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Editor's Introduction 

Jane C. Blake 
Editor 

This issue of the Digital Technical Journal contains 
a collection of papers on two general topics- 
VAXcluster systems, and network adapters and per- 
formance. The first set of three papers describes 
new VMS VAXcluster developments and features; 
the second set addresses the topics of LAN adapter 
design and performance measurement techniques. 
A common theme across these papers is the devel- 
opment of technologies for interconnecting sys- 
tems that offer high data availability without 
sacrificing performance. 

Ws Volume Shadowing, described by Scott Davis, 
is a means of ensuring data availability and integrity 
in ViMS VAXcluster systems. By maintaining multiple 
copies of data on separate devices, the volume 
shadowing technique protects data from being 
lost as the result of media deterioration or device 
failures. Scott discusses the advantages of the 
new design over controller-based shadowing and 
explains how this fully distributed software makes 
a broad range of topologies suitable for shadowing. 

The growth capabilities and availability of viMS 
VAXcluster systems are characteristics well suited 
to applications with high-availability requirements. 
Sandy Snaman first presents an overview of the 
VAXcluster system architecture, including explana- 
tions of the layers, their purpose and function. He 
then gives practical insights into how the system 
implementation affects application design and 
reviews the choices available to application design- 
ers in the areas of client-server computing and data 
sharing. 

The availability of applications and cluster con- 
figurations is also enhanced by developments in a 
new release of the W S  operating system. Lee Leahy 
describes a VMS feature that enables fail-over 
between multiple LAN adapters and compares this 
approach to a single-adapter implementation. He 
then discusses and gives examples of VMS features 

for network delay detection and reduction, and fail- 
ure analysis in local area VAXcluster systems. 

The focus then moves from VMS-level concerns 
to the design of network adapters and performance 
measurement. The adapter described by Dick 
Stockdale and Judy Weiss is the DEC LANcontroller 
400, which connects systems based on Digital's 
XMI bus to an Ethernet LAN. This particular design 
improves on  previous designs by transforming the 
adapter from a dumb to an intelligent adapter 
which can off-load the host. Consequently, the 
adapter supports systems that utilize the full band- 
width of Ethernet. The authors provide a system 
overview, performance metrics, and a critical exam- 
ination of firmware-based design. 

Like the LANcontroIler 400, the FDDIcontroller 400 
is an adapter that interfaces XMI-based systems to a 
LAN. However, as Satish Rege relates, this adapter 
was required to transmit data 30 times faster than 
Ethernet adapters. Satish discusses the architec- 
ture and the choices designers made to address the 
problem of interfacing a parallel high-bandwidth 
CPU bus (XMI) to a serial fiber-optic network bus 
(FDDI). Their design choices included a three-stage 
pipeline approach to buffering that enables these 
stages to proceed in an asynchronous fashion. 

To ensure that the performance goals for the 
FDDIcontroller would be met, a simulation model 
was created. In his paper, Ram Kalkunte details the 
modeling methodology, reviews components, and 
presents simulation results. Ram describes how in 
addition to performance projections, the model 
provided designers with buffer sufficiency analysis 
and helped engineers analyze the fi~nctional cor- 
rectness of the adapter design. 

The high level of performance achieved by the 
FDDIcontroller was driven by the high performance 
of the FDDI LAN itself-100 megabits per second. 
Raj Jain's subject is performance measurement at 
the level of the FDDI LAN. Raj describes the perfor- 
mance analysis of Digital's implementation of FDDI 
and how various parameters affect system perfor- 
mance. As part of his presentation of the modeling 
and simulation methods used, he shares guidelines 
for setting the value of one of the key parameters, 
target token rotation time, to optimize performance. 
Raj has recently published a book on computer sys 
tems performance analysis, which is reviewed in 
the Further Readings section of this issue. 
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I Foreword 

Howard H. Hayakawa 
fMnnagel; VIWS I/O 
and Cluster Development 

Beginning as a vision for a highly available and 
expandable computing cnvironment, Digital's 
\hXcluster system is tod;iy recognized across the 
industry as the premiere foundation for creating 
high-av:lilability applications. The large number of 
Vj\Xclustcr sites and the range of their use testifies 
to the wide appeal of the capabilities of VAXcluster 
systrliis. Over 11,000 VAXcluster sites based on 
Digitill's Computer Interconnect (CI) are being used 
in such diverse applications as manufacturing oper- 
ations, banking, and telephone information systems. 
Sites based on the Iligital Storage System Inter- 
connect (DSSI) ant1 Ethernet are even more numer- 
ous. A scan of software licenses shows an amazing 
acceptance of vA)<cluster technology-more than 
200,000 VAXcluster licenses have been sold to date. 

Built from stantlard processors anel a general- 
purpose operating system, a VLYcluster system is a 
loosely coupled, highly integrated configuration of 
VAX VMS processors and storage systems tlrat oper- 
ates as a single system. Significantly, VAXcluster sys- 
tems are so well integrated that users are often not 
aware they are using a distributed system. In addi- 
tion to the benefits of tight integration, these con- 
figurations provide Digital's customers with the 
flexibility to easily expand and with the features 
needed for high-availability applications. 

Started in 1984, VAXcluster systems were limited 
to specialized, proprieta~y interconnects and stor- 
age servers, which restricted them to the confines 
of a single compiltcr room. In 1989, the cluster 
system was c.xtencletl to support both industry- 
standard SCSl (small computer systems interface) 
storagc ancl Digital's DSSI storage interconnect. 
Today, \~AScluslcr systems support a wide range of 
communication interconnects, including C1 and 

DSSI, and industry-standard local area networks 
such as Ethernet and FDDI. Storage systems now 
supported cover the spectrum from standard, 
economical SCSI peripherals to high-performance 
RA-series drives for large configurations. This wcll- 
arcliitected system has allowed for expansion 
across an ever wider geography: from room to 
building to multiple bi~ildings. Moreover, the entire 
range of VN( processors-from VAXstation work- 
stations to VkS' 9000 n~ainframes-are supportecl. 
The tight integration, flexibilit): anel powcr of 
today's VAXcluster systems is unp;trallelecl. 

The V,iXcluster architecture which Digital initi- 
ated in the 1980s continues to encompass new 
advances and innovative technologics that ensure 
data availability and integrity. This issue of the 
Digital TecbnicalJournal presents several new VMS 

VAXcluster products ancl features, and complernen- 
tary developments in the areas of network adapters 
and performance. One of the products described 
is VMS Volume Shadowing Phase I1 which permits 
users to place redundant data on separate storage 
devices where most appropriate within the system, 
thus dramatically increasing the availability poten- 
tial of VXXcluster systems. A paper on multi-rail 
local area \IAXclusters shows how customers are 
now able to add parallel LAN connections to 
increase network capacity and to survive failure of 
a network connection. With shadowing and multi- 
ple communication paths, recovery from site fail- 
ure need no longer incur the clelays associated with 
restoration from archives. 

Just as the VAXcli~ster software was able to 
exploit the Ethernet to extcnd cap;tbilities through- 
out a building, it is now able to exploit the high per- 
formance ant1 extent of an F l l l l l  LAN.  



Thc new industry-standard FDDI LAN allows the 
Vi\)tclustcr software to extend the system's range 
by ;l factor of 1,000. Papers on both an Ethernet 
adapter and an FDIII adapter describe the care taken 
to ensurc that adapter performance matches that 
of the target processor, which is one of the keys 
to achieving m;iximum performance in the overall 
VAXclustcr systcm. Pcrform;ince of the FDDr LAN 

itself is also one of the topics included here. FDDI's 
performance and range permit for the first time 
the ability to create integrated, high-availability 
solutions that span multiple buildings. With com- 
bined FDDI and VMS VAXcluster technology, a bank's 
vmcluster system can extend from a computer 
center in Manhattan to a standby center in New 
Jersey. Should Manhattan lose power, a disaster 
team can bring the bank's application into opera- 
tion in New Jersey after only minutes. The days of 
waiting for archives or driving tapes and disks 
across the river are over. 

Digital's VAX VMS, clusters, FDDI, and networking 
products continue to evolve; the process of inte- 
grating new technologies is ongoing. The papers 
in this issue describe the latest steps we have taken 
to extend the range and availability of VAXcluster 
systems. Future issues of the Journal will kecp you 
apprised of the latest stages in this evolutionary 
process. 



Scott H. Davis I 

Design of VMS Volume 
Shadowing Phase II- 
Host-based Shadowing 

VMS Volume Shadowing Phase 11 is a fully distributed, clusterwide data availability 
product designed to replace the obsolete controller-based shadowing implementa- 
tion. Phase 11 is intended to service current and future generations of storage archi- 
tectures, In these architectures, there is no intelligent, nzultiunit controller that 
fzinctions as a centralizedgateway to the multiple drives in the shadow set. The new 
software makes many additional topologies suitable for shadowing, including DSSI 
drives, DSA drives, and shadowing across VMS MSCP servers. This last configuration 
allows shadow set members to be separated by any supported cluster interconnect, 
including FDDI. All essential shadowing functions are performed within the VMS 
operating system. New MSCP controllers and drives can optionally implement a set 
of shadowing performance assists, which Digital intends to support in a future 
release of the shadowing product. 

Overview 
Volume shadowing is a technique that provides data 
availability to computer systems by protecting 
against data loss from media deterioration, commu- 
nication path failures, and controller or device fail- 
ures. The process of volume shadowing entails 
maintaining multiple copies of the same data on 
two or more physical volumes. Up to three physical 
devices are bound together by the volume shadow- 
ing software and present a virtual device to the 
system. This device is referred to as a shadow set or 
a virtual unit. The volume shadowing software 
replicates data across the physical devices. All  shad- 
owing mechanisms are hidden from the users of the 
system, i.e., applications access the virtual unit as if 
it were a standard, physical disk. Figure 1 shows a 
VhlS Volume Shadowing Phase I1 set for a Digital 
Storage Systems Interconnect (DSSI) configuration 
of two VAX host computers. 

Product Goals 
The VMS host-based shadowing project was under- 
taken because the original controller shadowing 
product is architecturally incompatible with many 
prospective storage devices and their connectiv- 
ity requirements. Controller shadowing requires 
an intelligent, common controller to access all 

physical devices in a shadow set. Devices such as 
the RF-series integrated storage elements (ISEs) 
with DSSI adapters and the RZ-series small com- 
puter systems interface (SCSI) disks present config- 
urations that conflict with this method of access. 

To support the range of configurations required 
by our customers, the new product had to be capa- 
ble of shadowing physical devices located any- 
where within a VAXcluster system and of doing so 
in a controller-independent fashion. The VAXcluster 
VO system provides parallel access to storage 
devices from all nodes in a cluster simultaneously. 
In order to meet its performance goals, our shadow- 
ing product had to preserve this semantic also. 
Figure 2 shows clusterwide shadow sets for a hier- 
archical storage controller (HSC) configuration 
with multiple computer interconnect (CI) buses. 
When compared to Figure 1, this figure shows 
a larger cluster containing several clusterwide 
shadow sets. Note that multiple nodes in the cluster 
have direct, writable access to the disks comprising 
the shadow sets. 

In addition to providing highly available access to 
shadow sets from anywhere in a cluster, the new 
shadowing implementation had other require- 
ments. Phase I1 had to deliver performance com- 
parable to that of controller-based shadowing, 
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Figure 1 Phase IISbadow Set for a Llual-host DSSI Configuration 

I I 1 I 

ETHERNET 

maximize application 1/0 availability, and ensure 
data integr~ty for critical applications. 

In designing the new product, we benefited from 
customer feedback about the existing implemen- 
tation. This feedback had a positive impact on 
the design of the host-based shadowing imple- 
mentation. Our  goals to maximize application I/O 
availab~lity during transient states, to  provide ciis- 
tomizable, event-driven design and fail-over, to 
enablc all cluster nodes to manage the shadow sets, 
and to enhance system disk capabilities were all 
affcctcd by customer feedback. 

WORKSTATION 

DSA1: 
DSA2: 

Technical Challenges 
To provide volume shadowing in a VAXcluster envi- 
ronment running uncler the VMS operating system 
required that we solve complex, distributed sys- 
tems problems.' This section describes the most 
significant technical challenges w e  encountered 
and the solutions we  arrived at during the design 
and development of the product. 

MICROVAX II 

DSAl 
DSAP 

Membershil:, (,'on.sisleizcj~ To ensure the level of 
integrity required for high availability systems, the 
shadowing dcsign must guarantee that a shadow set 
has the same membership and states on all nodes in 
the cluster. A simple way to guarantee this property 
would have been a strict client-server implementa- 
tion, where one VAX computer serves the shadow 

set to the remainder of the cluster. This approach, 
however, would have violated several design goals; 
the intermediate hop required by data transfers 
would decrease system performance, and any pail- 
ure of the serving CPU would require a lengthy 
fail-over and rebuild operation, thus negatively 
impacting system availability. 

To solve the problem of membership consistency, 
we used the VMS distributed lock manager through 
a new executive threatl-level interface.'.' We 
designed a set of event-driven protocols that shad- 
owing uses to gilarantee membership consistency. 
These protocols allowed us to make the shadow 
set virtual unit a local device o n  all nodes in the 
cluster. Membership and state information about 
the shadow set is stored on all physical members in 
an on-disk data structure called the storage control 
block (scu). One way that shadowing uses this SCB 
information is to automatically determine the most 
up-to-date shadow set member(s) when the set is 
created. In addition to distributed synchronization 
primitives, the VMS lock manager provides a capabil- 
ity for managing a distributed state variable called a 
lock value block. Shadowing uses the lock value 
block to define a disk that is guaranteed to be a cnr- 
rent mcmher of the shadow set. Whenever a mem- 
bership change is made, all nodes take part in a 
protocol of lock operations; the value block and the 
on-disk sCB are the final arbiters of set constituency. 

WORKSTATION 

DSA1: 
DSAP: 
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Sequential Cornman& A sequential I/O com- 
mand, i.e., a Mass Storage Control Protocol (MSCP) 
conccpt, forces all commands in progress to com- 
plete before the sequential command begins execu- 
tion. While a sequential command is pending, 
all new I/O requests are stalled until that sequen- 
tial command completes execution. Shadowing 
requires the capability to execute a clusterwide, 
sequential command during certain operations. 
This capability, although a simple design goal for a 
client-servcr implementation, is a complex one for 
a distributed access model. We chose an event- 
driven, request/response protocol to create the 
sequential command capability. 

Since sequential commands have a negative 
impact on performance, we limited the use of these 
commands to performing membership changes, 
mount/dismount operations, and bad block and 
merge difference repairs. Steady state processing 
never requires using sequential commands. 

Full Copy A full copy is the means by which a 
new member of the shadow set is made current 

with the rest of the set. 'The challenge is to make 
copy operations unintrusive; application I/Os must 
proceed with minimal impact so that the level of 
service provided by the system is both acceptable 
and predictable. VMS file I/O provides record-level 
sharing through the application transparent lock- 
ing provided by the VAX RMS software, Digital's 
record management services. Shadowing operates 
at the physical device level to handle a variety of 
low-level errors. Because shadowing has no knowl- 
edge of the higher-layer record locking, a copy 
operation must guarantee that the application I/Os 
and the copy operation itself generate the correct 
results and do so with minimal impact on applica- 
tion 1/0 performance. 

Merge Operations Merge operations are triggered 
when a CPU with write access to a shadow set fails. 
mo te  that with controller shadowing, merge oper- 
ations are copy operations that are triggered when 
an HSC fails.) Devices may still be valid members of 
the shadow set but may no longer be identical, due 
to outstanding writes in progress when the host 
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Figure 2 Clusterwide Shadow Sets for an HSC Configuration with Multiple CZ Buses 

Digital Terbtrirril Journal Vo1. .? No. Summer 1791 

I I I VAX 6000 
DSAI : 
DSA2: 

CI 

DSA3: 
DSA4: 
DSA5: 
DSA6: 

V AX 
6000-360 
DSAI 
DSA2: 
DSA3: 
DSA4: 
DSA5: 
DSA6: 

KDM70 

VIRTUAL 
UNIT 
DSA6: 

CI 

I HSC70 

CI 

VIRTUAL 
UNIT 
DSA3: 

VIRTUAL 
UNIT 
DSA4: 

VIRTUAL 



Availability in VAXcluster Systems 

CPU failed. The merge operation must detect and 
correct thesc differences, so that successive appli- 
cation reads for the same data produce consistent 
results. As for full copy operations, the challenge 
with merge processing is to generate consistent 
results with minimal impact on application VO 
performance. 

Booting and Crashing System disk shadowing 
presents some special problems because the 
shadow set rnust be accessible to CPUs in the cluster 
when locl<ing protocols and inter-CPU communica- 
tion are disabled. In addition, crashing must ensure 
appropriate behavior for writing crash dumps 
through the primitive bootstrap driver, including 
how to propagate the dump to the shadow set. It 
was not practical to mod@ the bootstrap drivers 
because they are stored in read-only memory (ROM) 
on various CPU platforms that shadowing would 
support. 

Error Processing One major function of volume 
shadowing is to perform appropriate error process 
ing for members of the shadow set, while maximiz- 
ing data availability. To carry out this function, the 
software must prevent deadlocks between nodes 
and decide when to remove devices from the 
shadow set. We adopted a simple recovery ethic: a 
node that detects an error is responsible for fixing 
that error. Membership changes are serialized in the 
cluster, and a node only makes a membership 
change if the change is accompanied by improved 
access to the shadow set. A node never makes a 
change in membership without having access to 
some source members of the set. 

Architecture 
Phase 11 shadowing provides a local virtual unit on 
each node in the cluster with distributed control of 
that unit. Although the virtual unit 1s not served to 
the cluster, the underlying physical units that consti- 
tute a shadow set are served to the cluster using the 
standard VMS mechanisms. This scheme has many 
data availability advantages. The Phase I1 design 

Allows shadowing to use all the VMS controller 
fail-over mechanisms for physical devices. As a 
result, member fail-over approaches hardware 
speeds. Controller shadowing does not provide 
this capability. 

Allows each node in the cluster to perform error 
recovery based on access to physical data 

source members. The shadowing software treats 
communication failures between any cluster 
node and shadow set members as normi11 shad- 
owing events with customer-definable recovery 
metrics. 

Major Components 
VMS Volume Shadowing Phase II consists of two 
major components: SHDRIVER and SHADOW-SERVER. 
SHDRIVER is the shadowing virtual unit driver. As a 
client of disk class drivers, SHDRIVER is responsible 
for handling all I/O operations that are directed to 
the virtual unit. SHDRIVER issues physical VO opera- 
tions to the disk class driver to satisfy the shadow set 
virtual unit I/O requests. SHDRIVER is also responsi- 
ble for performing all distributed locking and for 
driving error recovery. 

SHADOW-SERVER is a VMS ancillary control pro- 
cess (ACP) responsible for driving copy and merge 
operations performed on the local node. Only one 
optimal node is responsible for driving a copy or 
merge operation on a given shadow set, but when a 
failure occurs the operation will fail over and 
resume on another CPU. Several factors determine 
this optimal node including the types of access 
paths, and controllers for the members and user- 
settable, per-node copy quotas. 

Primitives 
This section describes the locking protocols and 
error recovery processing functions that are used 
by the shadowing software. These primitives pro- 
vide basic synchronization and recovery mecha- 
nisms for shadow sets in a VAXcluSter system. 

Locking Protocols The shadowing software uses 
event-driven locking protocols to coordinate clus- 
terwide activity. These request/response protocols 
provide maximum application I/O performance. 
A VMS executive interface to the distributed lock 
manager allows shadowing to make efficient use of 
locking directly from SHDRIVER. 

One example of this use of locking protocols in 
VMS Volume Shadowing Phase I1 is the sequential 
command protocol. As mentioned in the Technical 
Challenges section, shadowing requires the sequen- 
tial command capability but minimizes the use of 
this primitive. Phase 11 implements the capability by 
using several locks, as described in the following 
series of events. 

A node that needs to execute a sequential com- 
mand first stalls I/O locally and flushes operations 
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in progress. The node then performs lock opera- 
tions that ensure serialization and sends sequential 
stall requests to other nodes that have the shadow 
set mounted. This initiating thread waits until all 
other nodes in the cluster have flushed their I/Os 
and responded to the node requesting the sequen- 
tial operation. Once all nodes have responded or 
left the cluster, the operations that compose the 
sequential command execute. When this process is 
complete, the locks are released, allowing asyn- 
chronous threads on the other nodes to proceed 
and automatically resume r/O operations. The local 
node resumes I/O as well. 

Error Recovery Processing Error recovery pro- 
cessing is triggered by either asynchronoirs notifica- 
tion of a communication failure or a failing I/O 
operation directed towards a physical member of 
the shadow set. Two major fiinctions of error recov- 
ery are built into the virtual unit driver: active and 
passive volume processing. 

Active volume processing is triggered directly by 
events that occur on a local node in the cluster. 
This type of volume processing uses a simple, local- 
ized ethic for error recovery from communication 
or controller failures. Shadow set membership 
decisions are made locally, based on accessibility. 
If no members of a shadow set are currently acces- 
sible from a node, then the membership does not 
change. If some but not all members of the set are 
accessible, the local node, after attempting fail- 
over, removes some members to allow application 
I/O to proceed. The system manager sets the time 
period during which members may attempt fail- 
over. The actual removal operation is a sequential 
command. The design allows for maximum flexibil- 
ity and quick error recovery and implicitly avoids 
deadlock scenarios. 

Passive volume processing responds to events 
that occur elsewhere in the cluster; messages from 
nodes other than the local one trigger the process 
ing by means of the shadowing distributed locking 
protocols. This volume processing function is 
responsible for verrfying the shadow set member- 
ship and state on the local node and for m o d ~ i n g  
this membership to reflect any changes made to the 
set by the cluster. To accomplish these operations, 
the shadowing software first reads the lock value 
block to find a disk guaranteed to still be in the 
shadow set. Then the recovery process retrieves 
the physical member's on-disk SCB data and uses 
this information to perform the relevant data struc- 
ture updates on the local node. 

Application I/O requests to the virtual unit are 
always stalled during volume processing. In the 
case of active volume processing, the stalling is nec- 
essary because many I/Os would fail until the error 
was corrected. In passive volume processing, the 
I/O requests are stalled because the membership of 
the set is in doubt, and correct processing of the 
request cannot be performed until the situation is 
corrected. 

Steady State Processing 
The shadowing virtual unit driver receives applica- 
tion read and write requests and must direct the 110 
appropriately. This section describes these steady 
state operations. 

Read Algorithms 
The shadowing virtual unit driver receives applica- 
tion read requests and directs a physical I/O to an 
appropriate member of the set. SHDRTVER attempts 
to direct the 1/0 to the optimum device based on 
locally available data. This decision is based on 
(1) the access path, i.e., local or served by the VMS 
operating system, (2) the service queue lengths at 
the candidate controller, and (3) a round-robin algo- 
rithm among equal paths. Figure 3 shows a shadow 
set read operation. A n  application read to the 
shadow set causes a single physical read to be sent 
to an optimal member of the set. In Figure 3, there 
is one local and one remote member, so the read is 
sent to the local member. 

Data repair operations caused by media defects 
are triggered by a read operation failing with an 
appropriate error, such as forced error or parity. 
The shadowing driver attempts this repair using 

I CLUSTER INTERCONNECT I 

Figzire 3 Shadow Set Read Operation 
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another member of the shadow set. This repair 
operation is performed with the synchronization of 
a sequential command. Sequential protection is 
requked because a read operation is being con- 
verted into a write operation without explicit, RMS- 
layer synchronization. 

Write Algorithms 
The shadowing virtual unit driver receives applica- 
tion write requests and then issues, in parallel, 
write requests to the physical members of the set. 
The virtual unit write operation does not complete 
until ;ill physical writes complete. A shadow set 
write operation is shown in Figure 4. Physical write 
operations to membcr iutits can fail or be timed 
out; either condition triggers the shadowing error 
recovery logic and can cause a fail-over or the 
removal of the erring device from the shadow set. 

Transient State Processing 
Shadowing performs a variety of operations in 
order to maintain consistency among the members 
of the set. These operations include full copy, 
merge, and data repair and recovery. This section 
describes these transient state operations. 

Full Copy 
Full copy operations are performed under direct 
system manager control. When a disk is added to 
the shadow set, copy operations take place to make 
the contents of this new set member identical to 
that of the other members. Copy operations are 
transparent to application processing. ?'he new 
membcr of the shadow set does not provide any data 
avai1;lbility protection until the copy complctes. 

There is no explicit gatekeeping during the copy 
operation. Thus, application read and writc opcra- 
tions occur in parallel with copy thrcad reitds i~nd 
writes. As shown in Figure 5, correct results arc 
accomplished by the following algorithm. During 
the fill1 copy, the shadowing driver processes appli- 
cation write operations in two groups: first, those 
directed to all source members and seconcl, writes 
to all fill1 copy targets. The copy thread performs a 
sequence of read source, compare target, and write 
target operations on each logical block number 
(LBN) range until the compare operation succeeds. 
If an mN range has such frequent activity that the 
compare fails many times, SHDKNER performs a 
synchronized update. A distributed fence provides 
a clusterwide boundary between the copied and 
the uncopicd areas of the new member. This fence 
is used to avoid performing the special fill1 copy 
mechanisms on application writes to that area of 
the disk already processed by the copy thread. 

This algorithm meets the goal of operational cor- 
rectness (both the application and the copy thread 
achieve the proper results with regard to the con- 
tents of the shadow set members) and requires no 
synchronization with the copy thread. Thus, the 
algorithm achieves maximum application I/O avail- 
ability during the transient state. Crucial to achiev- 
ing this goal is the fact that, by design, the copy 
thrcad does not perform I/O optimization tech- 
niques such as double buffering. The copy opera- 
tions receive equal service as application I/Os. 

Merge Operations 
The VMS Volume Shadowing Phase I1 merge algo- 
rithm meets the product goals of operational 

APPLICATION 

VIRTUAL 

WRITE 

I I SHADOWSET I 
I 

SHADOWING LAYER *[7 1 - 1 - * ~  
I I I 

Figure 4 Shadmu Set Write Operation 
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APPLICATION 110s 

COPY 110s 
(FOR AN LEN RANGE) TARGET 

WRITE 
TARGET 

Note: No synchronization exlsts between the application and copy operations. 
110s can occur in parallel on d~fferent nodes In the cluster. Regardless of how the 
operations overlap, the correct data is copied to the target. 

Figure 5 Full Copy Algorithm 

correctness, while maintaining high application I/O 
availability and minimal synchronization. A merge 
operation is required when a CPU crashes with 
the shadow set mounted for write operations. A 
merge is needed to correct for the possibility of par- 
tially completed writes that may have been out- 
standing to the physical set members when the 
failure occurred. The merge operation ensures that 
all members contain identical data, and thus the 
shadow set virtual unit behaves like a single, highly 
available disk. It  does not matter which data is more 
recent, only that the members are the same. This 
satisfies the purpose of shadowing, which is to pro- 
vide data availability. But since the failure occurred 
while a write operation was in progress, this con- 
sistent shadow set can contain either old or new 
data. To make sure that the shadow set contains the 
most recent data, a data integrity technique such as 
journaling must be employed. 

In Phase I t  shadowing, merge processing is dis- 
tinctly different from copy processing. The shadow 
set provides fill1 availability protection during the 
merge. As a result, merge processing is intention- 
ally designed to be a background activity and to 
maximize application I/O throughput while the 
merge is progressing. The merge thread carefully 
monitors I/O rates and inserts a delay between its 
I/Os if it detects contention for shared system 
resources, such as adapters and interconnects. 

In addition to maximizing I/O availability, the 
merge algorithm is designed to minimize synchro- 
nization with application I/Os and to identify and 
correct data inconsistencics. Synchronization takes 
place only when a rare difference is found. When 

an application read operation is issued to a shadow 
set in the merge state, the set executes the read 
with merge semantics. Thus, a read to a source and 
a parallel compare with the other members of the 
set are performed. Usually the compare matches 
and the operation is complete. If a mismatch is 
detected, a secluential repair operation begins. The 
merge thread scans the entire disk in the same 
manner as the read, looking for differences. A dis- 
tributed fence is used to avoid performing merge 
mechanisms for application reads to that area of 
the disk already processed by the merge thread. 
Figure 6 illustrates the merge algorithm. 

Note that controller shadowing performs an 
operation called a merge copy. Although this HsC 
merge copy operation is designed for the same pur- 
pose as the Phase I1 operation, the approaches dif- 
fer greatly. An HSC merge copy is triggered when 
an HSC, not a shadow set, fails and performs a copy 
operation; the HSC merge copy does not detect 
differences. 

Performance Assists 
A future version of the shadowing product is 
intended to utilize controller performance assists 
to improve copy and merge operations. These 
assists will be used automatically, if supported by 
the controllers involved in accessing the physical 
members of a shadow set. 

COPY-DATA is the ability of a host to control a 
direct disk-to-disk transfer without the data enter- 
ing or leaving the host CPU I/O adapters and mem- 
ory This capability will be used by full copy 
processing to decrease the system impact, the 
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APPLICATION 110s 
SOURCE 

WlTH OTHER 

SYNCHRONIZE 
AND REPAIR 

MERGE 110s 
(FOR AN LEN RANGE) 

WlTH OTHER 

Note: Infrequent synchronization exists between the application and merge operations. 
110s can occur in parallel on different nodes in the cluster. Regardless of how the operations 
overlap, data integrity is prese~ed.  

Figure 6 Merge Algorithm 

bandwidth, and the time required for a fill1 copy. 
The members of the set and/or their controllers 
must share a common interconnect in order to 
use this capability. The COPY-DATA operation per- 
forms specific shadowing around the active, copy 
LBN range to ensure correctness. This opcration 
involves LBN range-based gatekeeping in the copy 
target device controller. 

Controller write logging is a future capability in 
controllers, such as HSCs, that will allow more effi- 
cient merge processing. Shadowing write opcra- 
tion messages will include information for the 
controller to log UOs in its memory. These logs will 
then be used by the remaining host Cl'Us during 
merge processing to determine exactly which 
blocks contain outstanding write operations from a 
failed CPU. With such a performance assist, merge 
operations will take less time and will have less 
impact on the system. 

Data Repair and Recovery 
As discussed in the Primitives section, data repair 
operations are triggered by failing reads and are 
repaired as sequential commands. Digital Storage 
Architecture (DSA) devices support two primitive 
capabilities that are key to this repair mechanism. 
When a DSA controller detects a media error, the 
block in question is sometimes repaired automati- 

cally, thus requiring no shadowing intervention. 
When the controller cannot repair the data, a spare 
block is revectored to this LBN, and the contents of 
the block are rnarkecl with a forced error. This 
causes subsequent read operations to fail, since the 
contents of the block are lost. 

The forced error returned on a read operation is 
the signal to the shadowing software to execute a 
repair opcration. SHDRNER attempts to read usable 
data from another source device. If such data is 
available, the software writes the data to the revec- 
tored block and then returns the data to the applica- 
tion. If no usable data source is available, the 
software performs write operations with a forced 
error to all set members and signals the application 
that this error condition has occurred. Note that a 
protected system buffer is used for this operation 
because the application reading the data may not 
have write access. 

A future shatlowing product is intended to s u p  
port SCSI peripherals, which do not have the DSA 
primitives outlined above. There is no forced error 
indicator in the SCSI architecture, and the revector 
operation is nonatomic. To perform shadowing 
data repair on such devices, we will use the READL/ 
WRITEL capability optionally supported by SCSI 
devices. These I/O functions allow blocks to be 
read and written with error correction code (ECC) 
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data. Shadowing emulates forced error by writing 
data with an intentionally incorrect ECC. To circum- 
vent the lack of atomicity on the revector opera- 
tion, a device being repaired is temporarily marked 
as a full copy target until the conclusion of the 
repair operation. If the CPU fails in the middle of a 
repair operation, the repair target is now a full copy 
target, which preserves correctness in the pres- 
ence of these nonatomic operations. 

System Disk 
System disk shadow sets presented some unique 
design problems. The system disk must be accessed 
through a single bootstrap driver and hence, a sin- 
gle controller type. This access takes place when 
multihost synchronization is not possible. These 
two access modes occur during system bootstrap 
and during a crash dump write. 

Shadowed Booting 
The system disk must be accessed by the system ini- 
tialization code executing on the booting node 
prior to any host-to-host communication. Since the 
boot drivers on many processors reside in ROM, it 
was impractical to make boot driver modifications 
to support system disk processing. To solve this 
problem, the system disk operations performed 
prior to the controller initialization routine of the 
system device driver are read-only. It is safe to read 
data from a clusterwide, shared device without syn- 
chronization when there is little or no risk of the 
data being modified by another node in the cluster. 
At controller initialization time, shadowing builds a 
read-only shadow set that contains only the boot 
member. Once locking is enabled, shadowing per- 
forms a variety of checks on the system disk 
shadow set to determine whether or not the boot is 
valid. If the boot is valid, shadowing turns the sin- 
gle-member, read-only set into a multimember, 
writable set with preserved copy states. If this node 
is joining an existing cluster, the system disk shadow 
set uses the same set as the rest of the cluster. 

