance is to derive the skin depth,
in meters, as follows:

Skin Depth = l/d-p

in which F is the frequency in Hz and p is the per-

nicnbility of air in siemens per meter. For exam-
ple. for copper, the skin depth is 0 .0666 / \ l~ in
meters. Aftcr the skin depth has been deter-
mined,'the impedance at the frequency of con-
cern can be found using the sheet resistance of
the material. The specific resistance, R , is equal
to p X L/A , in which p is the specific resistance
of the conductor, L is the inductance, and A the
area. For copper, p equals 1.673 microohms per
centimeter.

Another major factor in designing a ground
plane is the voltage drop across the ground layer
at low frequencies (dc to 1 KHz) as the total
load current is sent from the logic modules.
This voltage drop produces an offset in the logic
threshold from module to module that affects
the noise margins, o r tolerance. The voltage
drop is a function of the sheet resistance of thc
ground layer (directly proportional to the thick-
ness) and the method of termination of the
ground layers to the return buses. The connec-
tion geometry must be chosen to ensure a safe

2. MPS
VAXBl POWER -5 2 V @ 200 A -2.0 V @ 100 A +5.2 V @ 100 A O POWER SYSTEM
FLEX-CIRCUIT POWER BUS POWER BUS POWER BUS POWER BUS

\-

1. HORIZONTAL O LAMINATED CPU
POWER DISTRIBUTION '
BUS

- -

CPU BACKPLANE

NOTES:

1. The return, or logic ground rail, is connected along its entire length to the system chassis and
represents the system single-point connection of RF (chassis) power and logic ground.

2. MPS regulator rack is electrically isolated from chassis ground and connected through lossy
RF chokes.

Figure 4 Logic Power Distribution System

Digital Technical Journal
No. 4 February 1987

New Products

maximum current density through the ground
layers. Current crowding, particularly at the
connection points and plated through-holes, can
turn the backplane into a toaster oven.

We used the inner layers of the CPU back-
plane as the logic reference for the VAX 8800
CPU. T h e r e a r e f o u r g r o u n d layers , e a c h
0.003 inch thick. Figure 5 illustrates the d c
voltage-potential drop as a function of geometry
across the CPU backplane. The return current is
approximately 500 amperes; therefore, this CPU
backplane was the most challenging part of the
design.

BACKPLANE SLOT

NOTE: Measurements were made from corresponding local points
on the ground plane. It demonstrates the excellent control
over voltage drops provided by the internal ground and
power planes of the rnultilayer CPU backplane. Maximum
current available to these -5.2 V inner layers is 400 amps.

Figure 5 Distribution of the Backplane
Voltage for the - 5.2 V Power
Plane

AC Safety Ground
The primary function of a safety ground is to
provide a low impedance at 6 0 / 5 0 H z , thus
allowing fault currents to follow a path with a
low I R drop. The design and implementation of
this path is strictly controlled by the interna-
tional regulations, to which all other uses of this
ground must comply. The safety ground also
acts as a signal ground in that i t connects prod-
ucts to the ground grid of the building housing
the system. This connection can be detrimental
to the system's I/O signals. Thus i t is advanta-
geous to add an impedance whose magnitude is
frequency and current dependent in series with
the safety ground. A saturating inductor meets
those requirements.

For a fault condition, Digital's internal design
standards require that a current of twice the

product's receptacle rating flowing through the
safety ground system must not result in a voltage
rise of more than 4.0 V, and this level must be
sustained for 10 minutes. With these require-
ments in mind, we used a 1.2-millihenry choke
to isolate the VAX 8800 CPU from the building
ground a t high f requency . This choke was
designed to saturate as described above if a fault
occurs.

Chassis Ground
The RF shield comprises the chassis ground and
the outer panels of the cabinet. The federal reg-
ulatory agencies (FCC and VDE) set and enforce
the allowable limits of radiated emissions from
computer equipment. Since the integrated cir-
cuits within the system are switching at high fre-
quencies, they can be modeled as RF sources.
The interconnecting etches between integrated
circuits that are not tightly coupled to a ground
layer can be modeled as antennas.

The faster the clock and edge speeds, the
shorter the antenna needed to act as an effective
radiator. The length, in meters, of a full wave-
length is defined as 3 X 1 o'/F.

Once this wavelength has been found, the
outer panels of the cabinet can be modeled as
an attenuator, which decreases the amount of
radiated energy that can be transmitted from
within the cabinet. To maintain this level of
attenuation, all openings, such as doors, must be
bridged with conductive gasketing o r finger
stock. The openings for air flow must be treated
as a wave guide. The attenuation, in decibels, of
the opening is related to its size by the follow-
ing formula:

,0046 X 1 X F X d5900 X P/gap2 - 1

in which F is the frequency in MHz, and 1 is the
length and gap the width of the opening, both
in centimeters.

Ground Interconnections
witbin the System
Once the separate ground elements had been
defined, we began to formulate an orderly inter-
connection strategy for the main computer that
would not compromise the system's perfor-
mance. We used the same return path for both
the logic and the dc power because there was
no dichotomy in t he requirements for bo th
returns. In the VAX 8800, the junction of these
returns comes at the point where the horizontal

Digital Technical Journal
N o . 4 February 1987

A Logical Grounding Scheme Jor the VAX 8500 Processor

bus bar (return) is bolted to the inner I;lj.ers of
the logic backplane. (See Figure 5 .)

Digital's internal standards, which meet all
the applicable international regulations. nian-
diltes that the dc power return be connectctl to
the safety ground. This connection must be able
to withstand the short-circuit current of tlic tlc
regulator output . (In certain cases i t luay be
desirable to insert a f requency-dependent
impedance in series with this conncctjon to
"isol;~re at frcquencjl" an element of the systcm.
That could be done when creating a single-point
ground system - directly refcrencctl to the
chass i s - o r a c o n t r o l l e d h y b r i d - g r o u n d
system.)

In tlie VAX 8800 CPU, the dc output could.
under fault conditions, produce :~pproximately
400 amperes. Thus the i~ltcrconncction nu st

handle this high fault current. 'This intcrconnec-
tion was accomplished by bolting the junction
node of t he combined dc -power ;~n t l logic
return to the chassis for the entire length of the
horizontal bus bar. This portion of tlic chassis
was chosen as the connection point bccause it
was not used as a contluctor for ;in). other high-
frequency currents.

In summary, the grounding approach we used
for the 8 8 0 0 featured the following design
points:

The Jogic and d c return and the ch;issis
ground are connected togcthcr at thc hori-
zontaJ power-return bus.

'I'he power-system outputs ant1 thc c1i;lssis
ground are isolated from grouncl ;it R F frc-
clucncies by high irnped;rnccs using lossy fer-
rite inductors . DC currcnts and l inc-frc-
qllency (50/60 Hz) fault currents may thus
flow unimpeded.

Particular care was taken to mini~nize the
flow of logic-return currents through the sys-
tem chassis, thus isolating the pcriphcral
lmxcs (C1750, BAI IAW, etc.) from the bys-
tern chassis ground. Insulatetl cl~assis slides,
shunted by lossy ferrite inductors, accom-
plished that isolation. Although there arc still
common-mode cur ren ts wi th thc ferr i te
inductors, they reduce unwanted common-
motle noise voltages that can couple into cir-
cuits through parasitic induct;~nces. That is ;I

far worse probleni, AS wc tle~l1onstr;ltcd to our
own chagrin.

The 1 /0 panel bulkhead and the logic and
power returns for the VkYBI bus and memory
backplanes ;ire tightly bonded to the single-
point ground at the CPU power-return bus.

The elimination of circulating noise and logic
currents through the chassjs will maximize
the cffcctivcness of the shielded cabinet as an
atrenilator o f r;~diated cncrgy.

'l'he implcrncntat ion of this app roach is
shown in 1;igurc 6 .

I / O and Expansion of Grounding
Once the main processor's grounding had been
dcfinctl, we had to dc;il with grounds between
the cxtcrn:~l clen~ents, such as the 1 / 0 subsys-
tem. The VAX 8800 systcm can accommodate a
1;trgc ;lrr;iy of 1 / 0 tlcviccs by utilizing the VUDI
arcliitccture. 'I'hc H9652 EC-ED cab has provi-
sions for two expansion boxes, the C1750 and
the BA 1 IAW. These boxes are self contained and
have integral powcr sul,plics, logic backplanes,
and interconnects. In keeping with our ground-
ing architecture, we isolatcd these boxes from
the cli;~ssis grountl by using low-Q inductances.
The signal/logic ground was then establishctl by
means of cables to the VAXBI-to-CPU backplane.
This schcme ensures that tlic chassis is not used
as ;I sjgnal/logic return.

System to System Grounding
Grouping systems togcthcr or networking them
has a 1;irgc impact on system noise and the sub-
seqilcrit grountling techniqi~es to eliminate it . In
terms of the signal-to-nojsc ratio and from the
aspcct of grounding, a nctworked system can bc
diviclctl into two cases: the dense network, and
the dispersed network.

Dense Network
A dense nctwork is ;I group of computers or sys-
tenis with associatccl sllpport hardware that is
located within one arca, either an office or ;I

colnputer room. 'l'lijs area is likely to contain
systetns from different vendors as well as phone-
switching networks, experimental equipment,
or industri;ll controllers and monitors. MI these
devices share a common ground that could be a
grid or simply a branch ground as part of their
safety ground. 'This connection also provides a
sign:il re fe rence betwccn in te rconnect ing
devices in the area through tlie chassis and

Digital Technical Journal
No. 4 Febrrrrrrl~ I987

.pun016 '&!~!ln lo '3e wo14 stau!qe3 aqr
6u!le10s! PJ09 lamod aql u! aaueunpu! 'a6e~ea1 lo 'Aeln aql s! a3ueunpu! paIea!pul aql -S

-s!sseq3 a41 UI sIuaIIn3 aslou
10 UOII~I~~J!~ aqt lua~ald 01 Pue a3uepadwl ju aql asea13u! 01 pau61sap slounpu! Assol

ale sallquasseqns aui PU~ slsseu? lo punold ..a. a41 uaamaq umoqs sJounpu4 aul p

'SJ013nPU03 UJnleJ Pue Alddns snq aql 6u1punol~ns
SaJO3 allJJBl Ass01 10 pasodtu03 ale 'SUnleq I0 'SJO1831PUI BPOUJ-UOUJWOJ pB183!pU! a41 .E

3WVW lVU3HdlU3d -
'SlSSeq3 u!em 841 pue q3el Alddns-la~od

Sdw Palelos! at11 Uaaweq aaue1!3ede3 3!1!Seled ~a!d& aql s! a3uellaedea jd-00~1 aql .z
SPU~OJ~ (Jn) s!sseua pue 'IaMOd '3!501 aul 101 (pun016 luted

-a16u!s) uo!uauuoa UOWUJO~ a41 SI aueld~aeq nd3 eu1 JOI snq JeMOd aqllo ulnia, arll .1 :S~LON 3WVtlJ l3NlEV3 -

(a31v-10~11 SISSVH3 sdw -

13N18V3 NlVW 13NIEV3 aN3-1NOLld 3V

A Logical Grounding Scheme for the VAX 8800 Processor

power line ground in a complex way. All these
devices can generate high-frequency currents
that flow into the ground. These currents must
flow through the complex impedance of the
grid whe re , consequent ly , RF voltagcs can
develop. Under those conditions the ground
would act as a noise injection point rather than
a stable reference.

Dispersed Network
The dispersed network is an interconnection of
computers or systems spread over a wide area,
perhaps residing on different floors of a build-
ing or in different buildings altogether. Commu-
nication o n this scale cannot depend on a
mutual RF ground because it cannot be reason-
ably established. In this case, communication
must be accomplished by means of either trans-
former-coupled circuits, optical links, or differ-
ential driver/receiver logic.

Both types of networks illustrate the fact that
system networking cannot, and in some cases
should not, be accomplished by attempting to
create an absolute ground refercnce to the net-
work.

System to Peripberal Grounding
As a system expands with the addition of periph-
eral devices, such as disk drives, printcrs, and
LANs, the ground system must be viewed as a
large hybrid arrangement. Interconnecting these
devices must be predicated on the ground-cur-
rent characteristics (signature) and the 1/0 con-
nections of these devices to the system.

This signature is particularly important when
connecting devices that were designcd to be
used as small, standalone applications. Their
designs may have involved decreased line-filter-
ing capabilities and minimally sized chokes for
ground isolation or perhaps none at all I t is
imperative that such factors be considered when
connecting peripheral devices to a large system.

Summary
We now offer some conclusions based on our
recent experiences with the VAX 8 8 0 0 and
other new systems. These conclusions take the
form of recommendations for minimizing noise-
related problems in any computer system.

Ground Noise Current Signature
I t is important to identify t.he spec t rum of
ground-conducted noise for each subsystem ele-

ment. This noise depends on parasitic elements
in the circuits and electromechanical structure.
Therefore, this information is best obtained
empir ical ly by measurements on the actual
hardware. The noise current amplitudes and
fundamental frequencies should be measured
on cable shields, chassis grounds, 1 / 0 logic
returns, and power inputs.

Segregation of System
Ground Networks
A ground system schematic should be developed
for each particular subsystem. The interconnec-
t ion of ground types wi l l be based on t h e
intended system application. A s a general rule,
t h e g round types shou ld be segregated t o
account for the finite ampli tudes and often
unpredictable paths of the noise currents. This
scgrcgation of grounds (e .g . , power, chassis,
and safety grounds) can be accomplished by
carefully choosing the frequency-dependent
impedances. These impedances are lossy ferrite
inductors placed in series with the appropriate
ground connection.

Appropriate Signal and
Power Interconnect
T h e o p t i m a l s igna l i n t e r c o n n e c t i o n s a r e
designed as controlled-impedance transmission
lines with each signal and its return path closely
coupled and having equal impedance to the
chassis ground. Depending on the noise sensitiv-
ity, data rate , and in te rconnect length , the
implementation can range from coaxial cables
with overall shields to ground-plane ribbon
cables to ribbon cables with alternate ground/
signal pairs. Even the crudest, slowest signal
.line that relies on chassis ground for a signal
return is doomed to failure if it is sensitive to
noise.

High-performance data lines should certainly
be designed with low-impedance differential
line drivers and receivers, either directly cou-
pled or transformer coupled. Single-ended line
drivers and receivers may be acceptable within a
subsystem in which the noise between grounds
is low and controlled. Communication through
unbuffered TTL outputs and inputs are never
acceptable when leaving a subsystem back-
plane.

The initial cost of and board space needed for
proper line drivers and receivers are more than
justified in today's distributed computing envi-

9 8 Digitul Tecbnicd Journal
No. 4 February 1987

ronment. Their use increases reliability and
decreases start-up problems. The power inter-
connects should be designed with minimum
inductance and the lowest high-frequency char-
acteristic impedance that is reasonable. The cir-
culating path of supply and return power cur-
rents should be kept as low as possible. This
design allows better power-system transient per-
formance and ensures the existence of minimal
radiated magnetic fields.

Notes

1. A short circuit between the high-voltage
primary and the low-voltage secondary
could produce lethal voltages referenced
to the chassis ground at accessible points
within the computer. With this shield,
however, the short will produce a high
fault current to the chassis. That current
will open various protective devices,
such as fuses and circuit breakers, that
render the system safe in the event of a
fault.

Appendix

Determining Skin Depth
To calculate the impedance of a given conduc-
tor, the depth of current penetration - or skin
depth - in a conductor must be calculated
first. To do that, a designer must perform the
following steps:

1 . Determine the type of metal of which the
conductor is made (i .e . , copper , zinc,
etc.) .

2. Look up in a reference table the magnetic
susceptibility of the material. (The CRC
Handbook of Chemistry and Physics
contains tables of this nature.) Two types
of listings of susceptibility are commonly
used . T h e f i r s t t ype gives va lues of
specific susceptibility that must be con-
verted by multiplying the value by 4 X ?r

X density of material, called P. For cop-
per, this value would be -0.086 X 10-()
X 4 X n X 8.89, which equals -0.960
X

The second type uses susceptibility in
one gram formula weight . This value
must be converted by multiplying it by 4
X .rr X density of material or molecular

New Products

weigh t , w h i c h fo r c o p p e r w o u l d b e
-5.46 X 10-'X 4 X a X 8.89/63.54,

which equals -0.960 X lop5.

3. The resulting figure must now be con-
verted to relative permeability by add-
ing 1.0 to the susceptibility factor. For
copper, this value would be 1.0 -0.960
X which equals 0.9999904.

4 . The relative permeability must be con-
verted to permeability by multiplying the
value from step 3 above by the perme-
ability of air (4 X .rr X lo-'). For cop-
pe r , this value would be 0 . 9 9 9 9 9 0 4
X 1 . 2 5 6 6 3 X l o p 6 , w h i c h e q u a l s
1.25662 X lo-'.

5. The next piece of information needed is
the conductivity of the material used.
This value must be in the form of siemens
per meter, although most listings will be
in ohms per centimeter. To convert, mul-
tiply the table entry by l X and
then take the reciprocal. For annealed
copper, this value is 1/1.724 1 X lo-'
X 1 X l o p 2 , w h i c h e q u a l s 5 . 8 0 0 1
x 10'.

6 . The skin depth can then be determined
by the relationship l / (a X frequency of
concern X conductivity X permeabil-
 it^,'/^. The result can be manipulated to
the form of l/(a X conductivity X per-
meability)'/'/(frequency of concern)'12.
For copper, this value is l/(a X 5.8001
X lo7 X 1 .25662 X 10-6) ' f2, which

equals O.O6608/(frequency of concern)'/2.
For example, if the frequency of concern
were 1 KHz, then the skin depth would
be 2.089 X 10-3 meters, or 2.089 mil-
limeters, deep.

If the frequency of concern were 50 KHz,
then the skin depth would be 295 micro-
meters.

Digital Technical Journal
No. 4 Febrrlco:~ 1087 9 9

Cheryl A. Wiecek 1

m e Simulation of Processor
Performance for the VAX 8800 Family

An eflort was initiated in the fall of 1981 to simulate the performance of
the processor design for the VM 8800 family of computer systems. That
simulation stayed current with the changing design and continues to be
used today for studies associated with developing VAX processors, This
paper discusses why this simulation was done, how it was structured, and
what was simulated. Since the results generated are quite extensive and
detailed, only the conclusions from these studies are presented here.
What was learned from the model and how it affected the processor
design are particularly emphasized.

Many levels of simulation are done within pro-
cessor development projects we1 l before any
actual hardware is built. Structural models at
the circuit and gate levels are used in tasks such
as verifying timing and developing diagnostic
tests. Behavioral models at the function level are
useful for verifying processor ins t ruc t ion
microcode. Another useful class of models sirnu-
lates performance at the microcycle level. Such
models look at a processor's design as a collec-
tion of hardware resources that must be man-
aged. These models are most useful for gatlier-
ing design trade-off information and verifying
the design performance estimates. By emphasiz-
ing the key hardware resources and how they
interact, performance simulators can

Focus o n how those resources are being used

Indicate how well they support the required
activities

Provide a high-level view of the interactions
in the processor system

This paper describes the performance simu-
lator used on the project that developed the
VAX 8 8 0 0 family of compilter systems. 'This
modeling project began in the fall of 108 1 , and
the simulator continues to be used today to
s tudy a l te rna t ives for new VAX proccssor
designs. The following m70 sections discuss how
the simulator was designed and what was simu-
lated. 'The third section highlights the results
and discusses what was learned from them.

Methodology
The overall structure of the performance model
mirrors the structure used previously for the
performance simulation of a PDP-1 I processor
design. ' The 11iodeI contains three parts, all
developed as separate entities:

The instruction stream that is acted on by the
processor resources

The microcode that directs instruction exccu-
tion

'The simulation of the. processor resources
and timing

These three parts are then combined to gener-
ate simulation results. The tasks performed to
develop each part arc discussed in the following
section.

Workload Model
The most appropriate model for the workload
fed to t he s imula tor is t he s t reams of VAX
instructions from typical programs being exe-
cuted. Information about each executed instruc-
tion is requircd to obtain performance data at
the microcycle level about the processor and its
resources. The software used to extract these
execution streams had already been developed
from a previous project. That software is essen-
tially a debugger that uses the VAX T-bit to gen-
erate a software trap after the execution of each
instruction in the traced program.' That tracing
permits the collection of the next instruction's

Digital Tecbnical Journal
No. 4 Febrrra?:~ I987

operation code, the addressing modes and regis-
ters of the operand specifiers, the read and write
references, and the operand values.

