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Editor's Introduction 

Adtlitional features were needed in the VMS 
softw;~rc to  accommodate accessing disks on 
multiple systems. The distributed lock manager, 
described by Sandy Snaman and Dave Thiel, pro- 
vides the synchronization needed to accon~plish 
transparent data transfers between cluster mem- 
bers. Other changes were also needed to broaden 
the file functions performecl by the VMS software. 
Andy Goltlstein relates some alternative ways to 
expand thaw filnctlons and how the QJO proces- 
sor was extended to synchronrze flle accesses 
The resulting system of locks and queues pro- 

Richard W. Beane 
Editor vides ;i consistent sequence for managing dis- 

VAXcluster systems are closely coupled configu- 
rations of VAX CPUs and storage devices. The VAX 
C P U  a t  a n y  n o d e  c a n  c o m m u n i c a t e  w i t h  
the processor and storage devices at any other 
node in the cluster. The interconnects and soft- 
ware used to activate this unique concept allow 
data transfers at up  to 70 megabits per second 
between nodes. This issue of the Digital Techni- 
cal Journal contains papers about some of the 
key hardware and software features in these sys- 
tems, as well as some measures of their perfor- 
mance. Since several organizations within Digital 
are responsible for various VAXcluster features, 
these papers are contributed by engineers from a 
wide spectrum of engineering groups. 

Since the VAXcluster concept spans such a 
range of technologies, the  first paper  is an 
overview explaining generally how these sys- 
tems work. Nancy Kronenberg, Hank Levy, Bi l l  
Strecker, and Richard Merewood describe the 
architecture, the storage control, the VMS soft- 
ware alterations, and the multitude of activities 
that control access to the storage devices. 

The System Communication Architecture, 
described by Darrell Duffy, is the structure that 
allows the nodes in a VAXcluster system to coop- 
erate. This relatively simple framework governs 
the sharing of data between resources at the 
nodes and binds together applications that run on 
different VAX CPUs. 

tributed files. 
The next paper, by Mike Fox and John Ywoskus, 

describes the extension of the VAXcluster con- 
cept  to systems connected with an Ethernet. 
These Local Area VAXcluster systems use special 
software to provide functions needed by clusters, 
but not provided by Ethernet software. Thus, 
iMicroVAX I1  and other small VAX systems can be 
clustered to yield significant amounts of process- 
ing power. 

?['he last three papers deal with performance 
aspects of VAXcluster systems. The paper by Ed 
Balkovich, Prashant Bhabhalia, Dick Dunnington, 
and Tom Weyant discusses the results of a VAX- 
cluster model that demonstrates how redundancy 
improves availability. Then, Dale Park, Rekha 
Von Ehren, ?'-J. Wang, and Nii Quaynor describe 
two models they developed to measure the per- 
formances of VAX 8974 and 8978 systems. These 
models, based on benchmarks run in different 
environments, use a VAX 8700 CPU for a baseline 
comparison. 

'I'hr final paper relates the results of a model to 
mneasure the characteristics of the CI bus. Xi-ren 
Cao, Nii Quaynor, and Fernando Colon Osorio 
describe how their model measures the per- 
formance of the arbitration algorithm in this 
bus. 'I'hey suggest some interesting schemes to 
improve utilization and reducc response time. 
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me VAXcluster Concept: 
A n  Overview of a Distributed System 

A VAXcuster system is a highly available and extensible configuration of 
VAX computers that operate as a single system. To achieve high perfor- 
mance in a multicomputer environment, a neur communications architec- 
ture, communications hardware, and distributed somare had to be 
jointly designed. l%e somare is the VAX/VMS operating system, using a 
distributed lock manager to synchronize access to shared resources. The 
communications hardware includes a 70-megabit per second message-ori- 
ented interconnect, and an interconnect port that performs communica- 
tions tasks traditionally handled by soware. The Local Area VAXcuster 
system, an implementation of the VAXcluster architecture, uses a standard 
Ethernet as its interconnect. This development provides VMcluster func- 
tions for the MicroVAX family. 

Contemporary multicomputer systems typically 
lie at the ends of the spectrum delimited by 
tightly coupled multiprocessors and loosely cou- 
pled distributed systems. Historically, loosely 
coupled systems have been characterized by the 
physical separation of processors, low-bandwidth 
message-oriented interprocessor communication, 
and independent operating systems.l,2," Con- 
versely, tightly coupled systems have been char- 
acterized by close physical proximity of proces- 
sors, high-bandwidth communication through 
shared memory, and a single copy of the operat- 
ing s y ~ t e m . ~ , ~ , '  

An intermediate approach taken at Digital 
Equipment Corporation was to build a "closely 
coupled" structure of standard VAX  computer^,^ 
called a VAXcluster system. By closely coupled, 
we imply that a VAXcluster system has character- 
istics of both loosely and tightly coupled systems. 
On one hand, a VAXcluster system has separate 
processors and memories connected by a mes- 
sage-oriented interconnect, running instances of 
the same copy of the distributed VAXfVMS oper- 
ating system. O n  the other hand, the initial 

The original version of this paper appeared in "VAXclusters: 
A Closely-Coupled Distributed System," by Nancy P. Kronen- 
berg, Henry M. Levy, and William D.  Strecker, published in 
ACM Transactions o n  Computer Syslerns, Vol. 4 ,  No. 2,  
May 1986.  Copyright 1987,  Association for Computing 
Machinery, Inc. 

implementation of the cluster relied on close 
physical proximity, a single (physical and logi- 
cal) security domain, shared physical access to 
disk storage, and high-speed memory-to-memory 
block transfers between nodes. 

The goals of the VAXcluster multicomputer sys- 
tem are high availability (in suitable configura- 
tions) and easy extensibility to a large number of 
processors and device controllers. In contrast to 
other highly available s y ~ t e m s , ~ , ~ ~ , ~  a VAXclus- 
ter system is built from general-purpose, off-the- 
shelf processors ranging in size from MicroVAX 
workstationsi"o high-performance VAX CPUs, 
and a general-purpose operating system. 

A key concern in this approach is system 
performance. Two important factors in the per- 
formance of a multicomputer system are the 
software overhead of the communications archi- 
tecture and the bandwidth of the computer inter- 
connect. To address these issues, several develop- 
ments were undertaken as part of the original 
VAXcluster design, including 

A simple, low-overhead communications 
architecture whose functions are tailored to 
the needs of highly available, extensible sys- 
tems. This architecture is called the System 
Communication Architecture (SCA) . 

A very high speed message-oriented Computer 
Interconnect, called the CI bus 

Digital Technical Journal 
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An intelligent hardware interface to the CI 
bus, called the CI port, that implements part 
of the SCA in hardware 

An intelligent, message-oriented mass storage 
controller that uses both the CI bus and the CI 
port interface 

This combined software and hardware archi- 
tecture supports a high-performance communi- 
cations structure for interconnecting high-perfor- 
mance VAX systems. For low-end VAX CPUs, the 
Local Area VAXcluster system has been developed 
to permit workstations interconnected by means 
of the Ethernet to share a common file system, 
printers, and batch processing. Workstation users 
can derive the benefits of centralized timesharing 
without sharing a CPU and without system man- 
agement overhead. A Local Area VAXcluster sys- 
tem is supported by software that emulates some 
of the CI functions, thus making the difference 
between CI-based and Ethernet-based VAXclus- 
ters largely invisible to higher level software. 
Local Area VAXcluster systems can be formed 
from and coexist with existing Ethernet networks 
without the need for special-purpose hardware. 

This paper describes the communications hard- 
ware developed for VAXcluster systems, the hard- 
ware-software interface, the Local Area VAXclus- 
ter system, and the structure of the distributed 
VAX/VMS operating system. The developments 
described in this paper are part of Digital's VAX- 
cluster product; there are, as of mid-1987, 
approximately 6,000 VAXcluster and Local Area 
VAXcluster systems in operation. 

VAXcCuster Hardware Structure 

The CI- based VAXcluster System 
Figure 1 shows the topology of a typical CI-based 
VAXcluster system. The components include the 
CI bus, VAX hosts, CI ports, and Hierarchical 
Storage Controllers (HSC) for mass storage (i .e. ,  
disk and tape). For high-reliability applications, a 
cluster must contain a minimum of two VAX pro- 
cessors and two mass storage controllers with 
dual-ported devices. The preferred method of 
attaching terminals is through a Local Area Trans- 
port (LAT) server (not shown), which allows a 
terminal to connect to any host in a VAXcluster 
system. 

The CI bus is a dual-path serial intercon- 
nect with each path supporting a transfer rate of 
70-megabits per second. The primary purpose of 

Figure I VAXcluster Hardware Topology 

the dual paths is to provide redundancy in the 
case of path failure; when both paths are avail- 
able, they are usable concurrently. Each path is 
implemented in two coaxial cables; one for trans- 
mitted and one for received signals. Baseband sig- 
naling with Manchester encoding is employed. 

While the CI bus is logically a bus, it is physi- 
cally organized as a star topology. A central hub 
called the Star Coupler connects all of the nodes 
through radial CI paths of u p  to 45  meters. 
The current coupler is a passive device that sup- 
ports a maximum of 16 nodes; node addresses 
are 8 bits, providing an architectural limit of 
2 56 nodes. 

The selection of a star topology was chosen 
over a conventional linear topology for several 
reasons. First, the efficiency of a serial bus is 
related to the longest transit time between nodes. 
The star permits nodes to be located within a 
45-meter radius (an area of about 6400 square 
meters) with a maximum node separation of 
90  meter radius (an area of about 6400 square 
meters) with a maximum node separation of 

8 Digital Technical Journal 
No .  5 September I987 
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90  meters. vpical ly,  a linear bus threaded 
through 16 nodes in the same area would greatly 
exceed 90  meters. Second, the central coupler 
provides simple, electrically and mechanically 
safe addition and removal of nodes. 

The CI port is responsible for arbitration, path 
selection, and data transmission. Arbitration uses 
carrier sense multiple access (CSMA) but is dif- 
ferent from the arbitration used by the Ether- 
net.I4.l5 Each CI port has a node-specific delay 
time. When wishing to transmit, a port waits 
until the CI bus is quiet and then waits its 
specific delay time. If the CI bus is still quiet, the 
node has won its arbitration and may send its 
packet. This scheme gives priority to nodes with 
short delay times. To ensure fairness, nodes actu- 
ally have two delay times - one relatively short 
and one relatively long. Under heavy loading, 
nodes alternate between short and long delays. 
Thus the bus is contention driven under light 
loading and round robin under heavy loading. 

Upon winning an arbitration, a port sends a 
data packet and waits for receipt of an acknowl- 
edgment. If the data packet is correctly received, 
the receiving port immediately returns an 
acknowledgment packet without re-arbitrating 
the CI bus. This action is possible because the C1 
port can generate an acknowledgment in less 
time than the smallest node-specific delay. 
Retries are performed if the sending C1 port does 
not receive an acknowledgment. 

To distribute transmissions across both paths of 
the dual-path CI bus, the CI port maintains a path 
status table indicating which paths to each node 
are currently good or bad. Assuming that both 
paths are marked good, the CI port chooses one 
randomly. This provides statistical load sharing 
and early detection of failures. Should repeated 
retries fail on a path, it is marked bad in the status 
table and the other path is tried. 

m e  Ethernet-based VAXcLuster System 
Figure 2 shows an example of a Local Area VAX- 
cluster system. The CI bus of Figure 1 has been 
replaced by an Ethernet, and the VAX hosts 
(referred to as satellite nodes) are MicroVAX 
computers and workstations. Satellite nodes may 
be diskless, in which case one or more VAX 
hosts act as storage servers, serving a function 
analogous to the HSC controllers in CI-based con- 
figurations. One or more storage servers, called 
boot nodes, are responsible for loading satellite 
nodes with the VMS operating system and for stor- 

ing crash dumps from those nodes. Satellite 
nodes may use remote disks for process swapping 
and virtual memory backing storage. 

The important difference between the CI- 
based and the b c a l  Area VAXcluster systems is 
that the communication functions performed by 
the CI hardware are emulated in the latter by soft- 
ware within the VMS operating system. The Eth- 
ernet is an industry-standard, 10-megabit per sec- 
ond baseband local area network'5 that uses the 
carrier sense multiple access with collision 
detection (CSMA/CD) technique for arbitration. 
Unlike the CI bus, an Ethernet may be used to 
carry multiple protocols simultaneously. (Note 
that this allows a cluster to share the Ethernet 
with other protocols, such as the LAT and DECnet 
protocols.) 

A new Ethernet protocol, which is an extension 
of SCA, was designed for Local Area VAXcluster 
system. Using this protocol, a VMS software com- 
ponent emulates the CI port interface, which is 
to say that the higher level software interface is 
identical to that of the CI bus, but the Ethernet is 
used to carry data. This approach eliminated the 
need for any special hardware and allowed the 
software modifications needed to be mostly lim- 
ited to a single VMS component. 

Exactly the same approach was used for load- 
ing the VMS system into satellite nodes. Here, a 
special port emulator was developed to operate 
in the booting and system-initialization environ- 
ment. This boot driver forms part of a vestigial 
VMS environment whose function is to read, 
initialize, and start the VMS system image from 
the remote disk. These modules are themselves 
loaded by means of the Digital Network Architec- 
ture maintenance operations protocol (MOP). l 6  

me CI Port Architecture 
Each VAXcluster host and mass storage controller 
connects either to the CI bus through a CI port or 
to the Ethernet by means of a standard Ethernet 
adapter. CI ports have been implemented for the 
HSC5O and HSC70 mass storage controllers, and 
the VAX-11/750, 11/780, 11/782, 1 1/785, and 
VAX 8000 series hosts. Ethernet adapters have 
been implemented for all VAX processors. VAX 
CI ports implement a common architecture, 
whose goals are to 

Off load much of the communications over- 
head typically performed by nodes in dis- 
tributed systems 

DfgfCal Technical Journal 
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Provide a standard, message-oriented software tion. They differ only in reliability. The delivery 
interface for both interprocessor communica- of datagrams is not guaranteed; they can be lost, 
tion and device control duplicated, or delivered out of order. The deliv- 

The design of the CI port is hised on the needs 
of the VMS System Communications Architecture. 
SCA is a software layer that provides efficient 
communications services to low-level distributed 
applications (e.g., device drivers, file services, 
and network managers). SCA supports three com- 
munications services: datagram,  messages, and 
block data transfers. In a Local Area VAXcluster 
system, the SCA fiinctions performed by the CI 
port are performed by software in the port emula- 
tor module. 

SCA datagrams and messages are information 
units of less than 4,000 bytes sent over a connec- 

EMU LATOR 

ETHERNET 

cry of messages is guaranteed, as is their order of 
arrival. Datagrams are used for status and infor- 
mation messages whose loss is not critical, and by 
applications like the DECnet software that have 
their own high-level reliability protocols. Mes- 
sages are used, for example, to carry disk read 
and write requests. 

To simplify buffer allocation, hosts must 
agree on the maximum size of messages and data- 
grams that they will transmit. VAXcluster hosts 
use standard sizes of 576 bytes for datagrams and 
1 12 bytes for messages. 

To ensure the delivery of messages without 
duplication or loss, each CI port maintains a vir- 

EMULATOR 

ETHERNET 

LOCAL a 
I I I ETHERNET 

ETHERNET I PORT 

Figure 2 Local Area VAXcluster Topology 
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tual circuit with every other remote C1 port. A 
virtual circuit descriptor table in each port indi- 
cates the status of its port-to-port virtual circuits. 
Included in each virtual circuit descriptor are 
sending and receiving sequence numbers. Each 
transmitted message carries a sequence number 
enabling duplicate packets to be discarded. 

Block data is any contiguous data in a process' 
virtual address space. There is no size limit 
except that imposed by the physical memory 
constraints of the host. The CI port hardware is 
capable of copying block data directly from the 
process virtual memory on one node to the pro- 
cess virtual memory on another node. For the Eth- 
ernet, this function is performed in software by 
the port emulator. 

The delivery of block data is guaranteed. The 
sending and receiving ports and the port emula- 
tors cooperate in breaking u p  the transfer into 
data packets and ensuring that all packets are cor- 
rectly transmitted, received, and placed in the 
appropriate destination buffer. Virtual circuit 
sequence numbers are used on the individual 
packets, as with messages. Thus the major differ- 
ences between block data and messages are the 
size of the transfer, and the fact that block data 
need not be copied by the host operating system. 

Block data transfers are used, for example, by 
disk subsystems and disk servers to move data 
associated with disk read and write requests. 

CI Port Interface 
The \'AX CI port interface is shown in Figure 3. 
The interface consists of a set of seven queues: 
four command queues, a response queue, a data- 
gram free queue, and a message free queue. The 
queues and queue headers are located in host 
memory. When the port is initialized, the host 
software loads a port register with the address of 
a descriptor for the queue headers. 

Host software and the port communicate 
through queued command and response packets. 
To issue a port command, the port driver software 
queues a command packet to one of the four com- 
mand queues. These four queues accommodate 
four priority levels; servicing is FIFO within each 
queue. An opcode within the packet specifies the 
command to be executed. The response queue is 
used by the port to enqueue incoming messages 
and datagrams, while the free queues are a 
source of empty packets for incoming messages 
and a sink for transmitted message packets. 

For example, to send a datagram, software 
queues a SEND DATAGRAM packet onto one of 

COMMAND QUEUE 0 I-- 

VAX 
PORT 
SOFTWARE 

COMMAND QUEUE 3 I--- 
RESPONSEQUEUE 

7 

DATAGRAM FREE QUEUE 

MESSAGE FREE QUEUE u 
CI 
PORT 

BUFFER 
DESCRIPTOR 
TABLE 

VAX MEMORY 

Figure 3 The CI Port Interface 
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Figure 4 C/ Port Command Jacket 

FORWARD LlNK 

BACKWARD LlNK 

the command queues. The packet contains an 
opcode field specifying SEND DATAGRAM, a port 
field with the destination port number, the data- 
gram size, and the text of the datagram. The 
packet is doubly linked through its first two 
fields. This structure is shown in Figure 4 .  

If the host software needs confirmation when 
the packet is sent, it sets a response queue bit in 
the flags field. This bit causes the port to place 
the packet in the response queue and interrupts 
the host after the packet has been transmitted. 
The response packet is identical to the SEND 
DATAGRAM packet, except that the status field 
indicates whether or not the send was successful. 
Had the response queue flag bit been clear in the 
SEND DATAGRAM command (as it typically is), 
the port would instead place the transmitted 
command packet on the datagram free queue 
without causing a host interrupt. 

Upon receiving a datagram, a CI port takes a 
packet from its datagram free queue. Should the 
queue be empty, the datagram is discarded. Oth- 
erwise, the port constructs a DATAGRAM 
RECEIVED packet that contains the datagram and 
the port number of the sending port. This packet 
is then queued on the response queue. 

Messages operate in a similar fashion, except 
that they have a different opcode, and the mes- 
sage buffers are dequeued from the message frcc 
queue. If the message free queue is empty when 
a message arrives, the port generates an error 
interrupt to the host. The high-level SCA flow 

OPCODE 

control ensures that the message free queue does 
not become empty. 

Block transfer operations are somewhat more 
complicated. Each port has a data structure 
called a buffer descriptor table. Before perform- 
ing a block transfer, host software creates a buffer 
descriptor that defines the virtual memory buffer 
to be used. The descriptor contains a pointer to 
the first VAX page table entry mapping the virtu- 
ally contiguous buffer. In addition, the descrip- 
tor contains the offset (within the first page) of 
the first byte of the buffer, the length of the 
buffer, and a 16-bit key. The data structures for a 
block transfer are illustrated in Figure 5. 

Each buffer has a 32-bit name, consisting of 
a 16-bit buffer descriptor table index and the 
1 6-bit buffer key. The key is used to prevent dan- 
gling references and is modified whenever a 
descriptor is released. To transfer block data, the 
initiating software must have the buffer names of 
the source and destination buffers. The buffer 
names are exchanged through a high level mes- 
sage protocol. A host can cause data to be moved 
eithcr to another node (SEND DATA) or from 
another node (REQUEST DATA). A SEND DATA or 
REQUEST DATA command packet contains the 
names of both buffers and the length of thc trans- 
fer. In eithcr case (send or request), a single 
command packet causes the source and destina- 
tion ports to perform the block transfer. When 
the last packet has been successfi~lly received, 
the initiating port places a response packet on its 
response queue, indicating that the transfer is 
complete. 

The goal of reducing VAX host interrupts is met 
through several strategies and mechanisms. First, 
the block transfer mechanism minimizes the 
number of interrupts necessary to transfer large 
amounts of data. Second, at the sending port, 
DATAGRAM SENT/MESSAGE SENT confirmation 
packets are typically generated only when a fail- 
ure occurs. Third, a receiving port interrupts the 
VAX host only when the port queues a received 
packet on an empty response queue. Thus when 
software dequeues a packet in response to an 
interrupt, it always checks for more packets 
before dismissing the interrupt. 

Port Emulation for the Ethernet 

DATAGRAM LENGTH 

DATAGRAM TEXT 

PORT 

Figure 6 shows the relationship of the port emu- 
lator to the VMS operating system functions that 
use that emulator. For comparison, the C1 port 
interface is also shown in this diagram. The port 
emu lator implements the same functions as the 

STATUS 
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Figure 5 CI Port Block Data Memory Mapping 
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emulator implements the same functions as the 
CI port and its associated driver. The en~u la to r  
;~ l so  operates the SCA protocol across the  Ether- 
net and manages its interface with the  Ethernet 
datalink driver. Thus the  emulator is responsible 
for 

The provision of a compatible command inter- 
face to  the system communication services 
(SCS) module 
The operation of a transport protocol that irni- 
tates CI behavior 
Node authentication and topology control 
functions 
Propagation of Ethernet datagrams and d;it;~- 
link control 

The port emulator must deal wi th  an underly- 
ing datalink layer whose characteristics are some- 
what different than those of the  CI bus. The Eth- 
ernet datalink can transmit datagrams between 
64 and 1,536 bytes in  length in ei ther a point-to- 
point ,  multicast, or  broadcast fashion. The Ether- 
net provides neither automatic acknowledgnlent 
nor flow control, and Ethernet adapters d o  not 
handlc either buffer segmentation o r  differcnt 
message types. The CI functions of datagram 
transmission, sequenced messages, and block 
transfers must be  implemented by the emulator 
and translated into requests that can be  pro-  
cessed by the  standard VMS Ethernet device 
drivers. 

Port emulation can be  viewed conceptually 21s 
three separate layers. The highest layer provides ;I 
command interface for the higher level SCS rou- 
tines. That interface is compatible with that used 
for CI ports. This layer is also responsible for the 
fragmentation and re-assembly of block transfer 
buffers that are larger than the maximum Ethcr- 
net message size. 

The transport layer provides a sequenced mcs- 
sage ; ~ n d  daragram service to the corresponding 
layer in the  remote node. Its handling of clata- 
grams amounts to  little more than a pass-through 
function; the handling of sequenced messages 
and block transfers, however, is more complcx.  
In the latter case, the transport layer must ensure 
that messages ;ire transmitted and receivetl in thc 
correct order,  cnsurc that acknowledgments arc 
sent and rcceivcd, and retransmit messages that 
have been lost. The transport layer opcrates a 
simple pipeline flow control scheme that allows 
a fixed window of i~nacknowledged mess;igcs. 
Acknowledgments can be "piggybacked" on 
returning messages. 

Last, the datalink control layer is responsible 
for passing messages between the Ethernet device 
drivers and the  transport layer and control of the  
Ethernet datalink service. The datalink control 
layer also maintains a record of the  cluster's 
topology by exchanging multicast messages with 
other cluster members. 

I3elow thc port emulator module is the  stan- 
dard VMS lithernet device driver, which can also 
be ~ ~ s e c l  simultaneously by other applications like 
the DECnet, LA?', and IS0  transport protocols. 
These protocols are multiplexed and demulti- 
plcxed by the Ethernet device driver using thc 
Ethernet standard protocol type. 

The CI port emulation function for the Local 
Area VAXcluster system has a higher system 
overhead than the  equivalent CI connection 
since the  operations involved are performed by 
the host VAX processor. Since the  Ethernet has 
lower bandwidth and longer response times, 
however, the demand for host system resources 
is moderated. The Local Area VAXcluster per-  
formance is acceptable for typical customer 
workloads in which most nodes are single-user 
workstations. The CPU time overheads are most 
noticeable on nodes that serve disks to multiple 
users; those nodes are typically dedicated 
processors 

rMass Storage Control 
The move from control- and status register- 
acti\latetl storage devices to  message-oriented 
storage devices offers several advantages: 

Sharing is sjmplificd since several hosts can 
queue  messages to a single controller. In ;iddi- 
tlon, device control messages can be transmit- 
ted to and executed by hosts wi th  local disks. 

Extension to new devices is easier. In contrast 
to conventional systems where  there is a differ- 
en t  driver for every type of disk and disk 
in terk~ce,  ;I single disk class driver simply 
builds message packets and transmits them 
using a communications interface. Thc disk 
class driver is independent of drive specifics 
(e .g . ,  cylinders and sectors). New disk and 
tape tlcvices ancl controllers can be  added with 
little or  no modification to the host software. 

Performance is improved. The controller can 
rnaint;~in a queue  of requests from multiple 
hohts ;ind can optimize disk performance in 
reill time. '['he controller can also handle error 
recovery and bad-block replacement. 
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The HSC family, shown in Figure 1 ,  is a CI- 
based conrrollcr for both disks and tapes. A single 
HSC70 cor~troller can handle up to 32 disk 
drives. Multiple HSC controllers with dual- 
ported disks provide redundancy in case of fail- 
ures. Furthcr redundancy can be provided by 
grouping disk volumes together in shadow sets to 
form a single virtual volurne in which all mem- 
bers contain exactly the same data. If one mem- 
ber of the shadow set fails, the virtual disk vol- 
ume continues to be available. 

The protocol interpreted by the HSC controller 
is called the Mass Storage Control Protocol 
(MSCP), which provides access to mass storagc 
volumes at the logical block Icvcl. The MSCP 

VAX 1 VAX 2 

model separates the flow of control and status 
information from the flow of data. This distinc- 
tion has been used in other systems to achieve 
efficient file access" and corresponds to thc <:I 
port's message and block d;tt;i mechanisms; mcs- 
sages ;Ire iisetl for devicc control commands 
whilc block transfers itrc uscd for tl;tta. 

The sarnc control protocol is uscd to provide 
clustenvidc access to CI-based controllers like 
the HSC devices, and to disks connected directly 
to a VAX processor (See Figure 7 ) .  In a Local Arcil 
VLYclustcr system, all mass storage is connected 
directly to the boot node and to zero or more 
other storage server nodes. ~Wcssagcs arc routed 
from the disk class tiriver in the rcqucsting node 
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to an MSCP server on the node with the local 
disk. This server then parses the MSCP message, 
issues requests to its disk, and initiates thc block 
transfer through its SCA interface. 'Thus in either 
a CI-based or a Local Area VAXcluster system, all 
locally attached disks can be made transparently 
available to all other V '  hosts in the cluster. 

From a user's point of view, a VAXcluster system 
is a set of nodes cooperating through the VAX/ 
VMS distributed operating system software to 
provide sharing of resources among users on all 
nodes. Shared resources include certain devices, 
files, records within files, and system batch and 
print queues. Typically, user account and pass- 
word information resides in a single file shared 
by all cluster nodes. A user obtains the same 
environment (files, default directory, privileges, 
etc.) regardless of the node to which he or she is 
logged into. In many respects, the VAXcluster 
system "feels" like a single system to the user. 

This sense of a single system results from the 
fact that the VAXcluster system is symmetrical 
with respect to the participating VAX processors. 
In other words, there is no specialization of func- 
tion designed into the software (although an 
installation may choose to configure certain 
CPUs differently according to the special needs 
of that installation). The VMS and VAXcluster file 
system architecture is based on the concept of 
clusterwide and uniform logical block access to 
the mass storage managed by a distributed file 
system. This concept contrasts with file server- 
based distributed systems. 

Figure 7 shows an example of a small VAXclus- 
ter system and some of its major software compo- 
nents. Note that the operation of the VMS soft- 
ware in the VAXcluster environment is exactly 
the same for both Local Area and CI-based VAX- 
cluster systems. The diagram shows an underly- 
ing interconnect that may be either the C[ bus or 
the Ethernet, both of which use the port interface 
methods described above. HSC disk controllers 
connect only to the CI bus. 

At the highest level, multiple user processes on 
each node execute in separate address spaces. 
File and record management services are imple- 
mented as procedure-based code within each 
process. The file and record services rely on 
lower level primitives, such as the lock man- 
agerI8 and disk class driver. The lock manager is 
the foundation of all resource sharing in both 

clustered and single-node VMS systems. It pro- 
vides services for naming, locking, and unlocking 
clusterwide resources. The disk class driver, 
mentioned earlier, uses the MSCP to communi- 
cate with disk servers. The disk class driver runs 
in both clustered and nonclustered environments 
and contains no knowledge of the VAXcluster 
configuration. SCA software below the driver is 
responsible for routing driver messages to the 
correct device controller. 

A distributed connection manager is responsi- 
ble for coordinating the cluster. Connection 
managers on all cluster nodes collectively decide 
upon cluster membership, which varies as nodes 
leave and join the cluster. Connection managers 
recognize recoverable failures in remote nodes; 
they also provide data transfer services that han- 
dle such failures transparent to higher software 
levels. 

Forming a Cluster 
A VAXcluster system 1s formed when a suffi- 
cient set of VAX nodes and mass storage resources 
becomes available. New nodes may boot and join 
the cluster, and members may fail or shut down 
and leave the cluster. When a node leaves or 
joins, the process of reforming the cluster is 
called a cluster transition. Cluster transitions are 
managed by the connection managers. 

In an operating cluster, each connection man- 
ager has a list of all member nodes. The list must 
be agreed upon by all members. A single node 
can be a member of only one VAXcluster system; 
in particular, thc same resource (such as a disk 
controller) cannot be shared by two clusters or 
the integrity of the resources could not be guar- 
anteed. Therefore, connection managers must 
prevent the partitioning of a cluster into two or 
more clustcrs attempting to share the same 
resources. 

To prevent partitioning, the VMS system uses a 
quorum voting scheme. Each cluster node con- 
tributes a number of votes, and the connection 
managers tlynamically compute the total votes of 
all members. The connection managers also 
maintain a quorum value As transitions occur, 
the cluster continues to run as long as the total 
number of votes present equals or exceeds the 
quorum Should the total number of votes fall 
below the quorum, the connection managers will 
suspend VAXcluster activity. When a node joins 
and brings the total votes u p  to the quorum, clus- 
ter activity will resume. 
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A cluster member may have a recoverable error 
in its communications, Such an error leaves the 
node's memory intact and allows the operating 
system to continue running after the error condi- 
tion has disappearecl. These errors can cause ter- 
mination of a virtual circuit and a corresponding 
loss in communication. When cluster members 
detect the loss of communication with a node,  
they wait for a short period (specified by the sys- 
tem manager) for the failing member to re-estab- 
lish contact. If the failing member recovers 
within this period, it rejoins the cluster. Users 
may experience a brief interruption of service 
when this happens.  If the failing member does 
not recover in time, the surviving members 
remove the failed node from the cluster and con- 
tinue operating (assuming sufficient votes are 
present). A node that recovers after it h;ts been 
removed from the cluster is told to  re-boot by the  
connection managers. 

Shared Files 
The Vmclus ter  system provides a clustenvide 
shared file system t o  its users.I9 Cluster accessi- 
ble files can exist on CI-based disk controllers o r  
on disks local to  any of the cluster nodes. Each 
cluster disk has a unique and location-indepen- 
dent name. A complete cluster file name includes 
the disk device name, the  directory name, and the 
file name. Using the device name for a file, the 
cluster software can locate the node (either a 
CPU or  a disk controller) on which the file 
resicles. 

Cluster file activity requires synchronization; 
exclusive-write filc opens,  coordination of file 
SYS~CIII data structures, and management of file 
systern caches are a few examples.  However, 
despite the fact that files can be  shared cluster- 
wide, the filc m;inagement services are largely 
zrnrrztxirc. of whether they are executing in a clus- 
tered environment. These file managers synchro- 
nize through the VMS lock manager, described 
later. The lock manager handles the locking and 
unlocking of resources across the cluster. At the 
level of the file manager, then,  cluster fi[e 
sharing is similar to single-node file sharing. 
Lower lcvels handle the  clustenvide synchroniza- 
tion and routing of physical-level disk requests to  
the correct device. 

Distributed Lock Manager 
As previously described, the VMS lock manager is 
the basis for clusterwicle synchronization. Several 

goals influenced the design of the lock manager 
for a distributed environment. First, programs 
using the lock manager must run in both single- 
node :tnd cluster configurations. Second, lock 
services must be efficient to support  system-level 
software that makes f r eq~ len t  short-duration 
accesses. Therefore, in a VAXcluster system, the 
lock man;iger must minimize the nu:nber of S<:A 
messages needed to manage locks. In a single- 
node configuration, the lock manager must rcc- 
ognize the simpler environment and bypass any 
cluster-specific overhead. Finally, the lock man- 
ager must recover from failures of nodes holding 
locks so  that surviving nodes can continue to 
access shared data in a consistent manner. 

The VMS lock manager services allow cooper- 
ating processes to define shared resources and 
synchronize access to those resources. A resource 
c;un be  any object an application cares to define. 
Each resource has a user-defined name by which 
it is referenced. The lock manager provides basic 
synchronization services to request and release 
locks. Each lock request specifies a locking 
mocle, such 21s exclusive access, protected read, 
concurrent rcacl, and concurrent write.  If a pro- 
cess requests a lock that is incompatible with 
existing locks, the request is queued until the 
resource becomes available. In many applica- 
tions, resources may be  subdivided into a 
resource tree, as illustrated in Figure 8. 

FILE 1 FILE 2 FILE 3 

Figure 8 VAXcluster Locking Structure 

In this example,  the resource Disk Volume 
contains resources File 1 through File 3; resource 
File 3 contains resources Record 1 ,  Record 2 ,  and 
s o  on.  The first locking request for a resource can 
specify the parent of that resource, thereby defin- 
ing its relationship in a tree.  A process making 
several global changes can hold a high-level lock 
(e.g. ,  the root) and can make them all very effi- 
ciently. A process making a small, low-level 
change (e .g . ,  a leaf) can d o  so  while still per- 
mitting concurrent access to other parts of the 
tree.2" 
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The lock manager's implementation is in- 
tended to distribute the overhead of lock man- 
agement throughout the cluster while still mini- 
mizing the internode traffic needed to perform 
lock services. The darabase is therefore divided 
into two parts: the resource lock descriptions, 
and the resource lock directory system, both o f  
which are distributed. Each rcsource has a master 
node responsible for granting locks on the 
resource; the master maintains a list of granted 
locks arid a queue of waiting requcsts for that 
resource. The master for all operations for a sin- 
gle tree is the node on which the lock request for 
the root was made. While the master maintains 
the lock data for its resource tree, any nodc hold- 
ing a lock on a resource mastered by another 
node keeps its own copy of thc rcsource and lock 
descriptions. 

The second part of the database, the resource 
dircctory system, maps ;I resource name into t he 
name of the mastcr node for that rcsource. The 
directory database is distributed among nodcs 
willing to share this overhcad. Given a resourcc 
name, a node can trivially compute the responsi- 
ble directory as a function of the name string and 
the number of directory nodes. 

70  lock a resource in a VAxcluster systelll, thc 
lock manager scnds a lock request message 
through the SCA to the directory for the resource. 
The directory responds in one of three ways: 

1. If located on thc master node for the 
d o u r c e ,  the directory performs the lock 

iCdin'b*urequest and sends a confirmation response to 
the requesting system. 

2 .  If the directory is not on the mastcr node but 
finds the resource defined, it  returns ;I 

responsc containing the identity of the mas- 
ter node. 

3. If the directory finds the rcsource to be 
undefined, it returns a response telling the 
requesting node to master the resource 
itself. 