Crash Dumps 
The primitive boot driver uses the system disk to 
write crash dumps when a system failure occurs. 
This driver only knows how to access a single physi- 
cal disk in the shadow set. But since a failing 
node automatically triggers a merge operation on 
shadow sets mounted for write, we can use the 
merge thread to process the dump file. The merge 

occurs either when the node leaves the cluster 
(if there are other nodes present) or later, when the 
set is reformed. As the source for merge difference 
repairs, the merge process attempts to use the 
member to which the dump file was written and 
propagates the dump file to the remainder of the 
set. The mechanism here for dump file propagation 
is best-effort, not guaranteed; but since writing the 
dump is always best-effort, this solution is consid- 
ered acceptable. 

Conclusion 
VMS Volume Shadowing Phase 11 is a state-of-the-art 
implementation of distributed data availability. The 
project team arrived at innovative solutions to 
problems attributable to a set of complex, conflict- 
ing goals. Digital has applied for four patents on var- 
ious aspects of this technology. 
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Application Design in a VXcluster System 

VAXclzlster syste~?zsprouide apexible zuay to config~~re ci co~nputing system that can 
suruiue the fuil~rr-e of a1g1 conzpoizeill. In addition, these systems can grow with an 
organization and can be serviced ujithout disruption to applications. These 
fectlures make v~xclzister systems an ideal base for developing high-availability 
applications s~ich as transactio?~ processing systems, seruers for network client- 
setver afiplications, and data sharing applications. Understanding the basic design 
of l2XcIzuter slatenu clnd the possible configuration options can help application 
desi~ncrs take adr1cinlage of the ai~ailability and growth characteristics of these 
system. 

Many organizations clepend on near constant 
access to data and computing resources: intcrrup- 
tion of these services results in the intcrruption of 
primary business functions. In addition, growing 
organizations face the need to increase the amount 
of computing power available to them over an 
extended period of time. VAXcluster systems pro- 
vide solutions to these data availability and growth 
problems that modem organizations face.' 

This paper begins with an overview of VAXchSter 
systems and application design in such systems and 
proceeds with a detailed discussion of VAXcluster 
design and implementation. The paper then focuses 
on how this information affects the design of appli- 
cations that take advantage of the availability and 
growth characteristics of a VAXcluster system. 

Oueroiew of VAXckrster Systems 
VkYcluster systems are loosely coupleci rnulti- 
processor configurations that allow the system 
designer to coniigure redundant harclw;~rc that can 
survive most types of equipment failurch. These 
systems provide a way to add new processors and 
storage resources as required by the organization. 
This feature eliminates the need either to buy 
nonessential equipment initially or to experience 
painful upgrades and application conversions as 
the systems are outgrown. 

The VMs operating system, which runs on each 
processor node in a VAXchster system, provides a 
high level of transparent data sharing and indepen- 
dent failure characteristics. The processors interact 
to form a cooperating distributed operating 
system. In this system, all disks and their stored files 
are accessible from any processor as if those files 

were connectetl to a single processor. Files can be 
shared transparently at the record level by applica- 
tion software. 

To provide the features of a VAXcluster system, 
the VMS operating sjrstenl was enhanced to facili- 
tate this data sharing and the dynamic adjustment 
to changes in the underlying hardware configu- 
ration. These enhancements make it possible to 
dynamically add multiple processors, storage con- 
trollers, disks, and tapes to a Vkvcluster system con- 
figuration. Thus, an organization can pi~rchase a 
small system initially and expand as needed. The 
adclition of computing ancl storage resources to the 
existing configuration requires no software rnodifi- 
cations or application conversions and can be 
accomplished without shutting down the system. 
The ability to use redundant devices virtually elimi- 
lutes single points of failure. 

Application Design in a VRXcluster 
Environment 
Application design in a VAXcluster environment 
involves making some basic choices. These choices 
concern the type of application to be designed and 
the method used to synchronize the events that 
occur during the execution of the application. The 
designer must also consicler application communi- 
cation within a VAXclllster system. A discussion of 
these issues follows. 

General Choices for Application Design 
This section briefly describes the general choices 
available to application designers in the areas of 
client-server computing and data access. 
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Client-server Compziting The VAXcluster environ- 
ment provides a fine base for client-server comput- 
ing. Application designers can construct server 
applications that run on each node and accept 
requests from clients running on nodes in the 
v'cluster system or elsewhere in a wider network. 

If the node running a server application fails, the 
clients of that server can switch to another server 
running on a surviving node. The new server can 
access the same data on disk or tape that was being 
accessed by the server that failed. In addition, the 
redundancy offered by the VMS Volume Shadowing 
Phase I1 software eliminates data unavailability in 
the event of a disk controller or media f a i l ~ r e . ~  The 
system is thus very available from the perspective 
of the client applications. 

Access to Storage Devices Many application design 
questions involve how to best access the data stored 
on disk. One major advantage of the VAXcluster 
system design is that disk storage devices can be 
accessed from all nodes in an identical manner. The 
application designer can choose whether the 
access is simultaneous from multiple nodes or from 
one node at a time. Consequently, applications can 
be designed using either partitioned data access or 
shared data access. 

Using a partitioned data model, the application 
designer can construct an application that limits 
data access to a single node or subset of the nodes. 
The application runs as a server on a single node 
and accepts requests from other nodes in the clus- 
ter and in the network. And because the appli- 
cation runs on a single node, there is no need 
to synchronize data access with other nodes. Elimi- 
nating this source of communication latencies can 
improve performance in many applications. Also, if 
synchronization is not required, the designer can 
make the best use of local buffer caches and can 
aggregate larger amounts of data for write opera- 
tions, thus minimizing I/O activity 

An application that uses partitioned data access 
lends itself to many types of high-performance 
database and transaction processing environments. 
VAXcluster systems provide such an application 
with the advantage of having a storage medium 
that is available to all nodes even when they are 
not actively accessing the data files. Thus, if the 
server node fails, another server running on a sur- 
viving node can assume the work and be able to 
access the same files. For this type of application 
design, VkYcluster systems offer the performance 

advantages of a partitioned data model without the 
problems associated with the failure of a single 
server. 

Using a shared data model, the application 
designer can create an application that runs simul- 
taneously on multiple vucluster nodes, which nat- 
urally share data in a file. This type of application 
can prevent the bottlenecks associated with a sin- 
gle server and take advantage of opportunities for 
parallelism on multiple processors. The VAX &\IS 
software can transparently share files between mul- 
tiple nodes in a V'cluster system. Also, Digital's 
database products, such as Rdb/VMs and VAX DBMS 
software, provide the same data-sharing capabili- 
ties. Servers running on multiple nodes of a 
VAXcluster system can accept requests from clients 
in the network and access the same files or 
databases. Because there are multiple servers, the 
application continues to function in the event that 
a single server node fails. 

Application Synchronization Methoak 
The application designer must also consider how to 
synchronize events that take place on multiple 
nodes of a VAXcluster system. Two main methods 
can be used to accomplish this: the vMS lock man- 
ager and the DECdtm services that provide VMS 

transaction processing support. 

VMS Lock Manager The VMS lock manager pro- 
vides services that are flexible enough to be used 
by cooperating processes for mutual exclusion, 
synchronization, and event n0tification.j An appli- 
cation uses these services either directly or indi- 
rectly through components of the system such as 
the VAX RMS software. 

DECdtln Services The VMS operating system pro- 
vides a set of services to facilitate transaction 
processing.' These DECdtm services enable the 
application designer to implement atomic trans- 
actions either directly or indirectly. The services 
use a two-phase commit protocol. A transaction 
may span multiple nodes of a cluster or network. 
The support provided allows multiple resource 
managers, such as the VAX DBMS, Rdb/VMS, and V '  

RMS software products, to be combined in a single 
transaction. The DECdtm transaction processing 
services take advantage of the guarantees against 
partitioning, the distributed lock manager, and the 
data availability features, all provided by VAXcluster 
systems. 
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TrAXclustet- mzd Networkwide 
(;i,mrnu?zication Serr~ices 
i-Ipplication communication between different pro- 
cessors in ;I VIU;cl~~ster system is gener;tlly accom- 
plished using D1:Cnet task-to-task communication 
services or other networking software such as the 
transmission control protocol (TCP) and the inter- 
net protocol (IP). Client-server applications or 
peer-to-peer ;cpplications are easy to develop with 
these serviccs. The services allow processes to 
locate or st;lrt remote servers and then to exchange 
messages. 

Since the indiviclu;~l nodes of a \'rtYcluster system 
exist as separate entities in a wider communication 
network, applications communication inside a 
V..cluster system can rely on general network 
interfaces. Thus, no special-purpose communica- 
tion services n7crc developed. Applications are 
simpler to design when they can communicate 
within the cluster in the same manner in which 
they communicate with nodes located outsicle the 
VAXcluster system. 

A DE(:net feature known as cluster alias provides 
a collective name for the nocles in a \ir\Scluster 
system. Application softn~tre can connect to a node 
in the cluster using the cluster alias name rather 
than a specific node name. This feature frees the 
application from keeping track of individual nodes 
in the Vucluster system and results in design sim- 
plZication and configuration flexibility. 

VAXcluster Design and Implementation 
Details 
To unclerstand how the design and imp1ement;ction 
of a Vk\tcluster system affects application design, 
one must be familiar with the basic architecture of 
such a system, as shown in Figure 1. This section 
describes the I:tjrers, which range from the commu- 
nication mechanisms to the users of the system. 

Port Layer 
The port layer consists of the lowest levels of the 
architecture, including a choice of communication 
ports and physical paths (buses). The VAXcluster 
software recl~~ircs at least one logical communica- 
tion pathway between each pair of processor nodes 
in the VAXcluster system. Several of the ports utilize 
multiple physical communic;~tion paths, which 
appear as a single logical path to the Viotcluster 
software. This redundancy provides bettcr commu- 
nication throughput and higher availability. If mul- 
tiple logical paths exist between a pair of nodes, the 

VAScluster software generally selects one for active 
uhe and relies on the remaining paths for backup in 
thc event of fitilure. 

The port layer can contain any of the following 
interconnects: 

Computcr Interconnect (CI) bus 

Ethernet 

Fiber distributed data interface (FDDI) 

Digital Storage Systems Interconnect (DSSI) bus 

Each bus is accessed by a port (also callecl an 
adapter) that connects to the processor node. For 
example the cI bus is accessed by way of a CI port. 
The various buses provide a wide spectrum of 
choices in terms of wire and adapter capacity, num- 
ber of nodes that can be attached, distance 
between nodes, and cost.' 

The CI bus was designed for access to storage and 
for reliable host-to-host communications. Each CI 

port connects to two redundant, high-speed physi- 
cal paths. The CI port dynamically selects one of the 
two paths for each transmitted message. Messages 
are received on either path. Thus, two nodes can 
communicate on one path at the same time that 
two other nodes communicate on the other. If one 
physical path fails, the port simply uses the remain- 
ing path. The existence of the two physical paths is 
hiddcn from the software that uses the CI port ser- 
vices. From the standpoint of the cluster software, 
each port represents a single logical path to a 
remote node. Multiple CI ports can be used to pro- 
vide multiple logical paths between pairs of nodes. 
An automatic load-sharing feature distributes the 
load between pairs of ports. 

The DSsI bus was primarily designed for access to 
disk and tape storage. However, the bus has proven 
an excellent way to connect small numbers of pro- 
cessors using the Vkucluster protocols. Each DSSI 
port connects to a single high-speed physical path. 
As in the case of the CI bus, several DSSI ports may 
be connected to a node to provide redundant 
paths. (Note that the KFQSA DSSI port is for storage 
access only and provides no general communica- 
tion service between nodes.) 

Ethernet and FDDI are open local area networks, 
generally shared by a wide variety of consumers. 
Consequently, the VAXcluster software was designed 
to use the Ethernet and FDDI ports and buses simul- 
taneously with the DECnet or TCP/IP protocols. This 
is accomplished by allowing the Ethernet data 
link software to control the hardware port. This 

Vo1. ,j i\b 3 S~im~rzer 1991 Digital Technical Journal 



Application Design in a VMclzister System 

software provides a multiplexing fiinction such when multiple ports are used. The port driver soft- 
that the cluster protocols are simply another user of ware combines the multiple Ethernet and FDDI 
a shared hardware resource. paths into a single logical path between any pair of 

Each Ethernet and FDDI port connects to a single nodes. The load is automatically distributed among 
physical path. There may be more than one port on the various possible physical paths by an algorithm 
each processor node. This means that there may be that chooses the best path in terms of adapter 
many separate paths between any pair of nodes capacity and path l a t en~y .~  
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System Communications Services Layer 
The system communications services (SCS) layer of 
the V~Xcluster architecture Is implemented in a 
combination of hardware and software or software 
only, depending upon the type of port. The SCS 
layer manages a logical path between each pair of 
nodes in the VAxcluster system. This logical path 
consists of a virtual circuit (VC) between each pair 
of SCS ports and a set of sCS connections that are 
multiplexed 011 that virtual circuit. The sCs pro- 
vides basic connection management and communi- 
cation services in the form of datagrams, messages, 
and block transfers over each logical path. 

The datagram is a best-effort delivery service 
which offers no guarantees regarding loss, dupIim- 
tion, or ordering of datagrams packets. This service 
requires no connection between the communicat- 
ing nodes. In general, the VAXcluSter software 
makes minimal use of the datagram service. 

The message and block transfer services take 
place over an SCS connection. Consumers of SCS 

services communicate with their counterparts on 
remote nodes using these connections. Multiple 
connections are multiplexed on the logical path 
provided between each pair of nodes in the 
VhXcluster system. 

The message service is reliable and guarantees 
that there will be no loss, duplication, or permuta- 
tion of message sequence on a given connection. 
The connection will break rather than allow the 
consumer of the service to perceive such errors. 

The block transfer service provides a way to 
transfer quantities of data directly from the mem- 
ory of one node to that of another. For C? ports, the 
port hardware accomplishes the block transfer, 
thus freeing the host processor to perform other 
tasks. Some DSSI ports use hardware to copy data 
and others rely on software to perform this h c -  
tion. Depending on &he exact model of an Ethernet 
or FDDI port, the port software, rather than the 
hardware, moves the data. 

System Applications 
The next higher layer in the VAXcluster architecture 
consists of multiple system applications (SYSAPs). 
These applications provide, for example, access to 
disks and tapes and cluster membership control. 
The following sections describe some S W s .  

Connection Manager The connection manager 
serves three major functions. First, the connection 
manager knows which processor nodes are active 

members of the VAXcluster system and which are 
not This is accomplished through a concept of 
cluster "rnembershlp." Nodes are explicitly added 
to and removed from the active set of nodes by a 
distributed software algorithm. In a VAXcluster 
system, every processor node must have an open 
SCS connection to all other processor nodes. Once 
a booting node establishes connections to all other 
nodes currently in the VAXcluster system, this node 
can request admission to the system. When one 
node is no longer able to communicate with 
another nocle, one of the two nodes must be 
removed from the \?.cluster system. 

In a VAXcluster system, all nodes have a consis- 
tent view of the cluster membership in the pres- 
ence of permanent and temporary cornmullication 
failures. This consistency is acco~nplished by using 
a two-phase commit protocol to form the cluster, 
add new nodes, and remove failed nodes. 

The second function providcd by the connection 
manager is an extension of the SCS message service. 
This extension guarantees that the service will (1) 
deliver a message to a remote node or (2) remove 
either the sending node or the receiving node from 
the cluster. The strong notion of cluster member- 
ship provided by the connection manager makes 
this guarantee possible. The service attempts to 
deliver the queued messages to remote nodes. If a 
connection breaks, the service attempts to reestab- 
lish communication to the remote node and resend 
the message. After a period of time specified by the 
system mmsger, the service declares the connec- 
tion irrwocably broken and removes either the 
sending or the receiving node from the VAXcluster 
mmbcrship. Thus, the service hides all temporary 
communication failures from its client. 

This message service allows users to construct 
efficient protocols that do not require acknowledg 
ment of messages. The service proved to be a very 
powerful tool in the design of the VMS lock man- 
ager. The delivery guarantees inherent in the ser- 
vice minimize the number of messages required to 
perform any given locking function, resulting in a 
corresponding increase in performance. The abil- 
ity to hide failures by updating cluster membership 
further simplified the lock manager design and 
increased performance; this capability enabled the 
removal of logic used to handle changes in 
VAXcluster configurations and communication 
errors from all main lock manager code paths. 

The third function of the connection manager 
is to prevent partitioning of the possible cluster 
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members. Partitioning of a system exists when s e p  
arate processing elements function independently. 
Lf a system allows data sharing, completely indepen- 
dent processing can result in uncoordinated access 
to shared resources and lead to data corruption. 

In a VAXcluster system, processors communicate 
and coordinate access to resources by means of a 
voting algorithm. The system manager assigns a 
number of votes to each processor node based on 
the importance of that node. The system manager 
also informs each node of the total number of possi- 
ble votes. The algorithm requires that more than 
half of these votes be present in a VAXcluster system 
for nodes to function. When the sum of all votes 
contributed by the members of a VAXcluster sys- 
tem falls below this quorum, the VMS software 
blocks I/O to mounted devices and prevents the 
scheduling of processes. As nodes join the cluster, 
votes are added. Activity resumes once a quorum is 
reached. 

In practice, the connection manager uses two 
measurements of the number of votes: static and 
dynamic. The static count of votes is the globally 
agreed 011 number of votes contributed by cluster 
members. This count is created ignoring the state of 
connections between nodes. The value of the static 
quorum changes only at the completion of two- 
phase commit operations, which accomplish a 
user-requested quorum adjustment in addition to 
performing the other activities mentioned earlier 
in this Connection Manager section. 

Each node independently maintains the dynamic 
count. l'liis count represents the sum of all votes 
contributetl by ViDtcluster members wit11 which 
the tallying node has a functional connection. 
Changes in the dynamic quorum, and not the static 
quorum, initiate the blockage of process and I/O 
activity. 

To provide configurations with a small number of 
nodes, e.g., two nodes, the concept of a quorum 
disk was invented. The system manager assigns a 
disk to contribute votes to the cluster. A node must 
be able to access a file on the disk in order to 
include the votes assigned to that disk in the node's 
own total. Consequently, a special algorithm is used 
to acccss the file. This algorithm ensures that 
two unrelated nodes cannot both count the quo- 
rum disk votes. Doing so could result in partitioned 
operation. 

Mass Stora,qc Control Protocol Server The Mass 
Storage Control Protocol (MSCP) server allows 

disks that are attached to one or more VAX proces- 
sors to be accessed by other processors in the 
VAXcluster system. Thus, a ViDtcluster processor 
may emulate a multihost disk controller by accept- 
ing and processing I/O requests from other nodes 
and accessing the disk indicated by the request. The 
server can process multiple commands simulta- 
neously and also performs fragmentation of com- 
mands if there is not enough system buffer space 
to accommodate the entire amount of data at 
one time. 

Hierarchical Storage Controllers, Local Control- 
lers, and RF-series Integrated Storage Elements 
Hierarchical storage controller (HSC) servers are 
specialized devices that perform MSCP serving of 
Iw-series disk drives and TA-series tape drives in a 
VAXcluster system. HSC servers connect directly to 
the CI bus. In addition to providing the host with 
access to the storage media, HSC servers accom- 
plish performance optimizations such as seek- 
ordering and request fragmentation based on 
real-time head position information. The local disk 
controllers attached to the RA- and TA-series stor- 
age devices perform the same function for a single 
host processor. The RF-series integrated storage ele- 
ments (ISEs) attach to a DSSl bus. Each of these disk 
storage devices performs its own command queu- 
ing and optimization without using a dedicated 
controller. 

Disk Class Driver The disk class driver allows 
access to disks served by an MSCP server, an HSC 
controller, a local Digital Storage Architecture (DSA) 
controller, or attached to a DSSI bus. This driver p r o  
vides a command queuing function that allows a 
disk controller to have multiple outstanding com- 
mands which can be used to provide seek, rotation, 
and other performance optimizations. To handle 
temporary communication interruptions, the driver 
restarts commands as needed. 

VAXcluster systems can be configured so that all 
disks are accessed by way of redundant paths for 
increased availability. The way in which this is 
accomplished depends on the type of disk and the 
disk controller. 

RF-series disks contain integrated controllers 
that connect to a single DSSI storage bus. This bus 
can be accessed by up to two VAX processors. Each 
VAX processor can then serve the disks to all other 
nodes in the VkVcluster system. Thus, two paths are 
provided to each disk. 
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RA-series disks connect to up to two storage con- 
trollers. These controllers can be either (1) loc;tl 
adapters attached clirectly to a single processor 
node or (2) HS<: controllers 1oc:ited on the (:I bus. 
Disks connected to local adapters can be served to 
other nodes of the VAXcluster system. Disks located 
on an HS<: controller can be directly ;iccesscd by 
processors t1i;it ;ire not on that bus. Thus, the use of 
~nultiple controllers when combincd with disk 
serving provitles at least two paths to a disk from 
every node in the VAXcluster system. 

Since many paths exist to gain access to a disk, 
the disk class drivcr chooses which path to use 
when a disk is initially mounted by a node. If the 
path to the disk becomes inopcr;itive, the disk cl;tss 
driver locates another path and begins to use i t .  
Server load and type of path, i.e., loc:tl or re~note, 
are considered when selecting the new path. 'l'his 
reconfiguration is totally transparent to the end 
user of the disk I / ( )  service. 

Tape Class Lh-iver 'I'he tape class driver performs 
functions in a VAXcluster system similar to those of 
the disk class driver by providing access to t;ipcs 
located on HS<: controllers, loc;il controllers, ancl 
DSSl huses. 

VMS Components Lccyet-ed otz Top of 
SKSAPs 
The SYSAPs provide basic services that other VMS 
components use to provide a wide range of 
V,\Xcluster features. 

Volzrnle Shadoulit~g The volume shadowing prod- 
uct allows multiple disks to be utilized as a single, 
highly available disk. Volume shaclomring provides 
transparent access to the data in the event of disk 
media or controller failures, media degradation, 
and communication failures.' The shadowing layer 
works in conjunction with the disk cl;iss driver to 
accomplish this task. With the advent of VMS 

Volume Shatlowing 1'h;tse 11, disk shadowing is 
extended to many new configurations. 

Lock Manager The VMS lock manager is a system 
service that provides a distributed synchronization 
function used by many components of the VhlS 

operating system, including volume shadowing, 
the file system, \?LY RMS software, and the 
batch/print system. Application programs can also 
use the lock manager directly. 

The lock manager provides a n;inle space that 
is truly clusterwide. Cooper;iting processes can 
request locks on a specific resource nanic. The lock 
mstnager either grants or denics these requests. 
Processes can also queuc requests. The lock man- 
ager services allow processes to coordinate the 
means of access to physical resources or simply pro- 
vide a communication pathway between pro- 
cesses. Processes can use the service for such tasks 
as mutual exclusion, event notification, and server 
failure tletection.'- The lock manager uses the com- 
munication service provided by the connection 
rnanitger to minimize the message count for a given 
operation and to simpllfy the design by eliminating 
the need to consicler changes in cluster member- 
ship from all main paths of operation. 

Process Control Serziices The VMS process con- 
trol system services take advantage of VAXcluster 
systems. Applications can use these services to 
alter process states on remote nodes and to collect 
information about those processes. In the future, it 
is likely that other services will be extended to 
make optimal use of VAXcluster capabilities. 

File S~l.stmz The VMS file system (XQP) allows disk 
devices to be accessed by multiple nodes in a 
\?iXcluster system. The file system uses the lock 
manager to coordinate disk space allocation, buffer 
caches, modification of file headers, and changes to 
the directory structure." 

Record Management Services The VAX RiMS soft- 
ware allows the sharing of file data by processes 
running on the same or multiple nodes. The soft- 
ware uses the lock manager to coordinate access to 
files, to record data within files, and to global 
buffers. 

Batcl~/Prinl System The batch/print system allows 
users to submit batch or print jobs on one node and 
run them on another. This system provides a form 
of load distribution, i.e., generic batch queues can 
feed executor queues on each node. Jobs running 
on a failed node can be restarted automatically on 
another node in the VAXcluster system. 

An Application Constructed Using 
VAXclluster Mechanisms 
The VMS software build process is an example of 
how these mechanisms can be i~sed to benefit 
application design. The WlS software build is 
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broken down into various phases such as fetch 
sources, compile, and link. The phases must exe- 
cute in a given order but are otherwise indepen- 
dent. Each phase can be restarted from the 
beginning if there is an error. Each major compo- 
nent of the VMS operating system is processed sep- 
arately during each of the phases. All sources reside 
on a shared disk to  which all nodes of the 
vacluster  system have access; the output disk 
is shared by all nodes also. A master data file 
describes the phases and the components. For a 
given phase, the actions required for each compo- 
nent are fed into a generic batch queue. This queue 
feeds the jobs into work queues on multiple nodes, 
resulting in the execution of many jobs in parallel. 
When all jobs of a phase have completed, the next 
phase starts. If a node fails during the execution of a 
job, that job is restarted automatically on another 
node either from the beginning or from a check- 
point in the job. This use of shared disks and batch 
queues provides great parallelism and reliability in 
the VMS build process. 

The Impact of VAxchster Design and 
Implementation on Applications 
This section discusses how multiple communica- 
tion paths, membership changes, disk location and 
availability, controller selection, disk and tape path 
changes, and disk failure impact application design. 

Mzdtiple Communication Paths 
VAXcluster software components are able to take 
advantage of multiple communication paths 
between nodes. For greatest availability, there 
should be at least two physical paths between each 
pair of nodes in a VAXcluster system." 

Membership Changes 
VAXcluster membership changes involve several dis- 
tinct phascs with slight variations depending upon 
whether a node is being added or removed. Adding 
a node to a VAXcluster system is the simplest case 
because it involves reconfiguration. There is a fur- 
ther simplification in that nodes are only added one 
at a time. A booting node petitions a member of an 
existing cluster for membership. This member then 
describes the booting node to all other member 
nodes and vice versa. In this way, it is determined 
that the booting node is in communication with all 
members of the cluster. The connection manager 
then adds the new node to the cluster using a two- 

phase commit protocol to ensure a consistent 
membership view from all nodes. 

Removing a node is more complicated because 
both failure detection and reconfiguration must 
take place. In many cases, there may be multiple 
simultaneous failures of nodes and communication 
paths. The view of what nodes are members and 
which paths are functional may be very different 
from each node. Additionally, new failures may 
occur while the cluster is being reconfigured. 

The initial phase involves the detection of a node 
failure. A node may cease processing, but other 
cluster members may not be aware of this fact. The 
communication components generally exchange 
messages periodically to determine whether other 
nodes are functioning. The first indication of a fail- 
ure may be the lack of response to these messages. 
However, a minimum period of time must elapse 
before the connection is declared inoperative. This 
set delay prevents breaking connections when the 
network or remote system is unable to respond due 
to a heavy load. Once the communication failure is 
detected, the connection manager is notified by the 
SCS communication layer The connection manager 
attempts to restore the connection for a time inter- 
val defined by the system manager using a system 
control parameter known as REC~XNTERVAL. Once 
this interval has expired, the connection and hence 
the remote node is declared inoperative. The con- 
nection manager then begins a reconfiguration. 

Multiple nodes may attempt the reconfiguration 
at the same time. A distributed election algorithm is 
used to select a node to propose the new configura- 
tion. The elected node proposes to all other nodes 
that it can communicate with a new cluster config- 
uration that consists of the "best" set of nodes that 
have connections between each other. "Best" is 
determined by the greatest number of possible 
votes. If multiple configurations are possible with 
the same number of votes, the configuration with 
the most nodes is selected. 

Any node that receives the proposal and can 
describe a better cluster rejects the proposal. The 
proposing node then withdraws the proposal and 
the election process begins again. This cycle con- 
tinues until all nodes accept the proposal. The clus 
ter membership is then altered using a two-phase 
commit protocol, removing nodes as required. 

Even when one considers the worst case of a 
continual failure situation, convergence on a solu- 
tion is guaranteed because the connection manager 
does not add new nodes during a reconfiguration 
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and connections that fail are never used again. 
Thus, conditions cannot oscillate between good 
and bad during the reconfiguration because of 
nodes rebooting or because failed connections 
are restored. Conditions can only get worse, i.e., 
simpler, until failures cease to happen long enough 
for the reconfiguration to complete. 

However, this worst-case condition is atypical; 
most reconfigurations are very simple. A node that 
is removed, as a result of a planned shutdown or 
because it fails, attempts to send a "last gasp" data- 
gram to all VAXcluster members. This datagram indi- 
cates that the node is about to cease functioning. 
The delay present during the failure detection 
phase is bypassed completely, and the connection 
manager configures a new VAXcluster system in 
considerably less than one second. 

Normally, the impact on an application of a node 
joining a VAXcluster system is minimal. For same 
configurations, there is no blockage of Iocking In 
other cases, the distributed directory portion of the 
lock database must be rebuilt. This process may 
block locldng for up to a small number of seconds, 
depending on the number of nodes, number of 
directory entries, and type of communication 
buses In use. 

Application delays can result when an irnprop- 
erly dismounted disk is mounted by a booting 
node. Failure to properly dismount the disk, e.g., 
because of a node failure, results in the tempo- 
rary loss of some preallocated resources such as 
disk blocks and header blocks. An application can 
recover these resources when the disk is mounted, 
but the VO is blocked to the disk during the mount- 
tng operation. This VO blocking has a potentially 
detrimental impact on applications that are attempt- 
ing to allocate space on the disk. The answer to this 
problem is to mount disks so that the recovery of 
the preallocated resources is deferred. For all disks 
except the system disk, disk mounting is accom- 
plished with the MOUNTMOREBUILD command. 
Because a system disk is implicitly mounting during 
a system boot, the system parameter ACP-REl3LDSYSD 
must be set to the value 0 to defer rebuilds. The 
application can recover the resources at a more 
opportune time by issuing a SET VOLUMWREBUILD 
command. 

The impact on a VAXcluster system of removing a 
node varies depending on what resources the appli- 
cation needs. During the failure detection phase, 
messages to a failed node may be queued pending 
discovery that there actually is a failure. If the appli- 

cation needs a response based on one of these mes 
sages, the application is blocked. Otherwise, the 
failure does not affect the application. Once the 
reconfiguration starts, locking is blocked. An appli- 
cation using the lock manager may experience a 
delay, but as long as there are sufficient votes pre- 
sent in the cluster to constitute a quorum, the I/o is 
not blocked during the reconfiguration. If the num- 
bcr of votes drops below a quorum, 1/0 and process 
activity are blocked to prevent partitioning and 
possible data corn~ption. 

Another aspect of node removal is the need to 
ensure that all I/O requests initiated by the removed 
node complete prior to the initiation of new I/O 
requests to the same disks. To enhance disk perfor- 
mance, many disk controllers can reduce head 
movements by altering the order of simultaneously 
outstanding commands. This command reordering 
is not a problem during normal operation; applica- 
tions initiating I/O requests coordinate with each 
other using the lock manager, for instance, so that 
multiple writes, or multiple reads and writes, to 
the same disk location are never oi~tstanding at  
the s;tme time. However, when a node fails, all 
locks held by processes running on that node are 
released. Releasing these locks allows the granting 
of locks that are waiting and the initiation of new I/O 
requcsts. If new locks are granted, a disk controller 
may move the new I/O requests (issued under the 
new locks) in front of old I/O requests. To prevent 
this reordering, a special MSCP command is issued 
by the connection manager to each disk before new 
locks are granted. This command creates a barrier 
for each disk that ensures that all  old commands 
complete prior to the initiation of new commands. 

Physical Location and Availability of 
Disks 
The application designer does not generally have to 
be concerned with the physical location of a disk in 
a VAXclusLer system. Disks locatecl on HSC storage 
controllers are directly available to VAX processors 
on the same CI bus. These disks can then be MSCP- 

served to any VAX processor that is not connected 
to that bus. Similarly, disks accessed by way of a 
local disk controller on a VAX processor can be 
MSCP-served to all other nodes. This flexibility 
allows an application to access a disk regardless of 
physical location. The only differences that the 
application can detect are varying transfer rates 
and latencies, which depend on the exact path to 
the disk and the type of controllers involved. 
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To provide the best application availability, the 
following guidelines should be considered: 

1. VMS Vol~~me Shadowing Phase 11 shoulcl be usecl 
to shadow disks, thus allowing operations to 
continue transparently in the event that a single 
disk fails. 

2. Multiple paths should exist to any given disk. 
A disk should be clual-pathed between multiple 
controllers. Dual pathing allows the disk to sur- 
vive controller failures. 

3. Members of the same shadow set should be con- 
nected to different controllers or buses as cleter- 
mined by the type of disk. 

4 .  Multiple servers should be used whenever serv- 
ing disks to a cluster in order to provide contin- 
uetl disk access in the event of a server failure. 

Selection of Co~ztrollers 
Using static load balancing, the ViMS software 
attempts to select the optimal iMSCP server for a 
disk unit when that unit is initially brought on line. 
The load information provided by the &IS<:P server 
is considered in this decision. The HSC controllers 
do not participate in this algorithm. In addition, the 
VMS software selects a local controller in prefer- 
ence to a remote MSCP server, where possible. If a 
remote server is in use and the disk becomes avail- 
able by way of a local controller, the software 
begins to access the disk though the local con- 
troller. This feature is know as local fail-back. 