The task of choosing which programs to trace
was bounded by a number of requirements and
constraints. One requirement was to provide
some initial performance estimates for t he
VAX 8 8 0 0 family processor. Those estimates
emphasized integer, logical, and floating-point
operations in CPU-intensive programs. Another
requirement was to select programs that exer-
cised the processor resources that we wanted to
model, especially the cache subsystem, where
capturing best-case, typical, and worst-case sce-
narios was important.

All the constraints involved the programs
from which instructions were traced. A reason-
able length for these programs was about one-
half million VAX macroinstructions, thus per-
mitting the s imulator to process them in a
reasonable t ime. We avoided programs that
required extensive microcode characterization
for instructions that were either less frequently
executed or too complex, such as those in the
packed decimal group. Moreover, the trace soft-
ware was limited to processing executing pro-
grams that ran in nonprivileged user mode. Thus
we had to avoid programs, such as editors, hav-
ing extensive operating-system service calls,
which could only be partially traced.

We chose six programs to drive the model.
These included four benchmarks and two popu-
lar utilities for creating executable images on
VAX systems. The number of iterations in the
four benchmarks was shortened proportionally,
keeping the mix of instructions constant to
retain their representativeness. Three bench-
marks were written in FORTRAN: Towers of
Hanoi, a prime-number generator, and single-
precision Whetstone; one, called Puzzle, was
written in PASCAL. The o ther two programs
were a FORTRAN compile and a VAX/VMS link,
both written in BLISS. For all their constraints,
these programs exercised the model well. The
accuracy of the performance estimates was con-
firmed later by measurements on a prototype
machine.

Microcode Model
How microcoded instruction control is charac-
terized has a significant impact on both the
speed and results of a processor performance
simulator. For example, creating a model at a

New Products

very detailed level permits a finer analysis of the
results, but takes a long time to develop and
run. Therefore, we had to decide what the trade-
off should be between time and detail. We also
wanted to stay current with the latest develop-
ments in the processor microcode, which we
knew would change significantly during the
project. With all that in mind, we decided to use
t he latest version of the actual microcode
sources as the input to a unique process, par-
tially automated, that extracted the information
needed by the simulator. This strategy allowed
us to ignore details that were not required by
t h e s i n ~ u l a t o r , as we l l as t o k e e p u p wi th
microcode revisions as they were released. A
useful by-product of this approach was the abil-
ity to produce microPC histograms with the sim-
ulator. This information helped to explain how
the microcode was being used.

One step in modeling the microcode is t o
determine the control fields that are key to the
processor's performance. Only a small number
of the defined fields are actually needed. Many
microwords are effectively no-operation instruc-
tions for the simulated processor pipel ine.
Table 1 contains the microword key for the per-
formancc simulator. Each microword has three
fields: SRC, ALU, and DST. In any microword,
each field has a command subfield and u p to
three operand subfields. (The address operands
generated by the trace software are actually
extracted as both the traced program and the
simulator are being run. The other operands and
commands are extracted from the microcode
prior to simulation execution.)

Before any actual microcode had been devel-
oped, simulated microwords were written man-
ually from microcode flows provided by the
group developing the firmware. Once the actual
microcode was available, a significant portion of
the performance simulation microcode was gen-
erated automatically by mapping real fields to
the small number of fields that the simulator
required. This automatic mapping of processor
microcode to that used in the simulator was
complicated by several issues.

One problem was that the microbranching
logic required additional information at simula-
tion runtime to decide which branch path to
take. To solve that problem, the firmware group
flaggcd microbranches by inserting comments
in their microcode. Those comments were then
caught by the microcode translation software,

Digital Technical Journal 101
No 4 Febrtra?:y 1987

The Simulation of Processor Performance for the VAX 8800 Family

Table 1 Microword Key to the Performance
Simulator

Field Command Description Operands

Any No operation performed. None
SRC Stall if the memory data ASRC,

registers (MDRs) specified BSRC
by ASRC and BSRC are not
yet valid for input to the
arithmetic logic unit (ALU).

4LU Send a cache arbitration None
signal and stall the pipe-
line if it is not the winner.

DST Send the cache a read MDR
request for x Bytes starting number,
at Address, and set MDR Bytes,
number to valid when the Address
data is available.

DST Send the cache a write Signal,
request with x Bytes of data Bytes,
starting at Address. The Address
value of Signal determines
whether hardware or rnicro-
code control sends the write
buffer data to memory.

DST Conditionally flush the IB
and provide the cache
with a new Address for
prefetching IB data.

DST Send the cache notification None
of a new address for pre-
fetching IB data once the
decoder handles the
16-address page cross.

DST Send the cache a read/ None
write probe request.

Address

which marked them for processing at runtime.
Another problem was that some VAX macroin-
structions had not been coded yet, and others
were more complicated than required for sirnu-
lation. (Many of the VAX floating-point instruc-
tions were in this category.) In those cases
sequences of handwritten microcode were used.

Processor Simulation Model
The structure of the processor simulation model
was dr iven by t h e need t o p rov ide t imely
answers to questions asked by the designers.
The results had to be generated, verified, and
distributed as quickly as possible to be most
useful in design trade-off decisions. The require-
ments we considered most important were the
following.

The simulator must have a modular structure
that facilitates replacing, reconfiguring, and
reus ing rou t ines w h i l e minimiz ing t h e
runtime overhead.

A general-purpose cont ro l mechanism is
needed to manage communication and syn-
chronization between a number of indepen-
dent tasks running in parallel.

Extensive and f l ex ib l e 1 /0 fea tures a r e
needed to generate cycle-by-cycle traces and
reports with simulated performance statistics.

The ratio of simulated time to real time must
not be a bottleneck to obtaining results.

We chose a structure that favored changing
and reusing parts of the simulator, but which
ran slower, over one that ran faster, but was
hard to change. We did this knowing that the
simulator would be used to try many design
ideas that would eventually be discarded. The
simulator also had many parameters built in so
that different configurations and timings could
be tried. The structure we chose could be used
to evaluate many design alternatives. Since this
was the first VAX processor to be modeled this
way, we had to design and build all the software
for the simulator; none of it could be borrowed
from other projects. Therefore, we knew that
producing results quickly would be difficult.

The structure chosen required that the simu-
lated processor be partitioned into a number of
independent components, each modeled by a
determinist ic s tate-machine. That machine
defined the actions to be done when each state
was entered, and the conditions to be evaluated
for dec id ing the next s tate t ransi t ion. This
approach had several advantages. The hardware
designers could relate easily to state-machine
models of their particular designs, even though
the states in the simulator sometimes marked
performance-related events, not real hardware
states. This structurc also made it possible to
replicate components and reconfigure the origi-
nal single-processor version of the simulator
into a dual-processor version.

A monitor is needed to control the communi-
cation, synchronization, execution, and status of
these independent state-machine components.
For communication between components, only
certain types of send and receive operations are

Digital Technical Journal
No. 4 February 1987

New Products

used. This restriction allows the component
interfaces to be simple and well defined. There
are three types of send operations:

1. A targeted send directs source informa-
tion to a single destination within the
current cycle.

2 . A broadcasted send directs source infor-
mation t o zero o r more des t ina t ions
within the current cycle.

3. An arbitrated send directs source informa-
tion to a single destination, stalling exe-
cution of the sending component until
the information is delivered.

There are two types of receive operations:

1 . A targeted receive results in the delivery of
source information from a send operation.

2 . A collection receive is limited to probing
source information from a send opera-
t ion ; this information is used by the
model to make decisions.

The monitor keeps two queues for the com-
ponents: one for component send requests, the
other for component receive requests. The mon-
itor also synchronizes send and receive requests
on behalf of the components and reports errors
when undel ivered send o r rece ive en t r i e s
remain in the queues.

Synchronization be tween componen t s is
achieved using the send, receive, and timing
services built into the monitor. The send and
receive operations allow the specification of a
phase number so that components can send and
receive information only at certain intervals
within the basic microcycle clock recognized by
the monitor. The monitor blocks components
from executing while they wait for send o r
receive requests to be serviced. States within a
component can be designated as time sensitive.
When the next state to be executed within a
component is so designated, that component is
blocked from executing until the monitor incre-
ments the clock.

Execution p roceeds on the basis of o n e
machine cycle. State-machine components are
chosen to execute, one at a time, starting at the
state at which each was last left. Component
execution continues until the required send,
receive, or timing service returns control to the
monitor. When all components have reached

states in which no more activity is possible for
the cycle, the monitor will increment the mas-
ter clock and the execution of components can
resume. End-of-simulation and detected-error
condit ions cause the monitor to generate a
report of results by calling each component to
execute its report code.

The complete model for the VAX 8800 family
processor ran on a VAX-11/780 system and exe-
cuted about six VAX macroinstructions per CPU
second. That translates to a ratio of simulated
time to real time of about ()0,000 to 1. The con-
trol monitor was written in PL/I; the processor
state-machine components were written using
VAX assembler macros. Once the ADA language
had been added to the list of VAX-supported lan-
guages, we translated the entire processor per-
formance simulation model into that language.
This new simulator is being used for follow-on
processor performance studies. The ADA lan-
guage was chosen because its multitasking fea-
tures provide excellent support for the control
monitor functions that we defined.

Verification of the Simulation Model
An important and often overlooked aspect of
developing a performance simulation model is
the effort required to verify that the model
reflects the actual design. In the early stages of a
project, the details of the proposed design are
usually communicated by word-of-mouth. Con-
tinuous changes to that original design enlarge
greatly the margin for error within a perfor-
mance simulator. Since wrong performance data
is counterproductive, a great deal of our effort
went into verifying that the simulation opera-
tion and results accurately reflected the current
state of the design.

Once the performance simulator produced
results, the designers reviewed cycle-by-cycle
traces of simulator activity to confirm that the
simulator's operation matched the processor
design. In addition, we developed a set of short
tests that exercised certain key functions. These
tests were rerun for each new version of the sim-
ulator, and the test results were exhaustively
compared to those from the previous version.
This procedure was effective in revealing unan-
ticipated interactions and errors due to changes
made in both the simulator and the design. A5
the design progressed, we were able to compare
our simulation results with those from a behav-
ioral model used for debugging microcode.

- -

Digital Technical Journal
No. 4 F e b r r r a ~ : ~ ~ 1987

103

The Simtilation of Processor Performance Jor the VAX 8800 Family

Eventually, we could compare our results with
those from a working prototype system. Because
t h e m o d e l t r a c k e d t h e d e s i g n ' s e v o l u t i o n
closely, these comparisons showed the perfor-
mance model to b e an accurate representation
of the design.

Performance Model for the
VAX 8800 Family Processor
This section describes the processor hardware
resources that were modeled. For each modeled
component, there is a short summary describing
its funct ion, the information communicated
with other components, and the parameters that
can b e specified at runtime to control simula-
tion configuration and timing. Although some
information about the VAX 8800 family proces-
sor design is included, reference 3 should be
consulted for more detail.

Figure 1 is an overview of the processor per-
formance simulator used for the VAX 8800 fam-
ily. The various components are represented by
circles, the communication paths by arrows. AS
described earlier, each component is an inde-
pendent state-machine that communicates with
o t h e r c o m p o n e n t s us ing d e f i n e d s e n d and
receive operations.

MICROINSTRUCTION
I

CACHE
ARBITER

Figure I Performance Model for the
VAX 8800 Family

Decoder
The decoder state-machine sends the pipeline a
microinstruction during every unstalled cycle
and detects the end-of-simulation condition. To
d o those actions, the decoder requests bytes
from the instruction buffer (IB), using informa-
tion provided in the instruction trace When the
IB indicates that the recluested bytes are avail-
able, the appropriate microcode flow is chosen
to start execution. If the IB cannot deliver the
requested bytes, then no-operat ion microin-
structions are fed to the decoder. The decoder
must also con~municate with the cache control.
For example, the decoder must resolve any IB-
address page crosses detected by the IB prefetch
hardware in the cache. Also kept by the decoder
is a parameter that controls the number of VAX
instructions executed between cache flushes
due to context switch~ng.

Pipeline
T h c p i p c l i n e s t a t e - m a c h i n e s i m u l a t e s how
microinstructions provided by the decoder are
to be executed. During any one cycle, parts of
three consecutively queued microinstructions
are processed:

The DST field of thc oldest microinstruction

Thc ALU field of the next microinstruction

The SRC field of the microinstruction most
recently queued

For e v e r y c y c l e t h a t t h e p i p e l i n e is n o t
stalled, the oldest microinstruction is retired
after thc command in its DST field has com-
pleted. The actions performed by the pipeline
are described in Table 1 . The pipeline can send
flush requests to the IB, and processor read and
write requests to the cache (after arbitrating and
winning it). The pipeline also manages the vali-
dation of the memory data registers (MDRs).
Pipeline stalls that result from those actions are
made known to the decoder. The only pipeline
parameter the user must enter is the cycle time
in nanoseconds, used for calculating perfor-
mance data at the end of simulation.

Instruction Buffer
The IB statc-machine simulates a first-in, first-
out (FIFO) cache for VAX instruction stream
data. l 'he 1B accepts requests for bytes from the

104 Digital No. Technical 4 Frbrrra~-~~ Journal I 9 8 7

decoder and notifies it whether o r not the bytes
are available. The IB model does not actually
store any stream data; however, i t does manage
the count of valid bytes within IB longwords as
that data is shifted in and out. The cache-control
component prefetches data for the IB and also
notifies the 1B of prefetched data whenever no
other activity is scheduled for the cache during
a cycle. When ful l , the I B notifies the cache
control of that condition. In turn, the IB is noti-
fied by the pipeline model when it needs to be
f lushed d u c t o a c h a n g e in t h e ins t ruc t ion
stream sequence.

Thc configuration of the 1B is controlled by
two parameters: the number of blocks, and the
number of bytes per block. For the VAX 8 8 0 0
family processor, the IB has four blocks, each
four bytes long.

Cache Arbiter, Control, and Queues
From the viewpoint of performance, the cache
subsystem in the VAX 8 8 0 0 family processor
contains an important se t of resources . This
cache design was modeled in the simulator by
th ree s ta te-machine components : t h e c a c h e
arbiter, thc cache control, and the cache mem-
ory-request queues. From the viewpoint of per-
formance simulation, these functions were the
most independent ones that cou ld b e segre-
gated.

T h e c a c h e a r b i t e r s t a te -machine c o l l e c t s
requests from the three components that require
cache service. The first, the pipel ine model ,
sends read/write arbitration signals for the pro-
cessor. The second, the cache-control model,
sends read arbitration signals for a stalled-pro-
cessor condition. The third, the memory inter-
connect model, sends memory arbitration sig-
nals. During every cycle, the arbiter sends to the
cache control the arbitration winner that will
have the cache during the next cycle. There is a
fixed priority for choosing an arbitration win-
ner. Memory has the highest priority, followed
by processor reads and writes of various types;
cache IB prefetching (the default) has the low-
est priority. The cache-control and memory-
request queues models also provide status infor-
mation used in dcciding an arbitration winner.
Certain types of stalls result in no winner. The
arbi ter mode l requ i res n o parameters t o b e
specified by a user at runtime.

The cache-control state-machine is the center
of t h e pcrformance s imulat ion model i n the
sense that it communicates with all but one of
the other state-machine components. The hard-
ware resources managed include the combined
instruction-stream-and-data cache, and a long-
word delaycd-write buffer used to hold write-hit
data until i t can be written into the cache. Like
the IB, the cache control model keeps control
and status information only for the cache and
the write buffer. During every cycle, the cache
control acts on the request chosen during the
last cycle by the arbiter. That request can be a
refil l from memory , a read l o o k u p and t h c
appropriate cache hit o r miss activity, or a write
to the delayed-write buffer and memory. For a
cache-write request, the data in the delayed-
write buffer is written to the cache when the
next write reclucst is processed, and then only if
the address of the buffered write actually hlt in
the cache. If there are no memory or processor
requests, data is prefetched for the 1B automati-
cally, by default.

A number of parameters can be specified at
runtime within the cache control, most of them
specifying the configuration of the cache. Such
configuration parameters include

Switching the cache on or off

The cache size in bytes

The set size

The block size in bytes

The block fill size in bytes

The block replacement algorithm (random,
least recently used, o r FIFO)

The memory updating algorithm (write back
or write through)

Allocation for write misses

C o n t r o l d o e s n o t e x i s t f o r a l l p o s s i b l e
cache options in the processor model for the
VAX 8 8 0 0 family, b u t t h e cache routines d o
support them. The implemented cache configu-
ration is 64KB, d i rec t mapped wi th 64-by te
blocks and a 32-byte block fill (done as two sep-
arate 16-byte refill sequences). It features write-
through memory updat ing and no allocation
for wri te misses. For study purposes, another

Digital Technical Jorrrnal
No. 4 Febrrmry 1987

The Simzrhtion of Processor Performr~nce for the VAX 8801) Ff~rnill~

parameter was included that ;illows citlicr one-
or two-cycle rcad hits to the cachc. The VAX
8800 family processor design implements one-
cycle cache read hits.

The cachc: memory-request queues s tate-
machine manages the I R read-miss clucue, the
processor read-miss queue, and the write-buffer
queue . The IB read-miss queue has two e le -
ments, thus allowing two outstanding misses for
IB data. A third outstanding miss will replace
the second one. thus avoiding ;I pipeline stall.
The processor read-miss queue has one clement;
therefore, two outstanding read misses will stall
the pipeline. However, processor read hits are
a l l om~d to continue with onc outstanding read
miss. The write-buffer queue consists of two
octaword (1 6-byte) e lements . Consecutive
writes within t.he same octaword arc buffered
until an event forces data in the write buffer to
be sent to memory. That event can be encoun-
tering either a write that is not in the same octa-
word or a microcode control command. The
c a c h c c o n t r o l s e n d s r e a d - m i s s and w r i t e
requests to the appropriate clueue. If a queue is
full , a signal tells thc cache control that no
more requests can be accepted.

From the cache queues, rcquests to memory
are generated and sent to the memory intcrcon-
nect after the arbitration for that interconnect
has been won. These requests are prioritized to
facilitate choosing which of three possiblc
requests will be sent to the memory intercon-
nect at any point in time. To maintain thc rank-
ing, a two-bit counter will increment only on
the appearance of a write following a read. Thc
request chosen is the one with the Iowcst rank
count. If two requests have the same ranking.
priority will be given first to the write. then to
the processor read, and finally to the IB read.
The cachc queues componcnt has one parame-
ter that can be specified at runtime: the number
of cyclcs that a request ready to be sent to thc
memory interconnect must remain q ~ ~ c u c d . The
final processor implemcntation required only
one cycle, although this timing was not known
when the model was built.

Memory Interconnect
The memory interconnect statc-m;~chinc handles
rcquests bctween the cachc queues and mem-
ory. Transactions requiring one or more cyclcs
on the bus include cache-refill data, in octa-
word packets, from memory; processor-write

requcsts of up to ;in octaword in size; and pro-
cessor data- or instruction-read requests for
32 bytes (returned from memory as two octa-
word packets). llntil transmittcd, each transac-
tion "owns" the bus. A one-cycle settle time is
required between transactions as well, Arbitra-
tion for the ~ L I S occurs during every cycle to
choose a winner for the next cycle. Priority is
given first to thc current transaction holding the
bus. thcn to the one-cycle settle time, then to
memory. and finally to any pending write or
rcad from the cache. A cache request to mcmoq7
is queued during the cycle after the rcqucst was
transmittcd on thc bus. The timing of subse-
quent cache requests for memory is controlled
by the sum of two parameters specif ied at
runtime. These parameters are

The number of cycles between the time ;I

cache requcst transmits on thc interconnect
and the timc thc cache receives an acknowl-
edgment from the bus

4 The number of cycles between the time the
c;~che receives thc bus ;icknowledgment and
the time the next cachc request can transmit
on the bus

The VAX 8800 family processor implementa-
t ion has a value of two for each parameter ,
although this timing hacl not becn determined
when the model was c rea ted . Several o ther
parameters were included in the memory inter-
connect state-machine for study purposes. The
onc-cycle settle time can be enabled or disabled.
and the interconnect can acknowledge configu-
rations with either onc or two processors. We
also inclutlcd the capability to slow the mcmory
subsystem. relative to the processor/cache
request timing. by either two or three times.

Memory
We had cons ide red model ing in dctai l t hc
designs for both the memory controller and the
array module. The effort required was so substan-
tial, however, that we first modeled only the
best- and worst-case scenarios. The ensuing
results indicated that cxtra detail in the model
would not yield correspondingly enlightening
informat ion; t he re fo re , t he memory s ta te -
machinc models only best- and worst-case mem-
ory pcrformance. 'I'he choice of best- o r worst-
case is a parameter specif ied by the user at
runtime.