In the best cases ( 1 and 3). t\vo mcssages arc 
required to  request a lock; case 2 takes four mes- 
sages. An unlock is executed with one message. If 
the lock request is for a subresource in a resourcc 
tree, the requesting process will cither bc 
located on the mastcr node ( i .e . ,  the request is 
local) or will know who the master for its parent 
is, allowing i t  to bypass thc directory lookup. In 
all cases the number of mcssagcs rccluircd is 

independent of the number of nodes in the VAX- 
cluster system. 

In addition to standard locking services, the 
lock manager supports data caching in a dis- 
tributed environment. Depending on the fre- 
quency of modifications, caching of shared data 
in a distributed system can substantially reduce 
the 1 / 0  and communications workload. 

A I (,-byte block of information, called a value 
block, can be associated with a resource when 
the resource is defined to the lock manager. The 
value in the value block can bc modified by a 
process releasing a lock on the resource and can 
be read by a process when it  acquires ownership. 
Thus this information can be passed along with 
the resource ownership. 

In the case of a filc buffer, for example, a ver- 
sion number is maintained in the value block. 
When caching a buffer, a process saws the cur- 
rent version number. To modify the buffer, the 
process obtains an exclusive lock and receives 
thc current version number. If the current ver- 
sion numbcr equals the version number of the 
cachcd data, the cache is valjd. Several updates 
can the11 bc made on the cached data before it  is 
written back to disk. When the modified data is 
written, the process incremcnts the version num- 
ber and releases its lock. 

Another mechanism used in buffer caching is a 
software interrupt mechanism. When requesting 
an exclusive lock, a process can specify that it 
should be notified if another lock request on the 
rcsource is forced to block. A process can then 
hold a modified copy of the data without writing 
i t  back. Wlien another process wants access, the 
owner writes the modified data and releases its 
lock. 

In the case of cluster transitions (e.g. ,  failure 
o f  a nodc), the connection manager notifies the 
lock nxinager that a transition has started. Each 
lock nlanager performs recovery action, and all 
lock managers must complete this activity before 
cluster operation can continue. 
As the first step in handling transitions, a lock 

manager dcallocates all locks acquired on behalf 
of other systems. Only local lock and resource 
information is retained. Temporarily, there are no 
rexource masters or directory nodes. In the sec- 
ond step, each lock manager re-acquires each 
lock i t  had when the cluster transition began. 
'I'liis step establishes new dircctory nodes based 
on a new set of eligible cluster members and rear- 
r;lngcstlie assigtllnent of miister nodes. If a node 
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has left the cluster, the net result is to release 
locks held by that node. If no node has left the 
cluster but nodes have joined, this recovery is not 
necessary from an integrity point of view. I t  is 
performed, however, to keep the directory and 
lock mastering overhead evenly distributed. 

Some resources, depending on how they arc 
modified, might be left in an inconsistent state by 
a cluster transition. To ensure the proper han- 
dling of such resources, users can define a class 
of locks that are not released on a cluster transi- 
tion. In this case a special process can search for 
such locks and perform needed consistency 
checks before releasing them. 

Batch and Print Services 
In a Vficlustcr system, users may either submit a 
batch job to a queue on a particular node (not 
necessarily their own node), or submit a job to a 
clusterwide batch queue. Jobs on the clusterwide 
queue arc routed to queues attached to specific 
nodes for execution. The algorithm for assigning 
jobs to specific nodes is a simple one based on 
the ratio of executing jobs compared to the job 
limit of the queue. 

The management of batch jobs is the responsi- 
bility of a VMS process called the job controller. 
Each VMS node runs a job controller process, 
which acquires work from one or more batch 
queues. Hatch queues are stored in a disk file that 
may be sh;ired by all nodes. The synchronization 
of queue manipulation is handled with lock man- 
ager services. 

Print queues are similar to batch queues. Users 
may queue a request for a specific printer (not 
necessarily physically attached to their own 
node) or may let the operating system choose an 
available printer from those in the cluster. 

Both batch and print jobs can be declared 
restartable. If a node fails, restartable jobs are 
either requeued to complete on another nodc in 
the cluster or executed when the failed nodc 
reboots (for jobs that must execute on a specific 
node). 

DECnet Communications 
Each member of a VAXcluster system can also 
participate in a DECnet network as an individual 
node. Simultaneously, the cluster as a whole may 
participate in the network as a single node. The 
cluster's system manager may select an additional 
DECnet node name and address, known as the 

cluster's alias, to be assigned to the cluster. DEC- 
net connections originating from a cluster mem- 
ber can be made to appear as if  they came from 
the alias node, regardless of the true originator. 
Connections addressed to the alias will be 
directed to any cluster member that has declared 
itself willing to receive them. This concept is 
particularly useful for sending and receiving net- 
work mail. All mail sent from the cluster will 
appear to have come from a single node. All 
replies will be delivered to the cluster's mail files 
even when the node from which the first message 
was sent is unavailable (provided that the disk 
remains available). 

The VAXcluster DECnet alias address requires 
the presence of at least one routing node in the 
cluster. DECnet routing nodes maintain tables 
describing the topology of the network and com- 
municate this information to other nodes. The 
existence of the cluster's alias address is thus 
propagated in control messages to other nodcs in 
the network. Although the alias node does not 
actually exist, a path to it via the cluster's router 
is apparent. The router maintains a table of con- 
nections to the alias node by means of the dis- 
tributed lock manager. When ;I connect request 
for the alias arrives at the router, i t  passes the 
request to another node in the cluster, distribut- 
ing the connections in a round-robin fashion. 
Connect reclilests originating from the clustcr 
members arc simply set u p  as i f  they came from 
the alias. 

Terminal Support 
The optimum method for connecting users' ter- 
minals to a VAXcluster system is through the LAT 
server. Terminals are connected to the LAT server, 
which is atcached to the VAX systems by the Eth- 
ernet. In  a Local Area VRXclustcr system, this 
connection can be the same Ethernet used to 
interconnect the members of the cluster. Users 
command the LAT server to connect them eithcr 
to a specific node or to any nodc in the cluster. 
Thc ease of switching nodes Jcads users to find 
and use the least busy node. The server i~lso 
allows uscrs t o  q ~ ~ i c k l y  move from a failed nodc 
to one that is still running. I f  the LAT server is 
clirected to select a nocle, it  attempts to find thc 
least busy one. Its choice is based on node CPU 
type (a measure of processing power) and rcccnr 
idle tjmc. 
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Performance 
Pcrforrna~ice measurements using a CI-b;~sed 
VAXcluster system of two VAX-1 1/780 systems 
have shown it  is possible to achieve 3,000 mcs- 
sage round-trips per ~ e c o n d . ~ '  A round-trip is 
defined as the transmission of a message ant1 the 
receipt of its acknowledgment from the remote 
system. This performance provides a basis for 
efficient execution of higher level dis tr ib~~ted 
services, such as the VMS distributed lock man- 
ager and the MSCP logical block service usecl 
for access to mass storage. The performance 
characteristics of CI-based VAXcluster systems 
vary almost linearly in relation to the number 
of CI nodes in the system. From this i t  can be 
concluded that the underlying communic;itions 
architecture upon which the VAXrcluster system 
is basecl scales well with an increasing num- 
ber of nodes. Measurements with up  to t\velvc 
VAX- 11/780 nodes showed nearly linear perfor- 
mance in cluster round trips per second. 

The performance characteristics of a Local Arc:[ 
VAXcluster system are somewhat different for the 
following reasons: 

The interconnect speed is limited to 10  mega- 
bits per second, as opposed to 70 megabits per 
secontl for the CI bus. 

The delay (i.e., latency) for message round 
trips in the Ethernet network is somewhat 
greatcr. 

Because VMS VAXcluster systems attached to 
the Ethernet are optimized as single-user work- 
stations, the limits of throughput and latency tlo 
not prescnt a problem. Workload studies have 
shown that the limiting factor in Local Area VAX- 
cluster performance is the rate at which the boot 
node can service the satellites' mass storage 1/0 
requests. These studies further indicate that this 
limit in turn depends upon the CPU speed of the 
boot notlc while executing both thc CI port emu- 
lation code and the MSCP server code. For a fast 
VAX system (e.g.,  a VAX 8700 CPU), the next 
limit is imposed by the throughput of the Ether- 
net adapter used by the boot node. The final 
limit to be encountered is the saturation of the 
Ethernet network itself. This limit is reached ; ~ t  

approximately 100 typical VMS I/O requests per 
second ancl is largely indepcndent of the number 
of satellite and boot nodes accommodated by the 
network. Note that the factors limiting the 11un1- 
ber and size of Local Area VAXcluster systen~s that 

can bc sustained by a single Ethernet segment is 
heavily tlepetidcnt upon the nature of the appli- 
cations being run. 

Summary 
A principal goal of VAXcluster systems was the 
dc\.elopment of an available and extensible mul- 
ticomputcr systcm built from standard processors 
and a general-purpose operating system. Much 
was gainetl by the joint design of distributed soft- 
ware, corn~nunications protocols, and hardware 
aimecl to meet this goal. For example: 

The CI interconnect supports the fast message 
transfer needed by the system software. 

The CI port implements many of the functions 
needed by the SCA software. 

'The HSC controllers, with their message-pro- 
tocol ant1 request-queuing optimization logic, 
support a large pool of disks for multiple 
hosts. 

Designing hardware and software together 
allows for system-level trade-offs; the software 
interpace and protocols can be tuned to the hard- 
ware clevices. 

An important simplifying aspect of the VAX- 
cluster design is the usc of a distributed lock 
manager for resource synchronization. In this 
way, higher level services such as the file system 
do not rcquirc special code to handle sharing in 
a distributed environment. However, the perfor- 
mance of the lock manager becomes a crucial h c -  
tor. Thc performance of the distributed lock 
manager has been attacked with the design of 
a locking protocol requiring a fixed number of 
messages, independent of the number of cooper- 
ating nodes. 

The system design of the original VAXclustcr 
implementation also allowed its straightforward 
migration to the Ethernet without the need for 
extensive hardware and software modification. 
The Local Arca VAXcluster product allows work- 
station users to enjoy the benefits of a large, ccn- 
trally managed timesharing system on their indi- 
vidual office system without having to deal with 
the various system management tasks. 

Finally, we bclieve that performance measure- 
ments show the extent to which the VAXclustcr 
system has succeeded in irnplemcnting an effi- 
cient communications architecture that is appli- 
cable to both ;i high-speed dedicated LAN (the 
CI bus) anti a general-purpose shared IAN (the 
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Ethernet). This feat is particularly imprcssivc 
when considering that the  VMS software is a 
large, general-purpose operating system. 
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Tibe System Communication 
Architecture 

The System Communication Architecture de@nes how data trafic is han- 
dled among host systems and their disk systems over the CI interconnect in 
a VAXcuster configuration. Low CPU overhead was a key design goal. The 
SCA supports the management of cluster configurations, buflers, and con- 
nections. It also supports directory services, datagram and sequenced- 
message services, and named-bufler transfer services. The SCA can be 
extended to connections between hosts and locally attached storage con- 
trollers, and to Local Area VAXcluster systems, which use the Ethernet. 
Each CIport is capable of sustaining about two megabytes per second of 
bandwidth with minimal overhead required from a CPU. 

The System Communication Architecture (SCA) rn Nimed-bi~ffer transfers, which are potentially 
defines the nctwork ;trchitccture for VAXcluster I;irge d;tta transfers between process 1,uffers in 
systems, much like the Digital Network Architec- virtu:il memory (These transfers arc also guar- 
turc (IINA) defines the network protocols for :inteed against loss and duplication.) 
Digital's wick area networks. ' 

In 198 1 ,  as the Computer Interconnect (CI) 
hardware was being developed, it became clear 
that some type of network architecture w:~s 
needed to bind the CI subsj~stems together. This 
archi tcct~~rc required a relatively simple struc- 
ture so that little overhead would be needeti in 
either the VAX host computers or the Hierarchi- 
cal Storage Controllers (HSC). Many of the sys- 
tem processes within the systems and controllers 
would have to corn~nunicate in, at that time. 
unforeseen ways. Therefore, the SCA architecture 
had to support all the features and perfornrancc 
of the CI hardware so they could be used by the 
system processes. 

The CI Interconnect 
The CI interconnect provides the following basic 
 service^:^ 

Sending datagrams, which are not guaranteecl 
against loss and duplication 

Sending sequenced messages, which are guar- 
anteed against loss and duplication (If an  error 
occurs, the sending node on the CI intercon- 
nect will be notified.) 

vI'hcbc services are very ~iseful to the operating 
system software when VAXcluster and other dis- 
tributed systems are built. However, in the form 
th;it the CI port provided those senlices, they 
could not be shared conveniently by the many 
parts of the operating system needing the~n.  

rl'he SCA architecture provides a simple and 
efficient means for the various parts of the operat- 
ing system ant1 the disk-controller softw;ire to i ~ s c  
thcsc senrices. 

SCA Goals 
SCA was developed from the beginning with the 
following set of goals: 

'11) 17~)vide ;I high-performance me;ins of 
accessing and directing rnass-storage control- 
lers. and o f  transferring data 

l i)  fi~cilitatc acccss to and sharing of all the 
c;lp:ibilities of thc C1 ports among ruany pro- 
ccsscs within the operating systems of the host 
COlllpU ters 

'li) provide a way for each system on the CI 
interconnect (e.g..  VAX host systems. disk and 
t;ipc controllers) to obtain configuration infor- 
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mation about every other system and which hardware components connected to the CI inter- 
functions each system performs connect. Using the ID request/response feature 

To establish a means of binding together sys- 
tem applications (SYSAPs) in two different 
systems over the CI interconnect so that the 
SYSAPs can communicate using their names 

SYSAPs are functions within the operating sys- 
tems of hosts and within the firmware of disk and 
tape controllers. In host systems, those functions 
include disk and tape class drivers, DECnet soft- 
ware, and the VAXcluster connection manager, 
among  other^.^ 

In single computer systems, command status 
registers are used to direct the mass-storage con- 
trollers and other devices. In VAXcluster systems, 
however, the SCA network architecture would 
now direct the traffic between host systems and 
disk systems. One important design goal of SCA 
was to make it  operate as efficiently as possible, 
that is, with low overhead on the systems. 

SCA Services 
The SCA architecture supports the performance 
of six different functions. 

1. Cluster configuration management 

2.  Buffer management 

3. Connection management 

4 .  Director), services 

5. Datagram and sequenced-message services 

6. Named-buffer transfer services 

The following sections describe each of these 
functions and show how they interoperate to 
provide a coherent scheme for system communi- 
cation. 

Cluster Configuration Management 
A node on the CI interconnect is either a VAX 
computer system or an HSC controller support- 
ing disc or tape devices. Within the cluster, a 
node cannot communicate w ~ t h  another node 
until i t  has established that node's location on the 
CI interconnect. At present, 16 nodes is the maxi- 
mum number the C1 interconnect can support, 
although the architecture can support 224. Since 
this current number is small, polling is an  effi- 
cient method for each node to determine which 
of the potential nodes are present. There 1s a n  
"instance" of the SCA software within each of the 

of the CI ports, SCA software periodically polls 
each of the other nodes on the CI and keeps a list 
of the active members in the hardware cluster. 
Using the information in this list, the SCA soft- 
ware keeps a port-to-port virtual circuit open to 
every other node on the interconnect. 

SCA software opens this port-to-port virtual cir- 
cuit by using a series of messages, called a hand- 
shake, between itself and another SCA software 
instance in a partner node. The handshake allows 
the two SCA instances to first synchronize and 
then exchange information. At the end of the 
handshake each node will direct its local CI port 
to enable the virtual circuit state with the other 
node's CI port. This enabling allows the guaran- 
teed exchange of sequenced messages and 
named-buffer transfers between the two ports. 

The information exchanged in the handshake 
gives to each node the software type and SCA ver- 
sion running on the other node. That allows 
nodes with different SCA versions to interoperate. 
Other information, such as the time of day and 
the time the node last booted, is also exchanged. 

A node with multiple CI ports will use all its 
ports to form port-to-port virtual circuits to all 
the other remote nodes. Each node will store 
information about each of the remote nodes in a 
system block for that remote node. Each port-to- 
port virtual circuit is called a path. The informa- 
tion blocks representing these paths, called path 
blocks. are chained together to the system block 
for a particular remote node. In that way, SCA can 
maintain the exact relationships among the paths 
and nodcs. 

The total number of paths between two nodcs 
is equal to the number of CI ports on the local 
node times the number of CI ports on the remote 
node. SYSAPs in both the local and remote nodes 
can dctcrmine the topology of the CI intercon- 
ncct by making special calls to SCA software. Fig- 
ure 1 depicts an example of the relationship 
between system blocks and path blocks for a net- 
work. 

Buffer Management 
One of SCA's most important properties is its 
close control over how the communications 
buffers are used within the nodes. This control is 
important because node activity normally occurs 
at very high data rates. The buffers could be 

- --- - 
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SYSTEM 
BLOCK A BLOCK BLOCK BLOCK 

FH-kM BLOCK B 

Figure 1 Connections between System 
and Path Blocks 

I 

quickly overrun if data transmission were not 
strictly controlled froni the source. Recovery 
from buffer exhaustion is not a rapid process. 
During periods of high load within the node, 
these delays yield further delays and thus 
increase the req~~irements for buffering. 

SCA software controls the buffers for two types 
of traffic: SCA control messages, and SYSAP data 
messages. SCA control messages are used to estab- 
lish and remove SYSM-to-SYSAP connections and 
to control buffer usage on those connections. The 
SCA control-message protocol is structured so as 
to simplify the control of buffer usage. 

Control messages come in pairs, a command 
and its response. A rcsponse is expected for each 
command sent, and a buffer must be available to 
receive i t .  'The SCA architecture specifies that a 
response will be received for each command 
sent. Therefore. a command buffer is made 
available on the free queue of the CI port to 
receive the response. Thus each SCA path has two 
buffers av;~ilablc for control niessagcs, one for 
sending a command and receiving its response, 
the other for receiving a command and sending 
its response. 

Allocating buffers for SYSM dialogues is not 
as simple as the command/responsc alloca- 
tion. In this case, the buffer allocation must be 
based on the needs of the protocol used by the 
SYSAPs. Some protocols are command/rcsponse 
in nature, such as the Mass Storage Control Proto- 
col (MSCP) used for the HSC ;lnd other storage 
controllers. Others are not, such as the VMS con- 
nection-manager protocol used for VAXcluster 
systems. 

SYSTEM 
BLOCK C 

SCA architecture enables the SYSAPs on a nodc 
to ;lllocate as many receive buffers as are needed 
for each connection. Each SYSAP provides these 
buffers to SCA, which then keeps track of them. 
Each receive buffer acts as a "credit" to allow the 
or her node to send one message ovcr that con- 
nection. The node's SCA software informs the 
remote SCA software of the number of credits 
available for each connection. [f a credit is not 
avail;~l,lc, thc retnote SYSAP will suspentl bending 
its message. This style of buffer management is 
callctl "pcssimistic flow control ." I t  is normally 
unsuitable for use in gencral networks involving 
rou ring messages between nodes. However, since 
routing is not done in the SCA environment, this 
style has the advantage of being completely prc- 
dictablc. If a nocle momentarily lags in satisfying 
com~iiunication requests made upon i t ,  the other 
nodes simply wait until t.he lagging nodc recov- 
crs. 'l'hus no additional buffer management is 
required. 

The cost of these tight cotitrols on buffer nian- 
agement is some additional overhead to commu- 
nicate the crcdits to the sending node. Thesc 
crcdits are "piggybacked" onto messages going to 
the correct node by including a credit ficltl in all 
SCA messages. When the SYSAP protocol docs not 
cont;~in returning traffic, however, additional 
control messages are required. 

The command/response nature of SCA control 
mcssagcs and the pessimistic flow control for 
SYSAI' messages remove much of the time-related 
beh;~vior from the S C A  architecture. That means 
the SCA operation is relatively independent of the 
ex:lct timing of the arrival of messages and the 
spec<l of response of thc nodes involved in the 
comn~unication. These factors make it  relatively 
easy to implement and verify the SCA software. 

Connection Management 

PATH 
BLOCK 

A connection between two SYSAPs in different 
nodes is a correspondence between two conncc- 
tion identifiers, one From each SCA instance. 
These connection identifiers allow the SCA soft- 
ware to multiplex its services onto the underly- 
ing virtual circuit by tlispatching the messages to 
the correct connection based on the connection 
identifiers. Each SCA mcssiige has a header con- 
taining these connection identifiers. Figure 2 
shows the layout of an SCA message with the for- 
mat of the protocol header. 

When a node receives a message, SCA will dis- 
patch it based on the message type. For SYSM- 
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connection. This separation into pairs allows the 
destination SYSAP to  decide,  based o n  the  infor- 
mation passed wi th  the  connect request from thc 
source and on its current resources. whether o r  
not to  acccpt the  connection. 

Figurc 3 illustrates the  events required to es- 
tablish a conncction between two SYSAPs. The 
sequence of messages is as follows: 

I I 
1.  A connect-request message is sent from the  

Figure 2 SCA Message with Protocol Header source node to  the  destination node.  This 
message contains the sourcc and destination 
SYSAP n;lmcs and 16 bytcs of additional in 

related messages, SCA uses the ID of the  destina- formation from the source SYSAP. 
tion connection to dispatch further to  the correct 
SYSAP. As ~ncnt ioned earlier, the credit  field in 
each message header allows credits to be piggy- 
backed in message traffic. 

A SYSAP signals its willingness to receive con- 
nections from other SYSAPs by initiating a "lis- 
ten" call to its own SCA s o  ftware instance. This 
call establishes the name of that SYSAP in a list 
of names of waiting processes. SYSAP names 
are defined by the architecture as strings of u p  
to 16 characters. Some of the currently defined 
names are MSCPSDISK and MSCPITAPE for 
the disk and tape sewers,  VMS6VAXcluster for 
the VAXcluster connection manager, and 
SCSSDIREC'TORY for the SCA directory server. 

A SYSAP from another node,  the source node.  
can establish a connection to a listening SYSAP in 
a destination node by issuing a connect call t o  
SCA, giving the node address of the  destination 
node and the  name of the listening SYSAP. Two 
SCA control-message pairs arc rcquired to  cstab- 

2 .  A connect-response message is sent  from the 
destinxtion node to the sourcc node.  This 
mcssagc indicates that a SYSAP with the 
requested name exists and that enough re- 
sources are present for SCA to honor a con- 
nection. If there are not enough resources, 
thcn the connection is refused. 

3. Later, the destination SYSAP performs either 
an accept or  a reject call, and its SCA soft- 
ware responds by sending either an accept-  
request message or  a reject-request message 
to thc source node. 

4 .  I f  the message was accept request, the  
source will respond with an  accept-response 
message and notify its SYSAP that the  con- 
nection is open.  If the messagc was a reject 
request, the  source SCA software will  re- 
spond with its own  rcject response, and the  
conncction will not be  opened. 

lish a connection. The first command/responsc The accept and reject responses by the  receiv- 
pair from the source establishes the connection at ing SYSAP are separated from the  connect-rcquest 
the destination end; the  second pair from the dcs- and connect-response mcssagc pair. That separa- 
tination to  the source ei ther accepts o r  rejects the  tion allows the  SYSAP to  initiate a potentially 

SYSTEM A SYSTEM B 

SENDING SYSAP STARTS CONNECT REQUEST MESSAGE 
CALL CONNECT (system B.' SYSAPname') b CALL LISTEN ('SYSAPname') 

CONNECT RESPONSE MESSAGE 

CONNECT REQUEST S I G N A L L E D  
SYSAPname SYSAP 
C A L L  ACCEPT (CONNECT ID) 

ACCEPT S I G N A L L E D  TO SENDING SYSAP, ACCEPTREQUESTMESSAGE 
CONNECTION OPEN TO SYSTEM B 

ACCEPT RESPONSE MESSAGE 
b CONNECTION OPEN TO SYSTEM A 

Figure 3 Eoenls lo Open GI Connection 
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time-consuming operation without tying up  the 
SCA control-message buffer of the sending SCA 
instance. 

When either member of a pair of SYSAPs hold- 
ing an open connection wishes to break that con- 
nection, that member performs a disconnect call 
to its SCA software. '['he SCA software will inform 
the SYSAP in the other node, which must then 
perform its own disconnect call to synchronize 
the dismantling of the connection. Each side 
informs the ot.hcr of the disconnect call by 
cxchilnging a disconnect-request and disconnect- 
response message pair. 

Directoly Services 
To accomplish their tasks. the various SYSAPs 
running within a node need the help of SYSAPs in 
other nodes. These SYSAPs operate either in ;I 

peer-to-peer relationship, such as the VAXclustcr 
connection manager,' or in a client-to-servcr rela- 
tionship, such as the disk class driver anti the 
MSCP djsk server. The method by which SYSAPs 
find those othcr SYSAPs within the context of SCA 
is called the directory service. This service is 
itself implemented as a SYSAP that listens for 
incoming connections. The service responds to ;I 

simple protocol of reclucsts for information about 
which SYSAPs on this node are listening for con- 
nections from other nocles. 

To qi~ery the directory service, a SYSM must 
request an SCA connection to another nodc with a 
destination process name of SCSSDIRECI'OKY. 
This special process name is resenled for use by 
the directory services. The requesting SYSAP can 
then inquire if a SYSAP with a particular name is 
listening for a connection and also ask for a list of 
all SYSAPs currently listening for connections. 
Figure 4 shows two VAX systems and an HSC 
device in a cluster, with the SYSAP processes lis- 
tening in each nodc. 

SCS$DIRECTORY SCS$DIRECTORY 
VAX B VMS$VAXcluster 

MSCP$DISK n 

Figure 4 SYSAP Processes among Three Nor1c.s 

Every implementation of a SYSAP has the prob- 
lem of finding yartner SYSAPsof the same name 
to communic;itc with in the cluster. To centralize 
the software performing this function, the VAX/ 
VMS softw;ire implements a generztl facility for 
SYSAPs to find other SYSAPs. This kicility periodi- 
cally polls other nodes through the directory scr- 
vice to determine which listening SYSAPs arc 
present. "T'his process pol ler is a powerfu l tool 
that si~iiplifics the design of the SYSAPs and the 
operating system software by allowing various 
SYSAI3s to start in one node without depending on 
whether or not othcr nodes are working yet. 
When ncw nodes - and the SYSMs within those 
nodes - arc added to the cluster, all the SYSAPs 
currently running will find each other and coni- 
municatc ;iutomaticaIly. 

Datugram and 
Sequenced- message Services 

The CI port and the CI interconnect provide 
the capability to exchange datagr~rns and 
scqucncccl messages between ports. D:itagram 
and sequenced-mess;lge services are both pro- 
vided by SCA in the context of ;I connection. A 
SYSAP establishes a connection with another 
SYSAP and t hen sends datagrams or messages over 
that conncctjon. In the context of SCA, clatagrarns 
and messages, by convention, differ in size as 
well as in their delivery mechanisms. Datagrams 
are 576 l q ~ s  in length so that thcy ;ire suitable 
for ilsc by the DECnet protocol as datalink 
buffers. Messages are 1 12  bytes in length to 
acconiniod;ite MSCP control messages and VAX/ 
VMS lock manager messages. 

Controlling the flow of credits for datagrams 
and mcssages is clone separately by SCA. Data- 
gram credit controls operate at the receiver. 'T'hc 
receiving of tlat;igr:~ms is not gu;ir;intecd. llpon 
receiving ;I d;it;igram, a SYSIW milst have ;ivail- 
able ;I datagram-receive credit; otherwise, the 
datagr;~rn is discarded. The receiving of mcssages, 
howcvcr, is gu;ir;inteed. Message-credit controls 
are jnstit~~tcd ; ~ t  the sending node. When ;I SYSAP 
wants to scntl a message, the receiving notle must 
havc ;I credit available. If  not, thc sending SYSAP 
waits ant1 clots not send the message until 
informed th;it the credit is avail;lblc. 

As mentioned earlier. the port-to-port virtual 
circuit proviclcd by the CI port hartlwarc controls 
the loss o f  sequenced messages bctwccn nodes. 
The circuit retr:insmits these messages ;is ncces- 
sary t o  gu;ir;uitee their deliver)'. In Eict, thc hard- 
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ware performs this task for CI datagrams as m.cll, 
but higher layers of software do  not take advan- 
tage of this fact. 

Datagrams are used to log events and other 
communications, such as from DECnet nodes. 
that control the loss of datagrams in other ways. It 
is useful in these applications to discard informa- 
tion when buffering becomes a problem so that 
too many buffers are not consumed. In the case of 
event logging, the lost messages are likely to be 
duplicates anyway. In the case of the DECnet soft- 
ware, higher layers of DECnet protocol control 
the loss, and discarding the datagrams prevents 
congestion at  intermediate nodes. 

SCA and the CI port work together to make 
message transfer more efficient by eliminating 
transmit-done interrupts. When a node expects a 
response to a message, SCA and the CI port coop- 
erate to queue the buffer sending the message to 
the free queue. That buffer can then be used to 
receive the response. Thus in a command/ 
response exchange of two messages, the sending 
and receiving nodes each experience only one 
receive interrupt. 

Extensions to Other Interconnects 
To this point, only the CI implementation of SCA 
has been cliscussed. However, the utility of SCA 
is not limited solely to the C1 interconnect. SCA 
is a gcncral network communication architec- 
ture that can serve a number of interconnects. 
For example, i t  is currently used in locally con- 
nected storage controllers and on Ethernet for 
low-end VAXcluster systems. 

Locally Connected Storage Controllers 
The UDA5O UNlBUS and KDB5O BI disk con- 
trollers arc locally connected storage controllers 
that connect Digital Storage Architecture (DSA) 
disk drives to VAX computers without an inter- 
vening C1 interconnect. These devices are intelli- 
gent controllers that incorporate the SCA and 
MSCP protocols, just as does the HSC5O CI-based 
disk controller. The use of SC4 in these con- 
trollers has proven to be an efficient means to 
communicate with disk controllers in which a 
direct bus interface has traditionally been used. 

In controllers, there is no interconnect be- 
tween the host adapter and the disk controller; 

Named- buffer Transfer Services both functions are performed by the same con- 

One striking feature of the CI port hardware is its troller. Although the port header has been simpli- 
fied because i t  does not have to address multiple ability to transfer large amounts of data between 

named buffers in the virtual address space of pro- ports on an interconnect, the basic SCA f ~ ~ n c t i o n s  

cesses within a node.* This feature is the most still operate. The use of SCA aLlows multiple 

useful one for disk and tape transfers. functions to be placed in a controlIer and used 

SCA provides services for the two named-buffer separately by having them appear as SYSAPs with 

transfer commands available in the CI port: the different names. For example, disk and tape con- 
troller functions can both co-reside in a con- send-data command, and the request-data cotn- 
troller but arc accessed via different SYSAPs. mand. The send-data command transmits the con- 

tents of a segment of a local named buffer into a 
segment of a named buffer in a remote node. Tht. 
parameters for the send-data command are the 
transfer length in bytes, and the names and byte 
offsets of the sending and receiving buffers. The 
request-data command asks the remote port to 
transmit data from a remote named buffer to a 
local named buffer. The send-data command per- 
formed by a disk controller corresponds to a disk 
read function, and the request-data command to a 
disk write function. 

Of course, named-buffer transfers can be used 
by any SYSAP, not just the ones communicating 
with disk controllers. Using named-buffer trans- 
fers, i t  is possible for two VAX systems in a clus- 
ter to exchange memory data at a transfer rate of 
over 2 megabytes per second at the C1 ports. 

Adapting SCA to Etbernel 
Digital decided to extend the VAXcluster archi- 
tecture to the Ethernet in order to support work- 
stations ancl other Ethernet-based systems. The 
most obvious way to accomplish that extension 
was to build :I port emulator for the CI capabili- 
ties on top of the datagram capabilities of the Eth- 
ernet adapters. Such a port en~ulator  performs 
the functions of a CI port in software written as 
a driver running under the VMS system. SCA 
extends naturally in this way since the Ethernet 
has the fundamental properties expected of a net- 
work to be used by SCA. That is, Ethernet is ;I 

multiaccess media in which the nodes need not 
be conccrned with how packets are routed to 
their final clestinations. 
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SCA Performance References 
VAXcluster performance greatly depends on the 1.  A. Iauck, D. Oran, and R. Perlman, "Digital 
performance of SCA, in terms of messages and Network Architecture Overview," Digital 
bytes transferred per  second, and on the overhcad Technical Journal (September 1986): 
on the system software performing the transfer. 10-24. - 
Not only does SCA perform storage access, it also 
sends the lock manager messages that allow VAX- 
cluster systems to share devices and files. SCA, 
together with the CI port design, is indeed a 
high-performance and low-overhead intercon- 
nect. For example, on a VAX- I 1 /780 system, over 

2.  N .  Kronenberg, H. Levy, W. Strecker, and R. 
Mercwood, "The VAXcluster Concept: An 
Overview of a Distributed System," Digital 
Technicf~I journal (September 1987, this 
issue): 7-2 1.  

3000  sequenced-message round trips per  second 3. W. Snitman, Jr. and D. Thiel, "The VAX/VMS 
can be exchanged with another VAX system. Yet, Distributed Lock Manager," Digital Tecbni- 
only about 300  microseconds of CPU overhead cal Journal (September 1987, this issue): 
are required to send and receive each message 29-44 ,  
pair. Each CI port will sustain approximately 
2 megabytes per second of named-buffer trans- 

4 .  

fer bandwidth with no overhead on the part of 
thc CPU. Each mass storage operation requires 
a sequenced-message pair and a named-buffer 
transfer initiated by the HSC5O disk control- 
ler. Therefore, the CPU overhead of SCA soft- 
ware alone for these functions is only about 
300 microseconds. The storage transfer itself c;in 
proceed at the rate of about 2 megabytes per 
second for long transfers to disk or between host 
systems. 

Summary 
SCA is a high-performance network architecture 
developed to allow the CI interconnect to be 
shared among the various functions required in 
VAXcluster systems. Among these functions arc 
mass-storage and tape-storage access, which had 
traditionally been done using direct control over 
a bus instead of a network message-passing proto- 
col. SCA has proven to be a highly efficient means 
both to control storage access and to allow VAX 
host systems to communicate.' Its flexibility per- 
mits its use to be extended to direct local-storage 
controllers and to other interconnects such as 
Ethernet. 

Acknowledgments 
A large number of people contributed to  the SCA 
architecture and its implen~entations. Without 
their efforts, SCA could not have met its goals ant1 
would not be so widely used. Thanks also to all 
the folks who have reviewed and contributed 
helpful suggestions to this paper. 

N .  Kronenberg, H. Levy, and W. Strecker, 
"VAXclusters: A Closely-Coupled Distribu- 
tion System," ACM Transactions on Com- 
puter Systems, vol. 4 ,  no. 2 (May 1986): 
150- 146.  

2 8  Digital Technical Jortr#ral 
N o  5 Septenrhe~. 1 3 8 7  



William E. Snaman, Jr. 
David W. Thiel I 

Tibe VM/VMS Distributed 
Lock Manager 

The VMS distributed lock manager prouides the synchronization mecha- 
nism needed to ensure transparent and reliable data sharing between 
nodes in a VMcluster system. The lock manager provides services for 
mutual exclusion and event nohjication, and achieves high performance 
by minimizing the number of messages sent between nodes. The lock man- 
ager also handles deadlock situations with a minimum of messages 
exchanged. Since processors systems can join or leave a cluster at any 
time, a connection manager ux.~ developed to handle reconJigurations in 
a dynamic, eficient manner. 

