
Availability in VAXcluster Systems
Network Performance and Adapters

Digital Technical Journal
Digital Equipment Corporation

Volume 3 Number 3

Summer 1991

Editorial
Jane C. Blake, Editor
Kathleen M. Stetson, Associate Editor
Leon Descoteaux, Associate Editor

circulation
Catherine M. Phillips, Administrator
Sherry L. Gonzalez

Productloll
Mildred R. Rosenzweig, Production Editor
Margaret Burdine, m g r a p h e r
Peter Woodbury, Illustrator

Samuel H. Fuller, Chairman
Richard W. Beane
Robert M. Glorioso
Richard J. Hollingsworth
John W. McCredie
Alaa G. Nemeth
Mahendm R. Patel
E Grant Saviers
Victor A. Vyssotsky
Gayn B. Winters

The Digital lhcbniurl Journal is published quarterly by Digital
Equipment Corporation, 146 Main Street ML013/B68, Maynard,
Massachusetts 017542571. Subscriptions to the Journal are
$40.00 for four issues and must be prepaid in U.S. funds.
University and college professors and Ph.D. students in the electri-
cal engineering and computer science fields receive complimen-
taty subscriptions upon request. Orders, inquiries, and address
changes sh6uld be k t to &e Digital ~ecbnfcal ~ o u r n a l at the
published-by address. Inquiries can also be sent electronicalty to
D'IJ@CRL.DEC.COM. Single copies and back issues are available
for $16.00 each from D i t a l Press of Digital Equipment
Corporation, 12 Crosby Drive, Bedford, MA 01730-1493.

Digital employees may send subscription orders on the ENET to
RDVAX::JOURNAC or by interoffice mail to mailstop ML01-3/B68.
Orders should include badge number, site location code, and
address. AU employees must advise of changes of address.

Comments on the content of any paper are welcomed and may
be sent to the editor at the published-by or network address.

Copyright O 1991 Digital Equipment Corporation. Copying
without fee is permitted ~mvided that such copies are made for
use in educational institukons by faculty memkrs and are not dis
tributed for cominercial advantage. Abstracting with credit
of Digital Equipment Corporation's authorship is permitted.
AU rights reserved.

The information in the Journal is subject to change without notice
and should not be cowtrued as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes
no responsibility for any errors that may appear in the Joutnal.

Documentation Number EYH89OE-DP

The following are trademarks of Digital Equipment Corporation:
Cover Design BI, CI, DEC, DECconcentrator, DECdtm, DEC FDDIconmller,

Our cover graphic represents the shadowing, or replication, of DECnet, DELNI, DSA, DSSI, Digital, the Digital logo, HSC, LAT,
Local Area VAXcluster, MSCP, RA, RdbNMS, TA, ULTRM, UNIBUS,

data on multiple physical disks in a Vflcluster environment. VAX, VAX DBMS, VAX MACRO, VAX RMS, VAX 6000, VAX 9000,
VMS host-based volume shadowingprovides the high data avail- VAXcluster, VMS, VMS Volume Shadowing.
ability required for applications such as transaction
processing and is the subject of one of the papers in this issue.

The cover was designed by Sandra Calef of Calef Associates.

Motorola and 68000 are registered trademarks of Motorola, Inc.

Book production was done by Digital's Database Publishing Group
in Northborn, MA.

I Contents

5 Foreword
Howard H. Hayakawa and George S. Hoff

Availability in VAXcluster Systems
Network Performance and Adapters

7 Design of VMS Volume Shadowing
Phase 11-Host-based Shadowing
Scott FI. Davis

16 Application Design in a VMcluster System
William E. Snaman, Jr.

27 New Availability Features of Local Area
VAXcluster Systems
Lee Leahy

36 Design of the DEC LANcontroller 400 Adapter
Richard E . Stockdale and Judy B . Weiss

48 The Architecture and Implementation
of a High-performance FDDI Adapter
Satish L . Rege

64 Performance Analysis of a High-speed
FDDI Adapter
Ramsesh S. Kalkunte

78 Performance Analysis of FDDI
Raj Jain

Editor's Introduction

Jane C. Blake
Editor

This issue of the Digital Technical Journal contains
a collection of papers on two general topics-
VAXcluster systems, and network adapters and per-
formance. The first set of three papers describes
new VMS VAXcluster developments and features;
the second set addresses the topics of LAN adapter
design and performance measurement techniques.
A common theme across these papers is the devel-
opment of technologies for interconnecting sys-
tems that offer high data availability without
sacrificing performance.

Ws Volume Shadowing, described by Scott Davis,
is a means of ensuring data availability and integrity
in ViMS VAXcluster systems. By maintaining multiple
copies of data on separate devices, the volume
shadowing technique protects data from being
lost as the result of media deterioration or device
failures. Scott discusses the advantages of the
new design over controller-based shadowing and
explains how this fully distributed software makes
a broad range of topologies suitable for shadowing.

The growth capabilities and availability of viMS
VAXcluster systems are characteristics well suited
to applications with high-availability requirements.
Sandy Snaman first presents an overview of the
VAXcluster system architecture, including explana-
tions of the layers, their purpose and function. He
then gives practical insights into how the system
implementation affects application design and
reviews the choices available to application design-
ers in the areas of client-server computing and data
sharing.

The availability of applications and cluster con-
figurations is also enhanced by developments in a
new release of the W S operating system. Lee Leahy
describes a VMS feature that enables fail-over
between multiple LAN adapters and compares this
approach to a single-adapter implementation. He
then discusses and gives examples of VMS features

for network delay detection and reduction, and fail-
ure analysis in local area VAXcluster systems.

The focus then moves from VMS-level concerns
to the design of network adapters and performance
measurement. The adapter described by Dick
Stockdale and Judy Weiss is the DEC LANcontroller
400, which connects systems based on Digital's
XMI bus to an Ethernet LAN. This particular design
improves on previous designs by transforming the
adapter from a dumb to an intelligent adapter
which can off-load the host. Consequently, the
adapter supports systems that utilize the full band-
width of Ethernet. The authors provide a system
overview, performance metrics, and a critical exam-
ination of firmware-based design.

Like the LANcontroIler 400, the FDDIcontroller 400
is an adapter that interfaces XMI-based systems to a
LAN. However, as Satish Rege relates, this adapter
was required to transmit data 30 times faster than
Ethernet adapters. Satish discusses the architec-
ture and the choices designers made to address the
problem of interfacing a parallel high-bandwidth
CPU bus (XMI) to a serial fiber-optic network bus
(FDDI). Their design choices included a three-stage
pipeline approach to buffering that enables these
stages to proceed in an asynchronous fashion.

To ensure that the performance goals for the
FDDIcontroller would be met, a simulation model
was created. In his paper, Ram Kalkunte details the
modeling methodology, reviews components, and
presents simulation results. Ram describes how in
addition to performance projections, the model
provided designers with buffer sufficiency analysis
and helped engineers analyze the fi~nctional cor-
rectness of the adapter design.

The high level of performance achieved by the
FDDIcontroller was driven by the high performance
of the FDDI LAN itself-100 megabits per second.
Raj Jain's subject is performance measurement at
the level of the FDDI LAN. Raj describes the perfor-
mance analysis of Digital's implementation of FDDI
and how various parameters affect system perfor-
mance. As part of his presentation of the modeling
and simulation methods used, he shares guidelines
for setting the value of one of the key parameters,
target token rotation time, to optimize performance.
Raj has recently published a book on computer sys
tems performance analysis, which is reviewed in
the Further Readings section of this issue.

Biographies I

Scott H. Davis Consultant software engineer Scott Davis is the VMS Cluster
Technical Director. He is involved in future VMS I/O subsystem, VAXcluster,
and storage strategies and led the W S Volume Shadowing Phase I1 and VMS

mixed-interconnect VAXcluster I/O projects. Since joining Digital in 1979, Scott
worked on RT-11 development and led various real-time operating systems pro-
jects. He holds a B.S. (1978, cum laude) in computer science and applied mathe-
matics from the State University of New York at Albany. Scott is a coinventor
for four patents on the shadowing design.

Raj Jain Raj Jain is a senior consulting engineer involved in the performance
modeling and analysis of computer systems and networks, including VAXcluster,
DECnet, Ethernet, and FDDI products. He holds a Ph.D. (1978) from Harvard
University and has taught courses in performance analysis at M.I.T. A member
of the Authors' Guild and senior member of IEEE, Raj has written over 25 papers
and is listed in Who's Who in the Computer Industv, 1989. He is the author
of The Art of Computer Systems Performance Analysis published recently
by Wiley.

Ram Kalkunte As a member of the VAX W S Systems and Servers Group,
senior engineer Ram Kalkunte worked on the development of the high-
performance XMI-to-FDDI adapter. Since joining Digital in 1987, he has also
worked on various performance analysis and modeling projects. Ram received a
B.E. (1984) in instrumentation engineering from Mysore University in India and
an M.S. (1987) in electrical engineering from Worcester Polytechnic Institute. He
has a pending patent related to dynamically arbitrating conflicts in a multipart
memory controller.

Lee Leahy Lee Leahy is a principal software engineer in the VAXcluster group
in AL.PHA/EVMS Development. He is currently the project leader of the Local Area
VAXcluster development effort and was responsible for the final design and
implementation of the multiple-adapter version of PEDRIVER. Lee joined Digital
in 1988 from ECAD. He is coauthor of the book VMS Advanced Device Driver
Techniques and has been writing W S device drivers since 1980. Lee received a
B.S. degree in electrical engineering from Lehigh University in 1977.

Biographies

Satish L. Rege Satish Rege joined Digital in 1977 as a member of the Mass
Storage Group. He wrote the first proposal for the MSCP protocol and evaluated
disk controller design alternatives (e.g., seek algorithms and disk caching)
for the HSC5O by implementing architectural and performance simulation. He
was instrumental in architecting the low-end controllers used in RF-series disks.
His latest project was the high-performance FDDI adapter. Satish is a consulting
engineer and received his Ph.D. from Carnegie-Mellon University, Pittsburgh.

: 1.'

William E. Snaman Principal software engineer Sandy Snaman joined Digital
in 1980. He is the technical supervisor for the VAxcluster executive services
area and a project leader for VAXcluster advanced development in the mqS

Development Group. His group is responsible for ongoing development of
the VMS lock manager, connection manager, and clusterwide services. Sandy
teaches computer science at Daniel Webster College and developed and taught
VkVcluster courses in Educational Services. He holds a B.S. (1985, magna cum
laude) and an M.S.C.S. from the University of Lowell.

Richard E. Stockdale As a member of the Midrange Systems Engineering
Group, Dick Stockdale was firmware project leader for the DEMNA project and
prior to that for the DEBNA and DEBNI Ethernet adapters. He is currcntly a soft-
ware consulting engineer working on LAN drivers in the VMS Development
Group. Dick joined Digital in 1978 and performed diagnostic testing for 36-bit
systems. He graduated from Worcester Polytechnic Institute in 1973 with a B.S.