Digital Technical Journal
No. 4 Februaty 1987

The bcst-case memory model assumes memory
is never busy and can take requests from the mem-
ory interconnect whenever they are generated.
Thus instead of the eight memory-array modules
the processor is limited to, this model effec-
tively simulates an infinite number of modules
with no contention for specific ones. The only
parameter the user must specify is the number
of cycles between the time the read request
reaches memory and the time memory arbitrates
for the memory interconnect to return requested
read data to the cache. The implementation has a
value of approximately 14 cycles, which reflects
the memory read latency. Write requests for
memory are simply delivered; no further action
has to be taken.

The worst-case memory model assumes only
one array module is available to handle read and
write requests. Requests for memory are queued
in a buffer for processing by the array module.
When all queue elements have requests, a mem-
ory-busy signal will inhibit the memory intercon-
nect from sending additional requests until a
queue element is available. A number of parame-
ters can be specified by the user at runtime to
control the timing of requests within the mem-
ory con t ro l l e r and t h e array m o d u l e . O n e
parameter is the length of the memory-request
queue, a value from one to eight. The processor
design used a value of th ree for this q u e u e
length. The other parameters are the numbers of
cyc les r equ i r ed for var ious ope ra t ions , a s
described below. The actual value specified for
the processor design is contained between the
parentheses following each parameter's descrip-
tion. These parameters are

The time a request must be queued before
processing in the array module (2 cycles)

The time required by the array module to
proccss a read (1 2 cycles)

The time required by the array module to
process a write (9 cycles)

The time required by the array module to
process read data for a masked wr i te (2
cycles)

The time required for a refresh of thc array
module (1 2 cycles)

The time between array refresh signals (300
cycles)

Processor Resources Not Modeled
In addition to some of the microcode and parts
of the memory subsystem, several other parts of
the design are not simulated. The translation
buffer that contains virtual-to-physical address
mappings is not modeled. (The design has a
1024-entry, direct-mapped translation buffer,
half of it for system-space addresses, the other
half for process-space a d d r e ~ s e s .) ~ The logic
and microcode that handle alignment traps are
not modeled. Any unaligned addresses associ-
ated with processor rcad and write requests for
the cache are automatically aligned by the sirnu-
lator. Finally. no 1 / 0 traffic is generated on the
memory interconnect to compete with proces-
sor and memory traffic. These omissions could
impact the simulated performance of some pro-
cessor designs for some workloads. However,
their exclusion from this model did not impact
the performance estimates generated for the
processor with the set of workload programs
used.

Evolution of the Model
Before presenting studies done with the proces-
sor performance simulator, we should examine
how the model evolved. Our most significant
achievement was to continue developing the
model even as project goals changed and as the
design materialized over tlme. This continual
adjustment resulted in a model that reflected
the latest design and could b e used in new
design studies.

The first version of the simulator was not
ve ry d e t a i l e d . I t i n c l u d e d t h e p i p e l i n e ,
the instruction buffer, the cache arbiter, a cache
she l l , and some hand-coded microcode for
evaluating operand specifiers and for a limited
number of VAX instructions. No lookup was
done in the cache shell. A parameter specified
t h e h i t and miss percentages des i r ed , and
random number generation was used to decide
t hc l o o k u p resu l t s . Runs w e r e made wi th
both two and four 1B longwords, and 9 0 and
100 percent hit rates in the cache; the workload
was the Towers of Hanoi benchmark . Two
important results were indicated: first, the per-
formance was in line with the stated goals; sec-
ond, it was desirable to have more than two IB
longwords.

Digital Technical Journal
No. 4 Febrr~ar)~ 1987

The Simulation of Processor Performance for the VAX 8800 Family

At that point, a more aggressive set of design
goals was se t by engineering management .
Therefore, the next version of the simulator
modeled more of the detailed implementation
that was evolving. This detail included the
decoder, the cache-control and memory-request
queues , and the memory in te rconnect . We
developed microcode translation software and
used the first base-level microcode released to
control the model. Some custom coding was
done to accommodate single-precision floating
point instructions that were needed. Both hard-
ware and microcode bugs were uncovered dur-
ing the design and verification of this simulator
version, thus increasing its value to the designers.

Performance Simulation
Results and Studies
1Jsing the simulator just described, we carried
out a number of studies to verify the processor's
performance and to examine design alternatives.
Since the detailed results are very extensive, this
concluding section outlines the kinds of perfor-
mance information gathered and highlights a
number of studies that were done.

Performance Information Gathered
Information provided by a performance simula-
tor falls into four areas:

1 . Measuring the performance of a program
on an existing processor and then tracing
that same program to drive a processor
simulator are used to produce a relativc
performance estimate for the proposed
processor. (Of course, this comparison is
reasonable only if both processors are
implementations of the same architcc-
ture.) The information needed to make
the comparison includes the following:
the total number of instructions exe -
cuted, the execution time required, and
the cycle time on the nleasured system, as
well as the total number of instructions
simulated, the total cycles required, and
the proposed cycle time on the simulated
system. The VAX-11/780 processor was
used as the comparison machine for gcn-
erating performance estimates relative to
the VAX 8800 family processor design.

2 . Simulating the use of rcsources within
processor system components produces
information about how efficient each

component is in processing requests and
how wel l t h e c o m p o n e n t s i n t e r ac t .
Knowing what requests are received and
what percent of the time component
resources are stalled or busy (and why)
provides insight into the overall system
perforrnancc. We found that presenting
this detailed information in terms of avcr-
ages-per-i~istruction was an effective way
of summarizing the activities. This infor-
mation helped the designers in making
hardware design decisions at a low level.

3 Vary~ng the pxrameter values in a simula-
tor and comparing the results produces
useful information to evaluate high-level
dcsign and configuration decisions. Since
the VAX 8800 family proccssor design
was modeled, a number of studies have
been done to evaluate schemes that could
be used in new processor designs.

4. Analyzing the instruction stream data from
the trace that drives the simulator pro-
duces information about how the archi-
tecture's instruction set is used. This type
of information helps designers decide
which optimizations are most beneficial,
especially in the n~icrocode flows. Gath-
ering this information generally does not
require processor-specific functions in
the simulator. Therefore, the simulator
docs not produce that information. For
our purpose, the information was gath-
ered from another package of analysis soft-
ware.' Only individual VAX instruction
times that were specific to the VPLX 8800
family processor came from the simulator.

Highlights from Simulation Studies
Initially wc llscd the Towers of Hanoi, the prime-
number generator , and the s ingle-precis ion
Whetstone benchmark to drive the model. From
i t we derived results indicating that the perfor-
mance of the VAX 8800 family processor was
between 4.5 and 5.6 times that of a VAX-11/780
processor. The designers made one change based
on the resource utilization statistics the simula-
tor generated. Cache read hits had required two
cycles, rather than the usual one cycle, when the
read address also matched a valid delayed-write
buffer address. This number was changed to one
cycle when the simulator showed the frequency
of this event was higher than anticipated.

Digital Technical Jourrral
No . 4 February 1987

Once the basic processor design had been
successfully modeled, work focused on broad-
ening the microcode coverage and simulating
various alternatives. Better microcode coverage
allowed rnorc programs to be traced and run
through the simulator. We wanted to use more
diverse programs, like the FORTRAN compile
and the VAX/VMS link, to exercise the design
using thc simulator. Alternatives such as cache
flushing to simulate context switching, t he
worst-case memory model, and the dual-proces-
sor version were also added . To s tudy t h e
model's behavior, we ran many simulations,
varying the basic processor configuration and
comparing results to detect the effects. Even
today, this work continues as new design ideas
surface.

Thc following list shows the VAX 8800 family
processor simulation parameters and configura-
tions that were most sensitive from a perfor-
mance point of view:

Context switching, simulated by invalidating
all cache entries every n VAX instructions,
showed a per formance degradat ion from
8 percent when done every 10 ,000 instruc-
tions, to 23 percent when done every 2,000 in-
structions. We chose an interval of 5,000 in-
s t ruc t ions fo r t h e s imu la to r , w h i c h is a
conservative estimate. (The degradation was
13 percent for 5,000 instructions.)

A timing requirement of two cycles for read
hits in the cache, rather than one cycle as
implemented in the VAX 8800 family proces-
sor design, degraded the simulated perfor-
mance by 9 percent.

The latency time for memory reads decreased
performance by about 0.75 percent for each
additional cycle of latency.

The worst-case model for memory, using only
one array module, required 14 percent more
cycles than the best-case model. ('This result
contributcd to our decision to use only the
best and worst cases.)

A slow memory interconnect and controller
relative to the processor degrades the perfor-
mance gains when a faster processor is used.
Doubling the processor speed by cutting the
cycle time in half increased performance by
only 1 .5 times over that of the slower proces-

New Products

sor wi th t he same memory. Tr ip l ing the
speed increased performance by only 1 .7
times.

Enhancements made in the FORTRAN com-
piler for generating code had a great impact
on the instruction stream traced, as well as on
the performance estimates derived using the
FORTRAN benchmarks. This improvement
was particularly noticeable for the FORTRAN
compiler released with VMS Version 4 .

Summary
The development of the VAX 8 8 0 0 processor
performance simulator continued throughout
the entire project. The simulator helped to ver-
ify the attainment of performance goals and pro-
vided performance trade-off information to the
designers. The model's results fostered discus-
sions about interfaces, helped the designers to
find problems, and uncovered unanticipated
interactions. The simulator continues to con-
t r ibu te to cu r r en t processor design efforts
through its use in studying the performance
impact of alternatives.

In addition, we learned a number of impor-
tant lessons that will be useful in designing
fu tu re s imula tors . First, it is impor tan t t o
develop the basic processor simulation func-
tions as early as possible in a design project.
Having a general-purpose cache model that can
be called and controlled from different proces-
sor implementation models is one of the most
important functions.

Second, defining and developing a monitor to
control the various parts of a simulator, apart
from implementing the particular design, has
significant implications for designers of perfor-
mance simulators. Having separate control func-
tions allows the implementor to concentrate on
understanding the design to be modeled, as well
as to take advantage of features provided by the
control monitor to debug the model. Separating
control from the simulated design, however,
does not result in a simulator with the most
optimized runtime performance.

Acknowledgments
I had the support of many people in developing
the performance simulator for the VAX 8800
family processor. The processor hardware and
firmware teams explained the design, reviewed

Digital Technical Journal
No. 4 Febl-unry I987

109

The Simzllation of Processor Performance for the VAX 8800 Family

the results, and encouraged the effort. Simon
Steely and Mark Firstenberg helped to clesign
and implement the original simulation tools.
Peter Craig developed the microcode characteri-
zation process and software. Eric Rasmussen cre-
ated the dual-processor version of the simulator
and the ADA performance simulation model.

References

1. C. Wiecek 2nd S. Steely, "Performance
Simulation as a Tool in Central Process-
ing Unit Design," Performance Evalua-
t i o n Review, vol . 1 1 , no . 1 (August
1979): 4 1-47.

2 . T. Leonard, ed. VAX Architecture Refer-
ence klanual (Bedford: Digital Press,
Order No. EY-3459E-DP, 1986).

3. S. Mishra, "The VAX 8800 Microarchitec-
ture," Digital Technical Journal (Febru-
ary 1987, this issue): 20-33.

4 . C. Wiccek, "A Case Study of VAX-11
Instruction Set Usage for Compiler Exe-
cution," ACM Proceedings of the Sym-
posium on Architectural Support for
Programming Languages and Operat-
ing Systems (March 1982): 177- 184.

110 Digital Tecbnical Journal
N o 4 Febrzrarv 1987

Stuart J. Farnham
Michael S. Harvey

Kathleen D. Morse

VMS Multiprocessing on the
VAX 8800 System

Some features of the VM 8800 architecture are particularly relevant to
multiprocessor operation. Special hardware, not included in the VAX
architecture, allows the VMS operating system to use both CPUs in an
asymmetric, tightly controlled fashion. The processors operate in a
master-slave relationship with one CPU handling all I /O. The hardware
handles interprocessor interrupts, cache coherency, and shared mem-
ory. VMS uses the interprocessor interrupt in managing operations
between the master and slave CPVs. The VMS system also uses interlocked
instructions, exception handlers, and traps to handle multiprocessing.
Tbese instructions allow events to be scheduled and executed efliciently
on both processors.

Every computer system is a combination of hard-
ware and software architectures. the operating
system being a direct result of their merger. The
same oper;~ting system can be implemented on
different hardware systems with the same archi-
tecture, but a user can access only those features
that each set of hardware can support. The most
effective merger is the one allowing users of the
resulting operating system to make maximum
use of all the features designed into both the
hardware and software archi tectures . ' The
VAX 8800 multiprocessor is an example of the
result of such an effective merger.

The VAX Architecture and
Multiprocessing
Many of the VAX 8800 hardware features impor-
tant to VMS multiprocessing are defined by the
VAX architecture for single-processor and multi-
processor systems a1ike.l These features include
the processor modes, 1 / 0 and software inter-
rupts, exception handling, asynchronous system
traps (ASTs), and interlocked instructions. This
section briefly describes these features, which
are discussed in more detail later.

Processor Modes
The VAX architecture defines four modes in
which a processor may execute. In order of
decreasing levels of privilege, these modes are

kernel, executive, supervisor, and user. Most of
the critical resource management code in the
VMS system is executed in kernel mode; in fact,
some instructions can be executed only while in
that mode Two examples of such instructions
are LDPCTX and MTPR (move to processor reg-
ister). LDPCTX loads the context (stacks, page
tables, and so on) of a process into a CPU so that
the process can execute. MTPR is used, among
other things, to enable, disable, or trigger cer-
tain interrupts during resoiirce management.

Interrupt a n d Exception Handling
The VAX architecture supports the immediate
servicing of important events by means of a
mechanism that can transfer control away from
the currently executing process. Events that arc
primarily relevant to and normally invoke soft-
ware in the context of the currently executing
process are called exceptions. Events that are
relevant to other processes, or to the system as a
whole, are called interrupts, which are serviced
in a system-wide ~ o n t e x t . ~ The VMS operating
system provides a handler rout ine for each
exception and interrupt defined by the VAX
architecture.

Upon system startup, the VMS operating sys-
tem initializes a system control block (SCB),
which defines the locations of the various event
handlers, as shown in Figure 1 . The SCB contains

Digital Technical Jounral 111
No. 4 Febrria?:)~ I 987

VMS Multiprocessing on the VAX 8800 .Cysten?

TRANSLATION NOT VALID (PAGE FAULT) EXCEPTION

CHANGE MODE TO K E R N E L EXCEPTION

CHANGE MODE TO EXECUTIVE EXCEPTION

CHANGE MODE TO SUPERVISOR EXCEPTION

INTERPROCESSOR INTERRUPT

SOFTWARE INTERRUPT LEVEL 1 (UNUSED)

SOFTWARE INTERRUPT LEVEL 2 - (~ ~ ~ ~ ~ ~ ~ ~ f E L I V E R Y

SOFTWARE INTERRUPT LEVEL 3 - RESCHEDULING

SOFTWARE INTERRUPT LEVEL 15 - XDELTA

10 MILLISECOND INTERVAL TIMER INTERRUPT

Figure I System Control Block

an assigned longword that holds the address of
the handler for each interrupt and exception
serviced by the operating system.

In t e r rup t s and e x c e p t i o n s have varying
degrees of urgency. Each event has a specific
intcrrupt priority level (IPL) that designates the
relative priority of that event. 'The VAX architec-
ture includes 31 IPLs, divided into 15 software
levels (numbered, in hexadecimal, 01 to OF),
and 16 hardware levels (1 0 to I F) . User appli-
cations and system services run at the proccss
level, which may be thought of as IPL 0 . Inter-
rupt levels with higher numbers have highcr
priorities. That is to say, a request at an IPL
higher than the processor's current IPL will
interrupt immediately; requests at the salnc o r
lower levels will be deferred.* The interproces-
sor interrupt and the 10-millisecond (ms) inter-
val-timer interrupt are examples of hartlwarc
interrupts. The rescheduling interrupt and the
AST-delivery interrupt are examples of software
interrupts.

Software executing in kernel mode posts a
software interrupt by setting the appropriate bit
in t he software i n t e r rup t reques t register

(SIRR). A bit exists in the SIRR for each software
interrupt level. h interrupt can take place only
when the 1PL level of the CPU has been lowered
below that of the pending interrupt. For exam-
ple, the handler for the interprocessor intcrrupt
(executing at IPL 20) can post a reschedule
event (a software interrupt at IPL 3) by setting
the appropriate bit in the SIRR. When the CPU's
IPL drops below IPL 3, the IPL 3 interrupt han-
dler is invoked, which is the VMS code that ini-
tiates proccss rescheduling.

This technique allows high IPL code threads
to schedule lower IPL functions in a way that
allows all potentially interrupted code threads
at intermediate IPLs to complete first. Should a
higher IPL code thread merely lower the IPL by
force to execute the lowcr IPL function, any
intermediate IPL code threads that had been
interrupted would complete out of order, thus
breaking the software synchronization.

AST Delivery Mechanism
In any mode, the VAX/VMS system can interrupt
a code thread executing at IPL 0 , begin a new
code thread (also at IPL O), and then continue
the previously interrupted code thread. This
mechanism is called "delivering" an AST. The
hardware notifies the operating system that an
AST is dcliverablc to the currently executing
proccss by means of an interrupt at IPL 2. (Note
that this is the only instance of the \'AX' hard-
ware posting a software interrupt). Any process-
context code thread that must execute without
interruption by an AST has to be executed at
IPL 2 or higher. If a deliverable AST is queued to
the cur ren t process and the IPL of the CPU
drops below 2, then an IPL 2 interrupt will be
generated. To execute that interrupt, the IPL 2
interrupt handler first verifies that the AST can
bc delivered and then delivers it to the process,
after which the new code thread associated with
the particular AST is executed.

An AS?' code thread is associated by a process
with events that are expected to complete asyn-
chronously to the main thread of the proccss. An
example of such an event is an 1 /0 request that,
once issuecl, is handled by the system in parallel
with the main thread of the process. Upon 1 /0
completion, the associated AST is delivered,
which causes the main thread of the process to
bc interrupted in favor of the S T ' S code thread.

When an AST is specified for an asynchronous
event, i t is assigned a particular processor mode.

Digitul Technical Journal
N o . 4 Februrri:~' 1987

When the S T is queued to a process, its delivery is
deferred while that process is executing in a more
privileged modc than that of the queued AST. For
e x a m p l e , w h c n an AST in supe rv i so r m o d e is
queued to a process executing in kernel mode, the
AST w i l l n o t b e d e l i v e r e d u n t i l t h e c o n t e x t
changes from kernel mode to at least supervisor
mode.

Interlocked Instructions
The VAX architecture includcs a few instructions
that a l low synchronous access t o locations in
mcmory. Only those instructions will guarantee
consistent results if mul t ip l e processors want
simu ltancous access to the same memory locatio~i.

For b i t m a n i p u l a t i o n s , t h e s e i n t e r l o c k e d
instructions arc

BRCCl - Branch on bit clear and clear inter-
locket1

BBSSl - Branch o n bit sct and set interlocked

For a r i t h m e t i c m a n i p u l a t i o n s . t h e r e i s
ADAWI - Add aligned word interlocked.

For queue manipulation, the instructions are

INSQHI - lnsert at head of queue interlocked

INSQTI - Insert at tail of queue interlocked

REMQHl - Remove from head of queue inter-
locked

REMQTI - Rcmove from tail of queue inter-
lockecl

New Products

These ~nstructions are used extensively in the
operating sybtcm to provide multiprocessor syn-
chronization. They are also available to user pro-
ccsses to synchronize access to shared application
data.

The VAX 8800 System
T h e spec i f i c implemen ta t ion fea tures of t h e
VAX 8 8 0 0 multiprocessing system are described
in this section. Remember that the 8 8 0 0 is only
one of many implementations of the VAX archi-
tecture. Several important hardware features pro-
vided by the 8 8 0 0 are not specified in the VAX
architecture but are required for VMS multipro-
cessing. Thcse hardware features are

Primary processor access t o all peripherals

Interprocessor interrupts

Shared main memory

Cache coherency

VAX 8800 Implementation
The VAX 8 8 0 0 system consists of rwo VAX 8 8 0 0
processors that share main memory by means of a
fast memory-system interconnect called the NMI
bus.' The processor hardware i s completely sym-
metric; that is, either processor can fulfill the role
of primary processor for any booted instance of
the operating system. Figure 2 is a block diagram
of the VAX 8 8 0 0 system.