Development Background 
As people and organizations came to depend 
heavily on computer systems to perform their 
daily activities, it became increasingly obvious 
that they needed continuous access to the vital 
data stored in those computer systems. Moreover, 
growing organizations were faced wi th  a nccd to 
incrementally increase the amount of computing 
power available to them over an extended period 
of time. In the past, their options were usually 
limited to either buying more than needed ini- 
tially or  facing painful upgrades and application 
conversions as the systems were outgrown. The 
emergence of bus technologies, such as Digital's 
Computer Interconnect (CI) and the Ethernet, 
provided an opportunity to combine multiple 
processors ancl storage controllers into closely 
coupled distributed systems. Such systems could 
provide the needed data availability and incre- 
mental growth characteristics. The VAXclustcr 
system was developed to answer those needs. '  

To encompass the VAXcluster concept,  the VMS 
operating system was extended to  provide trans- 
parent data sharing and dynamic adjustment to  
changes in the  underlying hardware configura- 
tion. These extensions make it possible for rnulti- 
ple processors, storage controllers, disks, and 
tapes to be  dynamically added to  a VAXcluster 
systeni configuration. Thus a small system can be  
purchased initially and expanded as needecl by 
adding computing and storage resources with no 
software modifications o r  application conver- 

sions. New devices can even be  added without 
shutting down operations. The ability to use 
redundant processors and storage controllers vir- 
tually eliminates single points of f i ' l  , I ure.  

The VMS software running on each processor 
node in a VAXcluster system provides a high level 
of transparent data sharing and independent fail- 
ure characteristics. Each processor runs its own 
copy of the operating system and interacts with 
the other processors to form a cooperating dis- 
tributed operating system. In this system, all 
disks and the files residing on them are accessible 
from any processor in exactly the  same fashion as 
if those files were connected to a single proces- 
sor. They can be transparently shared at the  
record level by application software. 

One of the challenges of putt ing together such 
a system is t o  provide both maximum perfor- 
mance and a very high level of reliability. A data- 
sharing model was chosen as the  design center 
rather than a client-sewer model. In the data- 
sharing model, data resources are  made directly 
available to all processors, which must coordi- 
nate their accesses to those resources. This model 
contrasts with that of the client-sewer, in which 
the sewer  mediates access to the  data. The data- 
sharing model eliminates potential bottlenecks 
that develop around heavily i~ t i l ized sewers, pro- 
vides better opportunities for parallelism, and 
avoids the sewer  as a single point  of failure. 

In 1982, the first lock manager was provided 
in version 3.0 of the  VAX/VMS operating system. 
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The lock manager provided synchroniz;ction ser- 
vices for multiple processes residing on a single 
processor, as well as deadlock d e t e c t i ~ n . ~  Con- 
currently, design work was under way for a dis- 
tributed version of this lock manager. 'The dis- 
tributed lock manager was released in 1984 with 
version 4.0 of the  VAX/VMS operating system; the 
CI bus was used as the  communications medium. 
In 1986, the  Local Area VAXcluster system was 
released.3 This system has the  same locking and 
other algorithms as the  CI-based VAXcluster sps- 
tem, bu t  uses the  Ethernet as the  communications 
interconnect. 

Lock Manager Description 
This paper describes the  distributed lock mall- 
ager, which is the  basic synchronization mecha- 
nism for VAXcluster systems. The lock manager 
permits the high degree of transparent tlata 
sharing attained by the VMS system by providing 
a set of services used by cooperating processes t o  
synchronize access to shared resources. These 
processes can reside on any or  all of the VAX pro- 
cessors that comprise a VAXcluster system. In 
this paper,  the terms "node" and "processor" arc 
used interchangeably to refer to VAX processors. 

Each resource in a VAXcluster system is repre- 
sented by a unique abstract name that is agreed 
upon by all the cooperating processes. This n;imc 
is entered into a distributed global namespace 
that is maintained by the distributed lock man- 
ager. Cooperating processes can use the lock 
manager as a mechanism to mediate access to a 
resource by requesting locks on  the abstract rep- 
resentation before accessing the  actual resource. 

The lock manager does not actually allocate 
o r  control the  resource, and there is no rcqujrc- 
ment that the  name represent an  actual physic;rl 
resource. This permits the  lock manager scrviccs 
to  be  used for event notification and other com- 
munication functions. in addition to  mutuul- 
exclusion fi~nctions.  Deadlock detection is ;tlso 

Provitling tree-structured resource names per- 
mits locks to be requested at differcnt levels of 
the hierarchy..' 

In the lock manager, six lock modes are repre- 
sented by an abstract matrix that defines whether 
o r  not a given mode is cornpatiblc wi th  another 
mode. An application designer can interpret 
these modes as setting limits on how a resource 
can be  accessed (e.g., n o  access, read, o r  write). 
The modes can also b e  interpreted as setting lim- 
its on  how a resource is shared (i .e . ,  permit  read 
access, write access, or  n o  access to  others). Lock 
requests that are granted at  one mode can b e  con- 
verted to a more o r  less restrictive mode. Table 1 
describes the compatibility of each lock mode; 
Table 2 contains the suggested interpretation of 
each modc. 

The services provided by the  distributed lock 
manager are flexible cnough to  b e  used by coop- 
erating processes for mutual exclusion, syn- 
chronization. and event notification. These ser- 
vices arc known as the SENQ (lock) and SDEQ 
(unlock) system services. The SENQ system ser- 
vice allows a process to request a lock on a 
resource. 'The lock request is then either granted 
or  denied by the lock manager, based on the 
modc of other locks that are granted on the 
resourcc. The JENQ service allows a caller to 
q i l e i ~ e  a lock request and either wait for the 
reqi~es t  to be  granted or  continue execution.  The 
caller can also signify that the request should not 
be queued .  In this case the status is returned in 
the event that the request cannot be granted 
immediately. 

If a caller chooses to queue  a lock request and 
continue execution,  the SEN0 service provides 
asynchronous notification when the lock request 
is granted. The caller can specify a routine to be 
called when the  lock request is granted. This 

Table 1 Compatibility of Lock Modes 

provided. Mode of Mode of Currently Granted Lock 
TO permit  maximum concurrency, resourcc Requested - 

Lock NL CR CW PR PW EX 
names can be tree structured,  and locks can I>e 
requested at  modes that permit  varying clegrees N L  Yes Yes Yes Yes Yes Yes 

of sharing. Many resources have an inlicrent C R Yes Yes Yes Yes Yes No 

hierarchical structure that permits different parts CW Yes Yes Yes No No No 
P R Yes Yes No Yes No No 

to be accessed by tlifferent processes ; ~ t  thc  same PW Yes Yes No No No NO 
time. For example,  a disk can contain v ;~r io i~s  EX Yes No No No No No 
files, each in turn containing records. This struc- 

NL - Null lock CR - Concurrent read 
ture allows different records of the s;rmc file. CW - Concurrent write PR - Protected read 
and different files ,to I,e updated concurrently, PW - Protected wr~te EX - Exclusive lock 
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ability to specib a routine permits queuing ;I 

request in a way that leaves the process free to 
carry on other functions until the request is 
granted. The notification mechanism used is 
called a conlpletion asynchronous system trap 

(AS T) 
The S E N Q  service also provides a notification 

mechanism whereby a process that has been 
granted a lock on a resource can be notified when 
another process is waiting for it to release the 
lock. This mechanism, known ;IS a blocking AST, 
can provide an important performance optimiz;~- 
tion when :I resource is shared infrequently. After 
acquiring a lock, the holder can access the 
resource multiple times without further lock- 
ing until notified by a blocking AST that another 
process is waiting for it to release the lock. The 

Table 2 Modes at which Locks Can Be 
Requested 

Mode Suggested Interpretation of Mode 

N L  Null  mode grants no access to the 
resource; it is typically used either as an 
indicator of interest in the resource or as a 
place holder for future lock conversions. 

CR Concurrent read mode grants read access 
to the resource and allows its sharing with 
other readers. The concurrent read mode is 
generally used either when additional lock- 
ing is being performed at a finer granularity 
with sublocks or to read data from a 
resource in an "unprotected" fashion 
(allowing simultaneous writes to the 
resource). 

CW Concurrent write mode grants write access 
to the resource and allows its sharing with 
other writers. The concurrent write mode is 
typically used either to perform additional 
locking at a finer granularity, or to write in 
an "unprotected" fashion. 

PR Protected read mode grants read access to 
the resource and allows its sharing with 
other readers. No writers are allowed 
access to the resource. This mode is the 
traditional "share lock." 

PW Protected write mode grants write access 
to the resource and allows its sharing with 
concurrent read-mode readers. No other 
writers are allowed access to the resource. 
This mode is the traditional "update lock." 

EX Exclusive mode grants write access to the 
resource and prevents it sharing with any 
other readers or writers. This mode is the 
traditional "exclusive lock." 

holder then stops accessing the resource and 
releases the lock, thus permitting the lock re- 
qi~est of the other process to be granted. 

Applications can be designetl that dynamic;illy 
change their locking protocol from blocking 
ASTs (tluring periods of low contention) to a 
request-release protocol (during periods of high 
contention) 

hiother use for the blocking AST is to imple- 
ment a "tloor-bell" notification mechanism in 
which a process takes out a lock and specifies a 
blocking AST. When another process wants to get 
the first process's attention, it  m;ikes an incom- 
patible lock recluest that results in the delivery of  
a blocking AST to the first process. 

A 16-byte value block associated wit11 each 
resource functions as a small piece of global 
memory that is ;~tornically updated. The contcnts 
of a value block are optionally returned when a 
lock is granted, and updated when an exclusive 
(EX) or protected write (PW) mode lock is 
released. Parameters on the lock and unlock 
requests control the use of a value block. 

A value block can be i~sed to help implemcnt 
local caching of disk dat;i. The resource repre- 
sents the data being accessed and locks ;ire used 
to provide muttla1 exclusion. A value block asso- 
ciated with the resource is i~setl to n1aint;iin a 
sequence number representing the current ver- 
sion of data stored on the disk. Whenever data is 
initially read frorn the disk into a local buffer, a 
lock is first obtained, and the version number 
contained in the value block is saved with the 
data that is read. Whcnever the data is to be modi- 
fied, a lock is first obtained, then the buffer is 
updated and written back to the disk. When the 
lock is rclc;~sed. an updated version number is 
stored in the value block rcprescnting the new 
version of the data on the disk. Upon subsequent 
reads by this or any other node in the VAXcluster 
system. ;I lock is first obtainccl, and the sequence 
number cont:iined in the v;tlue block is com- 
pared to the sequence number stored with the 
locally cached data. Whenever the sequence 
numbers m;ltch, the c:ichc is v;llid and no disk 
read is ~ c q u i r e d . ~  

Value blocks can ;11so be used for communica- 
tion between processes. 

The SDEQ system service is used to indicate 
that a process n o  longer w:ints to m;iint:lin ;1 lock 
on the resource. Part of its function is to option- 
ally u l x l ~ c  the v;llue block whcn the mode of the 
lock being re1e;iscd is either I'W or EX. 
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Design Constraints and Goals 
Several constraints were placed on the  design of 
the distributed lock manager, the most impor- 
tant one being that it had to be extremely reli- 
able. This constraint was vital since the VMS file 
system, the Record Management System, several 
database systems, and other critical products 
would depend on the  lock manager to maintain 
the integrity of their resources. The lock manager 
had to be  general enough s o  that many different 
applications could b e  buil t  using its services, 
thus avoiding the  creation of a separate synchro- 
nization tool for each application. Moreover, the 
lock manager had to have very high perform- 
ance characteristics and be able to tolerate the 
failure of an arbitrary number of processes or  
nodes. 

For performance reasons, it was essential t o  
minimize the  number  of messages exchanged 
between the  various nodes. This was especially 
important as the  number  of nodes increased. 
Additionally, minimum penalties should b e  
imposed when all the cooperating processes 
reside on a single processor. The goal was to have 
the cost increase no more than linearly as the 
number of nodes increased. In fact, what was 
attained was a cost bounded by a small constant 
that is independent of the  number  of nodcs that 
exist i n  a VAXcluster system. 

Relationship between the Distributed 
Lock Manager and the Connection 
Manager 
As the lock manager was being developed, it 
became clear that a need existed to separate the 
function of managing a dynamic configuration of 
proccssors from that of managing the resource 
namespace. This separation required the creation 
of a new entity, the connection manager. The dis- 
tributed lock manager relies on  the connection 
manager for several vital services. 

The connection manager maintains a glol~ally 
consistent list of all processors that are  in the 

Another function of the connection manager is 
t o  prevent the  partitioning of the  namespace. 
This partitioning could happen if the distributed 
lock managers in disjoint subsets of nodes oper- 
ated independently. They cou1.d d o  so  in the 
event of a communications failure, or  a "rolling" 
power failure a nd rccovery cycle. Jn t.hese situa- 
tions, any objects accessible to multiplc subsets 
could be inconsistently accessed and therefore 
corrupted.  The connection manager uses a voting 
algorithm to ensure that the  set  of available pro- 
cessors cannot be  spli t  into two o r  more function- 
ing groups if communications fail. This approach 
requires that only a very limited amount of global 
information ( i . e . ,  the number of votes held by a 
node and thc total number  of votes available to 
the entire set of member nodes) be  known by 
each system. Furthermore, protection is given 
against a very wide set  of failures because there 
are no additional underlying assumptions about 
failure mech;inisms. 

The final function is a communications ser- 
vice that provides a virtual circuit between each 
member node of a VAXcluster system. This ser- 
vice ensures the reliable delivery of sequenced 
messages. If messages cannot be dclivcred in 
sequence,  the virtual circuit will break. The 
most significant characteristic of this service 
is that cluster membership and the existence of 
thc  virtual circuit are tightly coupled.  The 
virtual circuit must exist for a pair of nodes to  
become o r  remain part of a VAXcluster system. 
A failure of the virtual circuit ,  therefore, requires 
the removal from the  cluster of at least one  of the  
nodcs terminating that circuit .  This approach 
greatly simplified the design of the distributed 
lock manager because only one type of communi- 
cations failure is visjble to  it. The requircd action 
upon the  occasion of such  a failure is made sim- 
p ler  because it is certain to  be  followed by a 
change in the cluster's membership. Such a 
change involves rebuilding the  distributed lock 
manager's database. 

VAXcluster system at any given instant. 7i, main- 
tain this consistency, the connection manager utl- The Operation of the Distributed 
lizes a very strong notion of cluster rncmbership Lock Manager 
and orchestrates the adtiition and remov;ll of The following section describes the  operation of 

nodes. Part of that orchestration process is the the distributed lock manager when  all lock 

coordination of the distributed lock reqllests can be granted immediately. A later SeC- 

task of a database describing the lock. tion discusses its 0pcration under conditions of 

ing namespace and state whenever the collfigllra. contention. Table 3 gives definitions of the  terms 

tion changes. usetl in describing these operations. 
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Table 3 Terms and Definitions 

Term Definition 

Resource tree The lock manager allows names to be structured in a hierarchical fashion. For example, 
the root resource can represent a device; its child, referred to as a sub-resource, can 
represent a file on that device; and another subresource beneath it can represent a 
record. 

Lock request The request by a process for a lock on a resource 

Root-lock The lock request for a resource at the root of a resource tree. 

Sublock The lock reauest for a resource below the root of a resource tree. 

Resource manager The node that controls the granting of lock requests on a given resource tree for which 
it maintains information about all granted and waiting lock requests. All nodes are 
potentially resource managers, each handling a particular subset of the set of resource 
trees. 

Directory service The directory service prov~des a mechanism to locate the current resource manager. This 
service is needed because lock requests must be directed to the resource manager, 
which may change over time. The directory function is distributed among the various 
nodes in a VAXcluster system, each node providing the function for a subset of the 
resource trees. This distribution eliminates potential performance bottlenecks. 

Lock mode The mode of a lock request indicates the type of lock being requested, such as NL, PR, 
or EX. By convention, the mode represents the type of access to the resource that is 
being requested, such as read, write, or no access. It also indicates a willingness to 
permit others to share the resource. 

An Initial Lock Request on a 
Root Resource 
When a process somewhere in a VAXcluster sys- 
tem requests a root-lock, the distributed lock 
manager must first identify which node is cur- 
rently managing the resource tree. The resource 
name specified by the lock request is hashed, and 
the resultant value is applied to a vector contain- 
ing zero or more entries for every node currently 
in the cluster. The selected vector entry identi- 
fies the directory node for the resource specified. 
A message is then sent to this node requesting a 
lock on the resource. The building and sending 
of a message can be avoided if  the node making 
the request is also the directory node. 

The vector is maintained by the connection 
manager, which ensures that the vector is 
updated whenever a node enters or leaves the 
cluster. The connection manager also ensures 
that the vector is identical on all nodes. Each 
node can request that it be entered zero or more 
times in the directory vector, depending on the 
extent to which the node wants to participate in 
the distributed directory function. 

Upon receiving the message, the directory 
node can respond in any of three ways. First, i t  
can indicate that the node making the request 
should manage the resource itself. Second, it  can 

indicate that the request should be re-sent to 
another node that is already managing the 
resource. Finally, i t  can respond to the request 
directly, since the directory node itself may 
already be managing the resource. I f  this lock 
request is the first one on the resource, the direc- 
tory node will instruct the requestor to manage 
the resource itself. It wilJ also create a directory 
entry for the resource, thus ensuring that subse- 
quent requests from other nodes will be directed 
to the new resource manager. Figure 1 illustrates 
this case. 

All subsequent lock requests for additional 
root-locks or sublocks on this resource from the 
node that originated the initial request will now 
be processed without further message traffic, 
since the node is now managing the resource 
itself. This action, called local locking, was 
developed to minimize the cost of locking should 
all the processes sharing a resource reside on one 
node. Figure 2 provides an illustration of local 
locking. 

At this point, if a process residing on another 
node makes an initial root-lock request, the 
resource name is again hashed and the directory 
node identified in the same fashion as before. The 
request is sent to the directory node, which 
responds by identifying the node currently man- 
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NODE B @ When a lock request is received, a resource 
block and a lock block are created. 

@ A message requesting a lock is then sent to the 
directory node. 

DIRECTORY NODE @ A directory entry is created listing node A as the 
resource manager. 

@ The response message directs node A to 
become the resource manager. 

KEY: 

RESOURCE BLOCK 

DIRECTORY ENTRY FOR RESOURCE 
(IMPLEMENTED A S  A RESOURCE BLOCK) 

LOCKBLOCK 

Figure I A Root-lock Request When No Resource Manager Exists 

aging the resource. Upon receiving the response, 
the requestor re-sends the lock request to that 
node. 

This case is potentially the worst with regard to 
messages since one round trip is required to the 
directory node (assuming that it is another node 
in the VAXcluster system) and another round trip 
to the resource manager. Note that this cost is 
bounded by a small constant with respect to the 
number of nodes in a VAXcluster system. Figure 3 
illustrates this case. 

Subsequent Root-Lock and Sublock 
Requests 
Once a lock on a root-level resource has been 
established, the identity of the resource-manager 

node is known. After that point no further mes- 
sages are sent to the directory node by that pro- 
cessor; all requcsts are sent directly to the 
resource manager. I f  the lock request is made on 
a node that is not the resource manager, two mes- 
sages arc required for every lock request after the 
first: a request, and a response. This process is 
called remote locking. Figure 4 illustrates the 
remote locking concept. 

Releasing Lock Requests 
When a process residing on the node managing 
the resource decides to release a lock, no mes- 
sages are sent unless the lock is the last remain- 
ing one on the resource. In that event a message 
is sent to the directory node indicating that this 
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RESOURCE MANAGER 

NODE B @ As root-lock requests are received, lock blocks 
are created and llnked to the existtng resource 
block. 

@ When a sublock request IS recelved, a sub- 
DIRECTORY NODE resource block IS created 11 thls IS the flrst 

request for a lock on the subresource A lock 
block IS then llnked to the subresource block 

KEY. 

RESOURCE BLOCK 

DIRECTORY ENTRY FOR RESOURCE 
(IMPLEMENTED AS A RESOURCE BLOCK) 

LOCK BLOCK 

Figure 2 Root and Sublock Requests Made on the Resource Manager 

node is no longer managing the resource. The Converting Lock Requests 
directory node then deletes the directory entry 
for the resource. This deletion allows the next 
node requesting a lock on the resource to 
become the resource manager. No response is 
necessary because the message delivery is guaran- 
teed by the connection manager. 

For the case in which a process releasing a lock 
does not reside on the node that manages the 
resource, a message is sent to the resource man- 
ager. Again, if this is the last remaining lock on 
the resource, the resource manager sends a mes- 
sage to the directory node indicating that this 
node is no longer the resource manager. Figure 5 
illustrates the concept of unlocking. 

Digital Technical Journal 
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The lock manager also permits the mode of a 
granted lock to be altered. This action is called a 
conversion. Conversion requests can be pro- 
cessed more efficiently than new lock requests 
because all the data structures are already in 
place, and the resource manager has already been 
identified. If a conversion request is made on the 
node managing the resource, no messages need 
be exchanged. If the resource manager is not the 
node on which the request is being made, either 
one or two messages are required. For example, 
in some cases in which the requested mode is 
compatible with the granted mode, the request 
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NODE B 
When a new root-lock request is received, local @ co~ies of the resource block and lock block are 

/ Y created. 

/ DIRECTORY NODE 2 A message requesting a lock IS then sent to the \ directory node. 

I 3 The response indicates that node A is currently I O the resource manager. 

\ / @ The lock request n again sent to node A. 

5 A master-copy lock block is created on the ' resource manager and linked to the resource 
block. 

@ A granted response is returned. 
KEY: 

RESOURCE BLOCK 

DIRECTORY ENTRY FOR RESOURCE 
(IMPLEMENTED AS A RESOURCE BLOCK) 

LOCK BLOCK 

Figure 3 New Root-lock Request When a Resource Manager  Exists 

can be unilaterally granted, and a single message 
sent to notify the resource manager of the 
change. In others, the resource manager must 
make a decision bascd on the other requests that 
are granted. A rcquest is then sent to the resource 
manager, who must rcspond. In all cases, no com- 
munications arc required with the directory 
node. Figure 6 illustrates a conversion request. 

Operation During Periods of 
Resource Contention 
The operation is slightly more complicated dur- 
ing periods of contention. When a resource man- 
ager receives a lock request that cannot be 
granted because an incompatible lock exists, two 

actions are required. First, all holders of incom- 
patible locks that have indicated a desire to 
receive blocking ASTs must be notified that a pro- 
cess is waiting. To accomplish this, a message is 
sent to each node where a lock holder resides. 
The process holding the lock is notified only 
once, even though it may be blocking multiple 
lock requests. Second, the requester of the lock 
must be told to wait; this is accomplished by 
sending a response to the lock request. When the 
blocking lock is later released, a message is sent 
to each waiting requestor indicating that the lock 
is now granted. Table 4 summarizes the numbers 
of messages used for different types of lock 
requests. 
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RESOURCE MANAGER 

NODE B When a sublock request I S  rece~ved, a lock block 0 .  IS created. If this is the first lock on the sub- 
resource, a resource block is also created. 

2 The request is sent to the resource manager. No 

DIRECTORY NODE O directory lookup is required. 

@ If locks already exist on the subresource, only 
a lock block IS created. Otherwise, both a lock 
block and a resource block are created. 

\ / @ A granted response is returned. 

KEY: 

RESOURCE BLOCK 

DIRECTORY E N T R Y  FOR RESOURCE 
(IMPLEMENTED A S  A RESOURCE BLOCK) 

LOCK BLOCK 

Figure 4 A Sublock Request on a Node that Is Not the Resource Manager 

Scaling Behavior of the Distributed resented by another fixed-size control block. An 
Lock Manager instance of this control block exists on each node - 
It can be shown that the number of messages 
required for any locking operation is bounded by 
a small constant that is independent of the num- 
ber of nodes, or cluster size, in a VAXcluster sys- 
tem. This section addresses how the size of the 
data representing the locking state and the total 
number of locking messages vary with a cluster's 
size. 

The distributed lock manager uses a fixed-size 
control block to represent both a lock and a lock 
request. An instance of this control block exists 
on the node requesting the lock. If  the resource 
manager is a different node, another instance 
exists on the resource manager. A resource is rep- 

requesting the lock, on the resource manager, 
and on the directory node. Whenever any of these 
categories overlap (i.e.. requestor, resource man- 
ager, and directory node), only one instance of 
the control block is present. The control blocks 
for locks and resources are dynamically allocated 
and deallocated. 

At least one lock is represented for every 
resource represented. Conversely, a resource is 
represented for every lock represented. For each 
lock, the upper bound on the storage require- 
ments is two lock control blocks and three 
resource control blocks. This upper bound is 
usually quite loose and depends on a cluster's 
size. 
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RESOURCE MANAGER 

0 

@ When an unlock request is received for a root- 
lock, the lock block is deallocated. If this is the 
last lock on the resource, Ihe resource block is 
also deallocated. 

2 A message IS sent to the resource manager. No 0 response 1s required 

3 The resource manager deallocates the lock block O If this is the last lock on the resource. the 
resource block is also deallocated. 

@ A message is sent to the directory node 

@ The directory entry is removed. 

KEY: 

RESOURCE BLOCK 

DIRECTORYENTRY FOR RESOURCE 
(IMPLEMENTED AS A RESOURCE BLOCK) 

LOCK BLOCK 

Figure 5 Unlock Request for the Last Remaining Lock on a Root Resource 

VAXcluster applications are typically designed 
so that their algorithms d o  not change as the size 
of the cluster changes. Therefore, an instance of a 
typical application running on one node exhibits 
a behavior with respect to the number of out- 
standing locks and the frequency of locking oper- 
ations that is independent of the number of addi- 
tional instances of that application running on 
the same or  other nodes. If multiple instances of 
the application are running, the number of out- 
standing locks and the frequency of locking opcr- 
ations increase in proportion to the number of 
copies of the application, independent of the 
cluster size. 

Both the number of messages per  locking oper- 
ation and the storage requirements for a lock are 

bounded by constants that are independent of the 
cluster size. Therefore, the rate at which mes- 
sages must be  exchanged and the total storage 
required to represent the locking state are pro- 
portional to the number of instances of the appli- 
cation that are running, which is also indepen- 
dent of the cluster's size. If the number of 
instances of the application is proportional to the 
cluster size, the rate of message exchange and the 
total storage required to represent the locking 
state are both bounded by a constant times the 
cluster size. 

This argument is also valid when multiple 
instances of each of several applications are 
present. 
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RESOURCE MANAGER 

NODE B @ A conversion request is received. 

@ The request is sent to the resource manager 

@ The request is granted. 

DIRECTORY NODE @ A granted response is returned. 

I Note: Conversion requests on the resource 

KEY: 

FI( RESOURCE BLOCK 

DIRECTORYENTRY FOR RESOURCE 0 (IMPLEMENTED A S  A RESOURCE BLOCK) 

LOCK BLOCK 

Figure G Conversion Request on a Node that Is Not the Resource Manager 

These characteristics of the distributed lock 
manager (i.e., total space and message traffic 
behavior that is subject to a linear bound in the 
"workload") are a significant fact or in allowing 
VAXcluster systems to act as distributed operat- 
ing systems. These characteristics suggest that, 
from the distributed lock manager's viewpoint, 
additional growth in the size of a VAXcluster con- 
figurations is certainly viable. 

Performance Aspects of the Distributed 
Lock Manager 
Table 5 summarizes the performance of the dis- 
tributed lock manager. The measurements reflect 
operations that are normally done in pairs. Such 

operations include an SENQ followed by a SDEQ, 
and a conversion to  a more restrictive mode (up) 
followed by a conversion to a less restrictive 
mode (down). The operations reported in the 
table are performed on sublocks. 

When Processors Join or Leave the 
VAXcluster System 
The connection manager plays a major role in the 
lock manager's ability to deal with configuration 
changes when one or more nodes join or leave the 
\'AXcluster system. When the membership of the 
cluster must be  altered, a coordinator node is 
elected to lead the other nodes through the state 
transition. Any node can become the coordinator 
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Table 4 Summary of Number of Messages Used for Lock Requests 

Request Type Messages Comments 

Initial root-lock request from a system for 2 or 0 Zero messages if node making the request is 
a previously unknown resource (i.e., no the directory node. Otherwise two messages; 
manager exists) a directory lookup request followed by a "do 

local" response. 

Subsequent root-lock requests on 0 
resource manager 

Sublock request on resource manager 0 

Unlock request on resource manager with 
locks remaining 

Unlock of last lock on resource by 1 o r 0  Remove directory entry message sent to 
resource manager directory node. No message sent if manager 

is also directory node. 

Initial root-lock request from a system for 2 or 4 (1) If requester is the directory node, two 
a resource that is known (i.e., a manager messages consisting of a lock request 
exists) followed by a response from the manager. If 

requester is not directory node, do a 
directory lookup, a resend to manager 
response, a lock request to the manager, and 
a response back. 

Sublock requests and subsequent 2 (1) Lock request to manager and a response 
root-lock requests from a system that is back. 
not resource manager 

Unlock request from a system that is not 1 or 2 Dequeue message to manager. Manager may 
the resource manager then send a remove directory message to 

directory node if this lock is the last one. 

NOTE: If the lock request cannot be granted immediately, add one message. If the lock a granted, blocking another request, and a blocking 
AST was requested, add one message. In all cases the number of messages a independent of the number of nodes in the VAXcluster 
system. 

Table 5 Performance Summary of the and i t  is usually the first to discover that a mem- 
Distributed Lock Manager bership change is required. The need for a mem- 

VAX-111780 VAXcluster System Locking bership change can result f rom t iming out a bro- 

Using the Computer Interconnect (C1780) ken connection, or  upon discovering a new node. 
All configuration changes are made using a two- 

Local 
Lockina Remote Lockina phase commit protocol to ensure consistency on  - - 

a l l  nodes. To add or remove a node, the coordina- 
Local Local Remote Elapsed 
CPU CPU CPU Time tor describes a proposed configuration to the 

ENQ + DEQ 0.6 2.7 1.5 3.9 
CVT (u~+down) 0.4 2.4 1.3 3.3 

MicroVAX II Locking Using the Ethernet 

Local 
Locking Remote Locking 

Local Local Remote Elapsed 
CPU CPU CPU Time 

ENQ + DEQ 0.7 6.0 4.8 8.1 
CVT (up+down) 0.5 5.6 4.6 7.8 

rn All numbers are in milliseconds 
m For Local Locking. Local CPU = Elapsed Time 

ENO refers to a lock operation, DEO refers to an unlock, and 
CVT to a mode conversion 

other members. They have the option o f  agreeing 
or disagreeing w i t h  the proposed configuration. 

They w i l l  disagree if they can construct a more 
optimal configuration based on the number o f  
nodes they can communicate w i t h  and on the 
assignment o f  votes to  those nodes. The resulting 
VAXcluster system can only consist o f  a strongly 
connected group o f  nodes where every node has a 
connection to each o f  the others. 

I n  case of disagreement, the coordinator backs 
out o f  the operation, waits a random amount of  
time, and then initiates the election protocol 
again. During this interval other nodes can 
attempt to beconic the coordinator. Disagree- 
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ments are quickly resolved so  that the node that 
can put together the most optimal configuration 
becomes the coordinator. At this point, the new 
configuration has been described to  all nodes and 
they have agreed; therefore, commit messages are 
sent. 

Thus the connection manager is able to provide 
the distributed lock manager with a consistent 
view of the processors that are members of the 
VAXcluster system. The connection manager can 
also ensure that the vectors used to identify the 
directory node for a given resource are identical 
on all nodes. In addition, the manager assigns a 
unique identifier, called the cluster system ID 
(CSID), to each processor admitted into the VAX- 
cluster system. 

At the completion of any change in member- 
ship, the connection manager leads the other 
nodes through a lock database rebuild. The node 
that was the coordinator now takes on the role of 
a synchronizer. Each node begins to execute a 
series of action routines that control how the lock 
database is to be rebuilt. Each actibn routine 
describes a particular step in the rebuild pro- 
cess, and all nodes execute the action routines in 
parallel. 

One or more action routines are separated by 
synchronization steps. Upon reaching a synchro- 
nization step, a node sends a message to the syn- 
chronizer indicating that that node has com- 
pleted a step and is waiting for notification to 
proceed with the next one. After receiving this 
message from each processor in the VAXcluster 
system, the synchronizer sends a message to  each 
node telling it to  proceed with the next step. 
This process continues until all action routines 
have been executed and the lock database has 
been rebuilt on all nodes. 

From the viewpoint of the distributed lock 
manager, the actions taken are identical when 
nodes are added or removed. This redistrib- 
utes the management of resource trees to pre- 
vent the management of most of them from 
migrating to the "oldest" member of the VAX- 
cluster system. 

Upon discovering a broken connection to a 
remote node, the connection manager initially 
assumes that this condition is temporary and 
attempts to restore the connection for a speci- 
fied interval that depends on the installation. 
During this interval, normal activity can gener- 
ally proceed. Lock-request and other messages 
addressed to  the remote node and sent using the 

connection manager's message delivery service 
are queued pending the re-establishment of the 
connection. If the connection is re-established, 
the queued messages are sent in the original 
order, and the sender remains unaware that a 
problem existed. 

If the connection cannot be re-established 
within a specified interval, the connection is 
declared irrevocably broken, and a cluster recon- 
figuration is required. Locking is disabled on all 
nodes during a reconfiguration. Lock requests 
can still be made, but the processes making them 
will be blocked pending completion of the state 
transition. 

The lock database is rebuilt in the following 
fashion by each node. First, new lock requests are 
disabled. Then, the lock database is scanned and 
all directory information is removed, since a 
change in membership redistributes the direc- 
tory functions. Information about locks that are 
either held or requested by processes on other 
nodes is also discarded. These actions result in a 
period of time during which no directory nodes 
and no resource managers exist. The only infor- 
mation retained concerns the lock requests made 
by processes actually residing on a node. 

At this point the nodes re-acquire all the locks 
held before the membership changed, using the 
same algorithm by which the locks were initially 
acquired. Locks that were waiting to  b e  granted 
are re-ordered by a sequence number that was 
assigned when they were queued so that the 
order in which they wait is preserved. By the pro- 
cess of re-acquiring locks, new directory entries 
are created and new resource managers chosen. 
Since each node re-acquires its own locks, the 
locks held by nodes that are no longer members 
of the VAXcluster system are released. Once all 
locks have been re-acquired, an attempt is made 
to grant waiting locks since the removal of lock 
requests contributed by a failed node may permit 
waiting requests to be granted. Once these 
actions have been accomplished, locking is 
enabled and activity proceeds normally. 

Distributed Deadlock Detection 
The requirements for a distributed deadlock 
algorithm were to minimize the number of mes- 
sages involved in a deadlock search, find all 
deadlocks, and not find false deadlocks. Since 
the distributed lock manager was to  be a general- 
purpose synchronization tool used by many 
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applications, simplifications based on assump- 
tions about the way it was used could not be 
made. 

From the lock manager's perspective, there are 
two classes of deadlocks: conversion, and multi- 
ple-resource. This distinction is made because 
conversion deadlocks are easily detected by the 
resource manager whereas multiple-resource 
deadlocks are detected by a more complex dis- 
tributed deadlock algorithm. 

A conversion deadlock involves multiple con- 
version requests on a single resource so that all 
information will be readily available for the 
resource manager to identify them. Let us con- 
sider a request to convert a lock held at one mode 
to another more restrictive mode (e.g. ,  from C R  
mode to EX mode). If another lock is also held at  
C R  mode, the conversion request must wait for 
the second lock to  be released or converted to  a 
compatible mode. If an attempt is then made to 
convert the second lock from C R  mode to EX 
mode, a conversion deadlock results. The first 
conversion request cannot be granted while the 
second lock is still held at the original mode and 
the second conversion request cannot be granted 
because it must wait for the first lock to be 
granted. 

A multiple-resource deadlock can be identified 
by searching for cycles in a "wait-for" graph of 
processes. A simple example can be constructed 
with two processes and two resources. Suppose a 
process P I ,  which is already holding a granted 
lock on resource R 1 ,  waits for a lock request to 
be granted on resource R2.  A deadlock results if a 
process holding a lock on R2 that is blocking Pl ' s  
request attempts to acquire a lock on R1 that is 
incompatible with the granted lock held by P I .  