(magna cum laude) in computer science and a minor in electrical engineering.
I , ' He is a member of Tau Beta Pi.

Judy B. Weiss Judy Weiss contributed to the design, implementation, debug,
and performance analysis of the DEMNA Ethernet adapter as a member of the
firmware team. She is a senior engineer working in the Data Center Systems
and Servers Group as a gate array designer. Concurrently with the DEMNA, she
worked on the firmware for the DEBNI adapter. Judy joined Digital in 1986 after
receiving her B.S. (magna cum laude) in compilter engineering from Boston
University. She is a member of Tau Beta Pi and the Society for Women Engineers.

I Foreword

Howard H. Hayakawa
fMnnagel; VIWS I/O
and Cluster Development

Beginning as a vision for a highly available and
expandable computing cnvironment, Digital's
\hXcluster system is tod;iy recognized across the
industry as the premiere foundation for creating
high-av:lilability applications. The large number of
Vj\Xclustcr sites and the range of their use testifies
to the wide appeal of the capabilities of VAXcluster
systrliis. Over 11,000 VAXcluster sites based on
Digitill's Computer Interconnect (CI) are being used
in such diverse applications as manufacturing oper-
ations, banking, and telephone information systems.
Sites based on the Iligital Storage System Inter-
connect (DSSI) ant1 Ethernet are even more numer-
ous. A scan of software licenses shows an amazing
acceptance of vA)<cluster technology-more than
200,000 VAXcluster licenses have been sold to date.

Built from stantlard processors anel a general-
purpose operating system, a VLYcluster system is a
loosely coupled, highly integrated configuration of
VAX VMS processors and storage systems tlrat oper-
ates as a single system. Significantly, VAXcluster sys-
tems are so well integrated that users are often not
aware they are using a distributed system. In addi-
tion to the benefits of tight integration, these con-
figurations provide Digital's customers with the
flexibility to easily expand and with the features
needed for high-availability applications.

Started in 1984, VAXcluster systems were limited
to specialized, proprieta~y interconnects and stor-
age servers, which restricted them to the confines
of a single compiltcr room. In 1989, the cluster
system was c.xtencletl to support both industry-
standard SCSl (small computer systems interface)
storagc ancl Digital's DSSI storage interconnect.
Today, \~AScluslcr systems support a wide range of
communication interconnects, including C1 and

DSSI, and industry-standard local area networks
such as Ethernet and FDDI. Storage systems now
supported cover the spectrum from standard,
economical SCSI peripherals to high-performance
RA-series drives for large configurations. This wcll-
arcliitected system has allowed for expansion
across an ever wider geography: from room to
building to multiple bi~ildings. Moreover, the entire
range of VN(processors-from VAXstation work-
stations to VkS' 9000 n~ainframes-are supportecl.
The tight integration, flexibilit): anel powcr of
today's VAXcluster systems is unp;trallelecl.

The V,iXcluster architecture which Digital initi-
ated in the 1980s continues to encompass new
advances and innovative technologics that ensure
data availability and integrity. This issue of the
Digital TecbnicalJournal presents several new VMS

VAXcluster products ancl features, and complernen-
tary developments in the areas of network adapters
and performance. One of the products described
is VMS Volume Shadowing Phase I1 which permits
users to place redundant data on separate storage
devices where most appropriate within the system,
thus dramatically increasing the availability poten-
tial of VXXcluster systems. A paper on multi-rail
local area \IAXclusters shows how customers are
now able to add parallel LAN connections to
increase network capacity and to survive failure of
a network connection. With shadowing and multi-
ple communication paths, recovery from site fail-
ure need no longer incur the clelays associated with
restoration from archives.

Just as the VAXcli~ster software was able to
exploit the Ethernet to extcnd cap;tbilities through-
out a building, it is now able to exploit the high per-
formance ant1 extent of an F l l l l l LAN.

Thc new industry-standard FDDI LAN allows the
Vi\)tclustcr software to extend the system's range
by ;l factor of 1,000. Papers on both an Ethernet
adapter and an FDIII adapter describe the care taken
to ensurc that adapter performance matches that
of the target processor, which is one of the keys
to achieving m;iximum performance in the overall
VAXclustcr systcm. Pcrform;ince of the FDDr LAN

itself is also one of the topics included here. FDDI's
performance and range permit for the first time
the ability to create integrated, high-availability
solutions that span multiple buildings. With com-
bined FDDI and VMS VAXcluster technology, a bank's
vmcluster system can extend from a computer
center in Manhattan to a standby center in New
Jersey. Should Manhattan lose power, a disaster
team can bring the bank's application into opera-
tion in New Jersey after only minutes. The days of
waiting for archives or driving tapes and disks
across the river are over.

Digital's VAX VMS, clusters, FDDI, and networking
products continue to evolve; the process of inte-
grating new technologies is ongoing. The papers
in this issue describe the latest steps we have taken
to extend the range and availability of VAXcluster
systems. Future issues of the Journal will kecp you
apprised of the latest stages in this evolutionary
process.

Scott H. Davis I

Design of VMS Volume
Shadowing Phase II-
Host-based Shadowing

VMS Volume Shadowing Phase 11 is a fully distributed, clusterwide data availability
product designed to replace the obsolete controller-based shadowing implementa-
tion. Phase 11 is intended to service current and future generations of storage archi-
tectures, In these architectures, there is no intelligent, nzultiunit controller that
fzinctions as a centralizedgateway to the multiple drives in the shadow set. The new
software makes many additional topologies suitable for shadowing, including DSSI
drives, DSA drives, and shadowing across VMS MSCP servers. This last configuration
allows shadow set members to be separated by any supported cluster interconnect,
including FDDI. All essential shadowing functions are performed within the VMS
operating system. New MSCP controllers and drives can optionally implement a set
of shadowing performance assists, which Digital intends to support in a future
release of the shadowing product.

Overview
Volume shadowing is a technique that provides data
availability to computer systems by protecting
against data loss from media deterioration, commu-
nication path failures, and controller or device fail-
ures. The process of volume shadowing entails
maintaining multiple copies of the same data on
two or more physical volumes. Up to three physical
devices are bound together by the volume shadow-
ing software and present a virtual device to the
system. This device is referred to as a shadow set or
a virtual unit. The volume shadowing software
replicates data across the physical devices. All shad-
owing mechanisms are hidden from the users of the
system, i.e., applications access the virtual unit as if
it were a standard, physical disk. Figure 1 shows a
VhlS Volume Shadowing Phase I1 set for a Digital
Storage Systems Interconnect (DSSI) configuration
of two VAX host computers.

Product Goals
The VMS host-based shadowing project was under-
taken because the original controller shadowing
product is architecturally incompatible with many
prospective storage devices and their connectiv-
ity requirements. Controller shadowing requires
an intelligent, common controller to access all

physical devices in a shadow set. Devices such as
the RF-series integrated storage elements (ISEs)
with DSSI adapters and the RZ-series small com-
puter systems interface (SCSI) disks present config-
urations that conflict with this method of access.

To support the range of configurations required
by our customers, the new product had to be capa-
ble of shadowing physical devices located any-
where within a VAXcluster system and of doing so
in a controller-independent fashion. The VAXcluster
VO system provides parallel access to storage
devices from all nodes in a cluster simultaneously.
In order to meet its performance goals, our shadow-
ing product had to preserve this semantic also.
Figure 2 shows clusterwide shadow sets for a hier-
archical storage controller (HSC) configuration
with multiple computer interconnect (CI) buses.
When compared to Figure 1, this figure shows
a larger cluster containing several clusterwide
shadow sets. Note that multiple nodes in the cluster
have direct, writable access to the disks comprising
the shadow sets.

In addition to providing highly available access to
shadow sets from anywhere in a cluster, the new
shadowing implementation had other require-
ments. Phase I1 had to deliver performance com-
parable to that of controller-based shadowing,

Digital Tecbre'calJimrnal Vol. 3 No. 3 Summer 1991 7

Availability in VAXcluster Systems

Figure 1 Phase IISbadow Set for a Llual-host DSSI Configuration

I I 1 I

ETHERNET

maximize application 1/0 availability, and ensure
data integr~ty for critical applications.

In designing the new product, we benefited from
customer feedback about the existing implemen-
tation. This feedback had a positive impact on
the design of the host-based shadowing imple-
mentation. Our goals to maximize application I/O
availab~lity during transient states, to provide ciis-
tomizable, event-driven design and fail-over, to
enablc all cluster nodes to manage the shadow sets,
and to enhance system disk capabilities were all
affcctcd by customer feedback.

WORKSTATION

DSA1:
DSA2:

Technical Challenges
To provide volume shadowing in a VAXcluster envi-
ronment running uncler the VMS operating system
required that we solve complex, distributed sys-
tems problems.' This section describes the most
significant technical challenges w e encountered
and the solutions we arrived at during the design
and development of the product.

MICROVAX II

DSAl
DSAP

Membershil:, (,'on.sisleizcj~ To ensure the level of
integrity required for high availability systems, the
shadowing dcsign must guarantee that a shadow set
has the same membership and states on all nodes in
the cluster. A simple way to guarantee this property
would have been a strict client-server implementa-
tion, where one VAX computer serves the shadow

set to the remainder of the cluster. This approach,
however, would have violated several design goals;
the intermediate hop required by data transfers
would decrease system performance, and any pail-
ure of the serving CPU would require a lengthy
fail-over and rebuild operation, thus negatively
impacting system availability.

To solve the problem of membership consistency,
we used the VMS distributed lock manager through
a new executive threatl-level interface.'.' We
designed a set of event-driven protocols that shad-
owing uses to gilarantee membership consistency.
These protocols allowed us to make the shadow
set virtual unit a local device o n all nodes in the
cluster. Membership and state information about
the shadow set is stored on all physical members in
an on-disk data structure called the storage control
block (scu). One way that shadowing uses this SCB
information is to automatically determine the most
up-to-date shadow set member(s) when the set is
created. In addition to distributed synchronization
primitives, the VMS lock manager provides a capabil-
ity for managing a distributed state variable called a
lock value block. Shadowing uses the lock value
block to define a disk that is guaranteed to be a cnr-
rent mcmher of the shadow set. Whenever a mem-
bership change is made, all nodes take part in a
protocol of lock operations; the value block and the
on-disk sCB are the final arbiters of set constituency.

WORKSTATION

DSA1:
DSAP:

W)1. 3 1Vo. .3 Sit~rz~?zer 11)31 Digital TechnicalJournal

MICROVAX 2000

DSA1:
DSAP:

Design of VMS Volume Shadowing Phase 11-Host-based Shadowing

Sequential Cornman& A sequential I/O com-
mand, i.e., a Mass Storage Control Protocol (MSCP)
conccpt, forces all commands in progress to com-
plete before the sequential command begins execu-
tion. While a sequential command is pending,
all new I/O requests are stalled until that sequen-
tial command completes execution. Shadowing
requires the capability to execute a clusterwide,
sequential command during certain operations.
This capability, although a simple design goal for a
client-servcr implementation, is a complex one for
a distributed access model. We chose an event-
driven, request/response protocol to create the
sequential command capability.

