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- Editor's Introduction 

Richard W. Beane 
Editor 

This issue features papers about  the  design of 
the VAX 8 8 0 0  family of CPUs, written by mem- 
bers of the design team. The technology used in 
Digital's latest high-end machine, the VAX 8800 
mult iprocessor ,  also forms t h e  basis for t h e  
other three family members: the 8 7 0 0 ,  8 5 5 0 .  
and 8500 CPUs. 

Rob Burley's overview relates the processes 
used in the 8800  design and the functions of the 
memory interconnect  (NMI), the  VAXBI 1 / 0  
bus, and the four logic boxes forming the five- 
stage pipel ine.  The  early discovery of design 
flaws and the use of automated tools hclpecl to 
achieve an aggressive completion schedule. 

The micromachine implements the microar- 
chitectiire and contains four of the five pipeline 
stages. Sudhin Mishra describes how microin- 
structions are handled, emphasizing the use of 
m i c r o b r a n c h e s  a n d  m i c r o t r a p s  t o  e n s u r e  
coherency. 

The VAX 8 8 0 0  clock system, discussed by Bill 
Sarnariu. was designed using an automated tim- 
ing verifier. He describes the trade-off between 
using the verifier and maximizing the accuracy 
of timing signals by minimizing their skew. 

The C Box and the M Box are two parts of the 
pipeline. John Fu, Jim Keller, and Ken Haduch 
describe the C Box's no-write allocate cache and 
the delayed-write algorithm that ensures correct 
wr i t e - th rough .  The  C Box must also handle  
p ipe l ine  stall  condi t ions  and maintain data 
coherency between processors. The M Box han- 
dles read and write requests for the  memory 
arrays. Paul Natusch, Dave Senerchia, and Gene 
Yu explain how the Besigns of the NMl and the 

cache affected their design, and why they used 
TTL in the memory controller. 

The VAX 8 8 0 0  family does not have a separate 
floating point accelerator.  As John Zurawski, 
Kathy Pratt, and Tracey Jones point ou t ,  how- 
ever, a custom ECL unit achieves high perfor- 
mance through the normal datapaths. Thus less 
hardware is needed, and operands are fetched 
faster. 

I/O devices  a re  l inked t o  t h e  CPU by t h e  
VAXBI bus. In his paper, Jim Janetos discusses 
the NBI adapter, which contains logic to handle 
CPU references and DMA requests. Then Paul 
Wade describes how the VAXBI design team had 
to abandon the traditional approach and use a 
variety of techniques to  specify the bus. Some 
chip problems were resolved only after a thor- 
ough analysis of the physical configuration. 

Jerry  Brand and  mike Kement  discuss  t h e  
importance of using ground correctly as a signal 
conductor to  achieve high performance. They 
describe the sources of ground-related noise in 
the CPU, and what they did to isolate and con- 
trol those sources. 

Many VMS features support multiprocessing. 
Stu Farnham, Mike Harvey, and Kathy Morse first 
describe the hardware that supports multipro- 
ccss ing ,  then  t h e  in te r locked  ins t ruc t ions ,  
exception handlers, and traps that implement 
VMS multiprocessing. To  show how rnultipro- 
cess ing  d e c r e a s e s  e x e c u t i o n  t i m e .  Gabr ie l  
Bischoff and Steve Greenberg  converted t h e  
SPICE circuit simulator into CAYENNE, a paral- 
lel progr;lm. They created master and slave pro- 
cesses that ran CAYENNE 1.7 times faster than 
SPICE. 

The final two papers relate some of the auto- 
mated tools and techniques used on the 8 8 0 0  
project. Dennis Bak first describes building the 
CAD suite from existing tools, newly developed 
ones, and modifications. The methodology was 
truly innovative,  serving as a f ramework for  
future projects. Then Andy Matthews discusses 
the  on- l ine  system that transformed CAD data 
into specifications used by Manufacturing. This 
system minimized the product start-up time by 
eliminating paperwork. 
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ticipated in new processor suppor t  for the  VAX 8 3 0 0  and 8 8 0 0  systems, 
specializing in multiprocessing. As a principal software engineer,  h e  is cur-  
rently working on future directions for VMS multiprocessing and suppor t  
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a B.S. degree in C.S. and M.E. (1968) from Boston University. He has pre- 
sented two papers at the Design Automation conference. 



Biographies 

a Sudhindra N. Mishra Sudhin Mishra is a project leader in the Advanced 
VAX Development Group,  currently developing a design verification CAD 
tool.  AS a principal  engineer on  the VAX 8 8 0 0  project ,  h e  designed and 
implemcntcd most of the  I Box and originated the  system-level simulation 
of the CPU. Before joining Digital in 1 9 8 2 ,  he  was a senior research engi- 
neer at Prime Computers,  Inc.  Sudhin has worked o n  projects ranging from 
radar and heat-seeking missiles to computers.  He earned a B.Sc. degree in 
engineering from Ranchi University and an S.M. in E . E .  and C.S. from M.I.T. 
Sudhin has applied for a patent o n  the technology in the  VAX 8 8 0 0  design. 

Kathleen D. Morse As a consult ing software engineer ,  Kathy Morse is 
responsible for all low-end CPUs and peripherals .  She is also one  of the  
designers for fu ture  directions in VMS multiprocessing.  Kathy provided 
VMS support  for the VAX-11/782 and MicroVAX 1 and I1 systems, and the 
MA780 mcmory .  She joined Digital after  rece iv ing h e r  B.S.C.S. deg ree  
(1976)  froni Worcester Polytechnic Institute, where  she  also earned her  
M.S.C.S. degree (1 9 8 5 ) .  Kathy is a member  of IEEE, the Professional Coun- 
ci l ,  ACM, Tau Beta Pi, and Upsilon Phi Epsilon. She has published in the 
Con lpu te r  Measurement  G r o u p ' s  Confe rence  Proceedings ,  t h e  Digital 
Technical Jozlrnal, and DATAMATION. 

Paul J. Natusch As a principal hardware engineer,  Paul Natusch is cur-  
rently managing the hardware development for a new VAX processor in the  
Advanced VAX Development Group .  O n  the  VAX 8 8 0 0  project ,  he was a 
member  of the memory system team and later took over as its leader. Ear- 
l ier ,  h e  worked o n  an upgrade  to  the  VAX-l 1 / 7 5 0  memory  cont ro l ler ,  
wh ich  expanded it from 2MB to  8MB. Paul joined Digital in 1 9 8 0  from 
Storage Technology Corporation, where  hc was a diagnostic engineer.  He 
received his B.S.E.E. degree from Cornell University in 1 9 7 9  and an M.B.A. 
degree froni Northeastern University in 1985 .  

Kathleen L. Pratt Educated at Rensselaer Polytechnic Inst i tute,  Kathy 
Pratt came to Digital after receiving her B.S. degree in computer  and sys- 
tems engineering in 1 9 8 0 .  She worked on hardware designs for networks in 
the  Local Area Networks Group,  then on the  design of the  floating point  
hardware for the VAX 8 8 0 0  central processor in the Advanced VAX Devel- 
opment  Croup .  Kathy is currently a senior engineer working o n  the float- 
ing point  design for a new \'AX processor. 

William A. Samaras Bill Samaras is a pr inc ipal  eng inee r  working t o  
design a n e w  VAX processor. He joined Digital in 1 9 8 2  to  design the  clock 
system on the VAX 8 8 0 0  project .  Formerly, at Accutest Corporation,  Bill 
designed VLSI testers and t iming systems. He holds an Associates degree  
( 1 9 7 3 )  from Northern Essex Community College, and B.S. degrees in engi- 
neering technology (1375)  and electrical engineering ( 1 9 7 6 ) ,  both from 
Southeastern ~Massachusetts University. Bill teaches digital electronics for 
continuing education at the University of Lowell. He has applied jointly for 
a patent on  the  technology in the 8 8 0 0  clock system. 



David C. Senerch ia  Davc Scnerchja is currently a senior engineer In the 
Electronic Storage Development Group. He is a member of the design team 
working on the main memory for a new micl-range VAX system. O n  the VAX 
8 8 0 0  team, Dave designed the initial array module for main memory and 
participated in the  architecture and design of the  memory system, the  
M Box. He joined Digital in 1982 after earning a B.S. degree in electrical 
engineering from Washington Ilniversity. 

Paul  C. W a d e  As a principal engineer, Paul Wade is working on advanced 
development for future VAX CPUs. He was responsible for the electrical 
design, verification, and testing for the VAXBI bus. Paul also designed parts 
of the VAX 8 2 0 0  system. Before joining Digital in 1980 ,  he  worked as a 
project engineer at Microwave Semiconductor Corporation, RCA, and Lock- 
heed Electronics. Paul earned a B.S.E.E. degree (1773) from Newark Col- 
lege of Engineering. He holds a patent on gallium arsenide technology and 
has written nine papers on that topic. One  paper won the Beatrice Winner 
Award at  the 1980  ISSCC. 

C h e r y l  A. Wiecek Cheryl Wiecek is the engineering manager of the Sys- 
tems Architecture Group and is responsible for the VAX architecture and a 
number of Digital's interconnect architectures. She worked on VAX instruc- 
tion-set characterization and performance simulation for the VAX 8 8 0 0  
CPU. Cheryl also workecl on PDP- I I performance simulation after coming 
to Digital in 1978. She was a programmer/analyst at the Connecticut Edu- 
cation Association and taught mathematics in Connecticut. Cheryl holds a 
R.A. degree in mathematics (1 074)  and an M.S. degree in computer science 
(1 979) from the University of Connecticut. She has published five papers 
on computer performance in ACM and IEEE journals. 

E u g e n e  L. Yu Gene Yu is a senior design engineer in the Workstation 
Engineering Group at Palo Alto. On the VAX 8 8 0 0  project, he designed the 
memory system interface to the  memory interconnect,  the NMI. Before 
joining Digital in 1982,  Gene worked at Prime Computer as a hardware 
designer on their 400  and 9900  systems, and at Data General Corporation 
on Nova products. H e  earned a B.S. degree in electrical engineering from 
the University of Massachusetts. Gene has applied for a patent as coinventor 
of the NMI and memory design for the VAX 8 8 0 0  CPU. 

John H.P. Zurawski  John Zurawski is a consulting engineer working as 
the project leader for computer arithmetic in the Advanced VAX Develop- 
ment Group. He led the team that designed the floating point strategy and 
hardware for the VAX 8 8 0 0  family. John joined Digital in 1 7 8 2  from the 
University of Manchester, where he was a post-doctoral research associate. 
He holds a B.Sc. degree in physics (1776),  and M.Sc. (1977) and Ph.D. 
( 1 7 8 0 )  d e g r e e s  i n  c o m p u t e r  s c i e n c e ,  a l l  f r o m  t h e  Univers i ty  of 
Manchester. A member of IEEE, John has published four papers on com- 
puter technology. 



Foreword 

Donald J .  McInnis 
Group Mar?rrge,; 
Adr)r~nc.ed VA.X Etrg inec~rirrg 

Since the announcement of thc VAX- 1 1/780 sys- 
ten1 in November 1977. Digital Equipment Cor- 
poration has steadily expanded the VAX family 
with new VAX products: the VAX- 1 1/750. V t X -  
11/730,  MicroVAX I ,  VAX-11/725, VAX-I I /  
785, VAX 8600,  MicroVAX 11, VAX 8650.  VAX 
8200. and VAX 8300 systcnls. The market accep- 
tance of the VAX family has beeti excellent across 
;~l~riost all computing applications. This remark- 
able and steady incrcase in the use of VAX sys- 
tems crc;itcs a continuous dcn~and by the VAX 
customcr base for enhanced products across all 
scglncnts of the computing industry. In the fill1 
of 1982, the development team for the 8800 
project (known internally as "N;~utilus") was 
;~ssignetl the responsibility of designing new sys- 
tems to enhance the mid-to-high end of the \'AX 
E~ruily. 

'This issue of the Digital Technical Journcil 
represents a sampling of the types of design engi- 
neering that went into the VAX 8800 family. I t  
t;tkcs an amazingly large number of different 
cngi~iecring disciplines to design ant1 ~ i i ;~nuk~c-  
tilrc a protluct of this complexity. As timc moves 
o n ,  c;ich successive development project seems 
to reqilire a bigger investment in a larger number 
of disciplines to produce a product attr:~ctivc to 
thc marketplace. It is unfortunate th;~t  ncither 
timc nor sp;~cc permits us to give proper visibil- 

to ; ~ l l  the design, manufacturing, and cus- 
tomcr-scnicc engineering efforts t l i ;~ t  let1 to the 
shipment o f  the VAX 8800 Fdmily. 

The VAX 8800 family consists of four new pro- 
cessors: the VAX 8800,  VAX 8700.  VAX 8550,  
and VAX 8500 CPUs. The VAX 8800 family and 
the VAX 8200 system introduced a major new 
1/0 bus, tlic VAXI3I. We also introduced a com- 
pletely new set of I/O adapters for the VAXBI 
bus. which will be the new foundation I/O chan- 
nel for many future mid- to high-end VAX sys- 
tems. The VAXBI bus wi I I replace the UNIBUS on 
this class of system. The VAXBI offers a six-fold 
increase in performance and substantially better 
reliability and m;~intain;~bility features in com- 
parison to thc UNIBUS. 

The 8800 represents a significant advance into 
new areas of high-performance computing for 
the VAX family. A customer can replace a V&X- 
11/780 CPU with a VAX 8800 CPU in the same 
footprint  and effect an order  of magnitude 
increase in the amount of work done. The VAX 
8500 CPU is really a replacement product for the 
Vm-1 1/785 CPlJ kernel. However, the 8500 has 
the same price. twice the performance, and one- 
third the footprint. 

To produce a product that has a good price/ 
performance ratio in the marketplace, you have 
to push hard on sorue dimensions of technology. 
A number of new pieces o f  teclitiology were 
introduced on the VAX 8800 project, such as the 
22-l;l)~er backplane and a 480-pin, zero insertion 
force connector. In the VLSI tcclinology area, 
one 8800 includes a total of 186 emitter-cou- 
pled logic (ECL) gate ;IrrJyS and a total of 28  cus- 
tom-designed I:C:L parts. 

The cycle timc of ;I VAX CPU is a large determi- 
nant in its performance. The challenge of meet- 
ing a 45-nanosecolid cycle time (versus 200  
nanoseconds for the 11/780) required signifi- 
cant advancements in technology implcrnenta- 
tion and in CAD tools for analysis. 

Enhancements were made to the base operat- 
ing system software for the VAX 8800 processor. 
These software enhancements represent a basic 
technological changc that is available to our cus- 
tomers. The VlLlS operating system was improved 
significantlj, to provide much bctter throughput 
for customers using the VAX 8800 dual proces- 
sor as a general-purpose system. The ULTRIX-32 
operat ing systeni was enhanced to  suppor t  
tightl!. coupled  mul t iprocess ing .  Software 



library structurcs wcre also developed for cus- 
tomers who might want to improve the through- 
put of a single job by decomposing it to run in 
parallcl on the tightly coupled dual processors 
of an 8800. 

To meet the performance goals, the overall 
design of the VAX 8800 system is necessarily 
quite complex and was potentially difficult to 
implement quickly and correctly. We under- 
stood this from the beginning of the project, 
based on our understanding of the experiences 
of previous projects (e.g.,  the VAX- 1 1/750, VAX 
8600, and J11  VLSI CPU chip projects). To 
manage that conlplexity in a timely manner, we  
selected some key strategies and stuck with 
them through the completion of the project. 
They proved to be very successful since the 
hardware prototypes were relatively error free, 
and the manufacturing start-up was very smooth 
and rapid. Some of these strategies are as fol- 
lows: 

The project followed a structured design 
methodology that ensured the completion of 
comprehensive specifications before any 
detailed design was done. 

We made a large investment in our CAD team 
and in CAD tools to automate the design pro- 
cess. 

'The basic dcsign was managed by a chief 
architect. 

The system was simulated extensively before 
we built any hardware. (We finished the pro- 
ject with 14 VAX-11/780 and 11/785 sys- 
tems in our.cluster. During our peak simula- 
tion effort, however, over 30 dedicated VAX 
systems were ilsed for a period of several 
months.) 

Since many different engineering and manu- 
facturing locations were involved, we made 
extensive use of Digital's worldwide network 
for electronic mail and data exchange. 

of people to have a broad engineering focus 
proved to bc invaluable, especially in the simu- 
lation and prototyping phases. The core rnanage- 
ment team started with very experienced peo- 
p l e ,  m o s t  of w h o m  had  VAX-11/780 o r  
VAX- 1 1 /750 development experiencc: Sas Dur- 
vasula, VAX 8500 project manager; John Hittell, 
manufacturing manager; Steve Jenkins, engineer- 
ing manager; Nancy Kronenberg, VMS engineer- 
ing; Bob Kusik, CAD manager; Steve Omand, 
customer service engineering; and Bob Stewart, 
chief architect. Many contributors at the next 
level also had similar backgrounds, and all  
remained in place for the duration of the pro- 
ject. This continuity was a major factor in com- 
pleting a very successful project and a very suc- 
cessful family of products. 

A more important factor than any of the above 
e x a m p l e s ,  h o w e v e r ,  was t h e  p e o p l e  w h o  
worked on the project. We attempted to build 
an excellent team that worked well together. 
'The attribute of teamwork and the willingness 



Robert M.  Burley I 

An Overview of the Four Systems 
in the V M  8800 Family 

The VAX 8800 nrultiprocessor and the VAX 8700, 8550, and 8500 systems 
all derive from the same fundamental design. Their sustained appli- 
cations throughput ranges from 3.0 to 12 times that of tbe VAX-11/780 
system. In the design process, automated tools helped to correct design 
bugs early. ECL technology and a two-phase clock system achieve a 
45-nanosecond cycle time. Microinstructions are processed simulta- 
neously through four logic boxes that implement a five-stage pipeline. A 
high-speed memory interconnect, the NIW 62% links CPUs to memory and 
the I /O subsystem, which connects to V M I  buses. Many reliability fea- 
tures, including extensive diagnostics, are implemented. 

Design work on the VAX 8800 system began in 
September 1782 and concentrated on develop- 
ing a balanced, high-perforn1;ince system bascd 
upon the use of ECL components and multipro- 
cessing. Although performance was the primary 
product goal, many technology, packaging, and 
implementation decisions rcflected the equally 
pressing business req~~irements  for reliability 
and ease of manufacturing. 

The flexibility of the dcsign ultimately 
spawned four CPU systems: the VAX 8800. VAX 
8700,  VAX 8550, and VAX 8500 models. These 
systems share many common functional and 
design attributes yet maintain noticeable imple- 
mentation differences in the areas of perfor- 
mance, multiprocessing, expansion capability 
(memory and I/O), and packaging. As a result of 
these implementation variations, the sustained 
applications throughput (SAT) rates for these 
systems range from approximately 3.0 to 12  
times the rate for a VAX-1 1/780 system. Sus- 
tained applications throughput is more indica- 
tive of usable performancc for a given system 
than thc more frequently reported peak num- 
bers that can be derived from ideal or biased 
conditions. Table 1 comparcs the physical ancl 
performance attributes of these four VAX pro- 
cessor systems. 

Design Enuironrnent 
Traditional design environments have placcd 
the greatest emphasis on discovering and elimi- 

nating design errors in the physical hardware. 
'The complexity of the VAX 8800  design cou- 
pled with the new technologies involved would 
have created costly delays in the development 
schedule had traditional approaches been used. 
Early in the project, goals were defined to iden- 
t i h  logic design problems and to solve all tinl- 
ing problems through the use of extensive 
design verification tools. 

A hierarchical design and simulation environ- 
mcnt allowed the cngincers  to move freely 
throughout the design at any level from gates, 
layouts, and behavioral models through com- 
plete system simulation and timing verification. 
Considerable computing resources were required 
to ;illow that freedoni. This environment, with 
its carefully managed libraries and databases, 
allowed this work to be done before any hard- 
ware was actually assembled.' As a result, the 
tlesign matured within our VAXcluster systems, 
evolving to hardware prototypes only after it 
was essentially complete and stable. In addition 
to the expected savings in prototype costs and a 
reduction in overall development time, the per- 
vasive use of software tools significantly shifted 
the tr;tditional debug effort to an earlier point in 
the dcsign process. Cumulative bug-detection 
plots were used extensively to provide insight 
into the stability of the design. 

The effect of this shift was to provide stable, 
early prototypes for extensive system characteri- 
zation and testing, leading to  earlier design 
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Table 1 CPU and Memory Attributes of the VAX 8800 Family 

VAX 8500 VAX 8550 VAX 8700 VAX 8800 

CPU Attributes 

SAT (compared 
to VAX-111780) 

Cycle Time 

Number of 
Processors 

Upgrade 
Potential 

None None 

15K in each CPU Writable Control 
Store (Words) 

User Control 
Store (Words) 

1 K in each CPU 

143 Bits 143 Bits 143 Bits Microword Size 

CACHE Size 

143 Bits 

64KB (in each CPU) 

32 Bits Internal Datapath 32 Bits 32 Bits 32 Bits 

16 Byte 
Look Ahead 

16 Byte Look Ahead 
in each CPU 

Instruction Buffer 
Type 

16 Byte 
Look Ahead 

16 Byte 
Look Ahead 

Over 30MB/s Maximum Total 
I/O Data Rate 

Over 30MB/s 

Maximum I/O 
Channels 

Memory Attributes 

Maximum Physical 80MB 
Memory Size 

Cycle Times: 
Hexword Read 495 ns min. 495 ns min. 495 ns min. 495 ns min. 
(256 bits) 1260 ns max. 1260 ns max. 1260 ns max. 1260 ns max. 
Octaword Write 270 ns min. 270 ns min. 270 ns min. 270 ns min. 
(1 28 bits) 540 ns max. 540 ns max. 540 ns max. 540 ns max. 
Longword Write 135 ns min. 135 ns min. 135 ns min. 135 ns min. 
(32 bits) 495 ns max. 495 ns max. 495 ns max. 495 ns max. 

acceptance. This strictly controlled design envi- 
ronment allowed us to complete physical debug 
along with the required system evaluation and 
testing in only  eight months. 

I n  a software-intensive design environment,  
the product ion o f  actual hardware is deferred 
solnewhat in favor o f  design s t a b ~ l ~ t y ,  result ing 
i n  a sl ightly longer soft-design period. The delay 
i n  hardware availability, however, is more than 
balanced b y  the stability o f  the hardware proto- 
types, wh i ch  can then be accelerated through 
the evaluation and qualification-testing phases. 

The design schedule recovers dur ing these later 
phases, and substantial cost savings are realized 
because fewer engineering changes are made 
and stable manufacturing can begin quickly.  

CPU Design Overview 
The VAX 8800 family o f  designs were structured 
around the functional elements, o r  "boxes," o f  
the system. The CPU, memory,  I/O, and bus 
subsystems were all matched to provide the nec- 
essary system balance. One simple model  is to  
trcat performance as a funct ion o f  two  variables: 
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An Overview of the Four Systems in the VAX 8800 Furnily 

the instruction execution rate, and the amount 
of "work" each instruction can perform. The 
design of the VAX 8 8 0 0  family focused on what 
we call the "short tick" approach to achieve the 
necessary, sustained performance. 

In  this  approach ,  t h e  ins t ruct ion and data 
s t r e a m s  a r e  k e p t  s i m p l e  and  a r e  e x e c u t e d  
quickly. Any design trade-offs were resolved in 
favor of speed and simplicity,  thus  reducing 
design complexity. The use of high-speed cus- 
tom and semicustom VLSI components  com-  
bined with several n e w  internal bus architec- 
tures resulted in a family of processors with a 
45-nanosecond  (ns)  cycle  t ime .  All mode ls  
e m p l o y  a f ive -s tage  i n s t r u c t i o n  e x e c u t i o n  
pipeline, integral floating point acceleration (F, 
D, G ,  H formats), and the VAXBl bus as the pri- 
mary 1 / 0  s u b s y s t e m .  T h e  e x t e n s i v e  u s e  o f  
microcode  con t ro l s  w i t h  minimal  hardware 
assist a u g m e n t s  c u r r e n t  pe r formance  w h i l e  
providing flexibility for future enhancements. 
'The block diagram in Figure 1 (using the VAX 

M E M O R Y  0 
CONTROL 

8 7 0 0  and VAX 8 8 0 0  systems) illustrates the key 
functional elements common to the VAX 8 8 0 0  
family design. 

Technology 
The raw speed, off-chip drive capabilities, and 
availability of bipolar  emi t te r -coupled  logic  
(ECL) logic  c o m p o n e n t s  provided t h e  most  
straightforward means of achieving the desired 
performance of the VAX 8800 family. Most logic 
is implemented in 1200-gate ECL arrays. Cus- 
tom logic chips designed by Digital provide fur- 
ther performance gains for floating point opera- 
tions and general-purpose registers. The cache is 
implemented in 10-ns  and 1 5 - n s  ECL RAMS. 
Nine-layer, control led- impedance CPU logic 
modules and a 22-layer, controlled-impedance 
CPlJ backplane were developed to meet the sig- 
nal-integrity and signal-propagation require-  
ments crucial  to an ECL design. Other  multi-  
layer backplanes were designed for the private 
memory array bus and 1/0 subsystems. 

CONSOLE 0 - - - - - - - 7 
I 

PROCESSOR I PROCESSOR I 
(STANDARD -1 (UPGRADE I 
VAX 8700) I VAX 8800) I t ' vAx 

I 
I 

HIGH SPEED MEMORY INTERCONNECT BUS ( N M I )  

I 
I 

BUS INTERFACE -- 17 I I I I I ; BUS INTERFACE \-- r-1 (OPTIONAL) I I 
I 
I I I I 
I L ------- -l I 
I I 
I I 

VAXBl 
I10 BUS 
STD 8700/8800 

,,-- J--- r--- 1--- 1 ----- L ---, 
I I 
I VAXBl I I VAXBl I I VAXBl I 
I I/O BUS I 1 I/O BUS I I/O B U S  I 

I (OPTIONAL I I (OPTIONAL I 
I STD 8800 1 
I I 

I 8700/8800) I I 8700/8800) I 
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Figure I VAX 8700/8800 Block Diagram 



An innovative scheme of bus bars and ribbon 
straps routes the appropriate power to each of 
the backplanes, minimizing cable management 
problems for system power. The eight CPLJ logic 
modules, all memory arrays, and all 1 / 0  con-  
trollers attach to their respective backplanes by 
Incans of x r o  insertion force (ZIF) connectors, 
which improve our  ability to manufacture and 
service the system. Figure 2 shows the two dif- 
ferent module typcs (CPIJ and VAXBI) used in 
the VAX 8 8 0 0  family. 

An extensive environment;ll monitoring sub- 
systcm, callecl the EMM, has been implcmcntcd 
throughout  t h e  system. T h e  EMM constantly 
monitors c ~ l r r e n t  f luc t~~; l t ions ,  air flows, ; ~ n d  
temperature variations, providing warnings at  
thc system console. The EMM can ;~utomatically 
power clown the systcm in the event th ;~ t  safe 
operating limits are violated. 

CPU Subsystems 
The designs o f  the CPIJs in the VAX 8 8 0 0  family 
are partitioned along the logical functions per- 

formed within each processor. There are four 
logical boxes the instruction unit (1 Box), the 
cache (C Box), the execution unit (E Box), and 
the memory subsystem (M Box). Each processor 
contains these functional units and their related 
buses. Five buses are implemented within each 
CPIJ: the c;~che/ALU bypass bus, the cache data 
bus, the instruction-buffer data bus, the virtual- 
address bus, and the write data bus. Figure 3 is a 
block dl;~grarn of the processor conf~guration 

SUBSYSTEM 
INTERFACE 

$- 
VISIBILITY BUS 

t t t 

t t l 
CACHEDATABUS 

I 

t 

HIGH SPEED MEMORY INTERCONNECT BUS (NMI) 

4 4 

I 

MEMORY 
ADAPTER 1 I I NBIA 

CONTROLLER 

IBD BUS 

TO NBlB ADAPTERS 

4 

CIA BUS - CACHEIALU BYPASS BUS 
IBD BUS - INSTRUCTION BUFFER DATA BUS 
VA BUS - VIRTUAL ADDRESS BUS 
WD BUS - WRITE DATA BUS 

Figure 3 Processor Block Diagrum 

A short o v e n ~ i e w  of c;ich functional box fol- 
lows. Othcr papers in this issue of the  Digital 
Technical Journal and  t h e  VAX Hardware 
Ifundhook contain substantially more detail.' 
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An Overview of the Four Systems in the VAX 8800 Family 

Pipelining the VAX 8800 Family 
Pipelining, m~hich functionally involves the 
E Box, the C Box, and the M Box, is primarily 
controlled by the I Box. Pipelining is a proven 
method to improve performance. The incorpo- 
ration of pipelining, in conjunction with faster 
microcode instruction execution rates, or cycle 
times, increases aggregate throughput more than 
can be achieved by improvements of the cycle 
time alone. The concept of pipelining is based 
upon part i t ioning instruction execut ion  t o  
allow simultaneous operations upon multiple 
mic ro ins t ruc t ions .  T h e  VAX 8 8 0 0  fami ly  
employs a five-stage pipeline. In this design a 
new microinstruction executes every 4 5  ns, 
with five microinstructions executing simulta- 
neously. A simplified schematic  of the  VAX 
8800 family pipeline is represented in Figure 4. 

D N A  - DECODE/NEXT ADDRESS 
CS - CONTROL STORE LOOK-UP (MICROCODE INSTRUCTION) 
R - REGISTER R E A D  
A - A L U  OPERATION 
W.C - REGISTER WRITE. CACHE OPERATION 

Figure 4 The Pipeline in the VAX 8800 
Family 

The I Box 
The I Box contains the microcode store and con- 
trol center and performs five  prima^ functions. 

Buffering the prefetched VAX instruction- 
stream data received from the cache 

Decoding and controlling the execution of 
microinstructions 

Monitoring and servicing microtraps, inter- 
rupts, and exceptions 

Supplying instruction-stream embedded data 

Interfacing between the console interface 
module and tlie processor 

For each processor, a writ;~blc control storc of 
1 6 K  words by 143 bits is loaded directly from 
the intelligent console subsystem upon system 

start. A segment of control store with 1K words 
by 143 bits, the user-writable control store, is 
provided for the system user to optimize appli- 
ca t ions .  T h e  logical  func t ion  of t he  I Box 
includes the following: 

'l'he instruction buffer 

'l'he instruction decoder 

'I'he condition code and microbranch logic 

The interrupt and processor-register logic 

The file-address generator 

Figure 5 depicts the implementation of the 
I Box. 

The C Box 
The C Box for each processor is built around a 
64-k i lobyte  (KB) wri te- through data cache  
memory that is physically indexed and direct 
mapped. Functionally, the C Box provides very 
h igh - speed  phys ica l  memory ,  h igh - speed  
acldress translations, and a con~munication path 
for the processor to the NMI bus. The compara- 
tively large cache size was specifically selected 
to allow large applicatio~is to remain fully resi- 
dent in the cache, substantially reducing mem- 
ory traffic and processor wait states. The com- 
p l c t c  C Box implementation i n c l u d e s  a 
1 KB translation buffer, a 64KB cache data store, 
and an NMI interface. The translation buffer 
consists of a 1K-entry cache of virtual-to-physical 
address translations. This translation buffer con- 
tains a tag store and a data store organized into 
5 12  process-translation slots and 5 12 system 
region-translation slots. Using a portion of the 
vir t i~al  address to compare the tag-store and 
data-store addresses, tlie translation buffer con- 
caten;ltes thc page frame number with the low- 
ortlcr virtual-address bits to form the physical 
;~dtlrcss for the data storc cache. 

kata rcacl from the cache data store (a cache 
"hi t")  requires  no  memory request .  If t he  
rcqi~irccl clata is not in the cache data store (a 
cache "miss"), logic embedded in the NMI 
interface uses the cache-miss address to spawn a 
comm:~nd/address transaction that is sent to the 
mcmon subsystem. Upon return, the requested 
data from memory is passed to the requesting 
CPIJ antl then placed in the cache data store for 
subscque~it use. This design allows the translation 

Digital Tecbnicnl Journal 
l\'o. 4 Fc.&rtra#:j1 1987 



CACHE DATA BUS JIJ TO CONSOLE INTERFACE 

7 

I GATEWAY 
CONTROL 

CONSOLE .C f 

DECODER CONTROL IL 

TO INSTRUCTION 
4 BUFFER DATA BUS 

DATAjCONTROL 

CONDITION 
CODE 8, 
BRANCH 

A A 
OPCODE 

SPECIFIER 

INSTRUCTION 
BUFFER 

- 

- 
INSTRUCTION 
BUFFER 
MANAGER 

INTERRUPT 
LOGIC 

WRITE 
P 

READ * 
ALIGN * 

INSTRUCTION 
DECODER 

INTERRUPT PENDING 

FILE 
ADDRESS 

SEQUENCING 
CONTROL 

E BOX 

VIRTUAL ADDRESS ' 

1 

Figure 5 I Box Block Dirlgrrrn~ 

M I C R ~ W O R D  t 1 4 7  
STORE STORE 

I TRANSLATION BUFFER I 

I I 

1 PHYSICAL ADDRESS 1 
I CACHF I - 

MEMORY 

INTERFACE 

WRITABLE 
CONTROL 
STORE 

CACHEDATABUS 

' FROM EXECUTION BOX 
t FROM INSTRUCTION BOX 

Figure 6 C Box Block Iliagram 

buffer and the cache data store to  b e  free to  
process other processor requests until the 
requested data arrives from memory.  

A block cliagram of  the C Box i s  shown in 
Figure 6.  

New Products 

The E Box 
The E Box receives data from the I Box and the 
C Box. processes that data, and returns it to the 
C Box. The E Box performs five primary func- 
tions reql~iret l  by the processor. 

Handles ; i l l  ar i thmetic,  logical and bit-shift 
operations 

Maintains the program counter  and gerier;~l 
registers 

Maintains the processor registers 

Controls d;~t;r transfers between the <: Box, 
the I Box, and the clock-module registers 

Provitles condit ion-code information to  the 
I Box ~nicroscquencer  
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The major ele~nellts of the 13 Box, located phyh- 
ically on the data-slice modules and the shi ftcr 
modulc. consist of a rcgister file, a data filc, the 
program-countcr logic, the main ALIJ, and a 
shifter. The logic of the E Box includes integr;~J 
floating point operations that are optimized and 
a 64-bit multiplier (implcmented in  custom- 
designed VLSI chips) that augments the speed o f  
both integer and floating point multip1ic;ition. 
Figure 7 is a block diagram o f  the E Box. 

The M Box 
Thc M ljox, the memory subs)~stern, consists of 
mc~lior)/  control logic, memory arrays, xntl ;I 

detlic;~ted memory array bus that provides a 
usable data rate of over 5 0 M D  per second to the 
memory subsystem. The control logic optimizes 
m ~ ~ l t i p l c  memory read and write operations. 
implements three-way interleaving, ant1 buffers 
memory transactions for optimum datil move- 
ment. 'I'hc dctlicated memory array bus, coupled 
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with the memory control logic, effectively off- 
loads the NMl bus, providing balanced bus 
access and loads. The interleaving algorithms 
are based upon array boundaries. making the 
memory control logic technology independent. 
The result is that as increasingly dense memory 
arrays become available, few if any controller 
modifications will be required. 

The error checking and control (ECC) is built 
around 7 check bits for every 32  bits of data. 
This protocol provides automatic single-bit cor- 
rection and double-bit detection. 

In the VAX 8800 multiprocessor, all memory is 
fully sharable. Current systems in the VAX 8800 
family are offered with 16MB per memory array, 
giving thc VAX 8700  and VAX 8800  systems a 
maximum memory capacity of 128MB, and the 
VAX 8500 and VAX 8 5  50 systems a maximum of 
80MB. Figure 8 is a block diagram of the M Box. 

t \ 
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t t  t l  
A R R A Y  BUS 

4 I I 4  
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ARRAY M O D U L E  L , , - - -, , - - - - - - J 

I 

Figure 8 M Box Block Diagram 

= 

r------- ------ 1 
MEMORY CONTROL I 

MEMORY INTERCONNECT INTERFACE I 

i%e Clock Subsystem 
The clock subsystem generates, controls, and 
distributes timing signals to ;ill the components 
of the processor system. The clock subsystem 
contains the console interface, an  oscillator, a 
phase generator, clock-control logic circuits, and 
the logic circuits for clock signal distribution. 

The  VAX 8 8 0 0  family implements  a two- 
phase, nonoverlapped clock subsystem operating 
at a cycle time of 45 ns. A stable, high-frequency 
oscillator (120 MHz nominal with variable out- 
put) ,  c o ~ ~ p l e d  with a phase generator, provides 
the signal. The implementation of a two-ph;~se 
design with matchcd signal-length distribution 
throughout the CPU is most efficient for the 
pipelined, latch-based dcsign of the VAX 8800 
family. This design avoids the inefficiencies 
associated with the co~nprcssed signill-assertion 
times resulting from approachcs that specify 
minimum delays for givcn logic elements. 

A-clock and B-clock signals arc distributed to 
alternate latches in a givcn logic stream. All data 
transfers occur bctwecn latches clocked by dif- 
ferent phases to assure a racc-free design. The 
essence of fast-processor design is managing and 
controlling skew. In this regard, signal propaga- 
tion and distribution prcscntcd significant chal- 
lenges in the areas of controlled etch lengths. 
controlled impedance, routing, and placement. 
To assure a stable, reliable design, all design 
activity was predicated on worst-case design 
rules rather than using the typical-case limits. 

CACHE BOX 

I I 
I 

POWER 
I 

ARRAY I CONTROL -) IlATAPATH 

-) 

INTERFACE 
I 

I I 
I t l  I t  I 
I ECL TO mL 

I 
I 

The NMI Bus 
Integral to the design of this family of proccs- 
sors was the development of a high-speed mem- 
ory interconnect bus called the NMI bus. This 
bus, analogous to the syncl~ronous backplane 
interconnect (SBI bus) in the V U - 1  1/780 CPU, 
links the subsystems for CPU logic, central 
memory, and I/O. The NMI bus is ;I 32-bit syn- 
chronous bus, physically implemented within 
the 22-layer backpla~ie. This bus provides the 
control and datapath functions as well as the 
distribution of clock signals for the VAX 8800 
family. 

One  fundamental problem in the design of 
high-performance systems revolves around bal- 
anc ing  the  bus acccss needed  a t  any given 
instant with the raw bandwidth available. To 
provide the corrcct balance, the NlMl bus was 
iniplemented as a pcnded (vs. intcrlockcd) bus, 
resulting in very high bus-access availability. 
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Since lnemory is the critical resource in sus- 
tained operations, the NMI bus uses a modified 
round-robin arbitration that gives the memory a 
higher priority when there is contention for the 
bus. This arbitration priority eliminates any 
lock-step conditions and also provides for reco\I- 
ery of states and data in the event of preemp- 
tion. This high bus-access cap;~bility, coupled 
with usable data rates of up  to 6OiMB per sec- 
ond, provides the necessary balance to support 
CPU, memory, and 1 /0  transactions. The inclu- 
sion of write buffers within each CPU, coupled 
with the large cache size, effectively reduces 
the number of transactions presented to the bus. 
Measurements on a VAX 8 8 0 0  system in our  
Engineering VAXcluster environment have indi- 
catccl that the NMI bus is rarely busy more than 
50 percent of the time; the CPUs use approxi- 
mately 25 percent of the available access time 
and bandwidth. Other  applications may see 
somewhat different ratios. 

VAXBI Bus 
The VAX 8800 family uses the VAX bus inter- 
connect, called the VAXBI bus, for the I/O sub- 
system in order to provide adequ;~te balance for 
the CPU performance. The VkYBI bus, a 32-bit 
clocked bus with distributed arbitration, is capa- 
ble of usable data rates in the VAX 8800 family 
up to 8 M D  per second, depending upon word 
size ant1 ;~ppl ica t ion .  Custom logic on  each 
interface module provides all bus protocols, :IS 

well as integral data-integrity features, including 
master transmit and command acknowledge. 

The VAX 8800 and VAX 8700 systems can be 
configured with up  to four VAXBI channels. 
whereas the VAX 8550 and VAX 8500 systems 
accept up to two. Therefore, fully configured 
Va 8800 and VAX 8700 systems can support 
aggregate 1/0 bandwidths up to 30MB per sec- 
ond. Similarly, fully configured VAX 8550 and 
VAX 8500 systems can support aggregate band- 
widths up to I 6 M B  per second. Each VAXBl bus 
c a n  s u p p o r t  u p  t o  1 6  n o d e s ,  o r  l o g i c a l  
adtlrcsscs, which connect to any combination of 
ne tworks ,  i n t e l l i gen t  and  non in t e l l i gcn t  
devices, DMA devices, and VAXcluster systems. 
as well as providing for connection to existing 
LJNIBUS-based devices. 

Al l  of Digital's network protocols interface 
directly to the VAXBI on the VAX 8800 family. 
'l'hus, VAXcluster. Ethernet, DECnet and DSA 

(Digital Storage Architecture) devices are all 
ported directly to this high-performance 1 / 0  
subsystem. 

Reliability 
Reliability was one of the primary goals of the 
VAX 8 8 0 0  design.  Numerous features were 
implemented that more than doubled the basic 
computing kernel availability compared to the 
VLY-1 1/780 system Some of the key functions 
~nclude 

Environmental and power  monitors  that 
query the system and maintain safe system 
operating levels 

Automatic verification of hardware, firmware, 
and software revision compatibility 

Electrically keyed n~odules and module slots 
that prevent improper installation and dam- 
age to the modules or the system 

Automatic electrostatic discharge (ESD) pro- 
tection of modules during installation and 
removal 

ECC on main memory 

Parity checking on internal RAiMs 

Bus protocol checking for the memory inter- 
connect 

Timing and voltage margining 

Remote diagnostics capability 

Dual-to-single processor reconfiguration 
(VAX 8800 system only) 

Diagnostic Development 
Similar to t he  hardware deve lopmen t ,  the  
des ign  m e t h o d o l o g y  fo r  t h e  d i a g n o s t i c s  
depended very heavily on simulation. Almost all 
the diagnostic tests were debugged on behav- 
ioral and structural models of the design before 
the initial prototype was powered up .  There 
were three major benefits of this methodology. 

1 .  Microdi;~gnostic and macrodiagnostic 
tests were useful for design verification 
testing. 

2 Test vectors for automatic test equipment 
(module test) were extracted from the 
s~mulation database 

3. A comprehensive diagnostic package was 
available shortly after the prototype was 
powered up. 
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The diagnostic for the VAX 8800 family con- 
sists of tests specific to  this processor and 
generic to the VAX architecture. The processor 
is tested primarily with microdiagnostics. These 
tests execute from the processor's writable con- 
trol store and are governed by the console. 

VAX generic diagnostics are included to test 
the UNIBUS and VAXBI adapters and options. Al l  
the diagnostic code  fits on the  console ' s  
Winchester disk. When the system is powered 
up,  a subset of the microdiagnostic tests are 
executed. 

Balanced Systems 
The VAX 8800 design effort delivered four dif- 
ferent systems, the 8800, the 8700, the 8550, 
and the 8500, all reflecting the overriding con- 
cept of balanced system design. While the CPUs 
themselves demonstrate excellent internal bal- 
ance between their logical and functional sub- 
systems, they are also balanced members of the 
extended system that can span much larger 
physical distances. Monolithic or isolated corn- 
p i ~ t i n g  resources arc no longer capable of 
accessing, manipulating, and distributing the 
volumes of information needed for complex or 
extended solutions. In this light, the VAX 8800 
family should be viewed in the context of a bal- 
anced network. The movement of data is gov- 
erned by spccd and distance. An inverse rela- 
tionship exists as shown in Figure 9.  The VAX 
8800 family fits on the top bound of the band- 
width rangc throughout the distance function. 

C 
A a COMPLEX TECHNOLOGY 

+SIMPLE 
v, 1001 

HIGH - SPEED 

a I I I I I m 1 10 100 1000 

DISTANCE - METERS (LOG SCALE) 

Figure 9 Bandwidth versus Distance 

Summary 
The VAX 8800 family of products merges fast 
instruction-execution rates, large physical mem- 
ories, large high-speed data caches, VAXBl 1 / 0  
channels, pipelining, and balanced internal-bus 
architectures to provide high system-applica- 
tions throughput. Spanning an applications 
throughput range that is from 3 to 12 times that 
of the VAX-11/780 system, the VAX 8500, VAX 
8550,  VAX 8700,  and VAX 8800 systems are 
matched to the network and applications strate- 
gies offered by Digital Equipment Corporation. 
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n e  V M  8800 Microarchitecture 

The VAX 8800 processor has a simple but eflcient microarchitecture. Its 
pipelined micromachine has a one-cycle next-address loop and four-cycle 
latencies for both microbranches and microtraps. Instruction prefetch 
and decode are done in parallel with microcode execution. The instruc- 
tion bufler is a bit-sliced, four-longword circular queue. The decoder is 
primarily a RAM-based table. For special events, hardm'red logic is used 
for decoding. A bit-sliced microsequencer provides up to 32-way condi- 
tional microbranching, using a collection of about 80 branch conditions. 
A hardware microstack provides up to 15 levels of nested subroutine calls 
and returns. Microtrap conditions are prioritized over 16 levels, and 
microtraps are chained, not nested. 

The term "microarchitecturc" means the speci- 
fication or description of the interrelationships 
between the parts of the micromachine that 
implements the instruction set proccssor. I11 
terms of this definition, the microarchitecture of 
the VAX 8800 processor will be described by 
elucidating the organization of its micromachine 
and the interaction between its componcnts. 

Figure 1 shows a simple three-stage statc- 
machine model of an abstract micromachinc 
appropriate for implementing the control unit 
of a typical von Neumann processor. Figure 2 
shows a block diagram depicting the essential 
elements of such a micromachine. This state- 
machine is capable of executing microcode rou- 
tines to implement an instruction set processor. 
In such a system, e17ery macroinstruction is 
decoded by the hardware to produce the start- 
ing addresses of a small set of microprograms, 
which execute  sequentially t o  produce  the 
desired effect .  Barring some except ions ,  a 
microprogram or rnicrocodc routine can exr- 
cute rather independently in the sense that e ;~ch 
microinstruction produces the address of the 
next microinstruction. Thc last microinstruction 
causes thc selection of an external address, such 
as one  produced by the dccoder, to start the 
execution of another routine. 

In Digital's vernacular, the 1 Box is the logical 
partition containing the instruction-processing 
hardware. Figure 3 shows a block diagram of the 
VAX 8800 I Box with the basic elements of its 
micromachine. 

FETCH 
MICROINSTRUCTION 

Figure I State-machine Model of an 
Abstract Micromachine 

From thc carly 1BM and CDC computers to the 
modern CRAY machines, computer designers 
havc ~ ~ s e t l  a technique called "pipelining" to 
obtain higher performance. Pipelining overlaps 
the executjon of instructions in time; that is, 
several instructions can be  executing at the 
same time. This technique provides a higher 
throughput when the pipcline is fully loaded, 
bur there is a cost involved. I f  the pipeline is 
brokcn, extra processing is required to refill i t .  
Moreover, if any active instructions have par- 
tially executed, information about their states 
may havc to be saved to continue processing 
after an abrupt interruption. 

The degree of pipel ining varies from one  
machine to another depending upon the design 
choices and trade-offs made by the system archi- 
tects. A mctaphor often used to indicate the 
degrcc of pipelining is the length of the pipeline 
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Figure 2 Block Diagram of an Abstract Micromachine 
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stated as the number of stages, for example,  a 
three-stage pipel ine o r  a four-stage pipel ine.  
The number of stages conveys the extent of time 
overlap for typical operations in a compute r .  
In  a machine with  a pipelined microarchitec- 
ture, these operations are executions of microin- 

MICRO- 
DATA 
LATCH 
OR 
REGISTER 

structions. A higher degree of pipelining makes 
shor t  cycle  t imes possible ,  thus  leading to  a 
higher throughput  w h e n  the  pipel ine is fully 
loaded.  But longer pipel ines  entail  increased 
overhead in terms of their ability to resume oper- 
ations after a break in  the pipeline caused by any 
abnormal event. Therefore, an architect's goal is 
to design the system so that the pipeline remains 
loaded most of the time and recovery from a bro- 
ken pipeline is not too inefficient. The VAX 8800 
CPU is a pr ime example of a processor with  a 
pipe lined microarchitecture. 

System Considerations 
The design philosophy of the VAX 8800 proces- 
sor  was t o  o p t i m i z e  t h e  hardware  s o  that  it 
w o u l d  execu te  t h e  microcode  efficiently.  A 
large control store ( 1  44 bits by 16,000 entries) 
holds the entire microcode. Using fairly general- 
ized datapaths ,  t h e  microcode  execu tes  t h e  
logic of the instructions. However, special hard- 
ware is used to speed u p  performance in critical 
areas. The processor logic is primarily designed 
with latches, which are clocked with a g[obally 
distributed, two-phase, nonoverlapping clock- 
ing scheme. The two clock phases are called the 
A-clock and the B-clock. A typical example of 
logic design, based on the above approach, is 
shown in Figure 4. 

CL - COMBINATORIAL LOGIC 

Figure 4 A Typical Section of the VAX 8800 

INPUT- A-LATCH r~ 
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It is apparent from Figurc 4 that the data flow 
in such a logic system occurs through the per- 
petual data transfers between the latches con- 
nected to the A-clock and those connected to 
the B-clock. Each data transfer may bc consid- 
ered atomic in the sense of hardware operation. 
A microoperation may be envisioned as a logical 
operation that is atomic in terms of the execu- 
tion of ;I microinstruction, such as a register 
read, a register write or an ALU function. Hence 
a microoperation constitutes one or morc data 
transfers, and the microinstruction execution 
simply constitutes a time sequence of micro- 
opcrations. as shown in Figure 5. 

CLOCK 

Figrsrre 5 Example of n Microitzstrzrction 

R E A D  

In high-performance machines, like those in 
the VAX family, there is usually a mismatch 
between CPU cycle times and memory-acccss 
times. For example, consider an A D D  instruc- 
tion. I f  the operands are in registers, tlie A D D  
can be done rather quickly. But i f  one of the 
operands has to be read out of memory, the ADD 
cannot be performed until thc desired d;lta 
arrives from memory. Most VAX processors havc 
a fast cache memory, tightly bound to the pro- 
cessor's arithmetic units, to alleviate the mem- 
ory-latency problem. In the case of a cache miss 
on a required datum. however, the only ;iltcrna- 
tivc for a von Neumann processor is to wait A 
processor in such a state is said to be "stallcrl." 
IJnclcr such conditions, the state of the proces- 
sor must be "frozen" ~ ~ n t i l  the c;~usc of tlie stall 
no longer persists and the stall is broken. The 
two-phase clocking scheme provides :I conve- 
nient way to implement stalls, in which one of 
thc clock phases (the A-clock in the 8800) may 
be blocked. Stalls are controlled by the cache 
through a special hardware signal distributed 
globally to block the A-clock. Thus, thc proces- 
sor logic contains two flavors of A-latchcs: 

Stalled A-latches, which are affected by ;I st;ilJ 

TIME 
b 

tbl& FUNCTION 

Unstalled A-latches, which are not affected by 
a stall 

STORE RESULT 
IN REGISTER 

The micromachine is implemented only with 
stalled A-latches. Hence the effect of stalls on 
the execution of the micromachine is largely 
transparent. 