Distributed deadlock detection is implc- 
mented with an algorithm that searches the clus- 
terwide wait-for graph by sending messages to 
traverse arcs that cross system boundaries. The 
algorithm using messages to traverse arcs 
between systems was developed independently 
both at Digital and at IBM corpora ti or^.^,' 

One of the assumptions that was made in the 
design of the lock manager was that deadlock 
searches would be an infrequent occurrence and 
relatively costly. This being the case, deadlock 
searches are initiated only after a process has 
waited longer than a configuration-specified 
period. This has the effect of greatly reducing the 
number of searches that are initiated. For exam- 
ple, if process A on system 1 has a lock request 

waiting for longer than the deadlock wait inter- 
val, then a deadlock search is initiated on its 
behalf. 

Time-outs are detected on the node that is man- 
aging a resource so that information about all 
lock requests on the particular resource is avail- 
able for the deadlock search. If a conversion 
request has timed-out, the queue of conversion 
requests is searched to identify whether the 
granted mode of any conversion request made 
after the timed-out conversion request is incom- 
patible with the requested mode of the timed-out 
conversion request. If one is found, a conversion 
deadlock exists and a victim is selected. The 
waiting lock request of the victim is then com- 
pleted with a error status indicating that a dead- 
lock was found. Granted locks are never affected 
by victim selection. 

If no conversion deadlock is found, a more 
extensive multiple-resource deadlock search is 
initiated. The wait-for graph of processes is tra- 
versed, beginning with the process owning the 
timed-out lock request and searching for a path 
back to that same process. Beginning with the 
lock request, each process holding a blocking 
lock on the resource is tested to determine if the 
process has waiting locks on other resources. For 
each waiting lock found, the algorithm is applied 
recursively until either no more waiting locks are 
found or the initial process is found. In the for- 
mer case no deadlock exists because no cycle 
exists. In the later case a deadlock exists because 
a cycle was found to include the process owning 
the lock that timed out. 

If the arcs of the wait-for graph traverse proces- 
sor boundaries in the VAXcluster system, mes- 
sages are sent indicating that the search should be 
continued on thc destination processor. The mes- 
sages indicate that the search should commence 
with a certain lock and continue with the ulti- 
mate goal of discovering a path to the process 
owning the timed-out lock request. 

In the implementation, two possibilities exist 
that must b e  accounted for. In the first, a block- 
ing lock is found that is owned by a process resid- 
ing on a remote system. In this case the search 
must be continued on the remote system by iden- 
tifying all locks that the process is waiting for. In 
the second, a process is waiting for a lock man- 
aged on a remote system. In this case the search 
must be continued on the remote system by iden- 
tifying all locks that are blocking the waiting 
lock. 
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Let us consider the following example. A wait- 
ing lock request L1 owned by process P1  on node 
N1 times out,  and a deadlock search is initiated. 
The search is initiated on node N2, which man- 
ages the resource tree. A blocking lock L2 owned 
by process P2 located on node N 3  is discovered 
on the resource. A message is then sent to node 
N3, indicating that a search should be continued 
there, beginning with the lock L2, with the goal 
of finding a path to process P1. Upon receiving 
the message, node N3 determines that process P2 
is waiting on lock L3 managed by node N4 .  A 
message is sent to node N4 to continue the search 
starting with lock L3 with a goal of finding pro- 
cess P I .  Lock L3 is discovered to be blocked by 
lock L4 that is owned by process P I .  Since a cycle 
has been discovered, a victim is selected, and its 
waiting lock request is completed with deadlock 
status. Deadlock messages contain the identity of 
the best victim found so far, and a message is sent 
to the node in which the victim resides. 

An interesting extension to the similar algo- 
rithm described in reference 6 is used in the 
deadlock search. To prevent looping on cycles 
that do not include the process with a timed-out 
lock request and to greatly reduce the worst-case 

stamp is 50 milliseconds, based on an estimate of 
a reasonable worst-case search time. The times- 
tamp is used in the deadlock messages to indicate 
a specific deadlock search. 

Whenever a deadlock message is received, its 
timestamp is compared to a timestamp stored 
with the bitmap. The comparison determines 
how the bitmap is to be used. There are three 
possible cases, described as follows: 

The message value exceeds the bitmap value - 
The bitmap was being used by a previous 
deadlock search and its timestamp lifetime has 
expired. In this case the bitmap is available for 
use by the new deadlock search. The bitmap is 
cleared and the timestamp from the message is 
saved with it. The new search is then contin- 
ued. 

The bitmap equals the message value -The  
bitmap is available and has already been used 
by an earlier message involved in this search. 
Proceed with the search. If the bit corre- 
sponding to the process requesting the lock is 
already set, then ignore this message since all 
paths from this process have already been 
searched . 

search time, a bitmap is used to indicate if a pro- = The bitmap value exceeds the message value - 
cess has already been visited in  the search. Each 

The bitmap has been preempted by a sub- 
node in the VAXcluster system has a bit map with 

sequent deadlock search. The timestamp 
one bit for every process on that node. When the 

assigned to this message expired before the 
search is initiated, all bits are cleared. If a pro- 

search completed. Abort this deadlock search 
cess has been involved in the deadlock search, 

for now but reinitiate i t  later with a new times- 
its corresponding bit is set. If a message then 

tamp that is double the last timestamp's life- 
arrives that indicates that this process should 

time. 
be involved in the search, the message is ignored 
since all paths from this process have been 
searched already. 

A node never knows when a deadlock search is 
completed because the messages simply die out 
when no deadlock is found. Therefore, some way 
must be provided to determine when the bitmap 
can be reused for a new search. That is accom- 
plished by assigning a "timestamp lifetime" to 
the deadlock search. In this scheme, one node is 
assigned the role of a timestamp server by the 
connection manager whenever the cluster mem- 
bership changes. To initiate a deadlock search, a 
node requests a timestamp from the timestamp 
server. The timestamp represents a time slightly 
in the future. Once that timestamp has been 
issued, the timestamp server will not issue 
another until that time has passed (i .e. ,  the times- 
tamp has expired). The initial value of the time- 

The bitmap optimization provides not only the 
performance benefits noted above, but also pre- 
vents the algorithm from looping when it 
encounters unsuspected deadlocks. For example, 
suppose process A is waiting for B which waits 
for C which waits for B. Processes B and C have a 
deadlock that will not be discovered when 
searching on behalf of process A since the ulti- 
mate destination of the search is process A. How- 
ever, the deadlock will be found when searching 
on behalf of B or C. The use of bitmap optimiza- 
tion prevents the search from looping when 
searching on behalf of process A. 
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Tibe Design and Implementation 
of a ~is t i ibuted ~ i l e  System 

The advent of VAXcuster systems, with their simultaneous requests for 
storage data, altered the requirements of thefile functions in the VMS sop- 
ware. To replace the single-system process, an extended QIO processor 
was developed to synchronizefile accesses. The locks in the VMS lock man- 
ager provide that synchronization by arbitrating and blocking requests. 
Deadlock is prevented by taking out locks in a consistent order. Proper 
cache management is ensured by locks with sequence counters and a set of 
synchronization queues. This total scheme works so well that, in addition 
to VAXcluster hosts, it is used for single systems as well. 

The VMS file system provides basic file-manage- 
ment facilities to all VMS users and to many other 
components of the VMS system itself. From a raw 
disk, which consists simply of a series of data 
blocks, this file system provides files and file 
management, directories, security enforcement, 
and a variety of functions related to the intrica- 
cies of managing a file structure. The VMS inter- 
face to the file system is the SQIO system ser- 
vice.' The SQIO read and write functions provide 
block-level access to file data. Other SQIO func- 
tions specific to the file system create, access, 
modify, and delete files. 

The SQIO service normally leads to the VMS 
driver context. This context consists of initial 
kernel-mode execution in the process context, 
with few system services allowed, followed later 
by interrupt-level execution. The complexity of 
the file system makes i t  impractical to execute in 
the normal driver context. 'Therefore, the VMS 
system provides two methods for extending the 
operating context of the file system to provide 
the richness needed to support its complexity. 

The Ancillary Control Process 
In VMS releases 1 through 3, a technique called 
the ancillary control process (ACP) extended the 
file system's context. An ACP is a separate VMS 
system process that executes in a privileged con- 
text. All the VMS services normally available to 
processes are available to the ACP, thus making 
feasible the implementation of complex code. 
The 1/0 processing routines (the FDT routines) 

in a process context send IQIO functions for the 
file system to the ACP. In turn, the ACP executes 
the functions in its own context, returning com- 
pletion data and status to the caller by using the 
1 /0  conlpletion routines in the VMS kernel. An 
extension of the VMS buffered-1/0 mechanism 
copies both the caller's arguments to the ACP and 
the return parameters back to the caller. 

In addition to the extended execution environ- 
ment, the ACP concept provides an important 
facility to the file system: synchronization. The 
VMS file system ACP executes user functions in a 
single stream, completing each function before 
starting the next one. Thus all file functions are 
inherently synchronized because only one ACP 
performs file management on a volume. More- 
over, the implementation of a file system cache 
becomes quite simple and straightforward when 
operating in the single-process context. Figure 1 
depicts the ACP-based file system. 

Figure I ACP- based File System 
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Cluster Alternatives 
Many of the attributes that made the ACP concept 
attractive were invalidated when the VMS soft- 
ware had to  support  the  VAXcluster concept.  
VAXcluster systems require that each disk vol- 
ume be  accessible to  all host systems in the  clus- 
ter. Therefore, a disk volume can no longer be 
served by a single process. We examined other 
concepts, including having a single "master ACP" 
for a volume on  one member of the  cluster. That 
ACP would then execute  all file functions for all 
cluster members. We rejected this approach,  
however, because of the high availability require- 
ments of VAXcluster systems. Transferring the file 
system context to  another cluster member in the 
event of a failure would have been very difficult. 

Based on  those considerations, w e  chose an  
approach that uses a symmetrical file-manage- 
ment design in which the file functions execute 
on the cluster member on which they originate. 
No longer having the implicit synchronization 
and cache management of a single ACP, w e  were 
now forced to  address those issues explicitly in 
the distributed system. 

Tbe Extended Q I 0  Processor 
O u r  need for an  explicit synchronization scheme 
eliminated one of the  major attractions of the  
ACP: its implicit synchronization. In addition, it 
seemed redundant to have two schemes - one 
implicit (ACP) and one explicit - to man;lgc 
file operations. Therefore, rather than using 
explicit synchronization only between cluster 
members, w e  chose to  use it for all operations, 
including those local to  one processor. As a 
result, w e  developecl the second operating con- 
text for the filc system now available in the VMS 
software: the extended QIO processor, or  XQP. 
The XQP executes as an asynchronous system 
trap (AST) thread at the  kernel level in the  con- 

text of the  calling process. An extended kernel 
stack and a data area located in the process's 
P I region provide the necessary execution con- 
text. Since execution occurs at interrupt priority 
level (IPL) 0, all the basic system services can be  
ilsed. Figure 2 depicts the  XQP-based file system. 

The XQP design for the filc system has several 
atlvant;lges over the distributed master-ACP 
design: 

Consistency - All file operations are  synchro- 
nized in the  same way, whether the  volume is 
acccssible clusterwide or  not. This technique 
simplifies the  synchronization design and pro- 
vides fewer opportunities for bugs 

Performance - We eliminated the process con- 
text switch associated wi th  an ACP call by run- 
ning the file system in the context of the  
caller. 

Concurreticy - Multiple file operations can 
proceed concurrently, in many cases, by 
implementing explicit synchronization where  
i t  is needed,  thus improving system perfor- 
milnce. 

'I'he remainder of this paper concentrates on 
the  problems unique to thc  VAXcluster dis- 
tributed-file system: synchronization, and cache 
m;ln;lgement. 

Synchronization 
T'lic fi le system requires synchronization for two 
b;lsic reasons: 

1 .  File structure integrity - Multiple users must 
be prevented from simultaneously modifying 
the same parts of the filc structure (e .g . ,  
attemprlng to find and ;~l locatc  the same 
piece of free disk sp;ice to different files). 

2.  File system semantics - Certain file opera- 
tions ~ r o v i d c  user-level svnchronization 

two ilscrs from sirnulta- 
the samc f i  lc in a conflict- 

Synchronization is achieved first by organizing 

VOLUME 

Figure 2 XQP- based File .y~stem 

tlic filc structure into units that can b e  synchro- 
nizrtl,  then by using an unclcrlying facility to 
control concurrency. The VMS lock-management 
services provide an ideal synchronization facility 
for VAXcluster  system^.^ l 'he VMS file structure 
rcadi ly decomposes into manageable units. In 
F;lct, all units are files. Naturally. ;I filc itself is a 
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filc. A dircctoqr is a filc. Even the volumewide 
management structures (c.g. ,  the quota file ;lntl 
the storage bitm;ip) arc files. Thus the file is tlie 
natural unit of synchronization for most aspects 
of file operations. '  

Each file has a 48-bi t  file ID that uniquely 
identifies the filc within ;I volume o r  volume set .  
Removing the seqilence number  from the file ID 
leaves a 32-bit  integer that uniquely identifies 
the file at any instant of timc. This integer, the  
file number,  forms the  resource name that syn- 
chronizes operations on  the  file. A fi le  consists of 
its contents plus a file header, both of which  are 
synchronized by a single lock.  Not all locks arc  
bascd on individual filcs. For example ,  for conve- 
nience and efficiency, a single-volume synchro- 
nization lock controls the  allocation and deallo- 
c;~tion of all frcc space and file headers. 

Ammcd wi th  this introduction, w e  can now 
examine in dctail how each lock is used to  syn- 
chronize thc opcriitions of the file system. 

Device Lock 
'The devicc lock m:lnagcs the states of devices 
acccsscd by the cluster. The  resource name of tlie 
lock is derived from the device name, prefixetl 
with the text string SYSS. The following lock 
~iloclcs reprcscnt the tlcvice state: 

Lock Mode Device State 

( N o  lock) Idle 
CR Volume has channels assignctl 

and/or is l n 0 ~ n t e d  for shared 
i1cccss 

PW  mount in progress 
EX Volume ;lllocated o r  mounted 

privately 

These lock mocles provide the same device 
arbitration that is available on single-CPIJ VMS 
systems. The v ;~lue  block of the device lock con-  
tilins additional clctails ;about the devicc state 
(clcvice ownership and protection, whetlicr 
mounted o r  not ,  whether  mounted on ;I foreign 
system o r  not, c t c . ) .  

Mount Lock 
"l'lic dcvicc arbitration semantics in the VMS sys- 
tem dictate th:~t the tlcvice lock may not b e  
wditecl upon; any ;Ittempt at a conflicting access 
to  a device yields ;I lock error. Therefore. an addi-  
tional mount lock will serialize concurrent  
attempts to  mount the  s;lnie device. The  resource 

name of thc nlount lock is again derived from the 
dcvicc naliic, prefixed wi th  the text string 
MOUS. 'The mount lock is held in EX mode while 
a user nlounts a tlcvice, thus allowing others in 
the clustcr  to  q u e u e  behind the current  niount 
operation. 

Volume Synchronization Lock 
Mounting a volumc creates the volume synchro- 
nization lock in CR mode. This lock represents 
the mounted volumc and associates one  for one  
wi th  thc dcvicc on  wh ich  the  volrlme is mounted. 
The  lock's resource name is derived for shareable 
volumes from tlic volume label, prefixed with 
the text string F 1 1 BSV. This derivation guaran- 
tees that all shareable volumes mounted in the 
cluster will have unique  volunie I;tbcls. Non- 
shareable volumes usc the system address of the 
unit control block (IJCB, the  VMS data structure 
representing the dcvicc) as the volume lock 
name, thus allowing volumes with duplic;~te 
names to  be  mountcd.  The value block of the vol- 
ume lock contains additional flags to  describe the 
state of the volume as well as the allocation and 
bu f fe r -~ i i anagemc~~t  states. 

Both the devicc lock and the  volume lock must 
b e  held by a clustcr  mcmbcr for the total length 
of time a volume is mounted.  This period \vilI 
usually exceed the lifetime of any process in the 
system. Thcrcforc, normal locks. which arc  asso- 
ciated with an owner process. cannot b e  used.  
Instead. the  filc system uses system-owned locks. 
which arc held by thc  systcm as :I whole,  not by 
any particul:~r process. As a rcsult. they survive 
the life of any zinc1 al l  processes in the system. 
These locks ;Ire rc1c;lsed only when explicitly 
comm;~ndcd by the system software o r  when the 
system lcavcs tlic cluster  (e .g . ,  it crashes).  

The volume synchronization lock also synchro- 
nizes the ;~lloc;ition and cleallocation of all space 
on the volume. When the X Q P  wishes to ;illocate 
spacc ( c .8 . .  to  create a file), it takes ;I scpariltc 
copy of thc volurnc lock in PW modc.  (Note that 
PW modc is compatil>lc with the CR-mode lock 
representing the mount,  but  incompatible wi th  
itself. 7'h;it ensures that only one  process will 
at tempt to  allocate o r  dea1loc;ttc space  at the 
sane timc.)  This form of the  volume lock is held 
as a process lock. but  only for short periods of 
timc (the duration of a single filc function o r  
less). Part of  the value block for the volume lock 
controls the allocation of space  and contains thc 
current  count  of free blocks as well as pointers 
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into the space-allocation bitmaps. Upon raising 
the volume lock to PW mode, the XQP reads this 
value block and writes i t  back to the lock man- 
ager upon release. 

File Serialization Lock 
The file serialization lock synchronizes all opera- 
tions that affect the state of an individual file. The 
resource name of the file serialization lock is sim- 
ply the file numbcr, prefixed with the text string 
F1 1BSs. The resource name is qualified by the 
volume name by virtue of being a sublock of the 
volume synchronization lock. By holding the 
file serialization Jock at PW mode, the XQP 
ensures that only one operation (opening, clos- 
ing, extending, deleting, etc.) is performed at a 
time on any one file. The serialization lock also 
ensures that only one operation is performed at ;I 

time on any one directory. The file serialization 
lock, a process lock, is held only for the duration 
of a single file operation. 

The locks described so far are sufficient to 
assure the integrity of the file structure in the 
face of concurrent operations. However, two 
additional locks are required to support the syn- 
chronization semantics that the file system pro- 
vides to its users. 

Arbitration Lock 
The file system provides access arbitration for 
files; that is, users may open files for read or 
write operations and can specify whether other 
users may open the file concurrently. An arbitra- 
tion lock is used to arbitrate file access across a 
cluster. The resource name of the arbitration lock 
is the file number, prefixed by the text string 
F1 1 BSa and the voli~me lock name (the resource 
name of the volume lock). The arbitration lock is 
held as a system-owned lock in any of the avail- 
able lock modes, depending on the state of acccss 
of the file. These states of access are 

NL - No-lock file access 

CR - Open for read, allowing other 
reads/wri tes 

CW - Open for read/writc, allowing other 
reads/writes 

PR - Opcn for read, allowing other readers 

PW - Open for rcad/write, allowing other 
readers 

EX - Open for exclusive access 

Since the arbitration lock is held for the entire 
time that a file is open, its use is optimized. One 
system-owned lock reprcscnts the state of all 
accesses to the file on each cluster node. The 
lock mode represents the "highest" mode of 
access to the file on that cluster member. 

Blocking Lock 
Certain maintenance operations on the file struc- 
ture require it to be held stable for a period of 
time. For example, the ANALYZE/DISK utility 
will lock out all file operations during a disk- 
rebuild operation by using privileged file func- 
tions to lock the volume. To implement the lock- 
ing function clusterwide requires another 
volume-specific lock, the blocking lock. The 
resource name of the blocking lock is the volume 
lock name, prefixed by the text string F1 I BSb. 

Since performance degrades if the lock man- 
ager checks on the blocking lock as each file 
function starts, this lock is managed in an opti- 
rnized fashion. Under normal conditions, each 
cluster member holds the blocking lock as a sys- 
tem-owned lock in CR mode. This state is noted 
in the volume control block (VCB). Thus the start 
of cvcry file function requires only a local state 
check. When a lock-volume function executes, it  
:ittempts to raise the blocking lock to EX mode. 
Since the EX lock is incompatible with the CR 
locks, a system-blocking AST routine will be exe- 
cuted on each cluster member holding the lock 
at the CR mode. This AST routinc executes as a 
subroutine called at IPL 8 using the JSB sub- 
routine call instruction. The routine acquires 
process context by "borrowing" the swapper 
process. A kernel A!T is then queued to thc swap- 
pcr, causing another routine to execute in the 
swapper's process context. This other routine 
releases the CR-mode blocking lock and up- 
d;itcs the VCB context accordingly. When all the 
CR-mode locks have been released, the EX lock 
will be granted and the lock-volume function 
completes. 

The volume will remain locked because the 
blocking-lock check at the start of every file func- 
tjon will now fail. When that happens, the XQP 
will attempt to reacquire the blocking lock. This 
;Ittempt causes the process to stall because the 
blocking lock is still held elsewhere in EX mode. 
When an unlock-volume function finally releases 
the blocking lock, all processes waiting for thc 
lock will also be released and the CR mode lock 
is re-established. Normal file operations can then 
jJrocccd. 

4 8 Digital Technical Journal 
No. 5 Sep/rmber I987 



I VAXcluster 
Systems 

Deadlock Prevention and 
Locking Order 
The execution of a single file function can 
involve taking out several locks. Holding more 
than one lock at  a time always presents the poten- 
tial for deadlock. The XQP avoids deadlocks, 
however, by taking out locks in a consistent 
order, as follows: 

1 .  Blocking lock 

2. Directory serialization lock 

3.  File serialization lock 

4 .  Volume lock 

5 .  Other special locks 

Note that the ordering of the directory and file 
locks assumes a truly hierarchical directory struc- 
ture. The VMS file structure allows the  creation 
of arbitrary links; thus directory links can point 
"upward" in the dircctory hierarchy. Any attempt 
to  traverse an  upward link whi le  another process 
is traversing the corresponding downward link 
can result in a deadlock error. The VMS system 
views such deadlocks as an  exceptional circum- 
stance and returns them to  the caller. 

Caching 
The file structure of the VMS file structure is 
c o m p l e ~ . ~  Typical file operations require the 
examination o r  modification of several separate 
components of the file structure. To achieve 
acceptable performance, the VMS file system has 
always maintained extensive caches of compo- 
nents of the file structure. These caches include 
the following: 

A general-purpose block-buffer cache hol.tls 
recently read disk blocks containing file struc- 
ture components. 

A file control block (FCB) list describes the 
attributes and states of all open  files and 
recently referenced directories. 

An extent cache holds a portion of the  disk's 
free space for fast allocation and deallocation. 
Space held in the extent cache is marked "in 
use" in the  disk's storage bitmap (the primary 
structure that controls space  allocation) to  
ensure safety if the system crashes. Should the  
system crash, the  space in the  extent cache 
will be  temporarily lost. Because this space 
has been marked "in use," there is no possibil- 
ity of space that was allocated to files before 

the  crash being again allocated to  other files 
after the crash. Lost space is usually recovered 
with a disk rebuild operation after the  volume 
is mounted. 

A file-ID cache holds a set of free file numbers 
for fast allocation and deallocation of file 
headers. Similar to those in the extent cache,  
file numbers held jn this cache are marked "in 
use" in the  disk's file-number bitmap. 

When quota management is in effcct, a quota 
cache holds quota records for currently active 
users. 

Together, these caches absorb over 75 percent 
of the  disk 1/0 that the file system would other- 
wise incur in performing file managcment func- 
tions 

Implementing these caches in  the singlc-sys- 
tem ACP context was relatively straightforward. 
The block-buffer cache was located in the ACP's 
process context; the remaining caches occupjed 
small portions of the  system nonpagcd pool. 

The atlvent of clusters and the  XQP introduced 
the traditional problems of maintaining cache 
coherency in a distributed environment. These 
problems were solved by using traditional cache- 
consistency techniques and both traditional 
and nontraditional application of the  VMS lock 
manager. Many of the  synchronization locks 
described so  far also play a second rolc in manag- 
ing the  caches. 

To put  the  block-buffer cache into a shared 
context,  we moved this cache from the ACP pro- 
cess context to the system paged pool. The other 
caches remained in their existing locations. Since 
each CPU in a cluster has its own set of caches. 
all were synchronized wi th  locks using a combi- 
nation of sequence counters and blocking ASTs. 

Because major changes were involved, we took 
the opportunity to csarnine some of thc dcsign 
decisions made in VMS version 1 .  Based on this 
examination, wc made some alterations to reflect 
the changes in scale that have takcn place in the 
VMS software since its initial release. For cxam- 
ple,  the  original block-buffer cachc had used lin- 
ear searching on its descriptor tables. The new 
block-buffer cachc uses descriptors based on a 
hash tablc to  allow faster access to a largc cache. 

Previous versions of the VMS systcm used a sim- 
ple directory-index mechanism built into the 
dircctory's file control block. In cffcct, this 
mechanism kept ;I sm;lll table of contcnts that 
allowed faster ;~cccss to  thc cntrics of a dircctory 
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file. In the XQP conversion, this index was 
moved into the block-buffer cache to increase 
the space available to  each directory index, thus 
improving its effectiveness. 

Block Buffer Cache 
The block-buffer cache consists of a collection of 
5 1 2-byte buffers for disk blocks, plus the neces- 
sary collection of descriptors and hash tables. 
Cache coherency is maintained using the tradi- 
tional lock and sequence-number technique. 

Every file structure block processed by the 
XQP is governed by some synchronization lock. 
The value block of the lock contains a sequence 
number representing the last update to blocks 
governed by that lock. Upon reading a block, the 
file system associates the current sequence num- 
ber with the copy of the block held in the cache. 
Upon modifying a block, the file system incre- 
ments the sequence number and, at the end of the 
file operation, releases the lock with the updated 
sequence number. The corresponding locks are 
not fully released if any data blocks remain in the 
cache. Instead, the locks are demoted to NL mode 
to preserve the continuity of the value block. 

If another system's XQP subsequently refer- 
ences this file structure block and finds an old 
copy of it in its own block-buffer cache, that sys- 
tem will find that the sequence numbers in the 
cache descriptor and in the value block of the 
lock do  not match. This mismatch indicates that 
the block has been modified, and that the cache 

contents are invalid and must be refreshed from 
the disk. 

We observed earlier that the volume synchro- 
nization lock and the file serialization lock are 
the only ones strictly necessary to ensure the 
integrity of the file structure. Consequently, all 
file structure data is read and written under these 
two classes of locks, which govern cache 
coherency. Blocks related to space allocation on 
the volume, such as the storage and file-number 
bitmaps, are processed under the volume lock. 
All other blocks, such as file headers and direc- 
tory contents, are processed under the file serial- 
ization lock of the file to which they belong. The 
file serialization lock carries two sequence num- 
bers to discriminate b e w e e n  updates to file data 
(e.g., directory contents) and updates to file 
headers (e .g . ,  the directory file header). 

Detailed Cache Organization 

The buffers of thc cache are partitioned into four 
buffer pools. Thcsc pools contain 

File headers and file-number bitmap blocks 

Storage bitmap blocks 

Directory, quota file, and miscellaneous data 
blocks 

Dircctory index blocks 

This partitioning is needed because one or two 
buffers of each type may have to be available con- 
currently. For example, creating a file might 

Figure 3 Buffer Cache Structz.rre 
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require concurrent access to  the file header, the  The buffer sequence number  from the  value 
storage bitmap for space allocation, and the  block of the  lock 
directory to create the directory entry. Each 

A pointer to the lock block of the buffer 
buffer pool is managed using a variant of least - - 
recently used (LRU) replacement. Consequently, rn Flags, including valid and modified 
the buffer manager can guarantee concurrent A process ID of the  buffer's owner 
access to one o r  two buffers of each type without - - 
any explicit buffer lock and release mechanism. rn Q u e u e  pointers for state queue  linkage 
(Certain file and directory operations require 

A hash-chain link pointer 
concurrent access to two file headers or  two 
directory blocks.) The structure of the buffer 
cache is shown in Figure 3.  

Each buffer has a buffer descriptor (BFRD), 
which contains the information needed to iden- 
tify and manage the current buffer contents, as 
shown in Figure 4 .  The BFRD contains the follow- 
ing information: 

An logical block number  (LBN) and a unit  con- 
trol bIock (UCB) to  identify the disk address 
and the volume of the block contained in the 
buffer 

The lock basis (i.e., the root of the  resource 
name for the  lock governing the  buffer) 

In addition, a buffer lock block (BFRL), shown 
in Figure 5 ,  is associated with each buffer, sev- 
eral of which may b e  processed under the  same 
lock. Thus the  BFRL identifies the lock under 
which some set of buffers is managed and con- 
tains the following information: 

The lock ID of the lock 

The lock ID of the  parent lock 

The lock basis 

A reference count 

A hash-chain link pointer 

- Q U E U E  - 
LINKAGE 

LOGICAL BLOCK NUMBER 

UNIT CONTROL BLOCK 

LOCK BASIS 

SEQUENCE NUMBER 

Buffers and locks are  found using two hash 
tables, one  each for BFRDs and BFRLs. The disk 
block LBN is used to hash into the  BFRD hash 
table; the lock basis is used to hash into the BFRL 
hash table. Each entry in the table forms the head 
of the hash chain for a set  of BFRDs o r  BFRLs. 

The cache header ties together the compo- 
nents in the block-buffer cache.  The cache 
header contains 

BFRL 

NEXT 

Base pointers for the hash tables 

The BFRD and BFRL lists 
TYPE 

Availability counts and descriptors to  form the 
four partitions of the buffer cache 

FLAGS 

Performance counters 
Figure 4 Buffer Descriptor Block Scveral synchronization queues  

PROCESS ID 

Each synchronization q u e u e  is described as 
follows: REFERENCE COUNT 

Cache synchronization queue  - Changes to 
the  cache descriptors (c.g., signing a buffer 
out of the  cache for process use o r  changing 
the  contents of a buffer) must b e  serialized. 

NEXT 

Pool wait queues  - If insufficient buffers are 
left in the buffer pools, the X Q P  must wait 

Figure 5 Buffer Lock Block before processing a file function. 

LOCK ID 

LOCK BASIS 

PARENT ID 
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Ambiguity queue - The lock name used to 
synchronize a file header sometimes changes. 
For example, all headers of a multiheader file 
are synchronized under the serialization lock 
of the primary file header. Therefore, the lock 
name for an extension header will change 
when the file is deleted and the header reused 
for another file. The ambiguity queue is used 
when the VMS software finds that a file header 
buffer is owned by another process under a 
different lock. Thus the queue allows the cur- 
rently executing XQP to wait until the state of 
the header buffer stabilizes. 

Since each host CPU has a buffer cache, access 
to it is not synchronized by the lock manager. 
Rather, an informal queuing mechanism, which 
saves considerable overhead, is used. When an 
XQP must wait on one of the buffer header 
queues, i t  simply sends the 1 /0  packet represent- 
ing the current file operation into the appropri- 
ate queue and suspends execution. Some time 
later, another process in the system will rectify 
whatever condition the first process was waiting 
for (e.g., making buffers available). Having done 
so, the other process checks the appropriate 
queue to detect that the first process is waiting. 
The first process is then restarted by removing its 
1/0 packet from the synchronization queue and 
using the 1/0 packet to queue an AST. 

Buffer Management 

In the block-buffer cache, each buffer is in one of 
two states: either i t  is available for use (and [nay 
or may not contain valid disk data), or i t  is owned 
by a process (and only one process). The cache is 
carefully managed to avoid resource deadlocks 
and to prevent individual processes from "hog- 
ging" it. 

A resource deadlock happens when a process 
partially executes a file function, then discovers 
the need for an additional 1 / 0  buffer. Being par- 
tially complete, the process probably holds some 
locks. If no more buffers were available, the pro- 
cess would have to wait, holding its locks. In the 
meantime, some other process, also holding some 
1/0 buffers, might attempt to acquire a lock that 
the first process is holding. In this case, that 
other process will stall. This situation is the clas- 
sic deadlock of "A is holding X and waiting for Y, 
B is holding Y and waiting for X." Yet the VMS 
lock manager would not detect this deadlock 
because some of the entities involved are not 
locks. 

Resource deadlocks are avoided by reserving 
sufficient buffers before starting a file function. 
Thus the file system is designed so that all file 
functions can be completed using a known mini- 
mum number of buffers. If this minimum num- 
ber is not available, the XQP must wait on the 
pool wait queue.  Therefore, deadlocks cannot 
occur because the XQP is not yet holding any 
locks. 

Buffers are reserved by simply decrementing 
the pool availability counters in the cache 
header. Individual buffers are not actually taken 
by thc process until needed. The state queue 
linkage and the owner process ID (PID) repre- 
sent the state of a buffer. An available buffer is 
linked into the LRU list corresponding to the 
buffer pool; this buffer has a zero-owner PID. A 
process takes a buffer when the process wishes to 
read a particular disk block. The process selects 
an appropriate buffer either by finding the 
desired disk block in the LBN hash table, or, if 
the block is not found, by removing the oldest 
buffcr from the front of the LRU list. Taking a 
buffer for process use involves first removing i t  
from the LRU list and entering i t  into the pro- 
cess's in-process list, then entering the process 
ID into the buffer's owner PID field. 

A buffer is never taken if marked with a differ- 
ent owner PID (i .e. ,  owned by another process). 
If the buffer is for a file header, the lock basis for 
the header could be changing; therefore, the 
XQP must wait on the ambiguity queue. The lock 
basis for other types of buffers never changes 
while the buffer is owned. Therefore, finding a 
buffer owned by another process indicates that 
file synchronization has been violated, which 
causcs a system crash. 

In many cases, more buffers than the necessary 
niinirnuni may be useful in processing a file func- 
tion (e.g., when a file has many headers o r  a large 
directory must be searched). If more buffers are 
available in the cache, the XQP will continue to 
reserve and take them for process use. Once the 
cache availability counters fall below a minimum 
threshold, however, the XQP will stop reserving 
additional buffers. In this case, the XQP must 
return a buffer from its in-process list for each 
new buffer taken. This swap prevents one very 
complex file operation from hogging all available 
buffers and guarantees a minimum level of opera- 
tional concurrency. 

At the end of a file operation, all buffers held 
on the in-process list must be returned to the 
cache. Since modified buffers are not held in the 
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cache, any on the in-process list are written back 
to the disk as they are returned. As the buffers are 
returned, the XQP ensures that each one is asso- 
ciated with a BFRL corresponding to the synchro- 
nization lock under which the buffer was read. 
The XQP will release all synchronization locks 
when all buffers have returned. Locks corre- 
sponding to buffers remaining in the cache are 
not released but are demoted to NL mode to pre- 
serve the buffer sequence number. 

The inability to hold modified buffers in the 
general cache is a small regression from the ACP- 
based file system. VMS versions 2 and 3 could 
hold modified file headers of files currently open 
for write in the cache. That ability saved a write 
operation when such a file was modified (e.g., 
extended). Now, the technique of holding modi- 
fied buffers and flushing them under a blocking 
AST is well understood. It is possible to add the 
necessary mechanism to the new buffer manager. 
However, development time constraints pre- 
vented us from including this capability in VMS 
version 4 .  

User Interference 
The file system is designed to tolerate the modifi- 
cation of the file structure components by user- 
level software (such as the disk-rebuild utility). 
Therefore, when a user process opens the storage 
bitmap file for a write operation, for example, 
any updates to that file must be accounted for in 
the block-buffer cache. This task is accomplished 
by first recognizing files that constitute compo- 
nents of the file structure when they are opened 
for write, then routing all writes through the 
XQP. The XQP checks all blocks written against 
the cache and invalidates matching cache 
buffers. 

File Control Blocks 
Like the block-buffer cache, the file control 
blocks for open files and directories represent 
replicated cache data that must be kept coherent. 
The blocking AST mechanism in the lock man- 
ager solves this coherency problem. Recall that 
each cluster member holds an arbitration lock for 
each open file on a cluster-accessible volume. 
Associated with the arbitration lock is a system 
blocking AST routine. File access arbitration 
never invokes this routine because arbitration 
does not wait for file accessibility. (File access 
conflicts are returned as errors to the caller.) 

When a user modifies the attributes of a file (its 
size, protection, etc.),  the various file control 

blocks across the cluster must be updated. This 
task is done by queuing an EX-lock request for 
the arbitration lock, thus causing the blocking 
AST routine to execute. The AST routine simply 
marks the local file control block "stale." Once 
queued, the EX-lock request will be immediately 
canceled since it will normally never be granted. 
On the other cluster nodes, the next operation on 
the file will update the file control block. 'The 
XQP, finding the file control block marked stale. 
will refresh it with file data read from the disk 
and rearm the blocking AST by re-establishing the 
arbitration lock. 