Since sequential commands have a negative
impact on performance, we limited the use of these
commands to performing membership changes,
mount/dismount operations, and bad block and
merge difference repairs. Steady state processing
never requires using sequential commands.

Full Copy A full copy is the means by which a
new member of the shadow set is made current

with the rest of the set. 'The challenge is to make
copy operations unintrusive; application I/Os must
proceed with minimal impact so that the level of
service provided by the system is both acceptable
and predictable. VMS file I/O provides record-level
sharing through the application transparent lock-
ing provided by the VAX RMS software, Digital's
record management services. Shadowing operates
at the physical device level to handle a variety of
low-level errors. Because shadowing has no knowl-
edge of the higher-layer record locking, a copy
operation must guarantee that the application I/Os
and the copy operation itself generate the correct
results and do so with minimal impact on applica-
tion 1/0 performance.

Merge Operations Merge operations are triggered
when a CPU with write access to a shadow set fails.
mo te that with controller shadowing, merge oper-
ations are copy operations that are triggered when
an HSC fails.) Devices may still be valid members of
the shadow set but may no longer be identical, due
to outstanding writes in progress when the host

9000-2 10
DSAI:
DSA2:
DSA3:
DSA4:
DSAS:
DSA6: r

HSC70

VIRTUAL
UNlT

STAR COUPLER DSAI :

@

HSC70

VIRTUAL

DSA2:

Figure 2 Clusterwide Shadow Sets for an HSC Configuration with Multiple CZ Buses

Digital Terbtrirril Journal Vo1. .? No. Summer 1791

I I I VAX 6000
DSAI :
DSA2:

CI

DSA3:
DSA4:
DSA5:
DSA6:

V AX
6000-360
DSAI
DSA2:
DSA3:
DSA4:
DSA5:
DSA6:

KDM70

VIRTUAL
UNIT
DSA6:

CI

I HSC70

CI

VIRTUAL
UNIT
DSA3:

VIRTUAL
UNIT
DSA4:

VIRTUAL

Availability in VAXcluster Systems

CPU failed. The merge operation must detect and
correct thesc differences, so that successive appli-
cation reads for the same data produce consistent
results. As for full copy operations, the challenge
with merge processing is to generate consistent
results with minimal impact on application VO
performance.

Booting and Crashing System disk shadowing
presents some special problems because the
shadow set rnust be accessible to CPUs in the cluster
when locl<ing protocols and inter-CPU communica-
tion are disabled. In addition, crashing must ensure
appropriate behavior for writing crash dumps
through the primitive bootstrap driver, including
how to propagate the dump to the shadow set. It
was not practical to mod@ the bootstrap drivers
because they are stored in read-only memory (ROM)
on various CPU platforms that shadowing would
support.

Error Processing One major function of volume
shadowing is to perform appropriate error process
ing for members of the shadow set, while maximiz-
ing data availability. To carry out this function, the
software must prevent deadlocks between nodes
and decide when to remove devices from the
shadow set. We adopted a simple recovery ethic: a
node that detects an error is responsible for fixing
that error. Membership changes are serialized in the
cluster, and a node only makes a membership
change if the change is accompanied by improved
access to the shadow set. A node never makes a
change in membership without having access to
some source members of the set.

Architecture
Phase 11 shadowing provides a local virtual unit on
each node in the cluster with distributed control of
that unit. Although the virtual unit 1s not served to
the cluster, the underlying physical units that consti-
tute a shadow set are served to the cluster using the
standard VMS mechanisms. This scheme has many
data availability advantages. The Phase I1 design

Allows shadowing to use all the VMS controller
fail-over mechanisms for physical devices. As a
result, member fail-over approaches hardware
speeds. Controller shadowing does not provide
this capability.

Allows each node in the cluster to perform error
recovery based on access to physical data

source members. The shadowing software treats
communication failures between any cluster
node and shadow set members as normi11 shad-
owing events with customer-definable recovery
metrics.

Major Components
VMS Volume Shadowing Phase II consists of two
major components: SHDRIVER and SHADOW-SERVER.
SHDRIVER is the shadowing virtual unit driver. As a
client of disk class drivers, SHDRIVER is responsible
for handling all I/O operations that are directed to
the virtual unit. SHDRIVER issues physical VO opera-
tions to the disk class driver to satisfy the shadow set
virtual unit I/O requests. SHDRIVER is also responsi-
ble for performing all distributed locking and for
driving error recovery.

SHADOW-SERVER is a VMS ancillary control pro-
cess (ACP) responsible for driving copy and merge
operations performed on the local node. Only one
optimal node is responsible for driving a copy or
merge operation on a given shadow set, but when a
failure occurs the operation will fail over and
resume on another CPU. Several factors determine
this optimal node including the types of access
paths, and controllers for the members and user-
settable, per-node copy quotas.

Primitives
This section describes the locking protocols and
error recovery processing functions that are used
by the shadowing software. These primitives pro-
vide basic synchronization and recovery mecha-
nisms for shadow sets in a VAXcluSter system.

Locking Protocols The shadowing software uses
event-driven locking protocols to coordinate clus-
terwide activity. These request/response protocols
provide maximum application I/O performance.
A VMS executive interface to the distributed lock
manager allows shadowing to make efficient use of
locking directly from SHDRIVER.

One example of this use of locking protocols in
VMS Volume Shadowing Phase I1 is the sequential
command protocol. As mentioned in the Technical
Challenges section, shadowing requires the sequen-
tial command capability but minimizes the use of
this primitive. Phase 11 implements the capability by
using several locks, as described in the following
series of events.

A node that needs to execute a sequential com-
mand first stalls I/O locally and flushes operations

10 Vol. 3 No. 3 Sztmmc~ 1991 Digital Technical Journal

Design of VMS Volume Shadowing Phase II-Host-based Shadowing

in progress. The node then performs lock opera-
tions that ensure serialization and sends sequential
stall requests to other nodes that have the shadow
set mounted. This initiating thread waits until all
other nodes in the cluster have flushed their I/Os
and responded to the node requesting the sequen-
tial operation. Once all nodes have responded or
left the cluster, the operations that compose the
sequential command execute. When this process is
complete, the locks are released, allowing asyn-
chronous threads on the other nodes to proceed
and automatically resume r/O operations. The local
node resumes I/O as well.

Error Recovery Processing Error recovery pro-
cessing is triggered by either asynchronoirs notifica-
tion of a communication failure or a failing I/O
operation directed towards a physical member of
the shadow set. Two major fiinctions of error recov-
ery are built into the virtual unit driver: active and
passive volume processing.

Active volume processing is triggered directly by
events that occur on a local node in the cluster.
This type of volume processing uses a simple, local-
ized ethic for error recovery from communication
or controller failures. Shadow set membership
decisions are made locally, based on accessibility.
If no members of a shadow set are currently acces-
sible from a node, then the membership does not
change. If some but not all members of the set are
accessible, the local node, after attempting fail-
over, removes some members to allow application
I/O to proceed. The system manager sets the time
period during which members may attempt fail-
over. The actual removal operation is a sequential
command. The design allows for maximum flexibil-
ity and quick error recovery and implicitly avoids
deadlock scenarios.

Passive volume processing responds to events
that occur elsewhere in the cluster; messages from
nodes other than the local one trigger the process
ing by means of the shadowing distributed locking
protocols. This volume processing function is
responsible for verrfying the shadow set member-
ship and state on the local node and for m o d ~ i n g
this membership to reflect any changes made to the
set by the cluster. To accomplish these operations,
the shadowing software first reads the lock value
block to find a disk guaranteed to still be in the
shadow set. Then the recovery process retrieves
the physical member's on-disk SCB data and uses
this information to perform the relevant data struc-
ture updates on the local node.

Application I/O requests to the virtual unit are
always stalled during volume processing. In the
case of active volume processing, the stalling is nec-
essary because many I/Os would fail until the error
was corrected. In passive volume processing, the
I/O requests are stalled because the membership of
the set is in doubt, and correct processing of the
request cannot be performed until the situation is
corrected.

Steady State Processing
The shadowing virtual unit driver receives applica-
tion read and write requests and must direct the 110
appropriately. This section describes these steady
state operations.

Read Algorithms
The shadowing virtual unit driver receives applica-
tion read requests and directs a physical I/O to an
appropriate member of the set. SHDRTVER attempts
to direct the 1/0 to the optimum device based on
locally available data. This decision is based on
(1) the access path, i.e., local or served by the VMS
operating system, (2) the service queue lengths at
the candidate controller, and (3) a round-robin algo-
rithm among equal paths. Figure 3 shows a shadow
set read operation. A n application read to the
shadow set causes a single physical read to be sent
to an optimal member of the set. In Figure 3, there
is one local and one remote member, so the read is
sent to the local member.

Data repair operations caused by media defects
are triggered by a read operation failing with an
appropriate error, such as forced error or parity.
The shadowing driver attempts this repair using

I CLUSTER INTERCONNECT I

Figzire 3 Shadow Set Read Operation

Digital Technical Journal Vo1. 3 No. 3 Surntnc,r 1991

AvaUabflIty in VAXcluster Systems

another member of the shadow set. This repair
operation is performed with the synchronization of
a sequential command. Sequential protection is
requked because a read operation is being con-
verted into a write operation without explicit, RMS-
layer synchronization.

Write Algorithms
The shadowing virtual unit driver receives applica-
tion write requests and then issues, in parallel,
write requests to the physical members of the set.
The virtual unit write operation does not complete
until ;ill physical writes complete. A shadow set
write operation is shown in Figure 4. Physical write
operations to membcr iutits can fail or be timed
out; either condition triggers the shadowing error
recovery logic and can cause a fail-over or the
removal of the erring device from the shadow set.

Transient State Processing
Shadowing performs a variety of operations in
order to maintain consistency among the members
of the set. These operations include full copy,
merge, and data repair and recovery. This section
describes these transient state operations.

Full Copy
Full copy operations are performed under direct
system manager control. When a disk is added to
the shadow set, copy operations take place to make
the contents of this new set member identical to
that of the other members. Copy operations are
transparent to application processing. ?'he new
membcr of the shadow set does not provide any data
avai1;lbility protection until the copy complctes.

There is no explicit gatekeeping during the copy
operation. Thus, application read and writc opcra-
tions occur in parallel with copy thrcad reitds i~nd
writes. As shown in Figure 5, correct results arc
accomplished by the following algorithm. During
the fill1 copy, the shadowing driver processes appli-
cation write operations in two groups: first, those
directed to all source members and seconcl, writes
to all fill1 copy targets. The copy thread performs a
sequence of read source, compare target, and write
target operations on each logical block number
(LBN) range until the compare operation succeeds.
If an mN range has such frequent activity that the
compare fails many times, SHDKNER performs a
synchronized update. A distributed fence provides
a clusterwide boundary between the copied and
the uncopicd areas of the new member. This fence
is used to avoid performing the special fill1 copy
mechanisms on application writes to that area of
the disk already processed by the copy thread.