A mechanism is also required to deal with 
hardware exceptions when the results of the 
execution of a microinstruction have to be 
undone. In a pipelined microarchitecture, sev- 
eral microinstructions may have partially exe- 
cuted when an exception condition is detected. 
In that case i t  is necessary to undo the effects of 
all those microinstructions. The most common 
technique used to deal with such situations is 
called a microtrap. Since microtraps relate 
closely to t.hc micromachine execution, every 
processor has its own scheme to implement 
them. In every case, however, microtraps must 
permit the "roll back" of some number of 
microinstructions because the detection of a 
trap condition usually occurs quite late with 
respect to microinstruction execution. 

In the VAX 8800 processor, microtraps are 
implemented so that the offending micro- 
instruction is allowed to complete, but subse- 
quent niicroinstructions in the pipeline are 
blocked. Since tlie offending microinstruction 
may have c a ~ ~ s e d  some undesirable results, the 
trap-handler microcode must fix the problem. 
Depending on the particular situation, either 
the microinstruction execution flow is resum- 
ed from the blocked state or a new flow is 
originated. 

System Buses and Datapatb 
Figure 6 is a block diagram of the VAX 8800 
CPU datapath, showing all the major buses. The 
hardware organization of the CPU provides a 
two-cycle operation between the cache and the 
M U ,  as shown. Thc processor has several func- 
tional units in addition to the main ALU. These 
additional units perform high-speed multiply 
and divide, shifting, and floating-point arith- 
metic operations. 

There are several possibilities for selecting 
inputs to these functional units. For operations 
involving two inputs, both can be presented 
simultaneously onto the two legs of the main 
ALU as well as most other functional units. The 
results from these functional units are sent on 
the W bus for writing to either the multiport 
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Figure 6 VAX 8800 Datapatb 
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The VAX 8800 Microarchilecture 

register file (IMPR) or the cache. However, since 
the write actu:~lly occurs in the following cyclc. 
the bypass bus provides a shortcut ( s ;~ \~ ing  ;I 

cycle) in casc the write d;~turn is read I)!, the 
very next microinstruction. 

The virtual address bus carries the virtual 
address of any data-strc;~m (d-stream) refer- 
ences. whereas the progr;lm-counter bus has the 
current program counter (PC). The instruction- 
buffer data bus provides the instruction-strca~n 
(i-stream) data. The instructions and dat ;~ from 
the cache are returned 011 the cache da t ;~  l)us. 
However, a cache d ; ~ t ; ~  bypass bus provitles a 
direct path to the functional units for the d:it:~ 
returned by the cache, in case the processor is 
or will be stalled for that data. 

Microinstruction Pipeline 
The top part of Figure 7 shows the execution o f  
microi~istr~~ctions as a function of time in a n o n -  
pipclinetl microarchitccture; the bottom depicts 
that in ;i pipelined microarchitecture. 

The I~asic data flow in a processor occurs in 
the following scquencc: 

1 .  Read the rcgistcr operands into a func- 
tional unit, such as the M U .  

2.  Perform some M.IJ function. 

CLOCK - 

3 .  Writc the results into the destin;ction 
rcgister. 

4. I f  there is a cache, start a cache operation 
;it ;~pproxi~natclp the same time as a regis- 
ter write since memory references are 
bulfcred through special-purpose mem- 
ory d i ~ ~ i l  registers (MDRs or MDs) in most 
high-performance processors. 

Figure 5 shows that the  s equence  above 
occurs in a natural order in time as a conse- 
qucncc of the microinstruction execution. With 
pipelined microarchitectures, a time reference 
is needed to corrclatc the microoperations per- 
formed by various micro ins t ruc t ions  w i th  
respect to each other. The notion of canonical 
times is very convenient for this purpose. The 
clock ticks of the reference microinstruction 
may be 1;tbcled with a monotonically increasing 
set of T numbers starting at To as shown in 
Figure 8. Thcsc T numbers are c;~lled the canon- 
ical times of a particular microinstruction. 'The 
microoperation labeled T,, marks the start of a 
microinstruction exccution cycle.  Figure 8 
shows the basic microoperations of a VAX 8800 
nlicroinstruction with their canonical times. 

We shall use the simple model of a microma- 
chine in Figure 1 to describe the VAX 8800 micro- 
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MICROINSTRUCTION EXECUTION IN 
A NONPIPELINED M I C R O M A C H I N E  
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MICROINSTRUCTION 2 

MICROINSTRUCTION EXECUTION IN 
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Figure 7 iMicroinstruction Execution 
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Figure 8 Cc~~zonical Times of a VAX 8800 Microinstruction 

instruction format as a sequence of basic micro- 
operations like those in Figure 8. The first stage 
in the  microinstruction execution cycle is the 
microaddrcss fetch. The n~icroinstruction execu- 
tion cycle bcgins with a decoder operation. The 
decoder produces the starting microaddress for 
every new microinstruction sequence and pre- 
sents  it t o  t h e  microsequencer .  T h e  d e c o d e r  
determines that address on the basis of the con- 
tents and current state of the  instruction buffer 
(1B). Each microinstruct ion spec i f i es  t o  t h e  
microsequencer whe ther  o r  not to  accept  the  
decoder's microaddress. If not, the microinstruc- 
tion must either specify the address of the next 
m i c r o i n s t r u c t i o n  d i r e c t l y ,  a s  a p a r t  of t h e  
microword, or indicate an alternate source for 
the address within the microsequencer. Since the 
d e c o d e r ' s  opera t ion  is c o n c u r r e n t  w i t h  t h e  
microsequencer's, the decoder always has a start- 
ing microaddress for the  microsequencer. It is 
convenient to think of this IB-decoder concur- 
rency as a "hidden decoder cycle." 

The next stage in the microinstruction execu- 
tion sequence is thc fetch of the microinstruc- 
t ion ,  performed by a look-up  in the  control  
store. In the VAX 8 8 0 0  system, the rnicroaddress 
is pipelined, not the microdata. Consequently, 
the  microdata from a segmented control store 
appears at  the  appropria te  t ime for t h e  three  
basic operations to occur in the indicated order. 

The microdata looked u p  causes a sequence 
in which the register read occurs between the 
times T5 and T6, the  ALU function between T6 
and Tn, and the register write between T8 and 
T,o.  The cache operations also occur  between 
the times Tn and T l o .  The section beyond T l o  
denotes cache activity with respect to the mem- 
ory if there is a cache miss. (The cache/memory 
interface is controlled by an independent micro- 
machine.) During every cycle, a microinstruc- 
tion produces the address of the next microin- 
s t ruc t ion ,  w h i c h  is then  e x e c u t e d .  Figure 9 
depicts the generic microinstruction pipeline of 
the VAX 8 8 0 0  processor. 
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Micro branch Latency 
One consequence of pipelining is that any inter- 
vening  micro ins t ruc t ions  must  be  spaced  
between the instruction that procluces a branch 
condition and the instruction that can branch on 
i t  due to latency in the deve lopn~en t  of the 
branch condition. Obviously, the execution of 
the intervening microinstructions must be indc- 
pendent of the branch. Usually, microcoders are 
able to code some useful operations during the 
inevitable wait.  Otherwise,  the  intervening 
instructions must be  NOPs (no  operat ion) .  
Figure 10 shows the microbranch latency in the 
VAX 8800 CPU. 

Microtrap Latency 
A hardware exception causes a microtrap. How- 
ever, the trap conditions, like the branch condi- 
tions, may develop after some execution cycles 
have been completed. Once again there must be 
some intervening microinstructions between the 
trap-causing microinstruction and the trap-han- 
dling routine. Moreover, the state of the micro- 
machine must be saved so that the current exe- 
cution can be resumed in such a way that the 
in te rvening  execu t ion  of t he  t rap  rou t ine  
appears to be transparent. This state consists pri- 
marily of microbranch conditions that result 
from the execution of microinstructions in the 
pipeline since those could influence subse- 
quent microaddresses and hence the execution 
sequence. Therefore, on interruption of the cur- 
rent sequence by the trap routine, the branch 

CLOCK - 

CYCLE - 
i i i  2 3 4  

conditions from the earlier execution are essen- 
tial to reproduce thc same sequence. 

To simplify the hardware design, all. early 
traps are delayed to  a fixed canonical t ime 
(T,o). Some trap conditions, however, develop 
later than the canonical time with the conse- 
quence  that those traps cannot be returned 
from. In such cases the microcode must roll 
back the state to the beginning, which causes a 
reexecution of the entire macroinstruction. 

Figure 1 1  shows  a s e q u e n c e  in w h i c h  a 
microinstruction at address T provokes a micro- 
trap. At the earliest, the trap-handling routine 
can begin at microinstruction X .  Meanwhile. 
microinstructions U,  V, and W follow T, quite 
unaware of the impending trap. In fact, they are 
in partial execution when the trap condition is 
detected. These microinstructions are said to be 
in the trap shadow, and they must be blocked 
from writing any registers, thus making i t  appear 
as if they had never executed. When control is 
returned from the trap-handling routine, these 
trap shadow microinstructions are reexecuted, 
continuing the sequence that would have arisen 
had the trap not occurred. 

Instruction Bufler and Decoder 
The IB buffers the  prefetched VAX i-stream 
delivered by the cache and in turn delivers the 
opcode and specifier to the decoder. The IB also 
delivers the i-stream data to the execution unit, 
the E Box. The decoder expects to receive the 
current opcode and the current specifier byte. 
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Hence the IB saves the opcode for the duration 
of the instruct ion execut ion  and shifts the  
buffered i-stream along to send each specifier in 
turn to the decoder. The goal of the VAX 8800 
decoder is to produce a starting microaddress 
corresponding to the opcode and the specifiers. 
The sequence of microcode execution caused 
by the decoder is first to process all the specifi- 
ers, making all the operands available, and then 
to  e x e c u t e  t h e  ope ra t ion  spec i f ied  by t h e  
opcode. If an instruction has no specifiers, the 
execution microcode is initiated directly. In any 
case the decoder  always has a microaddress 
ahead of time for the  microsequencer .  This 
microaddress is the starting address of either a 
specifier rout ine o r  t he  execut ion  rout ine ,  
based on the contents and the state of the IB. 

If at any time the IB does not contain enough 
i-stream data for a successfu l  d e c o d e ,  t he  
decoder will produce a special microaddress. 
The microinstruction at that address is simply a 
NOP that again requests the selection of the 
decoder's address. The micromachine thus waits 
in a loop for sufficient i-stream data to arrive in 
the IB so that the decoder can again dispatch a 
useful microaddress. This wait-loop state of the 
micromachine is commonly referred to as the IB 
stall, which is different from the stall described 
earlier. Note that clocks to stalled A-latches are 
not blocked for an IB stall. On the contrary, the 
micromachine runs normally as does the rest of 
the processor hardware. I B  stalls may occur  
when the instruction prefetch pipeline is bro- 

RD 

L----------- 
WR,  

ken due to macroinstruction branches. This con- 
dition requires the current contents of the IB to 
be  d iscarded  and  new i - s t ream data t o  be  
prefetched into the IB. 

The VAX 8800 IB is a four-longword circular 
queue, which is usually long enough to hold an 
entire instruction. The data is consumed out of 
the IB from the position pointed to by the read 
pointer. However, new data could be written 
concurren t ly  by the  cache  a t  t he  pos i t ion  
pointed to by the write pointer. Whenever it  has 
room, the IB is loaded by the cache if the cache 
has no other higher priority job to do. Occasion- 
ally, the IB becomes full (the write pointer  
catches u p  with the read pointer), and then it 
does not accept the datum from the cache. If a 
datum is not accepted by the  I B ,  t he  cache 
keeps repeating the transfer until the datum is 
accepted. Occasionally, the IB becomes empty 
if the cache is busy doing other things and the 
decoder has consumed all the data from the IB 
(the read pointer and the write pointer point to 
the same location). 

The IB in the VAX 8800 family is implemented 
with four identical gate arrays with 8-bit slices 
designed to use a rather clever bit-scattering/ 
gathering scheme. The IB also contains logic to 
extract and format i-stream data, making it  avail- 
able to the E Box. A common silo holds the 
opcode history for the duration of a macro- 
instruction's execution, as well as for recov- 
ery from microtraps. The VAX 8800 decoder is 
a RAM-based look -up  t ab l e  for  genera t ing  
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microaddresses. In the  case of special events, 
however, hardware logic is provided for gener- 
ating special microaddresses, as shown in Fig- 
ure 12 ,  thus bypassing the  RAM look-up. The 
decoder ;~ l so  provides controls for the IB  state- 
machine as well as some other hardware assists. 

Microsequencer 
The state-machine responsible for generating thc 
next microaddress  for a microinstruction s c -  
quence is commonly called the microsequencer. 
As shown in Figure 13, this s ta te-machine is 
realizcd collectively by the control store. the next 
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Figure 13 An Ah.slrcrct Microsequencer 
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microaddress generation logic, and the microad- 
dress and microclata latches (or registers). 

The goal of the VAX 8 8 0 0  microsequencer is 
to produce the address of the next microinstruc- 
tion during every cycle. Figure 14 depicts how 
the microsec~uencer achieves this goal. 

Each microinstruction may modify its next- 
microaddress field through a microbranch com- 
mand t o  p r o d u c e  t h e  address  of t h e  t a rge t  
microinstruction. Microbranch conditions are 
delivered by other sections of the machine, such 
as t h e  ALU. T h e s e  c o n d i t i o n s  a r e  g r o u p e d  
together in ways convenient for microprogram- 
ming so that multiway branches can be taken. 
  micro subroutines can be called and returned 
from by means of a hardware microPC stack. 

Stalls cause the  microseqi~encer  state t o  b e  
frozen on a cycle boundary (i .e. ,  the clocks on 
microaddress and microdata latches are effec- 
tively blocked). Microtraps allow the microcode 
to deal with unusual events that would be too 
slow or inconvenient to check normally with 
microbranches, such as TO misses and address 
misalignments. The VAX 8 8 0 0  processor does 
not permit traps to be nested. Instead, traps are 
"chained," meaning that trap routines and hard- 
ware trap priorities are  carefully arranged s o  
that a second trap is taken only when the first 
trap routine finishes. (Machine check traps can- 
not be controlled in this way.) 

Sources of Microaddresses 
There are five sources for microaddresses: 

The dccodcr 

The next-address field in the microword 

The microstack upon returning from a sub- 
routine 

The microPC silo for a saved microtrap 

The micromatch register for an address from 
the consolc 

An address from the  console is selected in 
response to  an exp l ic i t  console  request  and 
t a k e s  p r e c e d e n c e  o v e r  e v e r y t h i n g  e l s e .  
A d d r e s s e s  f r o m  t h e  s i l o  a r e  r e q u c u c d  i n  
response to a trap-return command. Addresses 
from the microstack are selected in response to 
a subroutine-return command. 11 decoder-gener- 
atcd address is selected whenever the current 
sequence ends and a new specifier o r  execution 
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routine should begin. Normally, this selection is 
caused by the assertion of a microword bit in 
the  very last microinstruction of the  current  
sequence. The next-address field is selected as 
the default for normal sequencing. This field is 
also used to provide an offset in case of subrou- 
tine returns. 

Micro branching 
In normal cases, part of the selected microad- 
dress can be modified according to the branch 
conditions, that is, whenever the  next-address 
f i e l d  i s  s e l e c t e d .  A c o m b i n a t i o n  o f  t w o  
microword fields, branch type and branch mask, 
selects the  branch conditions, which are then 
ORed into part of the  target microaddress. In 
the VAX 8 8 0 0  system, the microbranch logic is 
implemented with  five identical gate arrays, 
each of w h i c h  generates  a 3 -b i t  s l ice  of the  
microaddress. O n e  microaddress bit is branch 
sensitive in cach slice. This organization permits 
up to 32-way branching. Branchings of 2 ,  4 ,  8, 
and 16 ways are also made possible by a sepa- 
rate mask bit, called the branch mask, to every 
slice. This bit is used to  turn off the sensitivity 
to branch conditions in a particular slice. 

There  are  16 basic recipes  for conditional 
branching in each s l ice .  This arrangement of 
slicing, masking, and branch-condition selection 
in every slice requires that all the microbranch 
c o n d i t i o n s  b e  o r g a n i z e d  i n t o  5 g r o u p s  of 
16 conditions each. The branch conditions are 
classified as either static o r  dynamic. Static con- 
ditions, once captured, are available for branch- 
ing in any later cycle as long as those conditions 
remain unchanged .  Dynamic condi t ions  a re  
asserted for just one  cycle and must be  branched 
on in that cycle. 

Some special trap-related branch conditions 
are saved at the time of the trap so that the trap 
routine may use them. For speed reasons, the  
basic hardware mechanism for multiway branch- 
ing is that the selected condition is ORed rather 
than added to the branch-sensitive microaddress 
bit .  The OR implies that the  branch-sensitive 
bits of a microaddress must be "zeros" by con- 
vention. If branching is masked in any s l ice ,  
however, only unmasked branch-sensitive bits 
need  t o  b e  zeros .  T h u s  t h e  branch-masking 
schcmc leads to a substantial increase in the  
number of conditional branch-target addresses, 
c o n s t r a i n e d  by t h e  r e q u i r e m e n t  f o r  z e r o s .  
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Table 1 Microbranch Conditions 

Slice 
Number Microbranch Conditions 

1 State flags 
2 WBUS low-order bits 
3 WBUS high-order bits 
4 SALU condition codes 
5 PSL condition codes 
6 XALU condition codes 
7 Priority encoder condition codes 
8 ALU condition codes 
9 TB-status 
10 Cache command 
11 M D  number 
12 AC low 
13 Digit valid 
14 NMI ID 
15 lnterrupt pending 
16 Interval timer carry 
17 Halt pending 
18 Console mode 
19 lnterrupt ID 
20 Non-Retry flag 

Table 1 shows an example of several micro- 
branch conditions. 

Microsubroutine Call and Return 
As in the normal case just discussed, the default 
microaddress, the next-address field, is selected 
as the starting address of a microsubroutine. 
However, a subroutine-calling microinstruction 
pushes its own address onto the microstack. 
During the subroutine return, the microstack is 
selected as the source and then popped. Thus 
the address of the calling instruction is used as a 
base for the return. The returning instruction 
may OR an offset from the next-address field to 
tha t  base ,  t h u s  y i e ld ing  t h e  ta rge t  r e tu rn  
address. The fact that bits are ORed rather than 
added constrains the calling addresses to have 
zeros in the low-order bit positions. 

The write path to the microstack (PUSH) is 
pipelined by a cycle for timing reasons. How- 
ever, a bypass path saves what would be the top 
entry of the microstack in the read latch (POP) 
so that PUSHs and POPS occur in a fairly unre- 
stricted manner.  There a re ,  however,  some 
minor coding restrictions with respect to traps 
and decoder-made addresses. 

Subroutine calls and returns are unaffected by 
stalls. In the VAX 8800  CPU, the microstack is 
16 entries deep and is used exclusively for sub- 
routine calls and returns (i.e., microtraps do  not 
use the stack). Subroutine calls may be nested u p  
to 15 entries deep, beyond which the microstack 
wraps a round and overwri tes  previous cal l  
addresses. Since the next-address field is condi- 
tionally ORed into the calling address to make 
the return address, a conditional multiway return 
becomes feasible. 

Microtrap and Return 
A mic ro t r ap  is caused  w h e n  t h e  hardware 
detects a condition that would not allow the 
current microinstruction to complete its execu- 
tion successfully. The hardware forces the next 
microaddress to a fixed location that depends 
on the particular condition, thus overriding the 
address that would otherwise be selected. This 
special location is the starting address of the 
trap-handling microcode routine specific to that 
trap condition. Microtraps are used extensively 
by the memory management system to imple- 
ment the virtual memory architecture. Micro- 
traps are also caused by serious system faults 
(i .e., machine checks), such as control-store or 
bus parity errors. Table 2 lists the microtrap 
conditions and their priorities. The priorities are 
arranged so that i f  more than one  microtrap 
occurs during a cycle, the one with the highest 
priority will be serviced and the others ignored. 

Table 2 Microtra~ Conditions and Priorities 

Microtrap Condition Priority 

Digital Technical Journal 
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Microbreak Highest 
Machine check 
VA parity error 
TB tag parity error 
Reserved for ECO 
Reserved float operand 
Add rounding 
Multiply rounding 
Integer overflow 
TB miss 
Access violation 
Modify bit 
Page cross 
Unaligned page cross 
Unaligned trap 

A 
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Figure 1 1 shows the microtrap latency and its 
consequences o n  pipelining. As described ear- 
lier, 21 trap-causing microinstruction, even if it 
writes the wrong results, is allowed to complete 
because i t  is too late to block it anyway. (The 
canonical time of register write is T9, whereas 
the microtrap signal occurs at  canonical t ime 
T,,). The only recourse is to  let the  trap-han- 
dling microcode correct any problerns caused 
by the trapping microinstruction. The microtrap 
signal occurs in time to block all three microin- 
structions in the  trap shadow. Therefore,  thc  
microtrap logic generates two global signals, the 
global microtrap (one-cycle long) and the block 
writes (three-cycles long), at  time T,,,. The pur- 
pose of the global-microtrap signal is to trigger 
any necessary trap-contingent actions in various 
par t s  of t h e  p rocessor .  T h e  p u r p o s e  of t h e  
block-writes signal is to block register writes at 
canonical times T I  I ,  TI3, and TI=,, thus rendering 
ineffectual microinstructions U,  V, and W in Fig- 
ure 1 1 .  In other words the blocking of writes by 
hardware is in effect until  the  trap-handling 
microcode takes control of the micromachine. 

A silo is generally used to save the state of the 
machine across a microtrap. In most cases the 
l e n g t h  of t h e  s i l o  is e q u a l  t o  t h e  d e p t h  of 
pi pelining. Since there are many Inore branch- 
condition bits than microaddress bits, it is more 
economical to save microaddresses in the  trap 
silo than to  save the conditions causing those 
addresses. Microaddresses U, V, and W must be 
saved in t h e  s i l o  s i n c e  they  may b e  b ranch  
targets of some previous microinstructiot~s. For 
the same reason, however, the address X (over- 
ridden by X', the starting address of the trap rou- 
tine) must be  saved as well. During the execu- 
t i o n  of t h e  t r a p  r o u t i n e ,  t h e  t r a p  s i los  a r e  
"frozen" (blocked from loading), thus saving 
the  state of t h e  micromachine at the  t ime of 
trap. 

After the trap routine has completed, two con- 
ditions are possible: 

1. The recovery from the trap is impossible, 
and hence the ~nicroinstruction sequence 
c a n n o t  b e  c o n t i n u e d .  T h e n  t h e  only  
recourse is to roll back and reexecutc the 
macroinstruction. That is, the macroPC is 
backed u p  from its silo, the IB is flushed. 
and if necessary, any register changes are 
u n d o n e .  In t h i s  c a s e  t h e  last  m i c r o -  

instruction of the trap routine performs a 
trap release, which unblocks the silos so 
they can resume loading the new states. 

2.  Microcode can remedy the  cause of the 
t r a p  s o  t h a t  t h e  m i c r o i n s t r u c t i o n  
sequence can be continued. In this case 
the last microinstruction of the trap rou- 
tine performs a trap return, causing the 
hardware to recycle microaddresses U, V, 
W, and X through the microaddress pipe. 
This action results in the  reexecution of 
aborted ~nicroinstructions from the trap 
shadow. 

In t h e  case of a t r ap  re tu rn ,  t h e  hardware 
selects the microPC silo as the microaddress for 
the next four cycles.  As shown in Figure 1 4 ,  
however, the microPC silo does not contain the 
microaddresses made by the decoder. Therefore, 
i t  is necessary to resynchronize the  microin- 
structjon execution sequence with the decoder, 
whi le  requeuing the  t rapped microaddresses 
from the silo. This is made possible by keeping 
a tag bit in the silo to identify the positions of 
the microaddresses made by the decoder in the 
sequence .  If a microaddress from the  s i lo  is  
found to be tagged. the requeuing is terminated 
immediately and the microaddress generated by 
the  decoder  is selected. A complete  recovery 
thus occurs since the state of the IB has by this 
t i m e  b e e n  b a c k e d  u p ,  a n d  t h e r e f o r e  t h e  
decoder-generatcd microaddress can be used for 
the continuation. 

Chaining of Microtraps 
By convention, microtraps are not allowed to  
nest; instead, they are chained. In other words 
the trap-handling microcode must ensure that i t  
will  not cause any microtraps itself. The sole 
except ion is its last nlicroinstruction, which 
may cause a second microtrap to follow imme- 
diately, even as the saved microaddresses froin 
the silo are being requeued to resume the origi- 
nal flow. Note that this second microtrap does 
not take effect until four cycles later, whereas 
intervening microinstructions are blocked by 
the hardware as a result of this second micro- 
trap. Consequently,  the  same ~nicroaddresses  
end u p  in the microPC silo once  again during 
the execution of the  second trap routine. The 
original sequence may finally resume after the  
last of such chained traps has been serviced. 
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William A. Samaras I 

Tibe CPU Clock System in the 
V2lX 8800 Family 

The clock system in the VRX 8800 CPU sends timing signals to every state 
device every 45 nanoseconds. The lack of accuracy of these timing signals 
is called skew, which must be minimized. Two skews exist: global, between 
modules; and local, within a module (the lower of the two). The design 
complexity of the overall system dictated the use of an automated timing 
uerj?er. Although advantages accrue from designing for local skew, the 
verper could not segregate between skew types. To gain the benefit of the 
venper, a unique hardware trade-oJ was made to minimize total skew: 
local was made equal to global. The result was that 83percent of the cycle 
time is used productively. 

All synchronous computers must provide some  
means of generating and distr ibuting accura te  
timing signals. The goal of the  timing system in 
t h e  \'AX 8 8 0 0  family is t o  provide  l o w - s k e w  
(therefore, accurate) timing signals to all parts 
of t h e  processor  w i t h o u t  any manufac tu r ing  
a d j u s t m e n t s .  F u r t h e r m o r e ,  t h e  des ign  t eam 
wanted to automate the verification of thc urn- 
ing during the  design phase. Therefore, design 
trade-offs in the  clocking system were  necessary 
to accomplish that automation. This paper dis- 
cusses how the  hardware designs of the  clocking 
system were  influenced to  provide a good cnvi- 
ronment for the  automatic timing verification. 

Clocking System Requirements 
The design of the clocking system required u s  to 
address many interrelated problems that had to 
culminate  in a common solut ion.  This clesign 
depended on certain fundamental specifications 
that were established for the VAX 8800 CPU by 
the system architects. 'The two primary require- 
ments are described below. 

Cycle Time 
The cycle time of thc  VAX 8800 family of pro- 
cessors is 4 5  nanoseconds  (ns), wh ich  means 
tha t  a CPU c a n  a c c o m p l i s h  s o m e  a m o u n t  of  
work during that period.  Looking at  it another 
w a y ,  t h e s e  p r o c e s s o r s  c a n  d o  2 2 . 5  m i l l i o n  
actions cvery second. Ilsiully, a number  of these 
45-11s cycles are required by a processor to pro- 

duce  just o n e  V M  instruction. The clocking sys- 
tem must keep  the  thousands of circuits in thc  
processor  "t icking" in perfec t  s t e p  toge the r  
every 4 5 ns. 

The 8 8 0 0  was designed to contain two com- 
p l e t e  CPUs in t h e  s a m e  c a b i n e t .  S ince  b o t h  
CPUs share a common memory, it is beneficial 
to make the memory system and both CPUs syn- 
c h r o n o u s  w i t h  e a c h  o t h e r .  T h e  c lock  system 
must keep all three items running togcthcr, pre- 
cisely locked in time. 

Modules 
All t h e  c i r cu i t ry  f o r  b o t h  processors  a n d  t h e  
memory controller  is contained on  2 0  16- inch 
by 12- inch modules,  o r  printed circuit  boards. 
These modules occupy slots in a 21-inch-wide 
backplane. Each module  contains u p  to  2 0  ECL 
gate arrays and  miscel laneous  ECL logic.  T h e  
state devices, called latches, reside both in the 
gate arrays and the ~niscel l ;~neous  logic of each 
module.  

The Clocking Problem 
The  basic difficulty for this (and any) clocking 
system is to  get the  timing signals to every state 
dev ice  in t h e  m a c h i n e  a t  p rec i se ly  t h e  s a m e  
t i m e .  Every s y n c h r o n o u s  m a c h i n e  faces  th i s  
problem. However, in faster computers,  like the  
VAX 8 8 0 0  system, the  tolerances placed on  the  
t iming signals a r e  m o r e  scverc .  In  a physical  
sense, it is simply not possible to  send all the  
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timing signals to every part of each module at the 
same instant. There is some precision, however, 
that should and can be achieved. We now discuss 
how important this tolerance is to the VAX 8800 
systems, and what w e  did to minimize it .  

The  tolerance,  o r  t ime  difference,  that  w e  
encounter in attempting to provide timing signals 
to every state device at the same time is called the 
clock skew. Clock skew is the uncertainty in the 
time of a particular event. As an analogy, consider 
an airline flight that is scheduled to arrive at an 
airport at precisely 5:02 P.M. Now, w e  know this 
flight will not arrive at 5:02 P.M. on the dot; it 
will probably arrive within a minute o r  two of 
that published arrival time. This uncertainty in 
the time of arrival is the skew of that time If the 
uncertainty of arrival is 30 seconds, this skew 
would probably be a very acceptable value and 
w e  would  say t h e  fl ight is r ight  o n  t ime:  i t  
arrived with low skew. 

On the other hand, if the uncertainty of arrival 
is large, say 30 minutes, w e  would probably try 
another airline. Why? Not simply because we  are 
impatient but  for a more fundamental reason. 
When the uncertainty is Large, we  have less time 
to do other things that are valuable to us. Usually, 
we are committed to the entire time of the uncer- 
tainty. Put another way, this uncertainty, o r  skew, 
is wasted time. Enough of this analogy - how 
does this skew affect the  operation of a digital 
computer? 

As mentioned earlier, since the cycle time of 
each CPU is 4 5  ns, all state devices are "sched- 
uled" to clock at the start of that period. Any 
uncer ta in ty  in  th i s  t i m e  f rom o n e  la tch  t o  
another is called clock skew. As in our  airline 
example, clock skew is wasted time. There are 
many factors that increase the clock skew; let us 
consider one of the most important ones. 

Since the backplane width is 21 inches, all the 
CPU hardware modules are separated by no  more 
than that distance. Since all the wiring in the sys- 
tem is composed of controlled-impedance trans- 
mission lines, the logic signals can travel at close 
to the speed of light. At that speed a logic signal 
could circle the earth about 4.5 times in 1 sec- 
ond, or it takes about 4 nanoseconds to travel the 
2 1 inches across the processor backplane. Now 
we can begin to understand the skew problem. 
The minimum uncertainty of any signal traveling 
through the entire processor would be at least 
4 ns, which is almost 10 percent of the 45-11s 
cycle. And that is only one source of skew. 

New Products 

Since skew can be wasted time, our  goal was to 
make it as small as possible. In the 5800 system, 
there are three major contributors to clock skew: 
variations in t h e  semiconductor  components ,  
variations in the wiring lengths (described above), 
and different manufacturing tolerances of the  
modules. One common way to remove skew from 
a system is to make some type of adjustment dur- 
ing the assembly of the hardware. Theoretically, 
at least, all the skew could be removed through 
this method of adjustment. To keep the cost of 
manufacturing low, however, another of our  goals 
was to require n o  adjustments of any kind. That 
goal placed an extra burden on the clock system 
to  deliver accurate  signals without  excessive 
skew. By carefully designing the circuits of the 
clocking system and controlling the skew sources 
mentioned above, we held the overall clock skew 
in the \'AX 8800 family to 7.5 ns. Thus, on aver- 
age, 83 percent of our 45-11s cycle is utilized. The 
remainder of the paper explains some of the trade- 
offs we made to achieve this figure. 

Clock Hardware Overview 
Figure 1 depicts the hardware in the clock sys- 
tem of the VAX 8800 family. 

The oscillator section is the time base of the 
whole machine. The implementation is a custom 
phase-locked-loop design that allows the clock 
period to be varied for test purposes during the 
manufacturing process. Using a phase-locked 
loop makes it possible to have a very accurate 
timing source at many specific clock periods. 

The output of the oscillator section connects 
to a phase generator that provides two  clock 
phases  w i t h  t h e  p r o p e r  t iming  re la t ionsh ip  
between them. The outputs (called the A-Clock 
and the B-Clock) of the phase generator are the 
ac tua l  c lock  s ignals  d i s t r ibu ted  t o  a l l  s t a te  
devices in the machine. The phase generator is 
implemented digitally by high-speed, 100K ECL 
shift registers. This technology creates very accu- 
rate timing without requiring any manufacturing 
adjustments. 

Since there is only o n e  phase generator and 
thousands of state devices requiring the clocks, 
or timing signals, a method is needed to get the 
o u t p u t  of t h e  phase generator  to  every state 
device without adding very much skew. That is 
the purpose of the distribution stage of the clock 
system. The actual circuitry used for the distribu- 
tion consists of 1 OOK ECL differential devices 
and 1 OKH ECL devices.  The  distribution was 
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heavily influenced by our desire to use an auto- 
matic timing verifier. The following discussion 
of the timing verification environment gives a 
clearer view of the reasoning behind the clock 
distribution scheme. 

Clock System and the Timing 
Verification Environment 
Traditionally, timing verification was accom- 
plished by hand calculations using component 
specifications A designer would simply add all 
the component propagation delays in a particu- 
lar path and determine if all timing cr~teria were 
met. In the past, this method worked fairly well 
for several reasons. First, the designer usually 
knew which paths in a circuit were critical and 
could give special attention to  them. Second, 
components generally behaved better than their 
worst-case vendor specifications. 

Marginal t~ming problems, or ones that were 
simply overlooked, would often be less serious 
than the  difference between the  worst-case 
specifications and how the components actually 
worked. Finally, timing errors were expected to 
appear during the hardware debug phase of a 
project. Therefore, timing errors that were bla- 
tantly missed during the design could be cor- 
rected (with a lot  of hard work) during that 
phase. That was possible because the overall 
complexity of the design could be compre-  
hended by the designers. 

From the beginning of the VAX 8800 design 
effort, we knew that the timing of the design 
would be difficult to analyze manually. First, 
the sheer complexity of the machine created 
over four million different timing paths. It was 
impossible to analyze every path manually or to 
discover every "critical" one with either man- 
ual or intuitive analysis methods. 

Second, hardware circuit loops are widely 
used in the design; these are circuits that feed 
s ignals  back t o  themselves  d u r i n g  a la te r  
machine cycle These circuits are very difficult 
to analyze, especially when loops cross physical 
boundaries or are nested within other loops. Just 
thinking about  t he  t iming ramifications of 
nested loops taxes the mind. Manually analyzing 
thousands of these cases would be impossible. 

Finally, the hardware design made heavy use 
of gate arrays, which contain most of the logic. 
Our ambitious development schedule and the 
large number of gate array designs simply could 

not tolerate unanticipated timing errors. A tim- 
ing error in a gate array meant that a new gate 
array must be produced to fix the problem. The 
fabrication overhead for another semiconductor 
device, usually taking months, was not consis- 
tent with our development schedule. Moreover, 
while that new gate array was being fabricated, 
the debugging of the entire system could be  
jeopardized since it was just not possible to  
"fix" an LSI chip. 

Therefore, the hardware design group wanted 
to design the processor with the aid of an auto- 
matic CAD tool for timing verification. Such an 
automatic method for verifying the timing was 
essential to the success of the project. Since the 
entire design was to be "soft" (the schematics 
were  contained i n  compu te r  databases),  it 
seemed logical that some type of software tool 
for automatic  t iming verification cou ld  be 
applied. 

We decided that the most appropriate timing 
verifier for this project was produced by Valid 
Logic, Inc. Although this automatic tool solved 
the problems caused by manual timing verifica- 
t ion,  it also created some very special  new 
restrictions. 

I t  was apparent from the beginning of the 
design effort that some restrictions had to be 
placed on the design styles of individual engi- 
neers to reduce the timing-analysis problem to a 
manageable level. CPU hardware designers, like 
any other creative persons, often assume large 
degrees of freedom in their work. Usually, no 
two designers will arrive at the same solution to 
a p r o b l e m ,  a l t hough  al l  so lu t ions  may be  
acceptable. When ten or more designers work 
independently, as happened on this project, it is 
likely that ten unique design styles will emerge. 

Therefore, we placed restrictions on the tim- 
ing environment for the following two reasons: 

Some standardization of timing had to  take 
place for electrical signals to communicate 
properly between designs generated by dif- 
ferent people. 

Since the automatic timing verification soft- 
ware was new, several important features 
were lacking. 

The usefulness of an automatic timing verifier 
depends largely on how well timing-rule viola- 
tions are reported. Knowing that a design con- 
tains timing errors is useful only if it is easy to 
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find them. One way to aid the reporting of timing 
errors is to create an environment that clocks all 
state dev~ces  in the processor the same way. This 
means that all logic designs in the processor must 
follow consistent and strict rules for the clocking 
of state devices. That was the method we d e c ~ d e d  
to pursue in this design project. 

me Timing Environment 
The clock system necded strict constraints on its 
circuit design and physical layout to guarantee 

accuracy. Therefore, the generation and use of 
clocking signals were tightly controlled to mini- 
mize the  different ways in which the circuits 
could communicatc. The timing control of state 
devices had to b c  consistent throughout  the  
design. Moreover, any arbitrary timing control 
of the state devices would have been an impossi- 
ble task for the timing verification software. 

The timing signals in the VAX 8800 processor 
were carefully distributed to every state devicc. 
This distribution was accomplished by carefully 

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 LEVEL 5 
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Figure 3 Minimized Globc~l  Skew Distribution 

expanding the clock signals at strategic physical 
positions in the processor. A simple example of 
this expansion, or fan-out, is shown in Figure 2 .  

Each time the clock signals are expanded, 
more timing uncertainty is introduced into the 
resulting signals. The 8800 design required up 
to five levels of expansion to produce enough 
clock signals for every state device. As shown in 
Figure 2 ,  some signals are in common distribu- 
tion groups. Signals existing in the same group 
will have low timing uncertainty between them, 
a characteristic called skew correlation. The 
timing uncertainty between signals in different 
distribution groups has no correlation; there- 
fore, these signals have the highest skew. Signals 
from the same group have a skew, called local 
skew, lower than the overall group-to-group 
skew, called global skew. 

I t  is very tempting for designers to take advan- 
tage of the lower local skew, which is often only 
half that of the global skew. Each clock distribu- 
tion group is usually contained entirely on one 
logic module due to the natural physical parti- 
tioning of the hardware. Therefore, communica- 
tion between circuits on any particular module 
can take advantage of the lower local skew. If  all 
signal communication occurs within the local- 

skew environment, the timing analysis can be 
consistent and easily managed. However, com- 
plications arise when trying to analyze signals 
that cross from the local-skew environment to 
the global-skew environment. Signal communi- 
cation between logic modules will have to pay 
the penalty of using the higher global skew 
because the timing signals at each end of the 
communication are derived from different dis- 
tribution groups. Managing the timing interface 
across this partition between local and global 
skews was beyond the capabilities of the timing 
verification software. 

As discussed earlier, a timing analysis of the 
entire processor was beyond human capacity; 
therefore, it had to be performed with timing 
verification software. The timing verification 
tool chosen for the 8800 development had no 
facility for distinguishing between local and 
global skews. Moreover, we wanted to use the 
timing verifier to analyze the timing of the entire 
CPU as one entity. This decision forced us to dis- 
allow the use of any local-skew computations in 
our timing analysis. Now, from a design point of 
view this decision made the environment very 
easy to work with. Al l  timing transactions any- 
where in the CPU could be analyzed the same 
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way with the same set of specifications. Ever).- 
thing comes at :I price, however. and the obvious 
neg;rtive side of this tlecision was tlie loss of the 
ability to apply the lower local skew. At that 
po in t ,  some performance of the  processor  
seemed to I>c compromised just to simplify the 
t iming  analysis .  The  fo l lowing  discussion 
explains how this problem was solved. 

me Clock Distribution Solution 
Since we wantctl to timc the CPlJ ;IS one cntinr. 
we had to make thc global skcw as small as possi- 
ble to rnaximizc CPU performance. In the acti~al 
implementation, the global skew was lowered by 
removing one gating level from the clock distri- 
bution. The gating level rcmovcd was necessary 
for producing low local skcw. Figurc 3 illustrates 
the five levels of fan-out that wcrc required to 
produce enough signals when the global-skew 
distribution was minimized. Figure 4 shows the 
same fan-out to proclucc enough signals in the 
case in which the local-skew distribution would 
be minimized. Tdble I illustrates the impact of 
this optimization for global skew. 

Table 1 Distribution Changes 

Global Skew Local Skew 

Optimized Local Skew 9 ns 2 ns 
Optimized Global Skew 7.5 ns 7.5 ns 

Altiough using the lower local skew would 
have been valuable, it was sacrificed by making it 
e q ~ ~ a l  to the global skew. 

In short. the hardware of the clock syswm was 
designed t o  allow the maximum exploitation of 
the timing verification software. Of course, hard- 
ware and software trade-offs are  ;i common 
occurrence in any design projcct. In  this case. 
however. the value of thc hardware involved 
nrith operating the machine was balanced against 
the software analysis ncedecl during the design 
phase of the machine. 

Summary 
Producing the clocking system for a high-speed 
computer is best described as an cxcrcisc in min- 
imizing and managing skew. In the VAX 8 8 0 0  
project. we avoided exotic hardware techniques 
so  that we  could gain thc bcncfit of using an 
automatic timing verifier. The resulting skew of 
17 percent of the cyclc timc was a figure that 
could be tolcratcd. This balance was a fair tradc- 
off since the sirnplicit)~ of thc timing environ- 
ment allowed us to decrease the time to clesign 
and build the VAX 8800 family of systems. 
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Aspects of the V M  8800 
C Box Design 

In each processor in the VAX 8800 family, instructions and data are sup- 
plied to the execution units by the C Box. Employing a simple structure 
with a translation bufler, cache, and address and data buflers, this logic 
unit is an integral part of the processor's five-stage pipeline. The no- 
write allocate cache uses a write-through scheme featuring a unique 
delayed-write algorithm. The C Box has control logic to accommodate 
pipeline stall conditions caused by memory accesses. The C Box also 
maintains data coherency within a processor and between processors. A 
dynamic priority-arbitration scheme solves the lock-out problem between 
I/O and processor requests. 

The performance of a high-speed computer  
depends to a large extent on how fast data can be 
passed from its memory to its execution units. If 
the computer is pipelined, the unit responsible 
for  memory  acces se s  may have  t o  h a n d l e  
pipeline stall conditions. And if the computer is 
a multiprocessor, that unit in each processor may 
also have to handle data coherency problems. In 
processors wi th  t he  VAX a rch i t ec tu re ,  data 
accesses are further complicated by the fact that 
virtual addresses are normally specified. These 
addresses  r e q u i r e  t r ans l a t i on  t o  phys ica l  
addresses before a data  access can  even  b e  
attempted. 

to avoid that is to store the result of this address 
calculation in a small ,  fast memory called a 
translation buffer. Since each translation can 
access a page of data (5 1 2  bytes in the VAX 
architecture), it is likely that the translation will 
be used again in the program being executed. 
Rather than recalculating the physical address 
(PA) on  those subsequent accesses, it can be 
retrieved from the TB. 

The translation buffer in the VAX 8800 pro- 
cessor  ho lds  51 2 system and 5 1 2  p roces s  
address translations. The following summarizes 
the characteristics of the TB. 

In the VAX 8800 system, which is a multipro- 
cessor with pipelined CPUs, the unit that per- 

Characteristics of the Translation Buffer 
. . 

forms address translations and data acccsses is . Direct Mapped 
the C Box. . 1024 Lines 

C Box Description 
The C Box consists of three subunits: the transla- 
tion buffer (TB), the cache, and the NMI inter- 
face. Figure 1 is a schematic diagram of this unit. 

The translation of a VAX virtual address to a 
physical address is a complicated process.l  
Accesses to system and process page tables are 
required, and shifting and adding must be done 
to obtain the final physical address. Performing 
this address translation process for every data 
reference significantly increases the data access 
time and reduces the read bandwidth. One way 

- 51 2 System Lines 
- 51 2 Process Lines 
Allocation on Translation Buffer Miss 

A common approach to the problem of data 
access latency for high-speed processors, and 
the one used in the VAX 8800 CPU, is to use a 
cache.2 A cache is a small, fast memory located 
between the processor and the main memory 
system. If the data requested by the CPU is not 
contained in the cache, that data is accessed 
from main memory and loaded into the cache. 
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Figure 1 Block Diagram of C Box 

Thus, in the  majority of cases, the  cache will  
contain  recent ly  referenced data i tems,  and 
future references to those data items will  b e  
fetched from the cache. The intent is to mini- 
mize the number of longer latency accesses to 
the main memory subsystem. The success of a 
cache memory relies o n  the  locality of refer- 
ences in both time and space. 

The data cache in each VAX 8800  CPU holds 
64 kilobytes (KB) of both data and instructions. 
The list on the right summarizes the characteris- 
tics of the cache. 

The TB and the cache are very similar in con- 
cept and structure, except that the TB is used to 
accelerate address translations and the cache to 
accelerate data accesses. Each consists of a tag 
section and a data section. The tag section holds 
the unique identifier, or tag, for the data itcm 
held in the corresponding data section. The TB 
and the cache are direct mapped, meaning that 

Characteristics of the Cache 

Direct Mapped with Physical Address 

Read Allocate Only 

Delayed-Write Cache Update 

Write-through Memory Update with Write Buffering 

1024 Blocks 

64-byte Block Size 

4-byte (one longword) Line Size 

32-byte (one hexword) Cache Refill Size 

each address can po in t  to only o n e  location; 
however, each location can potentially be allo- 
cated to o n e  of many addresses. A tag permits 
the identification of a data item in either the TB 
or a cache location. The tag in the VAX 8 8 0 0  
processor is an unmodified selection of bits 
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Figure 2 Translation Buffer and Cache 
Address  mapping 

f r o m  t h e  a d d r e s s  of t h e  d a t a  i t e m  b e i n g  
accessed. This concept is depicted in Figure 2.  

As ment ioned ea r l i e r ,  a memory access  is 
r e q u i r e d  if t h e  c a c h e  d o e s  n o t  c o n t a i n  a 
requested data item. In the 8800, both proces- 
sors are connected to the memory and the 1 / 0  
subsystems through the NMI bus. All read and 
write references that go to these subsystems are 
processed by the NMI interface. This interface 
maintains a set of buffers for both read and write 
reference streams. For the read stream there are 
actually two sets of address buffers: one for data 
reads, the other for instruction reads. 

C Box Operations 
A C Box reference consists of a function codc, 
an address, and in the case of writes, 32 bits of 
data. In general, that address is a 32-bit virtual 
address (VA). The VA translation process begins 
with a check to see if the PA is available in the 
TB. If the PA is available, called a TB hit, the  
data is read out and concatenated with the lower 
nine bits of the VA to form the PA. As part of the 
translation process, the  TB also performs page 
access checking. If the PA that pertains to  the VA 
i s  n o t  i n  t h e  T B ,  c a l l e d  a TB m i s s ,  t h e n  
microcode must perform t h e  translation. The 
microcode then writes the data into the TB for 

s u b s e q u e n t  use .  (If t h e  address  s u p p l i e d  is 
already a PA, then the TB is not used.) 

Only physical addresses access the  cache. I f  
the  data referenced is contained in the  cache, 
called a cache hit, then the data can be accessed 
from there.  If the  cache does  not  contain the  
data, called a cache miss, then the data must be 
accesscd from memory. 

Read Operations 
Cache-miss addresses for reads are passed to the 
NMI interface, where they are held in the read 
a d d r e s s  b u f f e r s .  A h e x w o r d  r e a d  r e q u e s t  
(32 bytes), with the address of the missed loca- 
tion, is then made to memory. The memory data 
is passed to the requesting unit, and the address 
held in the read address buffer is used to update 
the  missed cache location. A read miss is the  
only occasion upon which a cache location is 
allocated. 

There are two read streams in the C Box for 
requests to memory: the data stream, called the 
d-stream, and the instruction stream, called the 
i-stream. The i-stream requests the memory to  
send data des t ined  f o r  t h e  ins t ruc t ion  u n i t  
(I Box), which interprets that data as macroin- 
s t ruct ions .  I-stream fe tches  a r e  ini t ia ted by 
microcode, which loads a C Box register called 
the physical instruction buffer address (PIBA). 
The  PIBA holds t h e  address of the  next long- 
word of the i-stream to be fetched. If the execu- 
t ion of macroinstructions is sequent ia l  ( i .e . ,  
there are n o  branches, page crosses, etc.) ,  the 
C Box can increment the PIBA contents automat- 
ically after each fetch. However, should the pro- 
gram branch or a page cross occur,  microcode 
m u s t  bc  used t o  re load  t h e  PIBA. D-stream 
fetches are made only by the microcode, which 
must specify one  of eight memory data (MD) 
registers as i ts  dest inat ion.  D-stream data is 
always returned to the execution unit. 

Write Operations 
In general, the performance of a cache is mea- 
sured by its hi t  rate when  reading data.  The 
selection of the  update  mechanisms for both 
cache and memory, however, can have a major 
influence on the design of the cache. There are 
two well known strategies for updating a cache: 
write allocate, and no-write allocate. A write- 
a l l o c a t e  s c h e m e  u p d a t e s  a c a c h e  l o c a t i o n  
whether o r  not the write is a hit or a miss. This 
scheme is generally implemented with a write- 
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back memory arrangement (discussed later). In 
a no-write allocate scheme, the cache is updated 
only if the write was a hit. The VAX 8800 pro- 
cessor uses a no-write allocate scheme. 

The no-write allocate scheme does, however, 
present a problem. Since only writes that hit 
will update the cache, cache updates take two 
pipel ine cycles in the  C Box - the first t o  
check for hit or miss, the second to update the 
cache for a hit .  The  C Box was designed to 
enable one read reference to complete in each 
cycle. If two consecutive cycles are needed to 
update the cache, the second cycle could block 
a read reference, thus causing a pipeline stall. 

To solve this problem, the C Box implements 
a delayed-write algori thm. This mechanism 
delays writes that must update the cache from 
doing so until the first cycle of the next write 
reference. The second cycle of the delayed 
write does not need to be the next consecutive 
cycle. 

The delayed-write algorithm in the C Box 
takes advantage of the fact that the first cycle of 
a write i~tilizes only the tag section of the cache 
to  d e t e r m i n e  w h e t h e r  a h i t  o r  a miss  has 
occurred. The second cycle uses only the data 
section. A write that must update the cache has 
its address and data placed into the delayed- 
write address and data buffers respectively. On 
the next write access, during the cache-tag look- 
up cycle, the data section of the cache will be 
updated from the address and data contained in 
those buffers, but only if the previous write 
access was a hit. Since reading a data item after 
one has been written is common, this design sig- 
nificantly reduces the potential for stalls. 

Write Buffer 
All write references, whether or not they hit in 
the cache, must eventually go to memory. There 
are tn7o general strategies in cache design with 
respect to memory updating: write-through, and 
write-back. In the  wri te- through approach ,  
write references are sent to the memory system 
immediately. Conversely, in the write-back 
approach, writes are held until the cache block 
is deallocated (made ready to receive different 
data). 

There are several major problems wi th  a 
write-back strategy. First, i t  requires ei ther  
microcode or  hardware to accomplish all the 

write-back functions. Adding that code or hard- 
ware to  the C Box would have considerably 
increased its complexity. 