Quota Cache 
The quota cache presents a unique cluster-syn- 
chronization problem. The quota cache contains 
a small number of currently active quota records, 
each representing a file owner to whom file 
space has been charged. Now, users normally 
modify files owned only by themselves. There- 
fore, a small cross scction of the quota file, repre- 
senting the set of users currently logged into the 
system, can be cached with excellent locality. 
The quota cache is especially effective because 
cli~ota changes are reflected only in the cache 
entries. 'These changes are written back to the 
quotafile only when replacement removes them 
from the cache. As a result, a properly sized 
cache eliminates almost all the overhead of quota 
management. Figure 6 illustrates the access to 
the quota cache, and Figure 7 the entry to that 
cache. 

Preserving the performance characteristics of 
the quota cache presented us with a unique 
problem. The locality of use of file owners does 
not in any way reflect back into locality of use of 
quota file blocks. Thus the cache entries must be 
h;indlcd on an individual basis. Quota-cache 
coherency across the cluster is maintained by 
using a separate lock for each quota-cache entry 
The dynamic part of a quota record (quota, over- 
draft, and usage, plus some flags) just fits into the 
16-byte value block of the lock. The resource 
name of the lock is the file owner, plus the vol- 
ume name and the text string FI  113Sq. 

A lock held at PW mode backs up each valid 
entry to the quota cache. When another XQP in 
the cluster wishes to use the same quota record. 
that XQP must find a suitable c;~chc entry (by 
finding the file owner in its cache or taking the 
1.R1.I cache entry) and then enqueue for the lock 
at PW mode. This ;~ction triggers ;I blocking kST 
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Figure G Quota Cache 

LOCK ID 
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I PERM QUOTA I I 

U S E R  ID CODE 

OVERDRAFT 

Figure 7 Qzrota Cache Entry 

on the node currently holding the lock at PW 

I 

File Number and Extent Caches 
During normal operation, the file-number and 
extent caches, shown in Figure 8, do  not present 
any synchronization or coherency problems in 
the cluster. Since the cachc contcnts are marked 
"in use" in the appropriate bitmap, each cache in 
cach cluster member simply contains a different 
collection of free disk space o r  free file numbers. 

The cache may have to be emptied, however, 
and its contents written back to the bitmap. 
There are two reasons for these actions. First, the 
file system will tolerate the modification of the 
file structure components by user-level software 
(e.g., the disk-rebuild utility). Therefore, when a 
user process opens the storage bitmap file for a 
write, for example, all instances of the extent 
cache must be flushed to the bitmap. That does 
two things: 

1 .  I t  presents the user with a correct view of 
the bitmap. 

2 .  It prevents the cache from containing stale 
data in the event the user modifies the 
bitmap. 

Note, by the way, that the quota cache is affected 
by all these considerations as well. 

Second, resource exhaustion must be handled 
as gracefully as possible. With the extent caches 
in operation, the available free space on the disk 
is distributed in the various extent caches across 
the cluster. If a user makes an allocation request 
for all the remaining free space on the disk, that 

CONTROL 
BLOCK 

VOLUME 
CACHE 
BLOCK 

mode. Because the quota-cache lock is system 
owned, the blocking AST routine will execute at  
IPL 8. Using an AST control block built into the 
quota-cache structure, the routine queues an AST 
to the swapper process to borrow its process con- 
text. The swapper AST executes another subrou- 
tine that releases control of the entry to the quota 
cache. This subroutine marks this entry "inv;llid" 
and demotes the PW lock to CR mode, in the pro- 
cess writing the entry contents into the value 
block of the lock Upon release, the lock is 
granted to the requesting process, which trans- 
fers the lock's value block Into ~ t s  cache entry. As 
a result, the lock manager can transfer quota- 
cache entrles about the cluster without incurring 
any disk 1/0 Figure 8 File Number and Extent Caches 
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request cannot be satisfied without emptying the 
extent caches on the other cluster members. 

A cache-flush lock will handle both situations 
stated above. The quota, file-number, and extent 
caches are each backed by a cache-flush lock. 
The resource name is derived from the file 
number of the related file, plus the text string 
Fl lBSc.  While a cache is active, the cache-flush 
lock is held as a system-owned lock at PR mode. 

When wishing to cause a cache flush for a cer- 
tain type of cache across the cluster, the XQP 
enqueues for the related lock at CW mode. This 
action causes the blocking AST associated with 
the PR lock to execute as a fork IPL 8 routine. 
This routine uses an AST control block built 
into the cache structure to queue an k!T to the 
CACHE-SERVER process of the file system. One 
such process runs on each node in a cluster; its 

Summary 
The distributed file system was one of the most 
challenging aspects in developing VAXcluster 
systems. Starting from a file system that was pro- 
cess based and single threaded, we  developed 
one that is procedure based and multithreaded. 
The major challenges lay in developing the nec- 
essary synchronization and in redesigning the 
caches to work correctly in the distributed envi- 
ronment. We solved these problems by exten- 
sively employing the VMS distributed-lock man- 
ager in new and creative ways. The result is a file 
system that works effectively in the cluster envi- 
ronment. What's more, this file system displays 
better performance and concurrency in the sin- 
gle-system environment as well. 
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Local Area VAXcluster Systems 
Local Area VAXcluster systems use the Ethernet rather than the CI bus as 
their interconnect between nodes. This makes it possible to include 
MicroVAXsystems and workstatiom in a VAXcluster environment. The key 
technical issues that had to be solved were to provide an Ethernet base 
equivalent to the CI bus for the cluster's System Communication Architec- 
tureprotocols and to allow the VMS sojlware to boot on a diskless system 
using the Ethernet as a link to a remote system disk. This paper describes 
the work done to satisfy these two design issues: providing robust cluster 
communication on the Ethernet as a meam of performing remote disk 
access, and network booting of the VMS system. 

The Local Area VAXcluster (LAVc) software is a 
new product that brings VAXclustcr functionality 
to the full range of VAX processors. A LAVc uses 
the Ethernet instead of Digital's proprietary Com- 
puter Interconnect called the CI bus, thus mak- 
ing possible the inclusion of small systems like 
the MicroVAX I1 CPU in the VAXcluster configu- 
ration. This paper describes the  benefits pro- 
vided by a LAVc, the  concepts on  which it was 
built,  and the technical details of the two new 
major internal capabilities added to the VMS 
operating system. 

VAXcluster System Definition 
A VAXcluster system is a distributed system made 
u p  of VAX computers and their associated stor- 
age elements, all linked in a closely coupled 
arrangement. '  VAXcluster members cooperate 
with each other on a peer-to-peer basis. They all 
share a common file system, print and batch 
queue  operations, and comprise a single managc- 
ment domain (the cluster is managed as a single- 
system entity) enclosed by a single security 
perimeter. 

A VAXcluster system differs from a more tightly 
coupled multiprocessor arrangcmcnt in several 
ways. First, the VAX systems communicate over a 
fast, efficient network link instead of sharing 
memory. Second, each system has its own copy of 
the VMS system in memory (possibly loaded from 
the same shared disk image). Third,  the members 
may boot and shut down independently. Finally, 
the clusterwide file system, single sccuritv and 

management domains, and other VAXcluster fea- 
tures are much closer to those offered by a tradi- 
tional single timesharing system than to the capa- 
bilities offered by traditional networks. 

Thc first VAXcluster implementation (VMS ver- 
sion 4.0) operated only on the CI bus,  a limited- 
distance LAN connecting u p  t o  sixteen nodes at 
70 megabits pe r  second. CI adapters are highly 
intelligent, and hence relatively complex and 
expensive. They were  built expressly for large 
systems located in machine rooms. With the 
advent of small desktop VAX processors, some 
new interconnect was needed for bringing them 
the benefits of cluster functionality. The CI bus 
could meet neither the geographical criteria nor 
the low cost required in an office (as opposed to 
a computer room) environment, nor could i t  sup-  
port enough nodes. 

The VAXcluster support  in VMS version 4 .4  hacl 
matured enough s o  that extending it t o  anothcr 
interconnect became feasible. The Ethernet, 
already Digital's standard for network communi- 
cation, was the obvious choice for this new inter- 
connect. Ethernet's cost, distance, speed,  connec- 
tion capabilities, and existing hardwarc basc 
allowed thc VAXcluster functions to  move out 
of the machine room and effectively support  
smallcr systems. 

LAVc Goals, Reqziirements, 
and Con figurations 
The overall LAVc goal was t o  bring the  benefits 
of VAXcluster systems to  low-end and desktop 
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systems. The benefits of this goal included the the number of members, allow both CI and Ether- 
following: net in the same cluster, and multiple Ethernets 

are being planned. They will not be addressed 
Asingle, clusterwide common file system with further in this paper. 
disks connected to any CPU 

The members cooperate with each other in a 
Fully integrated and synchronized file sharing peer-to-peer relationship. They are managed by a 
at the record level among users on any member cluster connection manager and synchronized by 
in the cluster a distributed lock manager without regard for the 

roles they play in an operatifig LAVCZ That is a 
Clusterwide availability of print and batch 

key diffcrence between the LAVc and other 
queues (Print and batch execution facilities 

"client/server" products. Any system in the clus- 
can be located on any set of members.) 

ter can provide or consume resources provided 
A single security domain by the other systems. To simplify the resulting 

supported configurations, however, we chose to 
The simplification (or even elimination) of the 

assign certain roles to the systems. The boot 
end user's system-management responsibilities 

member and satellite roles merely describe the 
With this goal in mind, we drew u p  a list of jobs those systems perform; the roles are not 

requirements for such a product. These require- known by the VAXcluster software. The cluster 
ments included software cares only where the resources are 

located and which systems have access to them. Support the Ethernet instead of the CI bus as a 
Each boot member is a management center of cluster interconnect, yet allow simultaneous 

the cluster. The VMS system disks connected to use by other clusters and networks 
each boot member makes them available to other 

Boot the VMS software over the Ethernet cluster members by means of the MSCP server 
software. The initial LAVc releases limit the num- Simplify cluster management and installation 

by providing tools and limiting configurations ber of boot members and system disks to reduce 
the complexity of installation and management. 

Provide clusterwide disk access by means of 
the software Mass Storage Control Protocol 
(MSCP) server instead of the HSC controllers 

Retain all the existing VAXcluster software 
capabilities and as much of the implementa- 
tion as possible 

Support diskless systems 

The first three requirements had the largest 
impact on the LAVc development. In fact, the first 
two required the most engineering effort to 
develop new software. After a brief description of 
the resulting LAVc product, the remainder of this 
paper will describe the technical work done to 
meet those two requirements. 

Con figurations 
The configuration supported by the initial 
releases of LAVc utilizes a single Ethernet as the 
cluster interconnect. Conservative restrictions 
were imposed where necessary to limit the com- 
plexity and to allow thorough testing and perfor- 
mance analysis of almost all supported cluster 
configurations. The result is the configuration 
shown in Figure 1. Future extensions to increase 

I I ETHERNET 

Figure I LAVc Configuration 
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Boot members may also serve other data disks in 
the cluster. 

A boot member also functions as a load host 
during an Ethernet boot operation. This role 
is discussed further in the sections on remote 
booting. 

Satellite systems boot off the system disk pro- 
vided by a boot member and generally depend on 
that member for other resources as well (data 
disks, printers, etc.). On the other hand, satel- 
lites may serve data disks to the cluster, as well as 
provide print or batch resources. The satellites 
are configured by the cluster manager to best 
meet the needs of the application. 

To date, only members of the MicroVAX I1 fam- 
ily of systems and workstations (MicroVAX 11, 
VAXstation 11, VAXstation II/GPX, MicroVAX 
2000, and VAXstation 2000 systems) can be 
satellites. This restriction results from the need 
for specific code to be written to support remote 
booting for the CPU and Ethernet adapters. Satel- 
lite support for other CPUs (both new and exist- 
ing) will be considered in the future. 

Disk Access 
In a CI cluster, the HSC disk controllers connect 
to the CI bus in the same manner as do the VAX 
systems. 1 /0  requests originating in any VAX CPU 
are passed to the disk class driver (DUDRIVER), 
which encodes them into MSCP packets. These 
packets are sent over the C1 network to the appro- 
priate HSC controller for execution. All VAX 
CPUs in the cluster therefore have equal access 
to the HSC controllers and the disks connected 
to them. However, an HSC controller cannot 
connect to an Ethernet. Therefore, some other 
method is needed in a LAVc to allow disk access 
to all systems. 

In the absence of HSC controllers, each disk 
must be connected to the system by some con- 
troller, such as a UDA, KDA, or UNIBUS con- 
troller. Making these disks accessible to other 
VAX systems in the cluster requires a software 
emulation of the HSC controller. This need is 
filled by the MSCP server sofware. 

The VAX CPU originating the 1/0 request 
merely sends an MSCP packet over the network to 
the target VAX CPU with the desired disk. The 
packet is identical to the one DUDRIVER would 
have sent to an HSC controller. The MSCP server 
software on that target CPU receives the packet, 
performs the operation, and returns the results 
just as an HSC would do. The class driver on 

the originating VAX cannot tell the difference 
between the MSCP server and an HSC controller. 
The result, as shown in Figure 2 ,  is that disks 
served by the MSCP server appear to be equally 
available to all systems in the cluster, indepen- 
dent of which system they are actually cabled to 
and the type of interconnect. 

System Management 
The LAVc configurations described above were 
designed so that all system management activities 
would take place on the boot member. Although 
the cluster can be configured differently, that 
configuration is the simplest. It is also what most 
users would want when the satellites are personal 
workstations. 

The VMS, satellite system, and application soft- 
ware installations are all controlled by command 
procedures executed on the boot member. Disk 
backups are done mostly on the boot member, on 
which the backup device (usually tape) is 
located. Data disks can be located anywhere in 
the cluster. If the satellite is a single-user work- 
station, we recommend that applications and user 
data not be put on any of its disks. Using a work- 
station's local disks only for page and swap files 
eliminates the need for backups, thus freeing the 
owner of all system-management responsibilities. 

The overall product simplicity goal is clearly 
facilitated by configuring the cluster in this man- 
ner. All management activity is local to one sys- 
tem and remains under the control of a limited 
number of people. Cluster users should have no 

DUDRIVER SERVER 

Figure 2 Disk Access 
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more system-management responsibilities than 
users of d u m b  (e .g . ,  W220)  terminals would 
have. 

LAVc's Use of tbe Ethernet 
The Ethernet is used as the cluster communica- 
tion mechanism because it is compatible with 
the LAVc's requirements for cost and system envi- 
ronment (non-computer room). There are, how- 
ever, significant tradeoffs inherent in substituting 
the Ethernet for the CI bus. For example,  commu- 
nication over the Ethernet is slower and more 
CPU intensive than over the  CI bus. The Ether- 
net's advantages are  lower expense,  much greater 
geographic distance, and the  ability to  connect 
many more systems. 

The VMS port driver that provides reliable 
cluster communication utilizing the  Ethernet is 
called PEDRIVER. It provides communication in 
such a way that the  rest of the  VMS software is 
unaffected. This section describes PEDRlVER's 
role within a LAVc, the  PEDRIVER protocol, 
and some technical details about its internal 
structure. 

The PEDRWER 
Communication services within a VAXcluster sys- 
tem are described by the System Communication 
Architecture, or  SCA.3 The SCA model consists of 
the four layers shown in Figure 3. 

The system application (SYSAP) layer consists 
of users of the connection services provided by 
the systems communication services (SCS) layer. 
Examples of SYSAPs are the disk class driver 
(DUDRIVER), the MSCP server, and the cluster 
connection manager. 

The SCS layer provides network resources to  
the SYSAPs. I t  multiplexes the  underlying com- 
munication service, provided by the  port-to-port 
communication layer, into several connections. 
These connections link a number  of entities, 
including the  connection managers between two 

SYSAP SYSTEM APPLICATIONS LAYER 

SCS SYSTEMS COMMUNICATION SERVICES LAYER 

PPD PORT-TO-PORT COMMUNICATIONS LAYER 

PI PHYSICAL INTERCONNECT LAYER 

Figure3 SCA La.yers 

members, the class driver to the MSCP server (or 
HSC device), and s o  forth. The SCS layer also pro- 
vides flow control, buffer management, notifica- 
tion of new SYSAPs registering with it, and notifi- 
cation of connection breakage. 

The port-to-port communications (PPD) layer 
maintains a single communications path, called a 
virtual circuit, with every other VAX system or  
HSC controller in the cluster. O n  a CI cluster, 
this layer is the lowest software layer within the 
VMS system. It is implemented by the  CI port 
driver, called PADRIVER. PADRIVER knows how 
to  interface with the CI adapter and is responsi- 
ble for discovering new nodes, forming virtual 
circuits with them, detecting communication 
failures, and signaling these events to  the  SCS 
layer. 

In a LAVc, PEDRIVER provides much of the  
same PPD functionality as does PADRIVER. Since 
the  Ethernet hardware offers only a datagram ser- 
vice (instead of the  re! iable communication path 
offered by the  CI bus), PEDRIVER uses a net- 
working protocol to  provide a reliable communi- 
cations service. Unlike PADRIVER, PEDRIVER is 
device independent, utilizing an underlying 
datalink driver to  control the Ethernet adapter. 

The physical interconnect (PI) layer repre- 
sents the medium over which packets are sent 
and received. A complete specification for this 
layer includes the  mechanisms for clocking bits 
on the wire,  the framing of bits into bytes and 
bytes into messages, electrical signal require- 
ments, cabling, and s o  forth. 

Ports 
A port is a software interface between the  port 
driver and a communications entity, usually an 
adapter. A port is implemented as a set of queues  
whose use is rigorously defined. Access to these 
queues  is by means of interlocked instructions; 
thus n o  other synchronization mechanisms are  
required.  The port driver manages the  port. The 
driver receives requests from the SCS layer, for- 
mats them, then passes them across the  port by 
linking a packet in a prioritized command queue.  
The driver then sets a control bit to inform the 
port of this action. The entity behind the  port 
dequeues  the  command packet, executes it,  and 
either returns it to the driver with a status mes- 
sage or  places it in the appropriate free queue .  
Packets being delivered across the  port to the 
driver are linked into a response queue .  An inter- 
rupt is generated if the queue  was previously 
empty.  
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In the CI case, this port structure is used to  
communicate between PADRIVER and the C1 
hardware. The hardware guarantees the delivery 
of sequential messages. I t  also moves user data 
into or out of the virtual address space of a target 
node during block transfers. Thus the CPU over- 
head is kept to an absolute minimum. The CI 
adapter is intelligent enough to perform these 
functions on its own and to interrupt the CPU 
when the operation is finished 

Ethernet adapters do not fit this model. They 
are typically packet-oriented devices that trans- 
mit or receive using discrete, limited-size 
buffers. The adapters do  not guarantee sequential 
delivery. Since VAXcluster systems require these 
features, they must be replaced with software, at 
a corresponding increase in CPU overhead. 

To preserve the same port interface, however, 
we put the software providing these services 
below the port interface. The port then becomes 
an interface between SCS and a port driver above 
the port, and a port emulator below. Preserving 
the same level of functionality at the port inter- 
face eliminated the need for extensive software 
modifications to the SCS and higher software lay- 
ers. Figure 4 shows the port structure for both 
the CI and Ethernet cases. 

SYSAP SYSAP SYSAP 

PORT EMULATOR 

DATALINK 
DRIVER 

CI CABLE 

PEDRIVER Functions 
PEDRIVER is used instead of PADRIVER as the 
port driver in a LAVc. PEDRIVER contains two 
major segments: a port manager that receives 
packets from SCS and queues them to the port, 
and a port emulator that operates below the port 
interface. This port emulator effectively emulates 
the behavior of the CI hardware, utilizing a still 
lower level datalink driver for access to the Ether- 
net adapter, as shown in Figure 5.  Since the port 
emulator is the key to the LAVc's use of the Ether- 
net, its design and implementation will now be 
described in detail. 

NI-SCA is the name of protocol used by the port 
emulator to communicate with its peers on other 
nodes. This protocol extends the SCA so that sys- 
tems can be connected by the Ethernet (also 
known as the NI).  This extension is achieved at 
the cost of reduced CPU efficiency, since the soft- 
ware is doing more work, and lower 1 / 0  band- 
width, since the Ethernet is slower than the CI 
bus. In addition, the public access nature of the 
Ethernet introduces security and configuration 
problems not encountered on the CI bus 

Major Objectives 

The goals of the NI-SCA port design are 
Compatibility - The interface to the NI-SCA 
port must have a strong resemblance to that of 
the CI port to minimize the impact on the sys- 
tem software directly using the port. In partic- 
ular, the functions required by the SCS layer 
and provided by the port should be opera- 
tionally equivalent to their C1 port counter- 
parts so that the SCS layer need not be  
changed. 
Performance - The port architecture has to 
address two performance problems First, the 
low Ethernet bandwidth may very well be a 
bottleneck in some configurations, especially 

Figure 4 VAXcluster Software Structure Figure 5 Protocol Layering 
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as CPU speeds increase. Second, the low band- 
width affects both the aggregate throughput 
and the response time between a transmitted 
message and the subsequent response. 

Security - Provisions for authenticating 
remote nodes are required. (Software data 
encryption is not currently part of the port 
design.) 

Simplicity - The port architecture should be 
defined so that implementations may substi- 
tute performance for simplicity. Ports irnple- 
menting different subsets of the architecture 
must be  able to communicate with each other. 

Dzfferences between the CI Bus 
and Ethernet 
The NI-SCA architecture must address several 
areas that result from the fundamental differ- 
ences between the CI and Ethernet buses and 
their existing adapters. 

Locating other nodes - The CI polling for the 
existence of other nodes does not work in the 
larger Ethernet environment. 

Data transport - The NI-SCA port emulator 
must make the data transfer limitations of the 
Ethernet transparent. Data segmentation and 
reconstruction must be handled efficiently. 

Multiple paths - Any given node may interact 
with more than one Ethernet through more 
than one Ethernet adapter. The port emulator 
must allow an implementation to exploit such 
configurations transparently to achieve the 
requirements of efficiency and redundancy. 
The current implementation of PEDRIVER 
does not support this. 

Detection of communication failures - The 
port emulator must detect node or communi- 
cations failures and signal them to the SCS 
layer. 

Locating Other Nodes and Virtual 
Circuit Formation 
The address space on the CI bus is currently 
implemented as a four-bit field. The resulting 
maximum of 1 6  possible addresses and the limi- 
tation of one cluster per CI bus makes polling all 
possible addresses to locate other nodes an 
attractive solution. Polling is clearly not prac- 
tical on the Ethernet, however, where there are 
2" possible addresses, multiple clusters, and 
nodes totally unrelated to clusters. 

PEDRIVER replaces the CI bus polling with a 
multicast scheme to a cluster-specific multicast 
address. A large block of consecutive multicast 
addresses have been reserved for NI-SCA. The 
lowest address in the block is hard coded into 
PEDRIVER. During installation, the user assigns a 
group number to  the cluster. PEDRIVER adds this 
group number to the base address to  generate 
that cluster's unique multicast address within NI- 
SCA's reserved block. 

PEDRIVER enables the reception of this multi- 
cast address and transmits a HELLO multicast to it 
every three seconds. PEDRIVER will attempt to 
create a circuit upon receiving a HELLO message 
from a node with which i t  does not currently 
share an open virtual circuit. HELLO messages 
received from nodes with a currently open vir- 
tual circuit indicate that the remote node is still 
operational. 

A standard three-message-exchange handshake 
is used to create a virtual circuit, as shown in 
Figure 6. 

The START-VC and STARTACK contain infor- 
mation about the transmitting system, and what 
it believes the cluster password to be. These 
parameters are verified at the receiving system, 
which continues the handshake only if its verifi- 
cation is successful. Thus each system authetiti- 
cates the other. After the final ACK message, the 
virtual circuit is open for use by both systems. 

Ethernet coexistence - The NI-SCA protocol 
TRANSMITTING must allow multiple clusters to coexist on the sYsTEM 

same Ethernet and to  share that Ethernet with 

RECEIVING 
SYSTEM 

other network protocols. w START-vc 

Security - Secure communication between 4 START-ACK 

nodes must b e  addressed since the Ethernet 
spans a wider and less secure environment w ACK 

than does the CI bus, which is typically pro- 
tected by the securlty of the computer room Figure 6 .Ftandurd Hundshnke 
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Data Transport 
PEDRIVER uses the virtual circuit to provide the 
three SCA port data transfer services described 
below. The SCS layer does not need to distinguish 
between the CI hardware or the NI-SCA port emu- 
lator version of these services. 

1 .  Datagrams - Packets to be delivered on a 
"best effort" basis. No guarantees are made 
about delivery, sequentiality, or replication. 

2. Sequenced messages - The port guarantees 
the sequential delivery of exactly one copy 
of the packet. 

3.  Block transfers - The port moves a large 
amount of data in either direction. Segmenta- 
tion, handled below the port, is invisible to 
the port driver and everything above i t .  

Datagrams are sent as Ethernet packets, which 
are sufficient since no delivery guarantees are 
assumed. 

PEDRIVER uses a standard networking protocol 
to provide reliable communications when neces- 
sary. A sequence number is included in each 
packet so that lost or out-of-sequence packets can 
be detected. Each packet requiring reliable 
delivery must be acknowledged by the receiving 
port emulator. To improve efficiency, several 
packets may be sent without waiting for an ACK. 
Whenever possible, the recipient will also bun- 
dle  the ACK into a message to  be sent back to the 
original source, thus saving the cost of an explicit 
ACK. Timers are used in both the source and des- 
tination systems to generate a retransmission if an 
ACK does not arrive after a specified time period 
has elapsed. These timers also initiate the trans- 
mission of an explicit ACK in the absence of any 
reverse traffic. 

To send relatively small amounts of data, SYS- 
APs use sequenced messages, generally holding 
u p  to about 120  bytes. PEDRIVER sends these 
messages with a sequence number over the vir- 
tual circuit, and they must be  acknowledged by 
the recipient as described above. PEDRIVER can 
therefore guarantee reliable message delivery to 
the destination SYSAP. 

To send large amounts of data, SYSAPs use 
block transfers. In a VAXcluster system, the disk 
class driver and the MSCP server use block 
transfers to move data being read from or written 
to a disk. PEDRIVER's port emulator imple- 
ments block transfers by segmenting the data in 
1300-byte chunks. Each chunk is copied out of 

the source buffer into a datalink packet and trans- 
mitted over the virtual circuit as a sequenced 
message. The receiving port emulator copies the 
data out of the Ethernet packet into the user's 
buffer. The virtual circuit guarantees the sequen- 
tial delivery of these packets, thus maintaining 
data ordering and integrity. 

The CI adapter can copy data into or out of 
the virtual address space of a target node by 
using direct memory access (DMA). Thus the 
CPU is not involved in block transfers. Ether- 
net ;td;~pters, however, access data in specific 
buffers; therefore, PEDRIVER must copy data 
using a MOVC instruction. This scheme adds a lot 
of CPU overhead to Ethernet block transfers. 

Detection of Communication and 
Node Failures 
Communication can be lost between nodes for 
several reasons: a node shutdown, a system crash, 
or a hardware failure. PEDRIVER must detect 
these events and signal their occurrences to the 
SCS layer. 

A system generally transmits a node-stop (or 
last gasp) datagram upon learning it will shut 
down. This shutdown could be a planned event 
by an operator or a system software crash. The 
SCS layer acts upon a received node-stop data- 
gram SCS breaks all connections with SYSAPs on 
the originating system and tells PEDRIVER to 
break the virtual circuit. Cluster reconfiguration 
occurs much faster when a last-gasp datagram is 
received because no time-outs are required. 

Communication can be lost, however, without 
the receipt of a node-stop datagram. Both a hard- 
ware failure and tripping a system's halt switch 
will break contact, o r  the node-stop datagram 
could be lost on the Ethernet. Therefore, other 
ways of detecting a breakage are needed. In gen- 
eral, PEDRIVER detects a breakage by checking 
for the HELLO multicasts being transmitted every 
three seconds. One eight-second timer checks for 
the arrival of HELLO messages for all virtual cir- 
cuits. If two ticks of this timer (eight to sixteen 
seconds) occur without receiving a HELLO mes- 
sage from a system, that system is assumed to 
have failed. Thc SCS layer is then notified of this 
occurrence. 

Certain hardware failures may cause a node to 
continue sending but to be unable to receive 
HELLO messages. Therefore, still another fail- 
ure detection method is used: the counting of 
retransmission attempts for a sequenced packet. 
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If a sending node makes 30 attempts (at one-sec- 
ond intervals) without receiving an ACK, the 
recipient node is presumed dead and SCS notified 
of the failure. 

Sharing the Ethernet 
The Ethernet is designed as a shared-communica- 
tions bus. Any NI-SCA architecture that precludes 
its use by other clusters or networks is un- 
acceptable. 

Multiple JAVcs coexist on the same Ethernet by 
using different group numbers. Thus each LAVc 
uses different multicast addresses to transmit and 
receive its HELLO messages, As a result, it does 
not "hear" messages from other LAVc's or attempt 
to form virtual circuits with them. Multicast mes- 
sages on one Ethernet are not passed to other Eth- 
ernets that are linked by means of traffic 
routers or gateways utilizing other communica- 
tions media. Therefore, group numbers must 
be unique only on each Ethernet. Different clus- 
ters on other Ethernets may use the same group 
number. The group-number space is large 
enough so  that ranges of numbers can be given 
to different branches of a business organization, 
thereby reducing the need for networkwide 
administration. 

NI-SCA is registered as Ethernet protocol 
type 60-07. This registration allows the datalink 
driver to distinguish NI-SCA packets from those 
sent by the DECnet, LAT, or other protocols. 
PEDRIVER's use of the Ethernet has no effect on 
any other protocol, regardless of how the packets 
are multiplexed on the single Ethernet. 

Security 
The VAXcluster system itself is one VMS security 
domain. All the security control and alarm fea- 
tures in the VMS systcm work on a clusterwide 
basis. These features can be used with an appro- 
priate degree of physical security (around the 
systems and Ethernet cable) to achieve a desired 
level of overall security. 

Unauthorized systems are prevented from join- 
ing the cluster because a cluster password is 
required to establish communications. That pass- 
word is validated by both nodes during the ini- 
tialization handshake to create the virtual circuit. 
The password prevents an unauthorized user 
from booting off a privately crcated local disk 
with a local authorization file (instead of a boot 
member) and joining the cluster. Satellite sys- 
tems booting off the boot mcrnber must have 

been configured into a database by thc system 
manager, effectively authorizing their entry into 
the cluster. A means is also provided to prevent 
users from performing conversational bootstraps 
to alter system parameters. 

Ethernet cables are subject to unauthorized 
taps and eavesdropping. The LAVc assumes the 
presence of an appropriate level of physical secu- 
rity around the systems and Ethernet cables, as 
these problems cannot be solved in software. 
Encryption hardware is the only truly effective 
counterweapon to these attacks. Exploiting the 
vulnerabilities of Ethernet in the absence of 
encryption could be done, but it would require 
substantial time, energy, and expertise. 

Internal Structure of PEDIUVER 
When extending SCA to include the Ethernet, we 
found the layering of the original model to be 
somewhat inconvenient. For one thing, the PPD 
layer performed too many functions to be 
thought of as a single layer. This problem was fur- 
ther compounded when additional functions, 
such as node authentication, were included. 
Therefore, the approach taken was to adhere gen- 
erally to the original model, but to replace the 
PPD and PI layers with several layers. 

In the NI-SCA model, the PPD layer was 
replaced with the layers from the port command 
interface (PCI) to the datagram propagation 
(DX) layers. The PI layer was replaced with the 
datalink and physical link (PL) layers. The resul- 
tant layering may seem a bit excessive -seven 
layers replacing two - but is nevertheless a nat- 
ural partitioning of the activities below the SCS 
layer. Increasing the number of layers for NI-SCA 
does not increase the intrinsic complexity of the 
port; it merely facilitates the port's description. 
The new NI-SCA model is shown in Figure 7, 
together with a brief description of each new 
layer. 

The Port Command Interface 
(PCI) Layer 
The PC1 layer effectively implements the port by 
defining the interface between the port and the 
port driver. Normally, the modules of a given 
layer communicate with modules in the corre- 
sponding layer on remote nodes. Lacking this 
characteristic, the PC1 is not a layer in the strict 
sense of the word but is merely an interface 
between the SCS and the port-to-port communi- 
cations (PPC) layers. 
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Figure 7 NI-SCA Layers 

SYSAP SYSTEM APPLICATIONS LAYER 

SCS SYSTEMS COMMUNICATION 
SERVICES LAYER 

PC1 PORT COMMAND 
INTERFACE LAYER 

PPC PORT-TO-PORT 
COMMUNICATIONS LAYER 

TRANSPORT PACKET SEQUENCING A N D  
ACKlng LAYER 

CHANNEL NODE AUTHENTICATION. 
CONTROL TOPOLOGY CONTROL. 

UNSEQUENCED DATAGRAM 
SERVICE LAYER 

DX DATAGRAM PROPAGATION LAYER 

DATALINK DATALINK CONTROL LAYER 

PL PHYSICAL LINK LAYER 

The PC1 layer is the set of queues  used to pass 
command packets down to  and response packets 
u p  from the  por t  emulator. Each packet consists 
of two regions: 

PPD T LAYEf 
IN SCA 

4 
PI LAYER 

IN SCA 

The port interface region is comprised of com- 
mand and status information between the port 
and the port driver. The specifics of this region 
are private to PEDRIVER. 

The PPC region is comprised of the  informa- 
tion used by the local PPC layer to  communi- 
cate with a remote PPC layer. Thc specifics of 
this region are  not private to PEDRlVER since 
the  region is interconnect independent. The 
PPC region is the  same for the  Ethernet as i t  is 
for the CI bus. 

The Port- to-Port Communication 
(PPC) Layer 
The PPC layer exists below the port interface. 
This layer provides port  services (datagrams, 
sequenced messages, and block transfers) to  the  
PC1 layer by translating between PC1 packets and 
a series of PPC messages exchanged wi th  the  

remote port. The PPC layer also segments block 
transfers into a series of sequenced messages. The 
datagram ant1 sequenced services provided by the 
transport layer arc used to exchange these mes- 
sages. To be  consistent wi th  the  CI bus, any errors 
detected at the PPC layer in a packet sent o r  
received in sequenced mode cause the virtual 
circuit t o  be disconnected. 

The Transport (TR) Layer 
The transport layer uses one or  more paths to the 
remotc node to  provide the  local PPC layer with a 
sequenced-message and datagram connection to a 
remote PPC layer. For datagrams, the transport 
layer is little more than a conduit to the channel 
control layer. For sequenced messages, the trans- 
port layer handles all the  sequencing, sending 
and receiving ACKs, and retransmissions required 
to  provide guaranteed message delivery and 
sequcntiality. Although multiple Ethernets are 
not currently supported in a cluster, this layer 
woulcl be  responsible for that functionality. 

The Channel Control (CC) Layer 
A channel i:, a path that utilizes a single Ethernet 
to join two ports with an a u t h o r l ~ e d  datagram 
service. To accomplish that service, the channel 
uses the  datagram service provided by the  DX 
layer The channel control layer manages the net- 
work topology and therefore provldes such scr- 
vices as node authcntication, access control, and 
virtual circuit initialization. 

The Datagram Exchange (DX) Layer 
The DX layer at tempts t o  transmit packets 
from the source port to the  destination port. O n  
any given system, the DX layer is thc intcrfacc 
between thc  ports and the datalinks. As such,  this 
laycr is basically a switch; many ports may be  
above it, many datalinks bclow it. Note that on a 
single system, the DX layer may be  shared among 
multiple ports and is not owned by any one port. 

The DX laycr determines which systems are on 
which Ethernet and transmits packets correctly 
to their destinations by managing thc group num- 
ber and multicast HELLO messages. This layer 
includes the  group number  in all the  packets it 
transmits and checks the numbers on received 
packets. 