CONSOLE L,
CLOCK RIGHT

NMI

I I

NBI NBI
MEMORY n ADAPTER ADAPTER

VAXBl VAXBl
BUS BUS

VAXBl VAXBl
BUS BUS

ENTROLLER
-

110 -

V V CONTROLLER
V

Figure 2 Block D i ~ i g r c ~ m of VAX 8800 System

Digital Techrrical Journal
No. 4 Frbrua~:)' 1987

113

VMS Multiprocessir~~q on the VA X 8800 .Tystern

'Ihrre is one console subsystem in tlie 8800.
which is shared by the two CPUs. The consolc
conun;ind language. implemented in software in
the console subsystenl. is a superset of the con-
sole functionality specified by tlie VAX architec-
ture.' Both CPUs can be controlled from the
single console terminal. After the system is
booted, the console terminal can be used like
any other terminal connected to the system.

Al l 1/0 devices are connected to the system
through VAXHI buses. The 8800 car1 accommo-
date up to four VAXIII buses, each of which can
accommodate up to I6 nodes, generally 1/0
controllers. "Ihe buses are connected to the NMI
by means of the NMl-to-VAXBI adapters, callecl
the NBIs. Each NBI consists of either two or
three parts: an NBIA, which is the interface to
the NMI; and one or two NBIHs. which are inter-
faces to the VAXBI buscs. An NRIB is one of the
16 nodes on its respective VAXBl bus.

IJnder VMS multiprocessing. all peripherals
arc controlled by the first processor to be
booted, designated the primary proccssor. The
other processor, the secondary, is preventccl
from accessing any peripheral devices (disks,
terminals, anti so on) because the codc commii-
nicating with those devices rutis in kernel
mode, an access mode that VMS utilizes only on
the primary. Thus, all 1 / 0 peripherals will be
accessed only by the primary processor. Typi-
cally, the left CPU in the VAX 8800 system is
chosen as the primary processor. However, con-
sole comniancls are available to design;itc either
CPU as the prin~ary one. A change in that desig-
nation takes effect after the next INIT command
is received by the console.

'I'he VAX 8800 hardware provides the capabil-
ity for onc processor to interrupt the other. This
interruption is accon~plished by writing a valuc
of 1 to an internal processor register on the
interrupting CPU by means of the privileged
M'TPR instruction (from kerncl mode only). The
VMS system uses this mechanism to synchronize
the CPUs as different system events occur.

'I'he main memory contains one copy of the
VMS software, which depends upon thc memory
subsystem and interlockcd instructions for
cache coherency ancl the consistency of memory
contents. The VAX 8800 memory subsysten~
automatically handles all cache updates; no soft-
ware logic is needed to maintain consistency
between the cache contents in each processor.
The 8800 docs implement a write buffer to

optimizc transfers across the NMI to the memory
subsystem. Therefore, the interlocked instruc-
tion$ must be issued to flush the necessary write
data all the way out to memory. If one processor
modifies shared data, the other needs to see the
change in a synchronized ancl timely fashion.

iMultiprocessor Implementation
/mprovements
Thc VAX 8800 system includes features that arc
impro.i7emcnts over previous multiprocessing
VAX hardware implementations, such as thc
VAX- 1 1/7-32 system. Larger amounts of physical
mcmory can be usetl, all of which is available to
the VrMS system or the system cliagnostics. More-
over. the 8800 cache provides better perfor-
mance. ant1 the system has :I smaller footprint
and ;I better price/perforn~ancc ratio. Perhaps
the most significant fact from a system-manage-
ment viewpoint is that only one console subsys-
tem with one terminal is needed to control the
entire multiprocessor. 'I'his single control p i n t
h:~s ramific;ltiotls for setting up the system ancl
running it as a multiprocessor.

The console subsystem h;is access to the mem-
ory configuration of the 8800. With previous
multiprocessors, the system manager had to con-
figure memory by manually determining the
appropri ;~te data, then entering it into cus-
tomized command procedures on specially built
floppy disks in the console:'

The console subsystem of the 8800 also elimi-
nates the need for operator intervention to boot
or restart the secondary proccssor. The VMS sys-
tcm is initi;llly booted o n the primary processor
;~nc l subsec]uently clirects the console subsystem
ro boot the secondary. Similarly, the console
subsystem restarts the VIMS system on the pri-
mary processor after a power failure. The oper-
ating system then directs the console to restart
the second;iry at the appropriate point in the
power-recovery sequence. At no time must the
operator be involved in bringing the secondary
on line.'

The VMS Operating System
The multiprocessing aspects of the VAX archi-
tcetilre and the VAX 8 8 0 0 implementation
provide the underlying hardware support for a
tot;~l ly integrated multiprocessing computer sys-
tem. This section discusses aspects of the VMS
software that are specifically related to multi-
processing as implemented for the 8800. (See

114 Digital Tech~zicrtl Jorrrrznl
IL'O 4 F ~ . h r ~ t a t : j ~ 1987

reference 5 for additional multiprocessing infor-
mation and recommended programming tech-
niques.)

Classification
In multiprocessing terminology. VMS multipro-
c e s s i n g is c l a s s i f i e d a s " a s y m m e t r i c " a n d
"tightly coupled." An asymmetric system is one
in which one CPU, called the primary, has criti-
cal system-wide responsibilities, including the
management of all the CPU resources. The other
CPU, called the secondary, has more restricted
responsibilities that exclude the management of
critical system resources (including itself). This
type of multiprocessing system is also referred
to as a "master-slave" arrangement. The other
classification, tightly coupled, means that both
processors ope ra te in a c lose ly synchronized
fashion; if they fail, they fail together.

O n a VMS multiprocessing system, both pro-
cessors share the same copy of the operating sys-
t em, a l though some c o d e is executed oniy by
one o r the other CPU. most of the kernel logic
in the VMS operating system is executed only by
the primary processor. That eliminates the need
for t h e complex synchronization and locking
mechanisms that would otherwise be required
t o p ro tec t t h e sys tem's data s t r u c t u r e s f r o m
access by multiple CPUs.

History of VMS Multiprocessing
VMS multiprocessing was introduced during the
development of VMS Version 3 .0 . At that t ime,
the p o w e r of a s ingle VAX-11/780 processor
was insufficient to build the VMS executive in a
reasonable amount of t ime. Several constraints
were placed o n t h e mul t iprocess ing develop-
ment effort. It had to involve minimal changes
to VMS kernel mode routines, use existing hard-
ware, and have minimal performance impact on
single-processor VMS system^.^

The first const ra in t above had t h e greates t
i m p a c t o n t h e c h o s e n d e s i g n o f VMS V e r -
sion 3 . 0 . T o achieve fully symmetric multipro-
cessing, changes would be required throughout
the who le operating system to extend IPL syn-
chronization as already implemented by VMS for
single-processor operation. Since those changes
were too extensive to make, w e chose an asym-
metric design in which the synchronization of
critical code was achieved by limiting that activ-
ity to the primary CPU. In this context, existing

IPL-based techniques were sufficient to synchro-
nize the code threads in kernel mode.

The second constraint led u s to configure a
system with two VAX-11/780 CPUs coupled by
an MA780 shared memory. In this configuration,
each CPU has a separate, independent console
subsystem; neither has access to the other's con-
sole. Booting this multiprocessor requires spe-
cial console command files and operator inter-
v e n t i o n f o r b o t h C P U s . S i m i l a r l y , t h e 1 / 0
devices configured on o n e CPU are inaccessible
on the o ther . Since most of t h e 1 / 0 subsystem
code executes in kernel mode , this constraint
has the effect of limiting the 1 / 0 devices usable
by the multiprocessor to those connected to the
primary CPU.

The final constraint led to a design that allows
multiprocessing code to be inserted dynamically
into the running executive. No multiprocessing
code is present in a single-processor configura-
tion of VAX/VMS.

T h e m u l t i p r o c e s s i n g c a p a b i l i t i e s i n VMS
Version 3 . 0 were extended to suppor t the n e w
VAX 8 8 0 0 system. These extensions take advan-
tage of new functions allowed by the new VAX
design. For example , as mentioned earlier, the
shared console subsystem allows the secondary
processor to be booted from the primary under
program con t ro l ; n o ope ra to r in tervent ion is
required.

Division of Work between Processors
As mentioned earlier, t h e VMS multiprocessing
code is a master-slave implementation. The sec-
ondary CPU is required to d o whatever work is
assigned to i t by t h e pr imary. T h e secondary
CPU can execute application code only, whi le
the primary CPU handles the I /O, paging, and
all resource management, as well as the execu-
tion of application code . Since all system ser-
vices that manage system resources are executed
i n k e r n e l m o d e , o n l y t h e p r i m a r y CPU i s
a l l o w e d t o e x e c u t e those se rv ices . T h e s e c -
o n d a r y CPU c a n e x e c u t e c o d e tha t is i n any
o t h e r m o d e : u s e r , s u p e r v i s o r , o r e x e c u t i v e .
Thus , t o b e technically accura te in mul t ipro-
cessing terminology, t h e VMS multiprocessing
system is symmetric for code in the user, super-
visor, and executive modes, but asymmetric for
code in kernel mode.

The VMS boot code creates a SCB for each pro-
cessor. As described ear l ier , t he SCB contains

Digilul Technical Journal 1 1 5
iVo 4 Febrr~nr]~ 1987

VMS Mrkltiproccssing on the VAX 8800 S])stem

vectors to routines that handle various interrupt
and exception events. Many VMS interrupt and
exception handlers are idetitical for both the
primary and secondary processors. However.
there arc cases in which exceptions or inter-
rupts must be handled differently, depending
upon which processor receives the event. The
interprocessor interrupt and the software inter-
rupt used for rescheduling arc both examples of
system-wide events. Both arc vectored through
the SCB but require different handlers for each
processor. (Figure 1 shows the various interrupt
levels in the SCB.) The AST-delivery software
interrupt and the quantum end, a scheduling
event (described later), are examples of pro-
cess-related events that also rcquire different
exception handlers in the SCB of each CPU. By
separating the handlers into processor-specific
SCBs, the more costly and difficult task of run-
time separation within an otherwise commonly
executed handler is avoided.

Typically, when an exception occurs on the
secondary, that CPU's excep t ion handler
"reflects" that exception back to the primary.
To do that, the cxccption handler stores both
the address of the primary's exception handler
and an appropriate processor status longword
(PSL) on thc stack of the current process. The
secondary's exception handler then saves the
context of thc current process and passes the
process back to the primary by requesting a
rescheduling event. The process eventually exc-
cutes on thc primary, whose exception handler
will immediately get control as if the exception
had occurred there originally. Exception pro-
cessing is therefore synchronized on a system-
wide basis by virtue of running on the primary
processor only.

The SCB for the primary CPU consists of mul-
tiple pages of interrupt and exception vectors.
'The format of the first page is defined by the
VAX architecture. This page contains vectors for
all implcmentation-independent exceptions and
interrupts, and for a few imp.lementation-depe~i-
dent ones. Additional pages o f vectors are pro-
vided for 1 / 0 interrupt handlers. Under VMS
multiprocessing. the length of the SCB for the
secontlary CPU is onc page. 'The pages that make
up the 1/0 subsystem portion of the SCB are not
needed on the secondary, which will not initiatc
1/0 requests nor receive I/O interrupts.

Interprocessor Interrupts
The VAX 8800 hardware provides a key feature
for optimizing the VMS multiprocessing soft-
ware: the ability of one processor to interrupt
the other. This interprocessor interrupt mecha-
nism is used extensively on each CPU by the
VMS operating system.

The primary processor interrupts the sec-
o n t l a ~ for several reitsons. First, the primary can
request an inva1itl;ction of a translation buffer
entry corresponding to a system-space address
that is about to be invalidated on the primary.
'I'his event forces coherency between the trans-
lation buffers of both processors with respect to
mapping changes in the shared system virtual
address space. Second, the primary can interrupt
because i t has qucucd an AST, typically for 1/0
completion, for the process currently executing
on the secondary. This event ultimately results
in the process being rcschcduled onto the pri-
mary, where the ;~ctual dclivery of the AST to
thc process can be accomplished. Fin;~lly, the
primary can initiatc and synchronize a system-
wide shutdown or a crash.

Thc secondary processor will interrupt i f i t
wants the primary to take back the current pro-
ccss and find another process for the secondary
to execute. The sccond;lry will also interrupt if
i t detects a hardware error or if i t wants t o ini-
tiate a system-wide crash.

Secondary State Transitions
A state variable is maintained to record the cur-
rent statc of the second;iry processor. The pri-
mary processor L I S ~ S this state to dcterrnine
whether or not to scliedule work for the sec-
o n d a ~ y . When the secondary is booted, thc state
vari;tbJe is already set to INIT. After booting, the
second;try changes the statc variable to IDLE.
Dt~ring its next reschedule operation, the pri-
mary will notice the lnLE state and attempt to
schedule a process for the secondary to execute.
After finding a process for the secondary, the
primary sets the state variable to BUSY. The sec-
ondary. which has been continually checking
the state variable for this transition, then loads
the process's context from memory and sets the
statc to EXECU'I'E.

'The secondary will execute its current pro-
cess until. the process either receives its quan-
tum of CPU time or is blocked by some request

that must be synchronized in a system-wide con-
text. (That request must be executed in kernel
mode on the primary.) At this po in t , t he sec-
ondary saves the process's context in memory
and sets the state to DROP. Using the VAX 8 8 0 0
in terprocessor in ter rupt mechanism, t h e sec -
ond;~r)l then interrupts the primary and requests
another process to execu te . The prirnary takes
the saved process back from the secondary, set-
t ing that CPIJ's state to IDLE. 'Thus, t h e s ta te
transition has made an entire circuit .

Figure 3 shows the state transition diagram for
t h e secondary CPU. T h e pr imary 's pa ths a r e
marked P and the secondary's paths are marked
S to indicate which processor controls each tran-
sition from one state to another. The only state
not explained above is the STOP state, used only
when the secondary is shut down.

EXECUTE 0

Figure 3 Secondflry CPU State Transitions

Process Scheduling under the VMS
Operating System
Some aspects of process schedul ing w e r e dis-
cussed in t h e p rev ious sec t ion . Th i s sec t ion
describes in greater detail how process schedul-
i n g is i m p l e m e n t e d in t h e VMS s y s t e m a n d
which of its aspects are different in a multipro-
cessing environment."

Single- Processor Scheduling
The VMS scheduling algorithm implemented o n
a single processor is round-robin and p reemp-
tive, with the highest priority process being exe-
cuted first. There are 31 levels of process prior-

ity (which are not the same as interrupt priority
levels). Thirty-one is the highest priority, o n e
t h e lowest ; process pr ior i t ies a re subdivided
into real-t ime (priori t ies 16 to 31) and "nor-
tnal" (priorities 0 to 15) ranges. The real-time
priorities are used by time-critical applications,
s u c h as h igh-speed data acqu i s i t ion . W h e n a
process is created, it is assigned a base priority.
Its priority during execution is guaranteed never
to d r o p be low that base priority unless e i ther
t h a t p r o c e s s o r a n o t h e r , p r iv i l eged p r o c e s s
requests i t to .

Each process is a l lowed a quan tum of CPU
t ime (usually 2 0 0 rns, equivalent to 20 inter-
rupts of t h e 10-ms interval t imer ; however , a
system manager can change the default) . Each
time the interval timer interrupts, the interrupt
handler checks to see if the current process has
used u p its quan tum. If so , quantum-end pro-
cessing is initiated.

For a process with a priority in the real-time
r a n g e , q u a n t u m - e n d p r o c e s s i n g c o n s i s t s of
award ing a n e w q u a n t u m t o t h e p rocess a n d
allowing it to continue execution. A reschedule
event will occur when a normal-priority process
has used u p its quantum. In the latter case, the
c u r r e n t p r o c e s s i s p l a c e d a t t h e e n d of t h e
scheduling queue maintained for that process's
priority (there is one such queue for each pro-
cess priority), and the process at the head of the
queue is chosen to execute.

T h e p r i o r i t y of a n o r m a l - r a n g e p r o c e s s is
r a i s e d a f t e r c e r t a i n b l o c k i n g e v e n t s h a v e
cleared. For example, t o provide good response
t ime t o interactive users, a process ' s priori ty
will b e temporari ly boosted after t h e comple -
tion of terminal input. This arrangement results
in a tendency for compute -bound processes to
remain at their initial priorities (called the base
priority). However, I /O-bound and interactive
processes, which are blocked more frequently,
usually attain priori t ies somewhat higher than
their base ones. A process's priority is lowered one
point when the process is scheduled to execute ,
unless it is already running at its base priority.

New Products

Multiprocessor Scheduling
The primary processor schedu les all work o n
t h e sys tem, for both itself and t h e secondary
processor . The schedu l ing a lgor i thm used for
the primary processor is basically the same o n e
used in a single-processor system (an important

Digital Technical Jotrrnal
No. 3 Februar), I987

117

VMS Multiprocessing on the VAX 8800 System

goal in this irnplemcntation). For the niultipro-
cessor scheduling algorithm, however. certain
modifications were made to extend the effec-
tiveness of process scheduling to utilizc the
additional CPU resources that arc available. Thc
execution environmcnt of the sccondary proces-
sor is more constrained than that of the primary.
Most notably, the kernel-modc codc is restricted
to the pr imary CPU. The mul t iprocessor
scheduling algorithm attempts to keep that sec-
ondary CPU as fully utilized as possible with
minimal scheduling overhead in the following
mays :

The primary processor always schedules a
process to run on the secondary before
scheduling a process for itself to execute.

The primary processor will schedule a pro-
cess to run on the secondary only if that pro-
cess does not require immediate execution in
kernel mode and does not have an AST
(which requires kernel-mode execution)
ready to be delivered. This scheduling helps
prevent situations in which a process can
flip-flop between processors, somet i~ncs
called scheduler thrashing.

Scheduling is preemptive on the primary pro-
cessor, but not on the secondary. Thus, if the
secondary processor is executing one job
when another job with higher pr ior i ty
becomes computable, the primary processor
will not interrupt the secondary to give i t the
higher priority job. Therefore, processes exc-
cuting on the secondary processor are more
likely to run for their entire quantum than are
processes executing on the primary.

This approach guarantees only that the
highest priority process will be executing,
not the two highest priority processes. To
guarantee the latter would require signifi-
cantly more interprocessor interrupt traffic
and is likely to increase thrashing on the
entire system, and will cspecially affect the
primary's ability to devote processing time to
its own selected process.

If all computable processes require cxecu-
tion in kernel mode, then the primary proccs-
sor cannot schcdule a process for the scc-
ondary and will execute a process itself.
Should that happen, an AST-delivery interrupt
will be generated automatically after the pri-
mary processor stops executing the process

in kernel mode. The primary processor han-
dles this interrupt by performing a reschedul-
ing operation. As a result, the primary proces-
sor sends the process i t was just executing,
which is no longer in kernel mode, to the
secondary processor in a timely fashion. The
primary is then free to execute another pro-
ccss itself.

Whcn there is only one computable process,
one of the CPUs will remain idle. In this case
the primary processor executes the process
itself even it may be perfectly eligible to exe-
cute on the secondary. Thus the overhead
processing associated with the post-kernel
mode AST and the subsequent rescheduling
of the secondary can be avoided. This case
also has the effect of preventing future
thrashing if the process needs access to ker-
nel-mode resources, at least until enough
computable processes become available to
kcep both processors busy.

'The system services7 that request event-flag
waits (SWAITFR, SWFLAND, and 8WFLOR)
arc anlong the most conlmonly executed ker-
nel-mode services.' If a process running on
the secondary processor requests an event-
flag wait, the VMS operating system will
attempt to avoid rescheduling the process
onto the primary CPU. The system-service
dispatcher on the secondary CPU first checks
to scc if the requested flags are already set. If
so, the process is allowed to continue execut-
ing on the secondary without rescheduling.

If the flags are not set, an interprocessor
interrupt requesting that the process be
placed into an event-flag wait state (either
LEF or CEF) will be sent to the primary CPU.
When that processor services the interrupt, it
again checks to see if the wait request has
been satisfied (the flags have been set). If so,
the process is allowed to continue executing
on the secondary. If the flags are still not set,
the process is taken out of execution and
placed into the appropriate wait state. The
secondary processor then becomes available
for scheduling.

Although a process may currently be eligible
for scheduling onto the secondary, the VMS
operating system cannot predict whcther or not
that process will require kernel-mode services
in the ncar future. If those services are needed,

Digital Technical Journal
No 4 Febrrrrrrj~ I987

New Products

the process would have to be rescheduled onto
the primary. For example, utilities that perform
interactive tasks (such as editors o r the mail sys-
tem) require numerous 1 / 0 requests . O t h e r
types of programs incur many page faults. These
processes are therefore poor candidates for exe-
cution on the secondary. Sometimes a system
managcr can predict that certain processes will
have those characteristics, and he o r she can
take preventive measures to avoid processing on
the secondary.