This algorithm meets the goal of operational cor-
rectness (both the application and the copy thread
achieve the proper results with regard to the con-
tents of the shadow set members) and requires no
synchronization with the copy thread. Thus, the
algorithm achieves maximum application I/O avail-
ability during the transient state. Crucial to achiev-
ing this goal is the fact that, by design, the copy
thrcad does not perform I/O optimization tech-
niques such as double buffering. The copy opera-
tions receive equal service as application I/Os.

Merge Operations
The VMS Volume Shadowing Phase I1 merge algo-
rithm meets the product goals of operational

APPLICATION

VIRTUAL

WRITE

I I SHADOWSET I
I

SHADOWING LAYER *[7 1 - 1 - * ~
I I I

Figure 4 Shadmu Set Write Operation

12 Val. .l No. .? .Summer I991 Digital Technical Journal

Design of VMS Volume Shadowing Phase II-Host-based Shadozuing

APPLICATION 110s

COPY 110s
(FOR AN LEN RANGE) TARGET

WRITE
TARGET

Note: No synchronization exlsts between the application and copy operations.
110s can occur in parallel on d~fferent nodes In the cluster. Regardless of how the
operations overlap, the correct data is copied to the target.

Figure 5 Full Copy Algorithm

correctness, while maintaining high application I/O
availability and minimal synchronization. A merge
operation is required when a CPU crashes with
the shadow set mounted for write operations. A
merge is needed to correct for the possibility of par-
tially completed writes that may have been out-
standing to the physical set members when the
failure occurred. The merge operation ensures that
all members contain identical data, and thus the
shadow set virtual unit behaves like a single, highly
available disk. It does not matter which data is more
recent, only that the members are the same. This
satisfies the purpose of shadowing, which is to pro-
vide data availability. But since the failure occurred
while a write operation was in progress, this con-
sistent shadow set can contain either old or new
data. To make sure that the shadow set contains the
most recent data, a data integrity technique such as
journaling must be employed.

In Phase I t shadowing, merge processing is dis-
tinctly different from copy processing. The shadow
set provides fill1 availability protection during the
merge. As a result, merge processing is intention-
ally designed to be a background activity and to
maximize application I/O throughput while the
merge is progressing. The merge thread carefully
monitors I/O rates and inserts a delay between its
I/Os if it detects contention for shared system
resources, such as adapters and interconnects.

In addition to maximizing I/O availability, the
merge algorithm is designed to minimize synchro-
nization with application I/Os and to identify and
correct data inconsistencics. Synchronization takes
place only when a rare difference is found. When

an application read operation is issued to a shadow
set in the merge state, the set executes the read
with merge semantics. Thus, a read to a source and
a parallel compare with the other members of the
set are performed. Usually the compare matches
and the operation is complete. If a mismatch is
detected, a secluential repair operation begins. The
merge thread scans the entire disk in the same
manner as the read, looking for differences. A dis-
tributed fence is used to avoid performing merge
mechanisms for application reads to that area of
the disk already processed by the merge thread.
Figure 6 illustrates the merge algorithm.

Note that controller shadowing performs an
operation called a merge copy. Although this HsC
merge copy operation is designed for the same pur-
pose as the Phase I1 operation, the approaches dif-
fer greatly. An HSC merge copy is triggered when
an HSC, not a shadow set, fails and performs a copy
operation; the HSC merge copy does not detect
differences.

Performance Assists
A future version of the shadowing product is
intended to utilize controller performance assists
to improve copy and merge operations. These
assists will be used automatically, if supported by
the controllers involved in accessing the physical
members of a shadow set.

COPY-DATA is the ability of a host to control a
direct disk-to-disk transfer without the data enter-
ing or leaving the host CPU I/O adapters and mem-
ory This capability will be used by full copy
processing to decrease the system impact, the

Digitnl Technical Jozrrnal 1/01 3 No. .i Summer 1991 13

Availability in VAXcluster Systems

APPLICATION 110s
SOURCE

WlTH OTHER

SYNCHRONIZE
AND REPAIR

MERGE 110s
(FOR AN LEN RANGE)

WlTH OTHER

Note: Infrequent synchronization exists between the application and merge operations.
110s can occur in parallel on different nodes in the cluster. Regardless of how the operations
overlap, data integrity is prese~ed.

Figure 6 Merge Algorithm

bandwidth, and the time required for a fill1 copy.
The members of the set and/or their controllers
must share a common interconnect in order to
use this capability. The COPY-DATA operation per-
forms specific shadowing around the active, copy
LBN range to ensure correctness. This opcration
involves LBN range-based gatekeeping in the copy
target device controller.

Controller write logging is a future capability in
controllers, such as HSCs, that will allow more effi-
cient merge processing. Shadowing write opcra-
tion messages will include information for the
controller to log UOs in its memory. These logs will
then be used by the remaining host Cl'Us during
merge processing to determine exactly which
blocks contain outstanding write operations from a
failed CPU. With such a performance assist, merge
operations will take less time and will have less
impact on the system.

Data Repair and Recovery
As discussed in the Primitives section, data repair
operations are triggered by failing reads and are
repaired as sequential commands. Digital Storage
Architecture (DSA) devices support two primitive
capabilities that are key to this repair mechanism.
When a DSA controller detects a media error, the
block in question is sometimes repaired automati-

cally, thus requiring no shadowing intervention.
When the controller cannot repair the data, a spare
block is revectored to this LBN, and the contents of
the block are rnarkecl with a forced error. This
causes subsequent read operations to fail, since the
contents of the block are lost.

The forced error returned on a read operation is
the signal to the shadowing software to execute a
repair opcration. SHDRNER attempts to read usable
data from another source device. If such data is
available, the software writes the data to the revec-
tored block and then returns the data to the applica-
tion. If no usable data source is available, the
software performs write operations with a forced
error to all set members and signals the application
that this error condition has occurred. Note that a
protected system buffer is used for this operation
because the application reading the data may not
have write access.

A future shatlowing product is intended to s u p
port SCSI peripherals, which do not have the DSA
primitives outlined above. There is no forced error
indicator in the SCSI architecture, and the revector
operation is nonatomic. To perform shadowing
data repair on such devices, we will use the READL/
WRITEL capability optionally supported by SCSI
devices. These I/O functions allow blocks to be
read and written with error correction code (ECC)

14 Vo1. 3 No. 3 S~rmtner I991 Digital Tecbnical Journal

Design of VMS Volume Shadowing Phase N-Host-based Shadozuing

data. Shadowing emulates forced error by writing
data with an intentionally incorrect ECC. To circum-
vent the lack of atomicity on the revector opera-
tion, a device being repaired is temporarily marked
as a full copy target until the conclusion of the
repair operation. If the CPU fails in the middle of a
repair operation, the repair target is now a full copy
target, which preserves correctness in the pres-
ence of these nonatomic operations.

System Disk
System disk shadow sets presented some unique
design problems. The system disk must be accessed
through a single bootstrap driver and hence, a sin-
gle controller type. This access takes place when
multihost synchronization is not possible. These
two access modes occur during system bootstrap
and during a crash dump write.

Shadowed Booting
The system disk must be accessed by the system ini-
tialization code executing on the booting node
prior to any host-to-host communication. Since the
boot drivers on many processors reside in ROM, it
was impractical to make boot driver modifications
to support system disk processing. To solve this
problem, the system disk operations performed
prior to the controller initialization routine of the
system device driver are read-only. It is safe to read
data from a clusterwide, shared device without syn-
chronization when there is little or no risk of the
data being modified by another node in the cluster.
At controller initialization time, shadowing builds a
read-only shadow set that contains only the boot
member. Once locking is enabled, shadowing per-
forms a variety of checks on the system disk
shadow set to determine whether or not the boot is
valid. If the boot is valid, shadowing turns the sin-
gle-member, read-only set into a multimember,
writable set with preserved copy states. If this node
is joining an existing cluster, the system disk shadow
set uses the same set as the rest of the cluster.

Crash Dumps
The primitive boot driver uses the system disk to
write crash dumps when a system failure occurs.
This driver only knows how to access a single physi-
cal disk in the shadow set. But since a failing
node automatically triggers a merge operation on
shadow sets mounted for write, we can use the
merge thread to process the dump file. The merge

occurs either when the node leaves the cluster
(if there are other nodes present) or later, when the
set is reformed. As the source for merge difference
repairs, the merge process attempts to use the
member to which the dump file was written and
propagates the dump file to the remainder of the
set. The mechanism here for dump file propagation
is best-effort, not guaranteed; but since writing the
dump is always best-effort, this solution is consid-
ered acceptable.

Conclusion
VMS Volume Shadowing Phase 11 is a state-of-the-art
implementation of distributed data availability. The
project team arrived at innovative solutions to
problems attributable to a set of complex, conflict-
ing goals. Digital has applied for four patents on var-
ious aspects of this technology.

Ack;nowledgments
I would like to acknowledge the efforts and con-
tributions of the other members of the VMS shad-
owing engineering team: Renee Culver, William
Goleman, and Wai Yim. In addition, I would also
like to acknowledge Sandy Snaman for Fork Thread
Locking, Ravindran Jagannathan for performance
analysis, and David Thiel for general consulting.

References
1. N. Kronenberg, H. Levy, W Strecker, and

R. Merewood, "The VAxcluster Concept:
An Overview of a Distributed System," Digital
TechnicnlJozirnnl (September 1987): 7-21.

2. W Snaman, Jr. and D. Thiel, "The VAXNMS
Distributed Lock Manager," Digital Technical
Journal (September 1987): 29-44.

3. W Snaman, Jr., "Application Design in a
Vacluster System:' Digital Technical Journal,
vol3. no. 3 (Summer 1991, this issue): 16-26.

Digital Technical Jozrrnal 1/01. 3 No. 3 S~imnzer 1991 15

William E. Snaman, J1: I

Application Design in a VXcluster System

VAXclzlster syste~?zsprouide apexible zuay to config~~re ci co~nputing system that can
suruiue the fuil~rr-e of a1g1 conzpoizeill. In addition, these systems can grow with an
organization and can be serviced ujithout disruption to applications. These
fectlures make v~xclzister systems an ideal base for developing high-availability
applications s~ich as transactio?~ processing systems, seruers for network client-
setver afiplications, and data sharing applications. Understanding the basic design
of l2XcIzuter slatenu clnd the possible configuration options can help application
desi~ncrs take adr1cinlage of the ai~ailability and growth characteristics of these
system.

Many organizations clepend on near constant
access to data and computing resources: intcrrup-
tion of these services results in the intcrruption of
primary business functions. In addition, growing
organizations face the need to increase the amount
of computing power available to them over an
extended period of time. VAXcluster systems pro-
vide solutions to these data availability and growth
problems that modem organizations face.'