The Datalink Control Layer 
'I'hc tlat;~link layer provides access to the physical 
link and the functions at the packct Icvcl. Thesc 
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functions include the hardware adapter control, 
the minimum and maximum length requirements 
of packet, provisions for data-integrity checking, 
datalink header formats, and multicast address- 
ing. For Nl-SCA, this layer is provided by a sepa- 
rate datalink driver. This driver controls the Eth- 
ernet adapter hardware and is shared by all 
Ethernet users (LAVc, DECnet, LAT systems, etc.) 
on the system. 

Locate and establish an access path to the sys- 
tem disk 

Provide a primitive 1 /0  system consisting of a 
boot driver for the system device, a file system, 
and the SQIO access routine 

8 Locate, load, and transfer control to the sec- 
ondary bootstrap, called SYSBOOT.EXE for 
the VMS system, or DIAGBOOT.EXE for diag- 

7;be Physical Link (PL) Layer nostics 

The PL layer represents the medium over which SYSBOOT is the secondary bootstrap selected 
packets are sent and received. A complete speci- to run when VMB is directed to load the VMS soft- 
fication for this layer would include the mecha- ware. SYSBOOT performs the following actions: 
nisms for clockini bits on the wire, the framing Loads the VMS images into memory 
of bits into bytes, electrical signal requirements, 
cabling, and-so forth. For NI-SCA, this layer is Reads the system parameter file, accepts any 
defined by the Ethernet standard. user specified parameter changes if this is a 

conversation boot, and configures the system 
Network Booting of the VMS SoNare accordingly - .  

Two LAVc requirements are met by booting the 
VMS software over the Ethernet: simplifying sys- 

. Allocates memory for and loads the terminal 

tern management by requiring only one VMS sys- and system disk drivers 

tern disk, and making possible diskless systems. . Transfers control to the INIT module of the 
The software engineering effort required during VMS system 
LAVc development to provide this functionality 
was second only to that needed to develop The VMS INIT module initializes the now run- 
PEDRIVER. ning VMS system. 

Loads the processor dependent code (SYS- Normal VMS Booting L O W )  and other loadable components into 
Booting a system on a VAX processor takes place memory 
in several stages. Each stage is characterized by a 
loaded program that performs some prescribed Copies the boot 1 /0  routines to the nonpaged 
function, which in turn .loads and transfers con- pool for use during any system crash 
trol to another program. 

The first such program to run is the console 
program, which is different on different proces- 
sor types. Its basic role with respect to booting is 
to retrieve the input parameters, store them in 
the first six general-purpose registers, and then 
load and transfer control to VMB. VMB, referred 
to as either the primary bootstrap or primary 
loader, is the first program that is more or less 
common across all processor types. Depending 
on the processor type, VMB is retrieved either 
from ROM (the MicroVAX 11 class of systems) 
or the console block-storage device (other VAX 
systems). 

Although the partitioning of work between 
the console program and VMB differs slightly 
with processor type, together they accomplish 
the following: 

. Tries to form a new VAXcluster system or join 
an existing one if  the parameters are set to do 
this 

Transfers control to the system scheduler to 
initiate process execution 

Remote Booting Requirements 
The actions performed during each of the three 
stages of a network boot are the same as those in a 
local disk boot. No modifications were required 
in the functional operation of these programs. 
What was needed was the ability to contend with 
an Ethernet linking the booting system with its 
system disk. The Ethernet has totally different 
characteristics than those of the block-structured 
disk device previously present. The plan, then, - 
was to load a piece of software that makes the 

Locate a block of memory to use during the Ethernet look like a disk, thus enabling the rest of 
boot the VMS boot sequence to proceed normally. 
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The three pritnary requirements for the remote vice, it responds to the request with an "assis- 
booting design and implementation were to tatice volunteer" packet. The satellite responds to 

the first "assistance volunteer" packet received 
Change the existing boot process as little as 

and ignores any others. That response causes 
possible 

the host to send the NISCS-LOAD image to  the 
Require no initial state or context information satellite. 
on the satellite svstem 

Work with the existing MicroVkY 11 boot 
ROMs (Required hardware i~pgrades in the 
field would make a LAVc much more difficult 
to install). 

The existing boot ROMs on MicroVAX 11 sys- 
tems include an Ethernet device boot driver capa- 
ble of transmitting and receiving packets, plus a 
VMB program containing the DECnet mainte- 
nance operation protocol (MOP). MOP locates a 
boot host system on the Ethernet network, uses a 
simple, synchronous ping-pong protocol to copy 
an image from the host into local memory, and 
then transfers control to that image. 

The existing SYSBOOT program could not be 
loaded directly by a MOP exchange. SYSBOOT 
expects to be able to access the boot device as a 
block-structured storage device; it does not 
understand the various types of Ethernet adapt- 
ers that may be present. Moreover, SYSBOOT 
would not have enough information to locate the 
system disk. Therefore, another image callecl 
NISCS-LOAD is inserted into the boot sequence 
between VMB and SYSBOOT. NISCS-LOAD pro- 
vides the environment that SYSBOOT needs to do 
its job correctly. As a result, minimal modifica- 
tions to SYSBOOT and VMS INIT were necessary. 

Remote Rooting Operation 
The user starts the satellite boot sequence with 
the appropriate BOOT command on thc system 
console. From thereon, the process is automatic. 

Satellite Operation during the 
MOP Exchange 
The VMB program in the satellite system's boot 
ROM interprets the boot command and attempts 
an Ethernet boot. VMB starts by transniitt~ng a 
multicast message requesting an operating sys- 
ten1 load This message is multicast to an archi- 
tecturally specified address because the ROM 
cannot have any knowledge of the network con- 
figuration This "please boot me" rcqucst is 
received by host systems on the Ethernet that are 
willing to service network boots. If the request- 
ing satellite is one that the host is willing to ser- 

Root Member Operation during the 
MOP Exchange 
The host side of the MOP exchange is handled by 
the DECnet-VAX software, which must be  run- 
ning on the boot member. Each boot member in 
all clusters on the Ethernet will hear the operat- 
ing system request multicasts sent out by every 
satellite. Other systems that are not boot mem- 
bers will not have enabled reception of this mul- 
ticast address. 

The DECnet software responds to an incoming 
boot request multicast by extracting the source 
address of the multicast from the packet and 
searching the node database for a match. This 
48-bit hardware address of the transmitting satel- 
lite is guaranteed to be unique on every Ethernet 
adapter. This address is not normally present in 
the database since it  is not used for DECnet (or 
other) comnjunication under the VMS system. 
Only those nodes that have been configtired into 
the boot mcmber's cluster by the cluster mana- 
ger will have their hardware address entered 
into the database. The request is ignored if 
the multicast source docs not match an address 
in the database. 'Therefore, satellites will be 
booted only by a boot member in the appropriate 
cluster. 

I f  the source address does match an address in 
the database, the DECnet software starts running 
the maintenance operations module (MOM). This 
program h;~ndlcs the host end of the MOP 
exchange. MOM also looks u p  the satellite in the 
node database to get other information stored 
there, including the name of a load assist agent 
(LAA) program, which is used to customize the 
load proccdurc for a LAVc. MOM cannot do this 
customizing because it is a general-purpose MOP 
facility. MOM invokes the LAA by merging it into 
MOM'S address space and then calling it. 

Thc LAA was written specifically to handle the 
loading of NISCS-LOAD. IAA customizes the 
NISCSLOAD image for the booting satellite by 
appending necessary information to i t ,  including 

The name ;~nd  unit number of the satellite's 
system disk 
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The name of that satellite's root directory on 
that disk 

The cluster group number 

The cluster password 

A flag allowing or  disallowing conversational 
bootstraps 

The NISCS-LOAD image and appended data are 
then passed to routines within MOM that transmit 
them to the satellite using the MOP protocol. 
When NISCS-LOAD starts executing on the satel- 
lite, it can use this information for the next phase 
of the boot. 

After NISCS-LOAD has been successfully trans- 
mitted, the MOP phase of the boot (and the 
involvement of DECnet-VAX) is complete. The 
boot member no longer knows that the satellite is 
booting, and it does not need to  provide the satel- 
lite with additional special services. 

NISCSLOAD, Loading SYSBOOT, a n d  
VMS Software 
The VMS system will not have been loaded into 
the satellite when NISCS-LOAD executes. There- 
fore, NISCS-LOAD is designed to run in a bare 
machine environment; that is, NISCS-LOAD must 
be specifically programmed to handle any Ether- 
net adapter or CPU it is to support. To date, only 
support for the MicroVAX 11 CPU has been 
included, along with the Q-bus adapter and the 
MicroVAX 2000 and VAXstation 2000 Ethernet 
adapters. 

The NISCS-LOAD image contains four compo- 
nents: 

Datalink boot drivers for all supported Ethcr- 
net adapters 

A boot driver version of PEDRIVER, called 
PEBTDRIVER 

Primitive "class driver" MSCP code 

Parameter values assembled by the load assist 
agent on the boot member 

PEBTDRIVER retrieves the boot member's Eth- 
ernet address, the group number, and thc cluster 
password from the NISCS-LOAD parameter list. 
A virtual circuit back to the boot member is set 
u p  by transmitting a START-VC packet, which 
starts the normal initialization sequence. The 
boot member does not know that the system at 
the other end of this 'virtual circuit is booting 

since the virtual circuit and 1 / 0  requests sent 
over it are identical to those sent by a running 
VMS system. 

Upon setting u p  the virtual circuit, PEBT- 
DRlVER has a path to the system disk that 
NISCS-LOAD will need to continue the boot. 
The primitive class driver now issues a normal 
MSCP command to read the SYSBOOT.EXE image 
from that disk into memory and transfer control 
to that image. PEBTDRIVER remains in memory 
to serve as SYSBOOT's "driver" for accessing the 
system disk, hiding all knowledge of the Ethernet 
adapter. The presence of the primitive class 
driver makes SYSBOOT "see" the expected 
block-structured device interface. SYSBOOT can 
now load the VMS software normally by issuing a 
read operation over the virtual circuit set u p  by 
PEBTDRIVER. 

After being loaded by SYSBOOT, the VMS sys- 
tem can initialize normally because the Ethernet 
path to the system disk is totally hidden. No oper- 
ational changes to SYSBOOT or VMS INIT were 
necessary. The runtime PEDRIVER takes over 
from the boot driver during the initialization of 
the VMS software, thus breaking the boot driver's 
virtual circuit and establishing a new one. 

The PEBTDRlVER portion of NISCS-LOAD 
remains permanently in memory. If the system 
crashes, that portion is activated again to write 
the contents of memory into the dump file. The 
runtime driver is not used because the state of the 
VIMS system, the drivers, and the data structures 
cannot be trusted in a crashed system. The boot 
driver i s  totally ignored while the system is up;  
thereforc, its integrity is usually left intact by the 
crash. AS with any other boot driver, the system 
disk is the only known device. Therefore, the 
dump file must be on that disk. 

Summary 
We have shown how Local Area VAXcluster sys- 
tems are a natural follow-on to the original VMS 
VAXcluster implementation using the CI bus. The 
cluster architecture and implementation were 
generally independent of the interconnect 
specifics; therefore, the switch to Ethernet was 
confined to the port driver layer. The replace- 
ment of PADRIVER with PEDRIVER and the addi- 
tion of Ethernet booting was all that was required 
to make the product work. This combining of 
VAXcluster functionality with the MicroVAX sys- 
tems and workstations now available, plus the 
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low cost and flexibility of the Ethernet, brings 
new power to low-end systems. These benefits 
include both the data and resource-sharing capa- 
bilities of VAXcluster systems, and the ability to 
isolate workstation users from system-manage- 
ment responsibilities. 

The LAVc has a bright future planned. Work is 
in progress to allow both CI and Ethernet inter- 
connects to coexist in the same cluster. When 
this work is completed, workstation users will be  
able to draw upon the power, resources, and 
speed of the large VAX machines, HSC con- 
trollers, and disk farms in the computer room. In 
addition, users will have full access to the same 
data files as do  users on those mainframes. All 
these systems will be running the same operating 
system, be centrally managed, be highly avail- 
able, and offer the same software environment to 
all users. No other product comes close to offer- 
ing such total system integration from the data 
center to the desk top. 
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VAXduster Availability Modeling 
VMclustt?r systems use redundant hardware-processors, interconnects, 
and storage elements-and somare to achieve high system availability. 
No special hardware or software is required. A simple, first-order 
availability model is used to illustrate how this redundancy improves 
availability. Four VAXcluster configurations are analyzed to show that 
redundancy decreases system unavailability by two orders of magnitude. 
Decomposition techniques were used to develop thesefirst-order availabil- 
ity models, which were then analyzed using "textbook" reliability analysis 
techniques. More compkx configurations and models of broader classes of 
faults will require the support of more sophisticated modeling tools. 

An increasing number of specialized computer 
systems are being dedicated to tasks that are 
critical to the success of an organization. For 
example, in the financial services industry or in 
manufacturing, it must be  possible to access a 
computing system to deliver a service or to man- 
ufacture a product. Any loss of access to the com- 
puting system adversely impacts business. The 
ability to access a computing system when i t  is 
needed (commonly referred to as availability) is 
becoming an important metric used to select 
such computer systems. Obviously, high avail- 
ability also improves the quality of service pro- 
vided by general-purpose computing systems, 
such as those providing timesharing services. 

VAXcluster systems provide high availabil- 
ity.' They can be configured so that there is no 
single point of failure. Each cluster is a multiple- 
computer system, built from standard hardware 
and software elements. VAXcluster systems can 
be expanded in increments to provide the com- 
puting power, data resources, and storage capa- 
bilities typically associated with mainframe sys- 
tems. 

Although these systems are not fault tolerant, 
they can detect, isolate, and recover from faults 
in their processor, interconnect, and storage sub- 
systems. (Fault tolerance generally implies that a 
recovery from a fault is completely invisible to an 
application.) While VAXcluster systems can 
detect, isolate, and recover from faults, the 
recovery from some types of faults impacts the 
applications and their design. For example, a 
VAXcluster system will retry an 1/0 operation if a 

fault is detected in either the interconnect or 
storage subsystems. 

The integrity of the 1 / 0  operation is ensured by 
the operating system. If a processor fails, how- 
ever, the computations hosted by it are lost. A 
user must start a new session on another (avail- 
able) processor. The user must depend on an 
application, not the operating system, to recover 
the state of the computation to the point at which 
the fault occurred. For example, a journal file 
can be used to recover an editing session or data- 
base transaction. In this case, the integrity of the 
computation is assured by the application, not by 
the operating system. 

This paper documents a study using simple 
first-order models to show how the inherent 
redundancy of VAXcluster systems is used to 
achieve high availability. Although more sophisti- 
cated models are possible, the models used in 
this study were sufficient to illustrate the main 
points. It is assumed that the reader is familiar 
with the basic technical concepts of VAXcluster 
systems presented in our companion It 
is not assumed that the reader is familiar with the 
standard methods of analyzing availability used 
to illustrate the points of this study. 

VAXcluster Structure 
Figure I illustrates a simple VAXcluster system 
with terminals connected to the system via a LAT 
server. Either processor is accessible through that 
server, and dual-ported disks are accessible 
through either Hierarchical Storage Controller 
(HSC). The HSC devices and the processors are 

Digital Technical Journal 
No. 5 September 1987 



VAXcluster Availability Modeling 

SERVER a 
ETHERNET 

I I 

VAX VAX 

HSC HSC 

Figure I Simple VMcluster Configuration 

connected by a Star Coupler, a passive device 
offering two independent datapaths between 
each node of the system. Multiple disks are used 
to shadow a volume of information. This simple 
system illustrates all the basic forms of redun- 
dancy in VAXcluster systems. 

Processor Failures 
If a processor or its Computer Interconnect (CI) 
adapter fails, all computations in progress on that 
processor will be  lost. The processor and the 
adapter can detect some types of faults and 
inform the VAXcluster system of them immedi- 
ately. Other types of faults are detected by the 
other VAXcluster processors by way of time-outs. 

When other processors detect a fault in a pro- 
cessor or its adapter, they reconfigure themselves 
to remove the failed processor from the cluster. 
The reconfiguration times depend on the number 
of locks in the system and on the number of 1 /0  
devices in the configuration. The average recon- 
figuration time after a processor failure is a small 
number of  second^.^ After the reconfiguration 
is complete, the user can begin a new session 
on the remaining processor. Appropriately con- 

structed applications, such as those employing 
journaling, can then be recovered to the point of 
the failure. 

Interconnect Failures 
'The Star Coupler, a passive device, has a negligi- 
ble failure rate compared with the other ele- 
ments. The individual CI paths attached to a 
single adapter have active elements, however, 
and the failure rates for those paths must be 
considered. 

If a single path fails, the CI adapter will retry 
the transmission on the redundant path. The retry 
is invisible to both the processor and the HSC 
device using the adapter. 

If both paths fail, neither the processor nor the 
HSC device attached to the adapter can commu- 
nicate with other elements of the VAXcluster con- 
figuration. The effect is similar to a processor or 
HSC failure. However, other processors and HSC 
devices can continue to communicate with each 
other. 

Hierarchical Storage Controller Failures 
HSC failures are managed by the VAX processors. 
The HSC device can detect some faults and 
inform the cluster about them immediately. 
Other types of faults are detected by the VAX pro- 
cessors and the disks by time-outs. When a fault is 
detected in an HSC device, the VAX processors 
will retry any 1 /0  operations in progress by using 
the redundant HSC device. An HSC failure is 
invisible to the process issuing the QIO opera- 
tion. The times required to reconfigure the sys- 
tem after an HSC failure depend on the number 
of outstanding 1 /0  operations, the number of 
1 /0  devices, and the use of volume shadowing. 
The average time is typically a small number of 
seconds. 

Volume shadow sets, hosted by an HSC de- 
vice, must be reconstructed if that device fails. 
Although the shadow set is available during 
reconstruction, this process involves additional 
1 /0  that competes with user requests to read or 
write to the volume shadow set. 

Disk Failures 
HSC devices detect disk failures. Volume shadow- 
ing allows an HSC device to retry a failed 1 /0  
operation using another member of the volume 
shadow set. The failure of a disk in a shadow 
set is invisible to the process issuing the QIO 
operation. When a fault is detected, the volume 
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shadow set will be reconfigured to remove the disk drive. The processor and the storage con- 
failed volume. Once again, the average time troller were connected by way of a Star Coupler 
required to reconfigure the shadow set after a whose failure rate is negligible compared to that 
disk failure is a small number of seconds. of the other elements. Figure 2 also shows the 

VAXcluster Configurations 
Considered 
Modeling Procedure 
This paper focuses on the availability modeling 
of four simple VAXcluster configurations. The 
goals of the study were to  

Demonstrate the sensitivity of different reli- 
ability and availability parameters 

Demonstrate how different types of redun- 
dancy improve VAXcluster availability 

These goals were achieved by first modeling 
the availability of a baseline configuration con- 
sisting of a VAX processor, an HSC storage con- 
troller, and a disk drive. Each element in the con- 
figuration represented a single point of failure. 
Next, redundancy in the form of a second VAX 
processor was added to  the baseline configura- 
tion to create a second configuration. Another 
HSC storage controller was then added to create a 
third configuration. Finally, a disk drive and vol- 
ume shadowing were added to create a fourth and 
fully redundant configuration. These four simple 
configurations were used to study the principal 
forms of redundancy in a VAXcluster system. 

Referring to Figure 1 ,  the configurations con- 
sidered here consisted of VAX processors, a Star 
Coupler, HSC storage controllers, and disk 
drives; they did not include the Ethernet, the LAT 
server, or the user terminals. 

Baseline Configuration - Model I 
The baseline configuration, Figure 2 ,  consisted of 
a VAX processor, an HSC storage controller, and a 

VAX HSC 

CONFIGURATION 

HSC 

configuration diagram translated into a reliability 
block diagram in which the series positioning of 
each element represents a single point of failure 
for the configuration. 

Redundant Processor 
Configuration - Model 2 
The second configuration considered in the 
study, Figure 3, added redundancy in the form 
of a second VAX processor. The failure of either 
processor or its C1 adapter requires a failover 
process to the redundant processor with its asso- 
ciated VAXcluster reconfiguration activities. 
These activities usually complete in a matter of 
seconds. 

In the reliability block diagram for the hard- 
ware model, the redundant VAX processors are 
shown in parallel because both must fail for the 
configuration to fail. However, the HSC device 

CONFIGURATION 

- 
RELIABILITY BLOCK DIAGRAM 
FOR HARDWARE MODEL 

RELIABILITY BLOCK DIAGRAM 
FOR RECONFIGURATION MODEL 

RELIABILITY BLOCK DIAGRAM 

Figure 3 Configuration with Redundant 
Figure 2 Baseline Configuration (Model I )  Processor (Model 2) 
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and the disk drive are still shown as single points ground activity. Only upon becoming identical to 
of failure. existing members of the set will the repaired vol- 

If either processor fails, the VAXcluster system ume again become an available member of the 
will undergo a reconfiguration. Depending on shadow set. 
the user application, the system may be unavail- A detailed description and analysis of the 
able during the failover p r o c e ~ s . ~  This condition Model 4 configuration is given later. 
is represented in the reliability block diagram by 
the two VAX processors in series. Modeling Approach 

Similarly, the reconfiguration operation is re- 
Several formal definitions are needed to quantify 

peated when a repaired VAX processor is re- 
VAXcluster availability. 

established in the VAXcluster system. Again, 
Availability is the proportion of time that ser- depending on the user application, the system 

vice is available from a VAXcluster system to per- 
may be unavailable until the reconfiguration 

form a user application. 
completes. Since either VAX processor could fail, It is important to remember that this definition 
the reliability block diagram is again valid for 

of availability is a general one. As the nature of this condition. 
the application, the size of the VAXcluster config- 

Redundant Storage Controller 
Configuration - Model 3 
In the third configuration, Figure 4 ,  additional 
redundancy in the form of a second HSC storage 
controller was added to the Model 2 configura- 
tion, which already had a redundant VAX proces- 
sor. Now the failure of either a VAX processor or 
an HSC storage controller requires a failover pro- 
cess to either the redundant processor or the con- 
troller with the associated VAXcluster reconfigu- 
ration activities. 

When a repaired HSC storage controller is 
re-established in a VAXcluster system, there is 
no reconfiguration operation. Instead, the HSC 
device is placed in "warm stand-by" redundancy. 
That is, the device is not actively re-established in 
the VAXcluster system unless the other HSC 
device fails. This situation contrasts with that 
of the active redundancy of the VAX processor, 
which is immediately reconfigured back into 
operation as soon as it is repaired. 

Fully Redundant Configuration - 
Model 4 
A fourth configuration, Figure 5, added further 
redundancy in the form of a second disk drive and 
volume shadowing to the Model 3 configuration, 
which already had a redundant VAX processor 
and HSC storage controller. 

In volume shadowing, write commands are 
applied to all available volumes in the shadow 
set. Read commands are accomplished using any 
available volume. A fault in a disk causes it to be 
removed from the shadow set. A repaired volume 
is merged back into a shadow set by first copying 
the data from an available volume as a back- 

uration, and the amount of redundancy change, 
availability can be defined in more complex 

VAX HSC , 

VA X HSC - 

CONFIGURATION 

RELIABILITY BLOCK DIAGRAM 
FOR HARDWARE MODEL 

RELIABILITY BLOCK DIAGRAM 
FOR RECONFIGURATION MODEL 

- 

Figure 4 Configuration with Redundant 
Processor and Storage Controller 
(Model 3)  

- 
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ways. For the configurations used in this study, at 
least one of each type of element must be running 
for the VAXcluster system to be operational. 

Unavailability is the proportion of time that 
service is interrupted and that a VAXcluster sys- 
tem cannot perform a user application. 

In this study, the related metric of downtime in 
minutes per year will be used rather than the sys- 
tem unavailability. 

Reconfiguration time is the time taken to ini- 
tially detect a failed element and remove it from 
the VAXcluster system. For a failed VAX proces- 
sor, this time also includes the time taken later to 
re-establish the repaired element's membership 
in the cluster. 

CONFIGURATION 

RELIABILITY BLOCK DIAGRAM 
FOR HARDWARE MODEL 

RELIABILITY BLOCK DIAGRAM 
FOR RECONFIGURATION MODEL 

- 

Note that the HSC device employs "warm 
stand-by" redundancy and therefore does not 
have any significant reconfiguration time associ- 
ated with re-establishing membership in the 
cluster. 

VAXcluster reconfiguration activities usually 
complete in a matter of seconds; however, in 
extremely rare cases, much longer times are 
possible. 

VAX 

Overview 
The most common approach to modeling com- 
plex systems consists of structurally dividing a 
system into smaller subsystems, such as proces- 
sors, controllers, and disks.6 The availability of 
each subsystem is then analyzed separately, and 
the individual subsystem solutions are combined 
to obtain the system solution. One important 
assumption must be made to achieve a solution:' 
the behavior of each subsystem must be indepen- 
dent from that of any other subsystem. 

Furthermore, a decomposition technique can 
be applied to certain behaviors that cause system 
outages due to failures in redundant subsystems. 
In these cases, the recovery to an operational sys- 
tem happens quickly. Similar behavior is also 
present when the failed subsystem is repaired 
and is ready to rejoin the system to make it a fully 
configured system. This type of decomposition is 
called behavioral decomposition. 

With this approach to structural and behavioral 
decomposition, hardware failures and VAXcluster 
reconfigurations are modeled separately. Such a 
decomposition allows the model to analyze both 

- 

VAXcluster reconfigurations and complete sys- 
tem failures due to hardware failures. I t  also 
allows the model to analyze the sensitivity of sys- 
tem availability to each factor. 

In this study, availability modeling captured 
the following factors: 

HSC - 

- 

Hard failures requiring a repair call 

- 

- 

VAXcluster reconfigurations during which the 
VAXcluster system was assumed to be unavail- 
able in this analysis 

- 

Response time for maintenance personnel 

HSC 

The following factors were not considered 
(except for the impact of reconfigurations due to 
hardware failures) : 

VAX - 

Figure 5 Configuration of Fully Redundant Intermittent failures 
System (Model 4 )  Transient failures 

- 
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Quorum disks in which X is the failure rate of the element and y 

Operational errors is the repair rate of the element. The time-to-fail- 
ure and the time-to-repair are assumed to be 

Software errors exponentially distributed. 
The following modeling parameters were used: The steady-state availability of two elements in 

The mean time-between-failures (MTBF) and parallel 

mean time-to-repair (MTTR) of each of the fol- 
lowing elements: A =  1-(I-Al)(l-A2) 

- VAX processor In Model 4 ,  the elements in each subsystem are 
- HSC storage controller two VAX processors, or two HSC storage con- 
- Disk drive trollers, or two disk drives. Using the equation 

VAXcluster reconfiguration times caused by above, the availability of the processor subsys- 
tem, A,, , can be expressed as 

- VAX processor failure 

- Re-establishment of the repaired VAX 
processor into the VAXcluster configuration 

- HSC storage controller failure 

- Disk drive failure 

Response time for maintenance 

Similarly, the availability of the HSC storage 
controller subsystem, A h ,  and the availability of 
the disk drive subsystem, A,, can be expressed as 

The remainder of this section describes in 
detail the modeling of the fourth configuration Ah A"=I-(-)~ 
(Model 4). XI, + P ~  

Analysis of Hardware Failure and 
Consider the structural decomposition of the 
VAXcluster configur'ation. Three subsystems A , . = l - ( 2  
were connected in series, each consisting of two X,.+P, v2 
elements in parallel. At least one element in each 
subsystem had to be operational for the VAXclus- The aggregate availability of the VAXcluster 
ter system to be operational. The hardware reli- system is 
ability block diagram is shown in Figure 5. 

Repairable systems are those for which an auto- A, =Ap X Ah X A, 
matic or manual repair can be made if an element 
fails. Assume that each element is subject to fail- For exponentially distributed times, the fail- 
ure and has its own repair facility.' If the time-to- ure rate, X, is I/MTBF and the repair rate, P, is 
failure of element i is exponentially distributed l/MTTR. 
with failure rate X i ,  and the time-to-repair of ele- 
ment i is exponentially distributed with repair Ana@is of Reconfiguration Times 
rate pi, the instantaneous availability can be Next, consider the behavioral decomposition 
obtained by the following equation: caused by the reconfiguration that occurs when 

one element in a subsystem fails and an automatic 
failover to a second (redundant) element takes 
place. During this process, a reconfiguration 
occurs when a failed element leaves the VAXclus- 

As t approaches infinity, Ai(t) approaches the ter system. For processors only, another reconfig- 
steady-state availability and Ai equals P ~ / ( X ~ + ~ ~ ) .  uration occurs when a repaired processor later 

The steady-state availability of a single element rejoins the VAXcluster system. Depending on the 
is given by the following equation: user application, the VAXcluster system may be 

unavailable to perform user applications during 

A = P/(X+P) these reconfigurations. 
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For example, consider the following time line: 

Figure 6 

Time t ,  to  t2 is the VAXcluster reconfiguration 
time for a failed VAX processor to b e  detected 
and removed from the VAXcluster membership. 
Time tz to t3 is the repair time for the failed hard- 
ware element. Time t3 to  tg is the time for the 
repaired VAX processor to  b e  re-established in 
the VAXcluster membership. 

Figure 5 includes the reliability block dia- 
gram representing the VAXcluster reconfigura- 
tion behavior of the Model 4 configuration. Each 
subsystem is shown as two elements in series. If 
any single element is not operational, the sub- 
system can be unavailable due  to a VAXcluster 
reconfiguration. 

For two elements in series, the availability iss 

In model 4 ,  the elements in each subsystem are 
two VAX processors, or two HSC storage con- 
trollers, o r  two disk drives. 

Applying the equation above for elements i n  
series, the availability of the processor subsys- 
tem, A,, is 

Note that for the VAX processor, the rate pp is 
the reciprocal of the sum of the times t l  to t2 and 
t,?tO t 4 .  

Similarly, the availability of the HSC storage 
controller subsystem, Ah,  and the availability of 
the disk drive subsystem, A,, is 

and 

The aggregate availability of the VAXcluster 
system is 

Assuming an operation running 24 hours a 
day, 365 days per  year, the downtime equals 

( 1  - A , )  X 525,600 minutes per year. This fig- 
ure is the downtime caused only by rcconfigura- 
tions. The total downtime is the sum of the down- 
time caused by hardware failures and the down- 
time caused by VAXcluster reconfigurations. 

Extensions to the Models 
The simple models considered in this study can 
be extended in several dimensions. 

The complexity of the configurations can b e  
increased either by adding more VAXcIuster ele- 
ments or by extending the bounds of the models 
to include the Ethernet and its attachments. A 
complex configuration could include multiple 
clusters and multiple Ethernet segments. More 
complex definitions of availability are needed as 
the configurations increase in complexity. These 
definitions range from the single-user view to a 
measure of system productivity. 

Only permanent (hard) hardware failures are 
considered in this study. Intermittent and tran- 
sient hardware and software failures, as well as 
operational errors, can be added as extensions to 
future models. The downtime allocation reported 
in the literature typically attributes about one 
third of the total to each of the hardware, soft- 
ware, and operator-induced  failure^.^ This result 
includes the effectiveness of system recovery that 
can be hardware based, software based, o r  both. 
Certain insidious failures can result in ineffec- 
tive recovery, even in the presence of hardware 
or software redundancies. The term "fault cover- 
age" represents the joint probability of fault 
detection and successful failover to a redun- 
dant element. A fault-coverage factor of one is 
assumed in this study. 

This study also assumes that the subsystems of 
VAX processors, HSC storage controllers, and disk 
drives are independent. Relaxing this assumption 
adds to the complexity of the modeling 
approach. Similarly, a simplistic maintenance 
strategy is assumed in which each cluster ele- 
ment has its own repair facility. 

The extensions described above add more real- 
ism to  the modeling approach at  the expense of 
added complexity in both model formulation and 
solution technique. Moreover, the textbook for- 
mulae used in this study are limiting and often 
inappropriate. 

Markov modeling is a particularly useful ana- 
lytic technique for formulating and solving these 
complex models.' Simulation is an alternative 
but computationally less efficient technique. 
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Another valuable industry-wide tool is the Sym- 
bolic Hierarchical Automatic Reliability and 
Performance Evaluator (SHARPE) software. 
SHARPE's hierarchical feature allows complex 
subsystem models to be combined into a system 
model for efficient solution. SHARPE also 
employs state-of-the-art matrix-solving routines 
to solve large and often ill-conditioned problems 
arising from the Markov model formulation of 
these complex configurations. 

Results and Conclusions 
This section discusses the results of this study in 
detail. 

The Impact of Initial Redundancy 
In Model 1 ,  no redundancy exists in the system. 

In Model 2, the redundancy of the additional 
VAX processor reduces the total downtime to 
16 percent of the downtime in Model 1. 

In Model 3, the redundancy of an additional 
VAX processor and an HSC storage controller 
reduces the total downtime to almost 7 percent 
of the downtime in Model 1. 

In Model 4 ,  the total redundancy of an addi- 
tional VAX processor, an HSC storage controller, 
and a disk drive reduces the total downtime to 
slightly under 1 percent of the downtime in 
Model 1 .  

These results show that redundancy does work 
to increase the availability of the system. Figure 7 
shows the effect on total downtime as different 
forms of redundancy are introduced. A fully 
redundant configuration reduces system down- 
time by two orders of magnitude. 

VAXcluster Reconfiguration Downtime 
Figure 8 is an expanded view of the decrease in 
total downtime for the three models that include 

1 2 3 4 

VAXcluster MODELS 

Figure 7 Impact of Initial Redundancy 

redundancy. It also shows the contribution of 
VAXcluster reconfigurations to total downtime. 
Here the typical duration of reconfiguration is 
used. Since Model 1 has no redundancy, the VAX- 
cluster reconfiguration downtime is zero. 

Impact of Increased Frequency 
of Recon figurations 
Since the previous results considered the fre- 
quency of reconfigurations equal to that of hard- 
ware failures, it was necessary to study the 
impact of an increased frequency of reconfigura- 
tions on downtime. 

Figure 9 shows the linear relationship between 
reconfiguration downtime and an increase in the 
frequency of reconfigurations. It also shows the 
trend in the reconfiguration downtime as the 
duration of reconfiguration is first varied to three 
and then to six times the typical value. As shown, 
the key to reduced downtime is keeping the dura- 
tion and the frequency of reconfigurations as low 
as practical. High-reliability hardware is a major 
factor in keeping the frequency of reconfigura- 
tions low. 

Contribution of Individual 
VAXcluster Elements 
This study also examined how much downtime 
an individual VAXcluster element contributes 
toward the total downtime. 

Figure 10 shows the contribution of each ele- 
ment (CPU, HSC, and disk) toward the total 
downtime for Model 4. At a given MTBF, the VAX 
processor contributed 82 percent of the total 

VAXcluster MODELS 

KEY: 

0 RECONFIGURATION 

HARDWARE 

Figure 8 Total System Downtime by Model 
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MODEL 4 

FREQUENCY OF RECONFIGURATIONS 

KEY: 
---- 1 X TYPICAL 

-- 3 X TYPICAL 

- 6 X TYPICAL 

Figure 3 Reconfiguration Downtime by 
Frequency of Reconfigurations 

downtime. When the MTBF of that particular VAX 
processor was improved, its contribution 
dropped to 57 percent. 

Typical VAXcluster configurations would gen- 
erally include more than the two disks used in 
this study. Having more disks would change the 
contribution of the disk subsystem to the system 
unavailability. (Analyzing the impact of addi- 
tional disks is outside the scope of this paper.) 

The reliability improvement in the MTBF of the 
VAX processor decreased both the hardware and 
the reconfiguration downtime. Figure 1 1 shows a 
decrease of approximately 58 percent in total 
downtime. 

Hardware Downtime versus 
Response Time 
This study included a response time for mainte- 
nance for each call as pan of the recovery time. If 
an on-site maintenance person were available, 
the response time would be eliminated, thus 
speeding the recovery of a failed element. When 
this strategy is considered, the hardware down- 
time drops by almost 60 percent. Figure 12  
shows this reduction as applied to Model 4 .  