An advanced development effort in the VklS oper- 
ating system is demonstrating the viability of 
dynamic load balancing across MSCP servers. Load 
balancing considers server loading dynamically and 
moves disk paths between servers to balance the 
load among the servers. 

Disk and Tape Path Changes 
Path failures are initially detected by the low-level 
communication software, i.e., the sCs or port lay- 
ers. The communications software then notifies the 
disk or tape class driver of the failure. The driver 
then transparently blocks the initiation of new I/O 

requests to the device, prepares to restart outstand- 
ing I/O operations, and begins a search for a new 
path to the device. Static load balancing informa- 
tion is considered when attempting to find a new 
path. The path scarch is accomplishecl by sending 
an MSCP GI:'l' {'NIT STATUS command to any known 
disk controller or M S C P  server capable of serving 

the device. Some consideration is given to selecting 
the optimal controller; for example, the driver inter- 
rogates local controllers before remote controllers. 

Once a new path is discovered or the old path 
reestablishecl, the VMS system checks the volume 
label to ensure that the disk or tape volume has not 
been changed on the clevice. l'his vcrification pre- 
vents data corruption in the event that someone 
substitutes the storage medium without clismount- 
ing and remounting the device. After a successful 
check, the software restarts incomplete I/O requests 
and allows stalled 1/0 requests to procccd. In the 
case of tapes, the tape must be repositioned to the 
correct location before restarting I/O requests. 

If the label check determines that the original 
medium is no longer on the disk or tape unit, then 
110 requests continue to be stalled and a mes- 
sage is sent to the operator requesting manual inter- 
vention to correct the problem. Attempts to 
reestablish the correct operation of a disk or tape 
continue for an interval determined by the system 
parameter MVTIMOUT (mount verification time- 
out). Once the time-out period expires, fi~rther 
attempts to restore are abandoned and pending 
requests are returned to the application with an 
error status. Thus, the software handles temporary 
disk path failures in such a transparent fashion that 
the application program, e.g., the user application, 
VAX IL-MS software, or the VMS file system, is 
unaware that an interruption occurred. 

Disk Failures 
If a disk fails completely when W S  Volume Shadow- 
ing Phase I1 software is used, the software removes 
the fa~led disk from the shadow set and satisfies all 
further I/O requests using a surviving disk. If a 
block of data cannot be recovered from a disk in a 
shadow set, the software recovers the clata from the 
corresponding block on another disk, returns the 
data to the usel; and places the data on the bad disk 
so that subseqi~ent reads will obtain the good data.' 

Summary 
VAXcluster systems continue to provide a unique 
base for building highly available distributed sys- 
tems that span a wide range of configurations and 
usages. In addition, VAXcluster computer systems 
can grow with an organization. The availability, 
flexibility, and growth potential of VAXcluster sys- 
tems result from the ability to add or remove stor- 
age and processing components without affecting 
normal operations. 
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Lee Leahy I 

New Availability Features of 
Local Area VAXcluster Systems 

l/il.IS version 5.4-3 increases the availaOility of local area VMcluster (LAVc) configu- 
rations by allowing the use of ~nultiple local area netzuork (LAN) adwters in the 
VAXclzlster system. Availability is increased by enabling fail-over between LAN 
wlaptm, reducing channel failure detection time, and providing better network 
troubleshooting. Combined, these clga~zges significantly increase the availability of 
LAN-based VAXclzlster configurations by allowing the VAXcluster system to tolerate 
an.d work around network failtfires. 

This paper describes the availability features added 
to local area VAXcluster (LAVc) support in VMS ver- 
sion 5.4-3. These features support multiple local 
area network (LAN) adapters, reduce the time 
required to detect network path (channel) failures, 
and provide additional support for network trou- 
bleshooting. (Table 1 presents definitions for terms 
used throughout the paper.) 

We begin the paper with an overview of the 
added LAVc availability features of vMs version 5.4-3. 
We then present the multiple-adapter support 
features of the new release, with comparisons to 
the previous single-adapter implementation. The 
detection of network delays is discussed, along 
with how the system selects alternate paths around 
these delays after detection. Finally, we discuss the 
analysis of network failures and the physical 
descriptions needed to achieve the proper level of 
failure reporting. 

Added Auaihbility Features 
VMS version 5.4-3 supports LAVc use of up to four 
LAN adapters for each VAX system. Availability and 
performance are increased by connecting each LAN 
adapter to a different LAN segment. Maximum avail- 
ability is achieved by redundantly bridging these 
LAN segliicnts together to form a single extended 
LAN. This configuration maximizes availability and 
reduces single points of Fdilure by increasing the 
number of possible network paths between the dif- 
ferent systems within the VAXcluster system. 

Availability has also been increased at the appli- 
cations level by reducing the time required to 
detect channel failures. The L A C  protocol (NISCA) 
sends sequenced datagrams to the remote system. 

If not acknowledged within 2 seconds, a datagram 
is retransmitted. Retransniission continues until the 
connection between the two systems is declared 
broken. However, applications can be stalled during 
this error recovery process. Therefore, reducing the 
time for detecting channel failures and retransmit- 
ting datagrams reduces the amount of application 
delay introduced by network problems. 

VMS version 5.4-3 also increases availability by 
reducing the delays introduced by network con- 
gestion. This latest release measures the network 
delays on a channel basis. The channel with the low- 
est computed network delay value is used to com- 
municate with the remote system. 

LAVc network failure analysis is a new feature in 
VMS version 5.4-3. This feature provides an analy- 
sis of failing channels by isolating the common 
network components responsible for the channel 
failures. LAVc network failure analysis increases 
availability by reducing the downtime caused by fail- 
ing network components. To enable this feature, the 
system or network manager must provide an accu- 
rate physical description of the network used for 
LAVc communications. 

Multiple-adapter Support 
This section describes the availability features added 
with the multiple-adapter LAVc support in VMS ver- 
sion 5.4-3. Some limitations of the single-adapter 
implementation are presented for comparison. 

Single Points of Failure 
In single-adapter LAVc satellites, the Ethernet adapter 
remains as a single point of failure. This fail- 
ure "point" actually extends through the network 
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Table 1 LAVc Terminology 

Channel A data structure in PEDRIVER that represents a network path (see network path below). 
Each channel is associated with a single virtual circuit (VC). 

Datagram 

LAN Adapter 

A message that is requested to be sent by the client of the LAN driver. A datagram does 
not have guaranteed delivery to the remote system. The datagram may never be sent, 
or could be lost during transmission and never received. 

An Ethernet or fiber distributed datainterface (FDDI) adapter. Each type of LAN adapter 
has a unique set of attributes, such as the receive ring size. 

LAN Address The network address used to reference a specific LAN adapter connected to the Ethernet 
or FDDI. This address is displayed as six hexadecimal bytes separated by dashes, e.g., 
08-00-2B-12-34-56. 

LAN Segment 

Network Path 

PEDRIVER 
Virtual Circuit 

An Ethernet segment or FDDI ring. Each type of LAN has a unique set of attributes, e.g., 
maximum packet size. LAN segments can be connected together with bridges to form a 
single extended LAN. However, in such a LAN, the LAN segments can have different 
characteristics (e.g., different packet sizes for an FDDI ring bridged to an Ethernet). 

The pieces of the physical network traversed when a datagram is sent from one LAN address 
to another LAN address. The network path is represented by a pair of LAN addresses, one 
for the local system and one on the remote system. Each network path has a specific set of 
attributes, which are a combination of the attributes of the local LAN adapter, the remote 
LAN adapter, and each of the LAN segments and LAN devices on the path between them. 
The VMS port driver that provides reliable cluster communication utilizing the Ethernet. 

A data structure in PEDRIVER that represents the data path between the local system and 
the remote system. This data path provides guaranteed delivery forthe messages sent. 
PEDRIVER's datagram service, along with an error recovery mechanism, ensures that 
a message is delivered to the remote system or is returned to the client with an error. 
A virtual circuit (VC) has one channel for each network path to the remote system. 

components common to all of the network paths 
in use for cluster communication. The combination 
of VMS version 5.4-3 with multiple LAN adapters 
removes the LAN adapter as a single point of fail- 
ure in the local system. Additionally, the use of  mul- 
tiple LAN adapters connected to an extended LAN 
creates multiple network paths to remote systems. 
This configuration results in a higher tolerance 
for network component failures and higher cluster 
availability. 

Adapter Selection 
The single-adapter implementation is configura- 
tion-dependent and does not allow the system man- 
ager a choice of adapters. Thc multiple-adapter 
support in VMS version 5.4-3 configures the system 
for maximum availability by starting the LAVc proto- 
col on all LAN adapters in the system. Support is 
also provided to start and stop the LAVc protocol on 
the LAN adapters. This support allows the system 
manager to select which adapters will run the 
LAVc protocol. 

The means of locating the LAN devices in the 
system has also changed. The system now main- 
tains a list of LAN devices. As each J A V  device driver 
is loaded into the system, an entry is appended to 

this list. A new support routine steps through this 
list ancl returns a pointer to the next LAN device 
in the system. The single-adapter implementation 
requircs code changes in PEDRIVER to add a new 
LAN device; the new implementation no longer 
requires these changes. 

Channel Control Hankbake 
The channel control handshake is a three-way mes- 
sage exchange. The exchange starts when a HELLO 
message is received from a remote system ancl the 
channel is in the closed state, or any time a CCSThRT 
mcssage is received. Upon receiving a HELLO mes- 
sage on a closed channel, the system responds with 
a CCSTART message. 

IJpon receiving a CCSThRT message, the system 
closcs the channel if the PATH bit was set. In all 
cases, if the cluster password is correct, the system 
responds with a VERF message. Upon receiving the 
VERF message, the remote system verifies the clus- 
ter password. If the password is correct, the remote 
system sends an acknowledgment (VACK) message 
and marks the channel as usable by setting the I%TH 
bit. The local system, upon receiving the VACK mes- 
sage, also marks the channel as usable by setting the 
PATH bit. 
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The channel control handshake now verifies the 
network path used by this channel, instead of verify- 
ing the virtual circuit @(;) as in the single-aclapter 
implementation. Additionally, the handshake is used 
to negotiate some parameters between the local and 
remote systems on a channel basis (instead of assum- 
ing that the parameters are common for all channcls 
connected to the VC). 

Packet size and pipe quota are two characteristics 
that are now arbitrated between the two systems. 
These parameters are negotiated on a channel-by- 
channel basis to allow different channels to fi~lly uti- 
lize the capabilities of the specific network path. 

With the introduction of FDDI, larger packet 
sizes are now supported. The channel handshake 
between two nodes negotiates a packet size that is 
supported by the entire network path. Any path 
that utilizes an Ethernet must use a packet size 
of 1498 bytes or smaller. An FDDI-to-FDDI path on 
the same extended ring must use a packet size of 
4468 bytes or smaller. An increased packet size 
reduces the number of messages required when 
large blocks of data are sent. This increase in packet 
size results in fewer messages, less handshaking, 
and thus better network efficiency. 

The PIPE-QUOTA value is used to limit the number 
of messages sent to the remote system before wait- 
ing for an acknowledgment. PIPE-QUOTA was imple- 
mented to help prevent receiver overrun on the 
remote system. Instead of using a fixed value, the 
new implementation uses a value specified by the 
LAN driver. This value factors in the LAN device's 
receive ring size and is typically larger than the fixed 
value of eight messages used previously Increasing 
the PIPE-QUOTA value allows more data to be sent 
between the nodes before an acknowledgment 
message is required, thus increasing the protocol's 
efficiency and reducing the network traffic. 

These new features in VMS version 5.4-3 have 
reduced the amount of handshaking required to 
move data and the number of messages required to 
move large amounts of data. The result is greater 
applications availability through fewer network- 
b;~sed delays. 

Use of Hello Messages 
The single-adapter implementation uses a HELLO 
message to maintain the VC and not the channels. 
Also, the handshake to verlfy connectivity is per- 
formed by the VC, which forces all channels to use 
the same characteristics. In comparison, the multiple- 
adapter implementation uses HELLO messages to 
trigger the channel handshake, test the network 

path and maintain the channel in the open state, 
and continuously verlfy the network topology. 

To maintain the channel and test the network 
path, each system multicasts a HELLO message 
through each of its LAN adapters every 3 seconds. 
Upon receipt of a HI:I.LO message (if the channel 
is not open), a channel handshake begins. If the 
channel is open, the network delay is computed 
and the channel packet size is verified. When an 
open channel does not receive a HELLO message 
within 8 seconds, it declares a listen time-out and 
the channel is closed. 

Additional topology change detection is required 
because FDDI-to-FDDI communications use large 
packets. If two systems using FDDI adapters 
exchange channel control messages, then both can 
agree on a large packet size. However, if the net- 
work is configured in the dumbbell configuration, 
then only the small packet size can be used. (The 
dumbbell configuration consists of two FDDI rings 
separated by an Ethernet segment.) 

Detection of the dumbbell configuration is per- 
formed using the priority field in the frame control 
byte of the FDDI message header. This field does not 
exist in Ethernet messages and must be created 
when forwarding an Ethernet message to an FDDI 
ring. Ethernet-to-FDDI LAN bridges set this field's 
value to zero. All LAVc messages transmitted by the 
FDDI adapters use a non-zero value for the priority 
field. When a channel control message is received, 
the value of this field is checked. If the value is non- 
zero, then large messages can be used because the 
message did not traverse an Ethernet segment. 

The priority field is also verified every time a 
HELLO message is received and the channel is open. 
A topology change is detected when a change in the 
priority value is received. If the priority value goes 
from zero to non-zero, the packet size is renegoti- 
ated and a larger packet size may be used. If the pri- 
ority value goes from non-zero to zero, the channel 
packet size must be reduced. If this is the only chan- 
nel with a larger packet size, then the VC closes and 
forces the two systems to reassign the message 
sequence numbers. 

Listen Time-out 
VMS version 5.4-3 now consistently times out chan- 
nels in 8 to 9 seconds, whereas the single-adapter 
implementation detects the failure in 8 to 15 seconds. 
Reducing this time reduces the delays experienced 
by applications when a LAVc node is removed from 
the cluster. The result is an increase in applications 
availability. 
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The single-adapter implementation traverses the 
VC list and scans each of the receive channels (RCH 

structures embedded in the VC) to chcck for time- 
out. Because this scan is CPI:-intensive, the algo- 
rithm was designed to scan the VC list only once 
every 8 seconds. Reducing this scan time required 
the design of a new algorithm that reduces the CPu 
utilization requirecl to locate the channels that have 
timed out. 

The VMS version 5.4-3 implementation places 
each open channel into a ring of time-out queues. 
The time-out routine maintains a pointer into the 
ring of queues corresponding to the 8-second time- 
out. Each second, the time-out routine cxccutes, 
removes any channels pointed to by the time-out 
pointer, and calls the listen time-out routine for 
the channel. Nexl, the time-out pointer and the 
8-second time-out pointer are updated to point to a 
new set of queue headers in the ring. Active chan- 
nels and channels receiving HELLO messages are 
inserted into the ring of queues pointed to by the 
current time pointer, which prevents them from 
timing out. This implementation reduces CPLJ uti- 
lization during the time-out scan by looking at only 
the channels that have timed out. 

Changes to Virtual Circuit Maintenunce 
The single-adapter implementation closes the VC 

and performs a channel control handshake every 
time a new chiinnel is established. This implemen- 
tation also forces c;icl1 channel to use the same 
characteristics, specifically packet size, thereby 
reducing the characteristics to the lowest common 
denominator. 

VMS version 5.4-3 does not close the VC each time 
a new channel is established. The channel hand- 
shake affects only the c h m e l  and is used to negoti- 
ate the channel characterbtics, including packet 
size. The v C  remains open a s  long as a channel with 
the corresponding packet size is open. This mainte- 
nance increases ;ipplications availability by allow- 
ing channels to F~il and reestablish transparently 
without disrupting service at the vC ant1 systems 
communication services (SCS) layers. 

One Channel with Matching Characteristics 
Required The VC can be opened as soon as the 
first channel to the remote system is opened. When 
the VC opens, its packet size is set to the packet size 
of the channel being used. The VC can reniain open 
as long as at least one channel with a compatible 
packet size is open. The packet size is compatible if 

the channel packet size is greater than or equal to 
the packet size currently in use by the VC. 

Transfers restricted to an FDDI ring can use a 
larger packet size than those that traverse an 
Ethernet LAN segment. PEDRWER now supports 
variable packet sizes up to the size supported for 
the FDDI ring. Each time the VC switches channels, 
the new channel characteristics are copied into the 
VC. The result is that as soon as the VC switches to 
using the FDDI-to-FDDI channel, i t  also switches to 
using the larger packet size. 

Receive Messnge Caching VMS version 5.4-3 
introduces a receive message cache to prevent any 
performance degradation when messages are 
received out of order. Because of transmission and 
network delays, messages are typically received out 
of order at approximately the time a channel switch 
occurs. Also, most of the channel selections are 
invoked after locating a channel with a lower 
network delay value, thus increasing the probabil- 
ity that messages will be received out of order. 

Channel Faikure Not Displayed Tlie mu 1 tiple- 
adapter implementation does not display any mes- 
sages when a channel fails. This choice was made to 
maintain compatibility with the previous imple- 
mentation. We also wished to reduce the number of 
console messages and still provide enough data to 
isolate the problem. However, without some chan- 
nel failure notification, all but one channel could 
fail without notice, thus negating all the availability 
that was introduced by using multiple adapters. 

The LAVc network failure analysis allows the 
system or network manager to select one of the fol- 
lowing levels of channel failure notification: no 
notification, if not enabled; channel failure notifica- 
tion, when barely enabled; or isolation of the failing 
network component, when fully enabled. When 
this feature is fully enabled, a failing network com- 
ponent typically generates only a single console 
message instead of displaying tens or hundreds of 
chamel failure messages. 

Channel Selection 
VMS version 5.4-3 bases its selection of a single 
transmit channel for a remote system first, on the 
packet size and second, on the network delay 
value. The channel selection algorithm searches for 
an open channel with a compatible packet size so 
that the VC does not have to be broken. If more than 
one channel has a compatible packet size, the 
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network delays are compared and the channel with 
the lowest network delay value is chosen. The 
selected channel is used until it fails, encounters an 
error, or a channel with a lower network delay 
value is found. 

Channel selection is performed independently 
for each remote system. This implementation means 
that a two-node cluster increases its availability 
through the use of more LAN adapters, but does not 
achieve a performance benefit by increasing the 
number of LAN adapters above two. Larger clusters, 
however, can take advantage of the additional 
UN adapters and thus achieve better cluster perfor- 
mance. Multiple LAN adapters can also increase the 
bandwidth available for use by the LAVc protocol. 
However, the actual performance is very configura- 
tion- and application-dependent. 

Channel selection is limited to the transmit chan- 
nel, but all channels are used to receive data. The 
receive cache helps prevent retransmission by 
the remote system by placing messages received 
out of order into the receive cache until the previ- 
ous messages are received. This receive algorithm is 
compatible with any transmit channel selection 
algorithm, e.g., in ]-'EDRIVER or in any component 
implementing NISCA. 

Multiple-adapter Availability Summa y 
The multiple-adapter LsWC s ~ ~ p p o r t  added to VMS 
version 5.4-3 increases the availability of applica- 
tions and of the overall cluster. Availability is 
increased by removing the LAN adapter as a single 
point of failure. Clustcr availability is enhanced 
through continuous testing of the network paths 
and correction for network topology changes. 

This implementation also increases network 
utilization and cluster performance by taking full 
advantage of a channel's characteristics. Larger 
receive ring sizes reduce the protocol handshaking 
overhead. Moreover, larger packet sizes reduce 
the number of messages that must be sent for large 
transfers. 

The next section discusses how the PEDRNER 
detects network delays and selects alternate paths. 

Network Delay Detect- 
VMS version 5.4-3 increases application availability 
by detecting significant network delays and select- 
ing alternate paths. As the network gets busy, it 
becomes more clifficult for a LAVc node to send 
cluster messages. These delays in network commu- 
nications cause delays in cluster traffic and trans- 

late into delays in the applications. Thus, through 
delay detection and the use of alternate paths, VMS 

version 5.4-3 reduces the delays for applications 
and increases overall cluster performance. 

Assumptions and Delny Calculatio~zs 
PEDRIVER computes network delays through a 
series of assumptions. The primary assumptions are 
that the transmit and receive delays for a path are 
equal, and that there are small internal delays asso- 
ciated with the LAN device. iUthough these assump- 
tions are occasionally invalid, PE1)RIVER uses them 
because there are no round-trip messages available 
in the NISCA protocol to compute the delay. 

As the first step in the delay calculation for each 
channel between nodes, each node time-stamps the 
HELLO message just prior to transmission. When the 
HELLO message is received, the time stamp is sub- 
tracted from the local system time. This resulting 
value equals the sum of the transmit queue delay, 
the network delay, the receive queue delay, and the 
difference in the two system times. Applying the 
assumptions reduces this value to the sum of the 
network delay and the difference in the two system 
times. 

The second step of the delay calculation is to 
compare the delay times between different chan- 
nels to the same remote system. This comparison is 
a subtraction of the values computed above for 
each channel. The computation removes the com- 
mon factor (the difference in the two system times) 
and results in the comparison of the two network 
delays. When multiple channels cxist, PEDRIVER 
attempts to use the channel with the lowest 
network delay value. 

Problems and Benefits Associated with 
the Assumptions 
The assumptions in the network delay calculation 
do  not always hold true. The arbitration delay to 
transmit a message on the Ethernet, between a pair 
of systems, is not always equal in both directions. 
Over the long term, this assumption would be valid 
if the systems are sending the same number of mes- 
sages in each direction; however, this is not typi- 
cally the case. When this assumption does not hold 
true, i.e., if the transmit delay is longer than the 
receive delay, then additional delay is introduced 
when transmitting messages using this channel. 

The assumption that internal delays are small 
depends upon the network traffic and the transmit 
traffic generated for an adapter by the other LrUV 
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clients. If another LAY client is a heavy user of a par- 
ticular IAN adapter, then transn~issions from this 
adapter expcricncr ;tdditional queue delays while 
waiting for the adapter. If the network is busy, mes- 
sages in the transmit queue have an additional wait. 

Finally, the network delay computed is the clelay 
from the remote system to the local system. Since 
the clelay is not ;tlways symmetric, it tlocs not 
always represent the delay in the other direction, 
LC.. transmitting messages to the remote system. 
Yet, because the NIS<:I\ protocol does not have any 
round-trip messilges, this is the best possible delay 
value. 

Even with these problems in the assumptions, 
the network delay calculations increase the avail- 
ability of the cluster by detecting large network 
tlelays. With this data, P E D I l N E R  is usually able to 
select alternate paths around the network delays 
when multiple channels exist, providing better 
cluster performance and availability. 

Figure 1 represents an example of network delay 
detection. If LAN segment A is very busy, then 
P E D R N E R  can detect an additional network delay for 
channels A 1 - B l ,  A1-B2, and A2-R1. PEDRIVEK can 
then select an alternate path, that is, transmit pack- 
ets only o n  channel A2-B2. Use of channels A 1 - B l ,  
A1-B2, and A2-B1 can resume when the network 
traffic level o n  I.AN segment A is reducetl to about 
the level of LW segment B, or  if channel A2-B2 fails. 

LAVc Network Failure Analysis 
VlIS version 5.4-5 uses multiple LAN acl;tpters to 
increase availability by working around network 

delays and failures. Channels fail as network fail- 
ures occur, reducing the availability provided by 
these extra channels. However, the VC remains 
open,  allowing cluster communication as long as a 
single channel remains open.  

To maintain compatibility with previous VMS ver- 
sions, only VC failures are displayed on  the local 
console. Displaying messages about channel fail- 
ures would only indicate a problem without help- 
ing to locate the cause of the failure. Also, as the 
cluster configuration gets larger, o r  the number of 
U N  adapters increases, channel failure messages 
increase (depending on  what component failed) 
beyond the point where  they are helpful. Yet to 
maintain cluster availability, the system o r  network 
manager needs to be told of the channel failures 
that are reducing the availability. 

The MVc network failure analysis, introduced 
with virls version 5.4-3, is used to analyze the net- 
work failures ant1 display the OPCOM messages that 
call out  the failing network component.  This sup- 
port requires a description of the physical network 
used for LAVc communications. Depending upon 
the description supplied, the system o r  network 
manager can select the level of failure reporting. 
This level may range from channel failure reporting 
to calling out the actual component that failed. 

Display of Channel Failztres 
There is a significant difference between displaying 
the channel failures and performing UVc failure 
analysis. This difference is shown in Figure 2,  which 
represents a multiple-adapter UVc configuration. 

ETHERNET LAN SEGMENT A 

I I I I 
I ETHERNET ' ' ETHERNET ' 
I ADAPTER 1 ' ' ADAPTER 1 ' 

I 
ETHERNET LAN SEGMENT I3 

KEY: 

I TERMINATOR 

TRANSCEIVER 

Figure I Network Delay Detection 
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1 _ _ _ _ _ _ 1  

- - - - - - 
I  ETHERNET I  
I  ADAPTER 2 1 C 

I DELNI D I 
ETHERNET LAN SEGMENT B 

KEY: 

1 TERMINATOR 

TRANSCEIVER 

Figure 2 Multiple-dpter Channel Failure 

Looking from system VAX A, the following chan- 
nels exist: A1-A2, A2-A1, Al-B1, A1-B2, A2-B1, 
A2-B2, A1-Cl, A1 -C2, A2-C1, A2-C2, A l - D l ,  
A1-D2, A2-Dl,  and A2-D2. Let us assume that 
DELNI B fails, causing the following channel failures: 
Al-C1, A2-C1, A l - D l ,  and A2-Dl.  A display of 
channel failures would show that some interesting 
event had just occurred but would leave it up to the 
system or network manager to isolate the actual 
failure. Also, since other channels are still open to 
VAX C and VAX D (A1-C2, A2-C2, A1-D2, and 
A2-D2), these nodes still remain in the cluster. 
However, the number of channels to these nodes 
has been halved, reducing cluster availability. 

LAVc network failure analysis uses the physical 
network description to analyze channel failures. 
The working channel A1-C2 indicates that VAX A, 
A l ,  DELNI A, LAN segment A, Ethernet-to-Ethernet 
LAN bridge, LAN segment B, DELNI D, C2, and VAX C 
function. The working channel A2-D2 indicates 
that A2, DELNl C, D2, and VAX D also function. The 
remaining components are DELNI B, C1, and D l .  By 
reviewing the failing channels for common failures, 
we see that two channels use component C1, two 
channels use component D l ,  and all four channels 
use component DELNI B. Therefore, DELNI B has the 
highest probability of causing the failure and is the 
only network component displayed on the console. 

In this small cluster configuration, LAVc network 
failure analysis has reduced the messages displayed, 
i.e., from four channel failure messages to one 
component failure message. This simpler display 
provides timely notification and better isolation of 
network component failures, allowing the system 
or network manager to repair the network earlier 
and restore the full availability of the cluster. 

Physical Network Description 
LAVc network failure analysis requires a description 
of the physical network. This description lists the 
components used by the LAVC and the network 
paths that correspond to the LAVc channels. 

The network component description consists 
of several pieces of data, including a component 
type and text description provided by the system or 
network manager. Some component types will 
require additional data. There are several types of 
network components: NODE, ADAPTER, COMPO- 
NENT, and CLOUD. Each NODE component requires 
a unique node name associated with it that matches 
the SCSNODE SYSGEN parameter. The ADAPTER com- 
ponent has at least one and sometimes two LAN 

addresses associated with it. One LAN address is the 
hardware address and the other, when specified, is 
the DECnet LAN address. COMPONENTS are used to 
describe all pieces of the network, both working 
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and nonworking. CLOUDS describe portions of the 
network that are working only if all paths are work- 
ing. Any path failure implies that the CLOUD com- 
ponent may not be working. 

Component descriptions can range from actual 
devices and cables to internal CPI. bus adapters. 
When the component is defined, an ID value is 
returned for use in the network path description. 
The choice of the components dc-scribccl is left to 
the system or network manager and allows the 
manager to select the desired level of network anal- 
ysis. Each network component has a reference 
count and a working count. The reference count is 
incremented when a network path is defined that 
utilizes the network component. The working 
count is incremented each time a MVc ch:lnnel is 
opened, and decremented each time an open LAVc 
channel is closed. 

The network path description consists of a 
directed list of component identifier (ID) values. 
For proper analysis, this list must start with the ID 
value for the local node. Each successive ID value in 
the list must be associated wit11 the next network 
component through which a message would travel 
when using this path. The final component ID value 
is that of the remote node. 

Each network path clescription must conti~in two 
node ID vi~lues ancl two ;~rl;~ptcr 11) v;ilues. 'Ii) he use- 
ful for analysis, the path description must contain 
the node ID value for the nodc running the analysis. 
Without this node ID value, the path cannot be 
matched with any of the LAVc channels on that node. 

Channel Mappi~zg and Processing 
The network path descriptions are matched with 
the LAVc channels by using the LAN addresses. If 
possible, only the LAN hardware address is used 
for the mapping function. This mapping provides 
the best analysis because it remains constant with 
respect to any LAN adapter. In clusters running 
mixed VMS versions, the LAN hardware address is 
not available for systems running a version prior to 
VMS version 5.4-3. In prior versions, the DECnet LAN 

address is used for the mapping function. 
Each time a LAVc channel is opened, the network 

path database is searched to locate a matching net- 
work path description. If found, this description is 
connected to the channel and a scan of all the com- 
ponents in the path is performed. For each compo- 
nent in the path, the working count is incrernented. 
If the component switches from not working to 
working, then a WORKING messagc is displayed. 

When a LAVc channel fails, the corresponding 
network path is placed on a failure List. 'llie na- 
work path is then scanned and the working count 
for each component is clecremented. 

Failure Analysis 
Relatecl channel failures are collectecl by delaying 
10 seconds following tlie channel failure. Each 
channel failure extends the time delay to the full 10 
seconds. Once the 10-second delay has elapsed fol- 
lowing the last channel failure, the full list of failing 
network paths is processed. 

Computing the failure probabilities begins by 
reviewing each of the components in the network 
path. If a component cannot be proven to work, 
then it  is placed on the suspect list and the compo- 
nent's suspect count is incrernented. A component 
is working if the working count is non-zero; a 
CLOUD component is working if the working count 
equals the reference count. Tliis step encls with a 
list of suspect components, each with a suspect 
count that represents the number of times this 
component could have caused the failure. 

Suspects are selected by comparing the suspect 
counts for each of the components in a network 
path. Each network path is reviewed indepen- 
dently and a primary suspect is selected. The 
primary suspect is the first component with the 
highest suspect count in the network path. Sec- 
ondary suspects are the other components in tlie 
network path with the same suspect count value. 
The primary and secondary suspects are displayed 
after all the network paths have been reviewecl. The 
other components in the suspect list are removed 
from the list, and are not displayed because the fail- 
ure analysis judged them to be unrelated to any of 
the channel failures. 

There are several limitations to the failure analy- 
sis. The analysis requires an accurate description of 
the physical network. The failure analysis is also 
looking for a common network component fail- 
ure. Therefore, an incorrect analysis results from 
either an inaccurate network description, multiple 
related failures, or too much detail. 

The key to a valid network failure analysis is the 
correct description of the physical network. Jn 
Figure 2, if the network path A1-B1 incorrectly 
listed DELNI B, then the failure analysis would find 
that DELNI B is working and remove it from the sus- 
pect list. The final analysis woulcl list both C1 and 
D l  as the failing components. Validation of the 
network description can be performed by network 
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fault insertion and by reviewing the network 
failure analysis. If the description is accurate, then 
the failure analysis should display the expected 
messages. If an inaccurate network description 
exists, unexpected messages may be displayed. 
In such cases, the network description should be 
reviewed. 

Multiple related failures may also cause an incor- 
rect failure analysis. Referring again to Figure 2, 
assume a correct network description. Instead of a 
DELNI B failure, assume that both C1 and Dl have 
failed. The failure analysis reviews the network 
description and locates the single component 
DELNI B because it is common to all of the failures. 
In this case, the failure analysis does correctly 
locate tlie area of the network (something con- 
nected to DELNI B). However, further review is 
required to identlfy that DELNI B itself has not failed, 
but rather both C1 and Dl. 

The choice of the network description, the num- 
ber of components defined, and the path descrip- 
tions, is left to the system or network manager. 
This choice allows the manager to select the level 
of Failure reporting needed to troubleshoot the net- 
work. However, when the physical network descrip- 
tion includes too much detail (e.g., transceiver 
cables), it becomes difficult for the failure analysis 
to reduce the components to a single f i ' l  ' i ure. 
Instead, a primary suspect and several secondary 
suspects are usually displayed. Too much detail also 
requires more CPlJ cycles and memory for analysis, 
and in general is a bad trade-off. 

In Figure 2, if the Ethernet adapter C1 fails, and 
the transceiver cables are listed in the network 
description, then the failure analysis displays two 
messages. The primary suspect is listed as the 
transceiver cable because it is the first component 
that matches the failure in the path from A to C. The 
Ethernet adapter C1 is listed as a secondary sus- 
pect, because its suspect count matches the sus- 
pect count of tlie primary suspect. In this example, 
there are no network paths described that use 
Ethernet adapter C1 without using the transceiver 
cable connected between C1 and DELNI B. With the 
network description provided, there is no way to 
distinguish between these two components. 
Therefore, both are displayed when either is a pri- 
mary or secondary suspect. 