Second,  if there  is a wri te  miss wi th  this 
scheme,  a cache block that might be full of 
valid data could be displaced by a block whose 
only valid data was that just wri t ten to  the  
cache. For a cache having a large block size, like 
the 8800 has, this action is undesirable. More- 
over, in most cases microcode reads data before 
i t  is written; therefore, writes will generally hit 
in the cache. 

Finally, the write-back strategy requires a 
complex  algori thm t o  maintain coherency  
between caches within a multiprocessor system. 
Therefore, for all those reasons, we chose to use 
the write-through approach in the cache. 

One disadvantage of write-through is that it 
tends to  generate a lot  of write traffic to  the 
memory. In a shared-bus system like the 8800,  
this traffic can limit performance. To reduce 
memory-write traffic, writes in the VAX 8800 
processor are buffered in a write buffer con- 
tained in the NMI interface. This write buffer is 
really a one - l i ne ,  oc taword ,  wr i te -a l loca te  
cache. A write going out to the NMI bus is held 
in the write buffer. Subsequent writes to the 
same octaword update only the write buffer so 
that no  memory requests are sent on the NMI 
bus. A write that is outside the octaword cur- 
rently in the write buffer deallocates it; that is, 
the contents of the write buffer are sent to mem- 
ory, and the next write replaces those contents 
in the buffer. 

Like the cache, the success of the write buffer 
in reducing bus traffic relies on the locality of 
programs in space  and t ime.  For example ,  
sequential writes, such as pushes to  the stack, 
will get collected in the write buffer even if the 
writes occurred in different macroinstructions. 
This collected "package" of writes can then be 
sent to the memory more efficiently than can 
individual writes. 

Another advantage of the write buffer is that it 
decouples the processor from memory activity. 
When the memory is busy processing transac- 
tions from the other processor or from the 1 / 0  
subsystem, a processor will  not stall due  to  
writes. The write buffer is actually implemented 
as a two-deep buffer, which further reduces the 
potential for stalls. 
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Pipeline Stalls 
In a pipelined implementation, how well the 
pipelinc performs is determined both by how 
oftcn i t  is flushed clear and how often i t  is 
stalled. Stall conditions are generally related to 
thc lack of some physical rcsource or data. 

In some implernentations, some pipeline 
stages can take more cycles to complete than 
others for certain functions. I f  a shorter stage 
precedes a longer one, the longer one will be 
unable either to accept fresh data or to pass its 
result to the next stage until finished with its 
cycle. In turn, other portions of the pipelinc 
cannot procccd with their operations; therefore, 
the pipeline will stall. In this stalled condition, 
all stages preceding the "bottleneck" maintain 
their input and output conditions until the stage 
responsible for the stall completes its function. 
Some in~plementations have a combination of 
stages that may exhibit these characteristics, 
leading to complex pipeline stall conditions. 

In the VAX 8800 CPU, the design simplicity 
of the pipelinc ensures that each pipeline 
stage - except the C Box - always completes 
its function in one cycle.' Since the C Box also 
controls data accesses, all stalls in the 8800 are 
related to the operation of this un i t .  The 
pipeline will experience two types of stalls: the 
MD stall, and the VA stall. 

CYCLES 

M D  Stalls 
When making a read reference, a microinstruc- 
tion must specify one of eight MD registers to be 
used as its destination. When data is made avail- 
able, either from the cache or from memory, it 
is written into the specified MD register. Subse- 
quent rnicroinstr~~ctions then use the data from 
this register. I f  a microinstruction attempts to 
use an MD register that is not "valid" (i.e., the 
data has not yet been fetched by the C Box), the 
pipeline will experience an MD stall. 

The MD stall condition is a data-dependency 
type of stall that is generally seen in pipelined 
machines. On the \'AX 8800 processor, certain 
steps are taken to either avoid such stalls or 
rcduce their effects. For example, consider two 
consecutive microinstructions, R and S, as illus- 
tratcd in Figure 3 .  R is a microinstruction that 
performs a read and puts data into an MD regis- 
ter. S then accesses and uses the data fetched by 
R. If R and S are adjacent, the pipeline will stall 
in the 8800. The reason for the stall is that the 
pipeline stage accessing the MD data and the 
stage fetching that data (the C Box) are sepa- 
rated by one other stage, the arithmetic and 
logic unit (ALU). When S tries to use the MD 
data, R is just starting to make the read reference 
in the C Box. S must therefore stall the pipeline, 
waiting for data to be supplied by R.  

INSTRUCTION R ACCESS 
FOR ALU T B  CACHE 
DATA 

b 
1 R STARTS READ REFERENCE 

INSTRUCTION S 

S REQUIRES DATA READ BY R. 
MUST STALL AT LEAST ONE 
CYCLE FOR THE DATA. 

M D 
ACCESS 
FOR 
DATA 

MD - MEMORY DATA REGISTER 
TB - TRANSLATION BUFFER 

Figure 3 Instructions R and S Are Adjacent 
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CYCLES 

I AVAILABLE 
I 

MD 
INTERVENING ACCESS 
INSTRUCTION FOR 

DATA 

\ S REQUIRES DATA. 
DATA SENT DIRECTLY INTO 
ALU, BYPASSED MD 
UPDATE NO STALL 

MD 

INSTRUCTION S ACCESS 
FOR 
DATA 

Figure 4  instruction.^ K r ~ n d  .S .Sepcirrrtcd by Another Itzstructio~z 

ALU 

On the other hand, if R and S are separated by 
one other instruction, then when S attempts to 
use the data read by R ,  that data is just being 
made available by the C Box (assuming, of 
course, a read hit in the cache). I f  S were to wait 
for the MI1  registers to be updated before using 
the data, the pipeline would stall. To eli~ninatc 
that type of stall, a path has been designecl from 
the C Box directly into thc input of the AI.0. 
bypassing the MD registers. 'T'hcrefore, the dat;~ 
coming from the cache is sent both to the MD 
registers for updating and directly to the A L l J ,  
where S can use the data. 'T'he net effect is th ;~ t  
this bypass path removes the one-cycle latency 
that S would have experienced had i t  waited for 
the data to come out of the MD registers. Figure 4 
illustrates these concepts. 

Had R caused a read miss, S would still cause 
an MD stall since the C Box must make a memory 
fetch for the data. Notice that an MD stall hap- 
pens only when S attempts to use an MI1 registcr. 
Therefore, a general rule for making microcode 
accesses to the C Box is to make read references 
early ;rncl to use the MD registers late. Should the 
read reference miss, sorne part of the mcmory- 
fetch latency will be hidden by the microinstruc- 
tions bctwccn the read ;ind the  MD rcgistcr 

ALU 

access. When data rcturns from a read miss and 
the pipeline is either undergoing or about to 
undergo an MU stall, the bypass path can be used 
to rccluce the cffccts of the st;~ll or even prevent i t .  

TB 

VA Stalls 
A VA stall condition occurs when the C Box can- 
not ~>rocess a requested reference. This can be 
due to either an invalidation cycle in the C Box 
(discussed in the final section of this paper) or 
the cap;~bilities of the address and data buffers 
in thc N M I  interface being exceeded. 

As mcntioned earlier, for reads there is a set of 
buffers for d-stream and i-stream references. The 
d-stre;~m buffering is one deep, meaning there 
can onl18 be one read 111iss oi~tstanding in the 
C Box. However. the i~nple~nentat ion will not 
allow the pipeline to stall should subsequent 
re;~ds hit in the cache. I-stream reads never stall 
the pipeline ;IS do VA and MD stalls, which stop 
the clock. 'The instruction buffer can "stall" if it 

does not have enough data for the decoder to 
complete the decode of the current VAX instruc- 
tion o p e r m d  This condition causes the CPIJ to 
pcrform ;I no-operation microword. That cloes 
not stop the clock, however, and thus is not a 
p i ~ ~ e l i ~ i e  st:~ll. 

CACHE 

TB CACHE 



The C Box can still receive commands even if 
it contains one  read miss. Of course, there is the 
potential that the command being received will 
miss in the  cache.  That will require  the  NMI 
interface to request the data from memory, thus 
resulting in a VA stall. That stall lasts from the 
time the command is received until the time the 
previous read-miss data returns from memory. If 
the second command is a read that hits in the  
cache, a VA stall will be generated for the one  
cycle that it takes to determine whether o r  not 
there is a cache hit. The read data will then be 
taken from the cache and returned to the MD, 
after which the stall will be released. 

Since writes go to memory more than reads, 
the buffering for writes is more extensive. The 
delay-write buffer and the  double  buffering in 
the write buffer are used to reduce the possibility 
of write stalls. These buffers enable the C Box to 
hold a maximum of n i n e  longwords of data 
before the pipeline will experience a VA stall on 
a write. 

Stalled and  Unstalled Logic in 
the C Box 
If an instruction is stalled, the C Box has either 
not returned the data o r  cannot take another ref- 
erence. Therefore, all stages prior to the C Box 
(the I Box and the E Box) must be stalled. The 
TB is part of the last stage of the pipeline; there- 
fore, it must be capable of being stalled. When 
the pipeline stalls, the TB holds the address of 
the stalled reference. Only the  NMI interface 
can resolve a stall, either by supplying the read- 
miss data o r  by freeing u p  its buffers. Thus this 
interface can never be stalled. However,  the  
c a c h e ,  b e i n g  p a r t  of t h e  l as t  s t a g e  o f  t h e  
pipeline, is also the path for supplying data to 

the stalled instruction. This situation leads to an 
interesting control characteristic of the C Box. 
O n e  of its sec t ions ,  t h e  TB, can  b e  s ta l l ed ;  
another, the NMI interface, must never stall; and 
t h e  t h i r d  s e c t i o n ,  t h e  c a c h e ,  m u s t  r e m a i n  
unstalled but maintain stalled input and output 
condi t ions  in its logic .  Figure 5 dep ic t s  t h e  
logic for stalled and unstalled conditions in the 
C Box. 

Coherency Problems in the C Box 
In general,  data coherency means that a read 
should always get correctly modified data when 
a se r ies  of reads  and  w r i t e s  is m a d e  i n  any  
sequence. One way to maintain coherency is to 
perform all reads and writes to  completion in a 
purely sequential  manner,  thus  strictly main- 
taining their sequence of reference. However, in 
a pipelined machine, not only can there be sev- 
eral sources of read and write references, but 
there can also be more than one copy of the data 
item. This duplication often leads to very com- 
plex solutions to achieve coherency. 

This complexity has been simplified some- 
what  in  the  VAX 8800 pipeline by having the 
C Box b o t h  c o n t r o l  a n d  s e q u e n c e  a l l  d a t a  
accesses. The C Box itself, however, is pipelined, 
having a d-stream and an i-stream for reads, and a 
stream for writes. This fact also presents some 
coherency problems. Coherency for the C Box 
means that two conditions must be met. 

1. After a sequence of reads and writes has 
completed, any valid blocks in the cache 
must match the data in the memory. 

2.  Whenever the processor writes to a loca- 
tion in memory and then reads that loca- 
tion, the data has to be what was written. 

\ / 

STALLED 

J PHYSICAL 

STALLED/ 
UNSTALLED 

- 
UNSTALLED 

NMI 
INTERFACE NMI l BOX 

Figure 5 Stalled a n d  Unstalled Logic in C Box 
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Two types of coherency problems exist in the 
VAX 8800 system: coherency within a proces- 
sor, and coherency between processors. 

The first type of problem in the C Box arises 
from the implementation of the delay-write 
algorithm discussed earlier. A problem occurs 
when a read is attempted to the cache location 
waiting to be updated by the write held in the 
delay-write buffers. The read will hit, but the 
cache data will be stale. One solution to this 
problem is to stall the pipeline while the cache 
is updated, performing the read for the corrcct 
data. The trouble here is that the sequence of 
writing to and reading from the same location is 
a common occurrence. Thus to stall would sig- 
nificantly reduce the read bandwidth. 

The C Box solves this problem by comparing 
selected bits of the read and write addresses in 
the delay-write buffer. If the bits match, then 
the data content of that buffer is used as the read 
data. This solution works because, to the read. 
the delay-write buffer appears to be an exten- 
s ion  of t h e  c a c h e .  Since t h e  read address  
matched the address in this buffer, the data can 
be taken directly from i t .  Coherency is thus 
assured, and no stall penalty is incurred. 

The second type of coherency problem occurs 
when the read is a miss and thus goes to the NMI 
interface. To assure high performance, the NMI 
interface maintains two streams of data requests, 
the read and write streams. The buffering and 
the control of these two streams operate inde- 
pendently. If made to different data items, read 
and write requests can be processed to memory 
as quickly as possible, even out of sequence. 
The coherency problem is to  make sure that 
subsequent reads and writes to the same data 
item result in its correct state. 

If a read request occurs that was a miss, the 
cache will send it  to the NMI interface upon dis- 
covering that fact. Once in the NMI interface, 
the read address is compared to the address of 
t he  oc taword  in t he  wr i t e  buffer .  I f  those  
addresses are different, the cachc will send the 
read directly to memory. Thus the data in the 
write buffer will be unaffected. If the addresses 
match, however, the write data will be sent to 
memory, followed by the read request. Since the 
memory subsystem processes references in a 
sequential manner, the read will always access 
the correct data. (Of course, this case is fairly 
simple. A more complicated one is that in which 

a read is sent to memory, and the processor per- 
forms a write while waiting for that read.) 

I f  the addresses of the read and write match, 
the cache can give the processor the requested 
data but cannot mark the returned data valid in 
thc cache. 'This situation occurs because the 
read-miss data being fetched from memory has 
been made stale for subsequent reads. 

The microcode is designed so  that it wil l  
never read a data item and then writc to i t  with- 
out first accessing the MD registers. However, a 
cache block is 64 bytes long. The microcode 
could write to any other data item in the block 
before coming to the missed data item. There 
can be as many as three writes and two reads 
(one each for the d-  and i-streams) buffered 
si~nultaneously in the C Box, all referencing the 
same cache block. Even worse, the C Box can 
send an arbitrary tlumher of writes to memory 
while waiting for the data returned by the read 
to memory. To maintain coherency, the C Box 
performs a sct of address matches between the 
rcad and writc streams. Then it "remembers" 
whether or not any write addresses matched the 
outstanding reads and marks them invalid as 
appropriate. 

C Box Design for a 
Multiprocessor System 
The VAX 8800 system consists of two identical 
VAX 8800 processors o n  the NMI bus connected 
to the memory and 1 /0  subsystems. Within a 
proccssor, only the design of the C Box has been 
affected by the requirements of a mu ltiproces- 
sor arrangement. That is because the C box is 
the CPU's interface to the NMI bus and contains 
the central arbitration logic for that bus. 

There are three key issues in designing a 
memory interconnect for a multiprocessor sys- 
tem: bus arbitration, bus bandwidth, and data 
coherency between processors. 

Bus Arbitration on the NMI Bus 
Two major problems were encountered in the 
design of an arbitration scheme for the NMI bus. 
The first was the fact that between the CPUs and 
the 1/0 subsystems, called the NBIs, there was a 
possibility that a high-priority device could lock 
out a low-priority device from the bus. This is 
certainly possible with a fixed priority-arbitra- 
tion scheme. To address this problem, the C Box 
implements a dynamic priority-allocation 
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scheme that causes priori ty to  be assignecl 
between two groups: the 1 /0  devices, and thc 
CPUs. Within thcsc groups, the priority shifts 
between the two CPUs and thc two I/O devices. 
For example. i f  all four devices wanted to usc 
the bus all the time, the order in which the bus 
wo~1Ic1 be granted to the devices would be 

first CPU, first I/O, scconcl CPU, second 1 /0 .  

first CPLJ, first I/O, second CPU, second I/O, 
etc. 

'I'his schemc guarantees that all devices on the 
bus will have nearly equal access to the bus, 
thus solving the lock-out problem. 

The second problem involves thc "mcmory 
busy" situation. Whenever the memory subsys- 
tem cannot process more requests, it sends a 
"memory busy" signal. It could happen, for 
ins tance ,  that  a CPU accesses t he  bus  and 
attempts to write to mcmory. Upon receiving a 
memory-busy signal, the CPU will  abort the 
write. When memory is rcle;ised, some other 
tlcvicc will access the bus and perform a writc. 
thus filling the write qileue in memory. Once 
again, the first CPLl rc-arbitrates, accesses the 
bus, and tries to writc. Once again, that CPU 
rcccivcs a memory busy signal. And so on. 

The NMI arbitration schemc mentioned above 
solves this problem in which a device might get 
locked-out of memory. As implemented, the 
;irbitration scheme saves the priority state at thc 
t i m e  be fo re  t h e  memory -busy  s igna l  was  
asserted. The arbitration logic then restores that 
state so that the device that received the signal 
will get the bus when the memory-busy signal is 
dcasscrted. 

BLLS Bandwidth 
For the processors o n  the interconnect,  bus 
Ix~ndwidth involves two components: read band- 
width, and write bandwidth. The problem of 
inatlccll~ate read bandwiclth is addressed by hav- 
ing a high hit-rate cachc. The higher thc hit rate, 
the fewer the requcsts to memory. The problem 
of inadequate write bandwidth can be treated in 
two ways. The first way is to have a write-back 
c;~che like the one on the VAX 8650 processor.' 
Such a cachc writes a block to memory only 
whcn the cachc block is deallocated. This tcch- 
n iq~ic  can significantly rcducc the writc lxintl- 
width requirements. 

In multiprocessor systems like thc 8 8 0 0 ,  
however, in which cach processor has an inter- 
nal cachc, this technique becomes complicated. 
In these systems, a data item can exist not only 
in memory but also in all the caches. To main- 
tain coherency, each write-back cache would 
have to notify the other cache whcn the first 
cachc writes. This technique usually lcads to a 
complex protocol and design implementation. 

Another approach in a multiprocessor system, 
the  one  used in the  8 8 0 0 ,  is t o  implement  
write-through caches. In such an approach, all 
write references go directly to memory so that 
cach cachc on the bus can "see" all write activ- 
ity. The caches can then be invalidated. Such an 
;ipproach greatly simplifies the protocol for 
cache coherency but, as discussed earlier, gen- 
erates a high dcgree of write traffic. The unique 
design of the write buffer helps to reduce this 
traffic, although not as much as a writc-back 
cache would. In the 8800 processor, however, 
the write buffer reduces traffic enough so that 
the two VAX 8800 processors can write at their 
maximum bandwidths on the NMI bus. 

Coherency in a Multiprocessor System 
A multiprocessor system, with internal caches, 
presents a number of interesting coherency 
issues when sharing data. Ideally, if one proces- 
sor writes to a location and the other processor 
reads that location, the read will always get the 
data that was written. In practice, achieving this 
condition is difficult. Several major questions 
arise: Did the read happen before the write or 
after it? What happens j f  both processors write 
to the same location at the same time? Unless 
controlled, thcsc situations can produce unpre- 
dictable results. 

If  programs on the processors want to share 
data, they must use the interlock instructions in 
the VAX a r ~ h i t c c t u r c . ~  Only after an interlock 
instruction is processed will the memory loca- 
tion be guaranteed to have the correct data. The 
general method is ;is follows. Processes must 
decide to share a block of memory. One mem- 
ory location is called the software lock, and only 
one process at a time is allowed to write to (or 
lock) that location. This is accessed with an 
interlock instruction, for example, the branch 
on bit set and set interlocked (BBSSI) or the add 
aligned word interlocked (ADAWI) instructions. 
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Upon gaining the software lock, a given process 
can proceed to write any location in the shared 
block. Read-write coherency will be ;issured 
only i f  the other processes sharing that tlata 
observe the protocol of obtaining the softw;irc 
lock before modifying the data structure. 

The VAX interlock instructions are imple- 
mented using inter lock microinstruct ions.  
These enable a processor to lock and unlock the 
memory subsystem. Once locked, this subs)rs- 
tem excludes further attempts to lock i t  until an 
~ ~ n l o c k  has occurred. Thus onl!, one processor 
or I/O system can lock the memory s~rbsyste~n at 
any one time. 

When each processor has ;in internal cache. 
there is one more mechanism th:it keeps the two 
processors coherent.  While one processor is 
performing a write to memory and while the 
write command is on the N M l  bus, the other 
processor will examine its cache store to see i f  
i t  cont;iins a copy of that data. I f  the d;it;i is 
there, i t  is marked invalid. The next recluest for 

LEFT 
PROCESSOR 

this data will then result in a cache miss and ;I 

s ubsequen t  fetch to  memory .  This  s imp le  
approach is possible because the VAX 8 8 0 0  
caches are write-through. Although all writes 
are sccn on the bus,  the write buffer packs 
togcthcr consecutive writes within an octaword. 
Therefore, rhc number of invalidation cycles 
performetl by a processor wil l  he reduced .  
When an interlock write is performed, the con- 
tents of the write buffer are sent to mernor)r. 
'I'hus the interlock mechanism ensures that dat;~ 
coherent!, will work under all conditions. Fig- 
ure  6 i l l u s t r ; ~ t e s  t h e  e v e n t s  t ha t  a c h i e v e  
coherency in the 8800. 

Summary 
The general concepts iised in the design of the 
C Box arc \veil known to computer designers. 
Our goal was to achieve a simple yet high-per- 
formancc design that avoided unnecessarily 
complex solutions that did not give comparable 
increases in performance. The choices made 
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have y~eltlcd ;I d e s ~ g n  that fully supports the 
niult~processor concept The VAX 8800 systenl 
can translate addresses and access data faster 
than any previous \TAX processor. 
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m e  Memory System in the 
VAX 8800 Family 

The memory system in the V !  8800 family can send data at 71MBper sec- 
ond and receive it at 59MBper second. The 8800 and 8700 CPUs can con- 
tain up to 128MB of memory, the 8550 and 8500 up to 80MB. Commands, 
addresses, and dataflow between the memory interconnect (NMI bus) 
and the memo ry controller, away bus, and array modules. Read, write, 
and masked-write commands are executed. The designs of the NMI bus 
and write-through cache affected the memory system design. Although 
ECL is used in the controller, TTL is used in the array bus. The array 
modules of 4MB and l6MB contain 256K MOS dynamic RAM chips. 

All members of the VAX 8800 family of proces- 
sors (the 8800,  8700,  8550,  and 8500) use the 
s a m e  t y p e  of  m e m o r y  s y s t e m .  S i n c e  t h e  
VAX 8800 system is a multiprocessor, that mem- 
ory system must connect to both CPUs and both 
1/0 adapters, called the NBLAs. The bus connect- 
ing these devices is called the NMI bus, and each 
connection on the NMI bus is called a nexus 
Thcse connections are illustrated in Figure 1 ,  
which shows five nexuses: one for each CPU, one 
for each NBJA, and one for the memory system. 

The memory system can deliver 7 1 megabytes 
(MB) per second of read bandwidth and 59MB 
per second of write bandwidth. 

Since the VAX architecture has a 32-bit for- 
mat, all datapaths i n  the memory system must 
also handle 32 bits. These datapaths are com- 
bined by pipelined and parallel operations to 
produce the read and write bandwidths. 'The 
most significant occurrence of parallel operations 
is two-dimensional interleaving. The first dimen- 
sion interleaves between longwords (32 bits) of 
data on a single array module; the second inter- 
leaves between octawords (4 longwords) on dif- 
ferent array modules. As many as three array 
 nodules can be active s in~ul taneous ly  with 
eithcr a read or a write. There are three cases: 

Each module can do one read. 

One module can do  a read while the other 
two can do as many as four writes. 

Two nlodules can each do  a read while the 
third can do  as many as four writes. 

Figure I Memory Interconnect Structure The selcction of the array modules can be 
programmed from the console when the system 

The memory system itself consists of three is powered up .  'Thus the rnemory system can  
major parts, as depicted in Figure 2: support  a variety of array module sizes and 

A memory controller based on ECL technology speeds without the need to modify the hardware 
in the memory controller. Moreover, thc nlem- 

A high-speed TTL bus connecting that mcm- ory can address 5 2Mf3 of physical 
ory controller to a m;~ximum of eight array memory, the l imit  of the VAX architecture, ~h~ 
modules 8 8 0 0  is t he  first  VAX system to  b e  ab le  t o  
The array modules themselves address this much physical memory. 
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Owing to the limits of the  existing technol- 
ogy, however,  the  init ial  machine was intro- 
duced with 32MB for the 8 8 0 0  and 8 7 0 0  sys- 
tems, and 20MB for the 8 5 0 0  and 8 5 5 0  systems. 
T h e  32MB c o n f i g u r a t i o n  c o n s i s t s  of e i g h t  
4MB modules with  256K MOS dynamic RAMS 
packaged in DIPS. To increase the density of the 
machine without using a different semiconduc- 
tor technology, a 2MB daughter  module  was 
developcd after the initial announcement. This 
module uses double-sidecl surface-mount tech- 
nology and plastic leadless chip carriers. Eight 
of these daughter modules  are  mounted o n  a 
mother module to  produce a 16MB array mod- 
u l e .  T h i s  n e w  m o d u l e  h a s  i n c r e a s e d  t h e  
machine's memory to 128MB for the 8 8 0 0  and 
8 7 0 0  systems, and to  80MB for the  8 5 5 0  and 
8500 systcms. 

Memory System A rcbitecture 
As shown in Figures 1 and 2 ,  the memory con- 
troller communicates with  the  CPUs and the 
N B k  over the memory interconnect, called the 
NMI b u s .  C o m m a n d s ,  a d d r e s s e s ,  a n d  d a t a  
requests are all first received by the NMI inter- 
face and then passed to  other  sections of the  
memory  c o n t r o l l e r .  Addresses a n d  da ta  a r e  
stored in custom multiport RAMS, where eight 

protocol has to be changed to that of the array 
bus. Reads and writes of data fields with various 
sizes are received by the NMI interface. The NMI 
bus supports  a very robust se t  of commands. 
Reads and interlocked reads are supported for 
longwords (4 bytes), octawords (4 longwords), 
and hexwords (2  octawords). Masked writes and 
masked-write unlocks are supported for long- 
words.  quadwords (8 bytes), and octawords.  
Writes are supported for longwords and octa- 
words. 

T h e  r e a d - i n t e r l o c k e d  a n d  m a s k e d - w r i t e  
unlock commands are used to implement VAX 
i n s t r u c t i o n s  in  w h i c h  mutiral  e x c l u s i o n  is 
required.  For example,  t h e  VAX instructions 
ADAWI, BBCCI,  BBSSI, I N S Q H I ,  INSQTI ,  
INSQUE, REMQHI, and REMQTI all need these 
commands.  Since a n  inter locked instruction 
locks the  entire memory system, the  interlock 
bit must reside in the memory controller. This 
bit restricts the execution of subsequent inter- 
lock commands until the lock has been released 
by a maskcd-write unlock instruction. 

After receiving a m e m o r y  reques t  from a 
nexus, the memory controller must transfer that 
request to  the appropriate array module.  This 
transfer is accomplished using the  array bus.  
This bus consists of 

locations arc reserved for addresses and eight for 
A unidirectional set of command and address da ta .  T h e  NMI in te r face  e n c o d e s  c o m m a n d  
lines from the memory controller to the array information, passing it to the command-control 
modules portion of the memory controller. 

Since the memory controller communicates Another unidirectional set of data lines from 
with the  NMI bus and the array bus,  the  NMt the memory controller to the array modules 
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A set of data lines (capable of assuming three 
states) that can be  driven by any o n e  of the  
array modules  and received by the  memory 
controller 

Various status and control lines that commu- 
nicate in both directions 

T h e  array b u s  has a min ima l  r e p e r t o i r e  of 
conimands, consisting of longword reads, octa- 
word reads, and longword writes, but not hex- 
word reads.  Since t h e  NMI suppor t s  hexword  
reads, the memory controller must convert them 
into two octaword reads and then send them to 
the array modules.  Thus the two octawords of a 
hexword read can reside on different array mod- 
ules. That fact increases the memory bandwidth 
because parallel accesses can be  executed.  The 
array bus supports only longword writes; there- 
fore, octaword writes must also be converted. As 
mentioned earlier, the  array bus has one  line for 
commands and addresses and another for data. 
Therefore, an octaword write,  which takes five 
cycles to transfer on  the NMI (one for the com- 
mand, four for the  data), can be  transmitted in 
five cycles on the  array bus to an array module.  
Figure 3 shows the  corresponding actions dur-  
ing each cycle o n  the  NMI and o n  the array bus. 

In addition to commands, the  memory system 
must also execute maintenance tasks, including 
memory ref resh ,  e r ro r  repor t ing,  and  bat tery  
backup. 

Since physical memory is implemented wi th  
MOS dynamic  M s ,  every array row must  b e  

NMI 

ARRAY BUS 

COMMAND 
OR 
A D D R E S S  

CYCLE 

3 

DATA I DATA 

refreshed once  every 4 milliseconds. This func- 
t ion can b e  done  by refreshing o n e  row every 
14 microseconds. To  facilitate this activity, the 
memory control ler  sends signals to  each array 
module from a 14-microsecond oscillator. Upon 
receiving a refresh signal, an array module will 
handle the  refresh arbitration and execu te  the  
operation. 

Occasionally, a bit wil l  be lost d u e  to ei ther 
alpha particles o r  a device failure. In that ease 
the Inernor). controller must handle those errors 
and o t h e r  types  i n  a graceful  m a n n e r .  T o  d o  
that, the  memory system uses a 7-bit  modified 
h a m m i n g  c o d e  t o  g e n e r a t e  t h e  ECC, w h i c h  
allocr7s all single-bit errors to be  corrected and 
all double-bi t  errors to b e  detec ted .  After cor-  
recting each error the memory system logs the  
error 's  physical page address and the  bit .  The  
memory system then interrupts the  CPU to call 
an er ror  service rout ine ,  wh ich  logs in a VlMS 
file the necessary information to isolate the fail- 
ure.  The memory system can also interrupt the  
CPU to handle internal parity errors and inter-  
locked time-outs. An interlocked t ime-out hap- 
pens when a nexus executes a read interlock but 
never issues a masked-write unlock. The system 
software can enable o r  disable these interrupts. 

Battery backup, standard equ ipment  on  both 
t h e  8 8 0 0  a n d  8 7 0 0  sys tems ,  c a n  p o w e r  t h e  
refresh operation when  the system is down.  That 
power allows the  memory system to continue to 
refresh the  RAMS s o  that data will  not  b e  lost. 
Note that the entire system is not backed up ;  

1 DATA 1 DATA 

COMMAND COMMAND COMMAND COMMAND 1 OR 1 OR 1 OR 1 OR 1 A D D R E S S  ADDRESS A D D R E S S  ADDRESS 

DATA 
LINE 

Figzrre 3 cycles 01% N M l  Bus and Array Bus 
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ARRAY MODULE 

Figure 4 Datapaths in Memory Controller and Array Modules 

therefore, all components must be in quiescent 
states before the memory system enters battery 
mode. Upon sensing that power is eroding, the 
8800 will write all its data to the memory sys- 
tem. The memory controller will then complete 
all commands and send signals to the array mod- 
ules informing them to enter battery mode. In 
this mode only five MSI chips on the memory 
controller and approximately half the control 
logic on the array module will be active. 

Command Execution 
The execution of any command received by the 
memory system is a joint effort between the 
memory controller and the array modules. Fig- 
ure 4 depicts the datapath in each memory corn- 
ponent. After a nexus places a command on the 
NMI bus, the interface in the memory controller 
ascertains if the command is a valid memory ref- 
erence and, if so, decodes it. The interface then 
places the command in a queue of commands 
waiting to be executed. 

Since one array module can execute multiple 
write commands simultaneously, and since mul- 
tiple array modules can also execute commands, 
the memory controller must maintain the status 
of the array modules. The status control logic to 

monitor activity must "remember" which por- 
tions of which arrays are "bus~l ."  This status 
control logic can best be described by showing 
how the threc basic operations, writes, reads, 
and masked writes, are executed. 

Write Commands 

For a write command, the control portion of the 
memory controller performs only three actions: 
it determines the capability of the array module 
to accept the command, it sends the command, 
and it waits for the array module to signal its 
readiness to receive another command. 

The write datapath is that portion of the logic 
responsible for the flow of data from the NMI bus 
to the array modules. This path comprises both 
electrical interconnects (buses and cables) and a 
considerable amount of logic. The major storage 
element for the datapath is a 9-bit by 32-location 
custom multipart RAM (MPR) with two ports for 
reads and two for writes. Data received from the 
NMI bus is placed in the next available location 
of the MPR. Upon determining that the required 
array module is available, the control logic sends 
the data from the MPR to that array module over 
the array bus. Each array module holds the data 
un t i l  i t  is  s t r o b e d  i n t o  t h e  dynamic  RAMS 
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(DRAMS). The array module can load four long- 
words of data with their associated ECC bits 011 

four consecutive cycles. 
Some writes are called masked because there 

is a 4-bit byte mask associated with cach data 
word. The byte mask informs the memory sys- 
tern as to which bytes are to be written. The 
memory system executes this command by first 
doing a read and correcting any single-bit errors 
that may exist. It then merges the Incmory data 
with the data received from the NMI  bus, and 
finally does a write command. This sequence 
easily allows the implementation of longword 
and octaword masked writes. Masked writes for 
quadwords (8 bytes) are executed by perform- 
ing an octaword masked write in which the data 
of two of the longwords remains unchanged. 

Rend Conzmands 

For read commands, the memory controller pcr- 
forms four actions: i t  determines if the selected 
array module is ready to accept  the read, it 
sends the command, it waits for a data-ready 
response, and it transfers the data from the array 
module. Imbedded in the command field of the 
read are address bits that select the longword of 
the octaword that is required first. This action 
;~llomis wrapped reads to  be  imp lemen ted .  
(Wrapped reads are described later in the sec- 
tion "Impact of the Cache.") 

The read datapath originates at the DRAM, 
which sends the requested data. As in the case of 
write commands, cach array module stores an 
octaword of rcad data. Once the data has been 
loaded into the latches, the array module signals 
to the memory controller thar the data is ready. 
As mentioned earlier, the read datapath between 
the array module and the memory controller is 
tristatable. Therefore, the memory controller 
must ensure that only one array  nodule at a 
time drives this clatapath. Once the data has 
been requested by the mernory controller, the 
array rnodule must send the longwords sequen- 
tially, beginning with the starting address that 
was sent with the command. This action allows 
the memory controller to request any one of the 
four longwords as the first to be read. The array- 
~nodulc portion of the read datapath can transfer 
one longword of data during every cycle. 

The error-correction logic in the memory con- 
troller receives each longword of data plus the 
seven ECC bits. This logic detects single- and 
double-bit errors, but only single-bit errors can 

be corrected. A significant feature of this pro- 
cess is thar error detection and correction i s  per- 
formed as the rcad data is pipelined through the 
memory controller. Thus no additional cycles 
are needed to correct read data. 

iMnsked- ujrite Commands 
The execution of a masked write involves both a 
read and a write sequence. The memory con- 
troller executes a masked-write command by 
first issuing a read to the selected array module. 
Assuming that there were no memory errors, the 
data returned is sent to the MPR, where  the 
bytes arc merged with those sent to the memory 
controller over the NMI bus. The memory con- 
troller must ensurc that no commands to the 
same array come between the read and write 
portions of a masked write. Mter all the bytes 
have been merged into the  data buffer,  the 
memory controller will write the data to the 
array module. The array module then generates 
new ECC data, adds i t  to the other data, and 
strobes the composite data into the DRAMS. 

If a single-bit error is detected, the process is 
quite similar to the one with no errors, except 
that the data rnust be corrected. Since corrected 
data and NMI traffic both share the same data- 
path on the memory controller, the NMI inter- 
face must be free to correct errors found during 
masked wri tes .  This freedom is ensured by 
asserting a signal that stops all activity on the 
NMI bus. Once activity has stopped, the data 
can be routed through the NlMI interface, cor- 
rected, and then merged with the NMI data in 
the data buffer. The process then continues as it 
would have if there were no errors. 

If a double-bit error is detected, the process is 
similar to the case in which no error occurred, 
except that the write is prevented from happen- 
ing. When the array location is read the second 
time, the double-bit error will still be present, 
thus alerting the system that the data is unusable. 

Memory Address Path 
The memory controller continuously latches all 
addresses from the NMI bus. Once an address is 
latchcd, the memory controller must verify it as 
a valid memory address. That verification is 
d o n e  by c o m p a r i n g  t h e  a d d r e s s  t o  va l id  
addresses of both the control status registers 
(CSRs) and physical memory. 

The CSR addresses are hardwired into the NMI 
interface logic; therefore, only a simple compare 
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of the addresses is requiretl. Thc compare for ;I 

valid Inemor) address r e q ~ ~ i r e s  a reference to a 
"decode" RAiM. This RAM is loaded by consolc 
software when the system is powered up  and is 
used to configure memory. Loading the RAM 
from softwarc ;~llows the memory controller to 
support several different sizes of array modules 
without modifying any hardware. 

Once the address has been verified as being 
valid. i t  is placed in one of eight storage loca- 
tions allocated to address buffering in the MPR. 
Thc address rcmains in that buffer until its com- 
mand is sent tc.) an array modulc. 

Even though eight locations are allocated to 
address buffering, only seven of them can be used 
for temporary storage. One location is reserved 
for the error's page address, a pointer to a physi- 
cal page of memory containing an error. Since 
the location of the error page-address buffer is 
not fixed, the control logic for the address-buffer 
control must look ahead and not allow a new 
address to ovenvritc that error page address. 

The control of the address buffer is further 
complicated by masked writes and error logging. 
Since a masked write is implemented as a read 
followed by a write, the address in the buffcr 
cannot be overwritten until the write has com- 
pleted. A similar situation exists for error logging 
on  read t ransac t ions .  Since an e r r o r  is no t  
de tec ted  unt i l  the  read has comple t ed ,  t he  
address cannot be overwritten until the data has 
been checkcd. 

Design Requirements of the 
VAX 8800 System 

Impact of the NMI Bus 
As stated earlier, the VAX 8800 memory system 
interfaces wi th  t he  CPUs and 1 / 0  systems 
through a synchronous bus ca.llcd the NMI bus. 
This bus is highly efficient and operates in a 
pended fashion similar to the synchronous back- 
plane interconnect (SBI bus) in the VAX-11/780 
processor. The NMI  bus allows several transfers 
to be in progress simultaneously. 

'There are Four nexuses in the 8800  system 
that can require memory: the two CPUs, and the 
two NBWs. Each nexus is allowed to have two 
commands outstanding at any time. The proto- 
col supports this arrangement by allocating two 
codes in a 4-bit I D  field to each nexus. 

The CPUs use one of their references for pro- 
gram clata, c ~ l l c d  the d-stream, and the other for 
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instruct ions,  cal led t he  i-stream. The  CPUs 
alwaj~s requcst a hexword of data; the NBLAs may 
request cithcr longwords or octawords. Thus 
there  can be  as many as e ight  s imultaneous 
requesters of memory data. These simultaneous 
events recluire that the memory system buffer 
several commands while executing. In the 8800 
implementation, the memory system can access 
three array modules in parallel and store two 
commands. 

Moreover, s i nce  t he  memory system can 
accept multiple read commands, i t  must store 
the  ident if icat ion of t he  reques te r  and the  
length of the transaction. The NMI interface 
does the actual storing and returns the identifi- 
cation with the correct data. This action is possi- 
ble because all commands are processed in 
sequence; therefore, the read returned first is 
the one stored the longest. However, hexword 
reads are returned to the NMI interface as two 
separate octaword reads; therefore, that inter- 
face must ensure that both octawords have been 
returned before discarding the identification. 

To prevent a deadlock condition, the memory 
system is givcn the highest priority during arbi- 
tration. This priority guarantees that the memory 
system will be able to return data to a requester. 
When full, the memorysystem notifies any poten- 
tial requesters that i t  cannot process any more 
commands and to try again later, thus preventing 
the memory system from overfilling. 

Impact of the Cache 
The design of the cache affected the design of 
the memory system. The write-through design of 
the cache guarantees there will be a large num- 
ber of longword writes directed at memory.' A 
write buffer was installed to bundle a series of 
longword writes into octaword writes; however, 
the write buffer is only effective i f  multiple 
longwords arc written in the same octaword. 

Extra logic is always required to increase per- 
formance. The extra write bandwidth for this 
memory system, however, required more logic 
than what would have been required to irnple- 
ment extra read bandwidth. The added com- 
plexity was needed to facilitate interleaving on 
longwortl boundaries for write operations. 

When the 8800 project was first initiated, the 
goal of the memory system was to maximize 
read bandwidth, thus producing a relatively sim- 
ple array-module design. In that design, any 
operation, regardless of its size, kept an entire 
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array module  busy unt i l  t h e  operat ion c o m -  
pletccl. The control logic o n  the array n ~ o d i ~ l e  
was simple and required a reasonable amount of 
board  s p a c c  and  p o w e r .  W h e n  t h e  d e s i g n  
changed to the write-through concept, howevcr, 
highcr write bandwidth was required. Therc- 
fore, the control logic in each array module had 
to be replicated for each bank (longword) of 
memory to allow independent write operations. 
This replication permitted four longwortls to bc 
written on four consecutive cycles to the same 
array module. 

This increase in design complexity was not 
l imi ted  t o  t h e  a r ray  m o d u l e .  In t h e  ini t ia l  
design, when n ~ a x i m u m  read bandwidth was 
critical, the memory control logic was relatively 
simple. It had only to track the state of  an arm! 
module as being busy or not. However, with the 
i n t e r l e a v i n g  c a p a b i l i t y  r e q u i r e d  f o r  t h e  
increased writc bandwidth, thc memory control 
logic now has to track simultaneously the status 
of as many as eight write operations in progress 
on two array modules. 

Al though maximizing t h c  longword wr i te  
bandwidth was important, minimizing the read 
latency to the first longword required was criti- 
c a l .  W r a p p e d  reads  w e r e  i m p l e m e n t e d  t o  
reduce this latency. A wrapped read is a hex- 
word or  octaword command that reques t s  a 
specif ic  longword to  be re turned first ,  wi th  
o t h e r  longwords  in tha t  b lock  t o  fo l low in  
"wrapped" fashion. 

Other Design Trade-ofls and Options 
As in 2111 design processes, we  considerctl many 
trade-offs and options bcforc committing to a 
particular design architecture.  O n e  area with 
s e v e r a l  a l t e r n a t i v e s  w a s  t h e  i n t e r c o n n e c t  
between thc  memory controller and the array 
modules. The array modules and the controller 
reside in physically separate backplanes intcr- 
connected by a cable. We had to decide whether 
to make this interconnect with ECL or  TTL. 

T h e  overal l  project  goal was t o  make t h c  
8800 an all-ECL machine. Thereforc, our  first 
choice for this interconnect was ECL, which 
provides enhanced signal integrity,  reduced 
skews, and overall speecl advantages over TTL. 
As the system and memory design progressed, 
however, some real problems arose that altered 
our opinion. The first problem became apparent 
as the array-module design coalesced enough to 

a l low s o m e  accura te  p o w e r  es t imates  t o  be 
n ~ a d c .  We found that, with an ECL bus, the array 
moclule would requirc - 5.2  V in excess of its 
a l l o c a t i o n .  T h e  n e x t  p r o b l e m  s u r f a c e d  in  
response to an  architectural requirement that 
the memory system function with less than eight 
array modu lcs and ,  preferably. wi thou t  load 
cards .  This requ i rement  made i t  difficult  to  
implement  a termination scheme for an ECL 
intcrconnect. 

With these problems in mind, we  investigated 
a T?'I. interconnect, which clearly offered some 
dcsign cha l lenges ,  t h e  least  of w h i c h  w e r e  
spccd and skew. Using the SPICE simulator, w e  
constructed an accurate model to verify that a 
TTL electrical interconnect could indeed meet 
o u r  signal integrity, speed,  ancl skew require- 
ments.' While the  simulation results showed 
that a TTL interconnect could work, the associ- 
atctl skews certainly increased the complexity of 
the nicrnory design. While alleviating the prob- 
lems of limitetl - 5.2  V power o n  the array mod- 
ulc  and the termination of varied loatling, this 
TTI. scheme rcquiretl ECL-to-TTL translators in 
the memory controller to drive the  array bus. 
We finally decided to  accept  the  added com- 
plexity and use TTL for the intcrconnect. The 
sole exception was the clocks, which were dif- 
ferential ECL, reccivcd and translated o n  the  
array module. 

There were logical trade-offs as well as elec- 
trical ones.  The original specification for the 
NiMl did not support quadword masked writes. 
They were added aftcr the  implementation o f  
the memory system had progressed consider- 
ably. Since the array bus supported only long- 
word  and oc taword  reads.  t h e r e  w e r e  t h r e e  
options to support this change: 

'I'he first was to change the array bus proto- 
col,  the command generator on the memory 
controller, and the array module. 

The second was to execute the command by 
performing two longword masked wr i tes .  
'This option would take almost twice as long 
as a quadword masked write if implemented 
like the first option, yet still require changes 
to  the  command generator in the  memory 
controller. 

Thc third was to execute an octaword masked 
write in which the data of two of the long- 
words remains unchanged. 
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Since the design was well advanced, we chose 
the last method to ease the problems of imple- 
mentat ion;  this  dec is ion  actual ly has l i t t l e  
impact on system performance. The logic to  
accomplish this addition already existed on the 
array module. Only small changes were required 
to the command generator of the memory con- 
troller and the datapath control. In practice, the 
f r e q u e n c y  of q u a d w o r d  masked  w r i t e s  is  
extremely low since they are executed only by 
the N B k .  

Technology Description 
A number of different module and component 
technologics were used for the memory con- 
troller, backplane, and two array modules. 

Memory Controller 
The memory controller is a 9-layer, controlled- 
impedance, extended hex module (1 5 inches by 
11 inches). The Pay-up consists of 6 routing layers, 
2 power layers (- 5.2 V and - 2 V), and a ground 
plane. Since there is a minimal amount of TTL, 

both the + 5 V power and the + 5 V battery are run 
on the surface with 50-mil ctch. With the mixed 
technology on the module, we took special care 
to keep the TTL signals properly spaced from the 
ECL signals to avoid signal intcgrity problems. 

The logic o n  this module is implemented 
using nine unique macrocell-array designs from 
Motorola, Inc.. and one custom ECL multiported 
RAM There are 16 custom and semicustom 
devices on the module. I t  also contains some 
lOKH MSI logic, some ECL-to-'TTL converters, 
and some CMOS logic used for operating with 
battery backup. 

Array Module Backplane 
The array module backplane in the VAY 8800 
and 8700 CPUs is a 12-layer, 8-slot pressed-pin 
backplane. The one in the VAX 8550 and 8500 
CPUs is a 5-slot backplane. Since a TTL bus was 
chosen to communicate between the memory 
controller and the array modules, a good termi- 
nation strategy had to be developed. Using the 
SPlCE simulator, we evolved the termination 
strategies shown in Figure 5.  
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I MEMORY I 
I CONTROLLER I ARRAY MODULES 

I 

I I 
I 

(TO 8 MODULES) I 

i ECLTOITL 
I 

I 
I 
I NAB COMMAND/ADDRESS-WRITE DATA BUS - 

I - D l  DO 3 
I 

I c c s  
I 470 1 
I - HLD OHMS I 
I I 
I - 
I - - I L 

I 
I 
I 

I - 
I 

I 
I C 

I 

Figure 5 Termination Strategies in Memory Controller and Array Modtlles 
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Figure 6 Sixteen Megub-yte Army Module 

Four Megabyte Array Module 
Thc 4MB array module was designed using an 
8-layer, controlled-impedance, printed circuit 
board. The lay-up consists of 4 routing layers, 
2 power layers, and 2  ground layers. To support 
battery backup, the module has separate power 
planes for + 5 V power and the + 5 V battery. 
Since only a limited amount  of - 5 . 2  V and 
- 2  \I power is needed, these voltages sharc 
space on the other power planes. To eliminate 
discontinui t ies  that  could  cause unwanted 
reflections, we ensured that signals did not cross 
the  power-p lane  sp l i t s  by sur rounding  t h e  
power planes with solid ground planes. 

Approximately half of the logic technology on 
the array module consists MOS dynamic RAMS; 
the other half is FAST MSI logic. The clock system 
is implemented in ECL to minimize the skew. 

Sixteen Megabyte Array Module 
A 16MB array module was developed to increase 
the available memory to 1 2 8 M B  for the 8800  
and 8700 systems and 80MB for the 8550 and 
8500 systems. This array module consists of an 
8-layer mother board (similar to the 4 M B  mod- 
ule) and eight 2MB surface-mounted daughter 
boards. The l 6 M B  array module is picturcd in 
Figure 6.  

Sumnzary 
Thc VAX 8800 memory system was designed to 
provide 7 1  MB per second of read bandwidth 
and 59 MB per second of write bandwidth to the 
multil~rocessor system. The system architecture, 
processor performance needs, and high 1 /0  
activity combined to make a high-performance 
memory a requirement. 

Since the 8800 contains ECL components, the 
memory system has to provide a high-speed path 
between the ECL logic in thc CPUs and the high- 
density dynamic RAMS used for main storage. 
Although the memory system does not play a 
direct role in the execution of a VAX instruc- 
tion, its perfor~nancc has to match closely that 
of the multiprocessor system. If the memory sys- 
tem were under designed, the processors would 
stall frequently, thus reducing their usable per- 
formance.  I f  the memory systcm were  over  
designed, i t  would contain extra complexity, 
with the attendant extra cost, that could not be 
used by the system. Thus the melnory strategy 
played an important role in the price/perfor- 
mance trade-offs that had to be made. 
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Floating Point in the 
VAX 8800 Family 

The processors in the VAX 8800 family were designed with particular 
emphasis on cost-eflectiveness. These CPUs do not contain separatefloat- 
ing point accelerators. Their performance is not compromised, however, 
especially for the double-precision instructions. High performance is 
achieved, in part, by a custom ECL multiplier and divider unit and by 
specific hardware for exponent manipulation and normalization. The 
main advantages of this integrated approach are less hardware to repli- 
cate and a tightly coupled interface to each CPU, thus less time is wasted 
fetching the operands. Microcode branch problems are minimized by 
using a prediction strategy and extensive hardware assistance. 

Unlike other VAX families, the processors in the 
VAX 8800 family do not contain separate float- 
ing point accelerators (FPAs). Instead, their FPA 
is integrated into each processor's ~ n a i n  data- 
path. Therefore, no distinction is ~nade  between 
instructions that are executed in the FPA and 
those that are not: the hardware is available to 
be ~ ~ s e d  for all functions. For example ,  the 
extended arithmetic logic unit (XALU) is also 
used as a counter for the move character instruc- 
tion (IMOVC). This usage differs from that in the 
VAX 8600 and VAX-11/780 systems, where the 
XALU is used only for floating point instruc- 
t ions .  Fur thermore ,  a l l  t he  f loa t ing  poin t  
instructions, from the most complicated (POLY 
and EPIOD) to  the  s implest  (MOVF), have 
access to the FPA hardware. 

There are a number of advantages to this 
approach. First, logic is not duplicated; only 
one arithmetic logic unit (ALU) and one shifter 
unit is shared between the floating point and the 
normal arithmetic. Second, the design is tightly 
integrated with the rest of thc computer; there 
is no overhead involved in starting the floating 
point computation. 

Clearly, since all other VAX families use FPAs, 
there are also disadvantages with our approach. 
Shared logic is more complex than specialized 
logic. Performance may also suffer since the 
design cannot be optin~izecl toward one class of 
p ~ o b l e ~ n .  Those disadvantages can be overcome, 
l-lowever, as we shall relate in this paper. The 

problern of optimization was ameliorated by 
providing dedicated hardware for the main 
operations of multiplication and addition. A cus- 
tom multiplier and divider chip is provided 
together with exponent manipulation logic and 
a shifter unit optimized for floating point. These 
logic elements handle those floating point oper- 
ations that take the longest times to execute. 