This paper begins with an overview of VAXchSter
systems and application design in such systems and
proceeds with a detailed discussion of VAXcluster
design and implementation. The paper then focuses
on how this information affects the design of appli-
cations that take advantage of the availability and
growth characteristics of a VAXcluster system.

Oueroiew of VAXckrster Systems
VkYcluster systems are loosely coupleci rnulti-
processor configurations that allow the system
designer to coniigure redundant harclw;~rc that can
survive most types of equipment failurch. These
systems provide a way to add new processors and
storage resources as required by the organization.
This feature eliminates the need either to buy
nonessential equipment initially or to experience
painful upgrades and application conversions as
the systems are outgrown.

The VMs operating system, which runs on each
processor node in a VAXchster system, provides a
high level of transparent data sharing and indepen-
dent failure characteristics. The processors interact
to form a cooperating distributed operating
system. In this system, all disks and their stored files
are accessible from any processor as if those files

were connectetl to a single processor. Files can be
shared transparently at the record level by applica-
tion software.

To provide the features of a VAXcluster system,
the VMS operating sjrstenl was enhanced to facili-
tate this data sharing and the dynamic adjustment
to changes in the underlying hardware configu-
ration. These enhancements make it possible to
dynamically add multiple processors, storage con-
trollers, disks, and tapes to a Vkvcluster system con-
figuration. Thus, an organization can pi~rchase a
small system initially and expand as needed. The
adclition of computing ancl storage resources to the
existing configuration requires no software rnodifi-
cations or application conversions and can be
accomplished without shutting down the system.
The ability to use redundant devices virtually elimi-
lutes single points of failure.

Application Design in a VRXcluster
Environment
Application design in a VAXcluster environment
involves making some basic choices. These choices
concern the type of application to be designed and
the method used to synchronize the events that
occur during the execution of the application. The
designer must also consicler application communi-
cation within a VAXclllster system. A discussion of
these issues follows.

General Choices for Application Design
This section briefly describes the general choices
available to application designers in the areas of
client-server computing and data access.

Vi,l .i No. J Su~rr~~zer 1991 Digital Technical Jourrral

Application Design in a VXXcluster System

Client-server Compziting The VAXcluster environ-
ment provides a fine base for client-server comput-
ing. Application designers can construct server
applications that run on each node and accept
requests from clients running on nodes in the
v'cluster system or elsewhere in a wider network.

If the node running a server application fails, the
clients of that server can switch to another server
running on a surviving node. The new server can
access the same data on disk or tape that was being
accessed by the server that failed. In addition, the
redundancy offered by the VMS Volume Shadowing
Phase I1 software eliminates data unavailability in
the event of a disk controller or media f a i l ~ r e . ~ The
system is thus very available from the perspective
of the client applications.

Access to Storage Devices Many application design
questions involve how to best access the data stored
on disk. One major advantage of the VAXcluster
system design is that disk storage devices can be
accessed from all nodes in an identical manner. The
application designer can choose whether the
access is simultaneous from multiple nodes or from
one node at a time. Consequently, applications can
be designed using either partitioned data access or
shared data access.

Using a partitioned data model, the application
designer can construct an application that limits
data access to a single node or subset of the nodes.
The application runs as a server on a single node
and accepts requests from other nodes in the clus-
ter and in the network. And because the appli-
cation runs on a single node, there is no need
to synchronize data access with other nodes. Elimi-
nating this source of communication latencies can
improve performance in many applications. Also, if
synchronization is not required, the designer can
make the best use of local buffer caches and can
aggregate larger amounts of data for write opera-
tions, thus minimizing I/O activity

An application that uses partitioned data access
lends itself to many types of high-performance
database and transaction processing environments.
VAXcluster systems provide such an application
with the advantage of having a storage medium
that is available to all nodes even when they are
not actively accessing the data files. Thus, if the
server node fails, another server running on a sur-
viving node can assume the work and be able to
access the same files. For this type of application
design, VkYcluster systems offer the performance

advantages of a partitioned data model without the
problems associated with the failure of a single
server.

Using a shared data model, the application
designer can create an application that runs simul-
taneously on multiple vucluster nodes, which nat-
urally share data in a file. This type of application
can prevent the bottlenecks associated with a sin-
gle server and take advantage of opportunities for
parallelism on multiple processors. The VAX &\IS
software can transparently share files between mul-
tiple nodes in a V'cluster system. Also, Digital's
database products, such as Rdb/VMs and VAX DBMS
software, provide the same data-sharing capabili-
ties. Servers running on multiple nodes of a
VAXcluster system can accept requests from clients
in the network and access the same files or
databases. Because there are multiple servers, the
application continues to function in the event that
a single server node fails.

Application Synchronization Methoak
The application designer must also consider how to
synchronize events that take place on multiple
nodes of a VAXcluster system. Two main methods
can be used to accomplish this: the vMS lock man-
ager and the DECdtm services that provide VMS

transaction processing support.

VMS Lock Manager The VMS lock manager pro-
vides services that are flexible enough to be used
by cooperating processes for mutual exclusion,
synchronization, and event n0tification.j An appli-
cation uses these services either directly or indi-
rectly through components of the system such as
the VAX RMS software.

DECdtln Services The VMS operating system pro-
vides a set of services to facilitate transaction
processing.' These DECdtm services enable the
application designer to implement atomic trans-
actions either directly or indirectly. The services
use a two-phase commit protocol. A transaction
may span multiple nodes of a cluster or network.
The support provided allows multiple resource
managers, such as the VAX DBMS, Rdb/VMS, and V '

RMS software products, to be combined in a single
transaction. The DECdtm transaction processing
services take advantage of the guarantees against
partitioning, the distributed lock manager, and the
data availability features, all provided by VAXcluster
systems.

Digital Techtzicnl Journal Vo1. 3 No. .? S~onrner 1991

Availability in VAXcluster Systems

TrAXclustet- mzd Networkwide
(;i,mrnu?zication Serr~ices
i-Ipplication communication between different pro-
cessors in ;I VIU;cl~~ster system is gener;tlly accom-
plished using D1:Cnet task-to-task communication
services or other networking software such as the
transmission control protocol (TCP) and the inter-
net protocol (IP). Client-server applications or
peer-to-peer ;cpplications are easy to develop with
these serviccs. The services allow processes to
locate or st;lrt remote servers and then to exchange
messages.

Since the indiviclu;~l nodes of a \'rtYcluster system
exist as separate entities in a wider communication
network, applications communication inside a
V..cluster system can rely on general network
interfaces. Thus, no special-purpose communica-
tion services n7crc developed. Applications are
simpler to design when they can communicate
within the cluster in the same manner in which
they communicate with nodes located outsicle the
VAXcluster system.

A DE(:net feature known as cluster alias provides
a collective name for the nocles in a \ir\Scluster
system. Application softn~tre can connect to a node
in the cluster using the cluster alias name rather
than a specific node name. This feature frees the
application from keeping track of individual nodes
in the Vucluster system and results in design sim-
plZication and configuration flexibility.

VAXcluster Design and Implementation
Details
To unclerstand how the design and imp1ement;ction
of a Vk\tcluster system affects application design,
one must be familiar with the basic architecture of
such a system, as shown in Figure 1. This section
describes the I:tjrers, which range from the commu-
nication mechanisms to the users of the system.

Port Layer
The port layer consists of the lowest levels of the
architecture, including a choice of communication
ports and physical paths (buses). The VAXcluster
software recl~~ircs at least one logical communica-
tion pathway between each pair of processor nodes
in the VAXcluster system. Several of the ports utilize
multiple physical communic;~tion paths, which
appear as a single logical path to the Viotcluster
software. This redundancy provides bettcr commu-
nication throughput and higher availability. If mul-
tiple logical paths exist between a pair of nodes, the

VAScluster software generally selects one for active
uhe and relies on the remaining paths for backup in
thc event of fitilure.

The port layer can contain any of the following
interconnects:

Computcr Interconnect (CI) bus

Ethernet

Fiber distributed data interface (FDDI)

Digital Storage Systems Interconnect (DSSI) bus

Each bus is accessed by a port (also callecl an
adapter) that connects to the processor node. For
example the cI bus is accessed by way of a CI port.
The various buses provide a wide spectrum of
choices in terms of wire and adapter capacity, num-
ber of nodes that can be attached, distance
between nodes, and cost.'

The CI bus was designed for access to storage and
for reliable host-to-host communications. Each CI

port connects to two redundant, high-speed physi-
cal paths. The CI port dynamically selects one of the
two paths for each transmitted message. Messages
are received on either path. Thus, two nodes can
communicate on one path at the same time that
two other nodes communicate on the other. If one
physical path fails, the port simply uses the remain-
ing path. The existence of the two physical paths is
hiddcn from the software that uses the CI port ser-
vices. From the standpoint of the cluster software,
each port represents a single logical path to a
remote node. Multiple CI ports can be used to pro-
vide multiple logical paths between pairs of nodes.
An automatic load-sharing feature distributes the
load between pairs of ports.

The DSsI bus was primarily designed for access to
disk and tape storage. However, the bus has proven
an excellent way to connect small numbers of pro-
cessors using the Vkucluster protocols. Each DSSI
port connects to a single high-speed physical path.
As in the case of the CI bus, several DSSI ports may
be connected to a node to provide redundant
paths. (Note that the KFQSA DSSI port is for storage
access only and provides no general communica-
tion service between nodes.)

Ethernet and FDDI are open local area networks,
generally shared by a wide variety of consumers.
Consequently, the VAXcluster software was designed
to use the Ethernet and FDDI ports and buses simul-
taneously with the DECnet or TCP/IP protocols. This
is accomplished by allowing the Ethernet data
link software to control the hardware port. This

Vo1. ,j i\b 3 S~im~rzer 1991 Digital Technical Journal

Application Design in a VMclzister System

software provides a multiplexing fiinction such when multiple ports are used. The port driver soft-
that the cluster protocols are simply another user of ware combines the multiple Ethernet and FDDI
a shared hardware resource. paths into a single logical path between any pair of

Each Ethernet and FDDI port connects to a single nodes. The load is automatically distributed among
physical path. There may be more than one port on the various possible physical paths by an algorithm
each processor node. This means that there may be that chooses the best path in terms of adapter
many separate paths between any pair of nodes capacity and path l a t en~y .~

APPLICATION v
RECORD
MANAGEMENT
SERVICES

SYSTEM

I CLUSTERWIDE
SERVICES I DECNET ~

CONNECTION
MANAGER

I I SYSTEMS COMMUNICATION SERVICES I

DSSI DISKS a
AND TAPES

I
I

PORT
EMULATOR

I
!