Thc following VMS multiprocessing schedul-
ing features give the system manager manual
control over the scheduling of processes on to
the secondary CPU:

A SYSGEN parameter exists to limit the maxi-
mum priority of processes allowed to executc
on the ~ e c o n d a r y . ~ Recall that priority boosts
are granted to processes after certain events,
such as 1 / 0 completion. These I/O-intensive
proccsscs tend t o stay at pr ior i t ies above
those of compute-intensive ones. Therefore,
setting the SYSGEN parameter a point o r two
above the default base-process priority may
effectively screen o u t many "unsuitable"
processes from the secondary processor. The
system manager can set the SYSGEN parame-
ter to 0 (indicating no priority screening is to
occur) o r to any value from 1 to 3 1 , which
sets the priority limit to the specified value.

A process can be made ineligible from exe-
cuting on the secondary processor by means
of the SET PROCESS/CPU = NOATTACHED
command. This command prevents user pro-
cesses that execute only interactive o r I/O-
bound u t i l i t i e s f rom r u n n i n g o n t h e s e c -
ondary. This fixed-process attribute remains
in force until i t has been changed with a SET
PROCESS/CPU=ATTACHED c0mrnand.j

Summary
The VAX 8 8 0 0 system running the asymmetric
VMS operating system provides the most com-
put ing power current ly available i n the VAX
family to execute compute-intensive applica-
tions. The 8 8 0 0 represents a merger of a n e w
hardware implementation of the VLY architec-
ture with preexisting multiprocessing capabili-
ties in the VMS operating system. This software
uses features of the VAX architecture and the
hardware for which it was originally intended.
With the advent of n e w multiprocessing hard-

ware, the software design could be modified
t o take advantage of add i t iona l capabi l i t ies
offered by the advanced hardware design in the
VAX 8 8 0 0 CPU.

Acknowledgments
The authors thank Jill Angel of Digital's Corpo-
rate User Publications Group for excellent assis-
tance in organizing this material and for serving
as writing coach, and Lawrence Kenah of the
VAX/VMS Development G r o u p for technical
assistance in planning this paper. Thanks also to
all others w h o reviewed this paper and made
technical and editorial suggestions and improve-
ments.

References
1. K. Morse and R. Kinicki, "A Performance

S tudy of M u l t i p r o c e s s o r S c h e d u l i n g
Algorithms o n a VAX-11/782," Confer-
ence Proceedings o f the International
Conference o n t h e Management a n d
P e r f o r m a n c e o f C o m p u t e r Sys t ems
(1 785): 280-287.

2. VAX- I I Architecture ReJerence Manual
(B e d f o r d : D i g i t a l P r e s s , O r d e r No.
EY-3459E-DP, 1787) .

3. J. Fu, J . Keller, and K. Haduch, "Aspects
of the VAX 8 8 0 0 C Box Design," Digital
Technical Journal (February 1987 , this
issue): 41-51.

4 . VAX- 1 1 / 7 8 2 User's Guide (Maynard:
Digital Equipment Corporat ion, Order
NO. AA-M54;3A-TE, 1782) .

5. Guide to Multiprocessing o n VAX/VMS
(Maynard: Digital Equipment Corpora-
tion, Order No. AA-HP69A-TE, 1786).

6 . L. Kcnah and S. Bate, VAX/VMS Interncrls
and Data Structures (Bcdford: Digital
Press, 1 784).

7 . VAX/VMS Sys tem Services Reference
Manual (Maynard: Digital Equipment
Corporat ion, O r d e r No. AA-Z5O 1 B-TE,
1986) .

Digital Tecbnical Journal
N o . 4 February f 987

Gabriel P. Bischofl
Steuen S. Greenberg I

A Parallel Implementation of the
Circuit Simulator SPICE on
the V M 8800 System

Multiprocessors are eflicient only i f the added computing power can be
used to solve specific applications. To demonstrate the V'AX 8800 multi-
processor's advantages, the authors converted the circuit simulator
SPICE into the parallel program CAYENNE. Their methodology involved
using VAX instructions and VMS systetn services to create and control a
series of master and slaveprocesses. Other VMS instructions were used to
synchronize these processes and to manage the critical sections. Modzji-
cations for parallel processsing were made in SPICE'S load, LU fmtoriza-
tion, and local truncation error phases. The result was that CAYENNE,
with two slave processes, ran 1.7 time faster than SPICE.

The realization that two processors might be
better than one is not new. Indeed, parallel
computing can be traced back to the nineteenth
century.' The advent of very large scale integra-
tion opened a variety of new opportunities in
the field of parallel processing for specific
applications such as image processing and signal
processing. Designing and efficiently using a
multiprocessor for general-purpose, high-speed
computing, however, is more complex.

The majority of today's application programs
are written for single-processor machines. To
convert these programs to run on multiproces-
sor machines and achieve close to the ideal
speed up, linear with the number of processors.
is not an easy task. Two approaches can be
adopted to accomplish this conversion task. The
first is to design specific compilers that auto-
matically convert programs written for single
processors into programs t h ~ t run efficiently on
multiprocessors. The second is to leave to the
application programmer the task of writing code
that makes efficient use of the multiple pro-
ccssors.

The first approach is the best from a user's
point of view; however, good multiprocessor
compilers have yet to be designed. The second
approach leaves more flexibility to the pro-
g r ; i n imer , w h o c a n m o d i f y s o m e of t h e
algorithms in the program to have more concur-

rency. Indeed, the two approaches should not
be mutually exclusive: tlie compiler can detect
parallelism at the instruction level whereas the
programmer can def ine paral lel ism at t he
algorithmic level. Parallelism on the VAX 8800
s y s t e m is a c h i e v e d t h r o u g h t h e s e c o n d
;~ppro:ich.

We will describe in this paper the features of
tlic VAX architecture and the VMS operating sys-
tem that we used to implement our methodol-
ogy for parallel processing. We will present a
sct of FORTRAN routines we wrote to relieve
the application programmer from having to
know the inner workings of the VAX architec-
ture and the VMS operating system. We will then
dcscribe the niodificatiolis made to the circuit
simulator SPICE2 to develop ;I parallel process-
ing implementation, called C:AYEKhrE. Finally,
wc will give comparative timing results on two
simulation examples.

VAX/VMS Primitives for Parallel
Processing
'I'hc VILX 8800 system is ;I shared-memory multi-
~>roccssor; all communications between proces-
sors are performed through sections of shared
mcmorJr rather than through message passing.
\Vlicn writing parallel code o n a shared-memory
multiprocessor, a programmer must be aware of

120 Digilnl Tech~zical Jourtzal
No . 4 Frbrrrarli 1987

two concepts: critical section and processor syn-
chronization. A critical section is a section of
shared memory that could be accessed by sev-
eral processors at the same time if no precau-
tions were taken to prevent tha t . Allowing
sin~ultaneous access to shared memory could
result in incorrect data. Processor synchroniza-
tion is the means by which processors proceed
in an orderly fashion. I t consists of mechanisms
allowing processors to broadcast the beginning
or the completion of a task or to wait until a sig-
nal is received.

Some VAX instructions and some VMS system
routines support the management of critical sec-
tions and processor sytlchronization." We use
three VAX instructions to control access to criti-
cal sections:

8 BBSSI - Branch on bit set and set interlocked

BBCCI - Branch on bit clear and clear inter-
locked

ADAWI - Add aligned word interlocked

The instructions BBSSI and BBCCI are the VAX
implementat ion of t h e a tomic- tes t and se t
instructions that allow the control of access to
critical sections to one process at a time. The
instruction ADAWI performs an interlocked
integer addition and returns a condition status
depending on whether the result is zero o r
nonzero.

We use three system routines of the VMS oper-
ating system to support processor synchroniza-
tion:

SETEF - Set event flag

CLREF - Clear evcnt flag

WAlTFR - Wait for event flag

These routines are services provided by the
VMS operating system to synchronize processes.
Indeed, the significant entity in the VMS multi-
processor environment is not the processor but
the process. A processor is a physical processing
unit, whereas a process is a software entity cre-
ated by the VMS operating system. Multiprocess-
ing is achicved by creating several processes
that VMS will assign to available processors.
Only the operating system, not the user, can
assign a given process to a given processor.
Event flags are bits maintained by VMS. Several
different processes can have access to the same
event flag, and signaling between processes can

New Products

be achieved by setting or clearing an event flag.
For example, the system service WAITFR places
a process in a wait state pending the setting of
an event flag.

Additional VMS system routines allow the cre-
ation of processes, the creation and mapping of
sections of shared memory, and the initializa-
tion of event flags. These system routines are:

CREPRC - Create process

CRMPSC - Create and map section of shared
memory

MGLBSC - Map global sect ion of shared
memory

ASCEFC - Associate common event flag cluster

More information on these routines can be
found in the VAX/VMS System Services M a n -
~ a l . ~ We used the VAX instructions and the
VMS system routines listed above to write a set
of routines that embeds our methodology for
parallel processing.

Parallel Processing Methodology
In the next section we outline the methodology
we use to achieve parallelism and in the process
define some important terminology. A program
we wish to convert for parallel processing is
divided into serial phases. Each phase is divided
into tasks that are executed either serially or
concurrently. A phase whose tasks are executed
serially is called a single-stream phase, whereas
a phase whose tasks are executed concurrently
is called a multiple-stream phase. The single-
stream phases are executed by a master process,
whereas the multiple-stream phases are exe-
cutcd by slave processes. The slave processes
are idle when the master process is active and
vice versa. Figure 1 shows this relationship.
Master and slave processes run the same exe-
cutable file, thus leading to easier program
maintenance. As mentioned earlier, processes
are dynamically assigned to processors by the
VMS operating system.

We des igned a gene ra l s e t of FORTRAN
routines for this environment. This set now has
seven en t r ies and implements t he cr i t ical-
section and process-synchronization concepts
defined earlier. I t also performs the necessary
initialization and provides facilities for debug-
ging a multiprocess execution. The remainder
of this section describes the functions available
in this set.

Digital Technical Journal 121
No. 4 Febrzrnq~ 1987

A Parallel Irnplemei?tation oJthe Circuit Sirnzrlutor SPICE orr the VAX 8800 System

SLAVE 1 I
I
I

MASTER I I

SLAVE 2

REAL TIME w

KEY: - ACTIVE - IDLE
?-r SIGNAL TO PROCEED

Q u r e I Syizchroniz~~tion oJ' Processes

In itializ~i Non
Initialization is performed by a logic:~l function
callecl WSTER-PROCESS, which is set to ']'RUE
i f a master process runs the executable filc and
FALSE i f a slavc process runs i t . 'I'he slavc pro-
cesses have special names that differentiate
thcm from the master process. An argument list
permits the specification of thc number of slave
processes to create and the input and output
files to use for those slave processes. Through
this argument list a unique process number is
returned to each calling process.

A user can also specify the number of slave
processes to crcatc by using ;I command-line
option when the program is run. For example.
the program CAYENNE would be run with
N slavc processes if invoked with the command
CAYENNE/SLAVES=N at the S prompt. I f the
calling proccss is a master. IMASTER-PROCESS
will create the sections of shared memory. ini-
tialize the event flags usccl for synchronization,
and create the required number of slave pro-
cesses. If the calling process is a slave, the func-
tion will map the sharcd virtual-address space to
the existing sections of sharcd memory. 'I'he sec-
tions of sharcd memory are FORTRAN common
blocks defined as shared when the program is
linked with an appropriate linker cornmand.
During this initializ;ltion phase, CREPRC creates
slave processes, CRMPSC and MGLSSC create
and map scctions of shared memory respec-
tively. and ASCEFC initializes the event flags.

Sj/nchronizatio?z
Synchronization is performecl by four of our
seven subroutines: FORK, JOIN, JOIN-EXIT.
and JOIN-FORK. These subroutines use the VMS
system routines SETEF, CLREF, and WAITFR to
perform the necessary interprocess signaling.
Each subroutine accomplishes the following
functions:

FORK - This subroutine is callctl by the
master process to signal the slavc processes to
proceed. The rnastcr process then waits in
this subroutine for the slaves to signal b;lck.

JOIN - This subroutine is c;~llcd by the slavc
processes to signal the master process to pro-
ceed. The slave processes then wait in this
subroutine for the master to sign:il back.

Only the last calling slave process signals the
master process. The VAX instruction ADAWl
is used to identify this last calling slavc pro-
cess.

JOIN-EXIT - This subroutine is called by
the slave processes to signal the master pro-
cess to proceed. However, the slave processes
then exit instead of waiting for a signal. That
is the way the slavc proccsses are stopped
when they are no longer needed.

JOIN-FORK - This subroutine is called b!.
the slave processcs to synchronize two multi-
ple stream phases with no intervening single-
stream phase. The use of this subroutine
allows slave processes to be synchronized
without having to signal the master process.

These synchronization routines put a process
that nceds to wait for a signal into a wait state.
Processes in a wait state do not use any CPIJ
time. Each call to onc of these synchronization
routines, however, rcquires many machine
instructions to be executed. If the application
programmer anticipates a very short waiting
time, an alternative to the prcvious method of
synchronization is synchronization through busy
wait. In this scheme a process will loop, cxccut-
ing an instruction of the form DO WHILE
(FLAG-IS-NOT-SET) ENDDO. The process will
execute the previous instruction until the logi-
cal FWG-ISJOT-SET is set to FALSE.

The busy-wait form of synchronization needs
to be used with care. I t can lead to loss of over-
all system performance. Indeed, the process

Digital Tech~rical J o u n ~ a l
ho . . I I ' e D r ~ t n ~ :) ~ 1987

New Products

executing a busy-wait instruction will use CPU
time that might be more product ively used
by another process. In addit ion, the logical
FLAG-IS-NOT-SET, w h i c h i s c o n s t a n t l y
checked for, is shared by all processes. Thcre-
fore, access to this logical must be carefully con-
trolled. If several processes change this logical at
the same time, its final value will be unknown. If
no process updates FLAG-IS-NOT-SET, a pro-
cess may execu te the busy-wait instruct ion
forever, thus leading to deadlock. Deadlock
occurs when processes are waiting to receive a
signal that will never be sent.

Critical Section
Critical sections in a parallel implementation
should be minimized. They are the bottlenecks
of the multiple-stream phases because they can
be accessed by only one process at a time. If a
critical section cannot be avoided, the time
spent to access this section should be minimized.
Exclusive access t o cr i t ical sect ions can be
achieved by using either the VAX interlocked
instructions or the VMS system services.3 The
former method implements a busy-wait form of
access synchronization, the latter uses event
flags.

The two subroutines LOCK and UNLOCK are
assembly language routines implementing a
busy-wait form of access synchronization. We
chose this method because it is faster in elapsed
time, and the time spent by a process waiting is
expected to be small when the access to critical
sections has been minimized. These subroutines
are used in the following manner to access a
critical section:

CALL LOCK(SECTI0N-ENTRY)
CALL ACCESS-CRITICALSECTION

CALL UNLOCK(SECTI0N-ENTRY)

SECTION-ENTRY is an integer associated
with a given critical section. This integer is set
to 1 when a process is using the critical section
and to 0 when no process is using the critical
sec t ion . The two cal ls LOCK and UNLOCK
ensure that only one process at a time executes
the code ACCESS-CRITICAL-SECTION. We use
these rout ines only o n c e in CAYENNE for
dynamic task allocation.

Parallel Debugging
Debugging parallel code is somewhat more
complex than debugging sequential code. We

debug our parallel code using the following
methodology. The functionality of our parallel
code does not depend on the number of slave
processes or on which specific process performs
a particular task. Therefore, the whole code can
be executed by the same process. For example,
CAYENNE runs with only one process if the
number of slave processes is specified to be
zero. This allows most algorithmic modifica-
tions made in the code to be debugged with the
VMS debugging facilities provided for sequen-
tial code.

After the first debugging phase, a code section
could still have errors when run with multiple
processes. Our routines al low two forms of
debugging, requested either through a flag in
t h e a r g u m e n t l is t of t h e log ica l f u n c t i o n
MASTERPROCESS or through a command-line
option. The first form of debugging permits the
assignment of a different terminal to each pro-
cess and the setting of a debugging session for
each process on its assigned terminal. The sec-
ond form of debugging is intended to be used
with a workstation. A different workstation win-
dow is assigned to each process, and a debugging
session is set up for each process in its assigned
window. The number of processes that can be
debugged concurrently is limited to either the
number of terminals available or the number of
workstation windows that can be opened.

Example
The following example, shown in Figure 2 ,
illustrates some of the functionality of our set of
routines. We want to compute the sum SUM of
all integers from 1 to N'S. We assume that a mas-
ter process with the help of N slave processes
does the task. Each slave process is assigned a
unique number PROCESS-NUMBER between 1
and N by the logical function MASTERPROCESS.
The section of shared memory consists of an array
PARTIAL-SUM of s i z e N. T h e s l a v e p r o -
cesses work in para l le l . Each slave process
adds S consecutive integers and stores its re-
s u l t i n t h e s h a r e d m e m o r y l o c a t i o n
PARTIAL-SUM(PR0CESSSVUMBER).

After the slave processes have completed their
task, the master process adds their partial sums,
stored in the shared array PARTLSUM, to pro-
duce the final result SUM. The code correspond-
ing to this procedure follows. (Remember that
master and slave process run the exact same
executable file.)

Digilul Techrrical Jorrmal
N o . 4 Fe61.irarj~ I987

A Parallel Iwiplementation of the Circuit Simtllator SPICE on the VAX 8800 System

L O G I C A L m a s t e r - p r o c e s s

INTEGERprocess-number

INTEGER number-of-slaves,default-number-of-slaves

INTEGER d e b u g - f l a g

PARAMETER (d e f a u 1 t ~ n u m b e r ~ o f ~ s l a v e s = 5 , d e b u g - f l a g = O ~

COMMON / s h a r e d / n u m b e r - o f - s l a v e s

COMMON / l o c a l / p r o c e s s - n u m b e r

I F (m a s t e r - p r o c e ~ s (p r o c e s s ~ n u m b e r ~ f ~ s l a v e s ,

d e f a u l t - n u m b e r ~ o f ~ s l a v e s , ' i n p u t ' , ' o u t p u t ' , d e b u g ~ f l a g)) THEN

C A L L m a s t e r - c o d e

ELSE

CALL s l a v e - c o d e

ENDIF

END

INTEGER n u r n b e r ~ o f ~ s l a v e s , m a x i m u m ~ n u r n b e r ~ o f ~ s l a v e s , i

PARAMETER < r n a x i r n u r n ~ n u m b e r ~ o f ~ s l a v e s = l 0 ~

I N T E G E R p a r t i a l ~ s u m ~ m a x i r n u m ~ n u m b e r ~ o f ~ s 1 a v e s ~ , s u r n

COMMON / s h a r e d / number-of-slaves,partial-sum

CALL f o r k

sum = 0

DO i = 1 , n u m b e r - o f - s l a v e s

s u m = s u m + p a r t i a l - s u m (i)

ENDDO

END

SUBROUTINE s l a v e - c o d e

INTEGER p r o c e s s - n u m b e r , n u m b e r - o f - s l a v e s , s t a r t , s , i

I N T E G E R p a r t i a l - s u m (1)

PARAMETER (5 = 2 0 0)

COMMON / l o c a l / p r o c e s s - n u m b e r

COMMON / s h a r e d / n u m b e r ~ o f ~ s l a v e s , p a r t i a l ~ s u m

p a r t i a l ~ s u m ~ p r o c e s s ~ n u m b e r ~ = 0

s t a r t = (p r o c e s s - n u m b e r - 1) s

D O i = s t a r t + I , s t a r t + s

partial-sum(process-number) = partial-sum<process-number) + i

ENDDO

CALL j o i n - e x i t

END

Figure 2 PROGRAiV P~wallel

Digital Technical Jour~zal
N o . 4 Fe!?rurtr], I987

In the next section w e describe h o w w e cre-
ated pardl lel processing in several phases of the
circuit simulator SPICE to produce the program
CAYENNE.

Modifications Made in SPICE
B e f o r e a d t l r e s s i n g e a c h p a r a l l e l p h a s e o f
CAYENNE, w e give a brief overview of the cir-
cuit simulator SPICE.

Overviezu of SPICE
SPICE performs scvcral types of circuit analysis:
s teady-s ta te analys is , t r ans ien t analys is , a n d
small-signal analysis. The most commonly used
anirlysis for digital circuits is the transient analy-
sis, which becomes increasingly t ime consum-
ing as the size of the simulated circuit increases.
F i g u r e 3 g i v e s a g l o b a l d e s c r i p t i o n o f t h e
;~lgorithms used by SPICE for a transient analysis.