The floating point logic resides in the execu- 
tion unit, the E Box, of the VhY 8800 CPU. That 
logic is controlled by microcode in the instruc- 
tion unit, the I Box.' 

V M  Formats and Instructions 
The VAX architecture supports  four floating 
point formats: F, D, G ,  and H. These formats are 
discussed at length in references 2 and 3 .  The 
F format is 32 bits wide, the D and G formats are 
both 64 bits wide, and the H format is 128  bits 
wide. Although the D and G formats have the 
same width, the exponent field is larger in the 
G format, and its fractional field is commensu- 
rately smaller. This format allows a larger range 
but with slightly lower precision. The fractions 
are always normalized and the leading bit - the 
hidden bit - is not stored. 

E Box Operation 
Physically, floating point operations are per- 
formed on three modules: two slice modules 
and a shifter module. The slice modules contain 
the cache, the main ALU, and a register file. The 
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shifter module contains the custom multiplier. 
the  shifter uni t ,  the  exponent  manipulat ion 
logic (the two ALUs), and the priority encoder. 
Figure 1 shows  this  par t i t ioning.  T o  a large 
extent, the shifter module strongly resembles an 
FPA but without the ALU and register file. 

The source operands are fetched from either 
the 64 kilobyte (KB) cache or a general-purpose 
register (GPR). The operands are sent o n  the  
A and B ports to the ALU on the slice modulcs 
and to the shifter module. All the components 
o n  the shifter module are driven in parallel by 
the A and B ports. 

From Figure 1 i t  is clear that the datapath is 
highly parallel; the shifter, X U .  multiplier,  
and ALU can all operate  simultaneously. This 
parallelism is used extensively to gain perfor- 
mance ant1 to save cost. For example, in multi- 
plication operations, the XALU determines the 
exponent  of the  result ,  the  multiplier multi-  
plies. and the shifter absorbs the low-order bytes 

of the product that are discarded each cycle by 
the multiplier. 

The main problem with designing an inte-  
grated FPA is that the VAX formats for integer 
and floating point numbers must all be  handled 
by the same shared units. Figure 2 shows the dif- 
ferent bit orderings for two VAX formats, the  
F floating point and the integer. In the integer 
format, the bit ordering is from right to left. In 
the F format, the mantissa begins at bit 16 and in- 
creases in significance to bit 3 1 ,  then continues 
from bits 0 through 6. The remaining bit positions 
are used to hold the exponent and the sign. 

This requirement for shared handling compli- 
cates the carry path of the ALU. The carries out 
of t h c  1 6 - b i t  w o r d  b o u n d a r i e s  have  t o  b e  
switched into the appropriate places, as shown 
in Figure 3. The problem with shifting is similar 
to the carry problem, except that now the carry 
path of Figure 3 represen t s  t h e  f low of t h e  
shifted bits. 

I 
I 

SHIFTER MODULE I SLICE MODULES 
BYPASS BUSc31:O> I 

Figure I Block Diagram of the B Box 
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F FORMAT: BIT POSITION 

MANTISSA 
(LEAST SIGNIFICANT PART) I S I EXPONENT I MANTISSA 

INTEGER FORMAT: 

LEAST SIGNIFICANT BIT f 
S - SlGN BIT 

Figure 2 TZUO VAX Formats 

T h e  ALU a n d  t h e  s h i f t e r  u n i t  a r e  b o t h  
designed to handle all integer and floating point 
formats. The multiplier expects operands to 
come only in a floating point format. Therefore, 
for integer multiplications, the data must first 
be converted into a pseudo-floating point format 
by swappi~lg the places of 16-bit words within 
the integer format. This operation is performed 
by the shifter unit. 

Table 1 gives the execution times for the most 
common floating point instructions. These times 
include the overhead for fetching the operands. 

The VAX 8 8 0 0  processor is designed so that 
there is little. if any, difference in performance 
between register and memory operands. The 
execution times vary from 2 . 2 5  to over 5  times 
the performance of the VAX- 1 1/780 CPU with 
an FPA for the F and D formats. For multiplies, 
one 8800  CPU is 2 . 5  times faster in F format 
and 4 . 8  times faster in D format; divides are 
3.0 times faster. The gain is even more substan- 
tial for the G and H formats since they are not 
accelerated on the 1 1/780. 

D FORMAT: 
(MOST SIGNIFICANT PART) BIT POSITION rr F l  

MOST SIGNIFICANT BIT 

D FORMAT: 
(LEAST SIGNIFICANT PART) 

MANTISSA MANTISSA 

4 

S - SlGN BIT 

Figure 3 Floating Point Carry for LI Format 
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Table 1 Execution Times 

Register to 
Register 

ADD 315 495 540 3314 
MLlL 450 675 842 6306 
DIV 1607 3197 3107 21649 

In the 8800 the D format is slightly faster than 
the G formiit wi th  its longer  o p c o d e ,  w h i c h  
requires an extra cycle in the decoder. The singlc- 
precision F format executes the fastest, and the 
larger 128-bit  H format executes the slowest. 
However, the H format is intended as a backup 
for intermccliate c a l c u l a t i o n s  in t h e  D a n d  
G formats. Used thus, the H format ensures that 
the final calculation result has sufficient preci- 
sion and avoids overflow or  underflow prob- 
lems. Little hardware assistance is provided for 
the H format; i t  is driven mostly by microcode. 

Technology 
Component technology used in the VAX 8 8 0 0  
processor is ;ln enhanced version of the macro- 
cell array ( M U )  used in the VAX 8 6 0 0  CPU.2 
This  technology provides  a b o u t  1 , 2 0 0  ga te  
e q u i v a l e n t s  w i t h  a t y p i c a l  g a t e  s p e e d  o f  
I nanosecond (ns). MCAs utilize emitter-cou- 
plcd logic (ECL) in a 72-p in  package that is 
1 square inch with a maximum power dissipa- 
tion of 5 .5  watts. The GPR and the multiplier 
are made with custom technology, which uses 
the  same package as the  MCA but  contains a 
more  advanced process .  Around 1 , 8 0 0  ga te  
equivalents are provided, and the gate speed is 
5 0  percen t  fastcr than the  MCA. This higher 
performance is achieved by using the following 
fcat~ircs: 

Smaller transistors and metal-oxide-walled 
resistors 

Current mode logic instead of the slower ECL 

Four-level logic instead of the two-level logic 
of the MCA 

At 3 0 0  by 2 6 0  mils, the  size of the  custom 
c h i p  is larger than the  dimensions of 221  by 
252 mils for the MCA. 

?'he shifter module  contains  1 2  MCAs and 
8 custom multiplier parts. Some lOKH parts ;Ire 
uscd for clock distribution and for driving thc 
bidirectional bypass bus. 

A rithmetic Algorithm Processing 

Addition and Subtraction 
For an addition operation, the 32-bit words con- 
taining the exponents are sent to the main ALU. 
T I ~ e r e  they a re  passed t o  t h e  A and B por ts ,  
w h i c h  feed t h e  shif ter  m o d u l e .  These  por ts  
drive all the gate arrays in parallel. 

The exponents are then loaded into the X4LU 
and the shift-amount M U  (SALU), which com- 
putes  t h e  alignment shift amount  sent  to the  
shifter. The SALU also generates some 20 branch 
conditions for the microcode. These conditions 
indicate  t h e  s ize  of t h e  a l ignment  shift  and 
w h e t h e r  a n y  s o u r c e  o p e r a n d  i s  z e r o  o r  a 
reserved opcriind. They also he lp  to  optimize 
thc microcode flow. 

The XALU, which selects the larger exponent 
and saves it  for later use, has a 12-bit datapath 
and a register to hold the exponent. The size of 
this datapath is sufficient for the F, D, and G for- 
mats plus a guard bit for overflow or underflow 
detection. An ALU is provided to perform arith- 
metic operations o n  the exponent .  The SALLI. 
with an I 1 -bit datapath, subtracts the exponents 
to determine the alignment shift amount, which 
is always positive. The sign manipulation logic 
also resides in the SALU. 

Next, the fractional part of the smaller operand 
is aligned by the shifter. This operation involves 
either o n e  CPU cycle for F format operands o r  
two  CPU cycles  for t h e  D and G formats. The  
shifter unit shifts in the floating point format and 
can d o  a full 64-bit  shift. The logic that deter- 
mines the round bits is related to  the alignment 
shift operation but  is physically located in the 
priority encoder gate array. This gate array also 
contains some of the shifter functic.)nality. 

Nine gate arrays are used for the shifter unit. 
Of those, eight make u p  the datapath, the ninth 
is t h c  control device.  The  shifter can  accept  
either a 64-bit  operand o n  the A and B ports or a 
32-bit operand on either port. ?'he shifter gener- 
ates a 32-bit result that can be either the high- 
order or thc  low-order part of the answer. The 
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shifter datapatli gate arrays are identical: each 
effectively constitutes a bytc slice of the design 
and pcrforms a bit shift of up  to seven pl;iccs 
Byte shifting is then performed by sc~iding tlic 
correct sliifter output to the correct b ~ ~ t c  posi- 
tion. This operation is facilitated by having all 
the outputs wired to the OR gates at all possible 
byte positions ancl by enabling the correct output. 

The shifter performs floating point. intcgcr. 
and logical shifts, as well as a number of ~niscel- 
laneous functions. These include converts from 
decimal-format data into intcgcr format and \!ice 
versa. The masking of the exponent ficltl and 
the insertion of the hidden bit ;ire also done by 
the shifter. 

After the alignment shift, the o i~ tpu t  of the 
shifter is directed to the main ALU on the bypass 
bits. Tlicre. the output is addcd to or subtracted 
from the fraction of the larger operand. The out- 
put of the ALIJ operation is now ready to be nor- 
malized in the shifter. In most cases a small nor- 
malize shift of at most onc bit position left or 
right will be sufficient. The speci;~lized hard- 
ware in the shifter handles this case ant1 then 
rounds the  resu l t .  Should a larger shift  be 
required, then microcode will first direct the 
AI,IJ rcsult to the priority encoder gate array. 
There, the position of the leading 1 is fount1 and 
used to determine the normalize amount for the 
subsequent cycle. 

The rounding operation in the VtiY 8800 CPU 
is unusual in that i t  is limited to the low-order 
cight bits. Therefore, a s~n;111 8-bit ;idclcr ciin be 
ilsed for this opcration. This adder is both faster 
and cheaper than the usual rnetliod of itsing :I 

f i l l 1  64-bit adder. The 8-bit ;idder is also suffi- 
cient to calculate the correct answer in over 
99.5 percent of the addition operations. Should 
a carry-out be generated by this 8-bit rounding 
atltl, thcn clearly the result created is incorrect. 
In that  case  t h e  c o m p u t e r  is t rappct l  xnd 
rnicrocotlc invoked to correct the result. 

Multiplication 
As mentionctl earlier, the 8800 contains :I liigh- 
performance, custom-designed niultiplicr and 
tilvider unit. A number of factors impelled us to 
use such a unit. First. multiplication is a v c n  
frequent operation that is used extensively in 
matrix manipulation. For example, in tlic [.IN- 
PACK benchmark, the time-critical routine con- 
tains an even mix of addition and niultipliciition 
operations:' 

Second, it  was not possible to succumb to the 
tcmpt;ition of using the miin ALIJ to provide the 
tli.crision operation. This desire was natural sincc 
cli\,ihion is ;in infrequent opcration, and the use 
of ;in M.IJ it1 a rclxated subtract and shift mode 
\va> ;ippealing. For example. the V M  8600 uses 
the M U  for just that purpose. In the 8800 the 
main ALIJ also computes the virtual address. 
Since this datapath is very time-criticiil (in the 
8 8 0 0  as  well. ;is in most  o t h e r  c o ~ n p u t c r  
designs). i t  cannot be allowed to go any slower. 
Including ;in extra path to accommodate divi- 
sion would have slowed down this critical path 
b!, around 5 ns, resulting in a 1 0  percent perfor- 
m;lnce degradation for all operations. 

Moreover, the available space for the multi- 
plier ant1 tlividcr unit was limited since tloating 
point operations are integrated with the rest of 
the machine. Approximately one-third of a mod- 
ule (12 inches bj. 16 inches) was available. In 
contrast, the VAX 8 6 5 0  CPlJ dedicates a full 
module to multiplication. 

'l'hc custom tlcsign of the  mult ipl ier  and 
divitler unit is b;isically a bytc slice of a large 
wortl-sized multiplier and dividcr unit.  The 
multiplier handles 8 bits per cycle, the dividcr 
h;~ntllcs 1 bit. F ig i~re  4 shows the complete  
56-bit by 8-bit  multiplier with its cight byte- 
slice custonl chips. Eight chips arc used to form 
the required word size of 64  bits ( 5 6  data bits 
plus 8 gi~iird bits).  This arrangement is suffi- 
cient to handle I:, D,  and G format operations. 
H for~uat operations are performed by partition- 
ing the problem into many s~naller 56-bit multi- 
plic;itions under n~icrocotle control. 

Tlie multipliciind is loatled into the MD latch 
after passing through the mask logic, which 
clears  the s ign and the  exponen t  field and 
inserts the hidden bit .  The P R  latch and the 
PR<;I3 are clearctl at the start of the ~ i l ~ ~ l t i p l y .  
Tlie I'RGD contains the guard bits for the PR 
latch. At  the end of a multiply, this latch will 
holtl the bits required for a possil~le normaliza- 
tion shift and also for a rounding operation. The 
least significant cight bits of the niultiplier arc 
loatled into the tni~ltiplier latch. The first multi- 
ply cycle is now ready to be performed. 

A 56-bit by 8-bit multiplication is pcrformctl 
between the contclits of the M D  and multiplier 
I:~tches. 'l'hc result is thcn addcd to the contents 
of rlic PR latcli (which is initiall~, zero) and thcn 
written b;ick into it  with n right shift of 8 bits. 
?'he PR 1;ttch is thus an accumulating latch and 
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MULTIPLY/DIVIDE SELECT +l 

( MULTIPLIER LATCH I 
4 56 BlTS 

BOOTH RECODE 

64-BIT ADDER V 
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NORMALIZE LOGIC I 
t 

MULTIPLIER OUTPUT 

Figure 4 Mtlltiplier and Diuider (Jnit 

contains the 64-bit partial product of each mul- 
t iplication operat ion.  The  next 8 bits of thc  
multiplier are loaded into thc multiplier latch, 
ready for the next cycle. This cycling continues 
until the multiplicand has been multiplied by 
all the multiplier bytes. This algorithm is similar 
t o  t h e  o n e  u s e d  in  t h e  VAX 8 6 5 0  s c h e m e ,  
except that that processor has a narrower data- 
path of 32 bits. 

Notice that the least significant byte of the  
partial product is discarded after each cycle and 
absorbed by the  shifter uni t .  These bytes are  
requircd only for the H format multiply. 

O n c e  c o m p l e t e d ,  t h e  r e s u l t  i s  s e n t  o u t  
through the result latch, then normalized and 
rounded. The rounding carry is only propagated 
into the lcast significant bytc of the result. This 
procedure uses less logic s ince only an 8 -b i t  
instead of a 64-bit incrementer is required. Thc 
8-b i t  incrementer will  be sufficient for most 

m u l t i p l i e s .  Should  a g r e a t e r  i n c r e m e n t  b e  
required, then the multiplier will trap the rest 
of the machine, and the correction will be per- 
formed by the main ALU. This scheme is similar 
to the one used for addition. 

The provision of a 64-b i t  adder  inside the  
main multiply path is unusual in a high-perfor- 
mance machine. High-speed multiplier designs 
typically L I S ~  carry-save adders,  which d o  not 
propagate the carry signal but save them so they 
can be absorbed by the subsecluent cycle. This 
form of adder is indeed used in the custom mul- 
tiplier to perform the 56-bit  by 8-bit  multiply 
function illustrated in Figure 4 .  However, thc 
8 8 0 0  also uses a f~11164-bit adder for the follow- 
ing reasons: 

A 64-bit adder has to be provided somewhere 
to propagate the  carries from the carry-save 
adders. 
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With the 45-ns cycle time, the 64-bit  adder 
fits in the main tlatapath. A faster clock for 
the multiplier would have compl icatetl the 
clock distribution and been difficult to gener- 
ate with low skew. 

A full adder in the datapath allows the use of 
a simple nonrcstoring division algorithm. 

'The multiplier and divider c h i p  contains a 
12-b i t  by  8 -b i t  mul t ipl ier ,  t w o  8 - b i t  adders ,  
six latches with a total sizc of 72 bits, ;is well as 
the rounding, normalizing, and control logic. A 
comparable MCA design would require between 
three and four of these elements. 

Alternative Designs for the Multiplier 
An M C 4  design was certainly possible and could 
have been made to  fit in the  specified space. 
The  performance of such  a design, however,  
would not be as good as the custom design for 
multiplication but comparable for division. An 
MCA design would be 1.7 times better than an 
11/780 with an FPA for a multiply in F format. 
whereas the custonl logic chosen is 2.5 times 
better.  The performance would b e  2 . 5  t imes 
better for the  D format,  whereiis the  custom 
design is 4 . 8  times better. 

Another iilternative was to use a commercially 
avail;tble multiplier. That was tempting bcc:iuse 
such a product has the advantage of being rcad- 
ily available and tested. Using it would h:~vc cir- 
cumvented the  high risk of a custom design. 
However, there are a number of disadvanrages to 
using general-purpose multipliers: 

Extra logic is required to  mask out the sign 
and exponent  of the  data and to  insert the  
hidden bi t .  T h e  o u t p u t  of t h e  mul t ip l i e r  
would have to be masked. 

Most available products cannot handle divi- 
s ion .  Thus a separate  divider  woulcl have 
been required, which was expensive. Even 
division a lgor i thms  using niultiplicii t ion 
require a large amount of ROM to contain the 
approximation constants. 

Many of the available designs are intended for 
integer applications, such as FFT butterflies 
and  digi ta l  signal processors .  Hence ,  t h e  
designs are optimized for those applications. 
Extending these 8- or 16-bit multipliers to a 
larger word length, as required for the  VAX 
architecture, was neither straightforward nor 
cost effective. Moreover, the  normalization 

; ~ n d  rounding o f  results entails either cxtra 
logic or ;~tldition;il cycle5 if the floating point 
h;~rdwarc in the E Box 1s used 

Most designs have a clock system not consis- 
tent with the rest of the  machine. This fact 
in t roduces  t h e  compl ica t ion  of a spec ia l  
clock distribution and difficulties in verifying 
the design. 

Very few designs are based on ECL technol- 
ogy. Other technologies, such as TTL, would 
rc t l l~ i re  a different power  rail and thus  an 
cxtra power supply. 

'I'hc closest available multiplier to the 8 8 0 0  
recl~~irernents is the 1090 1 made hy Motorola, 
Inc. This MCA imple~nentation contains an 8-bit 
by 8-bit multiplier together wit11 a 16-bit adder. 
However,  n o  latches are included;  they I I I L I S ~  

thcrefore be provided externally, thus increas- 
ing the cost substantially. On the other  hand, 
division could be provided by repc;itedly using 
the 16-bit atlder of the 1090 1 .  

The multiplier performs a nonrestoring division 
algor i thm,  1 bi t  p e r  cycle .  for  t h e  F, D,  and 
G formats. The divider can acccpt a n e w  divi- 
dent1 bit during every cyclc, thus permitting a 
128-bit by 56-bit divide. A divide of this sizc is 
usctl in the )-I format ;ilgorithm to form the start- 
ing ;~pproximation. 

The booth rccode of the multiplier is nlodi- 
f ied s l i g h t l y  t o  a c c o m m o d a t e  t h e  d iv i s ion  
decode.' In the case of multiplication, the mul- 
tiplier recode selects the  correct multiples of 
the multiplicand to  add to the partial product 
dur ing each multiplication operat ion.  ln the  
case of division, the  divisor is loaded into the 
MD latch, and the booth recode selects either 
+ 1 o r  - I times the  divisor for cach division 
step. 

In the nonrestoring division algorithm, the  
sign bit of the previous result selects the correct 
divisor multiple for the next cyclc. This selec- 
tion is facilitated by feeding the sign signill into 
thc modified booth recode so  that it will se-  
lect the multiples of either + 1 or - 1 times the 
divisor. 

?'he quotient bit generated every cycle is sent 
to the shifter unit to be absorbed. The first quo- 
tient bit generated corresponds to the most sig- 
nificant bit of the answer. That bit is then nor- 
malized and rounded by the shifter. 
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Microcode Design 
Being integrated into t he  logic in the  main 
machine, the floating point logic is also con- 
trolled by the main microcode. The VAX 8 8 0 0  
CPU is an ex tens ive ly  p ipe l ined  d e ~ i g n . ~  
Although pipelining is a well known technique 
for improving performance (for example, the 
VAX 8600 CPU), it comes at a price: the micro- 
code branch latency will increase. By that we 
mean that the microcode cannot branch on a 
condition or flag in the very next instruction; 
instead, it must wait a number of cycles. This 
delay is a consequence of the overlapping of the 
microinstruct ions;  each  successive micro-  
instruction starts before its predecessor has 
completed. 

Figure 5 shows a typical pipeline similar to 
that used in the VAX 8800 system. The microin- 
struction is subdivided into five components: 

In NEXT ADDRESS, the address for the next 
microinstruction is computed ,  as well  as 
those for any selected branch conditions. 

In LOOK-UP, the microcode RAM is accessed 
to fetch the microinstruction specified by the 
current NEXT ADDRESS. 

In READ, the register file is read to fetch the 
specified operands (e.g., fetch RO and R l ) .  

In ALU, the operation in the arithmetic logic 
unit is performed (e.g., RO + R l ) .  

In WRITE, the result of the ALU operation is 
written back to the register file. 

Thus when the next-address cycle has com- 
pleted for the first microinstruction, A, the next- 
address cycle for the microinstruction, B, in the 
subsequent  cycle is started. This cycle now 
overlaps with the look-up cycle for A. As many 
as five operations can proceed simultaneously in 
this manner. 

The branch latency of this pipeline is gov- 
erned by the first microinstruction that can 
"see" a branch condition set in an earlier cycle. 
For example, if the ALU cycle of A sets a carry 
condition, then the first instruction that can 
possibly use this signal in its next-address cycle 
is E. Thus the branch latency is three microin- 
structions, as shown in Figure 5. 

Naturally, this branch latency influenced the 
way in which we designed the logic to perform 
floating point operations. Clearly, we  had to 
avoid branching whenever  possible  as this  
would result in an excessively slow algorithm. 
Instead, we had to adopt a strategy based on 
predict ion and provide extensive hardware 
assistance. 

Prediction is based on the fact that the speed 
of algorithms for floating point adds are usually 
data dependent. For example, for certain data 
values, the result of a floating point add will 
r e q u i r e  cons ide rab l e  normal iza t ion .  That  
requirement is always present when two values 

r CONDITION CODE SET (E.G., CARRY OUT) 

NA - NEXT ADDRESS 
LU - MICROCODE INSTRUCTION LOOKUP 

INSTRUCTION A: NA 

C: I BRANCH 
LATENCY 

D: 

J I I I I I 

t- EARLIEST INSTRUCTION THAT CAN BRANCH 
ON CONDITION CODE OF INSTRUCTION A. 

LU 

NA 

Figure 5 Five-stage Pipeline 
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Floating Point in the VAX 8800 Family 

of similar magnitude and large cancellation are 
subtracted. In other cases little o r  no  normaliza- 
tion is required. It is clearly preferable not to  
pay the penalty of unnecessary normalizations. 

The approach w e  took in the 8 8 0 0  is to pro- 
ceed down the most likely path, assuming that a 
small normalization will be required while wait- 
ing for the result of the branch signals. The add 
and subtract algorithms in particular are struc- 
tured that way. The SALU examines the expo-  
nents of the operands and other signals; then it  
sets approxinlately 2 0  branch conditions in the 
first two cycles of the add/subtract datapath. 

In certain situations all paths may be equally 
probable. In these cases the microcode enables 
hardware signals to control the datapath. A good 
example of this processing is the  select iot~ of 
operands. For a floating point add, it is natural 
to think in terms of the larger and the smaller 
operands. For example,  the smaller operand is 
the  one  that is always aligned. However,  the  
microcode does not know which register loca- 
tion holds the  smaller value, and i t  does  not 
want  to  wai t  fo r  t h e  w h o l e  b ranch- la tency  
period to find out. 

Therefore, the microcode will assume that the 
larger operand is in a particular register. Should 
this assumption be incorrect, then the SALU will 
swap the register file read addresses (thus sort- 
ing the operands). Not all locations have their 
addresses modified in this  manner  s ince  t h c  
microcode still needs to  be able  to  read and 
write to specific locations. 

Similarly, the  SALU determines if the  main 
ALlJ is to do  an add or subtract operation. At this 
po in t  in t h e  computa t ion  t h e  microcodc  is 
unaware of which opcr;~tion will  be  required. 
The p ipe l ine  is st i l l  wi thin  t h e  long  branch 
latency of the 8 8 0 0  and cannot branch until this 
latency delay has elapsed. Note that one  of the 
most frequently performed instructions is m D F .  
That instruction will have just completed by the 
time the microcode can finally branch. Therc- 
fore, the ADDF cannot execute any faster since it 
is limited by the branch-latency delay. Conse- 
quent ly ,  those instructions that are the  most 
probable cases are con~pletely hardware driven. 

To allow fast paths in the add algorithms, it  is 
necessary to know that the result cannot possi- 
bly overf low s ince  overf lowed resul ts  must  
never be written. To prevent overflow the SALU 
examines the exponents of the operands. It then 

determines if the exponent of the result could 
possibly overf low o r  underf low,  taking in to  
account any possible norn~alization shift. There 
is also the added complexity of a rounding oper- 
ation provoking an extra normalization s tep .  
That would happen when the rounding incre- 
ment caused a carry to propagate throughout 
the whole fraction. 

Consequently, the use of a small 8-bit incre- 
menter for the round operation is possible only 
if i t  is known that an overflow cannot happen. 
The reason for this is that halting (trapping) the 
machine is not instantaneous (for the same rea- 
son that branch latency exists); therefore, the  
result will always be written. Thus, although the 
microcode can eventually correct the result, i t  

cannot prevent that result from writing. 

Performance Issues 
W h c n  a p r o g r a m  w i t h  many f l o a t i n g  p o i n t  
instructions - such as LINPACK - is run ,  its 
performance is not totally dictated by the raw 
floating point speed of the CPU. Having a more 
profound effect are other factors, such as 

The size and organization of the cache - This 
factor is particularly important for programs 
w i t h  l a r g e  a m o u n t s  of d a t a  b e c a u s e  t h e  
o p e r a n d s  w i l l  r es ide  in m e m o r y .  Having 
supcrior register-to-register performance will 
not help in this type of program. Clearly, the 
larger the cache, the greater the chance that 
the required data will be quickly available, 
t h u s  avoiding a lengthy t ransact ion w i t h  
memory. 

Thc performance of the  integer and control 
instructions - Even programs performing 
extensive floating point operations still have 
significant amounts  of integer and control 
instructions. Doing these quickly can con-  
tribute substantially to thc program's perfor- 
mance. 

To illustrate the effect of these factors, com- 
pare the performance of the VAX 8 8 0 0  system 
w i t h  tha t  of t h e  VAX 8 6 5 0  w h e n  b o t h  r u n  
LINPACK, as shown in Table 2.-' The 8 6 5 0  has 
fastcr raw floating point speed ,  especially for 
the F format (over twice as fast). Yet the  two 
systems r u n  this  benchmark wi th  almost t h e  
same performance. Clearly, in programs with  
these  characteristics,  factors o t h e r  than raw 
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speed will havc a greatcr  inf luence  o n  perfor-  
mance. Of course,  in applications without thcm. 
t h e  raw s p e e d  advantage of t h e  8 6 5 0  wi l l  b c  
more pronounced. 

Table 2 LINPACK Performance 

Performance (MFLOPS) 

Computer F Format D Format 

VAX 8800 1.35 0.99 
VAX 8650 1.30 0.70 

Summary 
T h e  a rch i t ec tu re  of a processor  l ike t h e  VAX 
8 8 0 0  CPU is all a mat ter  of tr;idc-offs. Where  
does  the  pcrformance  makc a d i f ference?  For 
e x a m p l e ,  w e  c o u l d  havc  s u p p l i e d  t h e  8 8 0 0  
wi th  a separa te  f loating po in t  uni t  t o  achieve  
faster perform;~ncc.  Doing that, however,  wou ltl 
have r equ i r ed  a t  least  o n e  ex t r a  m o d u l e .  To 
keep the cost of the  system constant, this extra 
modulc would have entailed removing a module  
of logic from some other part of the computer .  
P e r h a p s  r e m o v i n g  t h a t  m o d u l e  w o u l d  have  
resulted in a hlnaller cache  o r  a simpler decoder  
with n o  optimizations for the frequent instruc- 
t ions .  In any  case  t h e  n e t  e f fec t  w o u l d  havc 
been to  sacrifice the  perforlnance of t he  c o m -  
puter  in some other  area. All things considered. 
w e  feel that the  design is well  balanced for the  
mult i tude of different comput ing  tasks that ~ L I S -  

tomers will perform wi th  the  VAX 8 8 0 0  system. 
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me VAX 8800 Znput/Output System 

The VAXBI bus links the processors in the VAX 8800 family to 1 /0  devices, 
including clusters and networks. The VM 8800 nzultiprocessor can sup- 
port four of these 32-bit synchronous buses, each of which connects up to 
16 1/O devices. Each VAXBI bus connects to the memory interconnect, the 
NMI bus, by an NBI adapter, ulhich contains an interface chip to imple- 
ment the VAXBlprotocol. The NBI adapter logic handles CPU references 
and direct memory accesses to and from the 1/0 devices. The adapter has 
its own 200-nanosecond clock, which is completely asynchronous with 
the 45-ns CPU clock. 

The VAX 8800 family of systems is another  
major step for Digital Eql~ipmcnt Corporation 
into the realm of high-pc.rform;~ncc computing. 
While increasing the computing capability of 
the VAX line for scientific and tcchnic;~l appli- 
cations. thcsc systems will undoubtedly play an 
import;~nt role in commercial :ind office mar- 
kets. In these markets, tlie ability to connect to n 
computing clustcr ,  service ni;lnjr ilscrs, and 
function in a nctwork arc as important :is a hst  
CPII. Indccd, i t1  a multiuser, rnultiprogr;~rnming 
systc~n, the cfficiency of "housckccping" opcra- 
tions affects the perceived system performance 
;IS tiii~cll as raw processor co~npu t ing  speed .  
'I'licsc opera t ions  inc lude  sharing memory 
between many programs, swapping processes 
into ;inti out of memory, paging, and rcspontling 
to intcr:ictive user requests. 

All members of the VAX 8800 hniily use Digi- 
tal's new VAXBI bus as their conimunication 
link to clusters, networks, and interactive uscrs. 
W l i t h  its ability to  connect  to  four separate 
VAX131 channels, the VAX 8800 system in partic- 
u l i ~ r  offers grcat  flexibility in configuring 
perip1icr;il dcvices and interfaces. This papcr 
first discusses the characteristics of the system 
communication buses in the VAX 8800 systcm. 
1:ollowing that is a discussion of the interface, 
callcd the NBI adaptcr, linking the primary sys- 
tem bus to the VAXBI input/output (1/O) bus. 
Figure 1 illustrates thc various components of a 
\'AX 8800 system. 

The Processor-to-Memory Bus 
'I'lic two CPUs, the 1 / 0  subsystem, and mcmory 
; i l l  share the primary systcm bus, callcd the N M I  

bus. This bus is a limited-length, high-spccd 
synchronous communicatiotis path that provides 
the data link bctween these four devices. The 
NMI bus is completely contained in the main 
system c;~binct; its cycle time is 4 5  nanoseconds 
(ns),  tlie s;lmc ;is the CPU's. The bus protocol 
handles several 011tst;inding transactions at one 
time, ~ I I L I S  effectively increasing the bus's uti- 
l ization. That is, once a device has issued a 
transaction ( e . g . ,  a read). that device relin- 
qi~ishes the use of the bus until the responding 
device is ready with the data. Other devices are 
thcn free to start other transactions. 

In this  fash ion ,  t he  bus  usage is great ly 
incrcascd. Thc two CPUs comnlunicate directly 
with mcmory over the NMI bus; the 1 /0  devices 
conliected to the VAXBI buses access memory 
via the N n l  adapters. A device on the NMI bus is 
called a "nexus." Arbitration among nexuses 
occurs in parallel with data transfers and is han- 
dled by one CPIJ in a nearly round-robin fash- 
jon. This guarantees that each nexus gains its 
fair share of the bus resource. Data transfers on 
the NMI bus occur in longword, octaword, and 
hexaword lengths ( 4 ,  16, and 3 2  bytes respec- 
tively). Four levels of device interrupts  are  
supported. 

The VAXBI Backplane Interconnect 
The VAXBI bus is used as the 1 / 0  bus for the 
\'AX 8 8 0 0  systcm. As shown in Figure 1 ,  from 
one to four VAXUI buses can be interfaced to the 
NMI bus. depending on a customer's needs and 
his desired mix of peripheral devices.  Each 
VAXBI bus is a 32-bit-wide synchronous bus that 
can connect up  to 16 VAXBI deviccs. Each VAXBI 
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device, called a "nodc," uses a chip called thc 
VhXBl  Interface Chip as its bus interface. This 
chip provides a consistent logical and electrical 
interface to the bus. The VAXBI Interface Chip 
implcments most of the bus protocol for its 
node, including bus arbitration and error check- 
i ng  The VAXBI cycle time is 200 ns, controlled 
by an oscillator on the NBIB. 

The NBI adapter acts as both a processor and a 
memory on the VAXBI bus. The adapter pro- 
vides the following three important functions: 

1. A means for the master CPU to read and 
write device registers 

2 .  A w i n d o w  i n t o  m e m o r y  fo r  \TAX01 
devices 

3 .  The facility for VAXBI devices to inter- 
rupt the processsor 

Control of Peripheral Devices 
To gain an appreciat ion of t he  NBI adapter  
architecture, it  is worthwhile to discuss the con- 
trol of peripheral devices.' To move data from a 
disk into memory or to send program oiltput to 
a peripheral device, a programmer must specify 
the opwation to be carried out (read or write), 
a niemory address to receive the data or that 
contains data to be output to a device, and the 
amount of data to be moved. In early machines, 
the processor was required to control the entire 
operation - executing instructions to move the 
data, waiting for the slower device to complete 
the operation, and then continuing in this fash- 
ion until all the data had been moved. This pro- 
cess wasted a great deal of processor time since 
many instructions could have been executed 
while waiting for an 1/0 operation to complete. 

NBI ADAPTER 

LOCAL DISKS 

COMPUTERS 

TERMINALS 

Figure I VAX SS00 Configt~rntion 
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Modern niacliines have 1/O controllcrs. which 
arc special Iiardwarc intcrf;iccs t h ; i t  1i;intl le 
device operations. A programmer must specify 
to the controller the attributes o f  the operation 
to  be  ca r r i ed  o u t .  O n c e  t h e  o p e r a t i o n  i:, 
acceptetl by the controller,  the processor is 
freed from the details of actually moving the 
tlata. In this way processing ancl 1 / 0  oper;itions 
can be  ove r l apped ,  increiising process ing  
utiliz;~tion. 

For slow devices, such as termin;ils, the con- 
troller usually has a small buffer to lioltl tlie data 
to be transferred to or received from the proces- 
sor. 'I'his buffer is loaded by the proccssor when 
i t  h;is data to be transmitted to the device. 'l'he 
device accepts the data, then signals when read). 
for more. When having d;it:i to be t~unsrnittctl to 
tlie proccssor, the device loads that data into the 
buffer and then signals to the proccssor to  
remove the data. This process is called pro- 
grammed I/O. 

For high-speed devices, such ;is disks, the I/O 
controller normally performs direct memory 
;iccess ( D M )  operatiions. The processor loads 
special registers in the controller with informa- 
tion ;ibout tlie transfer - the arnout of d;ita to 
be moved and its location and destination. The 
jxowssor is theti freed while the controller per- 
forms the transfer. In this way large amounts of 
data can be moved with rniinin1;tl proccssor 
intervention. 

A~ldressing in the VAX 8800 CPU 
The master CPU manipul;ites the I/O controllers 
with reads and writes of single lonwords to their 
control and status registcrs. These registers have 
addresses in physical address sp;ice and can be 
manipulated by standard VAX instructions. This 
tcchniqi~e contrasts with that used in m;iny com- 
p u t u s i n  which special instructions control 
I/O. The address range of the VAX architecture 
is shown in Figure 2,  in which ;icldrcsscs ;ire 
given in hexadecimal notation. 

Physicill memory occupies the first 5 12  rneg:i- 
bytes of the defined address range. The 1 / 0  
a d a p t e r  and  t h e  1 / 0  c o n t r o l l e r  r eg i s t e r s  
;ire located in the range from 2000 0000  to 
3FFF FFFF. In the I/O space, tlie address range 
;illoc;~ted for each VAXBI bus is further subdi- 
vided into space for each device on the bus. 

BYTE ADDRESS 

.... - - - ~  

Figure 2 VAX Address Space 

The NBI Adapter 
A n  ad:iptcr provides ;In interface between two 
existing buses, each with its own addressing 
protocol and data-transfer protocol. The adapter 
is responsible for a11 communications between 
the two buses. I t  is a datapath for the processor 
to access device registers and for devices to 
access memory. This datapath is also lied to 
interrupt the proccssor and for initialization 
functions. 

The NB1 adapter. consisting of an NBlA mod- 
ule and either one or two NBIB modules, inter- 
faces the VAX 8800 system to the VAXBI buses. 
which arc 1 /0  buses in this application. That is, 
the N R I  adapter issues reads and writes on the 
VAXBl buses in response to reads and writes that 
are in the NBI atl(lrcss range initiated by the pro- 
cessor  on the  Nkll bus .  Likewise,  t he  N B I  
adapter issues reads and wires to memory on the 
NMI bus in response to reads and writes inj- 
tiated by VtX'RI devices on the VAXBI buses. 
The N R I  adapter in the VAX 8800 system sup- 
ports a new gener;~tion of high-performance. 
native VAXBI devices. 

Figure 3 contains a block diagram of the 
NBW/NBIB adapter system. Basically. the data- 
path of the N B l A  niotlule contains an NMI Inter- 
face, which provides buffering for addresses and 
data transmitted and received during NMI trans- 
actions. The NlMI interface is connected to a 
transaction buffer, which is a 16-location, dual- 
ported ECL/TTL M. The transaction buffer 
provides five locations to buffer cornmands and 
addresses and up  to four longwords of read/ 
write data for direct  memory access (DMA) 



transfers by devices on the VAXBI-0 bus. A sec- 
ond group of five locations is provided for DMA 
transfers by devices on the VAXBI- 1 bus. Two 
locations are used for the command/address 
packet and the single longword of read/write 
data transferred when the processor accesses the 
VAXBI device registers. The NBIA/NBIB TTL 
datapath indicating the layout of the transaction 
buffer is shown in Figure 4 .  The TTL port of the 
transaction buffer connects to a set of two bi- 
directional latches used to buffer commands, 
addresses, and data for transmission across the 
data-bus cable to and from an NBIB module. 

The datapath of the NBlB module consists of a 
set of four bidirectional latches used to buffer 
both DlMA commands and addresses and CPU 
commands and addresses, as well as data. These 
latches connect to another set of latches known 
as the BCI data buffer (one longword deep),  
which connects to the VAXBI Interface Chip. 
(Thc module side of the interface chip is known 
as thc BCI.) Thc interface ch ip  controls the 
enabling of data onto the BCI for data transmis- 
sion onto the VAXBI bus. 

Data flows between the NMI bus and the  
VAXBl bus by moving it  between these two sets 
of latches. Control logic moves data from stage 
to stage, passing control successively to the next 
stagc ;is each part of the transfer completes. The 
VAXBI bus runs  approximate ly  fou r  t imes  
slower than the VAX 8800 processor and is asyn- 
chronous with it. Therefore,  the  additional 
problem exists of synchronizing control be- 

tween the NBLA and NBIB modules. Facilities are 
provided for delaying data transfer until a buffer 
is free. thus preventing data corruption. Another 
synchronization problem occurs when the mas- 
ter processor wants to read from or write to a 
VAXBl device when that device wants to make a 
memory access. The control logic in the NBIA 
and NBlB modules is carefully designed to ref- 
eree such contention problems. 

DMA Transfers 

From VAXBI Devices to Memory 
A DMA transfcr to memory by a VAXBI device is 
shown in Figure 5 .  

After winning the VAXBI bus, the device want- 
ing to make a transfer initiates a command and 
address cycle. In Figure 5, that device is a disk 
controller. The VAXBI Interface Chip in an NBIB 
is programmed to recognize memory addresses 
on  the VAXBI bus. The ch ip  "awakens" the 
NBIB control logic, decodes the command, and 
stores the command/address packet, as shown in 
Figure 4 .  Control logic on the NBIB then sends a 
"DlW request" signal to the NBIA. After a syn- 
chronization delay on the NBIA, the NBLA TTL 
controller begins to transfer the command and 
address from the NBIB to the NBLA. 

Meanwhile, the NBIB takes the longwords of 
data as thcy appear on the VAXBl bus and stores 
them in the NBIB's data buffers. The NBIA stays 
;ipproximately one  cycle behind the  NBIB, 
removing data from the NBIB buffers and storing 
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it in the  DMA locations in the  transaction buffer. 
After successfully transferring al l  data into the  
t ransact ion  buffer ,  t h e  NBIA a ler t s  t h e  NDIB,  
which ,  after a synchronization delay,  elids the  
transaction o n  the  VAXBI bus.  At this  t ime the  
NBW. TTL controller  passes the  DMA rcqucst t o  
the NMI interface in the  NBIA, which  then pcr-  
forms the writc to  memory o n  the NMI bus. 

It s h o ~ ~ l d  b e  noted that  a DMA write transac- 
tion is considered to  b e  complc tc  o n  the  VAXBI 
bus  bcforc the data is actually written t o  mem- 
ory. A VAXBI device is thus  free t o  start another 
t r a n s a c t i o n  i m m e d i a t e l y .  T h i s  p e r f o r m a n c e  
e n h a n c e m e n t  i s  k n o w n  a s  a " d i s c o n n e c t e d  
writc,"  in which  the write operation is consid- 
c red  to b c  c o m p l e t e d  o n  o n e  b u s  beforc  tha t  
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Figure 5 DMA Tr~~nsfer to Memory 

operation has actually taken place on the target 
bus. The NBI atl;~pter is designed in such a WilJ1 

that a write transaction could be waiting in thc 
transaction buffer (e.g., while the NMI interface 
controller services the other VAXBI bus) while a 
s e c o n d  t r a n s a c t i o n  w a i t s  i n  t h e  d a t a  b u s  
transceivers. Using two levels of buffering ancl 
the disconnected wri te  technique allows the  
NBI adapter to  support  a wri te  bandwidth of 
8 megabytes per second. 

I t  is interesting to note that during the data 
transfer from the NBIB to the NBIA, the NBlB 
notifies the  NBIA TTL control ler  of the  DMA 
request immediately after storing the command/ 
address packet.  However,  the  NBIA TTL con-  
troller does  not pass the  DMA request to the  
NBIA NMI interface controller until the  com- 
mand/address packet and all the write data have 
been loaded into the transaction buffer. The rea- 
son for this delay is that the NMI interface con- 
troller runs at the same speed as the NMI bus, or 
4 5  ns per cyclc. 

T h e  NBlA TTL c o n t r o l l e r  r u n s  f o u r  t imes  
slower, o r  180 ns p e r  cycle, to  closely match 
the VAXBl cycle time of 200 ns per  cycle. Thus 

if the NBIA TTL controller were  to signal the  
DMA request after loading only the command/ 
address packet into the transaction buffer, the 
NBIA NMI interface would attempt to read data 
from thc transaction buffer before that data had 
bcen loaded. That is obviously a bad thing to do.  
Indeet l ,  t h e  NMI in te r face  of t h e  NBIA c a n  
empty the transaction buffer in approximately 
the tinle it takes for the NBIA TTL controller to 
load one longword. 

From Memory to a VAXBI Device 
A write request from a VAXBI device is similar 
to the DMA operation just described. After win- 
ning the VAXBI bus, the device wanting to read 
data from memory on the  NMl bus transmits 
a c o m m a n d  a n d  address  o n  t h e  VAXBI bus .  
Figure 6 depicts this transfer. 

The interface chip awakens the NBIB control 
logic, which then decodes the  command and 
stores the command and address in a data-bus 
buffer location. The NBIB then passes the DMA 
request to the NBIA immediately after the com- 
mand/address packet is loaded. Again similar to 
the writc operation, the command or address is 

New Products 
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transferred to  t h e  appropr i a t e  location in t h e  
transaction buffer by the  NBIA TTL controller .  
However,  a DMA read is  unl ike  a wri te  opera-  
tion, in which the  data is ready for transmission, 
in that the data must he  fetched from memory. 
The DMA request is first passed to the NBIA NMI 
interface con t ro l l e r ,  w h i c h  arbi t ra tes  for t h e  
NMI bus .  Upon winning t h e  bus,  t he  interface 
control ler  initiates a read reques t  t o  memory.  
When the  the  data is ready, the  memory returns 
it on the NMI bus to the  NBIA. Thence the  data 
i s  t ransferrcd  i n t o  t h e  DMA loca t ions  in  t h e  
transaction buffer, and the  NBLA TTL controller 
is notified by t h e  NBIA NMI interface that the  
data  i s  ready.  T h e  c o n t r o l l e r  t h e n  beg ins  t o  
transfer data to  the  NBIB, loading i t  into succes- 
sive locations in the  NBIB buffers. This process 
is illustrated in Figure 4 .  A "DMA Done" notifi- 
cation is sent  to  the  NBIB after the  first l o ~ i g -  
word of data, rather than all the  data, has been 

MEMORY L-T: 

transferred. That maximizes the  read bandwidth 
on  the  VAXBI bus. The  NBI adapter has a maxi- 
m u m  DMA read bandwidth  of fou r  megabytes 
per  second. 

The DMA read transfer illustrates o n e  funda- 
mental difference between the  NMI bus and the 
VAXBI bus .  Referring to  Figure 6 ,  o n e  can see  
that the  VAXBI bus  is unusable while the  NBIA 
and memory complete the  read operation. (The 
NBIB issues stall signals to the  requesting device 
during this time.) The  NMI is a pended bus, but  
the  VAXBI bus  is n o n p e n d e d ,  o r  in ter locked.  
That is, the NMI bus is immediately available for 
use once  a command has been transmitted and 
acknowledged ,  whereas  t h e  VAXBI b u s  mus t  
wait. Thus  "pending" transactions are  al lowed 
on  the  NMI bus. Indeed,  the  NBIA NMI interface 
can respond to  requests from t h e  o the r  VAXBI 
bus whi l e  a lso  having an  outs tanding read t o  
memory o n  behalf of the  first VAXBI bus 

EM0 STALLSTALL STALL STALL STALL STALLSTALL STALL STALL STALL STALL STALL STALL DATA DATA DATA DATA l C I A I A R B l  I I I I I I I I I I I I I I I I I 
VAXBl CYCLES . 

MEMORY 
READ -* 
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LATENCY 

CIA - COMMAND/ADDRESS 

I; I I I I I I I I 1  I IilHIilil 
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EMB ARB - EMBEDDED ARBITRATION (NOT TO SCALE) 

Figure 6 D M A  Trclnsfer from lMernory 
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ARB - ARBITRATION 
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Figure 7 CPU Transfer from VAXBI Device 

CPU Transfers to and from 
VAXBI Devices 
CPU transfers to  and from VAXBI devices are  
similar to VAXBI transfers to and from memory, 
the obvious difference being that the transaction 
is initiated on the NMI bus. CPU transfers arc 
shown in Figure 7 .  

Another difference is that CPU transactions 
arc limited to longword lcngth when accessing 
VAXBl devices. Since there is only one location 
for a command/address packet for CPU transfers 
and one location for read/write data in the trans- 
action buffer, the NBI adapter can handle only 
one CPU transaction at one time. These lirnita- 
tions lower thc  CPU-to-VAXBI bandwidth as 
compared to the DMA bandwidth. An analysis of 
b u s  t raff ic ,  h o w e v e r ,  has  s h o w n  tha t  CPU- 
initiated transactions account for under 1 0  per- 
cent of the VAXBI traffic in a VAX 8 8 0 0  system. 
This finding could be anticipated since the CPU 
must make only a small number of accesses to a 

VAXBl device controller to cause it  to transfer 
large amounts of data. 

Synchronization 
In the  earlier discussions of data transfers, the  
term "synchronization delay" was introduced. In 
g e n c r a l ,  s o m e  t y p e  of s y n c h r o n i z a t i o n  is 
required whenever more than one independent 
clock exists in a system. This is the  case in the 
VAX 8800 system. Timing for t h e  processors, 
memory controller, and N B k  is derived from a 
sophisticated clock module  that provides two- 
p h a s c ,  nonover1; ipping c l o c k s  w i t h  a bas ic  
period of 45  ns and tightly controlled skew.* 
The VAXRI timing, on the other hand, is derived 
from an oscillator and a clock-driver circuit on 
the NBIB. This timing has a basic period of 200 ns, 
completely asynchronous to  the VAX 8 8 0 0  ker- 
nel.  The  synchronization of control signals is 
thus  necessary for data transfer between the 
NBIA and NBIB modules.  A DMA read transfer 

Digital TechnicdJournal 
No. d Febrrrayv 1987 



The VAX 8800 Input/Output System 

i n v o l v e s  t h e  s y n c h r o n i z a t i o n  o f  a " D M A  
request" and a "DMA complete" signal. Thcre- 
fore, the  synchronization overhead can account 
for approximately 5 to  1 5 percent of the  time it 
takes to complete the  operation. 

Summary 
The perforrnancc of the  1 / 0  subystem is critical 
t o  t h e  opera t ion of high-performance systems 
l ike  those  in t h e  VAX 8 8 0 0  family .  T h e  1 / 0  
adapter provides a communication link between 
t h c  each  processor,  the  memory,  and the  1/0 
dcvices. The  NBI adapter is this link for these 
systems, providing acccss to  a n e w  generation of 
VAXBl devices and high-performance 1 / 0  opera- 
tion for these important n e w  machines. 
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me VAXBI Bus - A Randomly 
Configurable Design 

The VAXBI bus provides a high-performance alternative to the UNIBUS 
system as Digital's general-purpose bus. The VAXBI design was completely 
specified before any hardware was built and is independent from any 
physical configuration. The designers had to discard the traditional 
small-perturbation approach and instead used many techniques to 
specify the bus characteristics. Two custom chips, a dzflerential driver 
and receiver, are used to clock the bus. The bus designs were tested exten- 
sively with SPICE, but tests on the physical chips led to some unantici- 
pated problems. Further analysis of waveforms, crosstalk, and switching 
noise led to changes that met all the original goals. 

The VLYBI bus is a new, high-performance, gen- 
eral-purpose bus that providcs a common inter- 
face to all of Digital's new VAX products, from 
the VAX 8 2 0 0  CPU to  t h e  VAX 8 8 0 0  system. 
This bus can also be used for future VAX sys- 
tems. The VAXBI bus is a higher-performancc 
replacement for the UNIBUS system and should 
have a similarly long and productive lifetime. 