Benefits 
The LAVc network failure analysis, combined with 
an accurate description of the physical network, 

enables the system or network manager to maintain 
the increased availability gained with the use of 
multiple LAN adapters. Tirncly analysis and report- 
ing of network componcnt failures significantly 
reduces troubleshooting times and increases the 
overall cluster availability. 

Summary 
VMS version 5.4-3 increases t l ~ e  availability of Local 
Area VAXcluster configurations by providing the fol- 
lowing features: 

Faster detection of channel failures 

Support for the use of multiple adapters 

Support for the use of additional network paths 

Detection of network congestion 

Analysis of network failures 

The goals of these features are to 

Provide higher cluster availability 

Work around network congestion and network 
component failures while keeping the cluster 
running 

Detect problems earlier and report them more 
accurately, with network data that helps isolate 
the failing network components 

In addition to meeting these goals, the features in 
WlS version 5.4-3 increase the cluster communica- 
tion bandwidth. 
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Design of the 
DEC LANcontroller 400 
Adapter 

The DEC LANcontroller 400, Digital's XIMI-to-Ethernet adapter (DEMM), connects 
systems based on the Digital ,Y..\lI bus to an EthemeVlEEE 802.3 local area network 
(LAN). These systems use the XllI bus either as the system bus @AX 6000 systems) or 
as an I/O bzu (VU9000 system?. The new systems, which can utilize the full band- 
width of the Ethewlet, are chalacterized by increased host processor speeds. The 
DEMM adapter was designed to support these 1/0 requirements. In addition, con- 
sole and monitor facilities were built into the adapterfirmware for debugging, ver- 
ification, and user visibility. The adapter's performance for small packets exceeds 
system capabilities, and Ethernet bandwidth is the limiting factor for large packets. 

The high-performance DEC LANcontroller 400, 
Digital's XMI-to-Ethernet adapter (DEMNA), con- 
nects a system based on the Digital XMI bus to an 
EthernetAEEE 802.3 local area network (LAN). This 
adapter is intended for Digital systems that use the 
xhlr bus either as the system bus @'Ax 6000 systems) 
or as an I/O bus @AX 9000 systems). It is an intelli- 
gent acl:rpter that implements the physical layer and 
part of the data link layer of network protocol. The 
term intelligent refers to the packet processing per- 
formed by the adapter as part of the data link layer. 

The DEMNA adapter was needecl to support the 
I/O requirements of the VAX 6000 and VAX 9000 sys- 
tems, which can utilize the full bandwidth of the 
Ethernet. I'hc adapter also provides the ability to 
configure thcse systems without a 111 bus. For these 
systems, the I)I:..LINA adapter is the only Ethernet 
connection available. 

'I'he DEMNA adapter is controlled by a port driver 
that resides in host menlory The interface between 
the port driver and the DEMNA firmware (the port) 
is a ring-bawd design which is optimized for low 
system overhead and high performance. 

The DEMNA adapter has the following major 
features: 

Supports EthernetAEEE 802.3 protocols 

Si~pports up to 64 users (each one a separate 
protocol such as local area transport [LAT] soft- 
ware, DECnet network software, or clusters) 

Supports two modes of addressing: virtual 
addressing and 40-bit physical addressing 

Allows buffer chaining on transmit 

Performs packet filtering and validation on 
receive 

Supports Digital's maintenance operations pro- 
tocol (MOP) functions 

Provides support for diagnostic routines and 
field service functions implemented through the 
system console or diagnostic software 

Has console and monitor facilities that allow a 
console user to monitor DEMNA operation and 
network utilization 

This paper begins with a logic overview of the 
DEMNA device. The sections that follow discuss the 
factors that influenced design and implementation, 
describe the major performance metrics and user 
visibility operations, and review the design results 
and future needs. 

Logic Overview 
The DEMNA adapter is a single-board XMI adapter 
based on complementary metal-oxide semiconduc- 
tor/transistor transistor logic (CMOS/TTL) technol- 
ogy. As shown in Figure 1, the hardware consists of 
four separate subsystems: 
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The microprocessor subsystem contains the CMOS 
VAX (CVAX) processor, system support chip (SSC), 
boot read-only memory (ROM), Ethernet address 
programmable read-only memory (PROM), electri- 
cally erasable programmable read-only memory 
(EEPROM), and random-access memory (ml). The 
microprocessor subsystem provides an internal, 
high-speed CDAL bus so that the CVAX processor 
can fetch its instructions and execute them without 
being delayed by the other controllers on the mod- 

LANCE 

ule. The firmware is stored in EEPROM, but is copied 
to RAM for execution. The boot ROM contains the 
initialization code and diagnostics. This subsystem 
also provides a console interface through the SSC 
for diagnostics, module debugging, and network 
monitoring. 

The DMA and shared memory subsystem pro- 
vides the means of communication between the 
CVAX processor and the other subsystems. The 
devices arbitrating for this shared memory are the 
CVAX processor, the gate array, and the Local Area 
Network Controller for Ethernet (LANCE) chip. 

The XMI interface subsystem contains the XMI 
network adapter (XNA) gate array and the XMI 
corner. The XNA gate array is the data-move engine 
for the DEMNA adapter and contains all the XMI- 
required registers. 
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The Ethernet subsystem contains the LANCE 

chip, the serial interface adapter (SLA) chip, and var- 
ious bus interface logic modules. The Ethernet sub- 
system receives packets from the Ethernet and 
stores them in the shared memory. When transmit- 
ting a packet on the Ethernet, the LANCE chip gets 
the packets from shared memory and transmits 
them on the Ethernet. 

Design 
The design of the DEMNA adapter was influenced by 
many factors, including previous adapter design 
experiences, available hardware such as Ethernet 
chips, ancl system requirements. The DEMNA team 
was assigned the following tasks: 

Produce :I working Ethernet adapter that could 
be used by operating systems such as vMs, 
ULTRIX, ELN, and custom operating systems on 
hardware configurations that use the m1 bus as 
a system bus or an I/O bus 

Deliver high performance, measured by the 
amount of Ethernet bandwidth supported at var- 
ious packet sizes, with minimized host overhead 

Supply debugging features for design verifica- 
tion ancl fielcl maintenance of the adapter 

First, we reviewed previous adapters to deter- 
mine what improvements could be made. We 
learned that a complex host inlcrface cornp1ic;lted 
host software and adapter firmware and gre;~lly 
affected performance. One of these adapters, the 
Digital BI Ethernet Network Adapter (DEBNA), 
implemented a generic port interface that used 
interlocked queues containing a queue entry with a 
buffer name that indexed into a buffer descriptor 
table (i.e., an additional level of indirection). In 
addition to the firmware complexity, the hardware 
was not well suited to a complex port interface. 

Another area in which improvements could be 
made over previous Ethernet adapters was the 
amount of processing performed by the host proces- 
sor during receive packet filtering, address transla- 
tion, and buffer copies. Overall system performance 
improves if this processing can be reduced by per- 
forming part or all of these functions in the adapter. 
This difference transforms the adapter from a dumb 
adapter (much of the data link processing performed 
by the host) to an intelligent adapter (much of the 
processing performed by the adapter). 

The results of our analysis of older Ethernet 
adapters led us to choose a design that employs 

a simple host interface, off-loads the host when- 
ever possible, uses rings instead of queues, and sup- 
plies the address of the buffer directly with the 
ring entry rather than indirectly through another 
data structure. 

The design of the adapter was now consistent 
with the needs of the new VAX 6000 and VAX 9000 
systems. These systems, characterized by increased 
host processor speeds, needed increased I/O per- 
formance. The task of the DEMNA team was to fill 
that need for Ethernet I/O. 

Type of Adapter 
The DEMNA product is a store-and-forward adapter, 
i.e., it copies data to and from host memory by way 
of temporary storage 011 the adapter. This data 
transmission differs from that of a cut-through 
adapter in which data flows directly between host 
memory and the transmission medium. However, 
the DEMNA adapter is acti~ally able to gain some of 
the benefits of cut-through on the receive side. 

Host In tevace 
We designed a simple host interface, using rings 
instead of queues. Interrupts to the host were kept 
to a minimum, from one interrupt per packet at 
light loads to a fraction of that number under heavy 
loads. As seen in Figure 2, the port and the port 
driver (host) share the following data structures, 
which reside in host memory: 

Port data block. This structure gives the port the 
location of the rings and page tables in host mem- 
ory and is a repository for error information. 

Command and receive rings. These rings contain 
information describing outstanding command 
and transmit requests and buffer information for 
receive buffers. 

Transmit, receive, and command buffers. These 
buffers contain packet data and command data. 

These data structures constitute the primary 
means of communication and data transfer between 
the port and the port driver. Control status registers 
(CSRs) are provided for port poll demand registers, 
XMI context, and port initialization. 

Two rings are used in the host interface: the com- 
mand ring and the receive ring. Each ring consists 
of 1024 bytes of physically contiguous memory, and 
each ring contains entries that describe a buffer or a 
set of buffer segments (when chaining transmit 
buffers). The number of entries in the receive ring 
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is fixed, since each entry points to a single contigu- 
ous buffer. The size of each transmit ring entry is 
variable and is fixed at initialization time. 

The port and port driver process the entries in 
each ring in sequential order, starting with the first 
entry. A ring entry can be processed only by its 
owner. When the last entry in the ring is reached, 
processing starts again with the first entry. 

Host interrupts are minimized by using a ring 
release function, which counts the number of ring 
entries processed for completion by the port and 
the port driver. The port driver counts the number 
of completed entries and writes this count to a 
completion CSR when it has finished processing all 
the completed transmit and receive ring entries. 
The port maintains the same count and issues 
another interrupt whenever it sees that its count 
and the count last written by the port driver are dif- 
ferent. This function ensures that the port driver is 
interrupted only when it stops processing the rings 
because there is nothing else to process. The port 
driver can process multiple completed transmits 
and receives after each interrupt as well. Thus, no 
spurious interrupts are issued and the number of 
interrupts is reduced by processing multiple com- 
pletions at once. 

Adapter Design 
The firmware is written in \'m WCRO code. An 
alternative was to use %iCRO for the transmit and 
receive paths and a higher-level language for initial- 

ization, shutdown, and error handling. However, 
this approach was not chosen because it compli- 
cates the interface and would have resulted in 
firmware size difficulties. 

C V m  W M  (used by the CVAX processor exclu- 
sively) consists of 256 kilobytes and contains the 
firmware and data structures (the firmware is 
copied to IWM during self test). Smaller W M S  would 
have been slightly less expensive but would have 
complicated the firmware update procedure and 
limited the ability of the firmware to use the large 
data structures needed for receive packet filtering. 

Shared RhM (shared by the CVhX processor and 
the LANCE chip) consists of another 256 kilobytes. 
This Wit contains the transmit and receive buffers 
as well as the LANCE transmit and receive rings. 
There is a vast amount of buffering space here, so 
the DEMNA device can tolerate a considerable 
amount of inattention from the host before being 
forced to discard incoming receive packets. 

Erasable programmable read-only memory 
(EPROM) consists of 128K bytes for diagnostics and 
firmware boot code, including a backup copy of 
sufficient operational firmware to allow an update 
of EEPROM for initial load or subsequent update. 
EEPROM consists of 64K bytes for operational 
firmware, diagnostic patches, and error history data. 

The gate array (data mover) handles the data 
move and quadword rcacl/write operations. The 
data-move operations transfer buffers between the 
host and shared W I ~ .  The quadword read/write 
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operations are used for control functions, such as 
rcading ring cntrics, reading address translation 
inlimnation, and writing ring si;i~iis on completion. 
Once the firmware initiates a data-move opcration, 
other work is performed by the firmware while thc 
data move pmgresses. 

Interrupts are very costly; therefore, we chose to 
limit the number of interrupts fietdcd by the CVAX 
processor. A LANCE interrupt costs CVAX inlcrrupt 
overhead, plus a LANCE CSR access, plus some nor- 
mal interrupt overhead to save and restore regis- 
ters. A data-move interrupt is less costly, but the 
firmware can be coded so that the data-move oper- 
ation is usually complete, thus eliminating the need 
for the interrupt. Polling is performecl for all LANCE- 

and data-move-related functions, but interrupts are 
used for local console I/o ancl error events. 

Driver Design 
The DEMNA team needed to design a driver that 
would be compatible with existing drivers but that 
would use all the features provided by the adapter. 
For VMS systems, this meant using the set of com- 
mon routines that provide much of the data link 
functionality of the driver, but avoiding packet fil- 
tering. Another goal was to limit the copying of data 
by passing requests directly to the adapter. 

For ULTRM systems, the driver runs at a lower 
level with respect to packet filtering so it cannot 
take advantage of this feature. However, buffer 
chaining is used on the transmit side. As a transmit 
request traverses the various software layers, it 
accumulates buffer segments which the driver has 
to concatenate into a transmit frame. To avoid 
buffer copies in all but the extreme and infrequent 
cases, the driver then passes up to 11 buffer seg- 
ments to the adapter. 

To allow customer-written drivers for special 
applications, we documented the interface to make 
it readily available to customers. 

Debug Tools 
The adapter has a very simple mission in life: to 
transmit and receive packets. To verlfy operation, 
some debug tools are needed. The goal for the 
DEMNA team was to provide extensive debug tools 
both in the operational firmware and in standalone 
user tools. This design wuuld allow debugging and 
verification in the dcvclopment lab and in other, 
less-controlled environments. These clebug tools 
are discussed further in the Visibility section. 

Implementation 
This section describes the implementation of the 
DEMNA adapter through its major functional blocks: 

Scheduler 

Port processing 

Command processing 

Transmit task 

Receive task 

Console task 

Monitor task 

Scheduler 
The scheduler is a round-robin routine that simply 
checks for work, does it, checks for work, does it, 
etc. There are no context switches, but some con- 
text is maintained in registers and shared by all rou- 
tines. The scheduler, when idle, consists of about 
18 VAX MACRO instructions. Transmit and receive 
tasks are given higher priority by duplicating their 
scheduler entry. When not idle, one pass of the 
scheduler processes four packets. 

Port Processing 
Port processing controls adapter initialization and 
shutdown, LANCE initialization and restart, fatal 
adapter error hanclling, gate array error handling, 
and miscellaneous host interface h~nctions. This 
task also handles firmware updates of EEPROM. 

Command Processing 
The command ring usually contains transmit 
buffers, which can contain commands for special 
functions. These commands are included in the 
comrnand ring to allow the port driver to synchro- 
nize control rccluests with transmit requests, e.g., 
user startup ant1 stopping. 

Command processing routines are called by the 
transmit task after the command buffer has been 
read from host memory. The commands consist of 
user startup (consisting of user context such as pro- 
tocol type, packet format, physical address to use, 
and multicast addresses to enable), user stopping, 
read counters, and a set of maintenance commands. 

Transmit Z I S ~  
The transmit task copies a packet from the host 
memory to adapter buffer memory and tells the 
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LANCE to transmit it onto the Ethernet (store and 
forward). After the LiLllCE has completed the 
request, the firmware writes transmit status to the 
command ring entry, signfying completion of the 
transmit. 

To minimize service time, the code in the trans- 
mit path was carefully scrutinized. The number of 
checks and branches was minimized for the opti- 
mized path. The optimized path through the trans- 
mit code is the 30-bit virtual addressing path, which 
is the most used. However, the 40-bit physical 
addressing path still results in better throughput 
because this path does not require any address 
translations, which are timely. The instruction sizes 
were shortened when possible, using word instruc- 
tions instead of longword instructions, to reduce 
the amount of instruction prefetch by the CVAX pro- 
cessor. Routines were placed on quadword bound- 
aries to maximize cache efficiency. When waiting 
for data moves to complete (getting the transmit 
buffer from host memory) or obtaining address 
translation information from the host, the firmware 
was designed to perform other functions to increase 
the probability that the operation would be per- 
formed when the firmware needed it. 

Receive Tmk 
The receive task has the simple job of handing 
received packets to the port driver. This task is com- 
plicated by the need to off-load the host of part 
of receive processing (including packet filtering, 
packet validation, maintenance of counters, and 
processing MOP messages) and to make duplicates 
of packets when more than one user has requested 
a copy. It is further complicated by the need to 
provide buffering, which the port driver uses to 
prevent the driver from supplying large numbers 
of buffers. For enhanced performance, the firm- 
ware deals with receive packets in small groups 
(192 bytes) to allow the benefit of cut-through on 
larger packets. 

Packet filtering is done for the destination 
address and for user type, either protocol type for 
Ethernet, destination service access point ( D S h P )  

field for 802, and protocol identifier value for 
802 subnetwork access protocol (SNAP) packets. 
Additional filtering is done for users who request 
all traffic or all multicast traffic. Filtering is done by 
maintaining a 64-bit user mask, which accumulates 
the list of users who want a copy of the packet 
according to the characteristics of the packet and 
what each user has requested. 

Packet validation consists of length checks for 
Ethernet frames (if the user is using a length field 
after the protocol type) and for 802 frames. This 
saves the driver a little work. Additionally, users can 
request only packets smaller than a selected size; 
the adapter discards packets that exceed this size. 

The cut-through feature adds complexity and 
reduces throughput on small packets, but provides 
many benefits for larger packets. When a packet 
larger than 192 bytes is received, the packet filtering 
and validation of all but the length is done for the 
first segment. This segment is then copied into the 
host buffer, and subsequent segments are copied 
appropriately. The last segment completes the 
packet validation and cyclic redundancy check 
(CRC). The difficulty occurs when the packet 
validation fails or an error is detected, because the 
packet is discarded ancl the context for the now- 
free receive buffer has to be restored. The firmware 
elects to save as little context as possible for each 
packet and to regenerate buffer context after the 
error, i.e., fetching the ring descriptor anew and 
redoing the address translation. 

Console Task 
The console task accepts and parses console com- 
mands and displays the requested data. There are 
two means of accessing the console: local and 
remote. The local console is accessed by a terminal 
connected directly to the DEMNA adapter. The 
remote console is accessed through MOP console 
carrier commands directed at the adapter from 
another system. A remote console may also be used 
to access a DEMNA device on the local system (com- 
ing in through transmit instead of receive). The 
firmware does not distinguish between transmit or 
receive operations from remote consoles. The con- 
sole block accepts the commands and decodes 
them, and the monitor block determines the status. 
The monitor block passes this status back to the 
console block where it is formatted and displayed 
on the screen. 

Due to code size limitations in the EEPROM, com- 
pressed versions of the console screens are stored 
in the EEPROM. At initialization time the screens are 
uncompressed and stored in the mi. (The screen 
compression saved 5 kilobytes in the EEPROM.) To 
easily setup and maintain the screens. especially 
since they often changed during the project, the 
screens were set up in separate text files. The fields 
in the screen were coded with different data types, 
such as date or longword. The screen was then put 
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through a PASCAL program to convert it to a vm 
MACRO data structure and compress it. 

The local consoIe ant1 the remote console can be 
run simultaneously. 'I'hey have separate input and 
output buffers, the same decode and formatting 
code, and different input and output methods. 

The remote console uses the MOP console car- 
rier, coming in on transmit or receive. The com- 
mand/poll and response/acknowledge commands 
are sent by the MOP program, i.e., either the 
network control program (NCP) or a user program 
that implements the MOP console carrier. The con- 
sole code extracts the input characters from the 
command/poll packet and returns a response/ 
acknowledge packet with any available data from 
the remote console output buffer. When a com- 
mand has been entirely received, it is decodecl and 
executed and the response placed in the remote 
console output buffer, which is sent back to the 
user in response/acknowledge packets. 

The local console is a terminal directly con- 
nected to the DWNA device and interfaced through 
the SSC universal asynchronous receiver transrnit- 
ter (UART). This terminal connection receives and 
transmits one character at a time. Characters are 
collected into the local console input buffer and 
complete commands are parsed and executed. 
Response data is placed in the local console output 
buffer. The local console uses interrupts to signal 
when a character has been typed or when the IiART 
is ready to transmit another character l'hese are the 
only interrupts used on the module, except for 
error interrupts. Since console interrupts are rela- 
tively infrequent, they are less costly than polling. 

Monitor Tmk 
The monitor facility operates mainly during receive 
or transmit. It d m  runs as a low priority entry 
in the scheduler to tlcai with debugging and veri- 
fication activities (when debugging firmware is 
enabled). 

Perfortnunce 
As stated previously, the primary goal of the DEMNA 
adapter was higl~specd performance, i.e., this 
adapter would not create a bottleneck when placed 
in a system. The major performance metrics we 
identified were throughput, service time, latency, 
and reliability. 

Throughput is  the number of packets or bytes of 
packet data that can be transmitted or received 
per unit of time. 

Service time is the time a packet spends in each 
stage along its path from source through host 
software and driver, through adiipler, over wire, 
through adapter, and through driver and host 
software to the destination. 

Latency is another measure of service time. It is a 
measure of delays encountered by queue depths 
of more than one at various points. 

Reliability is measured as the probability of packet 
loss under a receive load. It is also measured as 
adapter buffering and host buffer allocation 
effectiveness. For some protocols, recovery from 
packet loss takes a significant amount of time, 
and the loss of a packet may be quite noticeable 
to a user. Hence, recovery is related to a user's 
perception of reliable operation. 

The performance goal of the DEMNA team was to 
minimize the service time through the adapter to 
maximize throughput. This is most critical for small 
packet sizes. If the service time is greater than the 
time it takes to transmit or receive a packet, then 
queue depths increase, increasing latency for s u b  
sequent packets. Small packets are critical because, 
obviously, they take less time to transmit or receive. 

The speed of the Ethernet wire and the XMI bus 
must also be considered. The Ethernet operates at 
10 megabits per second. The available bandwidth 
into memory and the capacity of the XMI are much 
greater; thus, the Ethernet is the limiting factor. To 
maintain maximum throughput, the DEMNA device 
must write and read packets to and from host mem- 
ory at a speed equal to or greater than the Ethernet 
wire. If this speed is obtained, then the service time 
of the DEMNA adapter must be less than the time it 
takes to transmit or receive one 64-byte (small) 
packet to or from the Ethernet wire to maintain 
maximum throughput at all packet sizes. 

Hardzuare 
The primary hardware factors influencing adapter 
performance are CVAX performance, DMA engine 
throughput, and bus contention. 

The gate array D m  engine can sustain between 
11.5 ant1 13.5 megabytes per second on a VAX 6000 
system. When transferring packet data (and atten- 
dant host ring processing), the firmware can s u s  
tain about 5.8 megabytes per second. This is the 
approximate rate at which the firmware would 
deliver a burst of large packets that had been stalled 
due to a lack of receive buffers. 
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The CvAX chip used is the 60-microsecond vari- 
ant (the same one used in the VAX 6000 Model 310 
processor). As seen in Figure 1, the processor runs 
on its own internal CDAL bus which has RA.M con- 
taining firmware and private data structures. Thus 
the processor does not contend for the same bus as 
the gate array and the LANCE chip. However, the 
CVAX processor does touch shared memory and 
gate array registers; therefore the possibility of con- 
tention is significant. Logic analyzer measurements 
indicate that about 14 percent of CVAX cycles are 
consumed while waiting for access to the sharetl 
memory bus for minimum size packets. For large 
packets the consumption is 33 percent, but the 
cycles needed are considerably less than the remain- 
der. The effect on the gate array accounts for 
part of the difference between the speeds of 11.5 to 
13.5 megabytes per second and of the 5.8 megabytes 
per second mentioned above. 

Firm ware 
Throughput is limited by the Ethernet bandwidth 
for packet sizes greater than 88 bytes. The average 
packet size on Ethernet is approximately 150 to 
450 bytes per packet for a mix of DECnet, LAT, and 
cluster traffic. Table 1 represents the throughput 
that the host software can see, given sufficient host 
computes. These numbers show what might be 
expected. Virtual addrcssing costs some perfor- 
mance, and receive filtering accounts for most of 
the difference between transmit and receive. 

I t  is interesting to look at the number of instruc- 
tions executed by the CVAX processor for each 
receive and transmit packet as the measure of how 

Table 1 DEMNA Throughput 

much work must be done for each packet. These 
instruction counts are for minimum size packets in 
virtual address mode and incrcase slightly with 
increasing packet sizes 

For a transmit, the number of instructions 
required was about 134, consisting of 5 instructions 
for work done in the scheduler to determine initial 
transmit context, 77 instructions for the data trans 
fer from host memory, 18 instructions to gct the 
LANCE chip to begin transmitting, and 34 instruc- 
tions to process packet completion and to update 
status in the transmit ring entry in host memory. 

For a receive, the number of instructions required 
was about 160, consisting of 5 instructions for work 
done in the scheduler to determine initial receive 
context, 40 instructions to deal with the LANCE 
operations, 20 instructions for packet filtering, 
65 instructions for the data transfer to host memory 
(including some time spent finding a user and 
validating the packet length), and 30 instructions 
for the prefetch of the next receive ring entry. 

Some throughput was traded off in the interest of 
reducing adapter-added latency. By processing 
receive packets in groups of 192 bytes, the latency 
contribution for any packet size is much smaller 
than it woultl be if all the packet processing occurs 
after the packet has been fully received. Thus the 
time between the end of a packet on the wire 
and the host interrupt is fairly constant from 64- to 
1518-byte packets, 50 to 70 microseconds 

Reliability 
Reliability, or probability of loss, is measured by how 
large a burst of traffic the adapter can withstand at 

Packet 
Length 
(bY-tes) 

I Microseconds I 
Ethernet LANCE Transmit Transmit Receive Receive 
Maximum Maximum Virtual Physical Virtual Physical 

14880 14662 131 81 14633 12468 1291 8 
13586 13404 12592 13361 12254 12830 
12500 12345 12247 12340 11813 12227 
11 574 11 441 1 1432 1 1438 11 441 11 441 
10775 10660 10656 10658 10660 10660 
9469 9380 9380 9380 9380 9380 
8445 8374 8374 8374 8374 8374 
4528 4508 4508 4508 4508 4508 
2349 2344 2342 2344 2344 2344 
11 97 11 95 11 95 1195 1195 1195 
81 2 81 2 81 2 81 2 81 2 81 2 
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the maximum receive rate and deliver thesc pack- 
ets to the host without losing any. Adapter reliabil- 
ity was measured at various packet sizes. A burst of 
5 seconds without packet loss was considered to be 
of "infinite" duration. 

Table 2 shows that the DEMNA adapter can sur- 
vive a significant burst of activity without packet 
loss. Such activity is unlikely, but possible, depend- 
ing on the application being run and on the net- 
work configuration. 

This testing does not measure how host software 
performs buffer aflocation for a user application or 
for the adapter as a whole. For the latter, the DEMNA 
adapter accounts for any lack of buffering by the 
host by not discarding r packet if a buffer is not 
immediately available. Instead, it walts up to three 
seconds for the host to supply a buffer. 

A system user looking at the operation of the net- 
work sees three areas of complexity: thc systcm 
software, the network controller, and the network. 
When everythmg is wurking well, there is little 
need to look at any of these areas except perhaps to 
predict future operation (by extrapolating network 
utllbtion or system usage) or to confirm that the 
system is indeed nrnning well. When the system is 
not running well, visibility into these areas is cru- 
cinf to understanding what is wrong and how to 
correct it. The console and monitor facilities were 
buiit into adapter firmware from the outset; we 
knew that thc visibility was crucial to i ~ d ; l ~ c r  
debugging and verification and would later be help 
ful to users. 

The console also displays buffer occupancy on 
the adapter for transmit and receive, user conligura- 
tion as to protocol type and chardctcrlstics, buffer 
availability counters, and host interrupt counters. 
This data indicates how the spstcrn is running, i.e., 
whether sufficient buffers are allocated to the 
device and to each user of the device. These coun- 
ters also indicate how much attention the driver is 
paying to the adapter. For example, if the system is 
not tuned properly, the adapter may be generating 
less than normal interrupts (because queuing delays 
are affecting the system operation). These queuing 
delays can be seen in the firmware counters, which 
monitor the depth of adapter queues and the ability 
of the adapter to give receives to the host, i.e., 
buffering on the adapter has been used to compen- 
sate for queuing delays in the host. 

Adapter Operation 
When the adapter is not malfunctioning, visibility 
into adapter utilization is important. The console 
displays program counter (PC) sampling results for 
the firmware, showing how busy the adapter is and 
where time is being spent. When looking at the I/O 
subsystem as a whole, it is important to know how 
much the ackapter is contributing to queuing delays, 
buffer occupancy, and added latency This adapter 
operation can be seen by looking at how busy the 
adapter is and how many buffers it has outstanding. 

For adapter failure or problems on the XMI, the 
console displays error information which has been 
saved in EEPROM. This error data consists of fatal 
error contest, data transfer or XivlI error context, 
and results of self-test. 

System Opmtion Network Operation 
The console displays xP/ll utilization a s  apportioned The DEMNA device normally sees all packets on the 
among the MI devices. This data comes from sun- wire (excluding packets less than 64 bytes in length 
pling done by the firmware of the "last XMI node [runt packets] and collision fragments). When look- 
active on the bus.' From this, the user can estimate ing at the adapter operation through the console 
total XMI utilization. facility, the user sees current network utilization 

Table 2 DEMNA Receive Burst Tolerance 

Packet Burst Burst Burst Burst 
Length Virtual Virtual Physical Physical 
(bytes) (packets) (microseconds) (packets) (microseconds) 

64 3250 221 661 3843 2621 06 

72 51 16 381 677 11591 864741 
lnfinite lnfinite 

88 Infinite Infinite Infinite Infinite 
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and network error information. For transmit errors, 
the console displays the number of errors and date 
and time of the last occurrence. For receive errors, 
the console displays the number of errors, date and 
time, source address, and protocol type. Addition- 
ally, receive errors that are not counted (because 
they do not pass receive filtering) are displayed For 
example, error information is displ;cyed for a node 
generating packets with <:R<: errors regardless of the 
destination of these packets. 

The console also provides the command SHOW 
NETWORK to display network utilization in node 
addresses and protocol types. For this command, 
the receive firmware calls a monitor facility routine 
for each pitckct seen on the wire. This routine main- 
tains statistics for each source and destination node 
address, consisting of the number of packets and 
the number of bytes. At three-second intervals, the 
console calls a monitor routine which adds statis- 
tics over the prior interval to cumulative data for 
each node, collects top nodes and protocol data, 

and clears the interval data to prepare for the next 
three seconds of monitoring. Figure 3 represents a 
sample network monitoring display. 

Debug Tools 
The monitor task provided other debugging fi~nc- 
tions during adapter debugging and internal field 
test. These functions are not visihle features in the 
finished product. However, they are extensions to 
the functionality and illustrate the benefits of visi- 
bility into the adapter. A user program, XNAVON, 
was written to access the following functions. 

Traffic generation. It is difficult to generate 
heavy loads on an adapter, particularly because 
of logistics. Other systems are needed with 
enough processing power to generate the load. 
Using the XNAMON program, only one system 
was needed. XNAMON was run on it to direct 
other adapters to generate traffic to another 
node with a particular packet size at a specified 
rate. Since traffic generation could be done 

- N e t w o r k  - 21-APR-1991 1 1  : 29 :38  - 

- 3000002  u s e c s  - 2 1 . 6 %  N I -  
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60 -07  N I S c a  571 21 4  1 0 . 7 %  
60 -03  DECnet 1 7 7  645 9 . 4 %  
60 -04  L a t  1 6 7  6  4  1  .I% 
60-02 MopRC 1 8  8  7  0 .1% 
80 -41  LAST 7  8  2 0 .0% 
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- 0 0 : 0 0 : 3 3  - 1 9 . 7 %  N I  - 
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6358  4021 1 0 . 0 %  
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6  5  9  5  6  0 . 1 %  
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usecs 
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Figure 3 Network Monitoring Display 
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regardless of system state (except for power 
on), there was always a good supply of traffic 
generators. 

Packet tracing. This fiinction allowed a nocle to 
sc;un the rcccivc strc;im for packcts with selected 
source and destination adtlrcsscs and protocol 
types. Either the packet heaclcr or the entirc 
packet was saved for matching packets. This 
fiinction was used extensively during initial 
debugging for validating transmit functionalit!: 
Later it was used for valiclation of MOP and 
related functionality by creating trace files on a 
known good node. We then ran functional 
scripts through a test generator, which used the 
traffic generator on one node to send a test 
packet to the node under test. The command 
and the response were traced by the trace nocle 
and the test program collected the trace data ancl 
compared it agnlnst known good data. Packet 
tracing was also used to wr&y packet filtering by 
devising a test program that could start up par- 
ticular user configurations and loop back any 
packets received. 

Adapter test. The ability to exercise a module 
under stress was critical to adapter hardware ver- 
ification. ?'he functionality in question was the 
Ethernet subsystem and the XMl interface 
through the gate array. The monitor facility pro- 
vided this test functionality by doing MOP loop- 
back operations to another nocle while doing 
various data transfer operations to host memory. 
Data compares were done on completed trans- 
actions to validate data integrity. The XNAMON 
program provided the interface for this function 
and the remote display of its results. 