ETHERNET I

SOFTWARE

HARDWARE

I I
FDDI

Figure I VAXcluster System Architectztre

FDDl
DRIVER
FDDl
PORT

Digital Technical Jozrrnal Vo1.3 No. 3 Sz~mnzer I991 19

PROCESSOR
LOCAL
DISKS

ETHERNET
DRIVER
ETHERNET
PORT

DSSl BUS

PORT
DRIVER
LOCAL DISK
ADAPTER

Cl PORT
DRIVER
CI
INTERFACE

DSSl PORT
DRIVER

DSSl
INTERFACE VAX

Availability in VAXcluster Systems

System Communications Services Layer
The system communications services (SCS) layer of
the V~Xcluster architecture Is implemented in a
combination of hardware and software or software
only, depending upon the type of port. The SCS
layer manages a logical path between each pair of
nodes in the VAxcluster system. This logical path
consists of a virtual circuit (VC) between each pair
of SCS ports and a set of sCS connections that are
multiplexed 011 that virtual circuit. The sCs pro-
vides basic connection management and communi-
cation services in the form of datagrams, messages,
and block transfers over each logical path.

The datagram is a best-effort delivery service
which offers no guarantees regarding loss, dupIim-
tion, or ordering of datagrams packets. This service
requires no connection between the communicat-
ing nodes. In general, the VAXcluSter software
makes minimal use of the datagram service.

The message and block transfer services take
place over an SCS connection. Consumers of SCS

services communicate with their counterparts on
remote nodes using these connections. Multiple
connections are multiplexed on the logical path
provided between each pair of nodes in the
VhXcluster system.

The message service is reliable and guarantees
that there will be no loss, duplication, or permuta-
tion of message sequence on a given connection.
The connection will break rather than allow the
consumer of the service to perceive such errors.

The block transfer service provides a way to
transfer quantities of data directly from the mem-
ory of one node to that of another. For C? ports, the
port hardware accomplishes the block transfer,
thus freeing the host processor to perform other
tasks. Some DSSI ports use hardware to copy data
and others rely on software to perform this h c -
tion. Depending on &he exact model of an Ethernet
or FDDI port, the port software, rather than the
hardware, moves the data.

System Applications
The next higher layer in the VAXcluster architecture
consists of multiple system applications (SYSAPs).
These applications provide, for example, access to
disks and tapes and cluster membership control.
The following sections describe some S W s .

Connection Manager The connection manager
serves three major functions. First, the connection
manager knows which processor nodes are active

members of the VAXcluster system and which are
not This is accomplished through a concept of
cluster "rnembershlp." Nodes are explicitly added
to and removed from the active set of nodes by a
distributed software algorithm. In a VAXcluster
system, every processor node must have an open
SCS connection to all other processor nodes. Once
a booting node establishes connections to all other
nodes currently in the VAXcluster system, this node
can request admission to the system. When one
node is no longer able to communicate with
another nocle, one of the two nodes must be
removed from the \?.cluster system.

In a VAXcluster system, all nodes have a consis-
tent view of the cluster membership in the pres-
ence of permanent and temporary cornmullication
failures. This consistency is acco~nplished by using
a two-phase commit protocol to form the cluster,
add new nodes, and remove failed nodes.

The second function providcd by the connection
manager is an extension of the SCS message service.
This extension guarantees that the service will (1)
deliver a message to a remote node or (2) remove
either the sending node or the receiving node from
the cluster. The strong notion of cluster member-
ship provided by the connection manager makes
this guarantee possible. The service attempts to
deliver the queued messages to remote nodes. If a
connection breaks, the service attempts to reestab-
lish communication to the remote node and resend
the message. After a period of time specified by the
system mmsger, the service declares the connec-
tion irrwocably broken and removes either the
sending or the receiving node from the VAXcluster
mmbcrship. Thus, the service hides all temporary
communication failures from its client.

This message service allows users to construct
efficient protocols that do not require acknowledg
ment of messages. The service proved to be a very
powerful tool in the design of the VMS lock man-
ager. The delivery guarantees inherent in the ser-
vice minimize the number of messages required to
perform any given locking function, resulting in a
corresponding increase in performance. The abil-
ity to hide failures by updating cluster membership
further simplified the lock manager design and
increased performance; this capability enabled the
removal of logic used to handle changes in
VAXcluster configurations and communication
errors from all main lock manager code paths.

The third function of the connection manager
is to prevent partitioning of the possible cluster

Vo1.3 No. 3 Summer 1991 Digital Technical J o u d

Application Design in a VAXcluster Sllstern

members. Partitioning of a system exists when s e p
arate processing elements function independently.
Lf a system allows data sharing, completely indepen-
dent processing can result in uncoordinated access
to shared resources and lead to data corruption.

In a VAXcluster system, processors communicate
and coordinate access to resources by means of a
voting algorithm. The system manager assigns a
number of votes to each processor node based on
the importance of that node. The system manager
also informs each node of the total number of possi-
ble votes. The algorithm requires that more than
half of these votes be present in a VAXcluster system
for nodes to function. When the sum of all votes
contributed by the members of a VAXcluster sys-
tem falls below this quorum, the VMS software
blocks I/O to mounted devices and prevents the
scheduling of processes. As nodes join the cluster,
votes are added. Activity resumes once a quorum is
reached.

In practice, the connection manager uses two
measurements of the number of votes: static and
dynamic. The static count of votes is the globally
agreed 011 number of votes contributed by cluster
members. This count is created ignoring the state of
connections between nodes. The value of the static
quorum changes only at the completion of two-
phase commit operations, which accomplish a
user-requested quorum adjustment in addition to
performing the other activities mentioned earlier
in this Connection Manager section.

Each node independently maintains the dynamic
count. l'liis count represents the sum of all votes
contributetl by ViDtcluster members wit11 which
the tallying node has a functional connection.
Changes in the dynamic quorum, and not the static
quorum, initiate the blockage of process and I/O
activity.

To provide configurations with a small number of
nodes, e.g., two nodes, the concept of a quorum
disk was invented. The system manager assigns a
disk to contribute votes to the cluster. A node must
be able to access a file on the disk in order to
include the votes assigned to that disk in the node's
own total. Consequently, a special algorithm is used
to acccss the file. This algorithm ensures that
two unrelated nodes cannot both count the quo-
rum disk votes. Doing so could result in partitioned
operation.

Mass Stora,qc Control Protocol Server The Mass
Storage Control Protocol (MSCP) server allows

disks that are attached to one or more VAX proces-
sors to be accessed by other processors in the
VAXcluster system. Thus, a ViDtcluster processor
may emulate a multihost disk controller by accept-
ing and processing I/O requests from other nodes
and accessing the disk indicated by the request. The
server can process multiple commands simulta-
neously and also performs fragmentation of com-
mands if there is not enough system buffer space
to accommodate the entire amount of data at
one time.

Hierarchical Storage Controllers, Local Control-
lers, and RF-series Integrated Storage Elements
Hierarchical storage controller (HSC) servers are
specialized devices that perform MSCP serving of
Iw-series disk drives and TA-series tape drives in a
VAXcluster system. HSC servers connect directly to
the CI bus. In addition to providing the host with
access to the storage media, HSC servers accom-
plish performance optimizations such as seek-
ordering and request fragmentation based on
real-time head position information. The local disk
controllers attached to the RA- and TA-series stor-
age devices perform the same function for a single
host processor. The RF-series integrated storage ele-
ments (ISEs) attach to a DSSl bus. Each of these disk
storage devices performs its own command queu-
ing and optimization without using a dedicated
controller.

Disk Class Driver The disk class driver allows
access to disks served by an MSCP server, an HSC
controller, a local Digital Storage Architecture (DSA)
controller, or attached to a DSSI bus. This driver p r o
vides a command queuing function that allows a
disk controller to have multiple outstanding com-
mands which can be used to provide seek, rotation,
and other performance optimizations. To handle
temporary communication interruptions, the driver
restarts commands as needed.

VAXcluster systems can be configured so that all
disks are accessed by way of redundant paths for
increased availability. The way in which this is
accomplished depends on the type of disk and the
disk controller.

RF-series disks contain integrated controllers
that connect to a single DSSI storage bus. This bus
can be accessed by up to two VAX processors. Each
VAX processor can then serve the disks to all other
nodes in the VkVcluster system. Thus, two paths are
provided to each disk.

Digital Trcl~nical Journnl Vol .3 No 3 S~irntuer I991

Availability in VAXcluster Systems

RA-series disks connect to up to two storage con-
trollers. These controllers can be either (1) loc;tl
adapters attached clirectly to a single processor
node or (2) HS<: controllers 1oc:ited on the (:I bus.
Disks connected to local adapters can be served to
other nodes of the VAXcluster system. Disks located
on an HS<: controller can be directly ;iccesscd by
processors t1i;it ;ire not on that bus. Thus, the use of
~nultiple controllers when combincd with disk
serving provitles at least two paths to a disk from
every node in the VAXcluster system.

Since many paths exist to gain access to a disk,
the disk class drivcr chooses which path to use
when a disk is initially mounted by a node. If the
path to the disk becomes inopcr;itive, the disk cl;tss
driver locates another path and begins to use i t .
Server load and type of path, i.e., loc:tl or re~note,
are considered when selecting the new path. 'l'his
reconfiguration is totally transparent to the end
user of the disk I / () service.

Tape Class Lh-iver 'I'he tape class driver performs
functions in a VAXcluster system similar to those of
the disk class driver by providing access to t;ipcs
located on HS<: controllers, loc;il controllers, ancl
DSSl huses.

VMS Components Lccyet-ed otz Top of
SKSAPs
The SYSAPs provide basic services that other VMS
components use to provide a wide range of
V,\Xcluster features.

Volzrnle Shadoulit~g The volume shadowing prod-
uct allows multiple disks to be utilized as a single,
highly available disk. Volume shaclomring provides
transparent access to the data in the event of disk
media or controller failures, media degradation,
and communication failures.' The shadowing layer
works in conjunction with the disk cl;iss driver to
accomplish this task. With the advent of VMS

Volume Shatlowing 1'h;tse 11, disk shadowing is
extended to many new configurations.

Lock Manager The VMS lock manager is a system
service that provides a distributed synchronization
function used by many components of the VhlS

operating system, including volume shadowing,
the file system, \?LY RMS software, and the
batch/print system. Application programs can also
use the lock manager directly.

The lock manager provides a n;inle space that
is truly clusterwide. Cooper;iting processes can
request locks on a specific resource nanic. The lock
mstnager either grants or denics these requests.
Processes can also queuc requests. The lock man-
ager services allow processes to coordinate the
means of access to physical resources or simply pro-
vide a communication pathway between pro-
cesses. Processes can use the service for such tasks
as mutual exclusion, event notification, and server
failure tletection.'- The lock manager uses the com-
munication service provided by the connection
rnanitger to minimize the message count for a given
operation and to simpllfy the design by eliminating
the need to consicler changes in cluster member-
ship from all main paths of operation.