The circuit equations form a system of ordi-
nary diffcrcntial equations. This system is solved
numerically at successive t ime points t i , i = 1,
N . It is reduced at a given t ime point ti into a
system of nonl inear equa t ions by us ing a dis-
cre t iza t ion m e t h o d . A discre t iza t ion m e t h o d
approximates the time derivative of a variable at
a given time point as a function of the value of
the variable at that t ime point and at previous
t i m e po in t s . T h i s m c t h o d i n t r o d u c e s a d i s -
crctization e r ro r that must b e con t ro l l ed a n d

t i m e = 0

DO WHILE (time < finish t i m e)
discretizedifferential equations

DO WHILE (not c o n v e r g e d)
linearize algebraic equations
solve linear equations

check convergence

ENDDO
I F (local truncation error too big) THEN

reduce time

ELSE

save r e s u l t s a t this time

advance time

ENDIF
ENDDO

Figure 3 Transient Analysis Algorithm for
SPICE

maintained be low a speci f ied threshold . This
er ror is called t h e local t runcat ion er ror . T h e
r e s u l t i n g s y s t e m o f n o n l i n e a r e q u a t i o n s i s
reduced to a system of linear equations by per-
forming a f irst-order Taylor expansion of the
nonlinear elements of the circuit . This lineariza-
t ion i n t r o d u c e s a n o t h e r e r r o r ca l l ed t h e l in-
earization error. The resulting system of linear
equat ions is then solved exactly, us ing an LU
factorization of the system matrix.

After t h e s o l u t i o n of t h e sys t em has b e e n
ob ta ined , t h e l inear iza t ion e r r o r can b e es t i -
mated. If this er ror i s t oo big, a n e w lineariza-
tion is performed around t h e previously com-
pu ted so lu t ion , and t h e n e w l inear system is
solved again. Successive linearizations are per-
formed unti l convergence is obta ined, that is,
until the linearization error is below a specified
threshold . W h e n convergence is reached t h e
solution of the nonlinear system is obtained, and
the local t runcat ion er ror is t hen checked . If
this error is too big, the solution at time point t,
is rejected and t h e system of differential equa-
t ions i s so lved a t a n e w t i m e p o i n t t, so that
ti - 1 < tj < t i . If t he error is below a specified
threshold, the solution is accepted, and the sys-
tem is solved at a new time point r , + 1 so that
ti < ti + 1. This procedure is repeated until the
entire transient analysis is computed. During a
transient simulation the circuit simulator SPICE
spends u p to 90 percent of its CPU time in three
phases of thc previous algorithm. These phases
arc as follows:

Load Phase - This phase consists of loading
the matrix and the right-hand side of the sys-
tem of linear equations obtained as described
above. Device-model equations and lineariza-
tion errors are also computed in this phase.

LU Factorization Phase - This phase consists
of factoring the matrix of the system of linear
equations into the product of a lower triangu-
lar matr ix and an u p p e r t r iangular matr ix .
This factorization is used t o solve the system
of linear equations.

Local Truncation Error Phase - This phase
consists of c o ~ n p i i t i n g t h e local t runcat ion
error committed at each time s tep .

The modifications for parallel processing made
in these three phases are described next.

Digital Technical Jorrrnal
N o . 4 Febrlror:], 1987

A Purnllel Imnplementation o f the Circzrit .Tin~rrlntor SPICE 0 1 2 the VAX 8800 Sjlstenz

Loud Phase
In t h e load phase e a c h c i r cu i t e l e m e n t c o m -
p u t e s a n d loads a l l i t s c o n t r i b u t i o n s t o t h e I J K

matrix and the right-hand side of the linear sys-
tem obtained from the circuit equations. Several
dist inct e lements may con t r ibu te to t h e same
matrix o r right-hand side entry. This means that
the matrix and right-hand s ide are critical sec-
t i ons in t h e load p h a s e , and access t o t h e m
necds t o b e control led . O n e approach to syn-
chronize accesses to the matrix is to use a single
lock on the whole m a t r i ~ . ~ In this case only o n e
processor can wri te in to t h e matrix a t a given
time, leading to contention for shared resources
and decreased efficiency.

In o u r approach locking t h e entire matrix is
avoided by creating an additional data structure
to store each individual e lement contribution.
This structure can be viewed as a three-dimen-
sional matrix whose third dimension is used to
store each individual element contribution to a
given circuit-matrix entry. Figure 4 depicts such
a matrix. There is n o unused memory in th is
structure because it has a variable d e p t h in its
third dimension. Nevertheless, using this struc-

G I G2
ture will increase the memory requircmcnts of
the simulator In the design of CAYENNE it was
necessary o n many occasions to trade memory
f o r s p e e d . O u r t e s t e x a m p l e s s h o w t h a t
CAYENNE requ i re s a n average of 2 0 pe rcen t
m o r e da ta m e m o r y t h a n SPICE ve r s ion 2 G 5
requ i re s . T h e c o n t r i b u t i o n s for e a c h ma t r ix
entry are subsequent ly summed and loaded in
parallel into the circuit matrix. The matrix load
is therefore performed in two successive multi-
ple-stream phases.

It is crucial that tasks arc evenly distri butecl
among slave processes s o that n o slave process
s t a y s i d l e w h i l e o t h e r s a r e c o m p u t i n g . A
dynamic task allocation was chosen for the first
multiple-stream phase of the matrix load. That
allocation was preferred to a static task alloca-
tion because the time needed to load each ele-
ment cannot be est imated accurately. Indeed,
computation of device models may be bypassed
dur ing s imula t ion. T h e mode l equa t ions of a
device are not computed a t a given iteration of
the analysis if t he voltages applied to this device
did not change significantly compared to thcir
values a t t h e previous i teration. This strategy
saves CPU time.

Dynamic task allocation is achieved through
an ar ray of tasks w h o s e n u m b e r e x c e e d s t h e

G I - CONDUCTANCE OF FIRST RESISTOR

G2 - CONDUCTANCE OF SECOND RESISTOR

Figure 4 Three Dimensional Matrix

number of slave processes. A task consists of a
list of circuit elements to be loaded. Tasks are
defined s o that each rcquires approximately the
s a m e a m o u n t of w o r k . T h e a m o u n t of w o r k
needed to load a c i rcui t e l emen t is est imated
roughly by neglecting bypass and evaluating the
CPU time needed to load the element. Dynamic
task a l loca t ion is e x p e c t e d t o min imize any
imbalance that may o c c u r d u r i n g s imula t ion
through device model computation bypass.

The task allocation for the second multiple-
stream phase of t h e matrix load is d o n e stati-
cally s i n c e t h e w o r k n e e d e d t o pe r fo rm th is
phase can b e d ivided in to tasks requir ing the
same amount of CPU time. The only interlocked
access to shared memory during the matrix load
is the o n e on the array index, which defines the
nes t task when dynamic task allocation is used.
This index is successively read and incremcnted
by all slave processes.

Digital Technical Journal
hlo 4 Febrzrcr,:j> 1987

LU Factorization Phase
The time spent by a direct-method circuit simu-
lator in the load phase is linear in the number of
c lcmcnts , whereas t h e t ime s p e n t solving t h e
linear system of equations is superlinear in the
sizc of the ~ n a t r i x . ~ For large circuits the ~na t r ix
s o l u t i o n p a r t w i l l t h e r e f o r e b e c o m e m o r e
i m p o r t a n t a n d w i l l d o m i n a t c o v e r t h e load
phase.

In SPlCE t h e matrix-solution phase is d o n e
using sparse matrix LU factorization. Although
full matrices can be factorized efficiently in par-
a l l e l . * t h e p a r a l l e l f a c t o r i z a t i o n o f s p a r s e
matrices is more difficult. The LU factorization
;~lgorithm has a sequential dependency, and the
amount of concurrent work that can be clone at
cach s tep in a sparse matrix is small.

It is possiblc to design algorithms that dctcct
the maximum parallelism a t each s tep of the LU
factorization. Such algorithms havc heen uscd
for vectorized circuit simulation.') In ou r cnvi-
ronmcnt synchronization is done through soft-
ware and the fine-grain parallelism used for vec-
torization may not b e efficient. Based on these
considerations, w e have proposed and iniple-
mentetl an algorithm in which part icular ca re
h a s b e e n t a k c n t o m i n i m i z e t h e o v e r h c a d
incurred with parallel processing. The details of
ou r algorithm can be found in reference 10 .

Local Truncation Error Phase
The parallel computation of the tinic s tep does
not present major difficulties since the compu-
ta t ion of t h e loca l t runca t ion e r r o r f o r c a c h
cncrgy storage c l emen t is i n d e p e n d c n t . Each
slavc process is assigned a set of energy storage
elements and computes the t ime s tep required by
this set. The master process then computes the
minimum time step among the time steps returned
by the slavc processes. The energy storagc e l e -
ments are statically assigned among slave pro-
cesses s o that the work among them is balanccd.

Results
The parallel algorithms described in this paper
havc been implemented to produce the program
CAYENNE. We n o w prescrrt t w o e x a m p l e s t o
comparc the timing performances of SPICE and
CAYENNE.

The first example is the simulation of a MOS
;irithmetic logic unit (M U) on a VAX 8 8 0 0 sys-
tem. The circuit has 2 0 0 nodes and 1 3 5 0 e lc-

New Products

n'lents Twelve hundred Newton Raphson itera-
tions are required for the transient simulation
The ef f ic~cncy of o u r parallel iniplementation is
measured in this example. If a multiple-stream
phase runs sequential ly in an e lapsed t ime T,
and in para l le l w i t h N s lave p rocesses in an
elapsed tinic TF, w e define the cf f ic~ency, E , of
the parallel execution by

E represents the ratio of t h e actual savings in
elapsed time to the potential savings in elapsed
time. Table I gives timings and efficiencies for
the ALU example. As a comparison, SPICE simu-
lates the same circuit in an elapsed time of 8 3 4
seconds.

Tab le 1 Timing Performances a n d Efficiencies

CAYENNE CAYENNE
0 Slaves 2 Slaves Efficiency

Phase (Seconds) (Seconds) (Percent)

Load 694 97 86
LU 22 14 70
LTE 67 35 96
Total
Simulation 867 529 -

'The second e x a m p l e is t h e s imula t ion of a
MOS control s tore . T h e c i rcui t has 1 6 0 nodes
and 5 3 0 elements, and the transient simulation
r e q u i r e s 1 4 0 4 N e w t o n R a p h s o n i t e r a t i o n s .
SPICE spends 9 1 percent of the simulation time
in the three phases w e modified for parallel pro-
cess ing. CAYENNE e x e c u t i n g w i t h t w o s lave
p rocesses ach ieves 9 0 - p e r c c n t e f f i c i ency in
thcsc phases and s i~nula tes the circuit 1.7 times
fdster than SPICE. For this simulation, CAYENNE
on a VAX 8 8 0 0 runs 9 times faster than SPlCE on
a VAX- 11 /780 CPU. Table 2 shows these com-
parisons.

T h e ef f ic iencies of a para l le l execu t ion of
CAYENNE d c p c ~ l d o n t h e s ize of t h e c i r cu i t .
Indeed, there is a fixed overhead incurred by

Tab le 2 Compar ison of SPlCE a n d
CAYENNE Elapsed Run Times

Case
Elapsed
Seconds Ratio

SPICE on VAX-11/780 3990 9.1
SPICE on VAX 8800 750 1.7
CAYENNE on VAX 8800 440 1 .O

Digital Tecbnical Jounral
No. d Febrtru~:~ 1987

127

A Parcrllel Jnzplementation of the Circuit Simrrlrrtor .SI'ICE o n the VAX 8800 Sj~stem

c a l l i n g t h e s y n c h r o n i z a t i o n r o u t i n e s J O I N .
FORK o r JOIN-FORK. The bigger the task per-
formed by the slave proccsscs before a call to ;i
synchronization routine. the smaller the relative
cost of synchronization. The simul:~tions of ou r
examples were also run on a lightly loaded sys-
tem. Loss of efficiency occurs whcn processors
have to be shared w i t h nonrela ted processes.
and busy-wait synchronizations may waste sig-
nificant resources. A workload consisting of sev-
eral independent simulations of c q i ~ a i impor-
tance is a l ready d e c o m p o s e d , and C A Y E N N E
shoulcl b c run in s ingle-process m o d e . If t he
turnaround of a single, large simulation needs to
be minimized, however , CAYENNE shou ld b e
run with two slave processes on a tlcdicated o r
lightly loaded 8 8 0 0 .

Summary
We have described a gencral methodology for
parallel proccssing on the VAX 8 8 0 0 system and
a user-friendly se t of rout ines that e m b e d o u r
methodology. We have also presented the suc-
cess fu l c o n v e r s i o n of t h e c i r c u i t s i m u l a t o r
SPlCE into tlic parallel program CAYENNE. New
schemes to minimize the overhead of parallel
processing and to balance the load among pro-
cesses contribute to the overall. efficiency of o u r
implement;~tion.

Acknowledgments
We would like to acknowleclge Bob Kusik for
initiating this projec t , Craig Yankes for intro-
d u c i n g u s t o pa ra l l e l p roccss ing w i t h i n t h e
VAX/VMS system and for providing us wi th ;in
i n i t i a l l i b r a r y o f r o u t i n e s f r o m w h i c h o u r
methodology cvolved, and John F;~ricellj, Nadirn
Khalil, K;ircm Sak;~llah, and John Sopka for many
fruitful discussions.

References
I . R. Hockncy and C . Je s shope , "Parallel

Computers, ' ' (Bristol: Adam Hilger. Ltd .
1 9 8 1) .

2. L. Nagel, "SPICE2. A Cornpiitcr Program
t o S imula te S e m i c o n d u c t o r Circui ts ."
Memo no . ERL-M520. IJnivcrsity of Cali-
fornia. Dcrkelcy (May 1975)

3. Gtiidc to iVl/lltiprocessit?g on VAX/Vkl.S
(Maynarcl: Digital Equ ipment Corpora-
tion, Ortler No. AA-HP69A-'I'E:, 1086) .

4. S. Fa rnham, M . Harvey. a n d K. Morse,
"VMS Multiprocessing o n the VAX 8 8 0 0
System." Iligitrrl Technicril J o u r n a l
(February 1 0 8 7 . this jssue): 1 1 1- 1 10.

5 . VAX/VfM.T S) js tem Services Reference
Mcrntral (Mayn;ird: D ~ g i t a l Equipmcnc
Corpora t ion . O r d e r No. AA-Z50 I B-TE.
1986).

6 . G . Jacob. A. Ncwton, and D. Petlcrson,
"Direct Method Circuit Simulation IJsing
1Multiprocessors," Proceedings o f t he
In ternal ior~nl .Symposium o n Circuits
alzd Systems (M;iy 1986): 170-175.

7 . A. N e w t o n , "The Simu1;ition of Large
Scale Integratetl Circuits." JEEE Trrrnsrrc-
lions or) Circtiils rind Systems, vol . CA.5
26 (September 1979) : 74 1-74').

8. R. Thomas, "llsing the Butterfly to Solve
Simultaneous Linear Equations," Labora-
to ry Mcmorandurn, Bolt, Bcranek, a n d
Newman, Inc. (March 1 9 8 5) .

9 F . Yamamoto and S. Takahashi, "Vcctor-
izcd LU Decomposi t ion A l g o r i t h n ~ s for
Large Scale C i rcu i t S imulat ion," JEEE
T r a n s l l c t i o n s o n C o m p u t e r A i d e d
Ilesign, vol. CAD-4, no . 3 (July 1 0 8 5) :
232-2.39

10. ti. Bischoff ant1 S. G r e e n b c r g , "CAY-
ENNE: A Rirallcl Implementation of the
Circuit Simulator SPICE." Proceedings of
the lEEE Irrternational Conference o n
C o m p t ~ t e r A ided Des ign (N o v e m b e r
,1986): 182-185.

1 2 8 Digital Tecbrricul Joro-~ral
Are. 4 Fe/>rrrtir~, 1 9S7

Dennis T. Bak I

m e Impact of VAX 8800 Design
Methodology on CAD Development

Contributing to the success of the VAX 8800 project was an integrated
CAD environment supporting the hardware design eflort. A CAD group
dedicated to tbis single project was chartered to supply a smoothly oper-
ating CAD process from initial design conception to final production.
B e CAD environment evolved through a blending of existing tools avail-
able in Digital with new tools developed outside the company. Gaps in the
environment were filled through extensive modt$cation of existing tools
and new development eflorts. lbe driving force behind the CAD process
was a design methodology, radical for its time but second nature now.

Past CAD Development Eflorts
Prior to the mid-1 970s , logic development
efforts within Digital Equipment Corporation
were largely done without the extensive use of
CAD tools. Hand-drawn schematic diagrams
were the primary means of expressing logic
designs.

A major advance in design automation took
place in the mid- 1970s when the Stanford Uni-
versity Design System, o r SUDS, began to be
used within Digital. SUDS allowed the entry of
schematics into and the extraction of net lists
from a graphics database. Although it was a
major step forward in the automation of design
processes, SUDS required significant user train-
ing and experience to become an effective tool.

Building a SUDS database capable of being
used by a conlputer opened a new avenue for
the evolving CAD groups to automate their
design processes. These groups soon developed
a large body of programs to support net-list
extraction, design analysis, placement and rout-
ing, and eventually manufacturing parts-lists
generation. Simulation tools were developed to
help verify the operations of a design before any
actual hardwarc was available. The increased
complexity of design drove CAD developers to
provide more powerfi~l CAD tools. In turn, logic
designers soon grew increasingly dependent on
CAD tools as their capabilities increased.

The design nlethodologies and the CAD tool
suite evolved to support large-CPU designs,

such as the VAX 8600 family. SUDS eased the
burden of enter ing and coping with design
changes; however, the actual contents of its
schematics differed little from those of the ear-
lier hand-drawn ones. In large part the schemat-
ics entered by designers into SUDS correlated
directly with the physical entity being built ,
showing all components and their pins.

At the inception of the VAX 8800 project in
the early 1980s, a vast collection of CAD tools,
written by many internal groups, had sprung up.
Most of these tools required large ASCII data
files and significant manual intervention by CAD
experts. Although many aids were provided to
develop design processes, they lacked the cohe-
siveness and simplicity needed to put a process
directly into the hands of the designers.

At about this time, a number of significant
advances were made in CAD technology. Engi-
neering workstations were announced at prices
that made it practical to put them directly into
the hands of designers. Moreover, new design
methodologies, such as structured computer-
aided logic design, or SCALD, were also devel-
oped.

These methodologies could significantly
improve the quality of design while decreasing
the time to develop complex systems. There-
fore, Digital made a commitment to use those
methodologies on the VAX 8800 project to pro-
duce not only the product but a more produc-
tive way of developing it.

Digital Technical Journal
N o . 4 February I987

The Impact of VAX 8800 Llesign Mcthodolo~1~ on CAD Delleloprnent

Design Methodology
T h e d e v e l o p m e n t o f <:AD t o o l s f o r t h e
VAX 8800 projcct was ;I considerable challenge
to the CAD designers. The complexit~7 of the
VA.X 8800 design, with its particular g ~ t c ;irr;l!.
implementat ion, demanded that thc design
quality be high before anything w;~s committed
to hardware. In fi~ct. the project managers rn;idc
a radical (for its time) commitment to simulate
the entire design and verify its timing before
clnjl hardware was built . Therefore, the CAD
process had to be designed to meet not only that
goal but also to facilitate the rapid production
of hardware once the design had proven ;~cccpt-
able. This scction of the paper describes the
methodology we followed to m;~ke the best use
of our CAD tools. The next section tlcscribes
tllosc tools and how they were used.

The tool sujtc that evolvetl, pictured in Figure 1 ,
supportetl both logical and physical design pro-
cesses with checks and balances t o ensure that
the design topologies remained the same. Schc-
matic diagrams, captured at an engineering

workstation. were proccssetl into a logical net
list that was used by the simulation and verifica-
tion tools. Oncc a logical design reached a cer-
tain lei-el of maturity. i t w ; ~ s rn;tppecl into a
ph!,sic;tl tlesign. At that point ;I ph!rsical analysis.
to dctcrminc clclays ant1 signal integrity, was
perfor~netl. Placetnent and routing tools were
then run to further refine the dcsign. The part of
the physical design datab;~sc that represented
the logical topology was then p;issecl b;ick to the
logical side of the design process. There, a com-
parison was made to ensurc that the physical
ancl logical designs were congruent. The results
o f simulations based on the pIiysic;~l design
arcre ;ilso passed to the logical process for com-
parison with thc sirnul;~tions based on the logi-
cal design. These mcchanisnis proviclctl the pri-
mary checks to ensurc that the logical design
~natched the physical onc.