Remote debugger. The access to DEMNA inter- 
nals allowed remote adapter memory dumps 
and remote inspection of data structures while 
the adapter was running. 

The DEMNA adapter meets the requirements of 
the VA)( 6000 and VAX 9000 systems. In fact, the pcr- 
formance for small packets exceeds the capability 
of these systems. For larger packets, Ethernet 
bandwidth is the limiting factor. Our experience 
illustrates some advantages ancl disadvantages of 
choosing a firmware-based design over an interface 
implemented entirely in hardware. 

Adzlantages of a Fimware-based Design 
The advantages of designing an adapter in firmware 
are as follows: 

The firmware can usually off-load host computes 
by doing more pre-processing. 

The firmware can be changed easily (bug fiies or 
changes in fi~nctionality), thus reducing long- 
term maintenance and support costs. Also, 
changes can be made in the field by a firmware 
upgrade rather than requiring module rework at 
a manufacturing site. 

By designing in the firmware, designers can 
avoid software driver complexity and the neces- 
sity of hardware redesign. 

The firmware can provide powerful debugging 
mechanisms and tools. 

The firmware is very flexible. Changes to sup- 
port hardware problems or additional off-load of 
host computes can be considered late in the 
design cycle. This may also allow new port archi- 
tecture and addressing changes for creating new 
products. 

Firmware designs allow extensive fi~nctionality 
for lower product and development cost than a 
total hardware design. 

Firmware designs allow the hardware to be 
released earlier in the development cycle. 

Disadvantages of a Firmware-based 
Design 
The disadvantages of designing an adapter in firm- 
ware are: 

The adapter is generally more expensive, consid- 
ering the cost of a microprocessor subsystem 
with enough computes for the job. 

The adapter is slower in terms of latency. Some 
applications may be more sensitive than others, 
given the same throughput, but may have 
slightly larger service times per packet. The 
effect can be viewed in terms of buffer occu- 
pancy: an adapter with lower latency may uti- 
lize, on average, few buffers. 

The approach is not feasible for transmission 
media much faster than Ethernet, because the per- 
formance requirements of the microprocessor 
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become extreme or the hardware assists for the 
microprocessor become too complex and costly. 

Future Directions 
Several characteristics disti~lguish future antici- 
pated system design from current systems (sucl~ as 
the VAX 6000 and VAX 9000 systems). 

Increased host processor power 

Simplified bus design 

Increased I/O bandwidth requirelnents 

Increased host processor speed moves the I/O 
bottleneck from the host to the 1/0 subsystem. To 
supply the I/O needs, the I/O subsystem must 
provide faster media, e.g., fiber distributecl clata 
interface (FDDI) in the near term, or multiple con- 
nections to slower media (such as Ethernet). The 
I/O adapters will be expected to provide signifi- 
cantly greater throughput with a smaller adapter 
contribution to latency. The effective performance 

the basic data size of the system to avoid cache 
thrashing and unnecessary read-mode-write 
transactions. 

Reduced latency. The adapter should minimize 
its contribution to transmit and receive Intcncy. 
This may mean reducing some of the filnclions 
done by an intelligent adapter on receive, in order 
to spectl clelivery to the host ;iltcr packet recep- 
tion is complete. These functions include packet 
filtering, handling of maintenance operations 
packets, length validation, and maintaining coun- 
ters data. Improving packet liltcring by host soft- 
ware would eliminate the reason for placing this 
function on the adapter in the first place. 

Filtering in host software is considerably more 
difficult than in the adapter. The difficulty 
comes from the need to deal with extreme user 
configurations. The DEMNA is bounded by limit- 
ing the users and node addresses. The extreme 
cases must still be done by host software. 

of the system will be more sensitive to latency. For Acknowledgments 
example, an application using a single threaded 
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system bus and I/O interface, which necessitates a 
simpler bus protocol. This might consist of elimi- 
nating costly fiinctionality such as byte masking 
and interlocks. However, a simpler interface to the 
I/O adapter will require considerable change to the 
port protocol to ensure its efficiency. 

The characteristics needed in future adapters are 
as follows: 

Greater throughput. This means more connec- 
tions to a slower medium, such as a single 
adapter supporting n~ultiple Ethernet connec- 
tions. Or it means a faster medium. Additionally, 
configur;~tions using Ethernets as point-to-point 
links will be more common, thus implying a 
heavier load on each Ethernet. 

Simpler host interface. This is necessitated by 
the simpler bus protocol. Bus overheacl should 
be minimized, which includes the elimination of 
such filnctionality as page t h l e  access for virtual 
address translation. Also, the bus transfer size 
used by the adapter should be compatible with 
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Satish L.  Rege I 

The Architecture and 
Implementation of a 
High-performance FDDI Adapter 

With tbe advent o f f b w  distributsd data interfnce (FDDI) techno lo^, Digital saw 
the need to define an architecture for a highperformance adapter that coz~ld trans- 
mitdata 30 times faster than previously built Ethernet adopters. We specijiied afrst  
generation FDDI data link layer adapter architecture that is capable of meeting the 
maximum FDDIpacket-carrying upudty The UEC FUnIcontroller 400 is an imple- 
mentation of thk architecture. This adapter acts as an inteiface between &MI-based 
CPUs, such as the VAX 6000 and VAX 9000 series of com)zrters, and an FDDI local 
area network. 

Fiber distributed data interface (FODI) is the second 
generation local area network (LAN) technology. 
FDDI is de f i ed  by the American National Standards 
Institute (ANSO FDDl standard and will coexist with 
Ethernet, the first generation LAN technology. 

The architecture and implementation presented 
in this paper are h r  the DEC FDDlcontroller 400, 
Digital's high-performance, XMI-to-FDDI adapter 
known as DEMFA. This adapter provides an interface 
between an FDDI LAN and Digital's xMI-based CPUs, 
presently the VAX 6000 and VAX 9000 series of com- 
p u t e r ~ . ~ '  DEMFA implements all functions at the 
physical layer and most functions at the data link 
layer.*' 

We begin the paper by differentiating between 
an architecture and an implementation. Then we 
present our project goal and analyze the problems 
encountered in meeting this goal. Next we give a 
historical perspective of Digital's LAN adapters. We 
follow this discussion by describing in detail the 
architecture and implementation of DEMFA. FlnaLIy, 
we close the paper by prescntlng some results of 
performance measurement at the adapter hardware 
level. 

Adapter Architecture and 
Implementation 
Before we discuss the DIrh41:il architecture and its 
implementation, it is necessary to understand 
what is meant by an adaptcr architecture and an 

implementation of that architecture. An adapter 
architecture specifies a set of functions and the 
method of executing these functions. An imple- 
mentation that incorporates all of these functions 
and conforms to the method of executing these 
functions becomes a member of the adapter archi- 
tecture family. Thus, for a givcn architecture, many 
implementations are possible. 

To grasp the concept presented in the previous 
paragraph, consider the VAX CPU architecture. This 
architecture defines the instruction set, which is 
composed of a set of arithmetic, logical, and other 
functions, and a format for the instruction set that a 
processor should implement to be classified as a 
VAX computer. Examples of VAX implementations 
are the VAX 11/780 and the VAX 9000 computers, 
which both conform to the VAx CPU architecture. 

Our Goal and the Problem Definition 
Our goal was to define an architecture for an FDDI 
adapter that meets the ultimate performance goal 
of transmitting approximately 450,000 packets per 
second (packets/s). This goal is considered ultimate 
because 450,000 packets/s is the maximum packet- 
carrying capacity of FDDI. Note that this transmis- 
sion rate is approximately 30 times greater than that 
of Ethernet, which can transmit approximately 
15,000 packets/s. 

Before dcCining the problem, the basic properties 
of XMI  and FDDI must be understood. XMI is a 
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64-bit-wide parallel bus that can sustain a 100- 
megabyte-per-second (MB/s) bandwidth for multi- 
ple interfaces.' Each interface attached to the XMI 
bus is rcfcrred to  as a commander when it requests 
data or  a responder when it delivers data. xM1 is an 
interconnect that can have transactions from sev- 
eral commanders and responders in progress simul- 
taneously. 

FDDI is a packet-oriented serial bus that operates 
using the token ring protocol and has a bandwidth 
of 100 mcgabits per second (Mb/s)." FDDI is capable 
of transmitting packets as small as 28 bytes, which 
take 2.24 microseconds to transmit. Therefore, 
FDDI can carry approximately 450,000 minimum- 
size packets/s. The largest packet that FDDI can 
carry is 4508 bytes. The WSIIIEEE 802.5 standard 
defines the FDDI operation; Digital has developed 
its own implementation of the FDDI base technol- 
ogy as a superset of the ANSI standard.-l 

Our problem was to architect an adapter that 
could interface M I ,  i.e., a parallel high-bandwidth 
CPU bus for VLX computers, to a serial fiber-optic 
networking bus. To avoid being the bottleneck in a 
system, such an adapter must be able to transmit or  
receivc 450,000 packets/s. 

ANSI defines the protocol for interfacing an 
adapter to an FDDI LAN.9ut we had to define the 
protocol between the adapter and the W S  and 
ULTRIX operating systems used by most VAX com- 
puters. Thus, solving the problem required us to 
architect a data link layer adapter that would satisfy 
both protocols and meet the FDDI maximum packet 
transfer capability. 

Historical Perspective 
The computer industry has built many LAN 

adapters since the inception of Ethernet ten years 

ago. The first LAN adapter built by Digital was the 
UNIBUS-to-NI adapter (UNA). (NI is Digital's alias for 
Ethernet.) The Digital Ethernet-to-XM1 network 
adapter, known as DEMNA, is Digital's most recent 
Ethernet adapter.' 

Let us choose the maximum throughput rate 
expressed in packets per second as a performance 
metric for LAN adapters. T11e historical perspective 
shows that the first adapter to meet the Ethernet 
packet-carrying capacity is the DEMKA. Therefore, 
it took approximately eight years and six genera- 
tions for an Ethernet adapter to achieve this 
throughput rate. Consequently, many designers 
thought that our goal of meeting the ultimate FDDI 
packet-carrying capacity was impossible. 

But the DEMFA architecture, a first generation 
FDDI data link layer adapter architecture, can meet 
the maximum FDDI packet-carrying capacity. In 
this sense, the DEMFA architecture is ultimate. 

Traditional Adapter Architectures 
In this section, we analyze the traditional adapter 
architecture and show that by using this architec- 
ture we could not meet our performance goal. 
Figure 1 is a block diagram of a traditional adapter, 
e.g., DEMNA. In such a design, a CPU in the adapter 
operates on every transmitted and received packet. 
Thus, using this traditional architecture to build an 
ultimate FDDI adapter would require a CPU capable 
of handling 450,000 packcts/s. To predict the per- 
formance of such a CPU, wc extrapolated from the 
performance data of the CPU used in DEM,UA.- This 
traditional adapter can handle approximately 
15,000 packets/s using a CPU ratecl at 3 VN( units of 
performance (WPs). 

If we assume a linear model to extrapolate the 
performance of a CPrJ from DEMNA to DBMFA, an 
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Figure I Block Dicgram of a Traditional Adapter 
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ultimate FDDI adapter would require at least a 
90-WP CPU. Such a cpU was neither available nor 
cost-effective for timely shipment of our adapter. 
Besides, it would be extravagant to use a 90-WP 
CPU in an adapter whose host CPU may have a per- 
formance as Iow as 3 to 4 WPs. Therefore, we 
looked for a different solution. 

DEMFA Arcbitectzcre 
The DEMFA architecture is characterized by tht fol- 
lowing specifications for functionality and the 
means to achieve this functionality: 

As mentioned earlier, the DEMFA achltecture 
implements all functions at the p h ~ s i d  iayer 
and a major subset of the functions at the &a 
I ink layer. 

The architecture requires that this functionality 
be implemented in pipelined stages, which are 
used to receive and transmit packets over the 
FDDI ring without C P U  interference. 

The DElMFA architecture specifies a ring interface 
for communicating between the plpcllncd 
stages. Rings operate as queues that alto* buffer- 
ing between pipelined stages, enabling these 
stages to proceed In an asynchronous fashion. 

The architecture requires a packet-filtering 
capability in the pipelined stage nearest to the 
FDDI ring; thb capability helps to minimize 
adapter and host resource utilization. 

The architecture specifies the DEMFA port, 
which minimizes the information transfer 
required to interact with the host operating 
system. This interaction takes place during both 
initialization and the normal operation of receiv- 
ing and transmitting packets. 

In the following sections, wc elabonte on different 
features of the DEMFA architecture. 

Pipelined Architecture with No C'PU 
Interference 
Once we determined that the traditional architec- 
ture of a CPU processing the packets could not meet 
our performance goal, we began to investigate 
alternative architectures. The requirement was to 
either process one receive packet or queue one 
transmit packet in a time period less than or equal 
to the time it takes to transmit on an FDDI ring. 

Thus, the device we ard~itttcred must process 
28-byte packets in less t h 7  2.24 microseconds. A 
little thought will show that if wc are able to meet 
the requirements for processing small packets at 
the FDDl bandwidth, then the requirements for 
lnrger packets can be easlly met. 

Our final choice was a three-stage pipeline 
approach which broke down the complcsity of 
implementation while meeting our performance 
goai. As shown in Figure 2, the three stagcs of the 
pipeline in the adapter are the FDDI corncr and 
parser (FCI') stage, the ring entry movcr (REM) 
stage, and the host protocol &coder (HPD) stage. 
Figure 2 also shows two other functions required 
of the adapter: the buffering of packets, which 
requires a memory called the packet buffer mem- 
ory (PBM) and a memory interface called the packet 
memory interface (PMI); and the local intelligence, 
also called the adapter manager (AM). 

DEMFA Functions 
This section presents brief descriptions of the 
DEMFA functions and the pipelined stages in which 
these functions are performed. This, according 
to our definition, is the DEMFA architecture. A later 
section, One Implementation of the DEMFA Archi- 
tecture, describes an implementation in detail. 

The FCP stage converts serial photons on the 
FDD[ ring into packets and then writes the packets 
into PBM longwords, 32 bits at a time. The parser 
implements the logical link control (LLC) filtering 
functionality This stage is also responsible for cap- 
turing the token on the FDDI ring, transmitting 
packets, and implementing thc physical layer, e.g., 
media access control (MAC), fiinctionality required 
by the FDDI standard. 

The REM stage is responsible for distributing 
packets received over the FDDI ring to the host 
computer and to the tw. This stage also collects the 
packets from the host and the AM to queue for FDDI 

transmission. 
The HPD stage interfaces with the XMI bus to 

move received packets from PBM to the host mem- 
ory and to move transmit packets from the host 
memory to the PBM. 

The PBM stores the packets received over the 
FDDI ring and the packets to be transmitted over 
the FDDI ring. It also stores the control structures 
required for accessing these packets. The PMI arbi- 
trates the requests made by the three pipelined 
stages and the AM to access the PBM. 
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Figure 2 DEMFA Block Diagmm 

The AM implements the functionalities of self- 
test and initialization in the adapter and also a sub- 
set of the SMT function required by the ANSI FDDI 
specification."The adapter manager performs no 
function in either the receipt or transmission of 
individual packets to the host. 

We use ring interfaces to communicate within 
the adapter and between the adapter and the host. 
These interfaces are described in detail immedi- 
ately following the next section. 

Performance Constraints on the Pipelined 
Stages 
Consider the three pipelined stages and their ring 
interfaces. At any time, the three independent 
stages are processing different packets. Thus, if the 
HPD stage is processing received packet 0, the REM 
stage may be working on received packet 4 and the 
FCP on received packet 7 Note that packets 1 ,2 ,  and 
3 wait on a ring between the REM stage and the HPD 
stage. Similarly packets 5 and 6 wait on a ring 
between the FCP stage ant1 the REM stage. The PBM 

must have enough bandwidth to service the three 
stages. It also must service them with low latency 
so that the first-in, first-out (FIFO) buffers in the 
FCP stage do not overflow. 

By dividing the processing of a packet over the 
three stages and the ring interfaces used to queue 
packets between these stages, we reduced the 
complexity of the total adapter functionality. Any 
implementation of this architecture specification 
would consist of three loosely coupled designs that 
use ring interfaces to communicate with one 
another. 

Each stage must process a packet in less time 
than it takes to transmit the packet on the FDDI 
ring. As we mentioned previously, this transmission 
time is 2.24 microseconds for the smallest packet. A 
larger packet may take longer to process than a 
small packet, but such a packet also takes longer to 
transmit on the FDDI ring. 

Thus, to meet our performance goal, we archi- 
tected a three-stage pipeline implementation, with 
each stage meeting a packet-processing time 
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dependent upon the packet size. In addition, our 
;~rchitecture specified a PI111 with sufficient 
Ii-lemory bandwidth to service the asynchronous 
requests from the three stages with minimal 
latency. 

Ring Interface-The Core of the DEMFA 
Architecture 
The ring interface forms the core of the DEMFA 
architecture. An interface is necessary to exchange 
data between  he adapter and the host computer 
and also between the different stages and ~LII IC-  

tional units of Lhe adapter. Such an interlace usually 
consists of a data structure and a protocol for com- 
munication. We cvaluatecl various data structures, 
including a linked list or queue data structure, and 
found that a ring data structure is efficient to 
manipulate and would be easy to implement in 
state machines, if desirable. 

Implementation of Ring Str~ictures Ring struc- 
ture implementation requires a set of consecutive 
memory atlclresses, as shown in Figure 3. The ring 
begin pointer and the ring end pointer define the 
beginning and end of a ring. Two entities, the trans- 
mitter and the receiver. interface with a ring to 
exchange data. l'he transmitter interface delivers 
data to the receiver interface using the ring struc- 
ture. This data resides in memory that is managed 
by one of the two interfaces. If the transmitter inter- 
face manages the memory, the ring is called a trans- 
mit ring. If the receiver intcrface manages the 
memory, the ring is called a receive ring. 

OWNERSHIP ONE ENTRY 
BEGIN IN THE RING 
POINTER -+ 

BUFFER 

TRANSMITER 
INTERFACE - RlNG 

RlNG 
END 
POINTER - 

RECEIVER 
INTERFACE - 

Q u r e  3 Ring and Ring Interfcices 

Rings are divided into entries that consist ofsev- 
era1 bytes each; the number of bytes in an entry is 
an integral tllultiple of longwords. A ring, in Lurn, 
must contain an integral number of entries. The 
entry size and the number of entries in a ring deter- 
mine the ring size. We chose an entry size that is a 
power of two in bytes and the number of ring 
entries to be divisible by two, as well. These 
choices helped to simplify the hardware implemen- 
tation used to peruse these rings. 

Each entry consists of 

An ownership bit, which indicates whether the 
transmitter interface or the receiver interface 
owns the entry 

Buffer pointers, which point to transmitted or 
received data 

A buffer descriptor, which contains the length of 
the buffers, and status and error fields 

The definitions of these fields in an entry and the 
rules for using the information in these fields con- 
stitute the ring protocol. 

Only the interface that owns an entry has the 
right to use all the information in that entry. This 
right includes using the buffer pointers to operate 
on data in the buffers. Both interfaces have the right 
to read the ownership bit, but only the interface 
with ownership may write this bit. 

The two interfaces can exchange entries by tog- 
gling the ownership bit. After toggling this bit, the 
tr;~nsmitter and receiver interfaces need to prod 
c;tcll other to indicate that the ownership bit has 
been toggled. This is accomplished using two hard- 
wired Boolean values, by means of an interrupt, or 
by writing a single-bit register. Hardwired Boolean 
values are used when both the transmitter and the 
receiver are on the adapter. Either the interrupt 
scheme or the method of writing a single-bit regis- 
ter is used when the transmitter and receiver con- 
verse over an external bus, e.g., an XIMI bus. 

The word "signal" is used henceforth to repre- 
sent the prodding of one interface by the other. 
A transmitter interface uses "transmit done" to sig- 
nal the receiver interface that data has been trans- 
mitted. A receiver intcrface uses "receive done" 
to signal the transmitter interface that the data has 
been received. Note that we have defined the 
DF1II:A port protocol in such a way that the number 
of interrupts used to signal the host across XMI is 
minimized to reduce the host performance degra- 
dation caused by interrupts. 
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The unit of data exchanged between the transmit- 
ter interface and thc receiver interface is a packet. A 
packet may be written in a single buffer ifthe packet 
is small or over multiple buffers if the packet is large. 
In this paper, we ~ lse  the term buffer to refer generi- 
cally to buffers in the adapter or in the host. The 
buffers in the adapter are always 512 bytes in size 
and, when referred to specifically, are called pages. 
The buffers in the host may be of different sizes. 

An exchange of data requires single or multiple 
buffers, depending upon the packet and buffer 
sizes. One field of two bits in the buffer descriptor is 
used to designate the beginning and end of packet. 
These bits are called the start of a packet (SOP) and 
the end of a packet (EOP). Thus, for a one-buffer 
packet both the SOP and the EOP are asserted. For a 
multiple-buffer packet, the first buffer has the Sop 

asserted, the middle buffers have both the SOP and 
the EOP deasserted, and the last buffer has the EOP 
asserted. The buffer descriptor also contains fields 
that we do not describe in this paper. 

Data Exchange on a TransmitRing Data exchange 
between a transmitter interface and a receiver 
interface is accomplished in a similar manner on 
both transmit and receive rings. Therefore, we dis- 
cuss the exchange in detail for a transmit ring; for a 
receive ring, we note only the dissimilarities. 

The events that occur during the data exchange 
on a transmit ring are shown in Figure 4. The pro- 
cess is as follows. The transmitter interface man- 
ages the memory used to exchange data and has 
two pointers to the ring entries, i.e., the fill pointer 
and the transmitter free pointer. The transmitter 
interface uses the fill pointer to deliver data to the 
receiver interface. The transmitter interface uses 
the transmitter frce pointer to recover and manage 
the buffers freed by the receiver interface. The 
receiver interface uses only one pointer, i.e., the 
receive pointer, which points to the next entry that 
the receiver interface interrogates to receive data. 

To understand how data is transmitted, assume 
that the pointers move from top to bottom, as 
shown in Figure 4. Initially, all the pointers desig- 
nate the 1oc;ltion indicated by the begin pointer. 

A transmitter that has data to transmit to a 
receiver uses the entry indicated by the fill pointer. 
First, the transmitter verifies that it owns the entry 
by checking the ownership bit. Second, the trans- 
mitter writes the buffer address and the remaining 
fields in the entry In the case of a single buffer 

packet, the transmitter interface writes a single 
entry and then toggles the ownership bit and sig- 
nals the receiver interface. 

For multiple buffers, the transmitter interface 
increments the fill pointer and repeats the two 
steps described in the previous paragraph to write 
all the buffer addresses and the length and status 
information. Then the transmitter interface toggles 
the ownership bits of all later entries of the multi- 
ple buffers before toggling the ownership bit of the 
first entry. This protocol preserves the atomicity of 
the packet transfer between the transmitter and 
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receiver interfaces. Then the transmitter interface 
sign21ls the receiver interface th;~t ;I packet is av;til- 
able on the transmit ring. l'his sign;ll alerts the 
receiver interface, which then ex;~mincs thc cntly 
pointed to by the receive pointer. 'l'he receivcr inter- 
face operates on the entry dnt;~ if it owns the entry 

The receiver interface returns the entries to the 
transmitter interface by toggling the ownership 
bits and then signals receipt of data to indicate the 
return of the entries (and hence the free buffers). 
Note that there is no need to return these free 
buffers in ;I packet, atomic fashion. The transmitter 
interface uses the transmitter free pointer to exam- 
ine the ownership bits in the entry and to reclaim 
the buffers. 

The interfaces operate asynchronously, since each 
one can transmit or receive data at its own speed. If 
the transmitter interface can transmit faster than the 
receiver interface is able to receivc, the transmit ring 
fills up. Under such circumstances, the receiver 
interface owns all the entries in a transmit ring, the 
fill pointer equals the transmitter free pointer, and 
data transmission stops. Conversely, if the receiver 

interface is faster than the transmitter interface, the 
tr;~nsmit ring will he nearly empty In this case, the 
transmitter free pointer ;lnd the receive pointer are 
almost always equal. 

Note the following invariants that apply to the 
pointers when data is eschanged on a transmit ring: 
the fill pointer cannot pass the tr;insmitter free 
pointer; the transmitter free pointer cannot pass 
the receive pointer; and the receive pointer cannot 
pass the fill pointer. 

Data Exchange on a Receive Ring As also shown 
in Figure 4, the operntion of data eschange on a 
receive ring is similar to that operation on the trans- 
mit ring, with the following differences. The 
receiver interface manages the memory used for 
exchanging data. Consequently, the receiver inter- 
face has two pointers, the receiver free pointer and 
the receive pointer, and the transmitter interface 
has only one pointer, the fill pointer. 

Table 1 shows the various DEMFA rings and the 
transmitters and receivers that interface with each 
ring. 

Table 1 DEMFA Rings and  Their Transmitter and  Receiver Interfaces 

Rings Transmitter Receiver Remarks 

Rings in Packet Buffer Memory 

RMC Receive Ring FDDl Corner 
and Parser Stage 

RMC Transmit Ring Ring Entry 
Mover Stage 

HPD Receive Ring Host Protocol 
Decoder Stage 

HPD Transmit Ring Ring Entry 
Mover Stage 

AM Receive Ring Adapter 
Manager 

AM Transmit Ring Ring Entry 
Mover Stage 

-- 
Rings in Host Memory 

Ring Entry 
Mover Stage 

FDDl Corner 
and Parser Stage 

Ring Entry 
Mover Stage 

Host Protocol 
Decoder Stage 

Ring Entry 
Mover Stage 

Adapter 
Manager 

Contains data that originated on the FDDl ring. 

Contains data that originated at the host or 
the AM, destined for the FDDl ring. 

Contains data that originated at the host, 
destined for the FDDl ring. 

Contains data that originated at the FDDl ring, 
destined for the host. 
Contains data that originated at the AM, 
destined for the FDDl ring or the host. 

Contains data that originated at the FDDl ring, 
destined for the AM. 

Host Receive Ring Host Protocol 
Decoder Stage 

Host Transmit Ring Host 

Command Ring Host 
(Transmit Ring) 

Unsolicited Ring Adapter 
(Receive Ring) 

Host Contains data that originated at the FDDl ring 
or the AM, destined for the host. 

Host Protocol Contains data that originated at the host, 
Decoder Stage destined for the FDDl ring. 

Adapter Contains commands that originated at the 
Manager host for the AM; note that the AM replies in 

the same ring. 

Host Contains unsolicited messages from the AM 
Manager to the host. 

54 Vol 3 N o  J .T~~/n~?zei' 1391 Dig i ld  Technical Jozrrrurl 



The Architecture and Implementation of a High-performance Adapter 

Subsystem Level Functionality 
The basic functions that an FDDI LAN adapter is 
required to perform are receiving and transmitting 
packets over the FDDI ring. The adapter must be 
able to establish and maintain connection to the 
FDDI network. The connection management (CMT) 
protocol, a subset of the station management (SMT) 
protocol, specifies the rules for this connection." 

The implementation of the complex CMT algo- 
rithm in an adapter requires an intelligent compo- 
nent, such as a microprocessor, that can receive, 
interpret, and transmit packets. Note that the num- 
ber of CMT packets that flow over the FDDI ring con- 
stitutes only a small fraction of the normal traffic. 
Therefore, a low-performance CPU is adequate to 
implement connection management. The CPU in 
the DEMFA device is called the adapter manager. 

The packets in the receive stream that originated 
on the 1:DDI ring and are addressed to this host or 
adapter (together called the node) can take one of 
the following paths: 

Packets not addressed to this node are for- 
warded over the FDDI ring. 

Packets addressed to this node are delivered to 
the host computer. 

Packets addressed to this node are delivered to 
the AIM. 

The delivery of packets to the host computer 
implies that the adapter has a pointer to a free mem- 
ory buffer in which to deposit the received packet. 
The DEMFA port, described in the next section, 
specifies the rules for extracting free buffer point- 
ers from the host memory. 

For each packet that the host needs to transmit, 
the adapter must know the buffer address or 
addresses and the extent of each buffer. The DEMFA 
port defines the method to exchange this buffer 
information. In addition, the host and the adapter 
microprocessor must be able to exchange informa- 
tion. The DEMFA port defines the protocol for this 
communication also. 

structure. Such structures are more efficient to tra- 
verse than queue structures. 

The DEMFA port defines the four separate host 
rings listed in Table 1 : 

The host receive ring, which contains pointers 
to free buffers into which a packet received over 
the network can be deposited 

The host transmit ring, which contains point- 
ers to filled buffers from which packets are 
removed and transmitted over the FDDI ring by 
the adapter 

The host command ring, which sends com- 
mands to the AM 

The unsolicited ring, which the AM uses to initi- 
ate communication with the host CPU 

By using four host rings, we were able to differen- 
tiate between the fast and frequent data movement 
to and from the FDDI ring and the comparatively 
slow and infrequent data movement required for. 
communication with the AM. 

One Implementation of the DEMFA 
Architecture 
Previous sections specified the DEMFA architecture. 
The remainder of this paper describes an implemen- 
tation of the DEMFA architecture. In the following 
sections, we present details of the implementation 
for the packet buffer memory and the packet mem- 
ory interface; the three pipelined stages, FCP, REM 

and HPD; and the adapter manager. 

Packet Buffer Memory and Packet 
Memory Interface 
The packet buffer memory stores the data received 
over the FDDI ring before delivering this data to the 
host. The PBM also stores data from the host before 
transmitting over the FDDI ring. 

PBM consists of two memories: the packet buffer 
data memory and the packet buffer ring memory. 
Virtually, the packet buffer data memory divides 
into seven areas-one used by the AM and three 
each for data reception and data transmission to 

DEMFA Port and from the three external interfaces. These three 
The DEMFA port specifies the data structure and interfaces are the FCP stagc, the HPD stage, and the 
protocol used for communication between the hi. The areas are accessetl and managed by the six 
adapter and the host computer. Rather than invent a rings residing in the packet buffer ring memory and 
new protocol, we modified the DEMNA port specifi- listed in Table 1. Note that the division is consid- 
cation.' The data structure used to pass informa- ered virtual because the ph~.sical memory locations 
tion between the host and the adapter is a ring of the areas change over time. 
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The three pipelined stages and the memory 
refresh circuitry use the packet memory inter- 
face @MI) to access PBM. The PMI arbitrates and 
prioritizes the requests for memory access from 
these four requesters. Physically, the PMI has three 
Lnterfaces: the FCP stage, the REM stage, and the 
HPI) stage. Virtually, the PMI has four interfaces; the 
HPD interface multiplexes traffic from both the 
host and the adapter manager. The PMI also has the 
functionality to refresh the dynamic memory and 
to implement a synchronizer between the 80- 
nanosecond FDDI clock and the 64-nanosecond 
XMI clock. 

All interfaces request access to the memory by 
invoking a request/grant protocol. Some accesses 
are longword (4-byte) transactions that require 
one to two memory cycles; others are hexaword 
(32-byte) transactions and require a burst of mem- 
ory cycles. 

The interfaces have the following priorities: (1) 
refresh memory circuitry, (2) the REM stage, (3) the 
FCP stage, and (4) the HPD stage. The refresh mem- 
ory circuitry has the highest priority because data 
loss in the dynamic memory is disastrous. Also the 
refresh circuitry makes a request once every 5 to 10 
microseconds, thus ensuring that the lower priority 
requesters always have access to the memory. The 
REM has the second highest priority becatwe it 
always requests one longword, which requires one 
memory cycle. Once the REM receives data, by 
design it waits at least two cycles before making the 
next request. Thus, the REM does not monopolize 
the memory, and the FCP can always get its requests 
serviced. The FCP stage requires guaranteed mem- 
ory bandwidth with small latency to avoid an over- 
flow or underflow condition in its PIFOs. Finally, 

PARSER 

KEY: 

the HPD interface has the lowest priority because 
no data loss occurs if memory access is denied for a 
theoretically infinite amount of time. Our adapter 
design has mechanisms that guarantee memory 
access to the HPD. 

FDDI Comer and Parser Stage 
The PCP stage, illustrated in Figure 5, provides the 
interface between the FDDI ring and the packet 
buffer memory. This stage can receive or trans- 
mit the smallest packet in 2.24 microseconds, as 
required by our performance constraints. 

The receive stream in this stage converts the 
incommgstream of photons from the FI)DI ring into 
a serial bit stream using the fiber-optic transceiver 
(FOX) chip. The clock and data conversion chip 
then recovers the clock and converts the incoming 
code from 5 to 4 bits. The MAC chip converts this 
electronic serial bit stream to a byte stream. The 
MAC chip implements a superset of the ANSI MAC 

~tandard.~ Digital has a specific implementation of 
the MAC chip.' The ring memory controller (WlC) 
interfaces with the byte-wide stream from the MAC, 

converts the bytes into 32-bit words, and writes 
these words to the PBM, using the RMC receive ring 
and the ring protocol. 

The transmit stream accesses a packet from 
the PBM, waits for the token on the FDDI ring, and 
transmits the packet as a stream of photons. This 
stage can generate and append 16 bytes of cyclic 
redundancy code (CRC) to every packet before 
transmitting. 