The UNIBUS system was enhanced many times 
during its long history. Since there was no  for- 
mal specification for this bus until 1986,  these 
many de  facto enhancements led to numerous 
compatibility and configuration problems. Hav- 
ing learned from those problems,  t h e  VAXBI 
design team decided to make a complete design 
specification of the VAXBI bus before any hard- 
ware was built .  Thus compatibili ty problems 
should not occur  if all future designs comply 
with thnt specification. 

O n e  of the  most important  aspects  of that 
specification - and the most difficult to imple- 
ment - is that the VAXBI bus operates indepen- 
dently from any particular physical configura- 
t i o n .  T h a t  i s ,  t h e  b u s  m u s t  b e  r a n d o m l y  
configurable. The achievement of that specifica- 
tion was the most difficult part of the electrical 
design. T.hc techniques and solutions involved 
in solving this problem should be instructive to 
future bus designers. 

VAXBI Bus Description 
T h e r e  a re  several  e x c e l l e n t  re fe rences  that  
describe in detail t h e  operation of the  VAXBI 
bus and the VLSI chip that implements the bus 
logic and arbitration.'.*.5 Therefore, only a short 
description of the bus will be given here. The 
VAXBI bus is a general-purpose bus with data 
transfer rates high enough ( u p  to  13.3 mega- 
bytes per second) to serve as a memory bus in 
mid-range VAX systems, such as the VAX 8 2 0 0  
CPU. A l l  machines in the new generation of VAX 
systems use the VAXBI bus for all I/O, commu- 
nications, networks, and connecting adapters for 
mass storage. Those high rates also allow it to 
serve as an 1/0 bus in all sizes of VAX systems by 
using n ~ u l t i p l e  VAXBI channels in the  largest 
systems, such as the VAX 8800  multiprocessor, 
shown in Figure 1 

All t h e  machines in the  n e w  generation of 
VAX systems use the VAXBI bus for all I/O, con- 
necting adapters for mass storage, communica- 
tions, and networks. A VAXBI subsystem, con- 
s i s t i n g  of t w o  s i x - s l o t  c a r d  c a g e s  and  t h e  
backplanes,  is shown i n  Figure 2 .  The back- 
planes are connected with  flexible interback- 
plane jumpers with terminators at each end. 

'The key to general-purpose operation is the  
distributed nature of the VAXDI bus. A l l  nodes 
on i t  contain identical interface hardware, and a 
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Figure I VAX 8 8 0 0  System with Iour VAXBI Ruses 

CPU 1 

distributed arbi t ra t ion  s c h e m e  p rec ludes  t h e  
nccd for ;I processor to act  as a dedicated bus  
mastcr. The VAXBl bus can suppor t  both multi- 
ple ;lnd nctworked proccssors. thus implement- 
ing Digital's strategy of distributed computing.  
'l'hc synchronous operation of the  bus achieves 
h igh  p c r f o r ~ n a n c e  by p r o v i d i n g  p r e d i c t a b l e  
commu~i icar ion delays. The  distributed arbitra- 
tion is embedded within each bus  transaction s o  
that further data transactions may follow wi th-  
ou t  delay. 

T h c  VAXBI b u s  a r c l i i t c c t u r e  is r igo rous ly  
specified, and all designs that are verified to its 
spccific;ition will  be fully compat ib le  wit11 the  
bus.  'I'hc task of systcni clcsigners has been greatly 
cased by the  incorporation of all data-handling 
and  ~ rb i t r ; r t i on  logic  in o n e  VLSI e lcrnent ,  t he  

Figure 2 VAXIjl Sz~bsj!stern 7 8 7 3 2  c h i p ,  ca l led  t h e  VAXBI Interface Ch ip .  
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That chip also performs self-test functions and 
bus error detection and handling to improve sys- 
tem reliability and robustness. The physical bus 
interfaces are also rigorously specified, and the 
bus  c locking is control led by custom clock-  
driver and receiver chips.  Figure 3 shows the 
VAXBI corner of a module, with all the compo- 
nents required for the bus interface contained in 
a standardized layout .  These  features  f ree  a 
designer t o  concentrate o n  his unique design 
rather than on the bus details. 

Figure 3 VAXBI Corner of u Module 

VAXBI Electrical Design 
A randomly configurablc bus has many advan- 
tages as a data bus in general-purpose computers 
s i n c e  t h e i r  physical  conf igura t ions  a r e  no t  
known a priori and are subject to change during 
repair or upgrading. The previous state of the  
art within Digital was to use an artificial intelli- 
gence program, called XCON, to  calculate  a 
configuration for each unique set of UNIBUS 
options. XCON is based on an extensive set of 
bus configuration rules. Although it is a triumph 
of applied artificial intelligence, the necessity 
to use it for bus configurations was a bottleneck 
we  hoped to avoid by better bus design with the 
VAXBl bus. 

The design of a randomly configurable bus 
involves essentially the design of a group of ape- 
riodically loaded transmission lines. The charac- 
teristics of regularly loaded transmission lines 
are wel l  def incd,  bu t  those of randomly and 
unpredictably loaded lines are less well under- 
stood. The design team evolvcd a design procc- 

d u r e  f r o m  t h e i r  w o r k  o n  t h e  VAXBI b u s .  
Although this procedure was derived from the 
d e v e l o p m e n t  ra ther  than  b e i n g  p l a n n e d  in  
advance, it may he lp  bus designers with their 
projects in the future. Therefore, the remainder 
of this paper  describes that procedure,  espe- 
cially the activities and results that proved most 
significant to the project. 

The first s tep in designing this bus was the  
realization that the problem was not completely 
random but may be bounded. A bus is physically 
implemented as a group of transmission lines in 
a backplane. These lines are perturbed by the 
loading of connectors for modules and by the 
modules themselves. Each connector, or slot, in 
which a module may be inserted causes a small 
perturbation if empty and a larger one if popu- 
la ted.  A transmission l ine  can  also con t inue  
through cabling and connectors on to  another 
backplane. In either case the transmission line is 
terminated in some manner. 

The classic method of dealing with transmis- 
sion line loading is to  make the characteristic 
impedance s o  low that perturbations wil l  be  
trivial. In that case any reflections from these 
perturbations will be  small, and the line can be 
end terminated in its characteristic impedancc 
so that there is no reflection. The loading is then 
considered to  b e  predominant ly  capaci t ive .  
Thus the loaded impedance can be calculatcd as 

O u r  first approach was to  determine if the  
classic method could be used to deal with trans- 
mission-line loading for  the  modules  o n  the 
VAXBI bus. Z,, ,  the  charactcristic impedance, 
ranges from 35 to  1 0 0  ohms for the  standard 
dimensions of organic pr inted c i rcui t  boards 
made by Digital. Corresponding values of C, , 
the intrinsic line capacitance, range from 1.8 to 
0 .6  picofarads per  centimeter (pf/cm). How- 
ever,  C d ,  the distributed loading capacitance, 
can be as much as 5 pf/cm for modules in this 
implementation. That capacitance means that 
Z,', t h e  loaded impedance,  would  b e  in t h e  
range of 18 to 33 ohms, clearly a major pertur- 
bation. Therefore, for n~odules  with these char- 
acteristics,  the  smal l -per turbat ion approach 
could not be used. 

In the case of the VAXBI bus, even if i t  were 
possible to produce lines whose characteristic 
impedances were low enough (2, < 1 5  ohms), 
massive drivers would be required to supply the 
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necessary current.  Therefore, bus power would 
b e c o m e  a s ign i f i can t  p o r t i o n  of  t h e  sys t em 
p o w e r  d iss ipat ion,  a n  undes i r ab le  s i tua t ion .  
C o n s e q u e n t l y ,  w e  had t o  c o n s i d e r  ;I de s ign  
approach different from the classic one .  

O u r  a l ternat ive  design ; tpproach was  more  
pr;lgmatic. Significant development investments 
had already been made  in several key compo-  
nents,  part icularly t h e  rnodule connec to r  and 
t h e  7 8 7 3 2  c h i p .  T h e r e f o r e ,  t h e  r e s t  o f  t l ie  
design hacl to be as comp;~tible as possil,lc with 
the  characterist ics of those  key c o m p o n e n t s .  
Particular ;ittention was paid to three areas: the  
physical layout, to keep capacitance within thc  
drive capability of the  7 8 7 3 2  ch ip ;  the  clock,  
since it is the  critical clement in bus timing; ;und 
grounding, which is critical for signal integrity. 

The VAXBI data lines arc  driven directly by 
t h e  787.32 c h i p ,  w h i c h  is fal.>ricatcd u s i n g  
advanced MOS technology. IMOS devices, how- 
ever, are l in~i ted  in their ability to drive CLIrrent. 
Within the  constraints of c h i p  area and power  
dissipation, open-drain drivers of about 2 1  mil- 
liamperes (ma)  are the  0n1)~ otics avail;~ble. 'l'lic 
data cycle  of tlie VAXBI is 2 0 0  t ianoseconds.  
T h e r e f o r e ,  t h e  r n ; t x i m u ~ i i  b u s  l e n g t h  o f  
1.5 meters (VAXBI specification) is short  corn- 
parcd to n wavelength,  and a lumped-constant 
approxim;~tion could be used for calculating the  
delays. hi RC time-constant motlel was used for 
this approxim;ltion, and the  voJt:tge swing wits 
limited to 3 V to accornmotlate a smaller termi- 
nating resistor for fastcr switching. 'The resulting 
resistance was 2 3 8  ohms (5 V/21 ma). 

After calculating the  tolerances and worst-c;~se 
allowances, w e  chose a standard value for this 
resistancc of 2 7 0  ohms. By choosing an RC time 
constant cclual to the maximum available propa- 
gation delay (and after subtracting device delays 
and allowing for  c o m p o n e n t  tolerances and  a 
10 percent  t iming m;~rgin) ,  we calculated the  
capacitance as 4 10 pf.  This figure bec;tnie the  
m a x i m u m  c a p a c i t ; t n c e  f o r  e a c h  d a t a  l i n e .  
including biickplanes, interbackplane jumpcrs, 
connectors ,  modules ,  ancl bus tr;tnsceivers on 
the  ch ips .  Obviously,  t he  KC t ime constant  is 
appl icable  on ly  o n  t h e  low-to-high tr;ansition. 
w h e n  t h e  o p c n - d r a i n  d e v i c e  is t u r n i n g  o f f .  
Device turn-on, which is normally much fastcr, 
is internally compensated for by controlling the  
r i se  t irnc t o  ~ n i ~ l i ~ n i z e  t h e  t r ansmiss ion- l ine  
reflections. 

For the  c lock lines, t he  t iming requirements  
arc critical enough to justify the  use of very large 
drivers since only  two  signals are  involved. We 
selectetl  :I d ifferential  configuration for c lock  
s i g ~ ~ ; t l s  in o rde r  to  min imize  t h e  s k e w ,  w h i c h  
could dcgradc t iming accuracy. This configura- 
tion also provides noise immunity by cornmon- 
motlc r e j cc t ion .  Since  t h e  c l o c k  f r equency  is 
much  higher than the  data f requency.  ECI. was  
chosen fo r  the  logic technology, l ' h e  maximum 
d r i v e  c ; t p a l - , i l i t ) ~  o f  s t a n d a r d  d e v i c e s  i s  
25-ohm impeclance, however, s o  :I custom clriver 
is r rqui red .  We  also chose to use a custom differ- 
ential receiver, for the  following reasons: 

Isoth p;trts can  o p e r a t e  f rom t h e  avai lable  
+ 5 V supl>ly rather t11;111 the - 5 2 V supply 

norn1;tlly rcquirctl for ECL. 

'I'he receiver sensitivity and common-mode  
range can be  optimized for the  driver. 

The receiver input can be  designed for mini- 
mal bus loatling c ;~paci t ;~nce .  

'l'he receiver o u t j ~ u t  levels can be standard 
'1"rL Icvc.ls, thus  c l imi~ ia t ing  the  need for a 
separate i n t e g r a t e d  c i r c u i t  ( I C )  f o r  l eve l  
translation. 

Altogether, these two  custom clock chips  d o  
the  work of five stantl;trd ICs, thus saving power 
;lnd motlu le rc;tl estatt. whi le improv~ng  perfor- 
n i : ~ ~ i c e  

Sincc tlie ch;~racter is t ics  of ECL drivers a re  
well untlerstood, w e  require the  clock driver to  
use ;In output  driver made froni three standard 
50-ohm ECI. drivers in parallel. Thus the  cffec- 
rive tlrivc capal3ility is 17 ohms (50 ohms/.-3 ) 
The design termination is intcntlctl to match the 
estim;ltetl impetl;tncc of a maxim:~lly loaded sys- 
t e m .  a p p r o x i m a t e l y  2 5  o h m s  d i f f e r e n t i a l  
impedance.  This impedance is composed of a 
resistor to ground from each line and ;I resistor 
be tween  lines, chosen to  sink the  ;~ppropr i a t e  
high- ancl low-s ta te  cu r ren t s .  ' l ' l ~e  design was 
extensivcl.y ~ l lode le t l  us ing t h e  SPICJ c i r cu i t  
simulator,  which indicatetl that t he  driver had 
adcqu;~tc  currcnt cap;tbility for this load.' l 'he  
characteristic irii1~ed:tnce of the  clock lines was 
m;ltlc as low as possible by n~axiniizing the  line 
width within tlic sp;lce constraints o f  ;I 0 .  I - inch 
vi;l-hole (p1;itctl-throt~ghl~olc in ;I printed c i r c~ l i t  
b o ; ~ r d )  g r i d ,  l'o improve t h e  c o m m o n - m o t l c  
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rejection, the two lines of each differential pair 
are loc;~tetl one  above the  other on  adjacent lay- 
ers  w i t h  g round  planes  above and  b e l o w  t h e  
pairs. 

Finally,  c ; ~ r c f u l  a t t en t ion  was  g iven co t h e  
g r o u n d  r e t u r n  p a t h  f o r  a l l  VAXBI s i g n a l s .  
Ground  p1;lnc.s. t o  min imize  induc tance ,  a r c  
provided on  the  modules, backplanes, and inter- 
backplanc jumpers for data lines as well  as the  
c l o c k  l i n e s  d e s c r i b e d  a b o v c .  ?'he d a t a - l i n e  
capacitance was constrained within the 4 10-pf  
l imit  tlcscribcd above hy control l ing  the  l inc  
width and the ground-plane spacing. A particu- 
larly diffici~lt  problem is the  ground inductance 
of the  7 8 7 3 2  chip .  The 787.32 ch ip  can switch 
as many as 4 8  data lines sirnultaneously, with a 
total switching current of over o n e  ampere.  The 
induced voltage, V, from siniult:incous switch- 
ing is calcul;~tcd as 

in which  L is t h e  inductance  and d i / d t  is the  
ra te  of  c u r r e n t  c h a n g e .  For e x a m p l e .  if t h e  
ground intluct;~nce were 1 0  nanolienries ancl the 
c h i p  swi tchet l  i n  10 n a n o s e c o n d s ,  1 vo l t  of 
swi tching noise would  result .  Rased o n  these  
noise ca lcu l ;~ t ions ,  w e  des igned t h e  p a c k i ~ g e  
wi th  an  intern;~l  ground plane  and 15 grountl 
p i n s  t o  m i n i m i z e  i n d u c t a n c e  a n d  s w i t c h i n g  
noise. 

Test Results 
When the  custom clock devices became avail- 
a b l e ,  m e a s u r e m e n t s  showct l  t ha t  t h e  d r i v e r  
could not  power a 25-ohm differential loatl ant1 
st i l l  maintain t h e  des i red  7 0 0 - m V  ampl i tu t lc  
ove r  al l  cond i t ions .  There fo re ,  w e  careful ly  
n i e ; ~ s ~ ~ r e d  the o ~ ~ t p u t  char;~ctcristics in both the  
high and low states to calcul;~te an optitnurn ter- 
mination.  '.['lie TK!Solver softwarc was  used to  
solve  i tcr ;~t ively  t h e  dr iver  equa t ions  for t h e  
piecemeal linear approximations of t h e  driver 
characterist ics.  w h i c h  d i d  no t  f i t  any  s i m p l e  
curve .  We then calculated thc  optirnurn resis- 
tances and chose  the  nearest standard resistor 
values. We ;~ l so  recalculated the  output  voltages 
for normal tolerances of resistance, voltage, and 
temperature, and a +/- 5 0  percent variation in 
the  internal resistance o f  t he  driver. The  mini-  
m u m  ca lcu l ;~ ted  ampl i tude  was  6 9 5  mV, giv- 
ing us a very high confidence of having at 1c;ist 
700 mV for any actual hardwiirc. 

The  optimized termination has a differential 
impedance of 37.6 ohms, which turns out  to be 
a better match for the  measurctl impedances of 
the  rest of the  hardware.  An empty backplane 
has a differential impedance of approxiniately 
60 ohms,  dropping to  as low as 2 8  ohms when 
fully populated;  a jumper cable between back- 
p l a n e s  t y p i c a l l y  has  a 4 5 - o h m  d i f f e r e n t i a l  
i n~pedance .  The various possible VAXBI configu- 
rations yielcl ;I maximum reflection coefficient 
at  any point  of 0 . 2 8 ;  probable  configurations 
will have even smaller reflections. 

Reflections of this magnitude could cause sig- 
nificant t iming variations in s ingle-ended sys- 
tems d u e  to a fixed receiver threshold voltage. 
However. they hiwe n o  effect o n  a differential 
line since the reflection is the same on  both lines 
of the  differential  pa i r .  'l'he only variation w e  
found was caused by the  differences in imped-  
anccs on d ifferent printed circuit layers. Subse- 
quen t  expcrimcnts indicated that improving the  
matching of impedances by putting the  differen- 
tial pa i r  o n  t h e  same  layer r cduces  t h e  s k e w  
more than the conimon-niodc noise reduction d u e  
to the rnutu;ll coupling of adjacent layers. Further 
experiments showed that the  clock system oper- 
a tes  at f requencies  a t  least 2 5  percen t  higher 
than the  design goal over  all combinat ions  of 
bus configur;~tion. voltage, and temperature. 

The  data lines exhibi ted  more  sub t l e  prob-  
l ems .  O u r  init ial  tes t ing  yie lded resul ts  very 
silnil;~r to o u r  design predictions. As sufficient 
hardware was assembled for a maximum config- 
uration wi th  heavy bus  traffic, however, unex-  
pected waveforms were  discovered. The  wave- 
f o r m s  n o  l o n g e r  e x h i b i t e d  t h e  e x p o n e n t i a l  
s h a p e  of an  RC t i m e  c o n s t a n t ;  i n s t ead ,  they  
resembled s tep  functions wi th  exponential  ris- 
e rs .  After d u e  de l ibe ra t ion ,  w e  realized that ,  
although the  full t ime constant was fairly slow, 
the  initial slope,  d V / d t ,  was much faster. There- 
fore. its higher-frequency components traveled 
down the linc and were reflected several times 
d u r i n g  t h e  c l i~ra t ion of an  RC t ime  cons tan t ,  
resulting in the  staircase effect. SPICE sirnula- 
t i ons  yiclt led a n  iden t i ca l  wavefo rm w h e n  a 
transmission l ine,  originally considered unnec-  
essary, was included in the  model.  The  overall 
tinling was not affected by the  reflections. Fig- 
u re  4 s h o w s  this waveform w i t h  its s t ;~ i rcase  
effect c;~uscd by incomplete termination of the 
transmission line. 

Digital Techrricrrl Journal 
N o .  4 Frbrrrrrr]? I987 

85 



The VAXIJI Rus - A Rclndombr Configurt~hlc~ lks ign  

VOLTS 

I I I I I I I I I  

NANOSECONDS 

Figzrre 4 Simul~ltecl Wcrveform from SI.'ICI:' 

A secontl, more significant, effect was duc  to 
crosst;~.lk, or coupling bctwccn the lines. 'l'o 
meet thc c;~l>acitance budget, the original physi- 
cal design aimed to minimize the capacitance to 
ground. An undesired result was that thc mutual 
capacitance from line to linc. while still small. 
became proportionally larger, thus incrcilsing 
the coupling from line to  line. The voltage on 
one linc was affected by voltages on 11e;1rby 
lines: transitions were aided by like transitions 
and slowed by opposing transitions. In thc worst 
case, the magnitude of this variation was as 
much as 24 nanosecotlds. 

This worst case occurred o n  a group of lines 
in closc proximity to a "spare" line, not con- 
nected or terminated, which contributed addi- 
tional mutual capacitance, thus enhancing the 
coupling. This spare linc, included to reduce 
the need for engineering change orders to the 
backp lane ,  nearly neeclcd an  ECO for  i ts  
removal, which could havc delayed sevcr;ll new 
products. However, a timing analysis showcd 
that its removal was unnecessary. It shoultl be 
emphasized that this effect was not visible until 
actual bus traffic, consisting of random data p;~t- 
terns, was bcing transferrctl on  a large bus con- 
figuration. Test patterns were too small and too 
regular to show these significant effects. 

Simultaneous switching noise,  described 
above, was also investigated because its effect 
was similar to the effect of crosstalk. All VAXBl 
data signals except one wcrc switched sirnulta- 
neously, ;i11d the induced voltage was monitored 
on the remaining line, which was fixed in the 
high (inactive driver) state. Ground pins were 
then brokcn off one at a time, the voltage being 

nicasi~recl after the removal of each pin. As a 
result the induced voltage incrcased from an 
insignificant levcl with I S  ground pins to more 
than one volt with only 3 ground pins remain- 
i n g  With one more pin rcmovcd, the chip no 
longer pilsscd self-test. Thcsc results showed 
that only ;I few ground pins arc necessary for the 
chip to operate. but 15 are needed to prevent 
thc atlclition of noise to the bus. 

The tinling analysis involved fabricating spe- 
cial lots of 7 8 7 3 2  interface chips with the 
fatest  and slowest possible process variations. 
From these Lots chips were sclccted at the abso- 
lute specification limits. These chips were care- 
fully measured in a range of configurations. 
including one beyond the specified limits. Then 
the timing ~nargins were calculated over thc 
specificcl range of operating conditions. When 
all pos s i l~ l c  worst-case condi t ions  and the  
effects dcscribcd above had been included, the 
ca l cu l a t ed  t iming  margin was  r e d u c e d  to  
0.5 nanoseconds. Design verification testing on 
this worst-case system showcd that it could still 
operate at a frequency 10 percent higher than 
that specified over the full operating range o f  
tempcratilrc and voltage. 

Summary 
The VAX'RI bus was designed to a rigorous bus- 
architecture specification. After minor adjust- 
rncnts during dcsign verification testing, the bus 
met all the requirements of that specification. 
In particular, this testing proved that thc VAXBl 
bus can operate independently of system config- 
uration. 

Several other points should be noted by bus 
designers for future products: 

1 Designing a product to a rigorous specifi- 
cation, called top-down design, can really 
work. 

2 I>~fferenrial signals are recommcndcd for 
critic;il timing. They are best located on 
t h e  s ame  p r i n t e d - c i r c u i t  l ayer  o n  a 
motlule. 

3 .  Testing should  bc performed on real 
h;~rdw;irc with real data, as closely as it 
can be approximated during the dcsign 
process. Too often. the test patterns run 
o n  test structures yield nothing but the 
cxpected results.  Testing should also 
reveal i~nexpected problems, not simply 
corroborate the dcsign 

86 Digital Technical Journal 
R'o. .I Februnrl! 1987 



4 .  Ground return paths require careful con- 
sideration, particularly under conditions 
of simultaneous switching. 
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A Logical Grounding Scheme for 
the VAX 8800 Processor 

The treatment of ground as a signal conductor is crucial in achieving 
high-performance computer systems. The impact of system grounding on 
signal integrity becomes even more important as systems are connected 
into networks. For the VXX 8800 CPU design, the authors first idenhj?ed 
the sources of ground-conducted noise from the four ground systems: the 
power and logic systems, and the safety and RF grounds. They then iso- 
lated and defined the ground elements in order to specify an intercon- 
nection strategy to guarantee the CPU's performance. Then the I / O  
subsystem grounding was established and finally a system-to-system 
grounding scheme was completed. 

The design of the ground interconnection is 
often given little attention in system design, at 
least until i t  becomes crucial to systcni perfor- 
mance and program tlevelopment schcdulcs. 
The treatment of this interconnection as ;I signal 
conductor greatly affects the electrical noise 
levels. Ultimately, these noise levels are a criti- 
cal factor in limiting the maximum clock speeds 
and thus machine performance. 

Field service personnel have long recognized 
that many installation problems result from the 
subtleties of grounding when cabling together 
CPUs, mass storage devices, and peripherals. 
Particularly difficult  problems occur  when 
equipment comes from different vendors. 'l'he 
traditional approach to solving these problems 
has been to dispatch a seasoned field service 
representative to the site with an assortment of 
ground straps and other parts. Given the injunc- 
tion to "make it  work," he could, with enough 
ingenuity and customer patience, bring ;tboilt 
satisfactory rcsults. 

As a consequence, early in the dcvclopmcnt 
cycle the VAX 8800 project team set a high pri- 
ority on the logical dcsign of the ground system. 
We knew that the 8800 would be used in large 
networks, thus intensifying any problems with 
ground-conducted noise. In fact, the inclusion 
of thc backplane interconnect, cal led thc VAXRI 
bus, ensurecl that many 1 / 0  ports with high 
bandwidths would exist in close electrical prox- 
imity to the logic backplane. Moreover. many of 

the applications targeted for the product would 
preclude its installation in the controllcd envi- 
ronment of a computer room, with its traditional 
massive copper grounding grid beneath a raised 
floor. The system components would be con- 
nected for the first time at a customer's site. Our 
goal was to require minimum site preparation 
efforts; system components were designed to be 
cabled together in a "plug-and-play" manner. 

Thcsc product goals, coilpled with the EMI/ 
RFl and system safety requirements of the inter- 
national regulatory agencies, required an inte- 
grated system philosophy for grounding and 
shielding. The approach that we followed on 
the VAX 8800 project involved three separate 
but interrelatecl steps: 

First, we identified the sources of ground- 
conducted  noise within t he  VAX 8 8 0 0  and 
devised ways to reduce that noise to the lowest 
practica: level. Next. we identified the intercon- 
nections within the ground networks and con- 
nectcd them in ways that controlled the grountl 
noise. Thcrc are four ground networks: 

1 .  Power return 

2. Logic return 

3.  Safety, or ac power-fault ground 

4 Radio f r equency  sh i e ld  a n d  chassis  
ground 

Finally. we extended the concept of system 
grountl in thc VAX 8800 to large-system applica- 

88 Digifnl Techrrical Journal 
No. 4 Fvbrrrcir~~ 1987 



New Products 

tions and computer  networks in an effort to 
ensure optimal overall system performance. In 
the majority of cases, these networks involve 
mature products for which it is difficult to make 
any internal configuration changes. 

Ground Conducted Noise 

Power System 
The VAX 8800 power system consists of modu- 
lar units of switching power regulators operat- 
ing at 50 kilohertz (KHz). The total three-phase 
ac power required for a typical application con- 
figuration is about 5 kilowatts (KW). The hard- 
ware imp1emcnt;ition uses units from a family of 
products called the Modular Power System, or 
MPS, designed by Digital. These units yield low 
and tightly control led differential (normal  
mode) noise levels for the dc power that sup- 
plies voltages to run logic. 

Through their high electrical efficiency of 
power conversion, such switching power sys- 
tems have made possible the small sizes and low 
weights of present computers. This power cir- 
cuitry, however, has current spikes (dI/dt)  as 
high as 1000 amperes per microsecond (ps) and 
voltage slew rates (dV/dt) as high as 2000 volts 
(V) per  ps. These high s lew rates, a conse-  
quence of the pursuit of high efficiencies, can 
produce significant noise problems. The rest of 
this section discusses five of the most important 
noise sources that we identified and resolved in 
the power system. 

When high-voltage slew rates are present across 
parasitic capacitances (i .e. ,  unintentional capac- 
itance that is present as a consequence of a 
physical metallic structure), a noise current I,, 
will be generated: 

in which C, is the parasitic capacitance. 
One  significant source  of common-mode 

noise in the MPS regulators is the parasitic 
capacitance between the primary windings in 
the high-frecluency power transformer and the 
solid-foil safety shield between the priniary and 
second;iry windings. The use of this shield, con- 
nected to a sheet-metal "safety ground," is one 
way of complying with the international safety 
regulations. ' 

During normal switching-converter operation, 
voltage pulses with rise times of approximately 
1000 V per ps are applied to the primary. These 
pulses cause capacitively coupled noise cur-  
rents with peak amplitudes of approximately 
200 ~nilliarnperes to be sent into the system 
chassis, or safety ground. Figure 1 shows a sche- 
matic representation of this process. The para- 
sitic leakage inductance associated with the pri- 
mary wind ing  c o n ~ p r i s e s  a se r ies - resonant  
circuit with the shield capacitance. This noise 
current has a decaying expo~iential waveform 
with a frequency in the range of 5 to 10 mega- 
hertz (MHz) and a repetition rate of twice the 
switching frequency. Since many power con- 
verters are used in the VAX 8800  system and 
they are all synchronized to a common clock, 
the noise currents tend to add. Current ampli- 
tudes as high as 2 amperes were observed. 

The most practical way to reduce this noise 
source was to insert a damping resistance, Rd,  
that would reduce the Q of this resonant circuit 
at the specific frequency range. Q is tradition- 
ally defined as the ratio of reactive impedance 
to resistance, and represents a measure of reso- 
nant efficiency. The international safety regula- 
tions, however, strictly limit the fault-current 
impedance in this path. To meet both require- 
ments, we inserted a ferrite bead on the shield 
ground lead. This bead is made of ceramic ferro- 
magnetic material that is electrically lossy. It 
acts as a small inductance at low frequencies 
and as a nearly pure resistance at high frequen- 
cies. The bead does not block the fault currents 
from a short circuit but does reduce the noise 
current to the desired level. The noise ampli- 
tude is reduced by two to four times and the 
ring frequency reduced to about 1 MHz. Thus a 
potentially serious cause of common-mode 
noise current in the system is reduced at the 
source to acceptable levels. 

In  new des igns ,  more effect ive schemes  
involving different shield configurations and 
interconnections could be employed. 

Power Line Filter 

One of the more subtle (and ironic) sources of 
common-mode noise current originates in the 
power filter designed to reduce the electrical 
noise emanating froni the power line. Figure 2 
depicts  a schematic  of a typical l ine f i l ter ,  
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PRIMARY 
- CURRENT 

(IP) 

PRIMARY 
VOLTAGE 
(VP) 

-- 
fly RI 

CI 

m 

LI, = 1.2 x 1 O ~ H  primary leakage inductance 

C, = C, = 200 x picofarads primary and secondary parasitic capacitance to shield 

Rd is the damping resistance provided by a lossy ferrite bead 
112 -1 

Resonant frequency of In is FQ = [ZT  (LI, x C,) ] = 10.3 MHz 

Resonant impedance Ro = (LI,/C~)"~ = 775 ohms 

With Rd = 0, In (peak) = V, (peak)/& = 200 milliamps 

With Ro = 500 ohms @ 10 MHz. In (peak) = 118 milliamps 

Figure I Parasitic Capacitance of the Power Transformer 

including the parasitic, o r  leakage, inductance 
of the common-mode choke, L , .  The "Y" capac- 
itors, C,,, are connected from either side of the 
power line to the chassis, forming a high-Q res- 
onant circuit with this leakage inductance. The 
load current for this power filter is dominated 
by t h e  d i scon t inuous  c u r r e n t  p u l s e s  of t h e  
switching power  converters ,  which  provide 

excitation for this resonant circuit. The result is 
a resonant current pulse into the  chassis with 
each half-cyle of current in the power line. 

O t h e r  c o n s i d e r a t i o n s  of s igna l  i n t e g r i t y  
demand that an inductor  b e  placed in series 
with the power ground wire in the filter before 
that wire is connected to the chassis. The resulting 
ground impedance forces the resonant common- 
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POWER LINE FILTER r------------------------ 1 

Figure 2 Power Line Filter 

I I 

mode current to flow through the chassis of the 
system, probably through the logic returns. If 
the filter design has taken this parasitic reso- 
nance into account, a series resistor or ferrite 
bead, R, ,  may be added to lower the circuit Q .  
That reduces the common-mode current at the 
expense of filter attenuation. 

111 the case of the 8800, many of the system 
components had been designed and released 
before this problem was ful ly appreciated.  
Therefore, our only viable strategy was to segre- 
gate this noisy ground by separating the logic 
returns and chassis grounds to  the  greatest 
degree possible. 

AC/DC 
SWITCHING 
POWER 
CONVERTER 

Noise Voltages 

The electrical dual of the noise source just 
described is the generation of noise voltages 

+ 

V ~ " ~ ~  

- 

across both reaJ and parasitic circuit induc-  
tances when rapidly changing currents flow 
through them. This noise voltage is expressed as 

- 

LOW VOLTAGE 
DC LOAD 
(LOGIC) 

I 
I 
I 
I 

GROUND 

I INDUCTOR 

in which L,, is the value of inductance. 
The most common source of noise voltage in 

switching power converters is parasitic induc- 
tances excited by the rapid rise and fall of cur- 
rent in the transistor power switch and by the 
reverse charge recovery in the rectifier diodes. 
These abrupt transitions between the conduct- 
ing and nonconducting states generate a very 
high d l / & .  For example,  the primary reset 
diodes ( D l  and D2 in Figure 3) in the MPS con- 
verters have very fast switching times of 30 to 
50 nanoseconds (n s ) .  As the  d iode  cur ren t  
rapidly goes to zero when the switch is turned 

I 
I 
I 
I 
I d I h  
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L, 300 x IO-~H,  Stray Inductance 

COB - 100 x 10"' F, Collector - Base Capacitance of  QI and Qz 

-E The screened componenls are not active: 
01 and 0 2  are off. The magnetizng current (IM) from TI is 
resehlng to zero through DI and D2 to the 300 V source. 

High-Frequency Equ~valent Model 

Figure 3 Parasitic Induclunce of the Po.uler 
Switching Stcige 

off, t h e  c i r cu i t  parasi t ic  i nduc tance  wi l l  r ing  
w i t h  t h e  c a p a c i t o r  i n  t h e  s w i t c h - p r o t e c t i v e  
snubber ,  C, .  The frequency range wil l  be  from 
10 t o  30 MHz for  typical  c i r cu i t  va lues .  l ' h c  
result is  a differential noise voltage at the  con-  
verter o u t p i ~ t .  

O u r  solution to  this noisc voltage sourcc  was 
t o  instal l  a n  a p p r o p r i a t e  f e r r i t e  bead  o n  t h e  
d iode  lead t o  d a m p  the  oscillations in this fre- 
quency range. 

Radiuted illugnetic Flux 

A substantially more  difficult problem is caused 
by rapidly changing magnetic fields that radiate 
from the  high-current second;~ry  circuits  in the  
power  converters. The  ou tpu t  rectifiers can bc 
conclucting as much  as 2 0 0  amperes when they 

s w i t c h  o f f ;  t h e  r e s u l t i n g  c l l / d t  c a n  e a s i l y  
approach  1000 arnperes p e r  microsecond. As 
the  current  dies, the  magnetic field surrounding 
t h e  secondary  windings  of these  h igh -cu r ren t  
concluctors wi l l collapse. That  induces a voltage 
in o the r  conductors  enclosed by this  magnetic 
f l u x .  Accorcling t o  E ' a r a d a ) ~ ' ~  Law. t h i s  no i se  
vo1t;lgc is 

V,, = N d 0 / d l  

in which  N is the  number  of turns in the other 
contluctors,  and d 0 / d t ,  which  is proport ional  
t o  d l / & ,  is tlie rate of change of magnetic flux. 
I t  is q u i t e  poss ib le  t o  t levelop volts  of noise  
across 2 inches of circuit I~oard  etch o r  ;I ahcct- 
nieti~l panel through this cffcct. 

? 'he or ig inal  des igns  of t h e  MPS c o n v e r t e r  
tried to minimize this noisc 1,roblem by making 
the high-current loop areas ;is small ;IS possible. 
thus minimizing the r;~tliatcd ~l iagnet ic  flux. In 
adclition, c o p p e r  Faraday shie lds  and g round-  
plane circuit boards were  11scd. In spite o f  this 
cart, we  encountered problcms with circulating 
c u r r e n t s  i n d u c e d  in t h e  ~ l i e c h a n i c a l  s u p p o r t  
s t r u c t u r e  in t h e  VAX 8800 sys tem dcs ign .  As 
with the  power-l ine filter, w e  could  not  reduce  
t h e  n o i s e  a t  i t s  s o u r c e .  ' l 'hcrefore ,  t h e  o n l y  
v i ;~blc  solution was t o  t;tke great care  wi th  the  
chassis ground connection of these structures s o  
that the  noise currents are  d i rec ted  away from 
sensitive circuits. 

The Logic System 
A significant  s o u r c e  of noise  wi th in  the  logic 
system is t h e  ene rgy  radia ted  f rom t h e  in ter -  
c o n n e c t  cab le s  f rom t h e  1 / 0  b u s  t o  t h e  d isk  
controller .  This noise radiates a t  a fundamental 
frequency of about  47  MHz. T h e  bus itself is a 
high-spced, mass-storage parallel interface. The  
in terconnect  cab le  is composed  of intlividual 
coaxial signal pairs that a rc  transformer coupled  
a n d  d r i v e n  d i f f e r e n t i a l l y .  H o w c v c r ,  t h e  
in lpcdancc  from t h e  coaxial  cen te r  conduc to r  
t o  the  ou te r  overall shield is s l ightly different 
from thc  impedance  from the  coaxial shield t o  
tlie outcr  shield.  That is, both signal conductors 
d o  n o t  have  e q u a l  i m p e d a n c e s  t o  t h c  o u t c r  
shield. which  is grountled to the chassis at cach 
e n d .  'l'he result is a net noiae current  th;it flows 
on the outcr  shield.  Within tlie \TAX 8800 pro- 
cessor ,  th is  cu r ren t  can  c o u p l e  in to  ;rtlj;lccnt 
cables. 
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The only practical method to minimize this 
noise coupling was careful routing and dressing 
of the interconnect cables relative to other com- 
munication and power cables. 

VAX 8800 System Grounding 
This section describes the types of ground struc- 
tures present in ;I large system like the VAX 
8800 multiprocessor. As such a computer sys- 
tem expands in size and complexity, its ground 
connections also exparid and their interrelation- 
ships grow in complexity. To appreciate the 
grounding scheme as a total system, the various 
components must be isolated by function and 
location. I n  that way the groutid system can be 
broken into its constituent elements. The indi- 
vidual components can then be viewed as f i~nc-  
tional blocks that require interconnection. 

Although a designer can choose how to inter- 
connect the ground elements, he is always con- 
strained by the existing international regulations 
in the implementation of the grounds. 

Types of Ground Topologies 
There are three choices of ground interconnec- 
tion topology: single point ,  multipoint,  and 
hybrid. The single-point ground looks like a 
wagon wheel with the ground in the center and 
the other devices connected radially around the 
hub. That center becomes the absolute ground 
point, callcd the zero-voltage potential refer- 
ence, for all tlevices. Multipoint grounding has 
each device individually connected to a single 
ground plane, all of which is at the same zero- 
voltage potential. The hybrid is some mixture of 
the single-point and multipoint topologies in 
which interconnections are made based on the 
characteristic needs of the subsystem functional 
elements. 

The single-point topology is not practical to 
implement on a large system like the VAX 8800. 
The physical dis tances and associated im-  
pedances of the interconnects begin to domi- 
nate so much that an absolute ground point does 
not really exist. The multipoint ground requires 
a ground plane, or grid, to be effective. Again, 
in a large system, i t  is not practical to imple- 
ment a ground plane into the physical layout. 
The hybrid scheme has advantages over the 
other two, but it  requires a detailed evaluation 
of the characteristics of each subsystem element 
before an interconnection can be designed. That 
was the approach we followed in designing the 

interconnection for the different ground types 
in the VAX 8800 system. 

DC Power Return 
The dc-to-dc converters in the system required a 
d c  c u r r e n t  r e t u r n  t h a t  p r e s e n t e d  a l o w  
impedance through the frequency range of dc to 
200 KHz. Our primary collsideration was to 
specify a conductor with a sufficiently large 
cross-sectional area to keep the I R  losses and 
heating effects to a minimum. A secondary con- 
sideration - often overlooked - was to rnini- 
mize the physical distance between the current 
feed and the return. In a large system the cur- 
rents involved can exceed 400 amperes. The 
resulting flux can produce a large magnetic 
field. This field is determined by the relation- 
ship 

Magnetic Flux = I X p X A / l  

in which I is the current, p is the permeability 
of air, and A the area and I the length of the con- 
ductor .  These leakage fields can couple into 
adjacent devices, sheet metal, and cables. If the 
flux has an ac component ,  a current may be 
induced in adjacent conductors, as described 
earlier. 

A power supply in the MPS series used in the 
8800 has a silver-plated bus as its main output. 
That bus is mated to a large connector that is 
mechanically mounted on the power backplane. 
This connector is soldered to multiple epoxy- 
coated copper strips that are 0.050 inch thick 
by 2 inches wide. These strips are fusion welded 
to a horizontal bar that is bolted to the inner lay- 
ers  of the CPU backplanes. The supply and 
return straps are overlapped to minimize para- 
sitic inductance and its consequent radiated 
magnetic flux. The flat, wide geometry of the 
connection is essential to minimize that flux. 
(See Figure 4.) Minimizing this stray inductance 
is also essential to obtaining rapid power-system 
response to load transients with adequate stabil- 
ity (phase margins). 

Logic Return 
The logic return provides a common signal ref- 
erence for the logic within the system. To mini- 
mize noise this reference must be designed with 
a low impedance at the frequency correspond- 
ing to the logic switching speed.  With logic 
operating at rise times of 1 V per ns, or 300 MHz, 
this  r e f e r ence  is cons idered  t o  be  a rad io  
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A Logical Grounding Scheme for the VAX 8800 Processor 

frequency (RF) ground and thus can be mod- 
eled as a frequency-dependent impedance. The 
ground impedance at these frequencies is domi- 
nated by the depth of penetration of current 
into the  conductor .  The  magnetic field sur-  
rounding the current forces the density of cur- 
rent to decrease from the surface value as the 
depth into the conductor increases. In the limit- 
ing case, as frequency becomes very high, the 
current will flow as a sheet of charge at the sur- 
face. The result is a steadily increasing real com- 
ponent of impedance (resistance) with increas- 
ing frequency. The point at which the current 
density decreases to l / t  of the surface rnagni- 
tude (approximately 37 percent) is one "skin 
depth." 

Therefore, the first step in calculating the 
ground impedance is to  derive the skin depth, 
in meters, as follows: 

Skin Depth = l/d-p 

in which F is the frequency in Hz and p is the per- 

nicnbility of air in siemens per meter. For exam- 
ple. for copper, the skin depth is 0 .0666 / \ l~ in  
meters. Aftcr the skin depth  has been deter- 
mined,'the impedance at the frequency of con- 
cern can be found using the sheet resistance of 
the material. The specific resistance, R ,  is equal 
to p X L/A , in which p is the specific resistance 
of the conductor, L is the inductance, and A the 
area. For copper, p equals 1.673 microohms per 
centimeter. 

Another major factor in designing a ground 
plane is the voltage drop across the ground layer 
at low frequencies (dc to 1 KHz) as the total 
load current is sent from the logic modules. 
This voltage drop produces an offset in the logic 
threshold from module to module that affects 
the noise margins, o r  tolerance. The voltage 
drop is a function of the sheet resistance of thc 
ground layer (directly proportional to the thick- 
ness) and the method of termination of the 
ground layers to the return buses. The connec- 
tion geometry must be chosen to ensure a safe 

2. MPS 
VAXBl POWER -5 2 V @ 200 A -2.0 V @ 100 A +5.2 V @ 100 A O POWER SYSTEM 
FLEX-CIRCUIT POWER BUS POWER BUS POWER BUS POWER BUS 

\- 

1. HORIZONTAL O LAMINATED CPU 
POWER DISTRIBUTION ' 
BUS 

- - 

CPU BACKPLANE 

NOTES: 

1. The return, or logic ground rail, is connected along its entire length to the system chassis and 
represents the system single-point connection of RF  (chassis) power and logic ground. 

2. MPS regulator rack is electrically isolated from chassis ground and connected through lossy 
RF chokes. 

Figure 4 Logic Power Distribution System 
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maximum current density through the ground 
layers. Current crowding, particularly at the 
connection points and plated through-holes, can 
turn the backplane into a toaster oven. 

We used the inner layers of the CPU back- 
plane as the logic reference for the VAX 8800 
CPU. T h e r e  a r e  f o u r  g r o u n d  layers ,  e a c h  
0.003 inch thick. Figure 5 illustrates the d c  
voltage-potential drop as a function of geometry 
across the CPU backplane. The return current is 
approximately 500 amperes; therefore, this CPU 
backplane was the most challenging part of the 
design. 

BACKPLANE SLOT 

NOTE: Measurements were made from corresponding local points 
on the ground plane. It demonstrates the excellent control 
over voltage drops provided by the internal ground and 
power planes of the rnultilayer CPU backplane. Maximum 
current available to these -5.2 V inner layers is 400 amps. 

Figure 5 Distribution of the Backplane 
Voltage for the - 5.2 V Power 
Plane 

AC Safety Ground 
The primary function of a safety ground is to 
provide a low impedance at 6 0 / 5 0  H z ,  thus 
allowing fault currents to follow a path with a 
low I R  drop. The design and implementation of 
this path is strictly controlled by the interna- 
tional regulations, to which all other uses of this 
ground must comply. The safety ground also 
acts as a signal ground in that i t  connects prod- 
ucts to the ground grid of the building housing 
the system. This connection can be detrimental 
to the system's I/O signals. Thus i t  is advanta- 
geous to add an impedance whose magnitude is 
frequency and current dependent in series with 
the safety ground. A saturating inductor meets 
those requirements. 

For a fault condition, Digital's internal design 
standards require that a current of twice the 

product's receptacle rating flowing through the 
safety ground system must not result in a voltage 
rise of more than 4.0 V, and this level must be 
sustained for 10 minutes. With these require- 
ments in mind, we used a 1.2-millihenry choke 
to isolate the VAX 8800 CPU from the building 
ground a t  high f requency .  This  choke  was 
designed to saturate as described above if a fault 
occurs. 

Chassis Ground 
The RF shield comprises the chassis ground and 
the outer panels of the cabinet. The federal reg- 
ulatory agencies (FCC and VDE) set and enforce 
the allowable limits of radiated emissions from 
computer equipment. Since the integrated cir- 
cuits within the system are switching at high fre- 
quencies, they can be modeled as RF sources. 
The interconnecting etches between integrated 
circuits that are not tightly coupled to a ground 
layer can be modeled as antennas. 

The faster the clock and edge speeds,  the 
shorter the antenna needed to act as an effective 
radiator. The length, in meters, of a full wave- 
length is defined as 3 X 1 o'/F. 

Once this wavelength has been found, the 
outer panels of the cabinet can be modeled as 
an attenuator, which decreases the amount of 
radiated energy that can be  transmitted from 
within the cabinet.  To maintain this level of 
attenuation, all openings, such as doors, must be 
bridged with conductive gasketing o r  finger 
stock. The openings for air flow must be treated 
as a wave guide. The attenuation, in decibels, of 
the opening is related to its size by the follow- 
ing formula: 

,0046 X 1 X F X d5900 X P/gap2 - 1 

in which F is the frequency in MHz, and 1 is the 
length and gap the width of the opening, both 
in centimeters. 

Ground Interconnections 
witbin the System 
Once the separate ground elements had been 
defined, we began to formulate an orderly inter- 
connection strategy for the main computer that 
would not  compromise the  system's perfor- 
mance. We used the same return path for both 
the logic and the dc  power because there was 
no  dichotomy in t he  requirements  for bo th  
returns. In the VAX 8800, the junction of these 
returns comes at the point where the horizontal 
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bus bar (return) is bolted to the inner I;lj.ers of 
the logic backplane. (See Figure 5 . )  

Digital's internal standards, which meet all 
the applicable international regulations. nian- 
diltes that the dc  power return be connectctl to 
the safety ground. This connection must be able 
to withstand the short-circuit current of tlic tlc 
regulator output .  (In certain cases i t  luay be 
desirable to  insert  a f requency-dependent  
impedance in series with this conncctjon to  
"isol;~re at frcquencjl" an element of the systcm. 
That could be done when creating a single-point 
ground system - directly refcrencctl to the 
chass i s  - o r  a c o n t r o l l e d  h y b r i d - g r o u n d  
system.) 

In tlie VAX 8800 CPU, the dc  output could. 
under fault conditions, produce :~pproximately 
400 amperes. Thus the i~ltcrconncction   nu st 

handle this high fault current. 'This intcrconnec- 
tion was accomplished by bolting the junction 
node of t he  combined  dc -power  ;~n t l  logic 
return to the chassis for the entire length of the 
horizontal bus bar. This portion of tlic chassis 
was chosen as the connection point bccause it  
was not used as a contluctor for ;in). other high- 
frequency currents. 

In summary, the grounding approach we used 
for the 8 8 0 0  featured the  following design 
points: 

The  Jogic and d c  return and the  ch;issis 
ground are connected togcthcr at thc hori- 
zontaJ power-return bus. 

'I'he power-system outputs ant1 thc c1i;lssis 
ground are isolated from grouncl ;it R F  frc- 
clucncies by high irnped;rnccs using lossy fer- 
rite inductors .  DC currcnts  and l inc-frc-  
qllency (50/60 Hz)  fault currents may thus 
flow unimpeded. 

Particular care was taken to mini~nize the 
flow of logic-return currents through the sys- 
tem chassis, thus isolating the pcriphcral 
lmxcs (C1750, BAI IAW,  etc.)  from the bys- 
tern chassis ground. Insulatetl cl~assis slides, 
shunted by lossy ferrite inductors, accom- 
plished that isolation. Although there arc still 
common-mode  cur ren ts  wi th  thc  ferr i te  
inductors, they reduce unwanted common- 
motle noise voltages that can couple into cir- 
cuits through parasitic induct;~nces. That is ;I 

far worse probleni, AS wc tle~l1onstr;ltcd to our 
own chagrin. 

The 1 /0  panel bulkhead and the logic and 
power returns for the VkYBI bus and memory 
backplanes ;ire tightly bonded to the single- 
point ground at the CPU power-return bus. 

The elimination of circulating noise and logic 
currents through the chassjs will maximize 
the cffcctivcness of the shielded cabinet as an 
atrenilator o f  r;~diated cncrgy. 

'l'he implcrncntat ion of this  app roach  is 
shown in 1;igurc 6 .  

I / O  and Expansion of Grounding 
Once the main processor's grounding had been 
dcfinctl, we had to dc;il with grounds between 
the cxtcrn:~l clen~ents,  such as the 1 / 0  subsys- 
tem. The VAX 8800 systcm can accommodate a 
1;trgc ;lrr;iy of 1 / 0  tlcviccs by utilizing the VUDI 
arcliitccture. 'I'hc H9652 EC-ED cab has provi- 
sions for two expansion boxes, the C1750 and 
the BA 1 IAW. These boxes are self contained and 
have integral powcr sul,plics, logic backplanes, 
and interconnects. In keeping with our ground- 
ing architecture, we isolatcd these boxes from 
the cli;~ssis grountl by using low-Q inductances. 
The signal/logic ground was then establishctl by 
means of cables to the VAXBI-to-CPU backplane. 
This schcme ensures that tlic chassis is not used 
as ;I sjgnal/logic return. 