Process Control Serziices The VMS process con-
trol system services take advantage of VAXcluster
systems. Applications can use these services to
alter process states on remote nodes and to collect
information about those processes. In the future, it
is likely that other services will be extended to
make optimal use of VAXcluster capabilities.

File S~l.stmz The VMS file system (XQP) allows disk
devices to be accessed by multiple nodes in a
\?iXcluster system. The file system uses the lock
manager to coordinate disk space allocation, buffer
caches, modification of file headers, and changes to
the directory structure."

Record Management Services The VAX RiMS soft-
ware allows the sharing of file data by processes
running on the same or multiple nodes. The soft-
ware uses the lock manager to coordinate access to
files, to record data within files, and to global
buffers.

Batcl~/Prinl System The batch/print system allows
users to submit batch or print jobs on one node and
run them on another. This system provides a form
of load distribution, i.e., generic batch queues can
feed executor queues on each node. Jobs running
on a failed node can be restarted automatically on
another node in the VAXcluster system.

An Application Constructed Using
VAXclluster Mechanisms
The VMS software build process is an example of
how these mechanisms can be i~sed to benefit
application design. The WlS software build is

22 Vo1. 3 No 3 Summer 1991 LHgifal Techrrical Journal

Application Design in a VMclztster System

broken down into various phases such as fetch
sources, compile, and link. The phases must exe-
cute in a given order but are otherwise indepen-
dent. Each phase can be restarted from the
beginning if there is an error. Each major compo-
nent of the VMS operating system is processed sep-
arately during each of the phases. All sources reside
on a shared disk to which all nodes of the
vacluster system have access; the output disk
is shared by all nodes also. A master data file
describes the phases and the components. For a
given phase, the actions required for each compo-
nent are fed into a generic batch queue. This queue
feeds the jobs into work queues on multiple nodes,
resulting in the execution of many jobs in parallel.
When all jobs of a phase have completed, the next
phase starts. If a node fails during the execution of a
job, that job is restarted automatically on another
node either from the beginning or from a check-
point in the job. This use of shared disks and batch
queues provides great parallelism and reliability in
the VMS build process.

The Impact of VAxchster Design and
Implementation on Applications
This section discusses how multiple communica-
tion paths, membership changes, disk location and
availability, controller selection, disk and tape path
changes, and disk failure impact application design.

Mzdtiple Communication Paths
VAXcluster software components are able to take
advantage of multiple communication paths
between nodes. For greatest availability, there
should be at least two physical paths between each
pair of nodes in a VAXcluster system."

Membership Changes
VAXcluster membership changes involve several dis-
tinct phascs with slight variations depending upon
whether a node is being added or removed. Adding
a node to a VAXcluster system is the simplest case
because it involves reconfiguration. There is a fur-
ther simplification in that nodes are only added one
at a time. A booting node petitions a member of an
existing cluster for membership. This member then
describes the booting node to all other member
nodes and vice versa. In this way, it is determined
that the booting node is in communication with all
members of the cluster. The connection manager
then adds the new node to the cluster using a two-

phase commit protocol to ensure a consistent
membership view from all nodes.

Removing a node is more complicated because
both failure detection and reconfiguration must
take place. In many cases, there may be multiple
simultaneous failures of nodes and communication
paths. The view of what nodes are members and
which paths are functional may be very different
from each node. Additionally, new failures may
occur while the cluster is being reconfigured.

The initial phase involves the detection of a node
failure. A node may cease processing, but other
cluster members may not be aware of this fact. The
communication components generally exchange
messages periodically to determine whether other
nodes are functioning. The first indication of a fail-
ure may be the lack of response to these messages.
However, a minimum period of time must elapse
before the connection is declared inoperative. This
set delay prevents breaking connections when the
network or remote system is unable to respond due
to a heavy load. Once the communication failure is
detected, the connection manager is notified by the
SCS communication layer The connection manager
attempts to restore the connection for a time inter-
val defined by the system manager using a system
control parameter known as REC~XNTERVAL. Once
this interval has expired, the connection and hence
the remote node is declared inoperative. The con-
nection manager then begins a reconfiguration.

Multiple nodes may attempt the reconfiguration
at the same time. A distributed election algorithm is
used to select a node to propose the new configura-
tion. The elected node proposes to all other nodes
that it can communicate with a new cluster config-
uration that consists of the "best" set of nodes that
have connections between each other. "Best" is
determined by the greatest number of possible
votes. If multiple configurations are possible with
the same number of votes, the configuration with
the most nodes is selected.

Any node that receives the proposal and can
describe a better cluster rejects the proposal. The
proposing node then withdraws the proposal and
the election process begins again. This cycle con-
tinues until all nodes accept the proposal. The clus
ter membership is then altered using a two-phase
commit protocol, removing nodes as required.

Even when one considers the worst case of a
continual failure situation, convergence on a solu-
tion is guaranteed because the connection manager
does not add new nodes during a reconfiguration

Digital Technical Journal Vo1.3 No. 3 Summer 1991

Availability in VAXclustcr Systems

and connections that fail are never used again.
Thus, conditions cannot oscillate between good
and bad during the reconfiguration because of
nodes rebooting or because failed connections
are restored. Conditions can only get worse, i.e.,
simpler, until failures cease to happen long enough
for the reconfiguration to complete.

However, this worst-case condition is atypical;
most reconfigurations are very simple. A node that
is removed, as a result of a planned shutdown or
because it fails, attempts to send a "last gasp" data-
gram to all VAXcluster members. This datagram indi-
cates that the node is about to cease functioning.
The delay present during the failure detection
phase is bypassed completely, and the connection
manager configures a new VAXcluster system in
considerably less than one second.

Normally, the impact on an application of a node
joining a VAXcluster system is minimal. For same
configurations, there is no blockage of Iocking In
other cases, the distributed directory portion of the
lock database must be rebuilt. This process may
block locldng for up to a small number of seconds,
depending on the number of nodes, number of
directory entries, and type of communication
buses In use.

Application delays can result when an irnprop-
erly dismounted disk is mounted by a booting
node. Failure to properly dismount the disk, e.g.,
because of a node failure, results in the tempo-
rary loss of some preallocated resources such as
disk blocks and header blocks. An application can
recover these resources when the disk is mounted,
but the VO is blocked to the disk during the mount-
tng operation. This VO blocking has a potentially
detrimental impact on applications that are attempt-
ing to allocate space on the disk. The answer to this
problem is to mount disks so that the recovery of
the preallocated resources is deferred. For all disks
except the system disk, disk mounting is accom-
plished with the MOUNTMOREBUILD command.
Because a system disk is implicitly mounting during
a system boot, the system parameter ACP-REl3LDSYSD
must be set to the value 0 to defer rebuilds. The
application can recover the resources at a more
opportune time by issuing a SET VOLUMWREBUILD
command.

The impact on a VAXcluster system of removing a
node varies depending on what resources the appli-
cation needs. During the failure detection phase,
messages to a failed node may be queued pending
discovery that there actually is a failure. If the appli-

cation needs a response based on one of these mes
sages, the application is blocked. Otherwise, the
failure does not affect the application. Once the
reconfiguration starts, locking is blocked. An appli-
cation using the lock manager may experience a
delay, but as long as there are sufficient votes pre-
sent in the cluster to constitute a quorum, the I/o is
not blocked during the reconfiguration. If the num-
bcr of votes drops below a quorum, 1/0 and process
activity are blocked to prevent partitioning and
possible data corn~ption.

Another aspect of node removal is the need to
ensure that all I/O requests initiated by the removed
node complete prior to the initiation of new I/O
requests to the same disks. To enhance disk perfor-
mance, many disk controllers can reduce head
movements by altering the order of simultaneously
outstanding commands. This command reordering
is not a problem during normal operation; applica-
tions initiating I/O requests coordinate with each
other using the lock manager, for instance, so that
multiple writes, or multiple reads and writes, to
the same disk location are never oi~tstanding at
the s;tme time. However, when a node fails, all
locks held by processes running on that node are
released. Releasing these locks allows the granting
of locks that are waiting and the initiation of new I/O
requcsts. If new locks are granted, a disk controller
may move the new I/O requests (issued under the
new locks) in front of old I/O requests. To prevent
this reordering, a special MSCP command is issued
by the connection manager to each disk before new
locks are granted. This command creates a barrier
for each disk that ensures that all old commands
complete prior to the initiation of new commands.

Physical Location and Availability of
Disks
The application designer does not generally have to
be concerned with the physical location of a disk in
a VAXclusLer system. Disks locatecl on HSC storage
controllers are directly available to VAX processors
on the same CI bus. These disks can then be MSCP-

served to any VAX processor that is not connected
to that bus. Similarly, disks accessed by way of a
local disk controller on a VAX processor can be
MSCP-served to all other nodes. This flexibility
allows an application to access a disk regardless of
physical location. The only differences that the
application can detect are varying transfer rates
and latencies, which depend on the exact path to
the disk and the type of controllers involved.

WJ/ .? No. .j Su~nr?zel. 1991 Digital Technical Jorrrnnl

Application Design in a Vflcluster System

To provide the best application availability, the
following guidelines should be considered:

1. VMS Vol~~me Shadowing Phase 11 shoulcl be usecl
to shadow disks, thus allowing operations to
continue transparently in the event that a single
disk fails.

2. Multiple paths should exist to any given disk.
A disk should be clual-pathed between multiple
controllers. Dual pathing allows the disk to sur-
vive controller failures.

3. Members of the same shadow set should be con-
nected to different controllers or buses as cleter-
mined by the type of disk.

4 . Multiple servers should be used whenever serv-
ing disks to a cluster in order to provide contin-
uetl disk access in the event of a server failure.

Selection of Co~ztrollers
Using static load balancing, the ViMS software
attempts to select the optimal iMSCP server for a
disk unit when that unit is initially brought on line.
The load information provided by the &IS<:P server
is considered in this decision. The HSC controllers
do not participate in this algorithm. In addition, the
VMS software selects a local controller in prefer-
ence to a remote MSCP server, where possible. If a
remote server is in use and the disk becomes avail-
able by way of a local controller, the software
begins to access the disk though the local con-
troller. This feature is know as local fail-back.

An advanced development effort in the VklS oper-
ating system is demonstrating the viability of
dynamic load balancing across MSCP servers. Load
balancing considers server loading dynamically and
moves disk paths between servers to balance the
load among the servers.

Disk and Tape Path Changes
Path failures are initially detected by the low-level
communication software, i.e., the sCs or port lay-
ers. The communications software then notifies the
disk or tape class driver of the failure. The driver
then transparently blocks the initiation of new I/O

requests to the device, prepares to restart outstand-
ing I/O operations, and begins a search for a new
path to the device. Static load balancing informa-
tion is considered when attempting to find a new
path. The path scarch is accomplishecl by sending
an MSCP GI:'l' {'NIT STATUS command to any known
disk controller or M S C P server capable of serving

the device. Some consideration is given to selecting
the optimal controller; for example, the driver inter-
rogates local controllers before remote controllers.