The parser component of this stage interfaces 
with the RMC bus to generate a forwarding vector 
that has a variety of information including the data 
link user identity and the destination of the packet, 
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i.e., the host or the AM. The parser extracts packet 
headers from the RiMC bus and operates on the FDDI 
and the LLC parts of the packet headers. The parser 
then processes this information in real time, using a 
content-addrcssable memory ( C ~ I )  that stores the 
profiles of data link and other users. As a result, the 
parser generates a forwarding vector that contains 
the destination address of either the host user or 
the AM user. The forwarding vector destination 
field is given a "discard" value, if the packet header 
does not match any user profile. Note that the for- 
warding vector is a part of the buffer descriptor 
field in the R&tC receive ring. 

Ring Entry Mover Stage 
The ring entry mover stage performs four major 
functions: (1) moving filled packets from receive 
rings to transmit rings, (2) returning free packets 

from transmit rings to receive rings, (3) managing 
buffers, and (4) collecting statistics. Figure 6 shows 
the various rings, the ring entry mover, and the 
movement of filled and free packets. 

The REM moves filled packets from receive rings 
to transmit rings by copying pointers rather than 
copying data. (Copying pointers is a much faster 
operation than data copy.) Note in Figure 6 that for 
a given interface, no filled packet moves from its 
receive ring to its transmit ring. For example, no 
filled packet moves from the RMC receive ring to 
the RMC transmit ring. Also, in this design thcrc is 
no need for a path from the HPD receive ring to the 
AM transmit ring. 

A second function performcd by the REM stage is 
to return free packets from the transmit rings to the 
proper receive rings. Transmit rings point to free 
packets after the receiver interface has consumed 
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the information UI the packet. The REM, which is a 
transmitter interface on all transmit rings in the 
PBM, owns these buffers &er the appropriate 
receiver interface cogkles the ownership bit. The 
REM returns the buffers to the original receive ring 
by using information in the color field, a subset of 
the buffer descriptor field. The color field contains 
color information that designates the receive ring 
to which the buffers belong. This color information 
is written into the buffer descriptors of the free 
buffers during initialization. Note that during ini- 
tialization, the adapter free buffers in the I'UM are 
allocated to the three receive rings with which the 
REM interfaces. 

The REM also performs buffer resource manage- 
ment. Note that a reserved pool of buffers exists for 
traffic arriving over the FDDI ring. This FDDI traffic 
has two destinations, namely the host CPU and the 
adapter manager. To ensure that one destination 
does not monopolize the pool of buffers, the pool 
is divided into two parts: host allocation ancl AM 

allocation. The REM delivers no more than the allo- 
cated number of buffers to one ctestination. 

The fourth major function that the REkl performs 
is to collect statistics. The REM collects statistics in 
discard counters for packets that cannot be deliv- 
ered due to lac]< of resources. The REM interrupts 
the when these counters are half full. The AIM 
reads, processes, and stores these counters for 

statistical purposes. The hM read operation resets 
these counters. There are a number of other coun- 
ters in HEM. 

Host Protocol Decoder Stage 
The host protocol decoder interfaces with the X\II 

bus, fetches and interprets cntries from the host 
receive and transmit rings, and moves d;ita between 
the host and the I-'Bkl. This stage also acts as a gateway 
for the AM to get to the host memory or to the PRM. 

Figure 7 is a block diagram of the HPD stage. The 
receive and transmit pipelines store and retrieve 
receive ant1 transmit data from the host memory. 
The two pipelines work in parallel. We now explain 
the operation of the receive pipeline in detail. The 
transmit pipeline operates in a similar manner; 
thus, we highlight only the differences. 

HPD Receive Pipeline The receive pipeline has 
three stages: (1) the fetch and decode host receive 
entry stage, (2) the data mover stage, and (3) the 
receive buffer clescriptor write stage. Most pipe- 
lines n7ork in a lockstep fashion; that is, each 
stage takes the same amount of time to process 
input. In our design, the processing time varies for 
each stage in the pipeline. For example the data 
mover stage will take a much longer time to trans- 
fer 4500-byte packets than to transfer 100-byte 
packets. The fetch and decode host receive entry 
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stage, on the other hand, may take the same amount 
of time to decode entries for packets of either size. 
Consequently, stages use interlocks to signal the 
completion of work. 

The fetch and decode host receive entry stage 
has knowledge of the format and size of the ring and 
seqi~entially fctches host receive ring entries. If the 
adapter does not own an entry, this stage waits for a 
signal from the host before fetching the entry again. 
If the adapter does own the entry, this stage 
decodes the entry to determine the address of the 
free buffer in the host memory and the number of 
bytes in the buffer. The stage then passes this buffer 
information to the data mover stage and the address 
of the host entry to the receive buffer descriptor 
write stage. In addition, this stage prefetches the 
next entry to keep the pipeline firll, in case data is 
actively received over the FDDI ring. 

In parallel, the PMI interface stage part of the HPD 
chip fetches the next entry from the HPD transmit 
ring. Decoding this entry determines the address of 
the buffer in the PBM and the amount of data in the 
buffer. The packet buffer bus interface passes the 
buffer address and length information to the data 
mover stage and the address of the HPD transmit ring 
entry to the receive buffer descriptor write stage. 

Now, the data mover stage has pointers to the 
host free buffer and its extent and to the PBM filled 
buffer and its extent. The stage proceeds to move 
the data from the PBM to the host memory over the 
XMI bus. Depending on the XhlI memory design, 
this transfer involvcs octaword or hexaword bursts. 
The process of moving clata continues until the 
depletion of packet data in the PBM. 

The data mover stage signals the receive buffer 
descriptor stage when the packet moving is com- 
plete. The receive buffer clescriptor stage writes in 
the status fields of the host receive ring entry and 
the HPD transmit ring entry. This stage also gives 
ownership of the filled buffer to the host and of the 
free buffer to the REM. The REM can then return the 
free buffer to the ring of origin. 

HPD Transmit Pipeline The HPD transmit and 
receive pipelines are symmetrical. The HPD receive 
pipeline delivers data from the HPD transmit ring to 
the host receive ring. The hPD transmit pipeline 
delivers data from the host transmit ring to the HPD 
receive ring. 

There is one exception to the symmetry The 
transmit pipeline does not fetch an entry from the 
HPD receive ring in PBM to determine if there are 

enough free buffers available. A harclmrare interface 
between the PMI and the HI'D, i.e., a Boolean signal, 
indicates whether there are enough buffers to 
accommodate the largest possible size transmit 
packet. This exception is an artifact of our imple- 
mentation; we wanted to reduce the accesses to the 
PBM, since its bandwidth is a scarce resource. 

Adapter Manager 
The local intelligence, also known as the adapter 
manager, implements various necessary adapter 
firnctions including self-test and the initialization. 
The Akl also implements part of the CMT code that 
manages the FDDI connection."' In addition, the 
AM interfaces with the host to start and stop data 
link users by dynamically manipulating the parser 
data base. 

Tracing a Packet through the A w t e r  
The major steps for data transfer incorporate the 
subfunctions previously discussed. This section 
traces the path of a packet P through the adapter, 
first on the receive stream and then on the transmit 
stream. We assume that adapter initialization is 
complete and that all data structures in the packet 
memory and parser data base are properly set. In 
this example, we further assume that packet P is 
small enough to fit into a single buffer. Large pack- 
ets require multiple buffers. 

Receive Stream 
A packet destined for the host passes through the 
three major pipelined stages in the adapter. A brief 
description of the intrastage operation and details 
of the interstage functioning follocrr. The four parts 
of Figure 8 illustrate the receive process. 

FDDI Cornel* and Parser Stage Figure 8(a) shows 
packet P on the FDDl ring; the packet is actually a 
stream of photons. This stage converts the stream 
of photons into a packet. At  this point, a free buffer 
is available for packet P in both the hhlC receive ring 
and the host receive ring. The FCIJ stage owns the 
free buffer in the RIM<: receive ring. 

The stage determines if packet P is addrebsed to 
this node, forwards the packet on the wDI ring, 
and copies the packet for this adapter if it is 
addressed to this node. This stage also generates a 
CRC for the packet. The FCP stage then deposits the 
copied packet into the free buffer in the RMC 
receive ring entry shown in F ig~~re  8@). 
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Figure 8 Receive Stream-The Receipt of a Packet from the FDDI Ring to the Host Memory 

After depositing the complete packet, this stage 
writes the buffer descriptor and toggles the owner- 
ship bit. The ring entry mover now owns packet P. 
The FCP stage is free to receive the next packet, 
which is stored in the next buffer in the RMC 
receive ring. 

ber of pages in packet F? This stage also has an 
account of the number of pages outstanding on the 
HPD transmit ring. The REM delivers packet P to the 
HPD transmit ring provided the host resource allo- 
cation is not exceeded. 

The REM delivers the packet by copying page 
pointers from the IWC receive ring to the HPD 
transmit ring, as shown in Figure 8(c). Note that 
the HPD transmit ring is large enough to write all 

Ring Entry Mover Stage The REM cxtracts the 
packet buffer descriptor and determines the nurn- 

60 Vi. .3 No. 3 S ~ ~ n z m ~ ? r  I991 Digital Tecbwdcal J o u d  



The Architecture and Implementation of a High-pe~formance AdaJter 

pointers from the RiiC receive ring and the AM 
receive ring. The REM then transfers ownership of 
the HPD transmit ring entry to the HPD stage and 
the RMC receive ring entries to the FCP stage. 

HPD Stage The HPD receive pipeline operates on 
a packet it owns in the HPD transmit ring. As shown 
in Figure 8(d), after fetching the address of the free 
host buffer, this pipeline moves packet P from the 
PBM to the host memory and toggles the ownership 
bit of the host entry. Simultaneously, the HPD 
returns ownership of the free buffers in the HPD 
transmit ring to the ring entry mover stage. The 
REM returns these buffers to the RMC receive ring as 
free buffers. 

Transmit Stream 
To transmit data from the host transmit ring to the 
FDDI ring, the packet must pass through the same 
three stages as for the receive stream, but in the 
reverse direction. 

HPDStage For the receive stream, the HPD receive 
pipeline prefetches the free buffer from the host 
receive ring. In contrast, the HPD transmit pipeline 
must wait for the host to fill the transmit buffer and 
transfer ownership to the host transmit ring. The 
HPD stage then moves the data from the host mem- 
ory to the PBM if the hardwired signal between the 
REM and the HPD indicates that a sufficient number 
of pages is available. Finally, the HPD transfers own- 
ership of the host transmit ring entry to the host 
and the HPD receive ring entry to the REM. 

Ring Entry  mover Stage The REM moves the packet 
from the HPD receive ring to the RiiC transmit ring. 
Again, the REM copies pointers from ring to ring 
and toggles the ownership bit on the rt.MC transmit 
ring. 

FDDI Corner and Parser Stage Although the 
packet is available in PBM for transmission, the FCP 
stage must receive a token before transmitting over 
the FDDI ring. Once the transmission is complete, 
the buffer on the RiiC transmit ring is now free. 
The FCP stage returns ownership of the buffer to 
the REM, which then returns the free buffer back 
to the HPD receive ring or the AM receive ring, 
depending upon the origin. Again, the free buffers 
are returned by copying buffer pointers. 

The receive and transmit streams for the adapter 
manager are similar to those for the host; therefore, 
we do not describe these processes. 

Hardware and Firmware 
Implementation 
The hardware implementation of DEMFA consisted 
of four large gate arrays, custom very large-scale 
integration (WI)  chips, dynamic and static random 
access memories (RAMS), and jelly bean logic. 
Figure 9 is a photograph of the DEMFA board. 

The four gate arrays specified and designed by 
the group are the parser, the adapter manager inter- 
face ( h i I ) ,  the host protocol decoder, and the 
packet memory controller (PMC), which incorpo- 
rated the function of the packet memory interface 
and the ring memory controller. We now describe 
aspects of the gate array development. Note that we 
used the Compacted Array technology developed 
using LSI logic for our implementation. The gate 
arrays have 224-pin surface mount packaging. 

Table 2 shows various gate arrays, the total gate 
count for each gate array, and the percentage of 
control gates and data path gates. Control gates are 
defined as gates required for implementing state 
machines used for control. Data path gates are gates 
required for registers and multiplexors, for exam- 
ple. Note that the complexity of gate arrays is pro- 
portional to the percentage of control gates. The 
gate arrays in Table 2 were fairly complex because 
they consisted of approximately 50 percent control 
gates. 

Module Implementation 
We used the 11-by-9-inch XMI module for imple- 
menting the adapter. Early in the project we defined 
the pin functions for various gate arrays. Once these 
were defined we could design our module. SPICE 
modeling helped in arriving at a correct module 
design with the first fabrication. The design was 
thorough and completed early in the project. 

Firmware Implementation 
The DEMFA firmware has three major functions: 
self-test, FDDI management (using Common Node 
Software), and adapter functional firmware. The 
DEMFA team implemented the adapter functional 
firmware while other groups designed the two 
remaining components. The DEMFA functional firm- 
ware can initialize the adapter and then interact 
with the host to start and stop data link layer users, 
as well as perform other functions. The firmware is 
implemented in the C language for the Motorola 
68020 system. The total image size is approximately 
160 kilobytes. 
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Figure 9 The DEMFA Board 

Table 2 Gate Counts for DEMFA Gate Arrays 

Data Control 
Gates Gates 
(Percent (Percent 

Gate Array Total Gates of total) of total) 

Parser 20296 39 61 
PMC 61 537 40 60 
HPD 81 265 34 66 
AM I 15002 49 51 

The graph presented in Figure 10 shows the adapter 
performance for the receive and transmit streams at 
the adapter hardware level for this implementation. 
The data represents throughput measured in 
megabits per second as a function of packet size 
measured in bytes. Figure 10 illustrates that the 
receive and transmit streams meet the 100-Mb/s 
throughput when the packet size is approximately 
69 bytes. The bottlenecks in this implementation of 

the DEMFA architecture are (1) the PMI and (2) the 
combination of the XlMI interface, bus, and memory. 
We implemented these interfaces in a conservative 
manner to reduce our risks and to produce the 
product in a timely fashion. 
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Figure 10 Adapter Performance 
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For more detailed performance data, see the 
paper entitled "Performance Analysis of a High- 
speed FDDI Adapter" in this issue of the Digital 
Technical Journal." 

conclusion 
The goal of the DEMFA project was to Specify an 
architecture for an adapter that would be at least 
30 times faster than any previously built adapter. 
The architecture also had to be easy to implement. 
This paper describes the architecture and an imple- 
mentation of DEMFA. Performance measurenlents 
of the adapter show that this first implementation 
successfiilly meets close to the maximum FDDI 
tliroughput capacity; thus, the DEMFA performance 
can be considered ultimate. Already, a number of 
adapters have been designed basecl on ideas bor- 
rowed from the DEMFA architecture and implemen- 
tation. In a few years, architectures similar to this 
one may become the norm for data link and even 
transport layer adapters, rather than the exception. 
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Performance Analvsis of a 
High-speed FDDI Adapter 

The DEC FDDIcontroller 400 host-to-FDDI network adapter implements real-time 
processilzg functionality in hardware, unlike conventional microprocessor-based 
des ig~~~.  To develop this high-performance product with the available technological 
resources and at minimal cost, we optimized the ahpter design by creating a simu- 
lation model. This model, apart from predictingperformance, enabled engineers 
to analyze the functional correctness and the performance impact oj'potential 
designs. As a result, our implementation delivers close to ultimatepe@omzance for 
an FDDI adapter and surpasses the initial project expectations. 

As high-performance systems become available and 
the use of distributed computing proliferates, the 
need for high-performance networks increases. 
Faster interconnects are required to achieve such 
performance goals. Consequently, network adapters 
must be able to function at higher speeds. In adopt- 
ing fiber distributed data interface (FDDI) local 
area network (LAN) technology as a follow-on to 
Ethernet, Digital recognized the need to build an 
industry-leading network adapter to service its high- 
performance platforms. As a result, we designed 
and developed the DEC FDDIcontroller 400 procl- 
uct. To track the adapter performance through the 
design and development stages, we created a simu- 
lation model; our objective was to ensure that the 
device met our performance goals. This paper begins 
with a description of the DEC FDDIcontroller 400, 
followecl by a brief historical perspective and state- 
ment of the performance objectives of the adapter 
project. We then discuss in detail the modeling 
methodology and the results achieved. In addition, 
we present validation of these results in the form of 
measurements taken on prototype hardware. 

me DEC FDDIcontroller 400 
The DEC FDDIcontrolJer 400, also known as the 
DEMFA, is a high-speed FDDI network adapter. 
Attached to a host machine running under either 
the VMS or the ULTRM. operating system, the DEMFA 
enables the host to communicate with other net- 
work entities through the FDDI ring. The DEMFA 
adapter implements Iligital's proprietary ?<MI bus 
protocol and can be used with any system that 

has an m i 1  backplane.' Laboratory measured perfor- 
mance data presented later in the paper shows that 
the adapter hardware can sustain a practically infi- 
nite stream of frames at the full FDDI data band- 
width of 100 megabits per second (Mb/s) for frame 
sizes 69 bytes or larger on the receive stream and 
51 bytes or larger on the transmit stream. Even the 
smallest, i.e., 20-byte dataless, FDDI frames can be 
received at 36 Mb/s and transmitted at 47 Mb/s. 

The DEMFA is an FDDl Class-R single attachment 
station (SAS) that interfaces to the FDDI token ring 
network through the DECconcentrator 500. A port 
driver resident in the host controls the DEMFA 
port. The port, the port driver, and the adapter 
hardware implement the American National Stan- 
clards Institute (ANSI) data link and physical layer 
functionality for FDDI LANs. This foundation sup- 
ports user protocols such as the Open Systems 
Interconnection (OSI), DECnet, the transmission 
control protocol with the internet protocol 
(TCP/IP), and local area transport (LAT).' Figure 1 
shows a typical network configilration using the 
DEC FDDIcontroller 400 adapter with other Digital 
FDDI products. 

The x M I  bus is capable of transferring data at 
rates up to 800 Mb/s and can serve as either a CPU- 
to-memory interconnect, e.g., in the VAX 6000 plat- 
form, or an I/O bus, e.g., in the VAX 9000  platform.'^" 
Also, Digital plans to include the xMI bus in future 
systems. 

FDDI is a timed-token, fiber-optic ring that provides 
a network data bandwidth of 100 Mb/s.' In addition 
to this high data rate, the advantages of low signal 

64 Vol. 3 No. 3 Scimmer 2991 Digital Tecbmcal Jozimal 



Performance Analysis of a High-speed FDDI Adapter 

VAX 6000 SYSTEM 

FDDICONTROLLER 400 
NETWORK ADAPTER I DEC 

VAX 9000 SYSTEM DECSTATION 5000 

FDDICONTROLLER 400 FDDICONTROLLER 700 
NETWORK ADAPTER NETWORK ADAPTER I- 

DECCONCENTRATOR 500 
WIRING CONCENTRATOR 

FDDI RING NETWORK 

WIRING CONCENTRATOR 

DECBRIDGE 500 DECCONCENTRATOR 500 H FDDI-TO-ETHERNET BRIDGE I .I WIRING CONCENTRATOR I . 

Figure I Typical Network ConJiguration 

attenuation, low noise susceptibility, high security, 
and low cost (as the technology matures) will make 
FDDI a popular interconnect of the 1990s." 

Historical Perspective and Performance 
Objectives of the DErMFA 
With the advent of high-performance systems and 
distributed computing strategies, the need for high- 
performance networking options has increased. 
Traditionally, 1/0 adapters have been built to serve 
the current performance needs. As a consequence, 
such adapters offer little or no network perfor- 
mance scalability to accommodate future increases 
in demand. Scalability is important to ensure that 
the adapter does not become a bottleneck when 
such demands exist. Nonscalable adapters become 
obsolete, and the resulting frequent hardware 
upgrades increase system cost. 

The first Ethernet adapters, which complied 
with the IEEE 802.3 standard, were built in the early 
1980s. Only recently do adapters exist that can pro- 
cess frames at the maximum Ethernet throughput 
rate of 10 Mb/s.'As mentioned earlier, FDDI has the 
capability of supporting speeds an order of magni- 
tude higher than Ethernet. Since the header in an 
FDDl frame is three times smaller than that for 
Ethernet, FDDI frame arrival rates can be as much 
as 30 times the Ethernet arrival rate. Considering 
the various constraints, Digital set out with the 
goal to build an FDDI adapter that could process 
frames 150 bytes and larger at 100 Mb/s, i.e., the 

adapter would be able to process approximately 
80,000 frames per second (framesh). Also, twenty 
microseconds was deemed an acceptable adapter 
latency for the smallest FDDI frames. Considering 
the relatively small number of frames a host system 
can process today, these adapter criteria repre- 
sented an ambitious goal-one which would make 
a product with high-performance scalability as 
faster CPUs became available. 

Performance Modeling Considerations 
During the development of a high-performance prod- 
uct, changes in architectural functionality, teclmol- 
ogy constraints, and cost considerations can result in 
design modifications. It is desirable to track the per- 
formance of the product through its development to 
understand the impact of such modifications. 

The DEMFA consists of many hardware entities that 
perform the desired adapter fu~~c t ions .~  Although 
such hardware adapters have the obvious advantage 
of superior performance over conventional, i.e., 
microprocessor-based adapter cards, this advantage 
does not come without the risks associated with 
hardwired logic. Such risks have a negative impact 
on project budget and schedule and necessitate a 
risk management strategy to ensure that product 
goals are successfully met. Performance modeling of 
the adapter and extending the use of such modeling 
to evaluate various designs formed part of this strat- 
egy. The following subsections describe the goals 
and tasks of the DEhlFA performance modeling. 
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Goals 
The set of performance modeling goals for the 
DEMFA evolved throughout the development 
process. Three mnjor goals were performance 
projection, buffer sufficiency analysis, and design 
testing through simulation. 

Performance Projection In the early phases of 
the design, the primary goal of the model was to 
project the adapter performance. This prediction 
gave us confidence that the design could meet our 
performance expectations. 

Buffer Sufficiency Analysis Buffer capacity plays 
an important part in the performance of a design. 
Whereas too much of this resource is wastefill, too 
little has a negative effect on performance. It was 
critical to cletermine the extent of buffering neces- 
sary to attain the desired target performance at the 
least cost. The performance model considered the 
dependencies on this resource. The amount of 
buffering was varied and the effects of such varia- 
tion, manifested in the simulation results, were ana- 
lyzed. Using these results as input to a cost/benefits 
equation helped the designers make intelligent 
decisions concerning buffer capacity. 

Design Esting tbrozigh Simc~lation As develop- 
ment progressed, important design issues arose 
that could not be solved by simple analysis. The per- 
formance model served as a platform that could be 
enhanced to solve these more complex problems 
by simulation. Designs were analyzed to determine 
their impact on adapter performance. Because the 
simulation methodology afforded greater testabil- 
ity, we were able to make the designs more robust 
and to answer design questions in a significantly 
shorter time than other methods. Consequently, 
modficattons to the hardware were made at an 
early design stage and at negligible cost. 

Tmks 
To accomplish performance modeling, we faced 
the following basic tasks: choosing the metrics, 
defining the workload, and deciding on a modeling 
methodology. Relevant metrics to measure the per- 
formance of a product are crucial. We chose met- 
rics that are simple to understand and provide 
insight into the behavior of the product. Also, areas 
in which workload dcvelopment is required must 
be identified and investigatetl in detail. An incorrect 
workload invalidates all performance data. And the 

methodology used to model the system must be 
well thought-out beforehand, so that the model is 
accurate and also flexible enough to be easily 
changed. 

Definition ofMetrics The main performance met- 
rics used were throughput and frame latency. 
Throughput is the rate at which frames are pro- 
cessed and is measured in megabits per second or 
frames per second. The units can be converted eas- 
ily from one to the other, if the average frame size is 
specified. In this paper, throughput is expressed in 
megabits per second. 

Frame latency is the elapsed time measured in 
microseconds between the time at which a frame is 
queued for service at a facility and the time at 
which the service is completed. The following 
descriptions illustrate the approach used to mea- 
sure receive and transmit latency. The host receives 
frames from and transmits frames to the FDDI ring. 
Receive frame latency is the time elapsed between 
(1) the arrival of the last bit of the frame into the 
adapter from the FDDI ring and (2) the time the 
frame becomes available to the host for processing. 
Transmit frame latency is the elapsed time between 
(1) the time the adapter starts processing a frame 
from the host and (2) the exit time of the first bit 
of the frame from the adapter destined for the 
FDDI ring. 

The adapter can process transmit and receive 
frames simultaneously. We defined performance 
metrics to analyze a variety of traffic scenarios to 
gain insight into the adapter behavior. For the con- 
text of this paper, we consider the DEMFA process- 
ing pure frame streams only, i.e., the expressions 
"receive throughput" and "receive latency" refer to 
a pure receive stream of frames containing no trans- 
mit frames. Similarly, "transmit throughput" and 
"transmit latency" refer to a pure transmit stream 
of frames. 

Workload Definition Using a relevant traffic 
workload is very important in any simulation 
model. Since most systems are workload-sensitive, 
defining an incorrect workload may result in irrele- 
vant data. We identified two areas in which we 
needed to define workloads. We then characterized 
the traffic patterns and built a workload model for 
performance simulation based on these patterns. 

Frame receive and transmit workloads. The 
receive and transmit workloads are stimuli for 
the performance simulation. These workloads 
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mimic traffic due to frame arrival on the FDDI 
ring (i.e., the receive workload) or frame trans- 
mission from the host (i.e., the transmit work- 
load). The receive workload model generates 
frames which the DEMFA model receives, 
whereas the transmit workload acts as a source of 
frames to be transmitted by the DEMFA model on 
the FDDI ring. These workloads must be charac- 
teristic of actual FDDI traffic. Since FDDI LANs did 
not exist when the DEMFA was in the develop 
ment stage, we used our experiences with 
Ethernet to derive these workloads, as we explain 
in greater detail in the FDDI Token Ring section. 

XMI traffic workload. Apart from the DEMFA 
traffic, there may be other traffic on the XMI 
bus due to CPU-to-memory transactions or from 
other I/O adapters attached to the system. The 
load on the XMI bus impacts the performance 
of the DEMFA. Consequently, we designed a 
workload model to mimic the traffic pattern on 
the bus. We based our model on the traffic pat- 
terns observed for real xMI bus traffic. The per- 
formance of DEMFA may degrade as this traffic 
increases because the DEMFA traffic and the non- 
DEMFA traffic consume common resources. The 
other traffic is referred to as the XMI interference 
workload. The XMI Workload Generator section 
describes the model for this workload. 

Modeling Methodology The simulation model has 
a hierarchical design to allow the construction of 
smaller, more manageable blocks, i.e., submodels. 
The structure also allows changes to be made easily. 
The SIMULA language implements the simulation 
model.!'The simulation-class and queuing constructs 
in this language are tailored to help simulation 
and m ~ d e l i n g . ' ~ , ' ~  The object-oriented structures 
present other advantages to model development. A 
debug procedure coded into the model prints status 
information about all the queues in the model. This 
information helped us trace the path of frames 
through the system. 

One important first step in designing a simulation 
model is to determine the detail at which to model. 
Two factors that influence the level of detail are the 

Existing knowledge of the design. Usually, infor- 
mation gathered from the behavioral and ana- 
lytical models of a design helps to make a 
performance model abstraction. Designs with 
behavior that cannot be analyzed by these lower- 
level models have to be modeled in greater 
detail. 

Expectation of performance model accuracy. 
Typically, a performance model predicts results 
accurate to within + 10.0 percent of the perfor- 
mance that would be achieved with the actual 
hardware. 

During the design phase, behavioral and struc- 
tural models of hardware were in development. 
This hardware was partitioned across important 
functional boundaries. Hardware within these bound- 
aries would be modeled and tested thoroughly by 
the respective development engineers. Hence, to 
include details of these pieces of hardware in our 
model would have resulted in redundant effort. 
Since the interfaces and the gross filnctionality of 
the hardware within these boundaries are relevant 
to performance, we did include these components 
in our model. Existing hardware components, such 
as the FDDI chip set, were grouped together before 
being modeled for filnctionality. Each submodel 
was designed and tested separately to ensure con- 
formity to the functionality and performance of 
other behavioral and structural models. This strat- 
egy resulted in the base-level performance model 
that we used to generate preliminary performance 
data for the DEMFA. 

As development progressed, we encountered 
design changes of various complexities. Simple 
design changes resulted in very small changes in 
the performance model. But larger and more com- 
plex design changes required that we investigate 
behavior both specific to the piece of hardware of 
which the design is a part and generalized to the 
adapter system environment in which the piece 
operates. Models that represent the changes were 
included and interfaced as submodels. These sub- 
models served the dual purposes of testing the new 
design and of improving the accuracy of the perfor- 
mance model. 

Design of the Simulation Model 
The performance simulation model consisted of 
the following major components: 

FDDI ring 

FDDI chip set and parser 

Packet memory controller 

Host interface 

XMI system 

Host system 
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?'lie base-level model evolved over time, as we 
gained insight into the behavior of the individual 
components and defined work1o;ids. The model 
evolved further to support the neetl to analy~e new 
clesigns through simulation. This section briefly 
describes the components of the final model, as 
listed above. 

FDIII Token R i l z ~  
'l'he FD1)I token ring was modeled to act as a source 
of received frames and as a sink of transmit frames. 
Gross functionality for the remainder of the FDDI 
nodes and network components was desirable. 
Consequently, we designed a bl;ick-box model for 
thc 1 : l ) ~ I  ring that provides two-way interaction 
with the FDDI chip set and parser model. This FDDI 
model allocates time on the FDDI ring for transmit 
and receive transactions. The model ;ilso controls a 
receive workload generator when frames are 
received by the ;id;~ptcr. 

The receive workload generator is an analytical 
model used to create clfirent patterns of receive traf- 
fic to the DEMFjl. 'I'hc- parameters input to this work- 
load model are the average frame size, the frame-size 
distribution, the frame type, the load, and the num- 
ber of back-to-back frame arrivals ( i . ~ . ,  the burst rate 
or "burstiness" of the fr;tme arrivals). We varied these 
parameters to generate desired workloads. 

The average frame size and frame-size distribu- 
tion parameters generate different size frames. 
Actual frame sizes c;in be specified as normally 
or exponentially distributed about the mean or as 
constant. The workload model can generate station 
management (SM'I'), L1.C SNN?/SAI', or LLC non- 
SNAP/SI\I' frame types and can create a load between 
0 and 100 Mb/s. If workloads are less than the peak 
FDDI biindwidth, i.e., 100 LMb/s, the fr;ime arrival pat- 
tern can be specificd ;IS an exponential, constant, or 
normal distribution. 'l'he model can generate a witle 
range of synthetic traffic patterns, but to obtain 
cretlible performance results, we characterized the 
traffic ns seen in re;ilistic networks. 

Several studies had been conducted on large 
Ethernet W s  within Digital; a case study by 
D. Chiu and R. Sudama is one example." We ana- 
lyzed the results from these studies to understand 
the frame-size clistribution in such networks. From 
the analysis we concluded that 

Frame sizes 011 the networks are related to user 
protocols. Frames in a test sample were dis- 
tributed about a few discrete frame sizes (i.e., 

modes of the distribution) rather than over a 
wide range of frame sizes. 

The probability f~~nc t ion  of the frame sizes near 
each mode can be approximated as a normal dis- 
tribution centered about the mode. 

A composition analysis of the measurements pro- 
vided different modal mean sizes, standard devia- 
tions, and the probabilities of frames belonging 
to the different modes. We used these values to 
statistically create Ethernet network traffic. For our 
performance measurements, it was necessary for us 
to change this traffic pattern appropriately to 
reflect the differences that exist between FDDI LANs 
and Ethernet LANs. The FDDI frame header is 
smaller than the Ethernet header, and the largest 
FDDI frame is approximately three times the size of 
the Iargcst Ethernet frame. We factored these 
changes into the Ethernet model to produce an 
FDDI workload model. The FDDI workload has 
either four or five modes. 

The four-mode distribution contained a major- 
ity of frames grouped around 60, 576, 1518, ancl 
4496 bytes. The standard deviations of the frames 
around these mean values were 22,5,2, and 2 bytes, 
respectively. The frame volumes at these modal 
values represented contributions of 29 percent, 
67 percent, 3 percent, and 1 percent, respectively, 
to the total load. 

The five-mode frame sizes were grouped around 
33, 80, 576, 1518, and 4496 bytes. The standard 
deviations of the frames around these means were 
1, 20, 5, 2, and 2, respectively. The frame volumes at 
these modes contributed 26 percent, 15 percent, 
55 percent, 3 percent, and 1 percent, respectively, 
to the total load. 

111 the above FDDI workload model, the mode of 
1518 bytes is determined by the Ethernet network's 
m;ixirnum framc-size capacity and, similarly, the 
mode of 4496 bytes is determined by the FDDI 
network's maximum frame-size capacity. These 
two rnodal frame sizes represent traffic generated 
by large data transfer operations, e.g., file transfers. 
Contributions due to these two modes vary from 
network to network. We considered different 
contributions and found their effect on adapter 
throughput to be negligible. ?'herefore, only one 
case for each workload is presented in this paper. 