System to System Grounding 
Grouping systems togcthcr or networking them 
has a 1;irgc impact on system noise and the sub- 
seqilcrit grountling techniqi~es to eliminate it .  In 
terms of the signal-to-nojsc ratio and from the 
aspcct of grounding, a nctworked system can bc 
diviclctl into two cases: the dense network, and 
the dispersed network. 

Dense Network 
A dense nctwork is ;I group of computers or sys- 
tenis with associatccl sllpport hardware that is 
located within one arca, either an office or ;I 

colnputer room. 'l'lijs area is likely to contain 
systetns from different vendors as well as phone- 
switching networks, experimental equipment, 
or industri;ll controllers and monitors. MI these 
devices share a common ground that could be a 
grid or simply a branch ground as part of their 
safety ground. 'This connection also provides a 
sign:il re fe rence  betwccn in te rconnect ing  
devices in the area through tlie chassis and 
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A Logical Grounding Scheme for the VAX 8800 Processor 

power line ground in a complex way. All  these 
devices can generate high-frequency currents 
that flow into the ground. These currents must 
flow through the complex impedance of the 
grid whe re ,  consequent ly ,  RF voltagcs can 
develop. Under those conditions the ground 
would act as a noise injection point rather than 
a stable reference. 

Dispersed Network 
The dispersed network is an interconnection of 
computers or systems spread over a wide area, 
perhaps residing on different floors of a build- 
ing or in different buildings altogether. Commu- 
nication o n  this  scale  cannot  depend  on  a 
mutual RF ground because it cannot be reason- 
ably established. In this case, communication 
must be accomplished by means of either trans- 
former-coupled circuits, optical links, or differ- 
ential driver/receiver logic. 

Both types of networks illustrate the fact that 
system networking cannot, and in some cases 
should not, be accomplished by attempting to 
create an absolute ground refercnce to the net- 
work. 

System to Peripberal Grounding 
As a system expands with the addition of periph- 
eral devices, such as disk drives, printcrs, and 
LANs, the ground system must be viewed as a 
large hybrid arrangement. Interconnecting these 
devices must be predicated on the ground-cur- 
rent characteristics (signature) and the 1/0 con- 
nections of these devices to the system. 

This signature is particularly important when 
connecting devices that were designcd to be 
used as small, standalone applications. Their 
designs may have involved decreased line-filter- 
ing capabilities and minimally sized chokes for 
ground isolation or perhaps none at all I t  is 
imperative that such factors be considered when 
connecting peripheral devices to a large system. 

Summary 
We now offer some conclusions based on our 
recent experiences with the  VAX 8 8 0 0  and 
other new systems. These conclusions take the 
form of recommendations for minimizing noise- 
related problems in any computer system. 

Ground Noise Current Signature 
I t  is important  to  identify t.he spec t rum of 
ground-conducted noise for each subsystem ele- 

ment. This noise depends on parasitic elements 
in the circuits and electromechanical structure. 
Therefore, this information is best obtained 
empir ical ly by measurements on  the  actual 
hardware. The noise current amplitudes and 
fundamental frequencies should be measured 
on cable shields, chassis grounds, 1 / 0  logic 
returns, and power inputs. 

Segregation of System 
Ground Networks 
A ground system schematic should be developed 
for each particular subsystem. The interconnec- 
t ion of ground types wi l l  be  based on  t h e  
intended system application. A s  a general rule, 
t h e  g round  types  shou ld  be  segregated t o  
account  for the  finite ampli tudes and often 
unpredictable paths of the noise currents. This 
scgrcgation of grounds (e .g . ,  power, chassis, 
and safety grounds) can be accomplished by 
carefully choosing the frequency-dependent 
impedances. These impedances are lossy ferrite 
inductors placed in series with the appropriate 
ground connection. 

Appropriate Signal and 
Power Interconnect 
T h e  o p t i m a l  s igna l  i n t e r c o n n e c t i o n s  a r e  
designed as controlled-impedance transmission 
lines with each signal and its return path closely 
coupled and having equal impedance to the 
chassis ground. Depending on the noise sensitiv- 
ity, data rate ,  and in te rconnect  length ,  the  
implementation can range from coaxial cables 
with overall shields to ground-plane ribbon 
cables to ribbon cables with alternate ground/ 
signal pairs. Even the crudest,  slowest signal 
.line that relies on chassis ground for a signal 
return is doomed to failure if it is sensitive to 
noise. 

High-performance data lines should certainly 
be designed with low-impedance differential 
line drivers and receivers, either directly cou- 
pled or transformer coupled. Single-ended line 
drivers and receivers may be acceptable within a 
subsystem in which the noise between grounds 
is low and controlled. Communication through 
unbuffered TTL outputs and inputs are never 
acceptable when leaving a subsystem back- 
plane. 

The initial cost of and board space needed for 
proper line drivers and receivers are more than 
justified in today's distributed computing envi- 
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ronment. Their use increases reliability and 
decreases start-up problems. The power inter- 
connects should be designed with minimum 
inductance and the lowest high-frequency char- 
acteristic impedance that is reasonable. The cir- 
culating path of supply and return power cur- 
rents should be kept as low as possible. This 
design allows better power-system transient per- 
formance and ensures the existence of minimal 
radiated magnetic fields. 

Notes 

1.  A short circuit between the high-voltage 
primary and the low-voltage secondary 
could produce lethal voltages referenced 
to the chassis ground at accessible points 
within the computer.  With this shield, 
however, the short will produce a high 
fault current to the chassis. That current 
will open  various protective devices, 
such as fuses and circuit breakers, that 
render the system safe in the event of a 
fault. 

Appendix 

Determining Skin Depth 
To calculate the impedance of a given conduc- 
tor, the depth of current penetration - or skin 
depth - in a conductor  must be calculated 
first. To do  that, a designer must perform the 
following steps: 

1 .  Determine the type of metal of which the 
conductor is made ( i .e . ,  copper ,  zinc, 
etc.) . 

2. Look up  in a reference table the magnetic 
susceptibility of the material. (The CRC 
Handbook of Chemistry and Physics 
contains tables of this nature.) Two types 
of listings of susceptibility are commonly 
used .  T h e  f i r s t  t ype  gives va lues  of 
specific susceptibility that must be con- 
verted by multiplying the value by 4 X ?r 

X density of material, called P. For cop- 
per, this value would be -0.086 X 10-() 
X 4 X n X 8.89, which equals -0.960 
X 

The second type uses susceptibility in 
one  gram formula weight .  This value 
must be converted by multiplying it by 4 
X .rr X density of material or molecular 

New Products 

weigh t ,  w h i c h  fo r  c o p p e r  w o u l d  b e  
-5.46 X 10-'X 4 X a X 8.89/63.54, 

which equals -0.960 X lop5.  

3.  The resulting figure must now be con- 
verted to relative permeability by add- 
ing 1.0 to the susceptibility factor. For 
copper, this value would be 1.0 -0.960 
X which equals 0.9999904. 

4 .  The relative permeability must be con- 
verted to permeability by multiplying the 
value from step 3 above by the perme- 
ability of air (4 X .rr X lo-'). For cop- 
pe r ,  this value would  be 0 . 9 9 9 9 9 0 4  
X 1 . 2 5 6 6 3  X l o p 6 ,  w h i c h  e q u a l s  
1.25662 X lo-'. 

5. The next piece of information needed is 
the conductivity of the material used. 
This value must be in the form of siemens 
per meter, although most listings will be 
in ohms per centimeter. To convert, mul- 
tiply the table entry by l X and 
then take the reciprocal. For annealed 
copper, this value is 1/1.724 1 X lo-' 
X 1 X l o p 2 ,  w h i c h  e q u a l s  5 . 8 0 0 1  
x 10'. 

6 .  The skin depth can then be determined 
by the relationship l / ( a  X frequency of 
concern X conductivity X permeabil- 
 it^,'/^. The result can be manipulated to 
the form of l/(a X conductivity X per- 
meability)'/'/(frequency of concern)'12. 
For copper, this value is l/(a X 5.8001 
X lo7  X 1 .25662 X 10-6) ' f2,  which 

equals O.O6608/(frequency of concern)'/2. 
For example, if the frequency of concern 
were 1 KHz, then the skin depth would 
be 2.089 X 10-3 meters, or 2.089 mil- 
limeters, deep. 

If the frequency of concern were 50  KHz, 
then the skin depth would be 295 micro- 
meters. 
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Cheryl A. Wiecek 1 

m e  Simulation of Processor 
Performance for the VAX 8800 Family 

An eflort was initiated in the fall of 1981 to simulate the performance of 
the processor design for the VM 8800 family of computer systems. That 
simulation stayed current with the changing design and continues to be 
used today for studies associated with developing VAX processors, This 
paper discusses why this simulation was done, how it was structured, and 
what was simulated. Since the results generated are quite extensive and 
detailed, only the conclusions from these studies are presented here. 
What was learned from the model and how it affected the processor 
design are particularly emphasized. 

Many levels of simulation are done within pro- 
cessor development projects we1 l before any 
actual hardware is built. Structural models at 
the circuit and gate levels are used in tasks such 
as verifying timing and developing diagnostic 
tests. Behavioral models at the function level are 
useful  for  verifying processor  ins t ruc t ion  
microcode. Another useful class of models sirnu- 
lates performance at the microcycle level. Such 
models look at a processor's design as a collec- 
tion of hardware resources that must be man- 
aged. These models are most useful for gatlier- 
ing design trade-off information and verifying 
the design performance estimates. By emphasiz- 
ing the key hardware resources and how they 
interact, performance simulators can 

Focus o n  how those resources are being used 

Indicate how well they support the required 
activities 

Provide a high-level view of the interactions 
in the processor system 

This paper describes the performance simu- 
lator used on the project that developed the 
VAX 8 8 0 0  family of compilter systems. 'This 
modeling project began in the fall of 108 1 ,  and 
the simulator continues to  be  used today to 
s tudy  a l te rna t ives  for new VAX proccssor  
designs. The following m70 sections discuss how 
the simulator was designed and what was simu- 
lated. 'The third section highlights the results 
and discusses what was learned from them. 

Methodology 
The overall structure of the performance model 
mirrors the structure used previously for the 
performance simulation of a PDP-1 I processor 
design. '  The 11iodeI contains three parts, all 
developed as separate entities: 

The instruction stream that is acted on by the 
processor resources 

The microcode that directs instruction exccu- 
tion 

'The simulation of the. processor resources 
and timing 

These three parts are then combined to gener- 
ate simulation results. The tasks performed to 
develop each part arc discussed in the following 
section. 

Workload Model 
The most appropriate model for the workload 
fed to  t he  s imula tor  is t he  s t reams of VAX 
instructions from typical programs being exe- 
cuted. Information about each executed instruc- 
tion is requircd to obtain performance data at 
the microcycle level about the processor and its 
resources. The software used to  extract these 
execution streams had already been developed 
from a previous project. That software is essen- 
tially a debugger that uses the VAX T-bit to gen- 
erate a software trap after the execution of each 
instruction in the traced program.' That tracing 
permits the collection of the next instruction's 
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operation code, the addressing modes and regis- 
ters of the operand specifiers, the read and write 
references, and the operand values. 

The task of choosing which programs to trace 
was bounded by a number of requirements and 
constraints. One requirement was to  provide 
some initial performance estimates for t he  
VAX 8 8 0 0  family processor. Those estimates 
emphasized integer, logical, and floating-point 
operations in CPU-intensive programs. Another 
requirement was to select programs that exer- 
cised the processor resources that we wanted to 
model, especially the cache subsystem, where 
capturing best-case, typical, and worst-case sce- 
narios was important. 

All the  constraints involved the programs 
from which instructions were traced. A reason- 
able length for these programs was about one- 
half million VAX macroinstructions, thus per- 
mitting the  s imulator  to  process them in a 
reasonable t ime.  We avoided programs that 
required extensive microcode characterization 
for instructions that were either less frequently 
executed or too complex, such as those in the 
packed decimal group. Moreover, the trace soft- 
ware was limited to processing executing pro- 
grams that ran in nonprivileged user mode. Thus 
we had to avoid programs, such as editors, hav- 
ing extensive operating-system service calls, 
which could only be partially traced. 

We chose six programs to drive the model. 
These included four benchmarks and two popu- 
lar utilities for creating executable images on 
VAX systems. The number of iterations in the 
four benchmarks was shortened proportionally, 
keeping the  mix of instructions constant to  
retain their representativeness. Three bench- 
marks were written in FORTRAN: Towers of 
Hanoi, a prime-number generator, and single- 
precision Whetstone; one,  called Puzzle, was 
written in PASCAL. The  o ther  two programs 
were a FORTRAN compile and a VAX/VMS link, 
both written in BLISS. For all their constraints, 
these programs exercised the model well. The 
accuracy of the performance estimates was con- 
firmed later by measurements on a prototype 
machine. 

Microcode Model 
How microcoded instruction control is charac- 
terized has a significant impact on both the 
speed and results of a processor performance 
simulator. For example, creating a model at a 

New Products 

very detailed level permits a finer analysis of the 
results, but takes a long time to develop and 
run. Therefore, we had to decide what the trade- 
off should be between time and detail. We also 
wanted to stay current with the latest develop- 
ments in the processor microcode, which we 
knew would change significantly during the 
project. With all that in mind, we decided to use 
t he  latest version of the  actual  microcode  
sources as the input to a unique process, par- 
tially automated, that extracted the information 
needed by the simulator. This strategy allowed 
us to ignore details that were not required by 
t h e  s i n ~ u l a t o r ,  as  we l l  as  t o  k e e p  u p  wi th  
microcode revisions as they were released. A 
useful by-product of this approach was the abil- 
ity to produce microPC histograms with the sim- 
ulator. This information helped to explain how 
the microcode was being used. 

One step in modeling the microcode is t o  
determine the control fields that are key to the 
processor's performance. Only a small number 
of the defined fields are actually needed. Many 
microwords are effectively no-operation instruc- 
tions for the  simulated processor pipel ine.  
Table 1 contains the microword key for the per- 
formancc simulator. Each microword has three 
fields: SRC, ALU, and DST. In any microword, 
each field has a command subfield and u p  to  
three operand subfields. (The address operands 
generated by the trace software are actually 
extracted as both the traced program and the 
simulator are being run. The other operands and 
commands are extracted from the microcode 
prior to simulation execution.) 

Before any actual microcode had been devel- 
oped, simulated microwords were written man- 
ually from microcode flows provided by the 
group developing the firmware. Once the actual 
microcode was available, a significant portion of 
the performance simulation microcode was gen- 
erated automatically by mapping real fields to 
the small number of fields that the simulator 
required. This automatic mapping of processor 
microcode to that used in the simulator was 
complicated by several issues. 

One problem was that the microbranching 
logic required additional information at simula- 
tion runtime to decide which branch path to 
take. To solve that problem, the firmware group 
flaggcd microbranches by inserting comments 
in their microcode. Those comments were then 
caught by the microcode translation software, 
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Table 1 Microword Key to the Performance 
Simulator 

Field Command Description Operands 

Any No operation performed. None 
SRC Stall if the memory data ASRC, 

registers (MDRs)  specified BSRC 
by ASRC and BSRC are not 
yet valid for input to the 
arithmetic logic unit (ALU). 

4LU Send a cache arbitration None 
signal and stall the pipe- 
line if it is not the winner. 

DST Send the cache a read MDR 
request for x Bytes starting number, 
at Address, and set MDR Bytes, 
number to valid when the Address 
data is available. 

DST Send the cache a write Signal, 
request with x Bytes of data Bytes, 
starting at Address. The Address 
value of Signal determines 
whether hardware or rnicro- 
code control sends the write 
buffer data to memory. 

DST Conditionally flush the IB 
and provide the cache 
with a new Address for 
prefetching IB data. 

DST Send the cache notification None 
of a new address for pre- 
fetching IB data once the 
decoder handles the 
16-address page cross. 

DST Send the cache a read/ None 
write probe request. 

Address 

which marked them for processing at runtime. 
Another problem was that some VAX macroin- 
structions had not been coded yet, and others 
were more complicated than required for sirnu- 
lation. (Many of the VAX floating-point instruc- 
tions were in this category.) In those cases 
sequences of handwritten microcode were used. 

Processor Simulation Model 
The structure of the processor simulation model 
was  dr iven  by t h e  need t o  p rov ide  t imely  
answers to questions asked by the designers. 
The results had to be generated, verified, and 
distributed as quickly as possible to be most 
useful in design trade-off decisions. The require- 
ments we considered most important were the 
following. 

The simulator must have a modular structure 
that facilitates replacing, reconfiguring, and 
reus ing  rou t ines  w h i l e  minimiz ing  t h e  
runtime overhead. 

A general-purpose cont ro l  mechanism is 
needed to manage communication and syn- 
chronization between a number of indepen- 
dent tasks running in parallel. 

Extensive and  f l ex ib l e  1 /0  fea tures  a r e  
needed to generate cycle-by-cycle traces and 
reports with simulated performance statistics. 

The ratio of simulated time to real time must 
not be a bottleneck to obtaining results. 

We chose a structure that favored changing 
and reusing parts of the simulator, but which 
ran slower, over one  that ran faster, but was 
hard to change. We did this knowing that the 
simulator would be used to try many design 
ideas that would eventually be discarded. The 
simulator also had many parameters built in so 
that different configurations and timings could 
be tried. The structure we chose could be used 
to evaluate many design alternatives. Since this 
was the first VAX processor to be modeled this 
way, we had to design and build all the software 
for the simulator; none of it could be borrowed 
from other projects. Therefore, we  knew that 
producing results quickly would be difficult. 

The structure chosen required that the simu- 
lated processor be partitioned into a number of 
independent components, each modeled by a 
determinist ic  s tate-machine.  That machine 
defined the actions to be done when each state 
was entered, and the conditions to be evaluated 
for  dec id ing  the  next  s tate  t ransi t ion.  This 
approach had several advantages. The hardware 
designers could relate easily to state-machine 
models of their particular designs, even though 
the states in the simulator sometimes marked 
performance-related events, not real hardware 
states. This structurc also made it possible to 
replicate components and reconfigure the origi- 
nal single-processor version of the simulator 
into a dual-processor version. 

A monitor is needed to control the communi- 
cation, synchronization, execution, and status of 
these independent state-machine components. 
For communication between components, only 
certain types of send and receive operations are 
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used. This restriction allows the component 
interfaces to be simple and well defined. There 
are three types of send operations: 

1. A targeted send directs source informa- 
tion to a single destination within the 
current cycle. 

2 .  A broadcasted send directs source infor- 
mation t o  zero  o r  more  des t ina t ions  
within the current cycle. 

3. An arbitrated send directs source informa- 
tion to a single destination, stalling exe- 
cution of the sending component until 
the information is delivered. 

There are two types of receive operations: 

1 .  A targeted receive results in the delivery of 
source information from a send operation. 

2 .  A collection receive is limited to probing 
source information from a send opera- 
t ion ;  this  information is used by the  
model to make decisions. 

The monitor keeps two queues for the com- 
ponents: one for component send requests, the 
other for component receive requests. The mon- 
itor also synchronizes send and receive requests 
on behalf of the components and reports errors 
when undel ivered  send  o r  rece ive  en t r i e s  
remain in the queues. 

Synchronization be tween componen t s  is 
achieved using the send, receive, and timing 
services built into the monitor. The send and 
receive operations allow the specification of a 
phase number so that components can send and 
receive information only at certain intervals 
within the basic microcycle clock recognized by 
the monitor. The monitor blocks components 
from executing while  they wait for send o r  
receive requests to be serviced. States within a 
component can be designated as time sensitive. 
When the next state to be executed within a 
component is so designated, that component is 
blocked from executing until the monitor incre- 
ments the clock. 

Execution p roceeds  on the  basis of o n e  
machine cycle. State-machine components are 
chosen to execute, one at a time, starting at the 
state at which each was last left. Component 
execution continues until the required send, 
receive, or timing service returns control to the 
monitor. When all components have reached 

states in which no more activity is possible for 
the cycle, the monitor will increment the mas- 
ter clock and the execution of components can 
resume. End-of-simulation and detected-error 
condit ions cause the monitor to generate a 
report of results by calling each component to 
execute its report code. 

The complete model for the VAX 8800 family 
processor ran on a VAX-11/780 system and exe- 
cuted about six VAX macroinstructions per CPU 
second. That translates to a ratio of simulated 
time to real time of about ()0,000 to 1. The con- 
trol monitor was written in PL/I; the processor 
state-machine components were written using 
VAX assembler macros. Once the ADA language 
had been added to the list of VAX-supported lan- 
guages, we translated the entire processor per- 
formance simulation model into that language. 
This new simulator is being used for follow-on 
processor performance studies. The ADA lan- 
guage was chosen because its multitasking fea- 
tures provide excellent support for the control 
monitor functions that we defined. 

Verification of the Simulation Model 
An important and often overlooked aspect of 
developing a performance simulation model is 
the effort required to verify that the model 
reflects the actual design. In the early stages of a 
project, the details of the proposed design are 
usually communicated by word-of-mouth. Con- 
tinuous changes to that original design enlarge 
greatly the margin for error within a perfor- 
mance simulator. Since wrong performance data 
is counterproductive, a great deal of our effort 
went into verifying that the simulation opera- 
tion and results accurately reflected the current 
state of the design. 

Once the performance simulator produced 
results, the designers reviewed cycle-by-cycle 
traces of simulator activity to confirm that the 
simulator's operation matched the processor 
design. In addition, we developed a set of short 
tests that exercised certain key functions. These 
tests were rerun for each new version of the sim- 
ulator, and the test results were exhaustively 
compared to those from the previous version. 
This procedure was effective in revealing unan- 
ticipated interactions and errors due to changes 
made in both the simulator and the design. A5 
the design progressed, we were able to compare 
our simulation results with those from a behav- 
ioral model used for debugging microcode. 

- - 
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Eventually, we  could compare our results with 
those from a working prototype system. Because 
t h e  m o d e l  t r a c k e d  t h e  d e s i g n ' s  e v o l u t i o n  
closely, these comparisons showed the perfor- 
mance model to b e  an accurate representation 
of the design. 

Performance Model for the 
VAX 8800 Family Processor 
This section describes the  processor hardware 
resources that were modeled. For each modeled 
component, there is a short summary describing 
its funct ion,  the  information communicated 
with other components, and the parameters that 
can b e  specified at runtime to control simula- 
tion configuration and timing. Although some 
information about the VAX 8800 family proces- 
sor design is included, reference 3 should be 
consulted for more detail. 

Figure 1 is an overview of the processor per- 
formance simulator used for the VAX 8800 fam- 
ily. The various components are represented by 
circles, the communication paths by arrows. AS 
described earlier, each component is an inde- 
pendent state-machine that communicates with 
o t h e r  c o m p o n e n t s  us ing  d e f i n e d  s e n d  and  
receive operations. 

MICROINSTRUCTION 
I 

CACHE 
ARBITER 

Figure I Performance Model for the 
VAX 8800 Family 

Decoder 
The decoder state-machine sends the pipeline a 
microinstruction during every unstalled cycle 
and detects the end-of-simulation condition. To 
d o  those actions,  the  decoder  requests bytes 
from the instruction buffer (IB), using informa- 
tion provided in the instruction trace When the 
IB indicates that the recluested bytes are avail- 
able, the appropriate microcode flow is chosen 
to start execution. If the  IB cannot deliver the 
requested bytes,  then no-operat ion microin-  
structions are fed to the decoder. The decoder 
must also con~municate  with the cache control. 
For example, the decoder must resolve any IB-  
address page crosses detected by the IB prefetch 
hardware in the cache. Also kept by the decoder 
is a parameter that controls the number of VAX 
instructions executed between cache flushes 
due to context switch~ng.  

Pipeline 
T h c  p i p c l i n e  s t a t e - m a c h i n e  s i m u l a t e s  how 
microinstructions provided by the decoder are 
to be executed. During any one cycle, parts of 
three consecutively queued microinstructions 
are processed: 

The DST field of thc oldest microinstruction 

Thc ALU field of the next microinstruction 

The SRC field of the  microinstruction most 
recently queued 

For e v e r y  c y c l e  t h a t  t h e  p i p e l i n e  is n o t  
stalled, the  oldest microinstruction is retired 
after thc  command in its DST field has com- 
pleted. The actions performed by the pipeline 
are described in Table 1 .  The pipeline can send 
flush requests to the IB,  and processor read and 
write requests to the cache (after arbitrating and 
winning it). The pipeline also manages the vali- 
dation of the  memory data registers (MDRs). 
Pipeline stalls that result from those actions are 
made known to the decoder. The only pipeline 
parameter the user must enter is the cycle time 
in nanoseconds, used for calculating perfor-  
mance data at the end of simulation. 

Instruction Buffer 
The IB statc-machine simulates a first-in, first- 
out  (FIFO) cache for VAX instruction stream 
data. l 'he  1B accepts requests for bytes from the 
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decoder and notifies it whether o r  not the bytes 
are available. The IB model does not actually 
store any stream data; however, i t  does manage 
the count of valid bytes within IB longwords as 
that data is shifted in and out.  The cache-control 
component prefetches data for the IB  and also 
notifies the 1B of  prefetched data whenever no  
other activity is scheduled for the cache during 
a cycle.  When ful l ,  the  I B  notifies the  cache 
control of that condition. In turn, the IB is noti- 
fied by the pipeline model when it needs to be 
f lushed d u c  t o  a c h a n g e  in  t h e  ins t ruc t ion  
stream sequence. 

Thc configuration of the  1B is controlled by 
two parameters: the number of blocks, and the 
number of bytes per block. For the VAX 8 8 0 0  
family processor, the  IB has four blocks, each 
four bytes long. 

Cache Arbiter, Control, and Queues 
From the viewpoint of performance, the cache 
subsystem in the  VAX 8 8 0 0  family processor 
contains  an important  se t  of resources .  This  
cache design was modeled in the simulator by 
th ree  s ta te-machine components :  t h e  c a c h e  
arbiter, thc cache control, and the cache mem- 
ory-request queues. From the viewpoint of per- 
formance simulation, these functions were the 
most independent  ones  that cou ld  b e  segre- 
gated. 

T h e  c a c h e  a r b i t e r  s t a te -machine  c o l l e c t s  
requests from the three components that require 
cache service.  The first, the  pipel ine model ,  
sends read/write arbitration signals for the pro- 
cessor. The second,  the cache-control model,  
sends read arbitration signals for a stalled-pro- 
cessor condition. The third, the memory inter- 
connect model,  sends memory arbitration sig- 
nals. During every cycle, the arbiter sends to the 
cache control the arbitration winner that will 
have the cache during the next cycle. There is a 
fixed priority for choosing an arbitration win- 
ner. Memory has the highest priority, followed 
by processor reads and writes of various types; 
cache IB prefetching (the default) has the low- 
est priority. The  cache-control and memory- 
request queues models also provide status infor- 
mation used in dcciding an arbitration winner. 
Certain types of stalls result in no winner. The 
arbi ter  mode l  requ i res  n o  parameters  t o  b e  
specified by a user at runtime. 

The cache-control state-machine is the center 
of t h e  pcrformance s imulat ion model  i n  the  
sense that it communicates with all but one of 
the other state-machine components. The hard- 
ware resources managed include the combined 
instruction-stream-and-data cache, and a long- 
word delaycd-write buffer used to hold write-hit 
data until i t  can be written into the cache. Like 
the IB, the cache control model keeps control 
and status information only for the  cache and 
the write buffer. During every cycle, the cache 
control acts on the request chosen during the 
last cycle by the arbiter. That request can be a 
refil l  from memory ,  a read l o o k u p  and t h c  
appropriate cache hit o r  miss activity, or a write 
to the delayed-write buffer and memory. For a 
cache-write request,  the  data in the  delayed- 
write buffer is written to  the  cache when the 
next write reclucst is processed, and then only if 
the address of the buffered write actually hlt in 
the cache. If there are no memory or processor 
requests, data is prefetched for the 1B automati- 
cally, by default. 

A number of parameters can be specified at 
runtime within the cache control, most of them 
specifying the configuration of the cache. Such 
configuration parameters include 

Switching the cache on or off 

The cache size in bytes 

The set size 

The block size in bytes 

The block fill size in bytes 

The block replacement algorithm (random, 
least recently used, o r  FIFO) 

The memory updating algorithm (write back 
or write through) 

Allocation for write misses 

C o n t r o l  d o e s  n o t  e x i s t  f o r  a l l  p o s s i b l e  
cache options in the  processor model for the  
VAX 8 8 0 0  family, b u t  t h e  cache  routines d o  
support them. The implemented cache configu- 
ration is 64KB, d i rec t  mapped  wi th  64-by te  
blocks and a 32-byte block fill (done as two sep- 
arate 16-byte refill sequences). It features write- 
through memory updat ing and no  allocation 
for wri te  misses. For study purposes,  another 
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parameter was included that ;illows citlicr one- 
or two-cycle rcad hits to the cachc. The VAX 
8800 family processor design implements one- 
cycle cache read hits. 

The cachc: memory-request  queues  s tate-  
machine manages the I R  read-miss clucue, the 
processor read-miss queue, and the write-buffer 
queue .  The IB  read-miss queue  has two e le -  
ments, thus allowing two outstanding misses for 
IB data. A third outstanding miss will replace 
the second one. thus avoiding ;I pipeline stall. 
The processor read-miss queue has one clement; 
therefore, two outstanding read misses will stall 
the pipeline. However, processor read hits are 
a l l om~d  to continue with onc outstanding read 
miss. The write-buffer queue consists of two 
octaword (1  6-byte)  e lements .  Consecutive 
writes within t.he same octaword arc buffered 
until an event forces data in the write buffer to 
be sent to memory. That event can be encoun- 
tering either a write that is not in the same octa- 
word or  a microcode control command. The 
c a c h c  c o n t r o l  s e n d s  r e a d - m i s s  and  w r i t e  
requests to the appropriate clueue. If a queue is 
full ,  a signal tells thc cache control that no 
more requests can be accepted. 

From the cache queues, rcquests to memory 
are generated and sent to the memory intcrcon- 
nect after the arbitration for that interconnect 
has been won. These requests are prioritized to 
facilitate choosing which of three possiblc 
requests will be sent to the memory intercon- 
nect at any point in time. To maintain thc rank- 
ing, a two-bit counter will increment only on 
the appearance of a write following a read. Thc 
request chosen is the one with the Iowcst rank 
count. If  two requests have the same ranking. 
priority will be given first to the write. then to 
the processor read, and finally to the IB  read. 
The cachc queues componcnt has one parame- 
ter that can be specified at runtime: the number 
of cyclcs that a request ready to be sent to thc 
memory interconnect must remain q ~ ~ c u c d .  The 
final processor implemcntation required only 
one cycle, although this timing was not known 
when the model was built. 

Memory Interconnect 
The memory interconnect statc-m;~chinc handles 
rcquests bctween the cachc queues and mem- 
ory. Transactions requiring one or more cyclcs 
on the bus include cache-refill data, in octa- 
word packets, from memory; processor-write 

requcsts of up to ;in octaword in size; and pro- 
cessor data- or instruction-read requests for 
32 bytes (returned from memory as two octa- 
word packets). llntil transmittcd, each transac- 
tion "owns" the bus. A one-cycle settle time is 
required between transactions as well, Arbitra- 
tion for the ~ L I S  occurs during every cycle to 
choose a winner for the next cycle. Priority is 
given first to thc current transaction holding the 
bus. thcn to the one-cycle settle time, then to 
memory. and finally to any pending write or  
rcad from the cache. A cache request to mcmoq7 
is queued during the cycle after the rcqucst was 
transmittcd on thc bus. The timing of subse- 
quent cache requests for memory is controlled 
by the  sum of two parameters  specif ied at 
runtime. These parameters are 

The number of cycles between the time ;I 

cache requcst transmits on thc interconnect 
and the timc thc cache receives an acknowl- 
edgment from the bus 

4 The number of cycles between the time the 
c;~che receives thc bus ;icknowledgment and 
the time the next cachc request can transmit 
on the bus 

The VAX 8800 family processor implementa- 
t ion has a value of two for each  parameter ,  
although this timing hacl not becn determined 
when the  model was c rea ted .  Several o ther  
parameters were included in the memory inter- 
connect state-machine for study purposes. The 
onc-cycle settle time can be enabled or disabled. 
and the interconnect can acknowledge configu- 
rations with either onc or two processors. We 
also inclutlcd the capability to slow the mcmory 
subsystem. relative to  the  processor/cache 
request timing. by either two or three times. 

Memory 
We had cons ide red  model ing  in dctai l  t hc  
designs for both the memory controller and the 
array module. The effort required was so substan- 
tial, however, that we first modeled only the 
best- and worst-case scenarios.  The  ensuing 
results indicated that cxtra detail in the model 
would not yield correspondingly enlightening 
informat ion;  t he re fo re ,  t he  memory  s ta te -  
machinc models only best- and worst-case mem- 
ory pcrformance. 'I'he choice of best- o r  worst- 
case is a parameter  specif ied by the  user at 
runtime. 
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The bcst-case memory model assumes memory 
is never busy and can take requests from the mem- 
ory interconnect whenever they are generated. 
Thus instead of the eight memory-array modules 
the processor is limited to, this model effec- 
tively simulates an infinite number of modules 
with no contention for specific ones. The only 
parameter the user must specify is the number 
of cycles between the time the read request 
reaches memory and the time memory arbitrates 
for the memory interconnect to return requested 
read data to the cache. The implementation has a 
value of approximately 14  cycles, which reflects 
the memory read latency. Write requests for 
memory are simply delivered; no further action 
has to be taken. 

The worst-case memory model assumes only 
one array module is available to handle read and 
write requests. Requests for memory are queued 
in a buffer for processing by the array module. 
When all queue elements have requests, a mem- 
ory-busy signal will inhibit the memory intercon- 
nect from sending additional requests until a 
queue element is available. A number of parame- 
ters can be specified by the user at runtime to 
control the timing of requests within the mem- 
ory con t ro l l e r  and  t h e  array m o d u l e .  O n e  
parameter is the length of the memory-request 
queue, a value from one to eight. The processor 
design used a value of th ree  for this q u e u e  
length. The other parameters are the numbers of 
cyc les  r equ i r ed  for  var ious  ope ra t ions ,  a s  
described below. The actual value specified for 
the processor design is contained between the 
parentheses following each parameter's descrip- 
tion. These parameters are 

The time a request must be queued before 
processing in the array module (2  cycles) 

The time required by the array module to 
proccss a read (1 2 cycles) 

The time required by the array module to  
process a write (9 cycles) 

The time required by the array module to 
process read data for  a masked wr i te  ( 2  
cycles) 

The time required for a refresh of thc array 
module (1  2 cycles) 

The time between array refresh signals (300 
cycles) 

Processor Resources Not Modeled 
In  addition to some of the microcode and parts 
of the memory subsystem, several other parts of 
the design are not simulated. The translation 
buffer that contains virtual-to-physical address 
mappings is not modeled. (The design has a 
1024-entry, direct-mapped translation buffer, 
half of it for system-space addresses, the other 
half for process-space a d d r e ~ s e s . ) ~  The logic 
and microcode that handle alignment traps are 
not modeled. Any unaligned addresses associ- 
ated with processor rcad and write requests for 
the cache are automatically aligned by the sirnu- 
lator. Finally. no 1 / 0  traffic is generated on the 
memory interconnect to compete with proces- 
sor and memory traffic. These omissions could 
impact the simulated performance of some pro- 
cessor designs for some workloads. However, 
their exclusion from this model did not impact 
the performance estimates generated for the 
processor with the set of workload programs 
used. 

Evolution of the Model 
Before presenting studies done with the proces- 
sor performance simulator, we should examine 
how the model evolved. Our most significant 
achievement was to continue developing the 
model even as project goals changed and as the 
design materialized over tlme. This continual 
adjustment resulted in a model that reflected 
the latest design and could b e  used in new 
design studies. 

The first version of the  simulator was not  
ve ry  d e t a i l e d .  I t  i n c l u d e d  t h e  p i p e l i n e ,  
the instruction buffer, the cache arbiter, a cache 
she l l ,  and some hand-coded microcode for 
evaluating operand specifiers and for a limited 
number of VAX instructions. No lookup was 
done in the cache shell. A parameter specified 
t h e  h i t  and  miss percentages  des i r ed ,  and 
random number generation was used to decide 
t hc  l o o k u p  resu l t s .  Runs w e r e  made  wi th  
both two and four 1B longwords, and 9 0  and 
100 percent hit rates in the cache; the workload 
was the  Towers of Hanoi benchmark .  Two 
important results were indicated: first, the per- 
formance was in line with the stated goals; sec- 
ond, it was desirable to have more than two IB 
longwords. 
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At that point, a more aggressive set of design 
goals was se t  by engineering management .  
Therefore, the next version of the simulator 
modeled more of the detailed implementation 
that was evolving. This detail  included the  
decoder, the cache-control and memory-request 
queues ,  and the  memory in te rconnect .  We 
developed microcode translation software and 
used the first base-level microcode released to 
control the model. Some custom coding was 
done to accommodate single-precision floating 
point instructions that were needed. Both hard- 
ware and microcode bugs were uncovered dur- 
ing the design and verification of this simulator 
version, thus increasing its value to the designers. 

Performance Simulation 
Results and Studies 
1Jsing the simulator just described, we carried 
out a number of studies to verify the processor's 
performance and to examine design alternatives. 
Since the detailed results are very extensive, this 
concluding section outlines the kinds of perfor- 
mance information gathered and highlights a 
number of studies that were done. 

Performance Information Gathered 
Information provided by a performance simula- 
tor falls into four areas: 

1 .  Measuring the performance of a program 
on an existing processor and then tracing 
that same program to drive a processor 
simulator are used to produce a relativc 
performance estimate for the proposed 
processor. (Of course, this comparison is 
reasonable only if both processors are 
implementations of the same architcc- 
ture.) The information needed to make 
the comparison includes the following: 
the total number of instructions exe -  
cuted, the execution time required, and 
the cycle time on the nleasured system, as 
well as the total number of instructions 
simulated, the total cycles required, and 
the proposed cycle time on the simulated 
system. The VAX-11/780 processor was 
used as the comparison machine for gcn- 
erating performance estimates relative to 
the VAX 8800 family processor design. 

2 .  Simulating the use of rcsources within 
processor system components produces 
information about  how efficient each 

component is in processing requests and 
how wel l  t h e  c o m p o n e n t s  i n t e r ac t .  
Knowing what requests are received and 
what  percent  of the  time component  
resources are stalled or  busy (and why) 
provides insight into the overall system 
perforrnancc. We found that presenting 
this detailed information in terms of avcr- 
ages-per-i~istruction was an effective way 
of summarizing the activities. This infor- 
mation helped the designers in making 
hardware design decisions at a low level. 

3 Vary~ng the pxrameter values in a simula- 
tor and comparing the results produces 
useful information to evaluate high-level 
dcsign and configuration decisions. Since 
the VAX 8800 family proccssor design 
was modeled, a number of studies have 
been done to evaluate schemes that could 
be used in new processor designs. 

4. Analyzing the instruction stream data from 
the trace that drives the simulator pro- 
duces information about how the archi- 
tecture's instruction set is used. This type 
of  information helps designers decide 
which optimizations are most beneficial, 
especially in the n~icrocode flows. Gath- 
ering this information generally does not 
require processor-specific functions in 
the simulator. Therefore, the simulator 
docs not produce that information. For 
our  purpose, the information was gath- 
ered from another package of analysis soft- 
ware.' Only individual VAX instruction 
times that were specific to the VPLX 8800 
family processor came from the simulator. 

Highlights from Simulation Studies 
Initially wc llscd the Towers of Hanoi, the prime- 
number  generator ,  and the  s ingle-precis ion 
Whetstone benchmark to drive the model. From 
i t  we derived results indicating that the perfor- 
mance of the VAX 8800 family processor was 
between 4.5 and 5.6 times that of a VAX-11/780 
processor. The designers made one change based 
on the resource utilization statistics the simula- 
tor generated. Cache read hits had required two 
cycles, rather than the usual one cycle, when the 
read address also matched a valid delayed-write 
buffer address. This number was changed to one 
cycle when the simulator showed the frequency 
of this event was higher than anticipated. 
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Once the basic processor design had been 
successfully modeled, work focused on broad- 
ening the microcode coverage and simulating 
various alternatives. Better microcode coverage 
allowed rnorc programs to be traced and run 
through the simulator. We wanted to use more 
diverse programs, like the FORTRAN compile 
and the VAX/VMS link, to exercise the design 
using thc simulator. Alternatives such as cache 
flushing to simulate context  switching,  t he  
worst-case memory model, and the dual-proces- 
sor  version were  also added .  To s tudy  t h e  
model's behavior, we ran many simulations, 
varying the basic processor configuration and 
comparing results to detect the effects. Even 
today, this work continues as new design ideas 
surface. 

Thc following list shows the VAX 8800 family 
processor simulation parameters and configura- 
tions that were most sensitive from a perfor- 
mance point of view: 

Context switching, simulated by invalidating 
all cache entries every n VAX instructions, 
showed a per formance  degradat ion from 
8 percent when done every 10 ,000 instruc- 
tions, to 23 percent when done every 2,000 in- 
structions. We chose an interval of 5,000 in- 
s t ruc t ions  fo r  t h e  s imu la to r ,  w h i c h  is  a 
conservative estimate. (The degradation was 
13 percent for 5,000 instructions.) 

A timing requirement of two cycles for read 
hits in the cache, rather than one cycle as 
implemented in the VAX 8800 family proces- 
sor design, degraded the simulated perfor- 
mance by 9 percent. 

The latency time for memory reads decreased 
performance by about 0.75 percent for each 
additional cycle of latency. 

The worst-case model for memory, using only 
one array module, required 14  percent more 
cycles than the best-case model. ('This result 
contributcd to our decision to use only the 
best and worst cases.) 

A slow memory interconnect and controller 
relative to the processor degrades the perfor- 
mance gains when a faster processor is used. 
Doubling the processor speed by cutting the 
cycle time in half increased performance by 
only 1 .5  times over that of the slower proces- 

New Products 

sor wi th  t he  same memory.  Tr ip l ing  the  
speed increased performance by only 1 .7  
times. 

Enhancements made in the FORTRAN com- 
piler for generating code had a great impact 
on the instruction stream traced, as well as on 
the performance estimates derived using the 
FORTRAN benchmarks. This improvement 
was particularly noticeable for the FORTRAN 
compiler released with VMS Version 4 .  

Summary 
The development of the VAX 8 8 0 0  processor 
performance simulator continued throughout 
the entire project. The simulator helped to ver- 
ify the attainment of performance goals and pro- 
vided performance trade-off information to the 
designers. The model's results fostered discus- 
sions about interfaces, helped the designers to 
find problems, and uncovered unanticipated 
interactions. The simulator continues to con- 
t r ibu te  to  cu r r en t  processor  design efforts 
through its use in studying the performance 
impact of alternatives. 

In addition, we  learned a number of impor- 
tant lessons that will be useful in designing 
fu tu re  s imula tors .  First,  it is impor tan t  t o  
develop the basic processor simulation func- 
tions as early as possible in a design project. 
Having a general-purpose cache model that can 
be called and controlled from different proces- 
sor implementation models is one of the most 
important functions. 

Second, defining and developing a monitor to 
control the various parts of a simulator, apart 
from implementing the particular design, has 
significant implications for designers of perfor- 
mance simulators. Having separate control func- 
tions allows the implementor to concentrate on 
understanding the design to be modeled, as well 
as to take advantage of features provided by the 
control monitor to debug the model. Separating 
control from the simulated design, however, 
does not result in a simulator with the most 
optimized runtime performance. 
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VMS Multiprocessing on the 
VAX 8800 System 

Some features of the VM 8800 architecture are particularly relevant to 
multiprocessor operation. Special hardware, not included in the VAX 
architecture, allows the VMS operating system to use both CPUs in an 
asymmetric, tightly controlled fashion. The processors operate in a 
master-slave relationship with one CPU handling all I /O.  The hardware 
handles interprocessor interrupts, cache coherency, and shared mem- 
ory. VMS uses the interprocessor interrupt in managing operations 
between the master and slave CPVs. The VMS system also uses interlocked 
instructions, exception handlers, and traps to handle multiprocessing. 
Tbese instructions allow events to be scheduled and executed efliciently 
on both processors. 

Every computer system is a combination of hard- 
ware and software architectures. the operating 
system being a direct result of their merger. The 
same oper;~ting system can be implemented on 
different hardware systems with the same archi- 
tecture, but a user can access only those features 
that each set of hardware can support. The most 
effective merger is the one allowing users of the 
resulting operating system to make maximum 
use of all the features designed into both the 
hardware and software archi tectures . '  The  
VAX 8800 multiprocessor is an example of the 
result of such an effective merger. 

The VAX Architecture and 
Multiprocessing 
Many of the VAX 8800 hardware features impor- 
tant to VMS multiprocessing are defined by the 
VAX architecture for single-processor and multi- 
processor systems a1ike.l These features include 
the processor modes, 1 / 0  and software inter- 
rupts, exception handling, asynchronous system 
traps (ASTs), and interlocked instructions. This 
section briefly describes these features, which 
are discussed in more detail later. 

Processor Modes 
The VAX architecture defines four modes in 
which a processor may execute.  In order of 
decreasing levels of privilege, these modes are 

kernel, executive, supervisor, and user. Most of 
the critical resource management code in the 
VMS system is executed in kernel mode; in fact, 
some instructions can be executed only while in 
that mode Two examples of such instructions 
are LDPCTX and MTPR (move to processor reg- 
ister). LDPCTX loads the context (stacks, page 
tables, and so on) of a process into a CPU so that 
the process can execute. MTPR is used, among 
other things, to enable, disable, or trigger cer- 
tain interrupts during resoiirce management. 

Interrupt a n d  Exception Handling 
The VAX architecture supports the immediate 
servicing of important events by means of a 
mechanism that can transfer control away from 
the currently executing process. Events that arc 
primarily relevant to and normally invoke soft- 
ware in the context of the currently executing 
process are called exceptions. Events that are 
relevant to other processes, or to the system as a 
whole, are called interrupts, which are serviced 
in a system-wide ~ o n t e x t . ~  The VMS operating 
system provides a handler  rout ine for each 
exception and interrupt defined by the VAX 
architecture. 

Upon system startup, the VMS operating sys- 
tem initializes a system control block (SCB), 
which defines the locations of the various event 
handlers, as shown in Figure 1 .  The SCB contains 
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TRANSLATION NOT VALID (PAGE FAULT) EXCEPTION 

CHANGE MODE TO K E R N E L  EXCEPTION 

CHANGE MODE TO EXECUTIVE EXCEPTION 

CHANGE MODE TO SUPERVISOR EXCEPTION 

INTERPROCESSOR INTERRUPT 

SOFTWARE INTERRUPT LEVEL 1 (UNUSED)  

SOFTWARE INTERRUPT LEVEL 2 - ( ~ ~ ~ ~ ~ ~ ~ ~ f E L I V E R Y  

SOFTWARE INTERRUPT LEVEL 3 - RESCHEDULING 

SOFTWARE INTERRUPT LEVEL 15 - XDELTA 

10 MILLISECOND INTERVAL TIMER INTERRUPT 

Figure I System Control Block 

an assigned longword that holds the address of 
the handler for each interrupt and exception 
serviced by the operating system. 

In t e r rup t s  and e x c e p t i o n s  have varying 
degrees of urgency. Each event has a specific 
intcrrupt priority level (IPL) that designates the 
relative priority of that event. 'The VAX architec- 
ture includes 31 IPLs, divided into 15 software 
levels (numbered, in hexadecimal, 01  to OF), 
and 16 hardware levels (1 0 to I F ) .  User appli- 
cations and system services run at the proccss 
level, which may be thought of as IPL 0 .  Inter- 
rupt levels with higher numbers have highcr 
priorities. That is to say, a request at an IPL 
higher than the processor's current IPL will 
interrupt immediately; requests at the salnc o r  
lower levels will be deferred.* The interproces- 
sor interrupt and the 10-millisecond (ms) inter- 
val-timer interrupt are examples of hartlwarc 
interrupts. The rescheduling interrupt and the 
AST-delivery interrupt are examples of software 
interrupts. 

Software executing in kernel mode posts a 
software interrupt by setting the appropriate bit 
in  t he  software i n t e r rup t  reques t  register  

(SIRR). A bit exists in the SIRR for each software 
interrupt level. h interrupt can take place only 
when the 1PL level of the CPU has been lowered 
below that of the pending interrupt. For exam- 
ple, the handler for the interprocessor intcrrupt 
(executing at IPL 20) can post a reschedule 
event (a software interrupt at IPL 3) by setting 
the appropriate bit in the SIRR. When the CPU's 
IPL drops below IPL 3, the IPL 3 interrupt han- 
dler is invoked, which is the VMS code that ini- 
tiates proccss rescheduling. 

This technique allows high IPL code threads 
to schedule lower IPL functions in a way that 
allows all potentially interrupted code threads 
at intermediate IPLs to complete first. Should a 
higher IPL code thread merely lower the IPL by 
force to execute the lowcr IPL function, any 
intermediate IPL code threads that had been 
interrupted would complete out of order, thus 
breaking the software synchronization. 

AST Delivery Mechanism 
In any mode, the VAX/VMS system can interrupt 
a code thread executing at IPL 0 ,  begin a new 
code thread (also at IPL O), and then continue 
the previously interrupted code thread. This 
mechanism is called "delivering" an AST. The 
hardware notifies the operating system that an 
AST is dcliverablc to the currently executing 
proccss by means of an interrupt at IPL 2. (Note 
that this is the only instance of the \'AX' hard- 
ware posting a software interrupt). Any process- 
context code thread that must execute without 
interruption by an AST has to be executed at 
IPL 2 or higher. If a deliverable AST is queued to 
the cur ren t  process and the  IPL of the CPU 
drops below 2, then an IPL 2 interrupt will be 
generated. To execute that interrupt, the IPL 2 
interrupt handler first verifies that the AST can 
bc delivered and then delivers it to the process, 
after which the new code thread associated with 
the particular AST is executed. 

An AS?' code thread is associated by a process 
with events that are expected to complete asyn- 
chronously to the main thread of the proccss. An 
example of such an event is an 1 /0  request that, 
once issuecl, is handled by the system in parallel 
with the main thread of the process. Upon 1 /0  
completion, the associated AST is delivered, 
which causes the main thread of the process to 
bc interrupted in favor of the S T ' S  code thread. 

When an AST is specified for an asynchronous 
event, i t  is assigned a particular processor mode. 
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When the S T  is queued to a process, its delivery is 
deferred while that process is executing in a more 
privileged modc than that of the queued AST. For 
e x a m p l e ,  w h c n  an AST in supe rv i so r  m o d e  is 
queued to a process executing in kernel mode, the 
AST w i l l  n o t  b e  d e l i v e r e d  u n t i l  t h e  c o n t e x t  
changes from kernel mode to  at  least supervisor 
mode. 

Interlocked Instructions 
The VAX architecture includcs a few instructions 
that a l low synchronous  access  t o  locations in 
mcmory. Only those instructions will guarantee 
consistent  results  if mul t ip l e  processors want  
simu ltancous access to the same memory locatio~i. 

For b i t  m a n i p u l a t i o n s ,  t h e s e  i n t e r l o c k e d  
instructions arc 

BRCCl - Branch on bit clear and clear inter- 
locket1 

BBSSl - Branch o n  bit sct and set interlocked 

For  a r i t h m e t i c  m a n i p u l a t i o n s .  t h e r e  i s  
ADAWI - Add aligned word interlocked. 