The N of M Redundancy Case 
The results given so far have been for (1 of 1) and 
(1  of 2) configurations of VAX processors, stor- 
age controllers, and disks. In this section, the 
hardware downtime results for VAX processors 

are generalized to the (Nof M) redundancy case. 
The assumption is that N processors are required 
for capacity and M processors represent M - N 
redundancy. The steady-state availability is 
defined as the probability of at least (N of M) 
processors working. The cluster is assumed to be 
unavailable when less than N processors are 
working. Note that, depending on the configura- 
tion and application, clusters with less than N 
working could be considered as partially avail- 
able. The case of the partially available cluster is 
not considered here. 

The (Nof M) availability, as defined above, is 

MODEL 4 

KEY: 

VAX 

0 HSC 

0 DISK 

Figure I 0  Contributions of Individual 
VAXcluster Elements to Downtime 

MODEL 4 

Figure I I Total System Downtime by 
VAX Processor MTBF 
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An application of the ( N  of M )  availability 
expression for VAX processors is shown in Fig- 
ure 13. The number of VAX processors required 
to run applications to capacity was set to 1 ,  2 ,  3, 
and 4 .  The values for M were set to N + O ,  N +  1,  
and N + 2. High availability is typically measured 
in values much greater than 0 . 9 9 .  Therefore, to 
distinguish the variation in availability, the origin 
in Figure 13 is not zero but much greater than 
0 . 9 .  With no redundancy ( M = N + O ) ,  availabil- 
ity decreases with an increase in the number of 
processors. That decrease occurs because more 
CPUs must be available to deliver the applica- 
tion, bringing about a greater likelihood of fail- 

MODEL 4 

ON-SITE MAINTENANCE SERVICE C A L L  

RESPONSE TIME 

Figure 12 Hardware Downtime versus 
Response Time 

1 2 3 4 

PROCESSORS REQUIRED FOR APPLICATION ( N )  

KEY.  

~ N + O  

~ N + I  

0 ~ + 2  

Figure 13 The (N  of M )  VAX Processor 
Redundancy Case 

ure and outage. This result is shown in the graph 
by the downward trend of the "N+O" bars. 
Adding a single redundant CPU ( M  = N +  1 )  
greatly improves system availability. Adding a 
second redundant CPU (M =N+ 2) has little 
additional effect on availability. The additional 
improvement is not visible on the graph, even 
with the expanded vertical scale. It can therefore 
be assumed that " N +  1" redundancy is sufficient 
for most applications. 

Summary 
VAXcluster systems achieve high availability by 
eliminating single points of failure with redun- 
dant hardware. Redundancy is introduced at the 
level of standard processors, interconnects, stor- 
age elements, and software. No special-purpose 
hardware or software is required. The same hard- 
ware and software could be used to construct a 
less available uniprocessor system without vol- 
ume shadowing. 

The simple analytic models of VAXcluster 
availability developed in this study show that 
redundancy yields dramatic improvements in sys- 
tem availability for the system configuration 
shown in Figure 1. The average downtime of the 
system is reduced by nearly two orders of magni- 
tude from that of a similar uniprocessor system 
without volume shadowing. 

Because they can be expanded incrementally, 
VAXcluster systems requiring a minimum num- 
ber of N processors to achieve a performance goal 
can achieve significant improvements in avail- 
ability with the addition of a single redundant 
processor. There is no requirement to fully repli- 
cate all the original Nprocessors. 

The system configurations analyzed in this 
study are simple ones designed to illustrate the 
most important concepts of VAXcluster systems. 
The downtime of a more complex VAXcluster 
configuration, with many additional processors, 
HSC devices, and disk drives, changes system 
downtime in complex ways. In general, addi- 
tional redundant hardware causes multiple hard- 
ware failures to become less of a factor. When 
faults do occur, however, time is required to 
reconfigure the system. Some applications may 
view these small reconfiguration times as a 
source of system downtime. In such cases, addi- 
tional hardware increases both the frequency of 
reconfigurations and their contribution to sys- 
tem downtime. Continuing efforts to improve 
hardware reliability are particularly important to 

Digital Technical J o u d  
No. 5 September 1387 



VAXcluster 
Systems 

reduce the downtime d u e  to multiple hardware 
failures and the frequency of reconfigurations 
that might be counted as downtime by an appli- 
cation. 

The analysis used in this study uses structural 
and behavioral decompositions of systems. Struc- 
tural decomposition is the most common 
approach to  modeling complex systems. How- 
ever, this approach assumes that each subsystem 
behaves independently. For the systems and phe- 
nomena considered in this study, recovery to  an 
operational state happens quickly following a 
system reconfiguration caused by a fault in a 
redundant subsystem. Similar behavior is also 
present when a failed VAX processor subsystem is 
repaired and is ready to rejoin the system. 

These modeling approaches were applied to  
the VAXcluster system, which was considered to  
be repairable. Structural decomposition was used 
to model the hardware failures of each VAX pro- 
cessor, HSC device, and disk drive in the system. 
Behavioral decomposition was used separately to 
model the reconfiguration times. 
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System Level Performance 
of VAX 89 74 and 89 78 Systems 

This paper describes the results ofperformance tests on the VAX 8974 and 
8978 systems in two dz@rent situations: a scientific environment, and a 
transaction processing environment. Benchmarks were run in both envi- 
ronments to collect application throughput, I / O  activity, and otherper- 
formance data. The results of a VAX 8700 were used as a baseline compari- 
son. Based upon measured data, two models, one for each environment, 
were constmted to predict system performance under diflerent configu- 
rations. These models were run with various parameters to constructper- 
formance curves. Subsequent test results showed that both models pre- 
dicted performance accurately. The 8974 performed 3.2 to 4 times faster, 
and the 8978,6 to 8 times faster, relative to the 8700. 

The VAX 8974 and VAX 8978 systems are power- 
ful new systems based on Digital's VAXcluster 
technology. These systems consist of either four 
or eight VAX 8700 processors respectively, pack- 
aged with an 1 /0  subsystem of storage controllers 
and disk arrays. This paper presents the perfor- 
mance of the VAX 8974 and VAX 8978 systems in 
both a scientific environment and a transaction 
processing environment. For comparison, the 
corresponding VAX 8700 data is presented as the 
base-level performance. 

The scientific environment was measured 
using multistream batch jobs. The transaction 
processing environment was measured using a 
multiuser interactive workload that simulated an 
order entry and inventory control system. The 
measured performance for both environments is 
presented in terms of user-visible performance, 
system behavior, and resource utilization of the 
applications. 

Based on the measured data, performance mod- 
els of VAX 8974/8978 systems under each of the 
two environments to predict the performance for 
different configurations. The construction of the 
model and some results are discussed following 
each measured performance section. 

VAXcluster Performance Ovemiew 
A VAXcluster system is a highly integrated organi- 
zation of VAXpMS systems can be viewed as a 
single-domain information management system. 

It is a state-of-the-art distributed system provid- 
ing full data-sharing functions. All the accesses to 
files and records are coordinated by locking 
schemes implemented by the distributed lock 
manager.' The distributed lock manager is a VMS 
feature that has been extended to provide syn- 
chronized read/write resource sharing among the 
nodes in a VAXcluster system. Being a multicom- 
puter system of a single management domain, 
a cluster offers increased availability and per- 
formance. 

The performance of a VAXcluster system can be 
observed at many levels, such as the Computer 
Interconnect (CI) and the System Communica- 
tion Ar~hi tec ture .~  The context used in this 
paper, however, is the system-level, or user-per- 
ceived, performance. The questions that immedi- 
ately arise about VAXcluster performance are 
how it grows as additional processors are added, 
whether the performance grows in a linear scale, 
and if not, what performance range is expected 
compared to the single-system performance. 

There are two primary factors that affect the 
performance of a VAXcluster system: a communi- 
cation overhead, and a locking overhead. The 
first factor is related to the management of the 
VAXcluster system. It is the cost to maintain the 
multiple processors in an integrated system and 
includes such overhead as the conlputc time to 
maintain the connections between the nodes. A 
communication overhead always exists in a VAX- 
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cluster system, regardless of the applications and 
the size of the cluster, although that overhead is 
generally small. 

The second factor comes from sharing a 
resource clusterwide. Every access made to a 
shared resource by the processes must be regu- 
lated by a certain synchronization scheme. In a 
VAXcluster environment, this synchronization is 
implemented by using locks. A lock operation 
may involve sending and receiving messages 

ber of jobs that the system can process in a given 
time. This metric was derived in the following 
manner, using the elapsed times extracted from 
the batch log files. For a closed system with one 
job, 

Throughput = 
1 

Average elapsed time 

The following steps were used to apply this 
equation to the multinode, multistream system: 

between processors. A previous study shows that 
Sum of elapsed 

a lock request in a VAXcluster system may take 
Average elapsed - times for all jobs 

seven times as long as that in a single VAX/VMS - 

time per job Total number of jobs 
envir0nment.j Therefore, the performance of a 
VAXcluster system will depend upon the degree in which Total number of jobs = Number of 
of data-sharing of a particular application. nodes X Number of streams, and 

This study has been conducted to  understand Total number of jobs 
what implications these factors, especially the Throughput = Average elapsed time per job 
locking overhead, have on the system-level per- 
formance of a VAXcluster system. The two appli- 
cations used in this study show the extremes in 
terms of degrees of data-sharing. The scientific 
workload had no files being shared by the pro- 
cesses, whereas with the transaction processing 
workload, all the files and records are shared 
clusterwide by all the processes. The goal of this 
study was to find the relative performance range 
of a VAXcluster system across the entire applica- 
tion space by tracing the performance of the two 
extreme applications discussed above. 

Scientific Environment 

Workload Description 
The scientific workload, called SCIENCE, is a 
suite of multistream (homogeneous) batch jobs. 
These jobs are well-known programs frequently 
used in science and research environments. Four 
benchmarks commonly used in physics are ISA- 
JET and GEISHA, two Monte Carlo simulations 
used in high-energy physics applications, and 
TAIR and TWING, two tests used in aerodynamics 
applications. Three other programs used in 
chemistry are GAUSSIAN 8 2 ,  a quantum chem- 
istry package; MOPAC, a general-purpose semi- 
empirical molecular orbital package; and RS/l, 
an interactive data analysis software package fre- 
quently used in chemistry labs. 

Performance Metric for 
SCIENCE Workload 
The most important performance metric is 
throughput. Throughput is defined as the num- 

The SCIENCE workload is a suite of repre- 
sentative programs, each yielding a throughput 
for each system. To compare the performance 
of systems under this workload, the multiple 
relative performances based on the individual 
throughput comparison have to be aggregated. 
The geometric mean is chosen to  aggregate the 
relative performances, with equal weight on each 
p r ~ g r a m . ~ , ~  

Test Methodology 
The basic methodology of this study was to 
increase the load on the system gradually until 
the processors were fully utilized, thus yielding a 
peak throughput for a particular configuration. 
Since all the benchmarks were run as batch jobs, 
this saturation was achieved using multistream 
batch jobs. Up to five batch streams on each pro- 
cessor were run for each benchmark tested. 

Potential 1 / 0  and memory bottlenecks were 
minimized by allowing large sizes of user work- 
ing sets and by allocating one disk per job stream 
for data and scratch files. 

Hardware and Software Configuration 
The hardware environment consisted of the fol- 
lowing elements: 

A VAX 8 7 0 0  system with one CPU, two HSC70 
storage controllers, and two SA482 storage 
arrays 

A VAX 8974  system with four VAX 8700 CPUs, 
two HSC70 storage controllers, and six SA482 
storage arrays 
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The curves show how throughput grows as the 
number of processors increases i n  the cluster. 
The VAX 8974 system achieved a maximum 
throughput of 12.1 jobs per hour with 16 con- 
current streams. This throughput is 3.8 times 
that of the VAX 8700 CPU, which achieved 
3.2 jobs per hour. The peak throughput of the 
VAX 8978 system was 21.9 jobs per hour, o r  
7.0 times that of the VAX 8700 CPU. The relative 
figure for the VAX 8978 system is somewhat low 
because there was an imbalance in the use of the 
1 / 0  subsystem. 

Table 1 shows the 1/0 activities for each 
HSC70 device during the five-stream run of 
GAUSSIAN 82 on the VAX 8978 system. All the 
numbers are averaged for the entire run time. 
One can clearly see in this table that some HSC70 
devices were loaded more than others. Most disks 
were connected to the two HSC70 controllers, 
labeled HSCO 1 1 and HSCO 1 4 ,  indicating that 
the other two were hot-standbys for the case 
of failovers. This loading variation happened 
because user disks were randomly assigned to the 
job streams. The data rate of over 2 megabytes 
(MB) per second on HSCOl 1 was only the aver- 
aged number; the peak rate was close to 4 M B  per 
second, thus limiting the 1 / 0  rate. The total data 
rate on the CI bus of the VAX 8978 system was 
over 4 M B  per second, 2.3MB of which was 
through one HSC70 device. This limited the per- 
formance of five processors in the cluster. 

Note that within individual system configura- 
tions, throughput increases as the number of 
streams increases. With the VAX 8974 system, 
for example, one stream per processor produced 
a throughput of 2.23 jobs per hour, increasing 
u p  to 3.06 jobs per hour - a 37 percent 
increase - with five streams. 

Performance Summary 
Table 2 shows the relative performance of each 
benchmark in terms of maximum throughput 
achieved with respect to a single VAX 8700 CPU. 
The performance of the VAX 8974 and VAX 8978 
systems ranged from 3.76 to 4.00 times, and 
6.95 to 8.00 times that of the 8700, with geo- 
metric means of 3.88 and 7.40 respectively. 

Simulation of the GAUSSIAN 82 
Workload on the 8974/8978 
Based on the measured data, a model called 
SIMsci was developed to  describe the perfor- 
mance of the 8974/8978 under GAUSSLAN 82, 
the multistream, scientific computation work- 
load. As described earlier, GAUSSLAN 82, a com- 
putational package for quantum chemistry, is a 
collection of routines for different calculation 
needs. The key computational behavior patterns 

Table 1 I/O Activities per HSC Device 

I/O Rate Data Rate 
No. of (Requests/ (KB per 

HSC70 Spindles Second) Second) 

" ,  , , , , 
I + 0 Table 2 SCIENCE Performance 

o 10 20 30 40 50 Relative to the VAX 8700 
TOTAL STREAMS Program VAX 8974 VAX 8978 

KEY: GEISHA 3.76 7.02 

VAX 8978 
A VAX 8974 

VAX 8700 

Figure 3 GAUSSIAN 82 7;broughput 

ISAJET 
TAl R 
TWlNG 
MOPAC 
RS/1 
GAUSSIAN 82 

Geometric Mean 3.88 7.40 
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of this workload modeled by SIMsci are 

An executing stream places significantly dif- 
ferent loads on the CPU and the disk at differ- 
ent times of execution (see Figure 1 for the 
transient CPU utilization pattern). 

An executing stream has a lot of 1 /0  and CPU 
overlap (i.e., computation continues while 
1 /0  is in progress). 

As shown in Figure 4 ,  SIMsci consists of batch 
jobs (as concurrent streams), processors, and 1 /0  
devices. An executing batch job accesses both 
CPUs and 1/0 devices. The execution of a job is 
modeled as several interconnected stages. Each 
stage represents an executing interval during 
which the job has similar utilizations of the CPUs 
and the 1 /0  devices. These stages are introduced 
to capture the transient behavior of GAUSSIAN 8 2  
shown in Figure 1. Note that the number and 
types of stages depend on the input data to GAUS- 
SIAN 82,  which triggers different routines to exe- 
cute accordingly. 

The CPUs and 1 /0  devices are the principal 
resources consumed by a typical batch job. SIM- 
sci models a CPU as a single-server queue (i.e., it 
can serve one batch job each time). When more 
than one batch job competes for the same CPU, 
the jobs are served in a round-robin, time-sliced 
fashion. The CPU serves a job exclusively either 
for a fixed duration (e.g., 200 milliseconds) or 
until the job gives up  the CPU (e.g., issues an 1 /0  
request), which then switches to another waiting 
job. The I/O device is simply modeled as a time 
delay since the GAUSSJAN 82 experiments are 
designed to avoid 1 /0  resource contention. The 
presence of simultaneous CPU computations and 
1 /0  operations (over 30 percent of the time, as 
observed from direct measurement), was mod- 
eled. For a certain percentage of times, a job con- 
tinues its computations within the CPU while its 

1 /0  request is being processed. For the rest of the 
times, a job is on hold while its 1 /0  request is in 
progress. 

SIMsci uses the following model parameters to 
describe the interactions of job, CPU, and 1 /0  
devices: 

Totalstage, the total number of distinguishable 
stages of a batch job 

Nio(I), the total number of 1 /0  requests at 
stage I 

TcpuUser(I), the total CPU time used by 
GAUSSIAN 82 at stage I 

TcpuSys(I), the total CPU time used by the 
VMS software at stage I 

TcpuIdle(I), the total CPU idle time due to 
page and swap waits at stage I 

TioWait(I), the total time that the job waits for 
its 1 /0  to complete at stage I 

RTio(I), the average response time of disk 1 /0  
at stage I 

The values of these parameters were derived 
from the measurement data. Several assumptions 
were made about the relationships between 
these parameter values and the VAXcluster con- 
figurations and job loads per node. First, it was 
assumed that each job's Nio, TcpuUser, and 
TioWait should have the same values for both the 
VAX 8974 and VAX 8978 configurations and for 
different job loads (i.e., number of streams per 
node). These assumptions were made because 
each GAUSSJAN 82 workload would always exe- 
cute the same codes with the same data in any of 
the environments. 

Second, it was assumed that TcpuSys increases 
as the number of nodes and the number of 
streams increase, thus adding communication 
load within the cluster and scheduling load 
within each node. The third assumption was 
that TcpuIdle increases as the number of nodes 
increases, since more page or swap requests 
would be placed on the page/swap disk, which is 
shared by all nodes in the cluster. It was also 
assumed, however, that TcpuIdle decreases as 
the number of streams per node increases. The 
more streams per node, the higher the probabil- 
ity that at least one job without page faults exists 

IDLE BUSY and can utilize the CPU while other jobs are 
doing paging or swapping. These assumptions 

Figure 4 Model Structures of SIMsci were consistent with the measurement results. 
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SIMsci was validated against the measured data of 
three key metrics, job elapsed time, CPU utiliza- 
tion, and disk 1 /0  rate, with less than 5 percent 
difference. 

The performance data collected were through- 
put per hour and CPU utilization. Figure 5 shows 
that the measured and modeled results overlap 
for both the VAX 8700 and VAX 8974 systems, 
thus indicating the accuracy of the model. The 
8978 curves, however, differ from each other. 
The previous section discussed the fact that the 
measured throughput of GAUSSIAN 82 was some- 
what low due to the imbalanced 1 /0  subsystem. 
Therefore, the model results here give us a best- 
case throughput when there is no 1 /0  bottle- 
neck. Although SIMsci produces reasonably accu- 
rate results with little effort, it does have its 
limitations. One major one is that SIMsci cannot 
predict the saturation of the 1 /0  subsystem. 

SIMwic assumes that I/Os are always free of 
bottlenecks; thus it cannot predict the perfor- 
mance of the VAX 8974/8978 systems under 
heavy workloads (e.g., 10 or more streams per 
node). 

Transaction Processing Environment 
Workload Description 
The warehouse and inventory control (WIC) 
workload is a transaction processing program 
based on the on-line support required to manage 
the movement of items into and out of a ware- 
house. Although WIC is a warehouse applica- 
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tion, it is a representative transaction processing 
application. 

A WIC workload is divided into five functional 
parts, each associated with one task type. The 
five task types and the percent of total tasks rep- 
resented by each type are given as follows: 

Receiving - Performs the functions needed to 
log the receipt of parts from the loading dock 
into the warehouse (1 7 percent) 

Inventory - Queries and updates the files 
containing inventory information (10 per- 
cent) 

Warehouse - Performs the functions needed 
to pick parts based on selected orders (1 0 per- 
cent) 

Order entry - Places orders to be filled by the 
warehouse (46 percent) . - 
Purchase order - Composes purchase orders 
(with outside vendors) for parts to be stocked 
in the warehouse ( 1  7 percent) 

Each task is performed a specified proportion 
of the execution time. The task selection percent- 
ages reflect the assumption that the average flow 
of items into the warehouse equals the flow out 
of the warehouse during peak-hour operations. 

Each task consists of a number of transactions. 
A transaction is defined as one or more user input 
steps followed by computation, database I/O, and 
output to the terminal user. Each task has an aver- 
age of 7.8 transactions in the WIC application. 
Since a transaction implies the initiation of work 
by the system, throughput is measured in terms 
of transactions per second. 

All menus and forms are implemented by re- 
quests to the VAX Transaction Data Management 
System. Inquiry and update operations take place 
on seven different application files in the VAX 
Record Management Services (RMS) software. 

Performance Metrics for W K  Workload 
System throughput is defined as the total num- 
ber of transaction processed systemwide in 
constant time (one second), or transactions 
per second (TPS). This number includes all 
types of transactions. Figure 6 illustrates the 
user and system actions needed for one trans- 
action. 

User productivity is the average number of 
transactions each user completes in a unit of 

Figure 5 GAUSSIAN 82 Tbrougbput- time, expressed in transactions per user per 
Model versus Measured hour. 
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Figure 6 Transaction 

Mean service time is defined as the average 
time required to complete a transaction. This 
time does not include the input typing time or 
think time, but does include the time taken for 
screen output. A specific receiving transac- 
tion, called REC3, was chosen for the evalua- 
tion of this metric. REC3 involves updating 
three records and writing one record several 
times, which represents a moderately complex 
unit of work. 

Test Methodology 
The transaction processing environment was cre- 
ated by using remote terminal emulators (RTEs), 
which emulated all activities of terminal users. 
The RTEs also kept track of each transaction and 
the time of its occurrence and maintained the 
transaction mix throughout the experiment. Sev- 
eral systems of the VAX 8600 class were used as 
RTEs to load the systems under test, called SUTs. 

To establish a base level of performance, the 
initial set of experiments was carried out with 
one VAX 8700 CPU as the SUT. The VAX 8974 
and VAX 8978 systems were then tested by vary- 
ing the number of users, and hence the number 
of transactions. 

The RTEs logged users into the SUTs in the 
cluster at four-second intervals (users were 
evenly distributed between the SUTs in the clus- 
ter for all the configurations tested). After log- 
ging in, each user started his application, also at 
four-second intervals. After the SUTs reached a 
steady state, data was collected for 20 minutes on 
both the SUTs and the RTEs. 

Hardware and Software Configuration 
The hardware environment for each VAXcluster 
configuration included the same 1 /0  subsystem. 
The hardware components of the configurations 
consisted of the following elements: 

A VAX 8974 system with four VAX 8700 CPUs, 
each with 32MB of memory, two HSC70 con- 
trollers, one SA482 storage array for the sys- 
tem; and the paging/swapping software, and 
three SA482 arrays for the database. 

A VAX 8978  system with eight VAX 8700 
CPUs; the other hardware was the same as the 
VAX 8974 system's above. 

The software environment consisted of the 
VAX/VMS version 4.5 operating system, VAX- 1 1 
ACMS version 2.0, VAX-I 1 TDMS version 1.4, 
VAX- 1 1 CDD version 3.1, VAX- 1 1 COBOL ver- 
sion 3.1, and SPM version 3 .O. 

In addition to the general tuning of the SYSGEN 
parameters, several application-specific parame- 
ters were adjusted for the best performance. 
These include the number of application server 
processes, and the size of the RMS global buffer 
used to buffer some portion of each RMS file. In a 
distributed system like a cluster, increasing the 
buffer size can result in additional 1 / 0  requests 
caused by more frequent buffer invalidations. 
The database consisted of 14 RMS indexed- 
sequential files spread over 12 disk spindles to 
balance the 1 / 0  rates. 

Performance Results and Observations 

System Throughput 
Figure 7 displays the system throughput (the 
number of exchanges processed) at different 
user loads on the different configurations. These 
curves give a global indication of the overall rela- 
tive performance of the VAX 8974 and VAX 8978 
systems. 
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The VAX 8700 CPU peaked at 10.5 trans- 
actions per second (TPS) while servicing 
280 users. The VAX 8974 configuration achieved 
its maximum throughput rate of around 34.5 TPS 
while servicing 960 users. Thus the maximum 
throughput of the VAX 8974 system is about 
3.3 times that of a single VAX 8700 CPU. The 
performance gain is not linear in this case 
because the degree of data-sharing is quite high 
in the WIC application, causing the locking over- 
head typical in a cluster environment. 

The limiting resource for the VAX 8974 system 
and the VAX 8700 CPU was processor power. The 
8700 and each processor in the 8974 were fully 
utilized at around 960 users for the 8974 and 
280 users for the 8700. The corresponding 1 /0  
rates for the peak user levels were 220 and 60 
respectively for the 8974 and the 8700. 

The VAX 8978 system achieved a maxi- 
mum throughput of 47.5 TPS while servic- 
ing 1,200 users, which is only 4 . 5  times the 
VAX 8700 throughput. Even taking into account 
the cluster overhead, this result is a very low rela- 
tive performance gain. Clearly, this result indi- 
cates that with the current implementation of the 
application the VAX 8978 performance was lim- 
ited by some resource. 

After more investigation, we found that the 
disks were this limiting resource. We observed a 
peak of 320 disk I/Os per second at 1,200 users 
on the VAX 8978 system. Let us assume that the 

I/Os were uniformly distributed between the 
12 spindles (which they were not). In this case, 
dividing the peak of 320 I/Os between the spin- 
dles yields 27 I/Os per spindle. However, the 
actual maximum observed on any one spindle 
was actually around 35 I/Os per second. Figure 8 
plots the four highest 1 / 0  rates. 

Investigating further, we found that these disks 
also had large queue lengths associated with 
them (up to 4 requests at 1,200 users). Clearly, 
the 1 / 0  rates above coupled with the large queue 
lengths established that disk I/Os were the limit- 
ing resource for the VAX 8978 configuration. In 
the section Simulation of the WIC Workload, 
where the modeling of VAXcluster systems is dis- 
cussed, more data on the VAX 8978 performance 
will be presented without this limiting factor. 

Figure 9 gives a view of system performance in 
terms of throughput and processor utilization. 
Note that the more processors there are in the sys- 
tem, the more processor power it takes to do the 
same amount of work. For example, to obtain a 
throughput Ievel of 30 TPS, the VAX 8974 system 
required 300 percent of the processor power and 
the VAX 8978 system required around 340 per- 
cent. This extra power is needed by the cluster 
overhead, which involves locking activities and 
message transfers between the processors. 

User Productivity 
Figure 10 provides another view of throughput 
in terms of user productivity, defined as the - 

35 throughput per user (the throughput in Figure 7 
30 divided by the number of users). 
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Figure 10 User Productivity Figure 1 I WIC Service Time 

This figure shows that the maximum through- 
put per user for this workload is around 1 5 0  TPS 
for any configuration. This graph also indicates 
the number of users that can be supported by 
each system while maintaining a certain level of 
user productivity. For example, at 140  TPS, the 
8700 ,  8774 ,  and 8 7 7 8  support 250, 8 5 0 ,  and 
1 ,200  users respectively. More users can be sup- 
ported at lower user productivity levels. 

Figure 1 0  also indicates the level of users at 
which one might consider switching to a larger 
system to maintain a certain level of user pro- 
ductivity. For example, to maintain a user pro- 
ductivity level of approximately 1 5 0  TPS, one 
must switch to a VAX 8974  system at around 
240 users, and to a VAX 8 7 7 8  system at around 
7 2 0  users. 

Mean Service Time 

The VAX 8 7 0 0  and VAX 8974  service times 
remained under one second for all user levels 
tested. The VAX 8 9 7 8  service-time curve also fol- 
lowed this trend u p  to the 960-user level. How- 
ever, after that level, the service time degraded 
quickly due  to the large number of I/Os and 
queue lengths at  the disks as the 1200-user level 
was approached. These patterns are shown in 
Figtire 1 1.  

ENQ Rate 

So far, only user visible performance and some 
system behavior has been discussed. Now some of 

the cluster aspects of the systems are examinecl, 
mainly the locking activities. 

As mentioned at the beginning of this paper, 
the WIC workload assumes full data-sharing (i.e., 
all the database files are shared by all users). This 
sharing involves locking and unlocking files and 
records every time they are accessed. The locking 
and unlocking operations are performed by sys- 
tem services called ENQ and DEQ. An ENQ 
request is serviced by the distributed lock man- 
ager, which examines outstanding locks to the 
resource and allows access if there is no conflict. 

The SPM software records the the number of 
ENQs on a particular processor. The total ENQ 
rates at different user levels for different configu- 
rations were extracted from SPM data and 
graphed in Figure 12 .  This curve closely resem- 
bles the throughput curve, implying a strong cor- 
relation between locking activities and through- 
put. Around 26 ENQ operations were required on 
the average to perform each exchange. 

Total Remote ENQ Rate 

A remote ENQ occurs when the resource of inter- 
est is mastered by a process that runs on an- 
other processor in the cluster. Remote locks are 
more costly than local locks because additional 
interprocessor communication over the CI bus is 
required between the requesting and mastering 
nodes. 

Figure 13 plots the remote E N Q  rates against 
the total ENQ rates for different configurations. 
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Figure 12 Total ENQ Rate Figure 13 Remote versus Total ENQ Rates 

Thc increasing slopes of the different curves 
indicate that the remote ENQ rate also increases 
with the number of processors in the system as 
well as with the total number of users. Generally, 
in an N-processor homogeneous distributed sys- 
tem in which all resources are equally accessed 
by all processors and all accesses require locking 
operations, the remote locking operations will 
equal (N- 1 ) / N  times the total locking activity. 
This resuJt occurs because each processor has 
an equal opportunity to master a particular 
resource. This relationship held in the case of the 
remote versus the total new ENQ rates observed 
in the VAX 8974 and VAX 8778 systems, in which 
the ratios were 7 5  percent and 87.5 percent 
respectively. Figure 1 3 shows, however, that on 
the average only 60 percent and 8 0  percent of 
the ENQs were remote for the 8974 and the 8978 
respectively. These results occurred because the 
plotted ENQ rate includes the converted ENQ 
rate as well as the new ENQ rate; most converted 
ENQs were found to be local. 

Interprocessor Communiccrtion 
The conlmunications between the processors are 
achieved by the Systems Communication Archi- 
tecture by way of transmitting and receiving 
sequenced messages. Figure 1 4  shows the num- 
ber of sequenced messagcs transferred between 
the processors every second. Most of these mes- 
sages are generated by the distributed lock man- 
agcr for clusterwide locking purposes. 
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Figure 14 Message Rate between Processors 

Cf Traffic 
The traffic on the CI consists of three packet 
types: ciatagrams, sequenced messages, and block 
transfer messages. In this application, datagrams 
were used only for error logging and therefore 
did not exist. Sequenced messages are used for 
communications between the processors and the 
HSC70 controllers. Most of these short packets 
are either packets bctween the distributed lock 
managers to perform clusterwide locking (dis- 
cussed earlier) or packets between a processor 
and an HSC70 controller to request and response 
to 1 / 0  operations. Each 1 / 0  request to the disks 
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or tapes controlled by an HSC70 device requires 
a pair of messages to be exchanged between the 
processor and the controller. Block transfer mes- 
sages are data packets for 1 /0  operations. The 
transfer rates of each message type are recorded 
by the SPM software. Figure 1 5  plots the CI traf- 
fic against the number of users. The CI traffic, 
expressed in KB per second, is calculated from 
the data collected by the SPM software. 

This figure shows that, in general, the CI bus is 
rather underutilized, peaking around 1,265KB 
per second at 1,200 users for the VAX 8978 sys- 
tem. This utilization is less than 15  percent of the 
raw bandwidth of a single CI wire, or 7.5 percent 
of the bandwidth on each CI path. It should be 
noted, however, that this data includes neither 
the extra bytes of the lower level protocol over- 
head nor the additional traffic incurred by 
retransmissions. Thus the actual CI utilization 
will be a little higher than these figures. 

WIC Database Partitioning - 
Extended Study 
The results presented in the previous section 
indicate that the application as currently imple- 
mented presented a problem with the disk I/O. 
More I/Os were being generated to several files, 
resulting in too many disk I/Os to several spin- 
dles. To reduce the number of I/Os, we parti- 
tioned both the application and the database, 
anticipating that the number of I/Os to each 
spindle would be reduced. This section summa- 
rizes the results from this study. 

The main difference between this study and 
the previous one is the number of disk spindles 
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Figure 15 CI Traffic 

used. This study used 24 spindles (6 SA482s), 
whereas the previous study used only 12 
(3 SA482s). The throughputs achieved with this 
new configuration are plotted in Figure 16. 

It is clear that with this configuration the 
VAX 8978 system performed much better with 
24 spindles than with 12. The system achieved a 
peak throughput of 6 6  transactions per second 
with 1,600 users, which was 6 . 3  times the 
throughput of the VAX 8700 CPU. This result 
illustrates the importance of having a system bal- 
anced in regards to its processing power and 1 /0  
capacity. 

Simulation of the WIC Workload 
Based on the measurement data, a model called 
SIMwic was developed to describe the perfor- 
mance of VAX 8974/8978 systems under WIC, 
the multiuser, on-line transaction processing 
workload. WIC characterizes the on-line transac- 
tion processing of items (i.e., parts) that flow 
into and out of a warehouse and supports multi- 
ple concurrent access to the WIC database. The 
model structure of SIlMwic is shown in Figure 17.  

The following components of WIC were mod- 
eled in SIMwic: 

Users (who generate transactions) 

Lock messages 

Shared 1 / 0  passages (CI bus, HSC70 con- 
troller, channel) 

Disks 
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Figure 17 Model Structure of SIMwic 

A user generates one task at a time to access the 
WIC database, each task consisting of several 
transactions. Each transaction uses the CPU for a 
certain amount of time and sends several 1 / 0  
requests through the shared 1 / 0  passage to 
access the WIC database disks. Each 1 / 0  request 
will first send lock messages to ensure that the 
data is accessible and then initiate the 1 / 0  opera- 
tions. 

The following parameters are used by SIMwic 
to describe the interactions of the users, lock 
messages, CPUs, shared 1 / 0  passages, and disks: 

Intertask Delay, the delay after the completion 
of a task prior to  the initiation of another task 
by the same user 

Intertransaction Delay, the delay after the 
completion of a transaction but prior to the 
initiation of the next transaction by the same 
task 

Task Mix, the percentages of each task type of 
the WIC workload 

Total Transaction, the total number of transac- 
tions for each task type 

Total Disk I/O, the total number of disk 1 / 0  
for each transaction 

ProbDisk, the probability of selecting disk I 
for 1 / 0  

CPU Delay, the CPU time to process a transac- 
tion on each visit 

Lock Delay, the CPU time to  process lock mes- 
sages due to an 1 / 0  request 

CI Delay, HSC delay, Disk Delay, and Channel 
Delay, delays due  to data transfer and disk 
seeks 

The values of these parameters were obtained 
from several sources, including workload specifi- 
cations, direct measurements, other performance 
studies, and hardware specifications. 

SIMwic was validated on measurements of CPU 
utilization, throughput, and disk 1 / 0  rates. The 
differences between simulated and direct-mea- 
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sured results were within five percent, as shown 
in Figure 18. The performance data collected 
were task life-cycle, throughput rate, CPU uti- 
lization, and disk 1 / 0  rate. 

As discussed earlier, the performance of the 
VAX 8978 system under the WIC workload can 
be significantly improved by spreading the data- 
base over 24 disks instead of 12. SIMwic modeled 
such a database expansion and confirmed the per- 
formance improvements on the throughput, as 
plotted in Figure 19. 