FDDI Chip Set and Parser 
The FDDI chip set, also referred to as the FDDI 
corner, is the base-level technology that was part 
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of Digital's strategy to build high-performance, 
low-cost data links for FDDI LANs. This chip set per- 
forms serial-to-parallel data conversion, acts as an 
interface to the packet memory in the data link 
layer, and can support a data rate of 100 Mb/s."The 
entire chip set, except for the ring memory con- 
troller (RMC), was modeled as a black box with a 
specified per-frame latency. The IWC and the asso- 
ciated first in, first out (FIFO) buffers for the receive 
and transmit stream staging were modeled in 
greater detail. The detail was necessary to capture 
any overflow or underflow conditions that might 
occur in the FIFO buffers. We also modeled the 
interaction between the transmit and receive 
streams. The RMC model, which served as the front 
end of the chip set model, was also capable of gen- 
erating control and data transactions to perform 
read/write memory operations. 

The parser hardware off-loads some host frame 
processing to the adapter. The parser reads infor- 
mation about a receive frame from the RMC bus and 
creates a forwarding vector, which is appended to 
the frame. This forwarding vector is used by differ- 
ent entities in the adapter and the host to efficiently 
process a frame. The parser latency to generate this 
vector varies with the frame type and size. The 
parser model helped to analyze the impact of this 
latency on performance. This model mimics the 
hardware to produce a forwarding vector for a 
given frame with a pertinent latency. 

Packet Menzory Controller 
The packet memory controller (PMC) is the heart of 
the adapter system. The ring entry mover stage, the 
packet buffer memory, and the packet memory 
interface constitute the functionality in the PMC." 
The PMC controls the arbitration and servicing of 
requests to and from memory to effect the efficient 
transfer of information. The PMC also controls the 
movement of pointers corresponding to every 
frame. These pointers and the associated protocol 
generate work for the RMC, the host interface, or 
the adapter manager. 

The high throughput capability of FDDI rings can 
result in traffic patterns that cause a strain on the 
packet memory. The PMC model allowed us to study 
such scenarios. It is also important to analyze the 
working and performance of the ring entry mover, 
which moves frames between different interfaces 
by manipulating the control information of a stored 
frame. The control information and frame data 
reside in the packet memory. 

Host Inter$ace 
The host interface, also called the host protocol 
decoder, moves data between the adapter and the 
host system through an XMI bus and also interfaces 
with the PMC. We modeled the interface to include 
details of the dual direct memory access (DMA) 

design (one channel for the receive stream and one 
for the transmit stream), the staging buffers associ- 
ated with each DMA channel, the XMI interface, and 
the PMC interface. The host interface also has the 
capability of scheduling write operations while 
waiting for the delivery of read information. 
Priority schemes to complete such transactions, 
i.e., handshake mechanisms, are important from a 
performance perspective and, hence, were 
included in the model. 

XMI System 
The XMI system interacts with the host system and 
was modeled to include details of the xM1 bus and 
memory. This model consists of an xM1 bus sub- 
model that interfaces to the XMI end of the host 
interface model of the adapter. The submodel also 
interacts with a memory model and an XMI work- 
load generator model. The bus submodel imple- 
ments the XMI protocol. 

Memory Model The memory model was designed 
to generate responses to transactions that request 
memory. Latency for these requests is the memory 
access time, which includes a queue wait time. 
There are basically two types of systems that sup- 
port the DEMFA, as shown in Figure 2. The type is 
determined by whether the XMI is used as the CPU 
bus, denoted in this paper as the XMI (Cpu) bus con- 
figuration, or as the I/O bus, denoted as the XMI (I/O) 
bus configuration. The only difference between the 
two systems is memory access time. This time is 
greater ifXi1I is used as the I/O bus; there is an added 
latency on the read transactions performed to fetch 
memory from locations that are not local to the 
bus. The memory space that is local to the CPu bus is 
accessed through another I/O adapter mechanism. 
Such I/O adapters, CPU buses, and main memory 
bandwidth all play a role in determining the access 
times in such systems. The model presented in this 
paper depicts the VAX 9000 I/O architecture and cur- 
rent implementation. Performance may vary with 
other implementations. 

XNI Workload Generator We designed the mI 
worMoad generator to represent the load on the 
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XMI bus, excluding traffic from the DEMFA. This 
load tends to have a deteriorating effect on DEMFA 
performance and thus, is referred to as the XMI 
interference workload. It was important not only 
to model the amount of load but also to capture 
the arrival pattern of this traffic. The workload 
model generated traffic based on three inputs: the 
total XMI bandwidth used by other )(MI nodes, the 
average length of each xMI transaction, and the 
burst rate of the frame arrivals. Transaction lengths 
on XMI vary from one to five XMI cycles (i.e., 
64-nanosecond cycles). The maximum number of 
nodes that can exist on  an XMI bus is 14. Thus, the 
burst rate can vary from 1 to 13. 

Typically, traffic on an XMI bus consists of many 
back-to-back transactions of various sizes. We 
decided to use the worst case values for both the 
burst rate and the transaction length in the XMI 
interference workload presented in this paper. The 
worst case burst rate is 13, and the worst case trans- 
action length is 5 XMI cycles. 

Host System 
The host system consists of the CPU, disks, layered 
software, the operating system, the device driver, 
and a host workload generator. The host system 
was modeled in accordance with assumptions pre- 
sented in the section Results from Performance 
Simulation. The CPU, disks, host software, and the 
operating system were modeled in such a way that 

they do not become bottlenecks during frame 
reception or transmission. A model of the device 
driver handles frame transmission and reception. 
The driver interacts with a host workload genera- 
tor, which creates different traffic patterns for trans 
mission. This workload generator has the same 
capabilities as the receive workload generator d i s  
cussed in an earlier section. 

Results from Performance Simulation 
The data presented in this section was generated 
using the simulation model of the adapter. This 
data represents the hardware performance of the 
DEMFA; system performance with the DEMFA as a 
component is not within the scope of this paper. 
We input parameters to the simulation model that 
defined traffic patterns and ran simulations for a 
sufficient length of time to ensure that we captured 
steady-state behavior. The models maintain statis- 
tics of relevant events and quantities and print out 
this information at the end of a simulation. As dis- 
cussed previously, the hardware performance of 
the DEMFA varies depending upon whether the 
system is implemented to use the XM1 bus as a CPU 
bus or as an I/O bus. This section presents simula- 
tion results for both uses, where appropriate. 

Assumptions 
For our simulation purposes, we made several 
assumptions. These assumptions make the results 
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more general and bring out the hardware perfor- 
mance characteristics of the DEMFA, indicating the 
upper bounds of performance that the adapter can 
achieve. 

CPU and Softzuare Capabilities The device driver 
and the host software do not become bottlenecks 
during frame reception and transmission. We 
assumed that the host CPu had enough computing 
ability to process frames without posing as a perfor- 
mance bottleneck. 

Memo y Bandzuidth Frames sent from or received 
by the host result in XMI bus transactions that are 
written to or read from the host memory. 
Throughput varies with the memory implementa- 
tion and interleaving. We assumed that the memory 
implementation and interleaving were selected 
such that no overloading of the memory occurs, 
thus eliminating wasted bus cycles. 

Bzlffer Alignment and segmentation We assumed 
that data for transmission and buffers for reception 
were hexaword (i.e., 32-byte) aligned and that 
frames were unsegmented. 

Simulation Traffic No error frames or error trans- 
actions were simulated, since we assumed these to 
be negligible. No adapter manager traffic was sirnu- 
lated during the performance measurements, since 
these represent a very negligible fraction of the 
frames received during steady-state ring operation. 

Throughput Measurements 
Measurements were made to determine the through- 
put that the adapter can sustain for received and 
transmitted frames. It is important to understand 
how throughput is related to the load, the bursti- 
ness of frame arrivals, the percent M I  interference, 
and the frame size. This section presents the results 
of the throughput measurements as functions of 
these parameters. 

Received Throzlghpzit as a Function of the Load 
The graph shown in Figure 3 is the result of several 
experiments conducted by varying the load for 
33-byte received frames. The frame arrival rates 
depend on the load and the arrival rate distribution. 
As mentioned earlier, the model is capable of simu- 
lating traffic with different arrival patterns. Figure 3 
shows that, with an exponential arrival pattern, the 
throughput increases at a rate proportional to the 

LOAD (MEGABITSISECOND) 

KEY: 
. . . . . . EXPONENTIAL 
- CONSTANT 

Figure 3 Receive Throz~ghpz~t as n Function 
of the Load for a 33-byte Frame 

load up to a certain point, and then gradually 
decreases until the load is 100 Mb/s. The decrease in 
throughput is caused by the loss of resources due to 
excessive loading. 

We simulated traffic with a constant arrival pat- 
tern and conducted the same experiments. These 
results are also shown in Figure 3. Observe that the 
point of maximum throughput and the rate at 
which the throughput decreases after reaching the 
maximum vary with the arrival pattern of traffic. 
After performing experiments on other frame sizes, 
we concluded that there is no fixed relationship 
between the maximum achievable throughput and 
the throughput at FDDI saturation (i.e., 100-Mb/s 
load). Also, there is graceful degradation in through- 
put after the peak. 

Receive Throughput for Four- and Five-mode 
Workloads We measured adapter receive through- 
put for four- and five-mode workloads with a load of 
100 Mb/s. The XMI interference workload was var- 
ied, and the results are presented in Figure 4. The 
adapter can receive the workload at 100 Mb/s, if the 
XMI interference workload remains moderate. 
Figure 4 also shows that there is very little differ- 
ence in performance between the four- and five- 
mode workloads. Large frames constitute a major 
part of both workloads, and larger frames can be eas- 
ily supported by DEMFA at full FDDI data bandwidth. 

Receive Throughput as a Function of Frame Size 
Figure 5 shows the throughput as a function of the 
frame size and the XMI interference workload, with 
DEMFA attached to an XMI (CPU) bus. Smaller frames 
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have a lower throughput rate than larger ones 
because of high control/data overhead Shce con- 
trol transactions consume bandwidth, the band- 
width available for data movement 1s reduced. 
Consequently, the overall throughput rate is lower. 
Another reason for lower adapter throughput is the 
XMI utilization by traffic Prom other nodes on the 
XMI bus. This XMl interference results in less avail- 
able XM1 bandwidth for the adapter and hence, less 
throughput. 
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Figure 5 Receive Throclghpz~t as a Function 
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The adapter throughput for an XMI (VO) bus 
configuration differs only slightly from that for an 
XMl (CPU) bus configuration. Any differences that 
exist are for frames smaller than 64 bytes, since 
the adapter experiences a per-frame latency cost 
because the memory is not local to the XMI bus. 

Transmit Throughput for Four- and Five-mode 
Workloads Figure 6 illustrates the transmit 
throughput for a four-mode workload as a function 
of the XMI interference. We performed simulations 
to obtain throughput data for the DEMFA when 
attached to an XMI (CPU) bus or to an XliI (1/0) bus. 
Throughput for the XMI (CPU) bus configuration is 
100 Mb/s and is insensitive to low, x M I  interference 
loads. Whereas, XMI (I/(>) bus configuration mea- 
surements are negatively affected by all levels of 
XMI interference traffic. The higher read latency 
that is inherent to an XMI (I/O) bus configuration 
degrades further with increasing interference traf- 
fic. In addition the degradation appears to be linear. 
The throughputs observed for the five-mode work- 
loads are very similar to the data shown in Figure 6. 

Transmit Throughput as a Function of the Frame 
Size Figure 7 shows the throughput as a function 
of the frame size when the DEMFA is attached to an 
XMI (CPU) bus. Throughput is also presented for 
various XMI interference workloads. As in the case 
of receive throughput, transmit throughput 
degrades as the frame size decreases and the XMI 
interference load increases. This degradation is 
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Figure G Transmit Throughput as n Function 
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again attributed to high control/data overhead and 
lower XU1 bandwidth availability. 

Figure 8 shows adapter transmit throughput as a 
function of the frame size for an xi\lr (I/O) bus con- 
figuration. The transmit throughput is less when 
the DEMFA is used with an XMI (I/O) bus rather than 
with an XMI (CPIJ) bus, due to the larger amount of 
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Figure 8 Transmit Throughput us cl Function 
of the Frame Size for the 
X M I  (I/O) Bus Configuration 

read access time resulting from the XMI (I/O) bus 
configuration. The transmit operation consists 
mainly of read transactions and hence, this latency 
is crucial to transmit performance. 

Latency Measurements 
Latency, as it relates to the DEMFA, is explained in 
the Definition of ~Metrics section. We measured the 
latency for receive and transmit frames. Frame 
latency consists of two components: the active 
component, which contributes to the time when 
the frame or a portion thereof is being processed at 
a service center (also called the service time); and 
the passive component, which is the time when the 
frame or a portion thereof waits for access to the 
service center. All latency data presented in this 
section represents averages across a large number 
of samples. When measuring the latency of a frame, 
we applied the maximum load that can be sus- 
tained continuously for that frame size and type. 

Receive Latency as a Function of the Frame Size 
Figure 9 represents the receive latency data as a 
function of the frame size for an XMI (CPU) bus con- 
figuration. Latency is also presented for various XMI 
interference levels. We present performance data 
for only one XMI configuration because there is lit- 
tle variation between the results for the XMI (CPU) 
bus and ?UMI (I/O) bus configurations. Both frame 
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size and latency are plotted using logarithmic scales. 
The data illustrates that XMI latency increases lin- 
early with increased XMI interference. 

Transmit Latency as a Function of the Frame Size 
Figure 10 presents transmit latency results for an 
XMI (CPli) bus configuration and Figure 11 presents 
the results for an XMI (V0) bus configuration. The 
latency was measured as a function of the frame 
size for various XMI interference workloads. 
Transmit taEency is more sensitive to the system 
type and to the XMI interference workload because 
most XMI transactions that constitute transmit traf- 
fic are read operations. There is a distinctly higher 
Latency cost associated with these transactions in 
the XMI (v0) bus configuration as compared to the 
MI (CPU) bus configuration. As in the case of 
receive latency, the transmit latency degrades with 
XMI interference. 

Perfortname Measurements with the 
Prototype DEMFA 
The intent of performing measurements with the 
prototype DEMFA was twofold. First, we wanted to 
confirm the performance predictions arrived at 
through simulation. And second, we wanted to 
measure some features that we did not implement 
in the model, either because they were not quantifi- 
able or because they were too complex to model. 
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Again, we present only hardware performance 
measurements; system performance with the 
DEMFA is beyond the scope of this paper. 

Measurement Setups 
The experimental configuration required to per- 
form the measurements on the prototype DEMFA 
is shown in Figure 12. This configuration con- 
sists of a VAX 6000 processor connected to a 
DECconcentrator 500. The VAX 6000 system has an 
XMI backplane. The DEMFA occupies one of the 

OPERATING SYSTEM 
AND DEVICE DRIVER I DEc VAX 6000 I SYSTEM rJ FDDITEsT:' 

(GENERATES AND 
FDDICONTROLLER 400 MONITORS TRAFFIC AT 
(DEMFA) FULL FDDI BANDWIDTH) 

DECCONCENTRATOR 500 * 
WIRING CONCENTRATOR 

FDDI RING NETWORK 

Figure 12 Laboratory Set@ for DEMFA 
Performance Meaurernenls 
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slots in the XlMI backplane and is part of the %MI 
(CPU) bus configuration in this system. An FDDI 
tester is also attached to the DECconcentrator 500 
and acts as a source of frames. The FDDI tester is 
a usefill tool for testing the DEhlFA product; the 
tester is capable of transmitting traffic at 100 Mb/s 
and can generate frames of various sizes and types 
with different destination addresses. A standalone 
software driver and operating system runs on the 
VAX 6000 system and is used for DEMFA hardware 
performance tests. A logic analyzer is used to mea- 
sure elapsed time and count events. 

Throz~ghput Measurements 
The device driver measures receive and transmit 
throughput and is designed to perform minimal 
processing for each frame. 

Receive Tbrougbyut iMemurements We measured 
the receive throughput by sending a continuous 
stream of frames at 100 Mb/s from the FDDI tester to 
the DEMFA. We varied the frame size for the tests 
and ran each test for a length of time sufficient to 
verdy data convergence. 

We compared the prototype measurements with 
the modeled results for receive throughput as a 
function of the frame size for an XMI (CPU) bus con- 
figuration. This validation of the receive throughput 
results is shown in Figure 13. The hardware mea- 
surements demonstrate that the adapter can receive 
frame sizes above 69 bytes at 100 Mb/s. Throughput 
degrades for smaller frame sizes. These measure- 
ments closely validate the modeled results. The 
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Figure 13 Validation of Receive 
Tbrougbput Results 

throughput for the performance model demon- 
strates that the DEMFA can continuously receive 
frames greater than 65 bytes at 100 Mb/s. 'There is a 
slight difference between the measured and mod- 
eled results at the lower frame sizes because resid- 
ual XMI interference traffic exists in the measured 
system. This experimental error is unavoidable, but 
the difference is a small percentage of the total 
throughput and is therefore acceptable. 

Transmit Tl9rougbput Menszirements To measure 
the transmit throughput, we forwarded frames 
from the driver to the FDDI ring at the maximum 
possible rate. The throughput was calculated from 
the number of frames that could be sent in a unit of 
time. The adapter can transmit frames larger than 
51 bytes at 100 Mb/s. Transmit throughputs mea- 
sured in the laboratory validate the modeled results 
as closely as the receive throughput validation 
results shown in Figure 13. The modeled through- 
put results were lower than the measured results 
because we used a conservative approach to mod- 
eling the memory latency. 

Multisegmented and Misaligned Frames Seg- 
mentation and alignment of transmit frame buffers 
in host memory is variable. Typically, frames consist 
of two segments, the first containing the frame 
header information and the second containing the 
data. Since the DEMFA must access control and data 
separately, segmentation makes this process less 
efficient, from a hardware perspective, than if the 
data and control information exist in the same 
buffer. Also, buffers may be aligned to start on 
different byte boundaries. Since the DEMFA trans- 
actions begin on hexaword (i.e., 32-byte) bound- 
aries, hexaword alignment of frame data in the host 
buffers is the most efficient arrangement from the 
adapter's perspective. We measured throughp~it 
with unsegmented and two-segmented frames, and 
with frames aligned on longword, quadword, and 
hexaworcl byte boundaries. Segmentation and align- 
ment variations cause negligible throughput degra- 
dation for frames 64 bytes or larger. 

Latency Measurements 
We used the logic analyzer to measure the frame 
latency. The logic analyzer responds to signals that 
indicate the starting and ending times for process- 
ing a frame. The difference between these two times 
is the frame latency. The events were chosen such 
that the measurements conformed to the definition 
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of latency as described in the Definition of Metrics 
section. 

Note that the traffic pattern used to meamre 
latency in this section differs from the workload 
illustrated in the section Performance Results from 
Simulation. Here, a single frame was received or 
transmitted, and we measured latency due to that 
frame only. Whereas previously, we used the simu- 
lation model to measure latency as an averngc 
across a large number of frames representing a toad 
equal to the maximum sustainable adapter through- 
put. The workloads differ because of the practical 
difficulty to perform latency measurements on a 
large number of frames. 

Receive Lateracy The receive frame latency predic- 
tions from the performance model and adapter ser- 
vice time measurements taken from the prototype 
hardware are shown in Figure 14. These latency mea- 
surements validate the model predictions in a way 
similar to that for the throughput measurements. 

T r a m i t  Latency We also compared transmit 
latency measurements to predictions from the per- 
formance model and h)und these measurements 
to approximate the modeled results. But actual 
latency measurements were slightly lower than the 
modeled results, again due to a conservative mod- 
eled latency. 

Conclusions 
The performance model was intended to track the 
performance of the prototype hardware to an accu- 
racy of + 10.0 percent. The comparisons between 
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Figure 14 Validation of Receive Frame 
Latency Results 

modeled and measured results tlcmonstratc that 
the model actually surpasses our go;~l. The n ~ c ; ~ -  
sured performance for the XMI (110) bus configur;l- 
tion using a VAX 9000 system validated the modeled 
results as closely as did the corresponding results 
for the XMI (CPU) bus configuration. Disparit): if 
any, between the modeled and the measured results 
basically stem from unavoidable measurement 
errors for receive frames and pessimistic memory 
latency assumptions for transmit frames. 

Throughput due to the four- and five-mode work- 
loads is nearly the same. The average frame size for 
these distributions is 496 bytes and 487 bytes, 
respectively. Thus, throughput is a function of the 
frame size and independent of the number of 
modes that exist in the workload. Also, this data 
leads to the conclusion that the DEMFA may never 
pose as a performance bottleneck in a real network 
environment. 

For the simulation, we chose an XMI work- 
load with an extremely high burst rate. Actual 
XMI systems may result in better throughput 
than that presented in this paper. The resources 
required to create XMI workload variations are not 
easily accessible, so we did not perform measure- 
ments on the prototype adapter under different 
workloacl conditions. But since other measurements 
validated the model predictions so closely, measur- 
ing performance with varied XMI workloads proved 
unnecessary. 

Valitlation of the results that we predicted 
through simulation increased our confidence in 
various design mechanisms that were verified 
using the performance model as a test platform. 
When designing new I/O architecture or memory 
implementations, our performance model allows 
changes to be made easily in order to determine the 
impact of such changes on performance. The mod- 
eling strategy proved very effective and helped to 
deliver a high-quality product with better perfor- 
mance than what was intended initially. 
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Performance Analysis of FDDI 

The performance of an FDDI Lrli\r depends upon configuration and workload 
parameters such ns the extent of the ring, the number of stations or2 the ring, the 
number of stations that are waiting to transmit, and the frame size. In addition, 
one key parameter that rietiuork managers can control to inzprove performance is 
the t~zrget token rotation time (TTRT). Analytical modelirzg and simulation meth- 
ods were used to investigate the efSect of the TTRT on vario~~sperformance metrics 
for diffirent ring configtlmtions. This analysis demonstrated that setting the TTRT 
at 8 tnillisecondsprovides goodperformance over a wide range of configurations 
arid workloads. 

Fiber distributed data interface (FDDI) is a 100-mega- 
bit -per-second (Mb/s) local area network (LAN) 

defined by the American National Standards 
Institute (ANSI).',* This standard allows as many as 
500 stations to communicate by means of fiber- 
optic cables using a timed-token access protocol. 
Normal data traffic and time-constrained traffic, 
such as voice, video, and real-time applications, are 
supported. All major computer and communica- 
tions vendors and integrated circuit manufacturers 
offer products that comply with this standard. 

Unlike the token access protocol defined by the 
IEEE 802.5 standard, the timed-token access proto- 
col used by FDDI allows synchronous and asyn- 
chronous traffic simultane~usly.~ The maximum 
access delay, i.e., the time between successive trans- 
mission opportunities for a station, is bounded 
for both types of traffic. Although this delay is short 
for synchronous traffic, that for asynchronous traf- 
fic varies with the network configuration and load 
and can be as long as 165 seconds. Long maximum 
access delays are undesirable and can be avoided 
by properly setting the network parameters and 
configurations. 

This paper begins with a description of the 
timed-token access method used by FDDI stations 
and then proceeds to discuss how various parame- 
ters affect the performance of these systems. The 
target token rotation time (TTRT) is one of the key 

This paper is a modified version of "Performance Analysis of 
FDDI Token Ring Networks: Effect of Parameters and Guidelines 
forSettingmtT," by Raj Jain, published in the Proceedings of the 
SIGCOMM '90, September 1990. Copyright 1990, Association for 
Computing Machinery, Inc. 

parameters. We investigated the effect of the TTRT 
on FDDI LAN performance and developed guide- 
lines for setting the value of this parameter. The 
results of our investigation constitute a significant 
portion of this paper. 

Timed-token Access Method 
The token access method for network communica- 
tion, as defined by the IEEE 802.5 standard, operates 
in the following manner. A token circulates around 
the ring network. A station that wants to transmit 
information waits for the arrival of the token. 
Upon receiving the token, the station can transmit 
for a fixed time interval called the token holding 
time (THT). The station releases the token either 
immediately after completing transmission or after 
the arrival of all the transmitted frames. The time 
interval between two successive receptions of 
the token by a station is called the token rotation 
time (TRT). Using this scheme, a station on an 
n-station ring may have to wait as long as n times 
the THT interval to receive a token. This maximum 
access delay may be unacceptable for some applica- 
tions if the value of either n or THT is large. For 
example, voice traffic and real-time applications 
may require that this delay be limited to 10 to 20 
milliseconds (ms). Consequently, using the token 
access method severely restricts the number of 
stations on a ring. 

The timed-token access method, invented by 
Grow, solves this problem by ensuring that all sta- 
tions on a ring agree to a target token rotation time 
(TTRT) and limit their transmissions to meet this 
target.l There are two modes of transmission: 
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synchronous and asynchronous. Time-constrained 
applications such as voice and real-time traffic use 
the synchronous mode. Traffic that does not have 
time constraints uses the asynchronous mode. A 
station can transmit synchronous traffic whenever 
it receives a token; however, the total transmission 
time for each opportunity is short. This time is allo- 
cated at the ring initialization. A station can trans- 
mit asynchronous traffic only if the TRT is less than 
the TTRT. 

The basic algorithm for asynchronous traffic is as 
follows. Al l  stations on a ring agree on a target 
token rotation time. Each station measures the time 
elapsed since last receiving the token, i.e., the TRT. 
On token arrival, a station that wants to transmit 
computes a token holding time using the following 
formula: 

THT = TTRT - TRT 

If the value of THT is positive, the station can trans- 
mit for this time interval. After completing trans- 
mission, the station releases the token. If a station 
does not use its entire THT, other stations on the 
ring can use the remaining time through successive 
applications of the algorithm. 

Note that even though the stations attempt to 
keep the TRT below the target, they do not always 
achieve this goal. The TRT can exceed the target by 
as much as the sum of all synchronous-transmission 
time allocations; however, these allocations are lim- 
ited so that their sum is less than the TTRT. As a 
result, the TRT is always less than twice the TTRT. 

Perfoomnance Parameters 
The performance of any system depends upon both 
system parameters and workload parameters as 
shown in Figure 1. There are two kinds of system 
parameters: fixed and user-settable. Fixed parame- 
ters cannot be controlled by the network manager 
and vary from one ring to another. Cable length and 
the number of stations on a ring are examples of 
fixed parameters. It is important to study network 
performance with respect to these parameters; if 
performance is sensitive to them, each set of fixed 
parameters may require a different guideline. Sys- 
tem parameters that can be set by the network man- 
ager or the individual station manager include 
various timer values. Most of these timers influence 
the reliability of the ring and the time it takes to 
detect a malfunction. The key settable parameters 
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th:tt affect system pcrform;~nce are the TTRT ant1 
the s).nchronous time allocations. 

In this 1>;11xr, the perlbrmance was stuclied uncles 
asynchronous traffic co~idit ions only The presence 
of synchronous traffic will further restrict the choice 
of'l"l'KI', as discussed later in the section Guidelines 
for Setting the 'l'arget 'Ioken Rotation Time. 

'I'he worklo;ttl also has a significant impact 011 

perl'ormance. A guiclcline o r  recommendation may 
be suit;lhle for one  workloacl but not for itnother. 
'l'lie key n7orkload parameters are the number of 
active stations and the load p e r  station. Hy active 
w e  mc;m stations on  ;I ring that ;lrc cither tratlsmit- 
ting or  m1;titing to tr;tnsmit. A ring m;ty contain ;I 

large number of stations, but getierally only it few 
arc. ;tctivc ;it any given time. Active stations include 
the currently transmitting station, if any. and stit- 
tions th;tt ha1.c I '~ ; I I I I~S to transmit and are waiting 
for thc. ;tcccss right, i.e.. for ;I usable token t o  arrive. 
The load pe r  station varies with the number of sta- 
tions, thc. intcr\:;tl between bi~rsts ,  the number of 
frames per burst, and the frame size. 

Performance Metrics 
The qi~ali ty of service a system proviclcs is mea- 
surecl by its productivity and responsiveness.' 
For an FDDI LAN, protluctivity is measured by its 
throughput, and responsiveness is measurecl by the 
response time and maximum access delay. 

The procluctivity metric of concern to the net- 
work manager is the total throughput measured in 
megabits pe r  second. Over any reasonable time 
interval and for most loads, the throughp~lt  is equal 
to the loacl. I:or example, if the load on  a ring is 
10 blb/s, then the thrortghput is also 40 Mb/s. But 
this docs not holtl if tlie loacl is high. For esample, 
if  there itre three stations on  a ring, each with a 
100-,Mh/s load, tlie totitl arrival rate is 300 Mb/s 
and the throughpi~t  is consiclerably less-close to 
100 Mb/s. Thus, the key productivity metric is not 
tlie throughput under low load but the maximum 
obtainable throughput under high load. This latter 
quantity is also known 21s the usable bandwidth of 
tlie network. Ancl tlit. ratio of the usable bandwidth 
to the nomin;tl bancl\viclth (e.g., 100 Mb/s for an FDDI 
LAN) is calleel the efl'icicncy of the  network. For 
instance, if w e  consicler a set of configuration and 
xiiorkloacl parameters with a usable FDDI bandwidth 
of at most 90 Mb/s, the efficiency is 90 percent. 

The response tinie is the tinie interval between 
the arrival of :I frame and the completion of its 
tran.smission, including queuing delay, i t . ,  from 

the first bit in to the last bit out. This metric is mean- 
in<fi~l only if a ring is not satur:~tccl, bcc;tuse ;it 
loads near o r  above capacity the response time 
approaches infinity. With such loads, the m;~ximum 
access delay for a station, i.e., the time interval 
between wanting to transmit and receiving a token, 
has more significance. 

Another metric that is of interest for a s11;lred 
resource such as FDDT is the fairness with which the 
resource is allocated. Fairness is particularly impor- 
tant under a heavy load. Given such a load, the asyn- 
chronous bandwidth is allocated equally to all 
active stations. However, tlie I:DDI protocols arc fair 
only if the priority levels are not implemented. In 
the case of multiple priority implement;~tion, it is 
1x)ssible for two stations with the sarne priority and 
the same load to have different throughput clcpend- 
ing upon their location.(' Low-priority stations 
that are close to high-priority stations may get 
better service than those farther downstream. 1% 
assumed a single priority implementation to keep 
the analysis simple. Since such implementations 
have no fairness problem, this metric will be dis- 
cussed 110 further in this paper. 

W used two methods to analyze performance: 
analytical mocleling and simulation. We first pre- 
sent the analytical model usecl to  compute the effi- 
ciency and niasimum access delay of a network 
under a lieavy load. Then w e  discuss the simulation 
moclel workload used to analyze the response time 
at loads below the usable bandwidth. 

A Simple Analytical Model 
The maximurn access delay and efficiency are 
me;tningfill only under heavy load. Therefore, w e  
assume that there are n active stations, each gcner- 
ating enough frames to saturate the FDDl network. 

Basic Equations 
For an FDDI network with a ring latency D (i.e , the 
time it takes a bit to travel around the ring) and a 
TTRT value of T, the efficiency and maximum access 
delay are computed using tlie following formulas: 

n ( T  D) 
Efficiency = n T + D  

Maximum access delay = (n - 1)  T + 2 0  (2) 

Equations (1) and (2) constitute the analytical 
model. Their derivation is simple and is presented 
in the next section. Those readers who are not 
interested in the details can proceed to the section 
Application of the Model. 
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Derivation 
First consider a ring with three active stations, as 
shown in Figure 2. (Later, we will consider the 
general case of n active stations.) The figure shows 
the space-time diagram of various events on the 
ring. The space is shown horizontally, and the time 
t is shown vertically. The token reception is 
denoted by a thick horizontal line segment. The 
interval of time during which transmission of 
frames takes place is indicated by a thick vertical 
line segment. 

SPACE 

KEY: 

S1. S2, S3 STATIONS 
I TOKEN 

I TRANSMISSION OF FRAMES 

TARGET TOKEN ROTATION TIME 
RING LATENCY 
TOKEN PATH 

Note that the numbers in this figure refer to event numbers 
discussed In the text. 

Figure 2 Space-time Dingmm of Events 
with Three Active Stations on 
an FDDI Network 

Assume that all stations are idle until t = D, when 
the three active stations suddenly get a large (infi- 
nite) burst of frames to transmit. The sequence of 
events shown in Figure 2 is as follows: 

1. t = 0. Station S1 receives the token and resets 
its own token rotation timer to zero. Since the 
station has no frames to transmit, the token 
proceeds to the next station S2. 

2. t = t,,. Station S2 receives the token and 
resets its token rotation timer to zero. t,? is 
equal to the signal propagation delay from S1 
to S2. 

3. t = t,,. Station S3 receives the token and 
resets its token rotation timer to zero. t , ,  is 
equal to the signal propagation delay from S1 
to S3. 

4. t = D. Station S1 receives the token. Since S1 
now has an infinite supply of frames to trans- 
mit, it captures the token and determines that 
the TRT is D. Thus, the time interval during 
which S1 can hold the token, the di.fference 
between TTRT and TRT, is T - D. 

5. t = T. The THT at station S1 expires. S1 
releases the token. 

6. t = T + t,,. Station S2 receives the token. S2 
last received the tolten at t = t,,; thus, the 
value of TRT is T. S2 cannot use the token at 
this time and releases it. 

7. t = T + t,,. Station S3 receives the token. S3 
last received the token at t = t,,; thus, its TRT 
is also T. S3 cannot use the token at this time 
and releases it. 