For queue manipulation, the instructions are 

INSQHI - lnsert at head of queue interlocked 

INSQTI - Insert at tail of queue interlocked 

REMQHl - Remove from head of queue inter- 
locked 

REMQTI - Rcmove from tail of queue  inter- 
lockecl 

New Products 

These ~nstructions are used extensively in the 
operating sybtcm to provide multiprocessor syn- 
chronization. They are also available to user pro- 
ccsses to synchronize access to shared application 
data. 

The VAX 8800 System 
T h e  spec i f i c  implemen ta t ion  fea tures  of t h e  
VAX 8 8 0 0  multiprocessing system are described 
in this section. Remember that the 8 8 0 0  is only 
one  of many implementations of the VAX archi- 
tecture. Several important hardware features pro- 
vided by the 8 8 0 0  are not specified in the VAX 
architecture but are required for VMS multipro- 
cessing. Thcse hardware features are 

Primary processor access t o  all peripherals 

Interprocessor interrupts 

Shared main memory 

Cache coherency 

VAX 8800 Implementation 
The VAX 8 8 0 0  system consists of rwo VAX 8 8 0 0  
processors that share main memory by means of a 
fast memory-system interconnect called the NMI 
bus.' The processor hardware i s  completely sym- 
metric; that is, either processor can fulfill the role 
of primary processor for any booted instance of 
the operating system. Figure 2 is a block diagram 
of the VAX 8 8 0 0  system. 

CONSOLE L, 
CLOCK RIGHT 

NMI 

I I 

NBI NBI 
MEMORY n ADAPTER ADAPTER 

VAXBl VAXBl 
BUS BUS 

VAXBl VAXBl 
BUS BUS 

ENTROLLER 
- 

110 - 

V V  CONTROLLER 
V 

Figure 2 Block D i ~ i g r c ~ m  of VAX 8800 System 
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'Ihrre is one console subsystem in  tlie 8800. 
which is shared by the two CPUs. The consolc 
conun;ind language. implemented in software in 
the console subsystenl. is a superset of the con- 
sole functionality specified by tlie VAX architec- 
ture.' Both CPUs can be controlled from the 
single console terminal. After the system is 
booted, the console terminal can be used like 
any other terminal connected to the system. 

Al l  1/0 devices are connected to the system 
through VAXHI buses. The 8800 car1 accommo- 
date up to four VAXIII buses, each of which can 
accommodate up to I6  nodes, generally 1/0 
controllers. "Ihe buses are connected to the NMI 
by means of the NMl-to-VAXBI adapters, callecl 
the NBIs. Each NBI consists of either two or 
three parts: an NBIA, which is the interface to 
the NMI;  and one or two NBIHs. which are inter- 
faces to the VAXBI buscs. An NRIB is one of the 
16 nodes on its respective VAXBl bus. 

IJnder VMS multiprocessing. all peripherals 
arc controlled by the first processor to be 
booted, designated the primary proccssor. The 
other processor, the secondary, is preventccl 
from accessing any peripheral devices (disks, 
terminals, anti so on) because the codc commii- 
nicating with those devices rutis in kernel 
mode, an access mode that VMS utilizes only on 
the primary. Thus, all 1 / 0  peripherals will be 
accessed only by the primary processor. Typi- 
cally, the left CPU in the VAX 8800 system is 
chosen as the primary processor. However, con- 
sole comniancls are available to design;itc either 
CPU as the prin~ary one. A change in that desig- 
nation takes effect after the next INIT command 
is received by the console. 

'I'he VAX 8800 hardware provides the capabil- 
ity for onc processor to interrupt the other. This 
interruption is accon~plished by writing a valuc 
of 1 to an internal processor register on the 
interrupting CPU by means of the privileged 
M'TPR instruction (from kerncl mode only). The 
VMS system uses this mechanism to synchronize 
the CPUs as different system events occur. 

'I'he main memory contains one copy of the 
VMS software, which depends upon thc memory 
subsystem and interlockcd instructions for 
cache coherency ancl the consistency of memory 
contents. The VAX 8800 memory subsysten~ 
automatically handles all cache updates; no soft- 
ware logic is needed to maintain consistency 
between the cache contents in each processor. 
The 8800 docs implement a write buffer to 

optimizc transfers across the NMI to the memory 
subsystem. Therefore, the interlocked instruc- 
tion$ must be issued to flush the necessary write 
data all the way out to memory. If  one processor 
modifies shared data, the other needs to see the 
change in a synchronized ancl timely fashion. 

iMultiprocessor Implementation 
/mprovements 
Thc VAX 8800 system includes features that arc 
impro.i7emcnts over previous multiprocessing 
VAX hardware implementations, such as thc 
VAX- 1 1/7-32 system. Larger amounts of physical 
mcmory can be usetl, all of which is available to 
the VrMS system or the system cliagnostics. More- 
over. the 8800 cache provides better perfor- 
mance. ant1 the system has :I smaller footprint 
and ;I better price/perforn~ancc ratio. Perhaps 
the most significant fact from a system-manage- 
ment viewpoint is that only one console subsys- 
tem with one terminal is needed to control the 
entire multiprocessor. 'I'his single control p i n t  
h:~s ramific;ltiotls for setting up the system ancl 
running it  as a multiprocessor. 

The console subsystem h;is access to the mem- 
ory configuration of the 8800.  With previous 
multiprocessors, the system manager had to con- 
figure memory by manually determining the 
appropri ;~te data, then entering it into cus- 
tomized command procedures on specially built 
floppy disks in the console:' 

The console subsystem of the 8800 also elimi- 
nates the need for operator intervention to boot 
or restart the secondary proccssor. The VMS sys- 
tcm is initi;llly booted o n  the primary processor 
;~nc l  subsec]uently clirects the console subsystem 
ro boot the secondary. Similarly, the console 
subsystem restarts the VIMS system on the pri- 
mary processor after a power failure. The oper- 
ating system then directs the console to restart 
the second;iry at the appropriate point in the 
power-recovery sequence. At no time must the 
operator be involved in bringing the secondary 
on line.' 

The VMS Operating System 
The multiprocessing aspects of the VAX archi- 
tcetilre and the VAX 8 8 0 0  implementation 
provide the underlying hardware support for a 
tot;~l ly integrated multiprocessing computer sys- 
tem. This section discusses aspects of the VMS 
software that are specifically related to multi- 
processing as implemented for the 8800. (See 
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reference 5 for additional multiprocessing infor- 
mation and recommended programming tech-  
niques.) 

Classification 
In multiprocessing terminology. VMS multipro- 
c e s s i n g  is c l a s s i f i e d  a s  " a s y m m e t r i c "  a n d  
"tightly coupled." An asymmetric system is one  
in which one  CPU, called the primary, has criti- 
cal system-wide responsibilities, including the  
management of all the  CPU resources. The other 
CPU, called the  secondary, has more restricted 
responsibilities that exclude the management of 
critical system resources (including itself). This 
type of multiprocessing system is also referred 
to  as a "master-slave" arrangement.  The  other  
classification, tightly coupled,  means that both  
processors ope ra te  in a c lose ly  synchronized 
fashion; if they fail, they fail together. 

O n  a VMS multiprocessing system, both pro-  
cessors share the  same copy of the  operating sys- 
t em,  a l though some  c o d e  is executed oniy  by 
one  o r  the  other CPU.  most of the  kernel logic 
in the  VMS operating system is executed only by 
the primary processor. That eliminates the  need 
for t h e  complex  synchronization and locking 
mechanisms that would  otherwise be  required 
t o  p ro tec t  t h e  sys tem's  data  s t r u c t u r e s  f r o m  
access by multiple CPUs. 

History of VMS Multiprocessing 
VMS multiprocessing was introduced during the  
development of VMS Version 3 .0 .  At that t ime, 
the  p o w e r  of a s ingle  VAX-11/780 processor  
was insufficient to build the  VMS executive in a 
reasonable amount of t ime.  Several constraints 
were  placed o n  t h e  mul t iprocess ing develop-  
ment effort. It had to involve minimal changes 
to VMS kernel mode routines, use existing hard- 
ware, and have minimal performance impact on  
single-processor VMS  system^.^ 

The  first const ra in t  above had t h e  greates t  
i m p a c t  o n  t h e  c h o s e n  d e s i g n  o f  VMS V e r -  
sion 3 . 0 .  T o  achieve fully symmetric multipro- 
cessing, changes would be  required throughout 
the who le  operating system to  extend IPL syn- 
chronization as already implemented by VMS for 
single-processor operation. Since those changes 
were too extensive to make, w e  chose an asym- 
metric design in which the  synchronization of 
critical code was achieved by limiting that activ- 
ity to the primary CPU. In this context,  existing 

IPL-based techniques were  sufficient to synchro- 
nize the  code threads in kernel mode.  

The  second constraint  led u s  to  configure a 
system with two VAX-11/780 CPUs coupled by 
an MA780 shared memory. In this configuration, 
each CPU has a separate,  independent  console 
subsystem; neither has access to  the  other's con-  
sole.  Booting this multiprocessor requires spe-  
cial console command files and operator inter- 
v e n t i o n  f o r  b o t h  C P U s .  S i m i l a r l y ,  t h e  1 / 0  
devices configured on  o n e  CPU are inaccessible 
on  the  o ther .  Since most of t h e  1 / 0  subsystem 
code  executes  in kernel  mode ,  this  constraint  
has the  effect of limiting the  1 / 0  devices usable 
by the  multiprocessor to those connected to the  
primary CPU. 

The final constraint led to a design that allows 
multiprocessing code to be  inserted dynamically 
into the running executive. No multiprocessing 
code  is present in a single-processor configura- 
tion of VAX/VMS. 

T h e  m u l t i p r o c e s s i n g  c a p a b i l i t i e s  i n  VMS 
Version 3 . 0  were  extended to  suppor t  the  n e w  
VAX 8 8 0 0  system. These extensions take advan- 
tage of new functions allowed by the  new VAX 
design. For example ,  as mentioned earlier, the  
shared console subsystem allows the secondary 
processor to be  booted from the  primary under 
program con t ro l ;  n o  ope ra to r  in tervent ion is 
required.  

Division of Work between Processors 
As mentioned earlier, t h e  VMS multiprocessing 
code is a master-slave implementation. The sec- 
ondary CPU is required to d o  whatever work is 
assigned to  i t  by t h e  pr imary.  T h e  secondary  
CPU can execute  application code  only, whi le  
the  primary CPU handles the  I /O,  paging, and 
all resource management, as well as the  execu- 
tion of application code .  Since all system ser-  
vices that manage system resources are executed 
i n  k e r n e l  m o d e ,  o n l y  t h e  p r i m a r y  CPU i s  
a l l o w e d  t o  e x e c u t e  those  se rv ices .  T h e  s e c -  
o n d a r y  CPU c a n  e x e c u t e  c o d e  tha t  is i n  any  
o t h e r  m o d e :  u s e r ,  s u p e r v i s o r ,  o r  e x e c u t i v e .  
Thus ,  t o  b e  technically accura te  in mul t ipro-  
cessing terminology, t h e  VMS multiprocessing 
system is symmetric for code in the  user, super-  
visor, and executive modes, but  asymmetric for 
code in kernel mode.  

The VMS boot code creates a SCB for each pro- 
cessor.  As described ear l ier ,  t he  SCB contains 
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vectors to routines that handle various interrupt 
and exception events. Many VMS interrupt and 
exception handlers are idetitical for both the 
primary and secondary processors. However. 
there arc cases in which exceptions or inter- 
rupts must be handled differently, depending 
upon which processor receives the event. The 
interprocessor interrupt and the software inter- 
rupt used for rescheduling arc both examples of 
system-wide events. Both arc vectored through 
the SCB but require different handlers for each 
processor. (Figure 1 shows the various interrupt 
levels in the SCB.) The AST-delivery software 
interrupt and the quantum end, a scheduling 
event (described later), are examples of pro- 
cess-related events that also rcquire different 
exception handlers in the SCB of each CPU. By 
separating the handlers into processor-specific 
SCBs, the more costly and difficult task of run- 
time separation within an otherwise commonly 
executed handler is avoided. 

Typically, when an exception occurs on the 
secondary,  that  CPU's excep t ion  handler  
"reflects" that exception back to the primary. 
To do that, the cxccption handler stores both 
the address of the primary's exception handler 
and an appropriate processor status longword 
(PSL) on thc stack of the current process. The 
secondary's exception handler then saves the 
context of thc current process and passes the 
process back to the primary by requesting a 
rescheduling event. The process eventually exc- 
cutes on thc primary, whose exception handler 
will immediately get control as if the exception 
had occurred there originally. Exception pro- 
cessing is therefore synchronized on a system- 
wide basis by virtue of running on the primary 
processor only. 

The SCB for the primary CPU consists of mul- 
tiple pages of interrupt and exception vectors. 
'The format of the first page is defined by the 
VAX architecture. This page contains vectors for 
all implcmentation-independent exceptions and 
interrupts, and for a few imp.lementation-depe~i- 
dent ones. Additional pages o f  vectors are pro- 
vided for 1 / 0  interrupt handlers. Under VMS 
multiprocessing. the length of the SCB for the 
secontlary CPU is onc page. 'The pages that make 
up the 1/0 subsystem portion of the SCB are not 
needed on the secondary, which will not initiatc 
1/0 requests nor receive I/O interrupts. 

Interprocessor Interrupts 
The VAX 8800 hardware provides a key feature 
for optimizing the VMS multiprocessing soft- 
ware: the ability of one processor to interrupt 
the other. This interprocessor interrupt mecha- 
nism is used extensively on each CPU by the 
VMS operating system. 

The primary processor interrupts the sec- 
o n t l a ~  for several reitsons. First, the primary can 
request an inva1itl;ction of a translation buffer 
entry corresponding to a system-space address 
that is about to be invalidated on the primary. 
'I'his event forces coherency between the trans- 
lation buffers of both processors with respect to 
mapping changes in the shared system virtual 
address space. Second, the primary can interrupt 
because i t  has qucucd an AST, typically for 1/0 
completion, for the process currently executing 
on the secondary. This event ultimately results 
in the process being rcschcduled onto the pri- 
mary, where the ;~ctual dclivery of the AST to 
thc process can be accomplished. Fin;~lly, the 
primary can initiatc and synchronize a system- 
wide shutdown or a crash. 

Thc secondary processor will interrupt i f  i t  
wants the primary to take back the current pro- 
ccss and find another process for the secondary 
to execute. The sccond;lry will also interrupt if 
i t  detects a hardware error or if i t  wants t o  ini- 
tiate a system-wide crash. 

Secondary State Transitions 
A state variable is maintained to record the cur- 
rent statc of the second;iry processor. The pri- 
mary processor L I S ~ S  this state to dcterrnine 
whether or not to scliedule work for the sec- 
o n d a ~ y .  When the secondary is booted, thc state 
vari;tbJe is already set to INIT. After booting, the 
second;try changes the statc variable to IDLE. 
Dt~ring its next reschedule operation, the pri- 
mary will notice the lnLE state and attempt to 
schedule a process for the secondary to execute. 
After finding a process for the secondary, the 
primary sets the state variable to BUSY. The sec- 
ondary. which has been continually checking 
the state variable for this transition, then loads 
the process's context from memory and sets the 
statc to EXECU'I'E. 

'The secondary will execute its current pro- 
cess until. the process either receives its quan- 
tum of CPU time or is blocked by some request 



that must be synchronized in a system-wide con-  
text. (That request must be executed in kernel 
mode  on  the  primary.)  At this  po in t ,  t he  sec-  
ondary saves the  process's context  in memory 
and sets the state to DROP. Using the  VAX 8 8 0 0  
in terprocessor  in ter rupt  mechanism,  t h e  sec -  
ond;~r)l then interrupts the primary and requests 
another process to  execu te .  The prirnary takes 
the saved process back from the secondary, set- 
t ing that  CPIJ's state to  IDLE. 'Thus, t h e  s ta te  
transition has made an entire circuit .  

Figure 3 shows the state transition diagram for 
t h e  secondary  CPU.  T h e  pr imary 's  pa ths  a r e  
marked P and the  secondary's paths are marked 
S to indicate which processor controls each tran- 
sition from one  state to another. The only state 
not explained above is the  STOP state, used only 
when the secondary is shut down.  

EXECUTE 0 

Figure 3 Secondflry CPU State Transitions 

Process Scheduling under the VMS 
Operating System 
Some aspects of process schedul ing w e r e  dis- 
cussed in t h e  p rev ious  sec t ion .  Th i s  sec t ion  
describes in greater detail how process schedul-  
i n g  is  i m p l e m e n t e d  in t h e  VMS s y s t e m  a n d  
which of its aspects are different in a multipro- 
cessing environment." 

Single- Processor Scheduling 
The VMS scheduling algorithm implemented o n  
a single processor is round-robin and p reemp-  
tive, with the highest priority process being exe- 
cuted first. There are 31  levels of process prior- 

ity (which are not  the same as interrupt priority 
levels). Thirty-one is the  highest priority, o n e  
t h e  lowest ;  process  pr ior i t ies  a re  subdivided 
into real-t ime (priori t ies 16 to  31) and "nor- 
tnal" (priorities 0 to 15) ranges. The real-time 
priorities are used by time-critical applications, 
s u c h  as h igh-speed data  acqu i s i t ion .  W h e n  a 
process is created, it is assigned a base priority. 
Its priority during execution is guaranteed never 
to  d r o p  be low that  base priority unless e i ther  
t h a t  p r o c e s s  o r  a n o t h e r ,  p r iv i l eged  p r o c e s s  
requests i t  to .  

Each process is a l lowed a quan tum of CPU 
t ime (usually 2 0 0  rns, equivalent to  20  inter-  
rupts  of t h e  10-ms  interval t imer ;  however ,  a 
system manager can change the  default) .  Each 
time the interval timer interrupts, the interrupt 
handler checks to see  if the  current process has 
used u p  its quan tum.  If so ,  quantum-end pro-  
cessing is initiated. 

For a process with a priority in the real-time 
r a n g e ,  q u a n t u m - e n d  p r o c e s s i n g  c o n s i s t s  of  
award ing  a n e w  q u a n t u m  t o  t h e  p rocess  a n d  
allowing it to continue execution.  A reschedule 
event will occur  when a normal-priority process 
has used u p  its quantum.  In the  latter case, the 
c u r r e n t  p r o c e s s  i s  p l a c e d  a t  t h e  e n d  of t h e  
scheduling queue  maintained for that process's 
priority (there is one  such queue  for each pro- 
cess priority), and the process at the  head of the  
queue  is chosen to execute.  

T h e  p r i o r i t y  of  a n o r m a l - r a n g e  p r o c e s s  is 
r a i s e d  a f t e r  c e r t a i n  b l o c k i n g  e v e n t s  h a v e  
cleared. For example,  t o  provide good response 
t ime t o  interactive users,  a process ' s  priori ty 
will  b e  temporari ly boosted after t h e  comple -  
tion of terminal input.  This arrangement results 
in a tendency for compute -bound  processes to  
remain at  their initial priorities (called the base 
priority). However,  I /O-bound and interactive 
processes, which are blocked more frequently, 
usually attain priori t ies somewhat higher than 
their base ones. A process's priority is lowered one 
point when the process is scheduled to execute ,  
unless it is already running at its base priority. 

New Products 

Multiprocessor Scheduling 
The  primary processor schedu les  all work  o n  
t h e  sys tem,  for  both  itself and t h e  secondary  
processor .  The  schedu l ing  a lgor i thm used for 
the  primary processor is basically the  same o n e  
used in a single-processor system (an important 

Digital Technical Jotrrnal 
No. 3 Februar), I987 

117 



VMS Multiprocessing on the VAX 8800 System 

goal in this irnplemcntation). For the niultipro- 
cessor scheduling algorithm, however. certain 
modifications were made to extend the effec- 
tiveness of process scheduling to utilizc the 
additional CPU resources that arc available. Thc 
execution environmcnt of the sccondary proces- 
sor is more constrained than that of the primary. 
Most notably, the kernel-modc codc is restricted 
to the  pr imary CPU. The mul t iprocessor  
scheduling algorithm attempts to keep that sec- 
ondary CPU as fully utilized as possible with 
minimal scheduling overhead in the following 
mays : 

The primary processor always schedules a 
process to run on the secondary before 
scheduling a process for itself to execute. 

The primary processor will schedule a pro- 
cess to run on the secondary only if that pro- 
cess does not require immediate execution in  
kernel mode and does not  have an AST 
(which requires kernel-mode execution) 
ready to be delivered. This scheduling helps 
prevent situations in which a process can 
flip-flop between processors, somet i~ncs  
called scheduler thrashing. 

Scheduling is preemptive on the primary pro- 
cessor, but not on the secondary. Thus, if the 
secondary processor is executing one job 
when another  job with higher pr ior i ty  
becomes computable, the primary processor 
will not interrupt the secondary to give i t  the 
higher priority job. Therefore, processes exc- 
cuting on the secondary processor are more 
likely to run for their entire quantum than are 
processes executing on the primary. 

This approach guarantees only that the 
highest priority process will be executing, 
not the two highest priority processes. To 
guarantee the latter would require signifi- 
cantly more interprocessor interrupt traffic 
and is likely to increase thrashing on the 
entire system, and will cspecially affect the 
primary's ability to devote processing time to 
its own selected process. 

If all computable processes require cxecu- 
tion in kernel mode, then the primary proccs- 
sor cannot schcdule a process for the scc- 
ondary and will execute a process itself. 
Should that happen, an AST-delivery interrupt 
will be generated automatically after the pri- 
mary processor stops executing the process 

in kernel mode. The primary processor han- 
dles this interrupt by performing a reschedul- 
ing operation. As a result, the primary proces- 
sor sends the process i t  was just executing, 
which is no longer in kernel mode, to the 
secondary processor in a timely fashion. The 
primary is then free to execute another pro- 
ccss itself. 

Whcn there is only one computable process, 
one of the CPUs will remain idle. In this case 
the primary processor executes the process 
itself even it may be perfectly eligible to exe- 
cute on the secondary. Thus the overhead 
processing associated with the post-kernel 
mode AST and the subsequent rescheduling 
of the secondary can be avoided. This case 
also has the effect of preventing future 
thrashing if the process needs access to ker- 
nel-mode resources, at least until enough 
computable processes become available to 
kcep both processors busy. 

'The system services7 that request event-flag 
waits (SWAITFR, SWFLAND, and 8WFLOR) 
arc anlong the most conlmonly executed ker- 
nel-mode services.' If a process running on 
the secondary processor requests an event- 
flag wait, the VMS operating system will 
attempt to avoid rescheduling the process 
onto the primary CPU. The system-service 
dispatcher on the secondary CPU first checks 
to scc if the requested flags are already set. If 
so, the process is allowed to continue execut- 
ing on the secondary without rescheduling. 

If the flags are not set, an interprocessor 
interrupt requesting that the process be 
placed into an event-flag wait state (either 
LEF or CEF) will be sent to the primary CPU. 
When that processor services the interrupt, it 
again checks to see if the wait request has 
been satisfied (the flags have been set). If so, 
the process is allowed to continue executing 
on the secondary. If the flags are still not set, 
the process is taken out of execution and 
placed into the appropriate wait state. The 
secondary processor then becomes available 
for scheduling. 

Although a process may currently be eligible 
for scheduling onto the secondary, the VMS 
operating system cannot predict whcther or not 
that process will require kernel-mode services 
in the ncar future. If those services are needed, 
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the process would have to be rescheduled onto 
the primary. For example, utilities that perform 
interactive tasks (such as editors o r  the mail sys- 
tem) require  numerous  1 / 0  requests .  O t h e r  
types of programs incur many page faults. These 
processes are therefore poor candidates for exe- 
cution on the secondary. Sometimes a system 
managcr can predict that certain processes will 
have those characteristics, and he  o r  she  can 
take preventive measures to avoid processing on 
the secondary. 

Thc following VMS multiprocessing schedul- 
ing features give the  system manager manual 
control over the scheduling of processes on to  
the secondary CPU: 

A SYSGEN parameter exists to limit the maxi- 
mum priority of processes allowed to executc 
on the ~ e c o n d a r y . ~  Recall that priority boosts 
are granted to processes after certain events, 
such as 1 / 0  completion. These I/O-intensive 
proccsscs tend t o  stay at  pr ior i t ies  above 
those of compute-intensive ones. Therefore, 
setting the SYSGEN parameter a point o r  two 
above the default base-process priority may 
effectively screen o u t  many "unsuitable" 
processes from the secondary processor. The 
system manager can set the SYSGEN parame- 
ter to 0 (indicating no  priority screening is to 
occur) o r  to any value from 1 to 3 1 ,  which 
sets the priority limit to the specified value. 

A process can be made ineligible from exe- 
cuting on the secondary processor by means 
of the  SET PROCESS/CPU = NOATTACHED 
command. This command prevents user pro- 
cesses that execute only interactive o r  I/O- 
bound  u t i l i t i e s  f rom r u n n i n g  o n  t h e  s e c -  
ondary. This fixed-process attribute remains 
in force until i t  has been changed with a SET 
PROCESS/CPU=ATTACHED c0mrnand.j 

Summary 
The VAX 8 8 0 0  system running the asymmetric 
VMS operating system provides the  most com- 
put ing power current ly  available i n  the  VAX 
family to  execute  compute-intensive applica- 
tions. The 8 8 0 0  represents a merger of a n e w  
hardware implementation of the VLY architec- 
ture with preexisting multiprocessing capabili- 
ties in the VMS operating system. This software 
uses features of the  VAX architecture and the 
hardware for which it was originally intended. 
With the advent of n e w  multiprocessing hard- 

ware,  the  software design could be modified 
t o  take advantage of add i t iona l  capabi l i t ies  
offered by the advanced hardware design in the 
VAX 8 8 0 0  CPU. 
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A Parallel Implementation of the 
Circuit Simulator SPICE on 
the V M  8800 System 

Multiprocessors are eflicient only i f  the added computing power can be 
used to solve specific applications. To demonstrate the V'AX 8800 multi- 
processor's advantages, the authors converted the circuit simulator 
SPICE into the parallel program CAYENNE. Their methodology involved 
using VAX instructions and VMS systetn services to create and control a 
series of master and slaveprocesses. Other VMS instructions were used to 
synchronize these processes and to manage the critical sections. Modzji- 
cations for parallel processsing were made in SPICE'S load, LU fmtoriza- 
tion, and local truncation error phases. The result was that CAYENNE, 
with two slave processes, ran 1.7 time faster than SPICE. 

The realization that two processors might be 
better than one is not new. Indeed,  parallel 
computing can be traced back to the nineteenth 
century.' The advent of very large scale integra- 
tion opened a variety of new opportunities in 
the field of parallel processing for specific 
applications such as image processing and signal 
processing. Designing and efficiently using a 
multiprocessor for general-purpose, high-speed 
computing, however, is more complex. 

The majority of today's application programs 
are written for single-processor machines. To 
convert these programs to run on multiproces- 
sor machines and achieve close to the ideal 
speed up, linear with the number of processors. 
is not an easy task. Two approaches can be 
adopted to accomplish this conversion task. The 
first is to design specific compilers that auto- 
matically convert programs written for single 
processors into programs t h ~ t  run efficiently on 
multiprocessors. The second is to leave to the 
application programmer the task of writing code 
that makes efficient use of the multiple pro- 
ccssors. 

The first approach is the best from a user's 
point of view; however, good multiprocessor 
compilers have yet to be designed. The second 
approach leaves more flexibility to the pro- 
g r ; i n imer ,  w h o  c a n  m o d i f y  s o m e  of t h e  
algorithms in the program to have more concur- 

rency. Indeed, the two approaches should not 
be mutually exclusive: tlie compiler can detect 
parallelism at the instruction level whereas the 
programmer  can def ine  paral lel ism at t he  
algorithmic level. Parallelism on the VAX 8800 
s y s t e m  is  a c h i e v e d  t h r o u g h  t h e  s e c o n d  
;~ppro:ich. 

We will describe in this paper the features of 
tlic VAX architecture and the VMS operating sys- 
tem that we used to implement our methodol- 
ogy for parallel processing. We will present a 
sct of FORTRAN routines we wrote to relieve 
the application programmer from having to 
know the inner workings of the VAX architec- 
ture and the VMS operating system. We will then 
dcscribe the niodificatiolis made to the circuit 
simulator SPICE2 to develop ;I parallel process- 
ing implementation, called C:AYEKhrE. Finally, 
wc will give comparative timing results on two 
simulation examples. 

VAX/VMS Primitives for  Parallel 
Processing 
'I'hc VILX 8800 system is ;I shared-memory multi- 
~>roccssor; all communications between proces- 
sors are performed through sections of shared 
mcmorJr rather than through message passing. 
\Vlicn writing parallel code o n  a shared-memory 
multiprocessor, a programmer must be aware of 
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two concepts: critical section and processor syn- 
chronization. A critical section is a section of 
shared memory that could be accessed by sev- 
eral processors at the same time if no precau- 
tions were  taken to prevent  tha t .  Allowing 
sin~ultaneous access to shared memory could 
result in incorrect data. Processor synchroniza- 
tion is the means by which processors proceed 
in an orderly fashion. I t  consists of mechanisms 
allowing processors to broadcast the beginning 
or the completion of a task or to wait until a sig- 
nal is received. 

Some VAX instructions and some VMS system 
routines support the management of critical sec- 
tions and processor sytlchronization." We use 
three VAX instructions to control access to criti- 
cal sections: 

8 BBSSI - Branch on bit set and set interlocked 

BBCCI - Branch on bit clear and clear inter- 
locked 

ADAWI - Add aligned word interlocked 

The instructions BBSSI and BBCCI are the VAX 
implementat ion of t h e  a tomic- tes t  and se t  
instructions that allow the control of access to 
critical sections to one process at a time. The 
instruction ADAWI performs an interlocked 
integer addition and returns a condition status 
depending on  whether  the  result is zero o r  
nonzero. 

We use three system routines of the VMS oper- 
ating system to support processor synchroniza- 
tion: 

SETEF - Set event flag 

CLREF - Clear evcnt flag 

WAlTFR - Wait for event flag 

These routines are services provided by the 
VMS operating system to synchronize processes. 
Indeed, the significant entity in the VMS multi- 
processor environment is not the processor but 
the process. A processor is a physical processing 
unit, whereas a process is a software entity cre- 
ated by the VMS operating system. Multiprocess- 
ing is achicved by creating several processes 
that VMS will assign to available processors. 
Only the operating system, not the user, can 
assign a given process to  a given processor. 
Event flags are bits maintained by VMS. Several 
different processes can have access to the same 
event flag, and signaling between processes can 
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be achieved by setting or clearing an event flag. 
For example, the system service WAITFR places 
a process in a wait state pending the setting of 
an event flag. 

Additional VMS system routines allow the cre- 
ation of processes, the creation and mapping of 
sections of shared memory, and the initializa- 
tion of event flags. These system routines are: 

CREPRC - Create process 

CRMPSC - Create and map section of shared 
memory 

MGLBSC - Map global sect ion of shared 
memory 

ASCEFC - Associate common event flag cluster 

More information on these routines can be 
found in the VAX/VMS System Services M a n -  
~ a l . ~  We used the VAX instructions and the 
VMS system routines listed above to write a set 
of routines that embeds our  methodology for 
parallel processing. 

Parallel Processing Methodology 
In the next section we outline the methodology 
we use to achieve parallelism and in the process 
define some important terminology. A program 
we wish to convert for parallel processing is 
divided into serial phases. Each phase is divided 
into tasks that are executed either serially or  
concurrently. A phase whose tasks are executed 
serially is called a single-stream phase, whereas 
a phase whose tasks are executed concurrently 
is called a multiple-stream phase. The single- 
stream phases are executed by a master process, 
whereas the multiple-stream phases are exe-  
cutcd by slave processes. The slave processes 
are idle when the master process is active and 
vice versa. Figure 1 shows this relationship. 
Master and slave processes run the same exe- 
cutable file,  thus leading to  easier program 
maintenance. As mentioned earlier, processes 
are dynamically assigned to processors by the 
VMS operating system. 

We des igned  a gene ra l  s e t  of FORTRAN 
routines for this environment. This set now has 
seven en t r ies  and implements  t he  cr i t ical-  
section and process-synchronization concepts 
defined earlier. I t  also performs the necessary 
initialization and provides facilities for debug- 
ging a multiprocess execution. The remainder 
of this section describes the functions available 
in this set. 
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SLAVE 1 I 
I 
I 

MASTER I I 

SLAVE 2 

REAL TIME w 

KEY: - ACTIVE - IDLE 
?-r SIGNAL TO PROCEED 

Q u r e  I Syizchroniz~~tion oJ' Processes 

In itializ~i Non 
Initialization is performed by a logic:~l function 
callecl WSTER-PROCESS, which is set to ']'RUE 
i f  a master process runs the executable filc and 
FALSE i f  a slavc process runs i t .  'I'he slavc pro- 
cesses have special names that differentiate 
thcm from the master process. An argument list 
permits the specification of thc number of slave 
processes to create and the input and output 
files to use for those slave processes. Through 
this argument list a unique process number is 
returned to each calling process. 

A user can also specify the number of slave 
processes to crcatc by using ;I command-line 
option when the program is run. For example. 
the program CAYENNE would be run with 
N slavc processes if invoked with the command 
CAYENNE/SLAVES=N at the S prompt. I f  the 
calling proccss is a master. IMASTER-PROCESS 
will create the sections of shared memory. ini- 
tialize the event flags usccl for synchronization, 
and create the required number of slave pro- 
cesses. If the calling process is a slave, the func- 
tion will map the sharcd virtual-address space to 
the existing sections of sharcd memory. 'I'he sec- 
tions of sharcd memory are FORTRAN common 
blocks defined as shared when the program is 
linked with an appropriate linker cornmand. 
During this initializ;ltion phase, CREPRC creates 
slave processes, CRMPSC and MGLSSC create 
and map scctions of shared memory respec- 
tively. and ASCEFC initializes the event flags. 

Sj/nchronizatio?z 
Synchronization is performecl by four of our 
seven subroutines: FORK, JOIN, JOIN-EXIT. 
and JOIN-FORK. These subroutines use the VMS 
system routines SETEF, CLREF, and WAITFR to 
perform the necessary interprocess signaling. 
Each subroutine accomplishes the following 
functions: 

FORK - This subroutine is callctl by the 
master process to signal the slavc processes to 
proceed. The rnastcr process then waits in 
this subroutine for the slaves to signal b;lck. 

JOIN - This subroutine is c;~llcd by the slavc 
processes to signal the master process to pro- 
ceed. The slave processes then wait in this 
subroutine for the master to sign:il back. 

Only the last calling slave process signals the 
master process. The VAX instruction ADAWl 
is used to identify this last calling slavc pro- 
cess. 

JOIN-EXIT - This subroutine is called by 
the slave processes to signal the master pro- 
cess to proceed. However, the slave processes 
then exit instead of waiting for a signal. That 
is the way the slavc proccsses are stopped 
when they are no longer needed. 

JOIN-FORK - This subroutine is called b!. 
the slave processcs to synchronize two multi- 
ple stream phases with no intervening single- 
stream phase. The use of this subroutine 
allows slave processes to be synchronized 
without having to signal the master process. 

These synchronization routines put a process 
that nceds to wait for a signal into a wait state. 
Processes in a wait state do not use any CPIJ 
time. Each call to onc of these synchronization 
routines, however, rcquires many machine 
instructions to be executed. If  the application 
programmer anticipates a very short waiting 
time, an alternative to the prcvious method of 
synchronization is synchronization through busy 
wait. In this scheme a process will loop, cxccut- 
ing an instruction of the form DO WHILE 
(FLAG-IS-NOT-SET) ENDDO. The process will 
execute the previous instruction until the logi- 
cal FWG-ISJOT-SET is set to FALSE. 

The busy-wait form of synchronization needs 
to be used with care. I t  can lead to loss of over- 
all system performance. Indeed, the process 
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executing a busy-wait instruction will use CPU 
time that might be  more product ively used 
by another  process. In addit ion,  the  logical 
FLAG-IS-NOT-SET, w h i c h  i s  c o n s t a n t l y  
checked for, is shared by all processes. Thcre- 
fore, access to this logical must be carefully con- 
trolled. If several processes change this logical at 
the same time, its final value will be unknown. If  
no process updates FLAG-IS-NOT-SET, a pro- 
cess may execu te  the  busy-wait instruct ion 
forever, thus leading to  deadlock.  Deadlock 
occurs when processes are waiting to receive a 
signal that will never be sent. 

Critical Section 
Critical sections in a parallel implementation 
should be minimized. They are the bottlenecks 
of the multiple-stream phases because they can 
be accessed by only one process at a time. If a 
critical section cannot be avoided, the  time 
spent to access this section should be minimized. 
Exclusive access t o  cr i t ical  sect ions can be  
achieved by using either the VAX interlocked 
instructions or the VMS system services.3 The 
former method implements a busy-wait form of 
access synchronization, the latter uses event 
flags. 

The two subroutines LOCK and UNLOCK are 
assembly language routines implementing a 
busy-wait form of access synchronization. We 
chose this method because it is faster in elapsed 
time, and the time spent by a process waiting is 
expected to be small when the access to critical 
sections has been minimized. These subroutines 
are used in the following manner to access a 
critical section: 

CALL LOCK(SECTI0N-ENTRY) 
CALL ACCESS-CRITICALSECTION 

CALL UNLOCK(SECTI0N-ENTRY) 

SECTION-ENTRY is an integer associated 
with a given critical section. This integer is set 
to 1 when a process is using the critical section 
and to 0 when no process is using the critical 
sec t ion .  The  two cal ls  LOCK and UNLOCK 
ensure that only one process at a time executes 
the code ACCESS-CRITICAL-SECTION. We use 
these rout ines  only  o n c e  in CAYENNE for 
dynamic task allocation. 

Parallel Debugging 
Debugging parallel code  is somewhat more 
complex than debugging sequential code. We 

debug our  parallel code using the following 
methodology. The functionality of our parallel 
code does not depend on the number of slave 
processes or on which specific process performs 
a particular task. Therefore, the whole code can 
be executed by the same process. For example, 
CAYENNE runs with only one  process if the 
number of slave processes is specified to be 
zero. This allows most algorithmic modifica- 
tions made in the code to be debugged with the 
VMS debugging facilities provided for sequen- 
tial code. 

After the first debugging phase, a code section 
could still have errors when run with multiple 
processes. Our  routines al low two forms of 
debugging, requested either through a flag in 
t h e  a r g u m e n t  l is t  of t h e  log ica l  f u n c t i o n  
MASTERPROCESS or through a command-line 
option. The first form of debugging permits the 
assignment of a different terminal to each pro- 
cess and the setting of a debugging session for 
each process on its assigned terminal. The sec- 
ond form of debugging is intended to be used 
with a workstation. A different workstation win- 
dow is assigned to each process, and a debugging 
session is set up  for each process in its assigned 
window. The number of processes that can be 
debugged concurrently is limited to either the 
number of terminals available or the number of 
workstation windows that can be opened. 

Example 
The following example,  shown in Figure 2 ,  
illustrates some of the functionality of our set of 
routines. We want to compute the sum SUM of 
all integers from 1 to N'S. We assume that a mas- 
ter process with the help of N slave processes 
does the task. Each slave process is assigned a 
unique number PROCESS-NUMBER between 1 
and N by the logical function MASTERPROCESS. 
The section of shared memory consists of an array 
PARTIAL-SUM of  s i z e  N. T h e  s l a v e  p r o -  
cesses work in para l le l .  Each slave process 
adds S consecutive integers and stores its re- 
s u l t  i n  t h e  s h a r e d  m e m o r y  l o c a t i o n  
PARTIAL-SUM(PR0CESSSVUMBER). 

After the slave processes have completed their 
task, the master process adds their partial sums, 
stored in the shared array PARTLSUM, to pro- 
duce the final result SUM. The code correspond- 
ing to this procedure follows. (Remember that 
master and slave process run the exact same 
executable file.) 
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L O G I C A L m a s t e r - p r o c e s s  

INTEGERprocess-number  

INTEGER number-of-slaves,default-number-of-slaves 

INTEGER d e b u g - f l a g  

PARAMETER ( d e f a u 1 t ~ n u m b e r ~ o f ~ s l a v e s = 5 , d e b u g - f l a g = O ~  

COMMON / s h a r e d /  n u m b e r - o f - s l a v e s  

COMMON / l o c a l /  p r o c e s s - n u m b e r  

I F  ( m a s t e r - p r o c e ~ s ( p r o c e s s ~ n u m b e r ~ f ~ s l a v e s ,  

d e f a u l t - n u m b e r ~ o f ~ s l a v e s , ' i n p u t ' , ' o u t p u t ' , d e b u g ~ f l a g ) )  THEN 

C A L L m a s t e r - c o d e  

ELSE 

CALL s l a v e - c o d e  

ENDIF 

END 

INTEGER n u r n b e r ~ o f ~ s l a v e s , m a x i m u m ~ n u r n b e r ~ o f ~ s l a v e s , i  

PARAMETER < r n a x i r n u r n ~ n u m b e r ~ o f ~ s l a v e s = l 0 ~  

I N T E G E R p a r t i a l ~ s u m ~ m a x i r n u m ~ n u m b e r ~ o f ~ s 1 a v e s ~ , s u r n  

COMMON / s h a r e d /  number-of-slaves,partial-sum 

CALL f o r k  

sum = 0 

DO i = 1 , n u m b e r - o f - s l a v e s  

s u m = s u m + p a r t i a l - s u m ( i )  

ENDDO 

END 

SUBROUTINE s l a v e - c o d e  

INTEGER p r o c e s s - n u m b e r , n u m b e r - o f - s l a v e s , s t a r t , s , i  

I N T E G E R p a r t i a l - s u m ( 1 )  

PARAMETER ( 5 = 2 0 0 )  

COMMON / l o c a l /  p r o c e s s - n u m b e r  

COMMON / s h a r e d /  n u m b e r ~ o f ~ s l a v e s , p a r t i a l ~ s u m  

p a r t i a l ~ s u m ~ p r o c e s s ~ n u m b e r ~  = 0 

s t a r t  = ( p r o c e s s - n u m b e r - 1 )  s  

D O i =  s t a r t + I , s t a r t + s  

partial-sum(process-number) = partial-sum<process-number) + i 

ENDDO 

CALL j o i n - e x i t  

END 

Figure 2 PROGRAiV P~wallel 
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In the next section w e  describe h o w  w e  cre- 
ated pardl lel processing in several phases of the  
circuit simulator SPICE to  produce the  program 
CAYENNE. 

Modifications Made in SPICE 
B e f o r e  a d t l r e s s i n g  e a c h  p a r a l l e l  p h a s e  o f  
CAYENNE, w e  give a brief overview of the  cir-  
cuit simulator SPICE. 

Overviezu of SPICE 
SPICE performs scvcral types of circuit  analysis: 
s teady-s ta te  analys is ,  t r ans ien t  analys is ,  a n d  
small-signal analysis. The most commonly used 
anirlysis for digital circuits is the  transient analy- 
sis, which becomes increasingly t ime consum- 
ing as the  size of the  simulated circuit increases. 
F i g u r e  3 g i v e s  a g l o b a l  d e s c r i p t i o n  o f  t h e  
;~lgorithms used by SPICE for a transient analysis. 

The circuit  equations form a system of ordi-  
nary diffcrcntial equations. This system is solved 
numerically at  successive t ime points t i ,  i = 1, 
N .  It is reduced at a given t ime point  ti into a 
system of nonl inear  equa t ions  by us ing a dis-  
cre t iza t ion m e t h o d .  A discre t iza t ion m e t h o d  
approximates the time derivative of a variable at 
a given time point  as a function of the value of 
the  variable at  that t ime point  and  at  previous 
t i m e  po in t s .  T h i s  m c t h o d  i n t r o d u c e s  a d i s -  
crctization e r ro r  that  must  b e  con t ro l l ed  a n d  

t i m e =  0 

DO WHILE ( time < finish t i m e )  
discretizedifferential equations 

DO WHILE ( not c o n v e r g e d )  
linearize algebraic equations 
solve linear equations 

check convergence 

ENDDO 
I F  ( local truncation error too big ) THEN 

reduce time 

ELSE 

save r e s u l t s a t  this time 

advance time 

ENDIF 
ENDDO 

Figure 3 Transient Analysis Algorithm for 
SPICE 

maintained be low a speci f ied  threshold .  This  
er ror  is called t h e  local  t runcat ion er ror .  T h e  
r e s u l t i n g  s y s t e m  o f  n o n l i n e a r  e q u a t i o n s  i s  
reduced to a system of linear equations by per- 
forming a f irst-order Taylor expansion of the  
nonlinear elements of the circuit .  This lineariza- 
t ion  i n t r o d u c e s  a n o t h e r  e r r o r  ca l l ed  t h e  l in-  
earization error.  The  resulting system of linear 
equat ions  is then solved exactly,  us ing an  LU 
factorization of the  system matrix. 

After t h e  s o l u t i o n  of  t h e  sys t em has b e e n  
ob ta ined ,  t h e  l inear iza t ion e r r o r  can  b e  es t i -  
mated. If this er ror  i s  t oo  big, a n e w  lineariza- 
tion is performed around t h e  previously com-  
pu ted  so lu t ion ,  and  t h e  n e w  l inear  system is 
solved again. Successive linearizations are per-  
formed unti l  convergence is obta ined,  that is, 
until the  linearization error is below a specified 
threshold .  W h e n  convergence  is reached t h e  
solution of the nonlinear system is obtained, and 
the  local t runcat ion er ror  is t hen  checked .  If 
this error is too big, the solution at  time point t, 
is rejected and t h e  system of differential equa-  
t ions  i s  so lved a t  a n e w  t i m e  p o i n t  t, so that  
ti - 1 < tj < t i .  If t he  error is below a specified 
threshold, the  solution is accepted,  and the sys- 
tem is solved at a new time point r ,  + 1 so  that 
ti < ti + 1. This procedure is repeated until the  
entire transient analysis is computed.  During a 
transient simulation the  circuit simulator SPICE 
spends u p  to 90 percent of its CPU time in three 
phases of thc  previous algorithm. These phases 
arc as follows: 

Load Phase - This phase consists of loading 
the matrix and the  right-hand side of the  sys- 
tem of linear equations obtained as described 
above. Device-model equations and lineariza- 
tion errors are  also computed in this phase. 

LU Factorization Phase - This phase consists 
of factoring the matrix of the  system of linear 
equations into the product of a lower triangu- 
lar matr ix  and  an  u p p e r  t r iangular  matr ix .  
This factorization is used t o  solve the  system 
of linear equations. 

Local Truncation Error Phase - This phase 
consists  of c o ~ n p i i t i n g  t h e  local  t runcat ion 
error committed at each time s tep .  

The modifications for parallel processing made 
in these three phases are  described next. 
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Loud Phase 
In t h e  load phase  e a c h  c i r cu i t  e l e m e n t  c o m -  
p u t e s  a n d  loads  a l l  i t s  c o n t r i b u t i o n s  t o  t h e  I J K 

matrix and the right-hand side of the linear sys- 
tem obtained from the  circuit  equations. Several 
dist inct  e lements  may con t r ibu te  to  t h e  same 
matrix o r  right-hand side entry. This means that 
the  matrix and right-hand s ide  are  critical sec- 
t i ons  in t h e  load p h a s e ,  and  access  t o  t h e m  
necds  t o  b e  control led .  O n e  approach  to syn- 
chronize accesses to  the matrix is to use a single 
lock on the whole  m a t r i ~ . ~  In this case only o n e  
processor can wri te  in to  t h e  matrix a t  a given 
time, leading to contention for shared resources 
and decreased efficiency. 

In o u r  approach locking t h e  entire matrix is 
avoided by creating an additional data structure 
to store each individual e lement  contribution.  
This structure can be viewed as a three-dimen- 
sional matrix whose third dimension is used to 
store each individual element contribution to a 
given circuit-matrix entry. Figure 4 depicts such 
a matrix.  There  is n o  unused memory  in  th is  
structure because it has a variable d e p t h  in its 
third dimension. Nevertheless, using this struc- 

G I  G2 
ture will  increase the  memory requircmcnts of 
the simulator In the design of CAYENNE it was 
necessary o n  many occasions to trade memory 
f o r  s p e e d .  O u r  t e s t  e x a m p l e s  s h o w  t h a t  
CAYENNE requ i re s  a n  average of 2 0  pe rcen t  
m o r e  da ta  m e m o r y  t h a n  SPICE ve r s ion  2 G 5  
requ i re s .  T h e  c o n t r i b u t i o n s  for  e a c h  ma t r ix  
entry are subsequent ly  summed  and loaded in 
parallel into the  circuit  matrix. The matrix load 
is therefore performed in two successive multi- 
ple-stream phases. 

It is crucial  that tasks arc  evenly distri butecl 
among slave processes s o  that n o  slave process 
s t a y s  i d l e  w h i l e  o t h e r s  a r e  c o m p u t i n g .  A 
dynamic task allocation was chosen for the first 
multiple-stream phase of the matrix load. That 
allocation was  preferred to  a static task alloca- 
tion because the time needed to load each ele-  
ment  cannot  be  est imated accurately.  Indeed,  
computation of device models may be bypassed 
dur ing  s imula t ion.  T h e  mode l  equa t ions  of a 
device are not computed a t  a given iteration of 
the  analysis if t he  voltages applied to this device 
did not change significantly compared to thcir  
values a t  t h e  previous  i teration.  This  strategy 
saves CPU time. 

Dynamic task allocation is achieved through 
an ar ray  of tasks w h o s e  n u m b e r  e x c e e d s  t h e  

G I  - CONDUCTANCE OF FIRST RESISTOR 

G2 - CONDUCTANCE OF SECOND RESISTOR 

Figure 4 Three Dimensional Matrix 

number  of slave processes. A task consists of a 
list of circuit  elements to  be  loaded.  Tasks are 
defined s o  that each rcquires approximately the  
s a m e  a m o u n t  of  w o r k .  T h e  a m o u n t  of  w o r k  
needed to  load a c i rcui t  e l emen t  is est imated 
roughly by neglecting bypass and evaluating the  
CPU time needed to  load the  element.  Dynamic 
task a l loca t ion  is e x p e c t e d  t o  min imize  any  
imbalance  that  may o c c u r  d u r i n g  s imula t ion  
through device model computation bypass. 

The task allocation for the  second multiple-  
stream phase  of t h e  matrix load is d o n e  stati- 
cally s i n c e  t h e  w o r k  n e e d e d  t o  pe r fo rm th is  
phase can b e  d ivided in to  tasks requir ing the  
same amount of CPU time. The only interlocked 
access to shared memory during the  matrix load 
is the  o n e  on the  array index,  which defines the  
nes t  task when dynamic task allocation is used. 
This index is successively read and incremcnted 
by all slave processes. 
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LU Factorization Phase 
The time spent by a direct-method circuit simu- 
lator in the load phase is linear in the  number  of 
c lcmcnts ,  whereas  t h e  t ime  s p e n t  solving t h e  
linear system of equations is superlinear in the  
sizc of the ~ n a t r i x . ~  For large circuits the ~na t r ix  
s o l u t i o n  p a r t  w i l l  t h e r e f o r e  b e c o m e  m o r e  
i m p o r t a n t  a n d  w i l l  d o m i n a t c  o v e r  t h e  load  
phase. 

In SPlCE t h e  matrix-solution phase is d o n e  
using sparse matrix LU factorization. Although 
full matrices can be factorized efficiently in par- 
a l l e l . *  t h e  p a r a l l e l  f a c t o r i z a t i o n  o f  s p a r s e  
matrices is more difficult. The LU factorization 
;~lgorithm has a sequential dependency, and the  
amount of concurrent work that can be clone at 
cach s tep  in a sparse matrix is small. 