We decided th;tt the best way to assure suc-
cess was to dcvelop a co~npletc paper specifica-
tion of the machine to be built. Oncc the over-
all goals for the machine Iind becn est;~blishctl,

MICROCODE PERFORMANCE
SIMULATOR

w DECSIM - a
TIMING

STATE
CHECKING

LOGICAL TO PHYSICAL - REPORTS - PLACEMENT - INTERACTIVE CLEANUP
MAPPING - DELAYS - ROUTING - MANUFACTURING RULES CHECK

- WIRE RULE CHECK - SIGNAL INTEGRITY

I - INTERFACE FILES

*

Figtrre I CAD Tool .Tt~ite

+ YAWL - * VLS - PHYSICAL
DESIGN

130 Digital Tecbrrictrl Jourr~ul
.Vo. . I A'hr~rro:~' 198'

MANUFACTURING

the designers developed the specifications for
each major logic section. This high-level logical
design was then part i t ioned in to func t ions
required within modules and gate arraj7s. These
primary interfaces were specified before any
detailed logic was developed. As it turned out,
that partit ioning remained relatively intact
throughout the project.

The nest step was to develop probe designs
and abstract models for the most complex parts
of the machine. These designs and models
tcstcd whether or not particular logic functions
could be developed and timing constraints met.
In some cases the probe designs were carried
through to the actual fabrications of gate arrays
or modules. This continuity allowed us to test
the limitations of the selected ECL technology as
well as the logic design.

The probe designs proved useful in many
ways to both the designers and the CAD devel-
opers. The designers were able to verify that
their logic implementations would work. The
CAD developers were able to use the designs as
test cases to develop and debug processes.
These test cases proved to be critical to the pro-
ject's success, especially when the finished
design was given to the manufacturing organiza-
tion. The process was so smooth, in fact, that
designs flowed through it with few problems.

The Influence of SCALD
At the onset of the VAX 8800 project, we inves-
tigated the tools available within Digital for
bui lding a process to suppor t the evolving
design methodology. This study lead the CAD
team to explore several systems being devel-
oped by other companies. One system being
developed by Valid Logic, Inc., the SCALDSys-
tem CAD system, was procured by Digital. This
system put the power of dedicated engineering
workstations directly into the hands of logic
designers. Of equal importance was the fact that
thc SCALDSystem CAD tools were bcing devel-
oped by the same people who conceived the
SCALD approach to hardware design.

Logical schematics, requiring almost no infor-
mation about the physical design, were entered
into the SCALDSystem database. These schemat-
ics were en tered in a hierarchical manner
through an easy-to-learn graphical system. Such
an arrangement encouraged the designers to

New Products

avoid the creation of paper schematics by trans-
ferring their concepts directly to the worksta-
tion screens.

The decomposition of the design was from the
top down, but the actual entry of design data
o c c u r r e d s imu l t aneous ly a t many l eve l s .
A "design tree" evolved in which cells form-
ing gate arrays were merged o n t o modules
that plugged into the backplane to form a sys-
tem. The logical design was entered via the
SCALDSystem tools onto schematics. The physi-
cal implementation of that logical design was
left to the physical design tools.

simulation and Timing Verification
Simula t ion o n t h e VAX 8 8 0 0 p ro j ec t was
approached from two different viewpoints. The
first aimed to determine whether or not the per-
formance goals of the proposed microarchitec-
ture were within the necessary range, as speci-
fied by the project's needs.2 This simulation
started early in the project before any detailed
logic design had been completed. Once those
performance goals had been verified, the second
level of simulation focused on the logic design
as it evolved.

The designers could verify that each piece of
the design functioned as specified while that
piece was being developed. As the design tree
evolved, the number of logic levels given to the
simulation tools increased until the entire logic
design had been en tered . At this po in t t h e
designers actually had the equivalent of a soft-
ware breadboard of the entire VAX 8800 proces-
sor. Microcoded instructions were "running" on
this software breadboard long before any hard-
ware was available.

The ability to run instruction streams on the
breadboard gave the project several advantages.
Logic designers could debug their logic concur-
rent with the microcode developers verifying
their microcode. Moreover, the diagnostics
engineers could write as well as debug signifi-
cant numbers of microdiagnostics much earlier
than was usual in a design project. The early
completion of those diagnostics allowed the
first available hardware to be checked thor-
oughly.

Making the design logically correct through
simulation did not ensure that the machine
would work at the desired cycle time. In the

Digifal Tecbnicnl Journal
No. 4 F L ' ~ Y I (N I :) ~ I987

131

The fmpnct of VAX 8800 Design Methodologv or) CAD L)e~~elo)ment

ECL technology used in the VAX 8800, signal tim-
ing was critical. 'I'herefore, a timing verifier. part
of thc SCALDSystem tools. was used to ascertain
whether or not the timing goals were being 1net.

It was within the timing verifier that the intlu-
ence of the physical implementation on the log-
ical design was first felt. The Iogjc designers had
to ensure that the placement of gates and rout-
ing of signals was optimal for all critical ele-
ments. Delay information was then extr;~cted
from the physical dcsign and fed back to the
timing verifier.

Physical Design
As the logical design evolved, we developed a
CAD process to convert i t rapidly into a physic:~l
design. A set of automatic placcrnent and rout-
ing tools, together with delay-estimation and
signal-integrity tools, was i~sed to givc feet1b;tck
to the tlesigners. 'l'he important question here
was whether or not they could build physical
representations of thcir logic designs. These
tools also passed data to the timing verifier,
which analyzed the effect of the physical dcsign
on circuit timings.

Since all the logic hacl to be verified before
any hardware was fabricated, all processes had
to be designed to handle a large numbcr of
designs in p;~rallel. 'The rc1ev;tnt Digital rnanu-
facturing facilities and outside vendors were
acquainted with thc physical dcsign through the
test cases rather than through an actual proto-
type. Thus the facilities and vcntlors could con-
figure and debug thcir o w n m;~nuf;icturing pro-
cesses before any completed physical designs
were sent to them.

To ensure a sriiooth tr;uisition into the fabrica-
tion phase, manuf;tcturing engineers were
assigned to work directly with the designers
early in the design process. 'I'hus these cngi-
neers becalnc familiar with the VAX 8800 tech-
nology and the machine as it evolved. This was
an important step bcc ;~ i~sc our manufacturing
organization was to build a11 the hardware,
including the prototypes. This early acquain-
tance with the design allowed them to tlevclop
~nanufacturing processes to support the rapid
change to full volume shipments soon after the
VAX 8800 system was ;innounccd '
Computational Resources
One of the largest VAXclustcr systems ever built
was assembled to support the \'AS 8800 project.

'This cluster consisted of 1 4 VAX- 1 1/780 and
VAX-I 1/785 systems with over 20 gigabytes of
mass storage. Even this large amount of storage
was inatlequatc at times to support the demands
of the databases. Forecasting the coniputational
requirements of this projcct proved d i f f i c ~ ~ l t .
The VAXcluster s)istem proviclcd the computa-
tional power and flexibility to grow as the
demands increased.

The availability of sufficient computations 1
resources was critical to the success of our pro-
ject. The design methodology of extensive simu-
lation was effective only wjth re;ison;ible pro-
gram run times. Once the design was verified.
large numbers of physical designs were released
for fabrication within ;I short periotl, which con-
sumed significant computation;~l and storage
resources.

The Tool Suite

Design Data Management
A design data management (DDM) systcm was
dcveloped to organize the many files that con-
tained the actual dcsign dat;~. At the heart o f that
system was the concept of a "design object."
This object was some functional piece of the
dcsign, usu;llly conforming to tlic physical parti-
tioning. For ex;~lnple. each gate array ant1 mod-
ule in the system was defined as a dcsign object.
For each object we dcvclopcd ;I hier;irchy of
subdirectories within the VMS file system. This
separation of data files into subdirectories
allowed various tools within the CAD process to
know where to find input files and to write out-
put files.

The design database was conti~iually churning
with new inform;rtion. '10 givc a st;tble picture
as the overall dcsign evolved, a "snapsliot" of a
design object could bc taken at any tinie, thus
generating a revision of the desigll object. New
subdirectory file trees were then createtl for
each revision. IJsing this schclnc a designer
could create a "frozcn" revision of a design. He
could then use that revision for simulations or
other activities while changes were being liiadc
to another revision of the design.

The relationships between design objects
were defined within a revision-ln;~trix file kept
with each file tree. Thjs file defined the system-
level hierarchy of the machine: which dcsign
objects were subord in ;~ te to ;I given object .
Using this file a designer working o n a ulotlulc

Digilul Tecb~~icul Jounrul
No. . I I;chrr~cr~:) 1 9tt7

1 New Products

design could select frozen revisions of the gate
array designs on that module and be assured o f
not having them changcd as he worked on it.

Another facility provided by the DDM system
was a user interface to the design environment.
This interface consisted of a simple command
language for transvcrsing the design trees and
for running specific tools. Since these tools
required a large number of input variables, we
established a system of default parameters to
minimize user input. For cases in which those
defaults proved inadcquate, users or CAD devel-
opers could change parameters to meet the
design's needs.

Schematic Cuptzlre
Using the ValidCED editor, logic schematics
were entcrcd directly into the workstations by
the designers. The extracted wire lists were then
transferred from the SCAI,DSystem UNIX-based
workstation through a communications port to
the VAXcluster system. The workstations were
also interconnected in a networking environ-
ment, thus providing communication between
them. To ease the burden on designers to learn
multiple operating systems, only graphical data
entry was permitted on the workstations. All the
other CAD tools were run in the more native
VkYcluster environment.

Since the majority of a designer's time was
s p e n t i n t e r a c t i n g w i t h CAD t o o l s o n t h e
VAXcluster system, there was no need for each
designer to have a dedicated workstation for
schematic capture . The ratio of designers to
workstations of about two to one proved ade-
quate. The easily learned GED editor supported a
rapid increase in the number of nondesigners -
managers, secretaries, and documentation writ-
ers - in the user community. All were drawn to
the system by the ease of graphical data creation.
E v e n t u a l l y , t h i s d o c u m e n t a t i o n a c t i v i t y
accounted for the majority of workstation usage.

Simulation and Timing Verification
Another proprietary tool, called the DECSIM sys-
tem, was the primary simulator used on the pro-
ject. This system supported mixed-level siniula-
tions, both structural and behavioral. The logical
design was transferred hierarchically to the DEC-
SIM system. This system allowed the designers to
deal with complex designs by viewing the simu-
lation in the same hierarchical form as the sche-
matics. For complex devices, such as multiplier

chips and RAkl devices, behavioral models were
d e v e l o p e d . T h e s e m o r e e f f i c i e n t m o d e l s
increased the overall performance of the simula-
tions. In the case of RAM devices, abstracting to a
behavioral model also allowed the microcoded
instructions to be loaded efficiently.

Complcmentirig the functional simulation
facilities of DECSIM system was the timing veri-
fier (TV) in the SCALDSystem tools. TV analyzed
circuit timings to ensure that the design would
work under worst-case conditions at the desired
clock rate.

Wire delays are a major factor to be taken into
account by timing verification. The placement
of the physical gates was critical to minimize
the wire lengths and hence the delays. Since the
placement was not available in the initial design
phases, statistical delays based on loading were
used. As placement information became plenti-
ful, the latest refined delays were sent to the
timing verifier. When the physical design had
been completed, delays based on routed lengths
were used. If the required timing was not met at
any point in the process, the offending circuits
were redesigned or the layout was changed to
correct the problem.

Wirelisting and State Maintenance
The logic gates entered on schematics by the
designers were, in general, assigned to physical
components by the CAD process. This mapping
occurred initially within the SCALDSystem post-
processor software using a random gate-to-com-
ponent assignment. This random packaging was
then fed into a system called YAWL (for Yet
Another WireLister). YAWL acted as a general-
purpose wirelister, generating interfaces to
many tools and accepting feedback from the
physical design tools.

As the physical design process refined the gate
assignment, YAWL ensured that t he logical
design topology did not change. By acccpting
feedback data from the placement and routing
tools and the physical design system, YAWL
caught any illegal changes that would have
altered the logic functions.

Eventually, the complexity of maintaining the
state became so large that YAWL alone could not
cope with it. Therefore, several other programs
were placed in the feedback loop from the phys-
ical design tools to detect changes made in the
process of manually cleaning up the physical
design. These programs were necded since,

Digital Technical Journal
N o . 4 Febrzmly 1987

The Impact of VAX 8800 Design me tho do log]^ on CAD Development

even at that late stage, a designer could still add
logic to the design. The CAD process therefore
had to handle these addit ions as well as to
detect illegal transformations to the logic. The
r e so lu t ion of t he se changes took a lot of
resources, both in terms of time and computer
power.

In addition to being the state maintainer,
YAWL acted as a primary source of the design
data needed for the remainder of the CAD pro-
cess. YAWL created many reports to inform
designers of problems between their logical and
physical designs. Most of the interface files in
the CAD process were either read, written, or
both, from YAWL, which played a key role in
the overall process.

Placement and Routing
Two processes were developed for the place-
ment and routing of gate-array and module
designs. The gate array process was highly auto-
mated, requiring a minimum of interaction by
the designers. The process was organized to
make several runs from which a designer coilld
select the one that best optimized his logic
design.

The bounded problcm of placement and rout-
ing within a gate array was easy to solve in com-
parison to the module designs. Here the con-
straints placed by designers, the limitations of
tools, and the complexities of design required
extensive human intervention.

Analysis tools were used extensively to assist
in determining the quality of design at the two
design levels: gate arrays and modules. These
tools analyzed such factors as thermal dissipa-
tion, signal integrity, and crosstalk. The con-
straints defined in these tools and in the exten-
s ive des ign - ru l e checke r s w e r e m c t , t h u s
ensuring a high-quality design.

Most of the tools used for the physical design
were developed within Digital. Those devel-
oped outside the VAX 8800 CAD group were
modified, sometimes extensively, to meet the
needs of the project.

Physical Design and
Manufacturing Interface
A proprietary physical design system, called the
VAX layout system (VLS), was used for the final
physical design tasks. VLS took the physical
design, as given by the placement and routing

tools, and added thc data required to nianufac-
ture the design. A layout designer, through the
VLS interactive graphics system, could nlanually
complete the routing that could not be handled
by the automatic tools. Some additional parts
that were necessary for fabrication, such as han-
dles for modules, were also added at this time.
The net result was a complete dcsign, specified
so that i t could be used to manufacture the
product.

The design data was then collected to form a
release package. To keep track of the formal
release of design data. a system called POST was
developed by the CAD group. POST provided an
on-line database, which any member of the pro-
ject team could query to determine the release
status of a dcsign.

Problems Imposed by the
Design Methodology
Up to this point, we have described the basics of
the design methodology used to develop the
VAX 8800 system and some highlights of the
CAD tools support ing that methodology. As
mentioned earlier, the CAD process was placed
directly into the hands of thc designers. Thus a
tight coupling was established between the pro-
cess of clesign and the design process. This cou-
pling posed several major problems, as now
described, for the CAD group.

Training
With direct control of a process or tool given to
the designers, they all now needed extensive
t raining. O n previous projects , o n e highly
knowledgeable individual could run a tool;
now, there were 30 or so novicc users all learn-
ing to use that same tool. Extensive support for
those users, in terms of both trainers and docu-
mentation, had to be provided.

In most cascs the designers quickly learned
how to utilize the tools. In a few cases - the
placement of modules in particular - placement
experts were needed owing to the specialized
nature of the task. In summary, the extent of the
support required by users was grcater than
anticipated.

State Maintenance
The task of s tate maintenance proved to be
extremely complex owing to the freedom given
to designers to make changes at almost any point

Digital Tecbnical Journal
No. 4 Februar:~ 1987

New Products

in the design process. To ensure that the logical
and physical designs matched, it was necessary
to do a complete isomorphic comparison of the
physical topology against the logical topology of
the design.

Logical Prints
The schematics generated by the designers at
their workstations represented the 1ogic;ll
design, not the physical one. Certain features
available in the SCALDSysteln tools, such as vcc-
torized signals and gates, allowed it to produce
a concise representation of the logic. This came,
however, at the expense of not putting physical
data back onto the print set. For reasons of state
maintenance. we were also unable to restruc-
ture a print set once mapped to a physical
implementation. Both these factors contributed
to a print set that appeared quite different from
those generated by previous projects.

Logical print scts, while initially envisioned
as being beneficial, later caused problems in
documenting the dcsjgns. This was particularly
true for module-level designs for which training
was needed so that groups outside the project
team could interpret the new symbology.

Cross References
lising logical print scts alone, a technician
could not probc a pin of the physical boards.
Since an abstract mapping took place in the CAD
process. it was necessary to develop an extcn-
sive set of cross references showing the map-
ping of the logical to the physical design. These
cross references proved to be cumbersome and,
when printed, consunled vast amounts of paper.

Libraries
CAD tools run on libraries, and each major tool
has its own forn1;lt for library data. These
libraries must be consistent across the entire
process. Despitc all thc safeguards built into the
process, we fountl that inconsistencies still
crept back into the database. Discovering ant1
eliminating those inconsistencies, many of
which were fountl late in the project, consumed
a lot of time.

Summary
Both the design methodology and the CAD pro-
cess supporting the VAX 8800 project were
quite successful. The first prototype hardware

delivered to us worked as expected. We found
only a small number of hardware problems dur-
ing the prototype debug phase of the project.
Most of those prob.lems were in areas that had
not had extensive simulation or timing verifica-
tion.

Some general conclusions reached from the
VAX 8800 project can help future CAD design-
ers to improve their tools.

A close coupling from the start, both physi-
cally and organizationally, between all
groups associated with the project leads to
the development of a smooth process flow.

The design methodology has a direct and far-
reaching impact on the CAD process. The
capabilities of CAD tools directly affect the
design methodology.

Extensive simulation and timing verification
before fabrication can help to achieve a high-
quality product.

The in1p;ict of radical changes (e.g. , in the
data content of schematics) must be appreci-
ated and then taken into account by all pro-
ject members.

In future projects we will focus on reducing
the process-loop times and enhancing the capa-
bilities of the simulation and timing verification
tools. I t will be easier to function in future
design environments, and more tools will be
placed directly into the hands of the designers.
The design methodology will be modified to
make the resolution of the design state easier
and therefore faster.

References
1 . Structured Computer Aided Logic Design

was developed at Lawrence Livermore
Laboratories and applied there to the
tiesign of the S1 computer.

2 . C. Wiccek, "The Simulation of Processor
Performance for the VAX 8800 Family,"
l l i g i t ~ ~ l Technical Journal (February
1987, this issue): 100-1 10.

. I . A. Matthews. "On-line Manufacturing
Data Access on the VAX 8800 Project,"
Lligitul Technical Journal (February
1987, this issue): 136-14 1 .

Digital Technical Jourrral
A'o. 4 Februar), 1987

135

Andrew J. Matthews I

On-line Manufacturing Data
Access on the VAX 8800 Project

Previously, the transition from design to manufacture involved transfer-
ring signzjkant amounts of data on paper. To minimize product start-up
time, the VAX8800project used an on-line system that eliminated much of
the paper. The key task was transforming the data from existing CAD
tools with dzrerent formats into manufacturing data. Two generic types
of VMSfiles, DATA and DM WING, contained data for each Part Number
and Revision Number. VMS's subdirectory and access-control capabilities
provided total revision control. Manufacturing engineers pulled files at
will using DATA files to drive their processes and viewing DRA WZNGfiles
from ViiXstation II workstations.

A key objective for the VAX 8800 project was to
go from the completed design to full-volume
manufacture in the shortest possible time. In tlic
past, delays have often occurred in the transi-
tion from Design Engineering to ManuFacturing.
'I'herefore, to achieve our goal, we had to elimi-
nate or minimize those delays.

We knew of a number of ways to speed u p
this transition phase. Since there is normally a
tremendous flow of data on paper between Engi-
neering and Manufacturing, one way was to
eliminate the paper itself. A second way was to
accelerate the controlled revision process when
changes were required. And a third way was t o
accelerate the query-and-response process that
was necessary to solve specification problems.
One can see right away that these activities
involve many people and consume significant
resources. Therefore. a formal project was cst;tb-
lished to determine how best to imp.lement the
three ways to minimjzc delays.

The project team determined that althoi~gli
the data flowing between Engineering ant1 Man-
ufacturing was vital, the paper itsc1.l' was not.
Thus the team's goal was to find out how to
establish a paperless, but not drawingless.
scheme to pass that information between thc
two organizations. 'The team also set somc con-
straints on this scheme. First, existing d;it;~ tcch-
niques should be ~ ~ s e t l whenever possible rather
than developing new ones. Second. Manufactur-
ing should be free to obtain data ;is reqi~irctl

rather than have Engineering "push" it to them.
Third, ;injr intern~ediate data processing func-
tions and groups, which all have priorities and
q u e u e s of the i r o w n , shou ld be bypassed.
Finally, the d a t ~ had to be organizetl in the way
Manufacturing needed it, that is, by Part Num-
ber and Revision, among others . Therefore,
some translation process hacl to take p lace
between the data sources in Engineering and the
data repositories used by ;Manufacturing.