8. t = T + D. Station S1 receives the token. S1 
last received the token at t = D; its TRT is also 
T. (Note that the TRT is measured from the 
instant the token arrives at a station's receiver, 
i.e., event 4 for station S1, and not from the 
time it leaves a station's transmitter, i.e., event 
5.) S1 cannot use the token and releases it. 

9. t = T + D + t12. Station S2 receives the token. 
Since TRT is only D, it sets the THT to the 
remaining time, i.e., T - D. S2 transmits for 
that interval and releases the token at t = T + 
D + t,, + (T - D). 

10, t = 2T + t,,. The THT at station S2 expires. S2 
releases the token. 
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11. t = 2T + t,,. Station S3 receives the token. 
Since TRT Is T, S3 releases the token. 

12. t = 2T + D. Station S1 receives the tokcn. 
Since TRT is T, S1 releases the token. 

13. t = 2T + D + t,,. Station S2 receives the 
token. Since TRT is T, S2 releases the tokcn. 

14. t = 2T + D + t,,. Station S3 receivcs the 
tokcn. Sincc 1'1c1' is only D, it transmits for the 
timc intcrv;~l T - D and rc1e:ises the tokcn at 
t = 2 T + D + I , , + ( T D ) .  

15. t = 3T + t,,. The TI-IT at station S3 expires. S3 
releases the token. 

16. t = 3T + D. Station S1 receives the token, and 
the sequence of events begins to repeat. The 
token passes through stations S1, S2, and S3, 
all of which find it unusable. 

19. t = 3T + 20.  The cycle continues with S1 cap- 
turing the token as in event 4. 

The above discussion illustrates that the system 
goes through a cycle of events and that the cycle 
time is 3T + D. During every cycle, each of the 
three stations transmits for a time interval equal to 
T - D; the total transmission time is 3 (T - D). 
The number of bits transmitted during this time is 
3 (T - D) X 108, and the throughput equals 3 (T - D) 
X 108/ (3T + D) bits per second. The efficiency, i.e., 
the ratio of the throughput to the FDDI bandwidth 
of 100 Mb/s, is 3 (T - D) / (3T + D). 

During the cycle, each station waits for a time 
interval of 2T + 20 after releasing the token for 
another opportunity to transmit. This interval is the 
maximum access delay. For lower loads, the access 
delay is shorter. 

Thus, for a ring with three active stations, 

Efficiency = 
3 ( T -  D) 
3T+ D 

Maximurn access dclay = (3 - 1) T + 2 0  
= 2 T +  20 

To generalize the above analysis for n active 
stations, substitute n for 3. Equations (1) and (2) 
are the results; the derivation is completc. 

Application of the Model 
Equations (1) and (2) can be used to cornputc the 
maximum access delay and the efficiency for any 
FIIDI ring configuration. For cxarnple, consider a 
ring with 16 stations and a total fiber length of 
20 kilometers (km). (Using a two-fiber cable, this 
corresponds to a cable length of 10 krn.) Light waves 
travel along the fiber at a speed of 5.085 ~iiicro- 
seconds per kilometer @s/km). The station dclay 
bet\veen receiving and transmitting a bit is approsi- 
mately 1 ,us per station. The ring latency can be com- 
puted as follows: 

Ring latency D = (20 km) X (5.085 ps/km) 

+ (16 stations) x (1 ps/station) 

= 0.12 milliseconds (ms) 

Assuming a TTRT of 5 ms and all 16 stations active, 

16 (5 - 0.12) 
Efficiency = 16 X 5 + 0.12 

= 97.5 percent 

Maximum access delay = (16 - 1) X 5 + 2 X 0.12 

= 75.24 ms 

Thus, on this ring, the maximum possible 
throughput is 97.5 Mb/s. If the load is greater than 
this for any substantial length of time, the queues 
will build up, thc response time will increase, 
and the stations may start to lose frames due to 
insufficient buffers. The maximum access delay is 
75.24 ms; thus, asynchronous stations may have to 
wait as long as 75.24 ms to receive a usable token. 

The key advantage of this model is its simplicity, 
which allows us to see immcdintely the effect of 
various parameters on network performance. With 
only one active station, which i s  usually the case, 
equation (1) becomes 

T -  D 
Efficiency (n = 1) = - T +  D 

As the number of active stations increases, the 
efficiency increases. With a very large number of 
stations, 

D 
Maximum efficiency (n = x) = 1 - - T 

This efficiency formula is easy to remember 
and permits "back-of-the-envelope" calculations of 
FDDI W N  performance. This special case of n = -s- 

has already been studied.' 
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Similarly, we can use equation (2) to calculate the 
maximum access delay with one active station as 
follows: 

Maximum access delay (n = 1) = W 

That is, a single active station may have to wait as 
long as twice the ring latency between successive 
transmissions because every alternate token that it 
receives would be unusable. For n = m, the maxi- 
mum access delay approaches infinity 

Simulation Workload 
One way to measure the responsiveness of a sys- 
tem is to use simulation to analyze the response 
time. This metric depends upon the frame arrival 
pattern of the workload and is discussed further 
in the Response Time section. The workload we 
used in our simulations was based on an actual mea- 
surement of traffic at a customer site. The chief 
application at this site was the warehouse and 
inventory control (WC). Hence, we named the 
workload WIC. 

Previous network measurements show that when 
a station wants to transmit, it generally transmits 
not one frame, but a burst of frames. The WIC work- 
load has this trait as well. Therefore, we used 
a bursty Poisson arrival pattern in our simula- 
tion model with an interburst time of 1 ms and 
five frames per burst. 

We limited the frames to two sizes: 65 percent of 
the frames were small (100 bytes), and 35 percent 
were large (512 bytes). This workload constitutes a 
total load per station of 1.22 Mb/s. Forty stations, 
each executing this load, would utilize 50 percent 
of the FDDI bandwidth. Higher load levels can be 
obtained either by reducing the interburst time or 
increasing the number of stations on the ring. 

Guidelines for Setting the Target 
Toben Rotation Time 
This section presents the rules specified by the 
ANSI FDDI media access control standard for setting 
the value of the TTRT. We also discuss efficiency, 
maximum access delay, and response time con- 
siderations, as well as reasons to limit the value 
of TTRT. 

ANSI FDDI Standard 
According to the ANSI FDDl standard, the following 
rules must be observed when setting the TTRT: 

1. Since the TRT can be as long as twice the TTRT, a 
synchronous station may have to wait a time 
interval of up to 2T before receiving the token. 
Therefore, synchronous stations should request 
a TTRT value of one-half the required service 
interval. For example, a voice station that wants 
to receive a token every 20 ms or less should 
request a TTRT of 10 ms. 

2. The TTRT must allow transmission of at least one 
maximum-size frame in addition to the syn- 
chronous time allocation, if any. That is, 

TTRT > ring latency + token time 
+ maximum frame time 
+ synchronous time allocation 

The maximum-size frame on FDDI is 4500 bytes 
plus preamble and takes approximately 0.361 ms 
to transmit. The maximum ring latency is 1.773 
ms. The token time (11 bytes including 8 bytes of 
preamble) is 0.00088 ms. This rule, therefore, 
requires that the TTRT be set at a value greater 
than or equal to 2.13 ms plus the synchronous 
time allocation. Violating this rule, for cx;~mple, 
by overallocating the synchronous bandwidth, 
results in unfairness and starvation, i.e., some 
stations are unable to transmit. 

3. A station must request a TTRT greater than or 
equal to the station parameter T-min. The 
default maximum value of T-min is 4 ms. Gen- 
erally, most stations do not request a TTRT less 
than 4 ms. 

4 .  A station must request a TTRT less than or equal 
to the station parameter T-max. The default 
minimum value of T-max is 165 ms. Assuming 
that there is at least one station with T-max 
equal to 165 ms, the TTRT on a ring cannot 
exceed this value. (In practice, many stations 
will use a value of 2" X 40 ns = 167.77216 ms, 
which can be conveniently derived from the 
symbol clock using a 22-bit counter.) 

Efficiency and Maximum Access Delay 
Considerations 
In addition to the rules specified by the standard, 
the TTRT values should be chosen to allow high- 
performance operation of a ring. This section dis- 
cusses these performance considerations. 

Figure 3 is a plot of efficiency as a function of the 
TTRT. Three configurations called "Typical," "Big," 
and "Largest" are shown. 
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Figure 3 Efficiency crs a Function of the TTRT 

100 

The 'Iypical configuration consists of 20 single 
attachment stations (Sl\Ss) on a 4-km fiber ring. The 
numbers used are lxised on ;in intuitive feeling of 
what a typic~il ring would look like ;incl not basecl 
on any survey of actual inst;tlI;~tiorls. Twenty offices 
locatccl on a 50 m by 5 0  m floor rccluirc a 2-km 
cable or a 4-km fiber. 

'l'he Big cotlfigiiration consists oS 100 S4Ss on a 
200-kni fiber. 'l'his configuration represents a rea- 
sonabl). large ring with ;icccpt;iblc reli;il>ility. 
Configuring a single ring \vith consiclerably Inore 
than this number of stations incrc;ises the proba- 
bility of bit errors.' 

The Largest conliguration consists of SO0 dual 
attachment stations (DASs) ancl a ring that has 
wral>ped. A can have one or two media access 
controllers (Mt\(:s). In this configuration, each DAS 
has two M*\Cs. Thus, the I.A\J consists of 1000 M,\<ls 

- ,-- TYPICAL 

in ;I single 1ogic;tl ring. l'liis is the I;~rgest number of 
4I1\(:s ;illo\ved on ;in I:I)I>I LAN. Ikcceding this num- 
ber \vould require recomputation of all default 
parameters specified in thc st;tnd;ircl. 

Figure 3 shows th;tt for all threc configurations, 
the efficiency incrc:iscs as the '1"SRT increasrs. 'l'he 
efficiency is very lolv at I''I'I11' \.slues close to the 
ring latency but increases as tlic 'I"1'1C1' incre;ises. 
Thus, to ensure a minimal efficicncy, the minimum 
allo\ved '1"TlCS on I:nur is 4 ms. l'his direct relation- 
ship hetnieen the efficienc)~ :und the 'I"1'K'I' may Leacl 
some to conclude th;tt the 1;irgest possible '1"SliT be 
chosen. IIowevcl; notice ;tlso th:it the efficiency 
gained by iincrc;tsing the ?I"I'RT, i.c., the slope of the 
efficiency curve, t1ecre;tsrs ;is the TTI17' increases. 
The "knee" of the curve depends upon the ring 
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configuration. For larger configurations, the knee 
O C C L I ~ S  at larger Tl'IiT values. Even for the Largest 
configuration, the knee occurs in the range of 6 to 
10 Ins. For the Typical configuration. the T1'RT has 
little effect on efficiency as long as the '1"I'RT is in 
the allowed range of 4 to 165 ms. 

Figure 4 sl~ows the niaxirnurn access delay as a 
function of the T'I'IiT for the three configurations. 
To sho\v the complete range of possibilities, we 
usetl ;t semilogarithmic scale on the graph. The vcr- 
tical scale is logarithmic, while the horizontal scale 
is linear. The figure shows that increasing the TTR'l' 
brings about a corrcsponding increase in the masi- 
mum access delay for a1 I three configurations. 

LARGEST 

BIG 

TYPICAL 

l T R T  (MILLISECONDS) 

Figure 4 ,Mc~.~imz~m Access Delay as a 
Function of the TTRT 

7:lble 1 presents the performance metrics for the 
maximum access delay and the efficiency as func- 
tions of the TTRT. As eviclenced in the table, on the 
Largest ring, a TTRT of 165 ms causes a maximum 
access tlclay as long as 165 seconds. This means that 
in a worst-case situation, a station may h:t\le to wait 
several minutes to receive ;t us;lblc token. For many 
applications, this delay is unacceptable; therefore, a 
rctlucccl number of stations or a smaller TTRT may 
be preferal~le. 

Response Time 
Figure 5 shows the average response time as a func- 
tion of the TTRT for a relatively large configuration, 
i.e., 100 stations and 10 I<m of fiber. The WIC work- 
load was sirnulatecl at three load levels: 28, 58, and 
90 percent. Tn7o of the three curves are horizontal 
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Table 1 Maximum Access Delay and Efficiency as Functions of the l T R T  

TTRT I Maximum Access Delay 1 I Efficiency 
(ms) (seconds) (percent) I 

Typical Big Largest Typical Big Largest 
20 SAS 100 SAS 500 DAS 20 SAS 100 SAS 500 DAS 
4krn 200 km 200 km 4km 200 krn 200 km 

4 0.08 0.40 4.00 98.94 71 -87 49.55 

8 0.1 5 0.79 8.00 99.47 85.92 74.77 

12 0.23 1.19 11.99 99.65 90.61 83.1 8 
16 0.30 1.59 15.99 99.74 92.95 87.38 

20 0.38 1.98 19.98 99.79 94.36 89.91 

165 3.1 4 16.34 164.84 99.97 99.32 98.78 

straight lines indicating that TTRT has no effect on 
the response times at these loads. The TTRT only 
affects the response time at a heavy load. In fact, it is 
only near the usable bandwidth that the TTRT has 
any effect on the response time. 

To summarize the results presented so far, if the 
FDDI load is below saturation, the TTRT has little 
effect. At saturation, a larger value of TTRT gives a 
larger usable bandwidth and therefore increased 
efficiency But a longer TTRT also results in longer 
maximum access delays. The selection of the TTRT 
requircs a trade-off between these two require- 
ments. To facilitate making this trade-off, the two 
performance metrics for the three configurations 
are listed in Table 1. TTRT values in the allowable 
range of 4 to 165 ms are shown. The data shows that 
a very small value of TTRT, such as 4 ms, is undesir- 
able, because the resulting efficiency on the Largest 

I I I I I 

0 5 10 15 20 

l T R T  (MILLISECONDS) 

Figure 5 Response Time as a Function of TTRT 

ring is poor (50 percent). A very large value of 
TTRT, such as 165 ms, is also undesirable, because it 
results in long maximum access delays. The 8-ms 
value is the most desirable, since it yields 75 per- 
cent or more efficiency on all configurations and 
results in a maximum access delay of less than one 
second on Big rings. Eight milliseconds is, there- 
fore, the recommended default TTRT. 

Problems with a Large TTRT 
There are three additional reasons for preferring an 
8-ms TTRT over a large TTRT such as 165 ms. First, a 
large TTRT allows a station to receive a large num- 
ber of frames back-to-back. To operate in such an 
environment, all adapters must be designed with 
large receive buffers. Although memory is not con- 
sidered an expensive part of a computer, its cost 
is significant for low-cost components such as 
adapters. The board space for the additional mem- 
ory required by choosing a larger TTRT is consider- 
able as are the bus holding times required for such 
large back-to-back transfers. 

Second, a very large TTRT results in an exhaustive 
service discipline (i.e., all frames are transmitted in 
one token capture), which has several known draw- 
backs. For example, exh;custive service is unfair. 
Frames coming to higher load stations have a 
greater chance of finding the token during the same 
transmission opportunity, whereas frames arriving 
at low load stations may have to wait. Thus, the 
response time is inversely dependent upon the 
load, i.e., higher-load stations yield lower response 
times and vice versa.9 

Third, with exhaustive service, the response 
time of a station is dependent upon station location 
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with respect to that of high-load stations. The sta- 
tion immediately downstream from a high-load sta- 
tion may obtain better throughput than the one 
immediately upstream. 

R a m ~ s  Otber Tban the TTRT 
Tbat Aflecf ~ ~ n c e  
Many parameters other than the TTRT affect the 
performance of a network. This section discusses 
four configuration and workload parameters: the 
extent of the ring, the total number of stations, the 
number of active stations, and the frame size. 

&tent of the Ring 
The total length of the fiber is called the extent of 
the ring. The maximum allowed extent on an FDDI 
LAN is 200 km. Figures 6 and 7 are graphs illustrat- 
ing the efficiency and maximum access delay as 
functions of the extent. A star-shaped ring with all 
stations at a fixed radius from the wiring closet is 
assumed. The total cable length, shown along the 
horizontal axis, is twice the radius times the num- 
ber of stations. As is evident from the figures, rings 
with a larger extent have a slightly lower efficiency 
and a longer maximum access delay than those with 
smaller extents. 

20 MACs 
100 MACs 

1000 MACs 

TTRT = 8 MILLISECONDS 

I I I I I 

0 50 100 150 200 

EXTENT OF THE RING 
(TOTAL FIBER LENGTH IN KILOMETERS) 

Fig~ire 6 Efliciency as a Function 
of the Extent oftbe Ring 

Note that in Figure 7, the increase in maximum 
access delay for each configuration is not apparent 
due to the semilogarithmic scale. 

TTRT = 8 MILLISECONDS 

EXTENT OF THE RING 
(TOTAL FIBER LENGTH IN KILOMETERS) 

Figure 7 Maximum Access Delay as a Function 
of the Extent of the Ring 

Total Number of Stations 
The total number of stations on a ring includes 
active and inactive stations. h general, increasing 
the number of stations adds to the ring latency 
becanse of the additional fiber length and addi- 
tional station delays. Thus, the number of stations 
affects the efficiency and maximum access delay in 
a way similar to that of the extent; a ring that con- 
tains a larger number of stations than another has a 
lower efficiency and a longer maximum access 
delay. In addition, a large number of stations on 
a ring increases the bit-error rate. Consequently, 
large rings are not desirable. 

Number ofActive Stations 
As the number of active stations, i.e., MACs, 
increases, the total load on the ring increases. 
Figures 8 and 9 show the ring performance as a 
hnction of the number of active MACs on the ring. 
We considered a maximum-size ring with a 'l'TRT 
value of 8 ms for the analysis. The figures show that 
increasing the number of active lMCs has a slight 
positive effect on the efficiency, but considerably 
increases the maximum access delay. Therefore, 
it is preferable to keep a minimal number of active 
stations on each ring by segregating small groups 
on separate rings. 

Frame Size 
Frame size does not appear in the simple models of 
efficiency and maximum access delays, because 
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Figure 8 Efficiency as n Function of the 
Number of Active MACs 

frame size has little impact on FDDI performance. 
In our analysis, we  assumed that transmission 
stops at the instant the THT expires; however, the 
standard allows stations to complete the trans- 
mission of the last frame. 

The extra time used by a station after THT expiry 
is called asynchrono~is overflow. Assuming all 
frames are of fixed size, let F denote the frame 
transmission time. During every transmission 
opportunity, an active station can transmit as many 
as k frames: 

100,000 TTRT = 8 MILLISECONDS t RING LATENCY = 1.773 
MILLISECONDS 

Here, r 1 is used to denote rounding up  to the 
next integer value. The transmission time is equal 
to k times F, which is slightly more than Tminus D. 
With asynchronous overflow, the modified effi- 
ciency and maximum access delay formulas 
become 

nkF 
Efficiency = n ( k F + D ) + D  

Maximum access delay = (n - 1 )  (kF + D) + W 

Notice that substituting kF = T - D in the above 
equations results in Equations (1) and (2). 

Figures 10 and 11 show the efficiency and the 
maximum access delay as functions of the frame 
size. Frame size has only a slight effect on these 
metrics. Larger frame sizes do have the following 
effects: 

The probability of error is greater in a larger 
frame. 

Since the size of protocol headers and trailers 
is fixed, larger frames require less protocol 
overhead. 

The time to process a frame increases only 
slightly with the size of the frame. A larger frame 
size results in fewer frames and, hence, in less 
processing at the host. 

Overall, we recommend using as large a frame size 
as the reliability considerations allow. 

l o o t  
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BIG 

W 
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Figure 9 Maximum Access Delay as n Function Figure 10 Efficiency as n Function 
of the Number of Active MAGS of tlge Frame Size 
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100,000 t T R T  = 8 MILLISECONDS 

LARGEST 

BIG 

TYPICAL 

FRAME SIZE (OCTETS) 

Figzlie I 1  Mu.~imrmz Accc.ss Delay as a Ar~~ctiolz 
o f t b c ~  Awme Si,ze 

Summary 
Although many parameters affect the performance 
of an FDDI ring network, the target token rotation 
time (TTRT) is the key parameter that network 
m;in;igers can control to optimize this perfor- 
mance. We analyzed the effect of other par;inieters 
such as the extent of the ring (the length of the 
cable), the total number of stations, the number of 
active stations, and frame size. From our data we 
concluded the following: 

Rings with a large extent and those with a large 
number of stations are undesirable because they 
yield a longer maximunl access delay and have 
only a slight positive effect on the efficiency of 
the ring. 

It is preferable to minimize the number of active 
stations on a ring to avoid increasing the maxi- 
mum access delay. 

A large frame size is desirablc. taking into consid- 
eration the acceptable probability of error. 

The value of TTRT does not significantly affect 
the response time unless the load is near saturation. 
Under very heavy load, response time. is not a 
suitable metric. Instead, maximum access delay, 
i.e., the time between wanting to transmit and 
being able to do so, is more meaningful. 

A larger value of TTRT improves the efficiency, 
but it also increases the maximum access delay. A 
good trade-off is provided by setting TTRT at 8 ms. 
Since this value provides good perform;incc for all 
ranges of configurations, we recommend that the 
default value of TTRT be set at 8 ms. 
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Further Readings 

Digital Press 

Digital Press is the book publishing group of Digital 
Equipment Corporation. The Press is an interna- 
tional publisher of computer books and journals on 
new technologies and products for users, system 
and network managers, programmers, and other 
professionals. Proposals and ideas for books in 
these and related areas are welcomed. 

The following book descriptions represent a sam- 
ple of the hooks available from Digital Press. 

VAX/VMS INTERNAIS AND DATA 
STRUCTURES: Version 5.2 
Ruth E. Goldenberg and Lawrence J. Kenah, 
with the assistance of Denise E. Dumas, 1991, 
hardbound, 1427 pages, Order No. EY-C171E-DP-EEB 
($124.95) 

This is a totally revised edition of the most authori- 
tative and complete description of the V ' /vMS 
operating system in the industry. The book features 
new chapters on symmetric multiprocessing, the 
reorganized executive, VAX interrupts and excep- 
tions, and the I/O subsystem, including device 
drivers and interrupt service routines. The addi- 
tion of symmetric multiprocessing to the VAX/VMS 
operating system prompted major revisions to 
chapters concerning hardware and software inter- 
rupts, memory management, and synchronization. 
The authors have also taken every opportunity to 
clarlfy difficult concepts, to collect related mate- 
rial into single chapters, and to standardize and 
simpl~fy the numerous figures contained in this 
reference. 

VMS FILE SYSTEM INTERNALS 
Kirby McCoy, 19W, softbound, 460 pages, 
Order No. EY-F575E-DP-EEB ($49.95) 

VMS FILE SYSTEM IKlERC4LS, based on VMS 
Version 5.2, is a book for system programmers, 
software specialists, system managers, applica- 
tions designers, and other VAX/VMS users who 
need to understand the interfaces to and the data 
structures, algorithms, and basic synchronization 
mechanisms of the VMS file system. This system is 
the part of the VAX/VMS operating system respon- 
sible for storing and managing files and informa- 
tion in memory and on secondary storage. The 
book is also intended as a case study of the VMS 
implementation of a file system for graduate 
and advanced undergraduate courses in operating 
systems. 

VAX ARCHITECTURE REFERENCE MANUAL, 
Second Edition 
Richard A. Brunner, Editor, 1991, softbound, 
560 pages, Order No. EY-F576E-DP-EEB ($44.95) 

This book describes the data types, instructions, 
calling standards, addressing modes, registers, 
exception and interrupt handling, memory man- 
agement, and process structure common to all VAX 
computers-from the Microviu; 11 to the VAX 9000. 
New sections describe the VAX shared-memory 
model supported in VAX multiprocessor computers 
and the recently added vector processing exten- 
sions implemented by the VAX 9000 and VAX 6000 
model 400 systems. The book introduces the 
design goals and terminology of the VAX instruction 
set, including those for memory management, 
exception and interrupt handling, process control, 
and vector processing. The description of each 
instruction gives format, operations, condition 
codes, instruction-specific exceptions, opcodes, 
and mnemonics. 

A COMPREHENSIVE GUIDE TO Rdb/VMS 
Lilian Hobbs and Kenneth England, 1991, 
softbound, 352 pages, Order No. EY-H873E-DP-EEB 
($34.95) 

The R d b m S  relational database system was devel- 
oped by Digital Equipment Corporation for V k u  
computers using the VkIS operating system. This 
system is one of a number of information manage- 
ment products that work together to facilitate the 
sharing of information. The Rdb/VIMS system is 
used, for example, in high-performance transaction 
processing systems. This book is based on Rdb/VMS 
Version 4.0, which Digital made available to cus- 
tomers at the end of 1990, and thus includcs the lat- 
est functionality. 

MIT PROJECT ATHENA: A Model for 
Distributed Campus Computing 
George A. Champine, 1991, hardbound, 282 pages, 
Order No. EY-H875E-DP-EEB ($28.95) 

MIT Project Athena has emerged as one of the 
most important models for next-generation dis- 
tributed computing in an academic environment. 
MIT pioneered this new approach, based on the 
client-server model, to support a network of work- 
stations. The project began in 1983 as a five-year 
project, with Digital Equipment Corporation and 
IBM as its two major industrial sponsors. Now a 
production system of networked workstations, 
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Project Athena is replacing time-sharing (which MIT 
also pioneered) as the preferred model of com- 
puting at MIT. The size and uniqueness of Project 
Athena has led to widespread interest in its design, 
implementation, and performance. 

UNDERSTANDING CLOS: The  Common Lisp 
Object System 
Jo A. Lawless and Molly M. Miller, 1991, softbound, 
1% pages, Order No. EY-F59lE-DP-EEB ($26.95) 

The Common Lisp Object System (CLOS) is an 
extension to Common Lisp that brings object- 
oriented programming (OOP) to this popular ver- 
sion of the Lisp language. Written for computer 
professionals and students, UlVDERSTANDIlVG CLOS 
quickly introduces necessary object-oriented pro- 
gramming concepts and provides complete syntac- 
tic descriptions of all CLOS functions adopted by 
the ANSI X3J13 standards committee. Also included 
is an 800-line sample application, as well as a bibli- 
ography, a glossary, and an index. 

COMMON LISP: The Language, Second Edition 
Guy L. Steele, Jr., 1990, softbound, 1029 pages, 
Order No. NC187E-DP-EEB ($38.95) 

The first edition of COMMON LISP: The Language, 
which sold over 60,000 copies, became the de 
facto standard for the Common Lisp program- 
ming language. This second edition is approxi- 
mately twice the size of the first edition. The book 
reflects, as ciosely as possible, the decisions and 
recommendations made by ANSI committee X3J13, 
bridging the gap between the first edition and the 
forthcoming rUVSI standard. It describes many of 
the changes made to the Common Lisp program- 
ming language, relative to the structure of the first 
edition, and discusses those areas that are likely to 
be revised further. 

To receive a copy of our latest catalog or further 
information on these or other publications from 
Digital Press, please write or call: 

Digital Press 
Department EEB 
12 Crosby Drive 
Bedford, MA 01730 
(617) 276 -1536 

Or, you can order by calling DECdirect at 800-DIGITAL 
(800-344-4825). 

When ordering be sure to refer to Catalog Code EEB. 

Book Review 
The Art of Computer Systenzs Performance 
Analysis: Techniques for Experimental Design, 
Measz~rement, Simulation, and Modelit?g, 
R. Jain, John Wiley &Sons, Inc., New York, 1991. 
720 pages (ISBN 0-471-50336-3). 

This is an edited version of a forthcoming review by 
Robert Y Al-Jaar in the Performance Evnlz~ation 
Review of the ACM SIGMETRICS. 

The author achieves the major objectives presented 
in his preface. Raj Jain provides computer profes- 
sionals simple and straightforward performance 
analysis techniques in a comprehensive textbook. 
He gives basic modeling, simulation, measurement, 
experimental design, and statistical analysis back- 
ground, and emphasizes and integrates the model- 
ing and measurement aspects. The autlior discusses 
common mistakes and games in performance anal- 
ysis studies, and illustrates the presented tech- 
niques using examples and case studies from the 
field of computer systems. 

The book consists of 36 chapters organized in the 
following six parts: "An Overview of Performance 
Evaluation," "Measurement Techniques and Tools," 
"Probability Theory and Statistics," "Experimental 
Design and Analysis," "Simulation," and "Queueing 
Models"; nearly the same level of attention is given 
to each part. Each chapter has a set of carefully 
designed exercises; solutions to selected exercises 
are presented at the end of the book. Each part con- 
cludes with a comprehensive list of references, 
appropriately selected from the extensive list that 
follows the exercise solutions. The book also 
includes an appendix that contains statistical tables 
and formulas. 

Part I emphasizes the importance of performance 
analysis for designers, administrators, and users of 
computer systems. The author introduces the field 
of computer systems performance analysis and 
presents examples of problems that one should be 
able to solve after reading the book. He discusses 
22 common mistakes that occur in performance 
evaluation studies and presents in a "box" format 
a summary checklist to help avoid these mistakes. 
This format is an effective presentation technique 
used judiciously throughout the book to highlight 
important techniques and summarize major results. 
The author advocates a 10-step approach to per- 
formance analysis and discusses the selection of 
performance evaluation techniques and metrics. 
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I enjoyed reading this coverage of issues critical 
to the success of any performance engineering 
project but often ignored. The discussions remind 
experts of the importance of these matters and 
encourage newcomers to develop the correct atti- 
tude toward performance. 

Part Il begins with explanations of workload 
types. The author emphasizes several major consid- 
erations for workload selection. He then discusses 
monitors, including program execution monitors 
and accounting logs. Of particular interest is the 
discussion of the design of software monitors. 

Capacity planning and benchmarhg sections 
include enlightethg material on common mistakes 
of inexperienced analysts and the games and tricks 
played by experienced analysts. By discussing such 
practical topics as load drivers and remote-terminal 
emulators (rrTEs), the book provides comprehen- 
sive information on performance analysis, a wel- 
come departure from the format of many other 
books which consider such a discussion 'unlntel- 
lectual." The art of data presentation techniques 
follows. The quality and format of the presenta- 
tions in the book clearly indicate that the author 
does practice what he preaches. 

Part II concludes with a discussion of ratio 
games. The author uses case studies and examples 
to explain how to choose an appropriate base 
system and ratio metric. He also outlines strategies 
for defending oneself from ratio games played by 
others. 

Part ID introduces the basic concepts of proba- 
bility and statlstlcs, using examples and case studies 
from the computer field to convince the reader 
that these concepts have practical importance. 
The author explains how to summarize measured 
data and use sample data to compare systems; 
provides an easy-to-read introduction to simple Lin- 
ear regression models; and discusses other regres 
sion models. 

The overall treatment of experimental design 
and analysb Is so comprehensive and thorough that 
Part rv is practically a short book on experimen- 
tal design techniques. The author explains the basic 
concepts, terminology, and design techniques, and 
discusses in detail a variety of experimental 
designs. 

Part V contains a good introduction to simulation 
as a tool for computer performance analysis. The 
author provides a checklist of common simula- 
tion mistakes and describes the Monte Carlo, trace- 
driven, and discrete-event simulation methods. 

Adding a discussion of process-oriented, as 
opposed to event-oriented, simularion methods 
would provide the reader with a more complete 
perspective of current simulation methods. 

This part next describes the analysis of simu- 
lation results. Included are model verification and 
validation techniques, accompanied by algorithms 
to aid the reader in the implementation. The book 
also contains in-depth coverage of random number 
generatars. Part V concludes with a brief discussion 
of current areas of research in simulation. Pointers 
to references for process- and object -oriented simu- 
lation methods would be a welcomed addition. 

Part VI introduces the basic concepts and nota- 
tion of queueing models, key tools for evaluating 
the performance of computer systems. Includcd is 
a clear, step-by-step analysis of single queues; a 
discussion of stochastic processes; an explanation 
of queuelngnetworks nnd related operational anal- 
ysis techniques; ancl a demonstration of the convo- 
lution algorithm. The author also introduces the 
reader to the practical technique of hierarchical 
decomposition of large queueing networks. Part vI 
concludes with a discussion on the limitations 
of queueing theory. To choose the appropriate 
modeling approach, analysts must be aware of 
these limitations. 

This is a truly landmark book which achieves the 
author's stated objectives. A strong point of the 
book isits equal treatment of modeling, simulntion, 
measurement, and cxl>crimental clcsign in thc con- 
text of computer systems. I believe that most of the 
chapters can be used as 45-minute lectures, as the 
author claims. Senior students in engineering and 
computer science will generally have the matlie- 
matical sophistication required to understand the 
material covered in this book. The Art of Cornp~fiter 
Systems Performance Analysis is indeed an ency- 
clopedia on the performance analysis of computer 
systems, and should be on the bookshelf of every 
computer professional. 

Robert Y. Al-Jaar, Ph.D., Principal Systems Engineer 
Porting and Performance Engineering <;roup 
Digital Equipment Corporation 
Marlborough, Massachusetts 01752-9122 
July 24, 1991 

Note: The book reviewed was written by an 
author who contributed a paper to this issue of 
the Journal. The editor included this review as 
one that might be of interest to our readers. The 
rcview expresses the opinions of the reviewer. 
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