It is possiblc to  design algorithms that dctcct  
the  maximum parallelism a t  each s tep  of the  LU 
factorization. Such algorithms havc heen  uscd 
for vectorized circuit simulation.') In  ou r  cnvi- 
ronmcnt synchronization is done  through soft- 
ware and the  fine-grain parallelism used for vec- 
torization may not b e  efficient. Based on  these 
considerations,  w e  have proposed and iniple- 
mentetl an algorithm in which  part icular ca re  
h a s  b e e n  t a k c n  t o  m i n i m i z e  t h e  o v e r h c a d  
incurred with parallel processing. The details of 
ou r  algorithm can be found in reference 10 .  

Local Truncation Error Phase 
The parallel computation of the  tinic s tep  does  
not present major difficulties since the  compu-  
ta t ion  of  t h e  loca l  t runca t ion  e r r o r  f o r  c a c h  
cncrgy storage c l emen t  is i n d e p e n d c n t .  Each 
slavc process is assigned a set of energy storage 
elements and computes  the  t ime s tep  required by 
this set. The master process then computes  the  
minimum time step among the time steps returned 
by the slavc processes. The energy storagc e l e -  
ments are statically assigned among slave pro-  
cesses s o  that the  work among them is balanccd. 

Results 
The parallel algorithms described in this paper 
havc been implemented to produce the program 
CAYENNE. We n o w  prescrrt t w o  e x a m p l e s  t o  
comparc the  timing performances of SPICE and 
CAYENNE. 

The first example is the simulation of a MOS 
;irithmetic logic unit ( M U )  on  a VAX 8 8 0 0  sys- 
tem. The circuit  has 2 0 0  nodes and 1 3 5 0  e lc-  
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n'lents Twelve hundred Newton Raphson itera- 
tions are required for the  transient simulation 
The ef f ic~cncy of o u r  parallel iniplementation is 
measured in this example.  If a multiple-stream 
phase runs  sequential ly in an  e lapsed t ime T, 
and  in  para l le l  w i t h  N s lave  p rocesses  in an  
elapsed tinic TF,  w e  define the  cf f ic~ency,  E ,  of  
the  parallel execution by 

E represents the  ratio of t h e  actual  savings in 
elapsed time to the potential savings in elapsed 
time. Table I gives timings and efficiencies for 
the  ALU example.  As a comparison, SPICE simu- 
lates the  same circuit  in an  elapsed time of 8 3 4  
seconds. 

Tab le  1 Timing Performances a n d  Efficiencies 

CAYENNE CAYENNE 
0 Slaves 2 Slaves Efficiency 

Phase (Seconds) (Seconds) (Percent) 

Load 694 97 86 
LU 22 14 70 
LTE 67 35 96 
Total 
Simulation 867 529 - 

'The second  e x a m p l e  is t h e  s imula t ion of a 
MOS control  s tore .  T h e  c i rcui t  has 1 6 0  nodes  
and 5 3 0  elements,  and the  transient simulation 
r e q u i r e s  1 4 0 4  N e w t o n  R a p h s o n  i t e r a t i o n s .  
SPICE spends 9 1 percent of the simulation time 
in  the  three phases w e  modified for parallel pro- 
cess ing.  CAYENNE e x e c u t i n g  w i t h  t w o  s lave  
p rocesses  ach ieves  9 0 - p e r c c n t  e f f i c i ency  in 
thcsc phases and s i~nula tes  the circuit 1.7 times 
fdster than SPICE. For this simulation, CAYENNE 
on  a VAX 8 8 0 0  runs 9 times faster than SPlCE on  
a VAX- 11 /780  CPU. Table 2 shows these com- 
parisons. 

T h e  ef f ic iencies  of a para l le l  execu t ion  of 
CAYENNE d c p c ~ l d  o n  t h e  s ize  of t h e  c i r cu i t .  
Indeed,  there  is a fixed overhead incurred by 

Tab le  2 Compar ison of SPlCE a n d  
CAYENNE Elapsed Run Times  

Case  
Elapsed 
Seconds Ratio 

SPICE on VAX-11/780 3990 9.1 
SPICE on VAX 8800 750 1.7 
CAYENNE on VAX 8800 440 1 .O 
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c a l l i n g  t h e  s y n c h r o n i z a t i o n  r o u t i n e s  J O I N .  
FORK o r  JOIN-FORK. The bigger the  task per- 
formed by the  slave proccsscs before a call to ;i 
synchronization routine. the  smaller the  relative 
cost of synchronization. The  simul:~tions of ou r  
examples were  also run on  a lightly loaded sys- 
tem. Loss of efficiency occurs whcn processors 
have to be  shared w i t h  nonrela ted  processes.  
and busy-wait synchronizations may waste sig- 
nificant resources. A workload consisting of sev- 
eral independent  simulations of c q i ~ a i  impor-  
tance  is a l ready d e c o m p o s e d ,  and  C A Y E N N E  
shoulcl b c  run in s ingle-process  m o d e .  If t he  
turnaround of a single, large simulation needs to  
be  minimized,  however ,  CAYENNE shou ld  b e  
run with two slave processes on a tlcdicated o r  
lightly loaded 8 8 0 0 .  

Summary 
We have described a gencral methodology for 
parallel proccssing on  the  VAX 8 8 0 0  system and 
a user-friendly se t  of rout ines  that e m b e d  o u r  
methodology. We  have also presented the  suc- 
cess fu l  c o n v e r s i o n  of  t h e  c i r c u i t  s i m u l a t o r  
SPlCE into tlic parallel program CAYENNE. New 
schemes to minimize the  overhead of parallel 
processing and to  balance the  load among pro- 
cesses contribute to  the  overall. efficiency of o u r  
implement;~tion.  
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Dennis T. Bak I 

m e  Impact of VAX 8800 Design 
Methodology on CAD Development 

Contributing to the success of the VAX 8800 project was an integrated 
CAD environment supporting the hardware design eflort. A CAD group 
dedicated to tbis single project was chartered to supply a smoothly oper- 
ating CAD process from initial design conception to final production. 
B e  CAD environment evolved through a blending of existing tools avail- 
able in Digital with new tools developed outside the company. Gaps in the 
environment were filled through extensive modt$cation of existing tools 
and new development eflorts. lbe driving force behind the CAD process 
was a design methodology, radical for its time but second nature now. 

Past CAD Development Eflorts 
Prior to  the  mid-1 970s ,  logic development  
efforts within Digital Equipment Corporation 
were largely done without the extensive use of 
CAD tools.  Hand-drawn schematic  diagrams 
were the primary means of expressing logic 
designs. 

A major advance in design automation took 
place in the mid- 1970s when the Stanford Uni- 
versity Design System, o r  SUDS, began to  be 
used within Digital. SUDS allowed the entry of 
schematics into and the extraction of net lists 
from a graphics database. Although it was a 
major step forward in the automation of design 
processes, SUDS required significant user train- 
ing and experience to become an effective tool. 

Building a SUDS database capable of being 
used by a conlputer opened a new avenue for 
the evolving CAD groups to automate their  
design processes. These groups soon developed 
a large body of programs to support  net-list  
extraction, design analysis, placement and rout- 
ing, and eventually manufacturing parts-lists 
generation. Simulation tools were developed to 
help verify the operations of a design before any 
actual hardwarc was available. The increased 
complexity of design drove CAD developers to 
provide more powerfi~l CAD tools. In turn, logic 
designers soon grew increasingly dependent on 
CAD tools as their capabilities increased. 

The design nlethodologies and the CAD tool 
suite evolved to support  large-CPU designs, 

such as the VAX 8600 family. SUDS eased the 
burden of enter ing and coping  with design 
changes; however, the actual contents of its 
schematics differed little from those of the ear- 
lier hand-drawn ones. In large part the schemat- 
ics entered by designers into SUDS correlated 
directly with the physical entity being built ,  
showing all components and their pins. 

At the inception of the VAX 8800 project in 
the early 1980s, a vast collection of CAD tools, 
written by many internal groups, had sprung up. 
Most of these tools required large ASCII data 
files and significant manual intervention by CAD 
experts. Although many aids were provided to 
develop design processes, they lacked the cohe- 
siveness and simplicity needed to put a process 
directly into the hands of the designers. 

At about this time, a number of significant 
advances were made in CAD technology. Engi- 
neering workstations were announced at prices 
that made it  practical to put them directly into 
the hands of designers. Moreover, new design 
methodologies, such as structured computer- 
aided logic design, or SCALD, were also devel- 
oped. 

These methodologies  could significantly 
improve the quality of design while decreasing 
the time to develop complex systems. There- 
fore, Digital made a commitment to use those 
methodologies on the VAX 8800 project to pro- 
duce not only the product but a more produc- 
tive way of developing it. 
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Design Methodology 
T h e  d e v e l o p m e n t  o f  <:AD t o o l s  f o r  t h e  
VAX 8800 projcct was ;I considerable challenge 
to the CAD designers. The complexit~7 of the 
VA.X 8800 design, with its particular g ~ t c  ;irr;l!. 
implementat ion,  demanded that thc design 
quality be high before anything w;~s  committed 
to hardware. In fi~ct. the project managers rn;idc 
a radical (for its time) commitment to simulate 
the entire design and verify its timing before 
clnjl hardware was built .  Therefore, the CAD 
process had to be designed to meet not only that 
goal but also to facilitate the rapid production 
of hardware once the design had proven ;~cccpt- 
able. This scction of the paper describes the 
methodology we followed to m;~ke the best use 
of our  CAD tools. The next section tlcscribes 
tllosc tools and how they were used. 

The tool sujtc that evolvetl, pictured in Figure 1 ,  
supportetl both logical and physical design pro- 
cesses with checks and balances t o  ensure that 
the design topologies remained the same. Schc- 
matic diagrams, captured at an engineering 

workstation. were proccssetl into a logical net 
list that was used by the simulation and verifica- 
tion tools. Oncc a logical design reached a cer- 
tain lei-el of maturity. i t  w ; ~ s  rn;tppecl into a 
ph!,sic;tl tlesign. At that point ;I ph!rsical analysis. 
to dctcrminc clclays ant1 signal integrity, was 
perfor~netl. Placetnent and routing tools were 
then run to further refine the dcsign. The part of 
the physical design datab;~sc that represented 
the logical topology was then p;issecl b;ick to the 
logical side of the design process. There, a com- 
parison was made to ensurc that the physical 
ancl logical designs were congruent. The results 
o f  simulations based on the pIiysic;~l design 
arcre ;ilso passed to the logical process for com- 
parison with thc sirnul;~tions based on the logi- 
cal design. These mcchanisnis proviclctl the pri- 
mary checks to ensurc that the logical design 
~natched the physical onc. 

We decided th;tt the best way to assure suc- 
cess was to dcvelop a co~npletc  paper specifica- 
tion of the machine to be built. Oncc the over- 
all goals for the machine Iind becn est;~blishctl, 
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the designers developed the specifications for 
each major logic section. This high-level logical 
design was then part i t ioned in to  func t ions  
required within modules and gate arraj7s. These 
primary interfaces were specified before any 
detailed logic was developed. As it turned out,  
that partit ioning remained relatively intact 
throughout the project. 

The nest  step was to develop probe designs 
and abstract models for the most complex parts 
of the  machine.  These designs and models  
tcstcd whether or not particular logic functions 
could be developed and timing constraints met. 
In some cases the probe designs were carried 
through to the actual fabrications of gate arrays 
or modules. This continuity allowed us to test 
the limitations of the selected ECL technology as 
well as the logic design. 

The probe designs proved useful in many 
ways to both the designers and the CAD devel- 
opers. The designers were able to verify that 
their logic implementations would work. The 
CAD developers were able to use the designs as 
test cases to  develop  and debug  processes. 
These test cases proved to be critical to the pro- 
ject's success, especially when the finished 
design was given to the manufacturing organiza- 
tion. The process was so smooth, in fact, that 
designs flowed through it with few problems. 

The Influence of SCALD 
At the onset of the VAX 8800 project, we inves- 
tigated the tools available within Digital for 
bui lding a process to suppor t  the evolving 
design methodology. This study lead the CAD 
team to explore several systems being devel- 
oped by other companies. One system being 
developed by Valid Logic, Inc., the SCALDSys- 
tem CAD system, was procured by Digital. This 
system put the power of dedicated engineering 
workstations directly into the hands of logic 
designers. Of equal importance was the fact that 
thc SCALDSystem CAD tools were bcing devel- 
oped by the same people who conceived the 
SCALD approach to hardware design. 

Logical schematics, requiring almost no infor- 
mation about the physical design, were entered 
into the SCALDSystem database. These schemat- 
ics were  en tered  in a hierarchical  manner  
through an easy-to-learn graphical system. Such 
an arrangement encouraged the designers to  
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avoid the creation of paper schematics by trans- 
ferring their concepts directly to the worksta- 
tion screens. 

The decomposition of the design was from the 
top down, but the actual entry of design data 
o c c u r r e d  s imu l t aneous ly  a t  many l eve l s .  
A "design tree" evolved in which cells form- 
ing gate  arrays were  merged o n t o  modules  
that plugged into the backplane to form a sys- 
tem. The logical design was entered via the  
SCALDSystem tools onto schematics. The physi- 
cal implementation of that logical design was 
left to the physical design tools. 

simulation and Timing Verification 
Simula t ion  o n  t h e  VAX 8 8 0 0  p ro j ec t  was  
approached from two different viewpoints. The 
first aimed to determine whether or not the per- 
formance goals of the proposed microarchitec- 
ture were within the necessary range, as speci- 
fied by the project's needs.2 This simulation 
started early in the project before any detailed 
logic design had been completed. Once those 
performance goals had been verified, the second 
level of simulation focused on the logic design 
as it evolved. 

The designers could verify that each piece of 
the design functioned as specified while that 
piece was being developed. As the design tree 
evolved, the number of logic levels given to the 
simulation tools increased until the entire logic 
design had been en tered .  At this  po in t  t h e  
designers actually had the equivalent of a soft- 
ware breadboard of the entire VAX 8800 proces- 
sor. Microcoded instructions were "running" on 
this software breadboard long before any hard- 
ware was available. 

The ability to run instruction streams on the 
breadboard gave the project several advantages. 
Logic designers could debug their logic concur- 
rent with the microcode developers verifying 
their microcode.  Moreover, the  diagnostics 
engineers could write as well as debug signifi- 
cant numbers of microdiagnostics much earlier 
than was usual in a design project. The early 
completion of those diagnostics allowed the 
first available hardware to  be checked thor- 
oughly. 

Making the design logically correct through 
simulation did not ensure that the machine 
would work at the desired cycle time. In the 
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ECL technology used in the VAX 8800, signal tim- 
ing was critical. 'I'herefore, a timing verifier. part 
of thc SCALDSystem tools. was used to ascertain 
whether or not the timing goals were being 1net. 

It was within the timing verifier that the intlu- 
ence of the physical implementation on the log- 
ical design was first felt. The Iogjc designers had 
to ensure that the placement of gates and rout- 
ing of signals was optimal for all critical ele- 
ments. Delay information was then extr;~cted 
from the physical dcsign and fed back to the 
timing verifier. 

Physical Design 
As the logical design evolved, we developed a 
CAD process to convert i t  rapidly into a physic:~l 
design. A set of automatic placcrnent and rout- 
ing tools, together with delay-estimation and 
signal-integrity tools, was i~sed to givc feet1b;tck 
to the tlesigners. 'l'he important question here 
was whether or  not they could build physical 
representations of thcir logic designs. These 
tools also passed data to the timing verifier, 
which analyzed the effect of the physical dcsign 
on circuit timings. 

Since all the logic hacl to be verified before 
any hardware was fabricated, all processes had 
to be designed to handle a large numbcr of 
designs in p;~rallel. 'The rc1ev;tnt Digital rnanu- 
facturing facilities and outside vendors were 
acquainted with thc physical dcsign through the 
test cases rather than through an  actual proto- 
type. Thus the facilities and vcntlors could con- 
figure and debug thcir o w n  m;~nuf;icturing pro- 
cesses before any completed physical designs 
were sent to them. 

To ensure a sriiooth tr;uisition into the fabrica- 
tion phase,  manuf;tcturing engineers  were  
assigned to work directly with the designers 
early in the design process. 'I'hus these cngi- 
neers becalnc familiar with the VAX 8800 tech- 
nology and the machine as it evolved. This was 
an important step bcc ;~ i~sc  our manufacturing 
organization was to build a11 the hardware, 
including the prototypes. This early acquain- 
tance with the design allowed them to tlevclop 
~nanufacturing processes to support the rapid 
change to full volume shipments soon after the 
VAX 8800 system was ;innounccd ' 
Computational  Resources 
One of the largest VAXclustcr systems ever built 
was assembled to support the \'AS 8800 project. 

'This cluster consisted of 1 4  VAX- 1 1/780 and 
VAX-I 1/785 systems with over 20 gigabytes of 
mass storage. Even this large amount of storage 
was inatlequatc at times to support the demands 
of the databases. Forecasting the coniputational 
requirements of this projcct proved d i f f i c ~ ~ l t .  
The VAXcluster s)istem proviclcd the computa- 
tional power  and flexibility to  grow as the  
demands increased. 

The availability of sufficient computations 1 
resources was critical to the success of our pro- 
ject. The design methodology of extensive simu- 
lation was effective only wjth re;ison;ible pro- 
gram run times. Once the design was verified. 
large numbers of physical designs were released 
for fabrication within ;I short periotl, which con- 
sumed significant computation;~l and storage 
resources. 

The Tool Suite 

Design Data Management 
A design data management (DDM) systcm was 
dcveloped to organize the many files that con- 
tained the actual dcsign dat;~. At the heart o f  that 
system was the concept of a "design object." 
This object was some functional piece of the 
dcsign, usu;llly conforming to tlic physical parti- 
tioning. For ex;~lnple. each gate array ant1 mod- 
ule in the system was defined as a dcsign object. 
For each object we dcvclopcd ;I hier;irchy of 
subdirectories within the VMS file system. This 
separation of data files into subdirectories  
allowed various tools within the CAD process to 
know where to find input files and to write out- 
put files. 

The design database was conti~iually churning 
with new inform;rtion. '10 givc a st;tble picture 
as the overall dcsign evolved, a "snapsliot" of a 
design object could bc taken at any tinie, thus 
generating a revision of the desigll object. New 
subdirectory file trees were then createtl for 
each revision. IJsing this schclnc a designer 
could create a "frozcn" revision of a design. He 
could then use that revision for simulations or 
other activities while changes were being liiadc 
to another revision of the design. 

The relationships between design objects 
were defined within a revision-ln;~trix file kept 
with each file tree. Thjs file defined the system- 
level hierarchy of the machine: which dcsign 
objects were subord in ;~ te  to ;I given object .  
Using this file a designer working o n  a ulotlulc 
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design could select frozen revisions of the gate 
array designs on that module and be assured o f  
not having them changcd as he worked on it. 

Another facility provided by the DDM system 
was a user interface to the design environment. 
This interface consisted of a simple command 
language for transvcrsing the design trees and 
for running specific tools. Since these tools 
required a large number of input variables, we 
established a system of default parameters to 
minimize user input. For cases in which those 
defaults proved inadcquate, users or CAD devel- 
opers could change parameters to meet  the 
design's needs. 

Schematic Cuptzlre 
Using the ValidCED editor,  logic schematics 
were entcrcd directly into the workstations by 
the designers. The extracted wire lists were then 
transferred from the SCAI,DSystem UNIX-based 
workstation through a communications port to 
the VAXcluster system. The workstations were 
also interconnected in a networking environ- 
ment, thus providing communication between 
them. To ease the burden on designers to learn 
multiple operating systems, only graphical data 
entry was permitted on the workstations. All the 
other CAD tools were run in the more native 
VkYcluster environment. 

Since the majority of a designer's time was 
s p e n t  i n t e r a c t i n g  w i t h  CAD t o o l s  o n  t h e  
VAXcluster system, there was no need for each 
designer to have a dedicated workstation for 
schematic capture .  The ratio of designers to 
workstations of about two to one proved ade- 
quate. The easily learned GED editor supported a 
rapid increase in the number of nondesigners - 
managers, secretaries, and documentation writ- 
ers - in the user community. All were drawn to 
the system by the ease of graphical data creation. 
E v e n t u a l l y ,  t h i s  d o c u m e n t a t i o n  a c t i v i t y  
accounted for the majority of workstation usage. 

Simulation and Timing Verification 
Another proprietary tool, called the DECSIM sys- 
tem, was the primary simulator used on the pro- 
ject. This system supported mixed-level siniula- 
tions, both structural and behavioral. The logical 
design was transferred hierarchically to the DEC- 
SIM system. This system allowed the designers to 
deal with complex designs by viewing the simu- 
lation in the same hierarchical form as the sche- 
matics. For complex devices, such as multiplier 

chips and RAkl devices, behavioral models were 
d e v e l o p e d .  T h e s e  m o r e  e f f i c i e n t  m o d e l s  
increased the overall performance of the simula- 
tions. In the case of RAM devices, abstracting to a 
behavioral model also allowed the microcoded 
instructions to be loaded efficiently. 

Complcmentirig the functional simulation 
facilities of DECSIM system was the timing veri- 
fier (TV) in the SCALDSystem tools. TV analyzed 
circuit timings to ensure that the design would 
work under worst-case conditions at the desired 
clock rate. 

Wire delays are a major factor to be taken into 
account by timing verification. The placement 
of the physical gates was critical to minimize 
the wire lengths and hence the delays. Since the 
placement was not available in the initial design 
phases, statistical delays based on loading were 
used. As placement information became plenti- 
ful, the latest refined delays were sent to the 
timing verifier. When the physical design had 
been completed, delays based on routed lengths 
were used. If the required timing was not met at 
any point in the process, the offending circuits 
were redesigned or the layout was changed to 
correct the problem. 

Wirelisting and State Maintenance 
The logic gates entered on schematics by the 
designers were, in general, assigned to physical 
components by the CAD process. This mapping 
occurred initially within the SCALDSystem post- 
processor software using a random gate-to-com- 
ponent assignment. This random packaging was 
then fed into a system called YAWL (for Yet 
Another WireLister). YAWL acted as a general- 
purpose wirelister,  generating interfaces to  
many tools and accepting feedback from the 
physical design tools. 

As the physical design process refined the gate 
assignment, YAWL ensured that t he  logical 
design topology did not change. By acccpting 
feedback data from the placement and routing 
tools and the  physical design system, YAWL 
caught any illegal changes that would have 
altered the logic functions. 

Eventually, the complexity of maintaining the 
state became so large that YAWL alone could not 
cope with it. Therefore, several other programs 
were placed in the feedback loop from the phys- 
ical design tools to detect changes made in the 
process of manually cleaning up  the physical 
design. These programs were necded since,  
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even at that late stage, a designer could still add 
logic to the design. The CAD process therefore 
had to handle these addit ions as well as to 
detect illegal transformations to the logic. The 
r e so lu t ion  of t he se  changes  took  a lot  of 
resources, both in terms of time and computer 
power. 

In addition to  being the  state maintainer,  
YAWL acted as a primary source of the design 
data needed for the remainder of the CAD pro- 
cess. YAWL created many reports  to  inform 
designers of problems between their logical and 
physical designs. Most of the interface files in 
the CAD process were either read, written, or 
both, from YAWL, which played a key role in 
the overall process. 

Placement and Routing 
Two processes were developed for the place- 
ment and routing of gate-array and module 
designs. The gate array process was highly auto- 
mated, requiring a minimum of interaction by 
the designers. The process was organized to 
make several runs from which a designer coilld 
select the one  that best optimized his logic 
design. 

The bounded problcm of placement and rout- 
ing within a gate array was easy to solve in com- 
parison to the module designs. Here the con- 
straints placed by designers, the limitations of 
tools, and the complexities of design required 
extensive human intervention. 

Analysis tools were used extensively to assist 
in determining the quality of design at the two 
design levels: gate arrays and modules. These 
tools analyzed such factors as thermal dissipa- 
tion, signal integrity, and crosstalk. The con- 
straints defined in these tools and in the exten- 
s ive des ign - ru l e  checke r s  w e r e  m c t ,  t h u s  
ensuring a high-quality design. 

Most of the tools used for the physical design 
were developed within Digital. Those devel- 
oped outside the VAX 8800 CAD group were 
modified, sometimes extensively, to meet the 
needs of the project. 

Physical Design and 
Manufacturing Interface 
A proprietary physical design system, called the 
VAX layout system (VLS), was used for the final 
physical design tasks. VLS took the physical 
design, as given by the placement and routing 

tools, and added thc data required to nianufac- 
ture the design. A layout designer, through the 
VLS interactive graphics system, could nlanually 
complete the routing that could not be handled 
by the automatic tools. Some additional parts 
that were necessary for fabrication, such as han- 
dles for modules, were also added at this time. 
The net result was a complete dcsign, specified 
so  that i t  could be  used to manufacture the 
product. 

The design data was then collected to form a 
release package. To keep track of the formal 
release of design data. a system called POST was 
developed by the CAD group. POST provided an 
on-line database, which any member of the pro- 
ject team could query to determine the release 
status of a dcsign. 

Problems Imposed by the 
Design Methodology 
Up to this point, we have described the basics of 
the design methodology used to develop the 
VAX 8800 system and some highlights of the 
CAD tools support ing that methodology. As 
mentioned earlier, the CAD process was placed 
directly into the hands of thc designers. Thus a 
tight coupling was established between the pro- 
cess of clesign and the design process. This cou- 
pling posed several major problems, as now 
described, for the CAD group. 

Training 
With direct control of a process or tool given to 
the designers, they all now needed extensive 
t raining.  O n  previous projects ,  o n e  highly 
knowledgeable individual could run a tool; 
now, there were 30 or so novicc users all learn- 
ing to use that same tool. Extensive support for 
those users, in terms of both trainers and docu- 
mentation, had to be provided. 

In most cascs the designers quickly learned 
how to utilize the tools. In a few cases - the 
placement of modules in particular - placement 
experts were needed owing to the specialized 
nature of the task. In summary, the extent of the 
support  required by users was grcater than 
anticipated. 

State Maintenance 
The task of s tate  maintenance proved to  be  
extremely complex owing to the freedom given 
to designers to make changes at almost any point 
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in the design process. To ensure that the logical 
and physical designs matched, it was necessary 
to do a complete isomorphic comparison of the 
physical topology against the logical topology of 
the design. 

Logical Prints 
The schematics generated by the designers at 
their workstations represented the 1ogic;ll 
design, not the physical one. Certain features 
available in the SCALDSysteln tools, such as vcc- 
torized signals and gates, allowed it to produce 
a concise representation of the logic. This came, 
however, at the expense of not putting physical 
data back onto the print set. For reasons of state 
maintenance. we were also unable to restruc- 
ture a print set once mapped to a physical 
implementation. Both these factors contributed 
to a print set that appeared quite different from 
those generated by previous projects. 

Logical print scts, while initially envisioned 
as being beneficial, later caused problems in 
documenting the dcsjgns. This was particularly 
true for module-level designs for which training 
was needed so that groups outside the project 
team could interpret the new symbology. 

Cross References 
lising logical print scts alone, a technician 
could not probc a pin of the physical boards. 
Since an abstract mapping took place in the CAD 
process. it  was necessary to develop an extcn- 
sive set of cross references showing the map- 
ping of the logical to the physical design. These 
cross references proved to be cumbersome and, 
when printed, consunled vast amounts of paper. 

Libraries 
CAD tools run on libraries, and each major tool 
has its own forn1;lt for library data.  These 
libraries must be consistent across the entire 
process. Despitc all thc safeguards built into the 
process, we fountl that inconsistencies still 
crept back into the database. Discovering ant1 
eliminating those inconsistencies, many of 
which were fountl late in the project, consumed 
a lot of time. 

Summary 
Both the design methodology and the CAD pro- 
cess supporting the VAX 8800 project were 
quite successful. The first prototype hardware 

delivered to us worked as expected. We found 
only a small number of hardware problems dur- 
ing the prototype debug phase of the project. 
Most of those prob.lems were in areas that had 
not had extensive simulation or timing verifica- 
tion. 

Some general conclusions reached from the 
VAX 8800 project can help future CAD design- 
ers to improve their tools. 

A close coupling from the start, both physi- 
cally and organizationally, between all 
groups associated with the project leads to 
the development of a smooth process flow. 

The design methodology has a direct and far- 
reaching impact on the CAD process. The 
capabilities of CAD tools directly affect the 
design methodology. 

Extensive simulation and timing verification 
before fabrication can help to achieve a high- 
quality product. 

The in1p;ict of radical changes (e.g. ,  in the 
data content of schematics) must be appreci- 
ated and then taken into account by all pro- 
ject members. 

In future projects we will focus on reducing 
the process-loop times and enhancing the capa- 
bilities of the simulation and timing verification 
tools. I t  will be easier to function in future 
design environments, and more tools will be 
placed directly into the hands of the designers. 
The design methodology will be modified to 
make the resolution of the design state easier 
and therefore faster. 
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On-line Manufacturing Data 
Access on the VAX 8800 Project 

Previously, the transition from design to manufacture involved transfer- 
ring signzjkant amounts of data on paper. To minimize product start-up 
time, the VAX8800project used an on-line system that eliminated much of 
the paper. The key task was transforming the data from existing CAD 
tools with dzrerent formats into manufacturing data. Two generic types 
of VMSfiles, DATA and DM WING, contained data for each Part Number 
and Revision Number. VMS's subdirectory and access-control capabilities 
provided total revision control. Manufacturing engineers pulled files at 
will using DATA files to drive their processes and viewing DRA WZNGfiles 
from ViiXstation II workstations. 

A key objective for the VAX 8800 project was to 
go from the completed design to full-volume 
manufacture in the shortest possible time. In tlic 
past, delays have often occurred in the transi- 
tion from Design Engineering to ManuFacturing. 
'I'herefore, to achieve our goal, we had to elimi- 
nate or minimize those delays. 

We knew of a number of ways to speed u p  
this transition phase. Since there is normally a 
tremendous flow of data on paper between Engi- 
neering and Manufacturing, one  way was to  
eliminate the paper itself. A second way was to 
accelerate the controlled revision process when 
changes were required. And a third way was t o  
accelerate the query-and-response process that 
was necessary to solve specification problems. 
One can see right away that these activities 
involve many people and consume significant 
resources. Therefore. a formal project was cst;tb- 
lished to determine how best to imp.lement the 
three ways to minimjzc delays. 

The project team determined that althoi~gli 
the data flowing between Engineering ant1 Man- 
ufacturing was vital, the paper itsc1.l' was not. 
Thus the team's goal was to find out how to 
establish a paperless, but  not drawingless. 
scheme to pass that information between thc 
two organizations. 'The team also set somc con- 
straints on this scheme. First, existing d;it;~ tcch- 
niques should be ~ ~ s e t l  whenever possible rather 
than developing new ones. Second. Manufactur- 
ing should be free to obtain data ;is reqi~irctl  

rather than have Engineering "push" it  to them. 
Third, ;injr intern~ediate data processing func- 
tions and groups, which all have priorities and 
q u e u e s  of the i r  o w n ,  shou ld  be  bypassed.  
Finally, the d a t ~  had to be organizetl in the way 
Manufacturing needed it, that is, by Part Num- 
ber and Revision, among others .  Therefore, 
some translation process hacl to  take p lace  
between the data sources in Engineering and the 
data repositories used by ;Manufacturing. 

The data sources in Design Engineering are 
many and varied. Digital uses a large set of CAD 
tools in its design processes.' These tools use a 
variety of mcthods to gather, store, and manipu- 
late data. 'The databases associ;ttcd with these 
tools ;ire the sources for all the specifications 
conveyed to Manufacturing ;IS plans and draw- 
ings. Manufacturing also has its own set of CAM 
tools usetl in various processes. 

The primary CAD and CAM process tools did 
not cornm~~nicatc since they were ;tJI based on 
different dxta formats and revision procedures. 
The primary goal of the project was to take the 
design d;~t;t crc;~ted by the CAD tools and, with 
as little paper ;IS possible, turn i t  into manufac- 
turing data that could be ilsetl h y  thc various 
manufacturing groups. The direct w;iy that goal 
could be acco~np~ i shed  was to create an inte- 
grated source of data as ViMS files that would be 
available o n  line to engineers in Manufacturing. 
This capability of data transfer was c;~lled manu- 
facturing tlata access, or MDA. 

Digital Technical Journal 
,Vo. -9 Fc~!c.brr~rrr), 1987 



Digital Tecbnical Journal 
N o  4 Febrtrary 1987 

New Products 

As typically happens in a rapidly evolving 
technological environment, the standard data- 
transfer processes already in place had rapidly 
become outdated. The result was that the stan- 
dard process was handling only part of the data, 
and informal systems evolved to deliver the 
remainder. MDA had to identify all these data 
processes, regardless of their sources. Then, it 
had to provide all the data needed to build and 
test the product through a consistent on-line 
p r o c e s s .  Tha t  task was  a c c o m p l i s h e d  by 
"reverse engineering" the existing processes. 
All the process managers responsible for the 
product in  Manufacturing were interviewed to 
find out what data they were receiving by both 
formal and informal means. They were asked, in 
particular, what additional data they needed. 
The result was a lengthy list of data files, most 
of which existed or could be easily generated. 

One key limitation to this type of data-genera- 
tion process was the availability of an appropri- 
ate engineering database. For example, a visual- 
inspection process might need the color of a 
component ,  but this data may not be in any 
engineering database. Therefore, some manufac- 
turing clata processes would have to continue 
using other sources, typically libraries of addi- 
tional information, as well as the engineering 
database. 

The objective of MDA was to provide on line 
all the data needed for new product start-up. 
The problem, as noted earlier, was that this data 
was derived from many different files used by 
the CAD tools. These separate software tools, 
having come from many sources at different 
times, generally operate on independent VMS 
files and do not yet utilize complex, integrated 
database capabilities. Therefore, another pri- 
mary goal of the MDA project was to bring 
appropriate data management to these existing 
processes, but at the same time not to require 
significant changes within them. 

Given this VMS file environment, the team 
made an early decision that the VMS system 
could provide the framework for comprehen- 
sive data management and organization capabili- 
ties if  full advantage were taken of the possibili- 
ties inherent in the system. That is, files and 
directories, subdirectory schemes, and access 
control lists had to be used effectively. The 
advantages of using VMS features for these exist- 
ing files rather than implementing a specialized 
data-management scheme were numerous. This 

procedure meant that these capabilities would 
be immediately accessible to all of Digital's VAX 
users, could be readily linked to existing read 
and write processes for CAD/CAM files, and 
would require no unique training, software, or 
hardware. 

The remainder of this paper describes the 
approach that MDA takes to achieve an inte- 
grated source of manufacturing data. As a first- 
generation paperless process, MDA was used on 
the VAX 8800 project with great success. We 
anticipate that MDA could evolve at a later date 
into a second-generation paperless process. In 
this process, users in Manufacturing would be 
able to selectively compose and generate any 
desired drawing from the databases. For the first 
design of MDA, however, that was too sophisti- 
cated a solution to be applied to a broad manu- 
facturing community still in transition from 
paper processes. 

MDA Capabilities 
We designated the files containing the data that 
drives the computer-aided processes in Manu- 
facturing as DATA files. Every drawing sheet in 
t he  ful l  d rawing  package is electronical ly 
released as a plot file. These on-line files, called 
DRAWING files, are effectively the master draw- 
ings, and any locally generated paper prints are 
temporary working copies. DRAWING files are 
intended only for human interpretation (view- 
ing or plotting); they do  not have to be inter- 
preted as structured data by other functional- 
process software. DATA files are used for that 
purpose. 

Both DATA and DRAWING files are made 
available through a single unified process avail- 
able anywhere on Digital's world-wide internal 
DECnet network. Data security is provided in 
the software by an access control list of specifi- 
cally authorized users in Manufacturing. A list 
method rather that1 password control was cho- 
sen since the VMS system has all the capabilities 
to  imp lemen t  list  con t ro l  ( ident ifying re-  
mote users).  Control over access to the on-  
line product  database remains with the data 
managers. 

The files are organized around the Part Num- 
ber and Revision Number of the physical object. 
A complete DATA and DRAWING file set is pro- 
vided for each revision, thus leading to a degree 
of redundancy between files. We originally con- 
sidered solving this redundant-data problem in 
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the tradition;~l CAD/CAM way by defining scp;i- 
rate uni.rrersal interf;~cc filcs ;tnd designing inte- 
grated datab;lscs from which ;In!, needed file 
could be extracted. To ;ichicvc the prim;iqZ goal 
of minimizing a11 del:ijts in product dat;i trans- 
fers, howcver, we concluded that providing tlie 
process specific, but rctlundant, filcs needed 
directly in Manufacturing was worth the price. 

This technique eli~ni~iatetl all hantl-off delays 
and ;illowed tlic ;ilready proven processes to 
operate efficiently. Of course. the risk was t1i;it 

data in tlie redundant files coultl in some way 
diverge. l 'hereforc. Ingi~iccring assu~iicd tlie 
responsibility of verifying that the d;ita was con- 
sistent between the~n .  1:nginecring uhes special 
software to verify that ;111 filcs in a set, some of 
which come from tlifferent CAD tools, rcprcscnt 
the identic;il design object and revision state. 

The DATA filcs utilized are those tlie st;~rt-up 
team identified as being tlirectly needed for 
cach ~nanukicturing process. Our ideal t;lrget for 
DATA filcs was tlie specific data set nccdcd by ;r 
"work cell" of the ~n:inufdctiiring p l a~ i t ;  this 
typically includes I~oth ;I computer resourcc and 
specific people that together receive and adapt 
the generic data to the imniedi;ite needs of their 
particular plant and process. '1'0 m in imi~e  the 
process start-lip time, eliminate queues,  and 
assign responsibilities clc;irly, MDA avoided 
usi~ig intermecliate d;ita form;its. l'liese formats 
liistoric;illjr required preprocessing b ~ ,  some 
third party before tlicjr could be used in the 
pl;i~it. We expectetl the plants to ;idapt the DATA 
filcs to the spccific needs of their o u T n  pro- 
cesses. For sophisticatetl data consumers with 
complex ~nanuf;icturing needs, the source-tlata 
design files are also includetl with the on-line 
d;~t;i. 

'T'lie ~ m c t i c ; ~ l  realities of the Inany <:AD/CAM 
processes in use first requirc<l a smoothly oper- 
ating file-m;in;igcmcnt process. A Izirge number 
of files are requirctl to support the build-and- 
test processes for one tlcsigned object. A typic;~l 
Digital part (e.g., a complex CPLJ logic motlulc) 
is today completely specifietl by 50 to 70 DATA 
files and 30 to 50 DRAWING files. With that 
many files involved, ;I key to success for this 
type of file management is total d;~ta acqiiisi- 
tion. Thus the process was made mantlatoqr (not 
voluntary); that is, i t  could not tlepcnd o n  some- 
one's remembering to tlo something The only 
way to accomplish complcre tl;~t;r ;~cquisition 

was to integrxte the d;it;i-management process 
\\.ith the CAD tools that generated tlie source 
files 

l'he principal MDA implementation concept 
was to use the extcnsi.ise VhlS subdirectories tIi;it 

"belonged" to each object and revision xncl 
then collect all the appropriate files into the 
appropriate clirectories. This technitlue makes 
poss ib le  a user  dat;i-accesa process  based 
clirectly on the VMS system in which a user can 
answer several cluestions about the object or 
revision for which data is needed. MDA then 
provides him with a directory containing the 
files relevant to the requcstetl object or revision. 
This directory represents tlic bounded set of 
data. Within that set each DATA and DRAWING 
file is "named" so that it is completely identi- 
fied even if moved later to other m;inufdctiiring 
locations. The file-naming schernc is also not 
cryptic so that nianufacturing users can specify 
and recognize the particular files they need. 
h underlying objective of tlie IMDA program 

was to  provide an environment  in which  a 
released d;ita file was perceived as being ;is sta- 
ble as an approved ancl released p;tper drawing. 
Whenever a set of DATA and DRAWlNG files for 
a given revision of ;in object are released, that 
set of data becollies "read-only" and is placed 
~inder  strict control. The engineering group will 
not modif\. any file within the set belonging to 
that revision. and subsequent revisions of that 
object do not o\iemrite prior re\risions. 

IMDA allours users to pill1 data selectively as i t  

is needed rather than pirshi~ig i t  ;iutomatically to 
predetermined receivers. 'l'he strategy here is to 
deliver not data, hut automatic;illy gcner;~ted 
notification mcss;tges on Digital's electtonic 
VAXmail system. The generation of mail is tied 
to the design-m;~nage~i~e~it functions of the 1i;ird- 
ware designers and the coordinators for engi- 
neering change orders (ECOs). The m;iil mes- 
sages are sent to dcsignatetl representatives in 
any of the manufiicturing plants arountl tlie 
world to inform them to pull wIiate\ier data they 
require from tlie on-line system. Data users in 
Manufacturing are notified by automatic nies- 
sages whenever new dat;~ is issuctl or whcn the 
status of existing data changes. This method 
takes advantage of the existing ViLlS hlail facili- 
ties for identifying remote users. A ~iser  access- 
control list has been implemented, and all user 
transactions arc logged. These techniques con- 
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firm that new data has been received by users 
and provide an audit trail of who accessed par- 
ticular data in case an error is discovered later. 

Much of thc data provided for the product is 
intendcd for the specific assembly and test pro- 
cesses implemented by the start-up team. Provi- 
sion of this data is made possible by the close 
coupling of the Engineering Design and start-up 
team efforts and the sophistication of the  data- 
driven fabrication and test processes. In other 
words, the designs of high-technology products 
are now aimed at specific manufacturing pro- 
cesses for assembly and test. Except for simple 
dimensional data, much of this product data can 
no  longer b e  "post processed" (by software 
means only) onto a different manufacturing pro- 
cess. A major process alteration might require 
reconvening the start-up team and adapting the 
design and data for the new process. 

Revision Management 
Each revision of a part means that that physical 
design object has changed in some way. In the 
MDA process a complete set of DATA and DRAW- 
ING files is provided for every revision; there is 
no  implicd o r  referenced data. All active revi- 
sions still being built remain o n  line, and subse- 
quent  revisions d o  not overwrite earlier revi- 
s ions .  If t h e  same DRAWING file app l ies  t o  
different revisions, it will be provided with each 
of those revisions. We were concerned initially 
that this simplified approach would generate a 
large number  of redundant files, particularly 
DRAWING files. However,  an analysis of t h e  
c o m p l e t e d  se t s  s h o w e d  t h a t ,  w i t h  t h e  CAD 
design processes in use, only 10 to 20 percent 
of the files were unchanged from one physical 
revision to the next. Our conclusion now is that 
having some redundant files is a cheap price for 
the  benefit and simplicity of having full data 
sets. Thus no data set has to reference data from 
another sct ,  and old revisions can  be readily 
archived. 

The MDA process currently has one significant 
limitation. Unlike the existing procedures for 
paper  drawings, there  is no  standard control 
process for putting a formal revision on a DATA 
file. On the other hand, it is not clear that a con- 
trol process is sufficiently valuable in a product 
environment that is totally data driven. Tradi- 
tionally, when necessary, a paper drawing can 
be changed separate from the physical revision 
of the object itself. That cannot currently be 

done for DATA files since there are no standard 
procedures that are equivalently recognized for 
nanling them or for controlling revisions. If the 
DATA files really define the  physical product,  
then an erroneous data file defines the  wrong 
physical product. In that case, it can be argued, 
the right way to signify the change is to update 
the  revision of the object itself. At the  present 
tirnc, if an incorrect DATA file is included in the 
released data set, the only unequivocal way to 
correct that problem is to advance the physical 
revision and generate a new set of data. 

Within the MDA process, the status of any file 
is specifically marked. (The mere existence of 
the file within the process does not imply any 
particular status.) Typical categories of status 
are verified, issucd, released, and obsolete.  A 
status is implemented by using the file-owner- 
ship capabilities within the VMS system. As its 
name implies, MDA provides on-line access to 
all needed data and drawings for any and all  
revisions. However, the formal status (prelimi- 
nary, released, etc.)  of each part and revision 
available on line is controlled and specified by 
other existing standard procedures. That status 
is confirmed by MDA but cannot be determined 
solely from the status information that MDA pro- 
vides on line with the data. 

The MDA process is not directly coupled to  
the control procedures in Manufacturing, but is 
linked directly with status-setting activities in 
Engineering. For example,  the  issued status is 
se t  by a procedure run  by the  product 's  ECO 
coordinator when he issues an ECO package to 
his counte rpar t  in t h e  manufactur ing p lan t .  
Therefore, the data users in  Manufacturing are 
advised to use the displayed status only as con- 
firmation of a change; they will continue to be 
notified first through the existing ECO control 
procedures. 

Thus,  MDA has on- l ine  data available for a 
manufacturing activity when Manufacturing is 
notified, by mcans external to the MDA process, 
that they should be building a particular revi- 
sion. Also, MDA provides no on-line information 
about such things as  the interactions and rela- 
tionships between revisions, which rcvisions of 
the  modules g o  together, and which revisions 
go  with which backplane revisions. Therefore, 
although MDA is a comprehensive data-manage- 
ment  and access process, it is not also a t rue 
configuration-control and revision-management 
process. 
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Directories and File Names 
Within the MDA process, the DATA and DRAM- 
ING files are managed by grouping them in VMS 
subdirectories for the object that these files 
specify. The subdirectories are tied to a com- 
mon-root directory to facilitate the management 
of the overall physical data on the host (e.g., 
moving various directory structures between 
disk drives). The directory files then~selves are 
owned bp the data-management process. They 
may not be read directly over thc network; the 
access process provided must be used. In picto- 
rial form, the directory structure is described in 
Figure 1 .  

COMMON ROOT 

I 

PART PART PART 
NUMBER NUMBER NUMBER 

I 
PART 
NUMBER 

VARIATION 

REVISION REVISION REVISION REVISION 

Figure I VMS Directory Structure 

The name of each  DRAWING f i le  is t ied 
directly to the Digital drawing number plotted 
by that file. For multisheet drawings, a plot file 
is made for every sheet in  the complete drawing 
package, so  there is a one-to-one correspon- 
dence between DRAWING files and drawing 
sheets. The files are named to match exactly the 
t i t le  block of t he  drawing shee t .  A typical 
DRAWING file name is depicted in Figure 2.  

For DATA files, a different strategy for file 
names was necessary since, unlike the DRAW- 
ING files, a one-to-one linkage does not exist. A 
DATA file relates  to  t he  physical ob jec t  i t  
defines; therefore, the file name defines the 
exact part to which that file applies as well as 

SHEET SIZE 1 /f /f \ \ LDATA FonMAT 

CODE JA DRAWING NUMBER 

SHEET 2 

SHEET REVISION 

the f i le 's  spec i f ic  content  and format .  File 
names must also continue to completely idcn- 
tify the files after they have been extracted from 
the MDA management process and moved to  
Manufacturing. Therefore, part of the file name 
is actually redundant with the MDA directory 
name. 'These file names can become extremely 
long, and although reading thcm is not a prob- 
lem, typing them is. Thus the file names are 
automatically generated, and users can select 
them from menus. The name of a typical DATA 
file is structured as in Figure 3.  

Since there were many DATA and DRAWING 
files, the file-naming scheme also permits the 
creation of a typical VMS "wild card" directory 
listing for specific types of DATA or DRAWING 
files. For DATA files, the specific type of process 
activity supported by that file is included as a 
unique field in the file name. For DRAWING 
files, the drawing code is included in the file 
name, which also implies the likely uses. These 
fields within file names arc then used in Manu- 
facturing to obtain file listings specific to an 
activity; wild-card directory listing is by far the 
most common style of use. 

~ 9 - ~ - ~ - I T - M C A M O D E L - Q X Y Z O l I . N E T X  

PART NUMBER 

VARIATION 1 

REVISION 

CATEGORY OF DATA 1 
(IN-CIRCUIT TEST) I 
DETAILED TYPE OF DATA 
(MCA MODEL) 

(FOR QXYZ MCA, LOGICAL REVISION 011)- 

DATA FORMAT I 

Figure 3 Typical DATA File Name 
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On-line Data Access 
Since all DA"1"A and DRAWING files for cach rcvi- 
sion of ;i Part Number are accessible on line, it  
is a simple proccss for authorized users to 
access them. A uscr first logs on to a captive 
(limited function) account on a specific host 
CPU from any system on the Digital's DECnct 
network. Since this process is controlled by a 
list of authorized users, no passworcl is ncces- 
s;lry. The uscr never sees the VMS prompt level 
but i h  immediately presented with a menu of 
MDA functions. He is then asked a short series of 
questions about either the Part Number or Rcvi- 
sion Number and is provided with a directory of 
applicable files. 

All user transactions with the dam-access pro- 
cess arc automatically logged. This logging pro- 
vitlcs scvcral important capabilities: 

An :iccurate summary of thc actual on-line 
<I;it;i usage (which has showed that our initial 
;issumptions were quite incorrect as to who 
w o ~ ~ l d  iise what data. and how much access 
tciffic there would be) 

A degree of atlditional security by tc~cking ;111 
data ;ICCCSSCS 

A rnc;ins to notify all users who have i~ti l i~ctl  
any filc in which an error has been fountl 

Electronic Dru wing Access, Plotting, 
and Management 
At the present tjme, most DRAWING files arc in 
the VMS data format of FILE-NAiiE.PL0 since 
.PLO is the dara format that can be released clcc- 
tronically to Digital's on-line drawing-microfilm 
service. A variety of software packages using this 
data form;it ;Ire available in cach manufacturing 
plant. We expect to make a transition to ;i new 
industry stan<larcl when i t  comes into gcner;il 
use. 

Providing each separate drawing sheet as a 
sel7ar;ite filc was the first step toward a paperless 
process. The second step was to give Manuhctur- 
ing the ability to view a drawing on ;I VAXstation 
workstation. manage drawings, annotate thcni, 
send those annotations back to the engineer. and 
make plots. 'These basic functions permit Manu- 
facturing to do o n  line what they would have 
donc previously wit11 paper drawing sheets. 
Engineering provided some necessary software 
tools for these functions to expedite the transi- 
tion to a paperless proccss in Manufacturing. 

The workst;ition used is the VAXstation 11 sys- 
tem. The software provides the following capa- 
bilities: 

Access drawings directly from the on-line 
data process 

Create windows for the drawing, and zoom 
around it 

hinotate a copy of the drawing for use with 
specific processes 

Return a copy with questions for the respon- 
sible engineer 

Submit plot requests auton~atically for the 
whole  drawing or any selected window 
to either a large electrostatic plotter or an 
LN03 Plus printcr, both accessible on a local 
Ethernct link 

The process of making snap-bhot window 
plots of specific ;irc;is of interest on the LN03 
Plus printcr has proven to be ;I very effective 
capability, and shows some of the possibilities 
of replacing large sheet paper plots within the 
Manufacturing functions. 

Summary 
The MDA process has been operational since the 
first prototypes of tlie VAX 8800 system were 
built. MDA presently maintains approximately 
three gigabytes of VAX 8800 product data on 
line, including both prototype and produc- 
tion revisions. More than one hundred users 
from ten different locations in both Manufactur- 
ing and Field Service have logged an average of 
two hundred transactions per week. Although 
MDA contains significant amounts of control and 
verification software, there has been little for- 
mal user training. The simplicity of the MDA 
process allows the on-line Help information to 
Ile an effective source of primary documenta- 
tion. 

New Products 
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