The data sources in Design Engineering are
many and varied. Digital uses a large set of CAD
tools in its design processes.' These tools use a
variety of mcthods to gather, store, and manipu-
late data. 'The databases associ;ttcd with these
tools ;ire the sources for all the specifications
conveyed to Manufacturing ;IS plans and draw-
ings. Manufacturing also has its own set of CAM
tools usetl in various processes.

The primary CAD and CAM process tools did
not cornm~~nicatc since they were ;tJI based on
different dxta formats and revision procedures.
The primary goal of the project was to take the
design d;~t;t crc;~ted by the CAD tools and, with
as little paper ;IS possible, turn i t into manufac-
turing data that could be ilsetl h y thc various
manufacturing groups. The direct w;iy that goal
could be acco~np~ i shed was to create an inte-
grated source of data as ViMS files that would be
available o n line to engineers in Manufacturing.
This capability of data transfer was c;~lled manu-
facturing tlata access, or MDA.

Digital Technical Journal
,Vo. -9 Fc~!c.brr~rrr), 1987

Digital Tecbnical Journal
N o 4 Febrtrary 1987

New Products

As typically happens in a rapidly evolving
technological environment, the standard data-
transfer processes already in place had rapidly
become outdated. The result was that the stan-
dard process was handling only part of the data,
and informal systems evolved to deliver the
remainder. MDA had to identify all these data
processes, regardless of their sources. Then, it
had to provide all the data needed to build and
test the product through a consistent on-line
p r o c e s s . Tha t task was a c c o m p l i s h e d by
"reverse engineering" the existing processes.
All the process managers responsible for the
product in Manufacturing were interviewed to
find out what data they were receiving by both
formal and informal means. They were asked, in
particular, what additional data they needed.
The result was a lengthy list of data files, most
of which existed or could be easily generated.

One key limitation to this type of data-genera-
tion process was the availability of an appropri-
ate engineering database. For example, a visual-
inspection process might need the color of a
component , but this data may not be in any
engineering database. Therefore, some manufac-
turing clata processes would have to continue
using other sources, typically libraries of addi-
tional information, as well as the engineering
database.

The objective of MDA was to provide on line
all the data needed for new product start-up.
The problem, as noted earlier, was that this data
was derived from many different files used by
the CAD tools. These separate software tools,
having come from many sources at different
times, generally operate on independent VMS
files and do not yet utilize complex, integrated
database capabilities. Therefore, another pri-
mary goal of the MDA project was to bring
appropriate data management to these existing
processes, but at the same time not to require
significant changes within them.

Given this VMS file environment, the team
made an early decision that the VMS system
could provide the framework for comprehen-
sive data management and organization capabili-
ties if full advantage were taken of the possibili-
ties inherent in the system. That is, files and
directories, subdirectory schemes, and access
control lists had to be used effectively. The
advantages of using VMS features for these exist-
ing files rather than implementing a specialized
data-management scheme were numerous. This

procedure meant that these capabilities would
be immediately accessible to all of Digital's VAX
users, could be readily linked to existing read
and write processes for CAD/CAM files, and
would require no unique training, software, or
hardware.

The remainder of this paper describes the
approach that MDA takes to achieve an inte-
grated source of manufacturing data. As a first-
generation paperless process, MDA was used on
the VAX 8800 project with great success. We
anticipate that MDA could evolve at a later date
into a second-generation paperless process. In
this process, users in Manufacturing would be
able to selectively compose and generate any
desired drawing from the databases. For the first
design of MDA, however, that was too sophisti-
cated a solution to be applied to a broad manu-
facturing community still in transition from
paper processes.

MDA Capabilities
We designated the files containing the data that
drives the computer-aided processes in Manu-
facturing as DATA files. Every drawing sheet in
t he ful l d rawing package is electronical ly
released as a plot file. These on-line files, called
DRAWING files, are effectively the master draw-
ings, and any locally generated paper prints are
temporary working copies. DRAWING files are
intended only for human interpretation (view-
ing or plotting); they do not have to be inter-
preted as structured data by other functional-
process software. DATA files are used for that
purpose.

Both DATA and DRAWING files are made
available through a single unified process avail-
able anywhere on Digital's world-wide internal
DECnet network. Data security is provided in
the software by an access control list of specifi-
cally authorized users in Manufacturing. A list
method rather that1 password control was cho-
sen since the VMS system has all the capabilities
to imp lemen t list con t ro l (ident ifying re-
mote users). Control over access to the on-
line product database remains with the data
managers.

The files are organized around the Part Num-
ber and Revision Number of the physical object.
A complete DATA and DRAWING file set is pro-
vided for each revision, thus leading to a degree
of redundancy between files. We originally con-
sidered solving this redundant-data problem in

On-line ~M~tzrif~~ctriri tz~y I l ~ i t ~ l Access 0 1 2 the I%X 8800 Project

the tradition;~l CAD/CAM way by defining scp;i-
rate uni.rrersal interf;~cc filcs ;tnd designing inte-
grated datab;lscs from which ;In!, needed file
could be extracted. To ;ichicvc the prim;iqZ goal
of minimizing a11 del:ijts in product dat;i trans-
fers, howcver, we concluded that providing tlie
process specific, but rctlundant, filcs needed
directly in Manufacturing was worth the price.

This technique eli~ni~iatetl all hantl-off delays
and ;illowed tlic ;ilready proven processes to
operate efficiently. Of course. the risk was t1i;it

data in tlie redundant files coultl in some way
diverge. l 'hereforc. Ingi~iccring assu~iicd tlie
responsibility of verifying that the d;ita was con-
sistent between the~n . 1:nginecring uhes special
software to verify that ;111 filcs in a set, some of
which come from tlifferent CAD tools, rcprcscnt
the identic;il design object and revision state.

The DATA filcs utilized are those tlie st;~rt-up
team identified as being tlirectly needed for
cach ~nanukicturing process. Our ideal t;lrget for
DATA filcs was tlie specific data set nccdcd by ;r
"work cell" of the ~n:inufdctiiring p l a~ i t ; this
typically includes I~oth ;I computer resourcc and
specific people that together receive and adapt
the generic data to the imniedi;ite needs of their
particular plant and process. '1'0 m in imi~e the
process start-lip time, eliminate queues, and
assign responsibilities clc;irly, MDA avoided
usi~ig intermecliate d;ita form;its. l'liese formats
liistoric;illjr required preprocessing b ~ , some
third party before tlicjr could be used in the
pl;i~it. We expectetl the plants to ;idapt the DATA
filcs to the spccific needs of their o u T n pro-
cesses. For sophisticatetl data consumers with
complex ~nanuf;icturing needs, the source-tlata
design files are also includetl with the on-line
d;~t;i.

'T'lie ~ m c t i c ; ~ l realities of the Inany <:AD/CAM
processes in use first requirc<l a smoothly oper-
ating file-m;in;igcmcnt process. A Izirge number
of files are requirctl to support the build-and-
test processes for one tlcsigned object. A typic;~l
Digital part (e.g., a complex CPLJ logic motlulc)
is today completely specifietl by 50 to 70 DATA
files and 30 to 50 DRAWING files. With that
many files involved, ;I key to success for this
type of file management is total d;~ta acqiiisi-
tion. Thus the process was made mantlatoqr (not
voluntary); that is, i t could not tlepcnd o n some-
one's remembering to tlo something The only
way to accomplish complcre tl;~t;r ;~cquisition

was to integrxte the d;it;i-management process
\\.ith the CAD tools that generated tlie source
files

l'he principal MDA implementation concept
was to use the extcnsi.ise VhlS subdirectories tIi;it

"belonged" to each object and revision xncl
then collect all the appropriate files into the
appropriate clirectories. This technitlue makes
poss ib le a user dat;i-accesa process based
clirectly on the VMS system in which a user can
answer several cluestions about the object or
revision for which data is needed. MDA then
provides him with a directory containing the
files relevant to the requcstetl object or revision.
This directory represents tlic bounded set of
data. Within that set each DATA and DRAWING
file is "named" so that it is completely identi-
fied even if moved later to other m;inufdctiiring
locations. The file-naming schernc is also not
cryptic so that nianufacturing users can specify
and recognize the particular files they need.
h underlying objective of tlie IMDA program

was to provide an environment in which a
released d;ita file was perceived as being ;is sta-
ble as an approved ancl released p;tper drawing.
Whenever a set of DATA and DRAWlNG files for
a given revision of ;in object are released, that
set of data becollies "read-only" and is placed
~inder strict control. The engineering group will
not modif\. any file within the set belonging to
that revision. and subsequent revisions of that
object do not o\iemrite prior re\risions.

IMDA allours users to pill1 data selectively as i t

is needed rather than pirshi~ig i t ;iutomatically to
predetermined receivers. 'l'he strategy here is to
deliver not data, hut automatic;illy gcner;~ted
notification mcss;tges on Digital's electtonic
VAXmail system. The generation of mail is tied
to the design-m;~nage~i~e~it functions of the 1i;ird-
ware designers and the coordinators for engi-
neering change orders (ECOs). The m;iil mes-
sages are sent to dcsignatetl representatives in
any of the manufiicturing plants arountl tlie
world to inform them to pull wIiate\ier data they
require from tlie on-line system. Data users in
Manufacturing are notified by automatic nies-
sages whenever new dat;~ is issuctl or whcn the
status of existing data changes. This method
takes advantage of the existing ViLlS hlail facili-
ties for identifying remote users. A ~iser access-
control list has been implemented, and all user
transactions arc logged. These techniques con-

New Products

firm that new data has been received by users
and provide an audit trail of who accessed par-
ticular data in case an error is discovered later.

Much of thc data provided for the product is
intendcd for the specific assembly and test pro-
cesses implemented by the start-up team. Provi-
sion of this data is made possible by the close
coupling of the Engineering Design and start-up
team efforts and the sophistication of the data-
driven fabrication and test processes. In other
words, the designs of high-technology products
are now aimed at specific manufacturing pro-
cesses for assembly and test. Except for simple
dimensional data, much of this product data can
no longer b e "post processed" (by software
means only) onto a different manufacturing pro-
cess. A major process alteration might require
reconvening the start-up team and adapting the
design and data for the new process.

Revision Management
Each revision of a part means that that physical
design object has changed in some way. In the
MDA process a complete set of DATA and DRAW-
ING files is provided for every revision; there is
no implicd o r referenced data. All active revi-
sions still being built remain o n line, and subse-
quent revisions d o not overwrite earlier revi-
s ions . If t h e same DRAWING file app l ies t o
different revisions, it will be provided with each
of those revisions. We were concerned initially
that this simplified approach would generate a
large number of redundant files, particularly
DRAWING files. However, an analysis of t h e
c o m p l e t e d se t s s h o w e d t h a t , w i t h t h e CAD
design processes in use, only 10 to 20 percent
of the files were unchanged from one physical
revision to the next. Our conclusion now is that
having some redundant files is a cheap price for
the benefit and simplicity of having full data
sets. Thus no data set has to reference data from
another sct , and old revisions can be readily
archived.

The MDA process currently has one significant
limitation. Unlike the existing procedures for
paper drawings, there is no standard control
process for putting a formal revision on a DATA
file. On the other hand, it is not clear that a con-
trol process is sufficiently valuable in a product
environment that is totally data driven. Tradi-
tionally, when necessary, a paper drawing can
be changed separate from the physical revision
of the object itself. That cannot currently be

done for DATA files since there are no standard
procedures that are equivalently recognized for
nanling them or for controlling revisions. If the
DATA files really define the physical product,
then an erroneous data file defines the wrong
physical product. In that case, it can be argued,
the right way to signify the change is to update
the revision of the object itself. At the present
tirnc, if an incorrect DATA file is included in the
released data set, the only unequivocal way to
correct that problem is to advance the physical
revision and generate a new set of data.

Within the MDA process, the status of any file
is specifically marked. (The mere existence of
the file within the process does not imply any
particular status.) Typical categories of status
are verified, issucd, released, and obsolete. A
status is implemented by using the file-owner-
ship capabilities within the VMS system. As its
name implies, MDA provides on-line access to
all needed data and drawings for any and all
revisions. However, the formal status (prelimi-
nary, released, etc.) of each part and revision
available on line is controlled and specified by
other existing standard procedures. That status
is confirmed by MDA but cannot be determined
solely from the status information that MDA pro-
vides on line with the data.

The MDA process is not directly coupled to
the control procedures in Manufacturing, but is
linked directly with status-setting activities in
Engineering. For example, the issued status is
se t by a procedure run by the product 's ECO
coordinator when he issues an ECO package to
his counte rpar t in t h e manufactur ing p lan t .
Therefore, the data users in Manufacturing are
advised to use the displayed status only as con-
firmation of a change; they will continue to be
notified first through the existing ECO control
procedures.

Thus, MDA has on- l ine data available for a
manufacturing activity when Manufacturing is
notified, by mcans external to the MDA process,
that they should be building a particular revi-
sion. Also, MDA provides no on-line information
about such things as the interactions and rela-
tionships between revisions, which rcvisions of
the modules g o together, and which revisions
go with which backplane revisions. Therefore,
although MDA is a comprehensive data-manage-
ment and access process, it is not also a t rue
configuration-control and revision-management
process.

Digitul Tecbrrical Journal
No. .Q February 1987

139

On-line Manufacturing Data Access on the VAX 8800 Project

Directories and File Names
Within the MDA process, the DATA and DRAM-
ING files are managed by grouping them in VMS
subdirectories for the object that these files
specify. The subdirectories are tied to a com-
mon-root directory to facilitate the management
of the overall physical data on the host (e.g.,
moving various directory structures between
disk drives). The directory files then~selves are
owned bp the data-management process. They
may not be read directly over thc network; the
access process provided must be used. In picto-
rial form, the directory structure is described in
Figure 1 .

COMMON ROOT

I

PART PART PART
NUMBER NUMBER NUMBER

I
PART
NUMBER

VARIATION

REVISION REVISION REVISION REVISION

Figure I VMS Directory Structure

The name of each DRAWING f i le is t ied
directly to the Digital drawing number plotted
by that file. For multisheet drawings, a plot file
is made for every sheet in the complete drawing
package, so there is a one-to-one correspon-
dence between DRAWING files and drawing
sheets. The files are named to match exactly the
t i t le block of t he drawing shee t . A typical
DRAWING file name is depicted in Figure 2.

For DATA files, a different strategy for file
names was necessary since, unlike the DRAW-
ING files, a one-to-one linkage does not exist. A
DATA file relates to t he physical ob jec t i t
defines; therefore, the file name defines the
exact part to which that file applies as well as

SHEET SIZE 1 /f /f \ \ LDATA FonMAT

CODE JA DRAWING NUMBER

SHEET 2

SHEET REVISION

the f i le 's spec i f ic content and format . File
names must also continue to completely idcn-
tify the files after they have been extracted from
the MDA management process and moved to
Manufacturing. Therefore, part of the file name
is actually redundant with the MDA directory
name. 'These file names can become extremely
long, and although reading thcm is not a prob-
lem, typing them is. Thus the file names are
automatically generated, and users can select
them from menus. The name of a typical DATA
file is structured as in Figure 3.

Since there were many DATA and DRAWING
files, the file-naming scheme also permits the
creation of a typical VMS "wild card" directory
listing for specific types of DATA or DRAWING
files. For DATA files, the specific type of process
activity supported by that file is included as a
unique field in the file name. For DRAWING
files, the drawing code is included in the file
name, which also implies the likely uses. These
fields within file names arc then used in Manu-
facturing to obtain file listings specific to an
activity; wild-card directory listing is by far the
most common style of use.

~ 9 - ~ - ~ - I T - M C A M O D E L - Q X Y Z O l I . N E T X

PART NUMBER

VARIATION 1

REVISION

CATEGORY OF DATA 1
(IN-CIRCUIT TEST) I
DETAILED TYPE OF DATA
(MCA MODEL)

(FOR QXYZ MCA, LOGICAL REVISION 011)-

DATA FORMAT I

Figure 3 Typical DATA File Name

140 Dig i td Technical Journal
No . 4 Febrtcury 1987

On-line Data Access
Since all DA"1"A and DRAWING files for cach rcvi-
sion of ;i Part Number are accessible on line, it
is a simple proccss for authorized users to
access them. A uscr first logs on to a captive
(limited function) account on a specific host
CPU from any system on the Digital's DECnct
network. Since this process is controlled by a
list of authorized users, no passworcl is ncces-
s;lry. The uscr never sees the VMS prompt level
but i h immediately presented with a menu of
MDA functions. He is then asked a short series of
questions about either the Part Number or Rcvi-
sion Number and is provided with a directory of
applicable files.

All user transactions with the dam-access pro-
cess arc automatically logged. This logging pro-
vitlcs scvcral important capabilities:

An :iccurate summary of thc actual on-line
<I;it;i usage (which has showed that our initial
;issumptions were quite incorrect as to who
w o ~ ~ l d iise what data. and how much access
tciffic there would be)

A degree of atlditional security by tc~cking ;111
data ;ICCCSSCS

A rnc;ins to notify all users who have i~ti l i~ctl
any filc in which an error has been fountl

Electronic Dru wing Access, Plotting,
and Management
At the present tjme, most DRAWING files arc in
the VMS data format of FILE-NAiiE.PL0 since
.PLO is the dara format that can be released clcc-
tronically to Digital's on-line drawing-microfilm
service. A variety of software packages using this
data form;it ;Ire available in cach manufacturing
plant. We expect to make a transition to ;i new
industry stan<larcl when i t comes into gcner;il
use.

Providing each separate drawing sheet as a
sel7ar;ite filc was the first step toward a paperless
process. The second step was to give Manuhctur-
ing the ability to view a drawing on ;I VAXstation
workstation. manage drawings, annotate thcni,
send those annotations back to the engineer. and
make plots. 'These basic functions permit Manu-
facturing to do o n line what they would have
donc previously wit11 paper drawing sheets.
Engineering provided some necessary software
tools for these functions to expedite the transi-
tion to a paperless proccss in Manufacturing.

The workst;ition used is the VAXstation 11 sys-
tem. The software provides the following capa-
bilities:

Access drawings directly from the on-line
data process

Create windows for the drawing, and zoom
around it

hinotate a copy of the drawing for use with
specific processes

Return a copy with questions for the respon-
sible engineer

Submit plot requests auton~atically for the
whole drawing or any selected window
to either a large electrostatic plotter or an
LN03 Plus printcr, both accessible on a local
Ethernct link

The process of making snap-bhot window
plots of specific ;irc;is of interest on the LN03
Plus printcr has proven to be ;I very effective
capability, and shows some of the possibilities
of replacing large sheet paper plots within the
Manufacturing functions.

Summary
The MDA process has been operational since the
first prototypes of tlie VAX 8800 system were
built. MDA presently maintains approximately
three gigabytes of VAX 8800 product data on
line, including both prototype and produc-
tion revisions. More than one hundred users
from ten different locations in both Manufactur-
ing and Field Service have logged an average of
two hundred transactions per week. Although
MDA contains significant amounts of control and
verification software, there has been little for-
mal user training. The simplicity of the MDA
process allows the on-line Help information to
Ile an effective source of primary documenta-
tion.

New Products

References

1 . D. Bak, "The Impact of VAX 8800 Design
 methodology on CAD Development,"
Digi tal Technical Journal (February
1987, this issue): 129- 135.

Digilal Techtrical Journd 14 1
No. 4 Fehrr1~1:)1 1987

d SBN 1-55558-001-7

Printed rn USA EY-671 IE-DP Copyright@ Febmary 1987 Diairal Equiprncnc Corporarion

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	An Overview of the Four Systems in the VAX 8800 Family
	The VAX 8800 Microarchitecture
	The CPU Clock System in the VAX 8800 Family
	Aspects of the VAX 8800 C Box Design
	The Memory System in the VAX 8800 Family
	Floating Point in the VAX 8800 Family
	The VAX 8800 Input / Output System
	The VAXBI Bus - A Randomly Configurable Design
	A Logical Grounding Scheme for the VAX 8800 Processor
	The Simulation of Processor Performance for the VAX 8800 Family
	VMS Multiprocessing on the VAX 8800 System
	A Parallel Implementation of the Circuit Simulator SPICE on the VAX 8800 System
	The Impact of VAX 8800 Design Methodology on CAD Development
	On-line Manufacturing Data Access on the VAX 8800 Project
	Back cover