Summary 
The performances of VAX 8978 and VAX 8974 
systems were studied in two environments: a 
scientific, compute-intensive batch environment 
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using the SCIENCE workload, and an on-line 
transaction processing environment using the 
WIC workload. These two environments were 
chosen to capture the range of the relative per- 
formances VAXcluster systems can achieve 
compared with the performance of a single sys- 
tem. Using both measurement and modeling 
approaches, it was shown that the 8974 has 
from 3.3 to 4.0 times the performance of a single 
VAX 8700 CPU, depending on the degree of file 
sharing, when there is no substantial bottleneck 
in the 1 / 0  subsystems. A 8978 was shown to have 
between 6.0 and 8.0 times the performance of 
the VAX 8700 CPU, again depending upon the 
application's characteristics, especially the 
amount of remote locking activity. 
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CZ Bus Arbitration Performance 
in a VZ4Xduster System 

CI bus perjormance is dzflcult to evaluate with a conventional queuing 
network approach. Therefore, a new model, a generalized semi-Markov 
process, is used to model the process on the CI bus under its arbitration 
algorithm. This neu, model is implemented in a PASCAL program that is 
run for dz~erent configurations of VMcluster systems. The simulation 
results demonstrate the properties of the arbitration algorithm. B e  
results also suggest that a centralized control scheme could improve the CI 
utilization, and that some load-balance schemes can reduce the average 
response time. The method may be useful for designing otherproducts. 

This paper relates the study of performance 
of the CI bus in a VAXcluster environment. The 
cluster nodes (computers and storage control- 
lers) are connected through a Star Coupler by a 
dual-path CI bus. An arbitration algorithm deter- 
mines which node will be  allowed to send pack- 
ets over that CI bus. The performance of the CI 
bus may directly affect the cluster's performance, 
and studying the performance of the CI bus algo- 
rithm should yield some useful insights to en- 
hance the designs of future computer-intercon- 
nect products. 

Our approach is first to build a model that cap- 
tures the main feature of the algorithm,' and then 
to consider other aspects as parameters of the 
model. The most important parameters are the 
length of the packets and the length of the quiet 
slot. 

Because arbitration is complicated, a conven- 
tional queuing network model would be inade- 
quate for modeling the CI process. For example, 
the CI bus could not be modeled as a server since 
packet transmission cannot start immediately 
after a request arrives, even if the CI bus were 
idle. Thus we  propose another model based on 
the generalized semi-Markov process (GSMP). 
Moreover, this model may be useful for studying 
other processes in VAXcluster systems. 

CI Bus Arbitration Algoritbm 

A Simple Description of a C l  Bus 
Let us assume a VAXcluster system in which there 
are N nodes attached to a CI bus. Each node can 
send both information and acknowledge packets 
through the bus to any other node. Upon receiv- 
ing an information packet, a node first checks the 
cyclical redundancy check (CRC) information in 
that packet. If the CRC succeeds, the receiving 
node will immediately send back to  the transmit- 
ting node an acknowledge packet with either an 
acknowledgment (ACK) if the node accepts and 
stores the packet correctly, o r  a non-acknowledg- 
ment (NAK) if not. If the CRC fails, the node will 
send no response. 

A time period, called the quiet slot, is reserved 
to guarantee the transmission of the acknowledge 
packet. The quiet slot (QS) is defined as the 
period of time needed to accommodate the time 
delay through a node's front-end logic, plus the 
round-trip cable and coupler delays for the 
longest path in a CI cluster installation. Only the 
node that generates the acknowledge packet for 
the information packet just received can grasp 
the CI bus during the quiet slot following the 
transmission of any information packet. Thus, as 
an approximation, the transmission time of the 
information packet may be extended to  include 
the transmission time of the acknowledge packet. 

After sending an information packet, the trans- 
mitting node waits for the length of an acknowl- 
edge time-out period. If that node receives an 

Here, we briefly review aspects of the CI arbi- ACK during that period, the transmit is com- 
tration related to  the performance study. Refer- pleted. Upon receiving a NAK or no response 
ence 1 contains details of the CI bus arbitration. within the time-out period, however, the trans- 
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mitting node must retransmit the packet. The 
acknowledge time-out period is greater than the 
sum of one quiet slot, plus the CI bus turnaround 
time, plus the time to verify and accept the 
acknowledge packet at the transmitting node. 

In addition, in any such "shared" multinode 
bus structure, the arbitration for use of the bus so 
as to avoid collisions is a critical element of the 
design. The CI bus architecture implements the 
distributed arbitration scheme discussed below. 

CI Bus Arbitration 
Tkvo identical CI paths are used in a VAXcluster 
system, and all nodes are connected to both of 
them. Each node can randomly pick one path 
before transmitting an information packet. Once 
having chosen a path, the node will use it until 
an acknowledge packet from the destination node 
has been received. However, each node cannot 
transmit and receive simultaneously using two 
different paths. Figure 1  illustrates the structure 
of a VAXcluster system in which VAX CPUs and 
HSC devices are connected to one CI path. 

Arbitration must be performed by all nodes 
prior to the transmission of any information 
packet. The acknowledge packet, following re- 
ceipt of an information packet, does not require 
arbitration. This method is called a slotted-carrier 
sense multiple access (CSMA) protocol, also 
referred to as dual-count round robin. The fol- 
lowing parameters are used in current VAXclus- 
ter systems: 

The clock unit (TCLK) is set at 114.28 nano- 
seconds (ns) . 

The value of the quiet slot can range from 7 to 
64 TCLKs, or 800 to 7,314 ns, depending on 
the cable length of the cluster. The QS for the 
for the discussion of this paper simulation is 
1,143 ns. 

DISKS DISKS 

Figure I A Typical VAXcluster System 

The maximum number of nodes in the cluster, 
N ,  is 16 for the current algorithmic implemen- 
tation. 

The ID numbers of the nodes are I = 0 ,  
1 ,  . . . ,N - 1, one for each node. 

The arbitration algorithm operates as follows: 

1 .  Upon starting a transmit operation, node I  
chooses randomly one of the CI paths and 
sets the value of its arbitration counter, C ,  to 
N + I + l .  

2. In each TCLK period, the node determines 
whether or not the CI bus is busy. If it is 
busy, the arbitration counter will remain 
unchanged. 

3. Once the node senses that the CI bus is not 
busy, it will start counting quiet slots. That 
is, the arbitration counter is set to C - 1, and 
the node then waits for one QS period. 

If C > 0 at the end of one QS period, the 
node will inquire if the CI bus is busy. If it 
isn't busy, C is set to C  - 1 ,  and the node 
waits during one additional QS period. If the 
CI bus is busy, the arbitration counter is set 
to another value that depends on the node 
ID. 

If the CI bus is occupied by a node whose 
ID is greater than I, or if this is the node's 
first attempt to grasp the CI bus, then C is 
set to N + I +  1 (i.e., the initial value of C  
for this node). 

If the CI bus is occupied by a node whose 
ID is less than I  and this is not the first 
attempt of node I  to grasp the CI bus, then 
C is set to I + 1. After the arbitration coun- 
ter is reset, control returns to step 2 
above. 

If C = 0 at the end of the QS period, the node 
inquires again if the C1 bus is busy. If so, the 
arbitration counter is set to another value 
that depends on the node ID, as explained 
just above. If the CI bus is not busy, the node 
inquires if a packet is being received from 
the othcr path. 

If the node is receiving from the other 
path, C  is reset to N ,  and control goes to 
step 2 above. 

If the node is not receiving, i t  starts the 
transmission immediately. 
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Figure 2 shows a possible case of CI arbitra- 
tion. This figure depicts a short history of the 
arbitration times for three nodes, labeled 2 ,  6, 
and 8 .  During the period [O, t , ] ,  the CI bus is 
transmitting a packet from some other node 
while both node 2 and node 6 have requested to 
transmit. The arbitration counters of these two 
nodes are set respectively to 19 ( 1  6  + 2 + 1 )  and 
23  ( 1  6+  6 +  1 ) .  At time t l ,  the CI bus becomes 
idle, and nodes 2 and 6 both start counting quiet 
slots. At time t2 ( t 2 -  t ,  = 19QS), the arbitration 
counter of node 2 becomes zero; hence node 2 
wins the bus. At this instant, the arbitration coun- 
ter of node 6 is 4 .  After detecting that the bus has 
been captured by a node whose ID is less than its 
own, node 6 sets its arbitration counter number 
to 7 ( 6 + 1 ) .  (Assume that this is not the first 
attempt of node 6.) 

The transmission of the packet from node 2 
ends at  t4 .  Node 6 starts counting again at tq with 
an arbitration counter of 7 and wins the bus 
at t6 ( t6- t4=7QS) .  Figure 2 also shows that 
requests arrive at the ports of nodes 2 and 8 at t3 
and t5 respectively. At t6, the arbitration counter 
of node 2 becomes 19 ( 1  6 + 2 + I )  since the bus 
was won by a node whose ID is bigger than that of 
node 2.  The arbitration counter of node 8 is set to 
25 (16+8+ 1) since this is node 8's first attempt 
to occupy the CI bus. 

For simplicity, we will study the properties of 
only one CI path in this report. The principle for 
studying two CI paths should be the same. 

Some Preliminary Analysis 
Although a complete analysis of the CI bus pro- 
cess is difficult, some preliminary analyses may 
help us to understand the properties of this pro- 

cess and perhaps validate the simulation results. 
When two packets attempt to pass through the 

same path of the CI bus simultaneousJy, both 
packets will be destroyed. Therefore, packets can 
be passed successfully only if, before sending a 
packet, each node determines whether the CI bus 
is busy. Even with this check, two nodes can still 
send their packets simultaneously if each node 
detects at the same instant that the CI bus is idle. 
The situation is even worse because of the propa- 
gation time of a packet from the transmitting 
node to  the detecting node. 

The introduction of the QS concept into the 
arbitration algorithm almost eliminates the possi- 
bility of packet collisions when the CI bus is satu- 
rated. In this case nearly every transmit request 
will find the CI bus busy and must wait until the 
end of the transmission of the current packet. At 
the end of a transmission period from a node, 
denoted as lo, all other nodes having an outstand- 
ing transmit request will start counting quiet 
slots simultaneously. The arbitration counters of 
nodes whose transmit requests are made during 
the transmission period have the form N + l +  1 .  
The arbitration counters of those nodes whose 
transmit requests were made in previous trans- 
mission periods have the form N + I +  1 if I > I,, 
or the form I  if I < 1, Thus at a given time, each 
node has a unique arbitration count. The node 
whose arbitration counter reaches zero first will 
grasp the CI bus. 

After each transmission period, there is a short 
interval (16 quiet slots) in which no transmis- 
sions occur on the CI bus. However, every 
requesting node is still counting the quiet slots 
during this period. For example, suppose that 
in one QS, the smallest arbitration counter is 

TIME 

Figure 2 Arbitration among Three Nodes 
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N+I+ 1 ,  and that in the same QS, node I ini- 
tiates a transmit operation. In this case the arbi- 
tration counters of node I  and the node whose 
arbitration counter is N+I+ 1 in that QS are 
always the same. Therefore, these two nodes 
could start to transmit at the same time, and a col- 
lision could occur, even though its probability is 
very small. 

The CI bus could be considered as a server. 
From the arbitration scheme discussed above, 
however, customers do  not start services immedi- 
ately after arriving at the server, even if i t  is idle. 
One may argue that the arbitration time can be 
modeled by a separate server. In this case, how- 
ever, the customer in that server does not have a 
fixed service time (the arbitration counter needs 
to be reset frequently). Therefore, the CI bus 
cannot be modeled as a standard queuing system. 
Fortunately, many stochastic processes exist that 
can be used to model real-world processes. One 
stochastic process, called the generalized semi- 
Markov process, has a characteristic very similar 
to  the process on the CI bus under the above arbi- 
tration rules. 

In the next section, we  give an description of 
this process. 

Generalized Semi-Markov Processes 
The generalized semi-Markov process, or GSMP, 
is one of the most promising stochastic processes 
in operations research for modeling complex 
phenomena. GSMP was introduced by matt he^,^ 
and investigated further by other researchers, 
among them Schassberger,3 and  whit^^ 

A GSMP can b e  described as follows. Let S and 
R be subsets of positive integers. We regard thc 
elements s  of subset S as possible states of the 
GSMP. Some events may occur at each state. R 
denotes the indices of all possible events that may 
occur during the evolution of a GSMP. Al l  events 
that can occur in state s  are denoted as set  E ( s ) ,  
which is a subset of R. 

The system will stay in a state s until an event 
i E E ( s )  triggers a transition of the systcm to 
another state s'. Let p ( s f , s , i )  be the probability 
that the new state is s', given that event i triggers 
a transition from state s .  An event can trigger a 
transition only at  the end of its lifetime. Associ- 
ated with each event i is a clock whose reading 
is denoted as ci . The clock runs at  a speed r  ( s  , i )  , 
which depends on both the event i and the 
state s .  If at time 0 the clock is set to  ci, then at 
time t  the reading of the clock will be  

c f i=c ,  - r ( s , i )  X t .  The lifetime of an event ends 
when the associated clock reading reaches zero. 
Wc assume r ( s , i )  > 0 for some i E E ( s ) .  When 
r ( s , i )  = 0 for i E E ( s ) ,  event i is regarded as 
inactive in state s .  

The events associated with state s' are in 
the set E(s') .  The clock readings after the 
transition are determined as follows. New clock 
readings are independently generated for each 
j E N(s' ,s, i)=E(s')  - ( E ( s )  - i ) .  The new clock 
reading for event j E N(s ' , s , i )  has a cumu- 
lative probability distribution, or c .p .d . ,  of 
F(x ; s ' ,  j , s , i ) .  For events in both E ( s )  and E(s ' ) ,  
except for event i ,  the old clock readings are 
kept after the transition, i.e., for 

For events in E ( s )  but not in E(s') ,  the clocks arc 
set equal to zero (i .e. ,  if j E ( E ( s ) - i ) - E ( s ' ) ,  
thcn c, = co after the transition.) 

For the purpose of modeling the CI process, 
the above scheme of determining the clock read- 
ings has to be modified slightly. Wc associate 
each event i with a set of events H ( i ) .  Only for 
events in j E O(s' ,s , i )  = E ( s f )  fl { E ( s ) -  H ( i ) )  
are old clock readings kept (i.e., cJ=cJa ( s , c ) ) .  
For events in N ( s f , s , i )  = E(s ' ) -  { E ( s ) -  H ( i ) ) ,  
new clock readings have to be assigned according 
to the c.p.d.  F(x;s ' ,  j , s , i ) .  We call the process 
with this clock-reading assignment schcmc a 
modified GSMP. A block diagram is shown in 
Figure 3. 

The next transition occurs according to the 
same rules. These transitions describe the evolu- 
tion of the system. 

The Stochastic Process on tbe CI Bus 
To describe the process on the CI bus, we usc 
a continuous time domain as opposed to a dis- 
crete domain (i.e., we consider the clock unit 
1 14.28 nanoseconds to  be infinitesimally small 
compared with other event times, such as trans- 
mission times.) Furthermore, to make the prob- 
lem tractable, we  make the following stochastic 
assumptions: 

The transmission times required by every nodc 
are independent of each other. 

The times between two succcssivc transmis- 
sion requests are independent. 

The destinations of the transmitted packets are 
independent of the transmitting node and the 
transmission time. 
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Under the above assumptions, the CI system can The residual transmission times of nodes 
be characterized by the following items: i=O, l , .  . . ,N-I ,  denoted as bo,bl, ..., bN-l 

The number of nodes, N (Except for node j, these values are the same 
as the transmission times.) 

The cumulative distribution functions of the The residual times between two transmission 
transmission time of each node, denoted as 

requests of nodes i = O,1, . . . ,N - 1, denoted Fi(x), i=O, l , .  . .N-1 
as t o , t l , .  . . ,tN-, 

The cumulative distribution functions of The arbitration counters for the first request 
the time between two successive transmis- 

of nodes 0 1 . . . N -  1,  denoted as sion re-quests of each node, denoted as 
ao ,a l , .  . . ,aN-, (Note that ai=O.) Gi (x), i=O, l ,  . . . ,N- 1 

The probability that a packet from node i will The process on one CI path can be described as 
go to node j, denoted aspt,, a modified GSMP. Let L be the length of a QS 

period. The arbitration counters can be translated The state x of the CI bus consists of the following 
into continuous numbers di =ai X L . These con- elements: 
tinuous numbers can be viewed as clock read- 

An index j, indicating the node that is trans- ings. When j = N  (i.e., no packet is being trans- 
mitting a packet (We use j = N t o  indicate that mitted on the CI bus), these clocks run at a rate 
the CI bus is idle.) r =  1 until one of the readings reaches zero. - 

When j #  N, then these clocks run at a rate r = O ;  The number of transmission requests made 
this means that when a server is transmitting 

by nodes = O l  . . . N -  I ,  denoted as 
packets, all arbitration counts do not change. The 

no,nl,. . . , ~ N - I  clock readings may jump to some other values at 

DETERMINE LlFE TIMES 1 1 .  12, 13 FOR el TO 
es FROM DISTRIBUTIONS. CHOOSE RATES 
ri ,  r2, r3 ACCORDING TO SOME RULES 

1 
EVENT el DIES AT t1 = t(l) + I l / r ~  ETC. 
SUPPOSE 12 = MINIMUM (t~,tp,tg) 

1 
NEXT TRANSITION HAPPENS AT 
t(l + 1) = t(l) + t2 

1 
DETERMINE THE STATE AND EVENTS 
(SAY en, es. AND e4) AFTER TRANSITION 

ASSIGN NEW LlFE TIME AND RATES FOR 
en, e3, AND er 

some transition times. 
Now we can describe the process on one CI 

path. Let s =(j,no, n , ,  . . . , nN-,) .  Using the termi- 
nology of GSMP, we call s the state of the process. 
Associated with each state s ,  there are at most 3N 
events in E(s) (i.e., the end of a transmission 
from each node, the grasp of the CI bus by each 
node, and a new request arrival at each node). 
The clock readings corresponding to these events 
are bi, t i ,  and di,  i=O, l , .  . . ,N- I .  The clock 
rates are always one for all t i ,  one for b,, zero for 
bi if i f j, and one for all di if j Z 0 and zero for all 
di if j = N .  For convenience, we also use b,, t i ,  
and d, to denote the corresponding events. Thus 

The only remaining work for specifying the 
GSMP on the CI path is to determine the clock 
rates r ( s , c ) ,  transition rulesp(s,s ' , i) ,  and clock 
reading distributions F(x,s 'J ,s , i ) .  These can be 
done by examining carefully the arbitration 
scheme. The details can be found in reference 7. 

We have model.led the CI process as a modified 
GSMP. This concept helps us to simplify the 
underlying mechanism of the process. This 
mechanism is no more complicated than state 
transition and clock readings. A simulation 
algorithm based on this model is given in the next 

Figure3 BlockDiagramofModifedGSMP section. 
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Simulation Algorithm 
Although the GSMP concept looks sophisticated, 
its simulation is not difficult. In fact, the simula- 
tion of a GSMP consists mainly of two steps: 

1. Use the clock readings and clock rates to 
determine the next transition time and the 
event that triggers this transition. 

2.  Determine the new state and the new clock 
readings after each transition. 

Thus the GSMP model simplifies the concept of 
the mechanism of CI arbitration to these two 
steps. 

The specific rules and distributions for deter- 
mining the process on one CI path were de- 
scribed in detail in the previous sections. The 
simulation algorithm is given as follows: 

1. Initialize the system. 

Choose an initial state s = Cj;n,,n,, . . . , 
n,-,). n, is the number of transmission 
requests of node i .  j is the node transmit- 
ting, and j=Nmeans  that the bus is idle. 

Assign initial clock readings for events. 
For all nodes, the next transmission 
request happens at a time with distribu- 
tion Gi (x ) .  The transmission time of a 
request on each node has a distribution 
F, (x) .  Set the arbitration counts accord- 
ing to the arbitration rule. 

Set the value of the simulation clock, u, 
to 0 .  

2.  Determine the clock rates for events accord- 
ing to the state s. The rates for the next trans- 
mission request are always 1. The rates for 
the transmission completion are 1 for node j ,  
and 0 for all other nodes. The rates for arbi- 
tration counters are 1 for all nodes if j = N  
(CI bus idle), 0 if j # N (CI bus busy). 

3 .  Using the clock rates, find the event whose 
clock reading reaches zero the earliest. This 
event triggers the transition. Set the simula- 
tion clock to the time when this reading 
reaches zero. 

4.  Using the transition probabilities, determine 
the next state of the process. 

5 .  Assign new clock readings and rates for the 
new state. (This can b e  done as described in 
steps 1 and 2 above.) 

6 .  If the terminating condition is not met, go 
to  step 3 .  If the condition is met, stop the 
simulation. 

There are some points that should be noted 
about this algorithm. 

First, the model for two CI paths can be easily 
obtained by combining two models for one CI 
path and making the following modification. At 
the end of the arbitration of each node, the model 
checks to determine if the node is receiving from 
the other path. If not, the node starts transmis- 
sion; otherwise, the model sets the arbitration 
count C of that node to N and starts the counting 
again. 

The second point is, the ACK or NAK transmis- 
sion times are included in  the information packet 
transmission times (i.e., the distribution Fi (x )  
describes the total transmission times of both an 
information packet and i ts  ACK or NAK). 

As mentioned earlier, we wrote a PASCAL pro- 
gram to implement this algorithm. The next 
two sections discuss the problems of choosing 
parameters for this model and the performance 
results obtained. 

Choosing Parameters 
As mentioned earlier, the maximum number of 
nodes in a CI-based VAXcluster system is 16 ;  
therefore, N is set to 1 6  in the simulation. QS is 
se t to  1 , 1 4 3  ns. 

The remaining problem is choosing the mean 
transmission times and the mean interrequest 
times, all of which depend on the node types and 
specific applications. In this simulation, these 
values are taken from the results of two previous 
experiments performed at D i g i ~ i l . ~ . ~  The first of 
those observes the CI packet traffic in a system 
running ASYNCQIO; the second measures the 
1 / 0  performance of a system running IOX. 
(ASYNCQIO and IOX are both workload pro- 
grams used for simulations.) The following is the 
mean interrequest and the mean transmission 
times of these two experiments; we  use them as 
parameters in our simulation. 

For ASYNCQIO, we have: 

The mean interrequest time of a VAX 8 6 0 0  
CPU with a CI780 bus is r , ,  = 8 , 3 0 0  micro- 
seconds (ps) 

The mean transmission time is s , ,  = 6 . 4  ps 

The mean interrequest time of the HSC device 
is r , , =  1 ,400  ps. 
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The mean transmission time of a packet from 
an HSC device is s ~ .  , = 60.5 ps. 

For IOX, we have: 

The mean interrequest time of a VAX 8600 
CPU with a CI780 bus is r , ,=22,900 
microseconds (ps) . 

The mean interrequest time of the HSC device 
is r , , =  3,800 ps. 

Since we assume that IOX reads the same num- 
ber of blocks per  request as ASYNCQIO, the 
mean transmission times svB2 and S H , ,  are the same 
as sv, , and sH., . 

These values are obtained by assuming that the 
VAX CPU runs only one stream of ASYNCQIO or 
IOX on one disk. If the CPU runs m streams 
simultaneously, i t  is reasonable to take r , , / m  and 
rMi /m ,  for i =  1,2,  as the mean interrequest 
times. 

Finally, both ASYNCQIO and IOX are 1 / 0  
intensive workloads. Therefore, the simulations 
described in the next section, using the data 
derived from these two workloads, represent the 
performance of 1 / 0  intensive programs. The cal- 
culations here just yield reasonable values for 
parameters. 

Simulation Results 
The mean values obtained in the previous section 
were used in the simulations. In each simulation 
run, half the nodes were VAX systems, the other 
half were HSC devices. Also, half the VAX systems 
ran ASYNCQIO, the other half ran IOX. To study 
the CI performance, we ran four sets of simula- 
tions. 

The first set had 16 nodes, o r  eight VAX sys- 
tems and eight HSC devices. The average trans- 
mission time for the VAX systems was 6.4 ps, and 
for the HSC devices 60.5 ps. The interrequest 
times were chosen to model the systems in which 
each VAX system runs from one to three streams 
of the 1 / 0  intensive workloads. Specifically, the 
mean interrequest times for a system running two 
streams are half those for a system running only 
one stream, and so  forth. 

The CI utilization rates of this first set  of simu- 
lations are shown in Figure 4 ,  the other results in 
Table 1. The CI bus transmits packets during 
busy time, arbitration occurs during arbitration 
time, and the bus is idle during idle time. Idle 
time does not include any arbitration time. The 
busy, idle, and arbitration rates are the ratios of 

1 2 3 

NUMBER OF STREAMS 

KEY: 

0 BUSY RATE 

IDLE RATE 

ARBITRATION RATE 

Figure 4 CI Performance for First Simulation 

Table 1 First Set of Results 

Idle time 0.42 
Arbitrat~on time 1 2i:ii 1 z:!: 1 3.70 

Simulation 

No. of nodes: n 

No. of streams 

s1 to s8 - pseconds 

% to S16 

r, to r4 - pseconds 
r, to r8 
rg to ~ I Z  

r ~ 3  r16 

Total time - seconds 

Busy time - seconds 

Busy rate - % 24 48 72 
Idle rate 3 
Arbitration rate 1 3 :  25 

Arbitration/busy ratio 

Response time - 
pseconds 

RE1 
RE2 
RE3 
RE4 
RE5 
RE6 

RE7 
RE8 
RE9 
RE1 o 

RE1 1 

RE1 2 

3 

RE14 
RE1 s 
RE, fi 

1.1 

16 

1 

6.40 
60.50 

8,300.00 
22,900.00 

1,400.00 
3,800.00 

43.79 

10.56 
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1.2 

16 

2 

6.40 
60.50 

4,150.00 
11,450.00 

700.00 
1.900.00 

21.90 

10.56 

1.3 

16 

3 

6.40 
60.50 

2,800.00 
7,600.00 

470.00 
1,270.00 

14.69 

10.57 
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16 12 8 4 

NUMBER OF NODES 

KEY: 

0 BUSY RATE 

0 IDLE RATE 

ARBITRATION RATE 

Figure 5 CI Performance for Second 
Simulation 

Table 2 Second Set of Results 
Simulation 

No. of nodes: n 

s, to snI2 - pseconds 6.40 6.40 6.40 6.40 

Sn/2+1 to Sn 60.50 60.50 60.50 60.50 

r1 to rn14 - pseconds 
ro/4+1 to rn/2 

rn/~+l to r3n/a 
r3n/4+1 to rn 

Total time - seconds 1 14.691 19.56 

Busy time - seconds 10.57 10.55 
Idle time 1 0.56 4.59 
Arbitration time 3.56 4.41 

Busy rate - % 
ldle rate 

Response time - 
pseconds 

RE1 
RE2 
RE3 
RE4 
RE5 
RE6 
RE7 
RE8 
RE9 
RE1 0 

RE1 1 

RE1 2 

RE13 
RE,, 
RE15 
RE16 

the busy, idle, and arbitration times to the total 
time respectively. 

From these results, we can see that the arbitra- 
tion time takes about 23  to 24 percent of the total 
timc if the CI bus is busy for more than 50 per- 
cent of the total time. The ratio of arbitration 
time to busy time decreases as the busy rate 
increases. We can also see that the response time 
is somewhat sensitive to the interrequest time. 
HSC controllers have a longer response time than 
VAX CPUs since the interarrival times of the con- 
trollers are shorter. The results also reveal that 
while the arbitration is almost fair for all nodes, 
some very small degree of unfairness still exists. 
For example, nodes 1 3  to 1 6  have the same mean 
interrequest and transmission times; however, 
the response times increase slightly as the ID 
number of the node increases. These properties 
will be explained later. Of course, such a small 
degree of unfairness will not affect the perfor- 
mance of the CI cluster. 

The second set of simulations compared the 
performances of clusters with 4, 8, 12,  and 
1 6  nodes. The node ID numbers are 0 to 3 for the 
4-node experiment, 0 to 7 for the 7-node experi- 
ment, and so forth. Each VAX CPU runs three 
streams of IOX or ASYNCQIO. 

The results are shown in Figure 5 and Table 2. 
These results confirm the properties observed 

in the first set of simulations. As far as the CI traf- 
fic is concerned, reducing the number of nodes is 
equivalent to decreasing the traffic intensity on 
the bus. 

The third set of simulations examined the 
effect on performance of the lengths of packets 
transmitted on the CI bus. The average transmis- 
sion times of a packet are assumed to be either 
60 .5 ,  60.5/2, 60.5/3, or 60.5/4 ps, depending 
on the number of streams. The results are shown 
in Figure 6 and Table 3 .  

As we expected, the ratio of arbitration time to 
busy time increases as the length of a packet 
decreases. If the average packet length is one- 
fourth of a block, the system will spend more 
time arbitrating than transmitting. 

The fourth set of simulations kept the interre- 
quest times of eight nodes constant at 1,000 ps, 
but varied the times of the other eight nodes from 
300 to 1,000 ps. The parameters are listed in 
Table 4 ,  and the results reported in Figure 7. 

Figure 7 shows that if the mean interrequest 
times of nodes 1 to 4 and 9 to 12 are between 
700 and 1,000 ps, the average response times of 
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all nodes will be very similar. I f  the interrequest 
times of these nodes decreases further, their 
response times increase rapidly. In this case a 
load balance scheme would be needed to achieve 
better performance. 

CI Arbitration Properties 
We can make the following observations from the 
simulation results: 

The response time increases rapidly if the C1 
bus is nearly saturated. This behavior is similar 
to that of a single-server queue. 

The arbitration algorithm is almost fair for all 
nodes. There is only a very small degree of 
unfairness. The response times of nodes with 
lower ID numbers are a little bit smaller than 
those of nodes with higher IDS. 

To explain this unfairness, let us consider 
two nodes, node 1 and node 10.  Two cases 
in which node 1 gets higher priority than 
node 1 0  are given as follows: 

1.  Assume that the CI bus is idle, and that 
node 10  requires a transmission at t ,  while 
node 1 requires a transmission at t ,  +9QS. 
In this case, node 1 will win the bus 
despite the fact that node 10  submitted its 
request before node 1 .  

2. Assume that the CI bus is busy, and that 
during this busy period both nodes 1 and 
10  require transmissions. As soon as the CI 
bus becomes idle, both nodes will start 
counting quiet slots. In this case, node 1 
will always win the bus whether or not it 
was the first to make the request. 

= Under the current arbitration algorithm, the 
response times are sensitive to the inter- 
request times, especially when the CI bus 
is highly utilized. For example, in Simula- 
tion 1 .3, the response times for two nodes 
with mean interrequest times of 470 and 
7,600 ps are approximately 1,050 and 240 ps 
respectively. 

This result will occur because, under satura- 
tion, the arbitration is approximately a round- 
robin algorithm. If there are three requests in 
node I and six requests in node 2, the CI bus 
must serve the three requests in node 1 and the 
first three requests in node 2 before it can 
serve the last three requests in node 2. This 
algorithm gives higher priority to requests in 
node 1 than to those in node 2. 

60.5 30.25 20.17 15.12 

MEAN TRANSMISSION TIMES#- pSECONDS 

KEY: 

0 BUSY RATE 

0 IDLE RATE 

0 AARITRATION RATE 

Figure 6 CI Performance for Third 
Simulation 

Table 3 Third Set of Results 

Arbitrationlbusv ratio 1 0.33 1 0.95 1 1.48 1 2.00 
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Figure 7 CI Performance for Fourth 
Simulation 

No. of 
nodes: n 1 161 1 6 1  161 161 

Table 4 Fourth Set of Results 

Sl to ss - 
pseconds 6.40 6.40 6.40 6.40 

% s ~ 6  60.50 60.50 60.50 60.50 

Simulation 

Figure 7 shows the effect of the relative inter- 
request time on the response times. The 
response times of nodes 5 to 9 increase rapidly 
when their interrequest time is between 50 
and 60  percent of the time for nodes 1 to 4 .  

4.1 

Simulation 

No. of 
nodes: n 

s, to s,q - 
pseconds 

% to St6 

r1 to r, - 
pseconds 

r, to r, 

r9 to rl, 
r13 to rl, 

The results of the first and second sets of simu- 
lations show that the higher the CI busy rate, 
the smaller the total arbitration time. For 
example, in Simulation 1.1, the total arbitra- 

tion time for 200,000 requests is 5.86 sec- 
onds, while that figure in Simulation 1.2 is 
5 .1 1 seconds. 

4.2 

4.6 

16 

6.40 
60.50 

500.00 
1,000.00 

500.00 
1,000.00 

If the CI bus rate is low, the average transmis- 
sion request from node I will have to wait an 
arbitration time of ( N + I +  l )QS.  If the CI 
busy rate is high, however, each request can 
always find some node whose ID is lower and 
which can occupy the CI bus earlier. In this 
case the average request spends only (I + 1 )QS 
on arbitration. 

In the third simulation, the arbitration time 
rate increases from 0.24 for an average packet 
length of one block to 0.38 for a length of one- 
fourth of a block. The absolute value of arbi- 
tration time also increases. This result occurs 
because the arbitration time is the same for 
packets with different lengths. 
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Conclusion 
This paper describes the performance of the 
algorithm for CI bus arbitration as measured by a 
generalized semi-Markov process model. The 
simulation results show the following: 

The arbitration algorithm is almost fair to all 
nodes. 

4.4 
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400.00 
1.000.00 

400.00 
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The ratio of arbitration to busy times depends 
on the average length of packets transmitted; 
the smaller the length, the bigger this ratio. 

4.5 

The ratio of arbitration to busy times also 
depends on the traffic intensity; the larger the 
intensity, the smaller the ratio. 
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The response times of packets at a node are 
sensitive to its 1/0 rate compared to other 
nodes; the higher the rate, the longer its 
response time. 

4.10 
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300.00 
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Because of the arbitration time, the CI bus is 
not fully utilized. In experiment 1.3, the 
effective bandwidth for one path of the CI bus 
is about 75 percent. This effective bandwidth 
also depends on the average length of packets. 

The results indicate where problems can be 
anticipated, especially when the CI bus is highly 
utilized, and suggest some ways to improve CI 
performance. 

Acknowledgments 
The authors are indebted to Jory Tsai for dis- 
cussing the possibility of using PAWS to imple- 
ment the GSMP model, and to Hossein Hosseini 
for assistance in preparing the report. 

102 Digital Technical Journal 
No. 5 Seplember 1987 



VAXcluster 
Systems 

References 

1. V. Boaen et  al., "Computer Interconnect 
Specification," Digital Equipment Corpora- 
tion Standard 161 -0, 1986. 

2 .  K. Matthes, "Zur Theorie der Bedienungs- 
prozesse," Transactions of the Third 
Prague Conference on Information Tbe- 
0 y (1 962). 

3. R. Schassberger, "Insensitivity of Steady- 
state Distributions of Generalized Semi- 
Markov Processes, Part I," Annuals of Prob- 
ability5. (1977): 81-99. 

4 .  W. Whitt, "Continuity of Generalized Semi- 
Markov Processes," Mathematics of Opera- 
tions Research, vol. 5, no. 4 (1980): 494- 
501. 

5. B. Murray, "CI Traffic Observations: A Com- 
parison of the CI780, CIBCI, and CIBCA," 
Digital Equipment Corporation Internal 
Technical Memorandum (October 1986). 

6. X .  Cao and H. Hosseini, "I/O Properties of a 
VAXcluster: Part I," Digital Equipment Cor- 
poration Internal Technical Memorandum 
(October 1986). 

7 .  X. Cao, N. Quaynor, and F. Colon Osorio, 
"CI Bus Arbitration Performance in a VAX- 
cluster," Digital Equipment Corporation 
Internal Technical Memorandum (March 
1987). 

Digital Technical Journal 103 
No. 5 Scplrmbrr I987 




	Front cover
	Contents
	Editor's Introduction
	Biographies
	The VAXcluster concept: An Overview of a Distributed System
	The System Communication Architecture
	The VAX/VMS Distributed Lock Manager
	The Design and Implementation of a Distributed File System
	Local Area VAXcluster Systems
	VAXcluster Availability Modeling
	System Level Performance of VAX 8974 and 8978 Systems
	CI Bus Arbitration Performance in a VAXcluster System
	Back cover