Once a new path is discovered or the old path
reestablishecl, the VMS system checks the volume
label to ensure that the disk or tape volume has not
been changed on the clevice. l'his vcrification pre-
vents data corruption in the event that someone
substitutes the storage medium without clismount-
ing and remounting the device. After a successful
check, the software restarts incomplete I/O requests
and allows stalled 1/0 requests to procccd. In the
case of tapes, the tape must be repositioned to the
correct location before restarting I/O requests.

If the label check determines that the original
medium is no longer on the disk or tape unit, then
110 requests continue to be stalled and a mes-
sage is sent to the operator requesting manual inter-
vention to correct the problem. Attempts to
reestablish the correct operation of a disk or tape
continue for an interval determined by the system
parameter MVTIMOUT (mount verification time-
out). Once the time-out period expires, fi~rther
attempts to restore are abandoned and pending
requests are returned to the application with an
error status. Thus, the software handles temporary
disk path failures in such a transparent fashion that
the application program, e.g., the user application,
VAX IL-MS software, or the VMS file system, is
unaware that an interruption occurred.

Disk Failures
If a disk fails completely when W S Volume Shadow-
ing Phase I1 software is used, the software removes
the fa~led disk from the shadow set and satisfies all
further I/O requests using a surviving disk. If a
block of data cannot be recovered from a disk in a
shadow set, the software recovers the clata from the
corresponding block on another disk, returns the
data to the usel; and places the data on the bad disk
so that subseqi~ent reads will obtain the good data.'

Summary
VAXcluster systems continue to provide a unique
base for building highly available distributed sys-
tems that span a wide range of configurations and
usages. In addition, VAXcluster computer systems
can grow with an organization. The availability,
flexibility, and growth potential of VAXcluster sys-
tems result from the ability to add or remove stor-
age and processing components without affecting
normal operations.

Digitrrl Technical Journal ih1.3 No. 3 Summer 1991 25

Availability in VAXcluster Systems

References
1. N. Kronenberg, H. Levy, and W Streckcr,

"VAXclusters: A Closely-coupled Distributed
System," ACM Transactions oti Computer
.Systems, vol. 4, no. 2 (May 1986): UO-146.

2. S. Davis, "Design of VMS Volume Shadow-
ing Phase 11-Host-based Shadowing," Di~itnl
Technical Joztrtzrr~,, vol. 3, no. 3 (Summer 1991,
this issue): 7- 15.

3. W Snaman, Jr. and D. Thiel, "The VAXrVMS
Distributed Lock Manager," Digital Technical
Journal, no. 5 (September 1987): 29-44.

4. W Laing, J. Johnson, and R. Landau, "Trans-
action Mani~gemcnt Support in the VMS Oper-
ating System Kcrnel," Digital Technical Journal,
vol. 3. no. 1 (Winter 1991): 33-44.

5. G~lidelines for Vl'RYuster System Configurn-
tions (Maynard: Digital Equipment Corpor;ition,
Order NO. EK-VAXCS-CG004, 1990).

6. L. Leahy, "New Availability Features of Local Area
VAXcluster Systems," Digital Technical Journal,
vol. 3, no. 3 (Summer 1971, this issue): 27-35.

7 -1'. K. Rengarajan, I? Spiro, W Wright, "High
Availability Mechanisms of VAX DBMS Software,"
Digital TecbnicalJournal, no. 8 (February 1989):
88-98.

8. A. Goldstein, "The Design and Implementation
of a Distributed File System," Digital Technical
Journal, no. 5 (September 1987): 45-55.

26 1'01. .? No. 3 Summer 1991 Digital Technical Journal

Lee Leahy I

New Availability Features of
Local Area VAXcluster Systems

l/il.IS version 5.4-3 increases the availaOility of local area VMcluster (LAVc) configu-
rations by allowing the use of ~nultiple local area netzuork (LAN) adwters in the
VAXclzlster system. Availability is increased by enabling fail-over between LAN
wlaptm, reducing channel failure detection time, and providing better network
troubleshooting. Combined, these clga~zges significantly increase the availability of
LAN-based VAXclzlster configurations by allowing the VAXcluster system to tolerate
an.d work around network failtfires.

This paper describes the availability features added
to local area VAXcluster (LAVc) support in VMS ver-
sion 5.4-3. These features support multiple local
area network (LAN) adapters, reduce the time
required to detect network path (channel) failures,
and provide additional support for network trou-
bleshooting. (Table 1 presents definitions for terms
used throughout the paper.)

We begin the paper with an overview of the
added LAVc availability features of vMs version 5.4-3.
We then present the multiple-adapter support
features of the new release, with comparisons to
the previous single-adapter implementation. The
detection of network delays is discussed, along
with how the system selects alternate paths around
these delays after detection. Finally, we discuss the
analysis of network failures and the physical
descriptions needed to achieve the proper level of
failure reporting.

Added Auaihbility Features
VMS version 5.4-3 supports LAVc use of up to four
LAN adapters for each VAX system. Availability and
performance are increased by connecting each LAN
adapter to a different LAN segment. Maximum avail-
ability is achieved by redundantly bridging these
LAN segliicnts together to form a single extended
LAN. This configuration maximizes availability and
reduces single points of Fdilure by increasing the
number of possible network paths between the dif-
ferent systems within the VAXcluster system.

Availability has also been increased at the appli-
cations level by reducing the time required to
detect channel failures. The L A C protocol (NISCA)
sends sequenced datagrams to the remote system.

If not acknowledged within 2 seconds, a datagram
is retransmitted. Retransniission continues until the
connection between the two systems is declared
broken. However, applications can be stalled during
this error recovery process. Therefore, reducing the
time for detecting channel failures and retransmit-
ting datagrams reduces the amount of application
delay introduced by network problems.

VMS version 5.4-3 also increases availability by
reducing the delays introduced by network con-
gestion. This latest release measures the network
delays on a channel basis. The channel with the low-
est computed network delay value is used to com-
municate with the remote system.

LAVc network failure analysis is a new feature in
VMS version 5.4-3. This feature provides an analy-
sis of failing channels by isolating the common
network components responsible for the channel
failures. LAVc network failure analysis increases
availability by reducing the downtime caused by fail-
ing network components. To enable this feature, the
system or network manager must provide an accu-
rate physical description of the network used for
LAVc communications.

Multiple-adapter Support
This section describes the availability features added
with the multiple-adapter LAVc support in VMS ver-
sion 5.4-3. Some limitations of the single-adapter
implementation are presented for comparison.

Single Points of Failure
In single-adapter LAVc satellites, the Ethernet adapter
remains as a single point of failure. This fail-
ure "point" actually extends through the network

DigItrtl Technical Journal Vo1.3 No. 3 Summer 1991 27

Availability in VAXcluster Systems

Table 1 LAVc Terminology

Channel A data structure in PEDRIVER that represents a network path (see network path below).
Each channel is associated with a single virtual circuit (VC).

Datagram

LAN Adapter

A message that is requested to be sent by the client of the LAN driver. A datagram does
not have guaranteed delivery to the remote system. The datagram may never be sent,
or could be lost during transmission and never received.

An Ethernet or fiber distributed datainterface (FDDI) adapter. Each type of LAN adapter
has a unique set of attributes, such as the receive ring size.

LAN Address The network address used to reference a specific LAN adapter connected to the Ethernet
or FDDI. This address is displayed as six hexadecimal bytes separated by dashes, e.g.,
08-00-2B-12-34-56.

LAN Segment

Network Path

PEDRIVER
Virtual Circuit

An Ethernet segment or FDDI ring. Each type of LAN has a unique set of attributes, e.g.,
maximum packet size. LAN segments can be connected together with bridges to form a
single extended LAN. However, in such a LAN, the LAN segments can have different
characteristics (e.g., different packet sizes for an FDDI ring bridged to an Ethernet).

The pieces of the physical network traversed when a datagram is sent from one LAN address
to another LAN address. The network path is represented by a pair of LAN addresses, one
for the local system and one on the remote system. Each network path has a specific set of
attributes, which are a combination of the attributes of the local LAN adapter, the remote
LAN adapter, and each of the LAN segments and LAN devices on the path between them.
The VMS port driver that provides reliable cluster communication utilizing the Ethernet.

A data structure in PEDRIVER that represents the data path between the local system and
the remote system. This data path provides guaranteed delivery forthe messages sent.
PEDRIVER's datagram service, along with an error recovery mechanism, ensures that
a message is delivered to the remote system or is returned to the client with an error.
A virtual circuit (VC) has one channel for each network path to the remote system.

components common to all of the network paths
in use for cluster communication. The combination
of VMS version 5.4-3 with multiple LAN adapters
removes the LAN adapter as a single point of fail-
ure in the local system. Additionally, the use of mul-
tiple LAN adapters connected to an extended LAN
creates multiple network paths to remote systems.
This configuration results in a higher tolerance
for network component failures and higher cluster
availability.

Adapter Selection
The single-adapter implementation is configura-
tion-dependent and does not allow the system man-
ager a choice of adapters. Thc multiple-adapter
support in VMS version 5.4-3 configures the system
for maximum availability by starting the LAVc proto-
col on all LAN adapters in the system. Support is
also provided to start and stop the LAVc protocol on
the LAN adapters. This support allows the system
manager to select which adapters will run the
LAVc protocol.

The means of locating the LAN devices in the
system has also changed. The system now main-
tains a list of LAN devices. As each J A V device driver
is loaded into the system, an entry is appended to

this list. A new support routine steps through this
list ancl returns a pointer to the next LAN device
in the system. The single-adapter implementation
requircs code changes in PEDRIVER to add a new
LAN device; the new implementation no longer
requires these changes.

Channel Control Hankbake
The channel control handshake is a three-way mes-
sage exchange. The exchange starts when a HELLO
message is received from a remote system ancl the
channel is in the closed state, or any time a CCSThRT
mcssage is received. Upon receiving a HELLO mes-
sage on a closed channel, the system responds with
a CCSTART message.

IJpon receiving a CCSThRT message, the system
closcs the channel if the PATH bit was set. In all
cases, if the cluster password is correct, the system
responds with a VERF message. Upon receiving the
VERF message, the remote system verifies the clus-
ter password. If the password is correct, the remote
system sends an acknowledgment (VACK) message
and marks the channel as usable by setting the I%TH
bit. The local system, upon receiving the VACK mes-
sage, also marks the channel as usable by setting the
PATH bit.

Vo6. .? No. .? S~lmmer 1991 Digital Tecbnical Jozrrnal

New Availability Features of Local Area V2Xcluster Systems

The channel control handshake now verifies the
network path used by this channel, instead of verify-
ing the virtual circuit @(;) as in the single-aclapter
implementation. Additionally, the handshake is used
to negotiate some parameters between the local and
remote systems on a channel basis (instead of assum-
ing that the parameters are common for all channcls
connected to the VC).

Packet size and pipe quota are two characteristics
that are now arbitrated between the two systems.
These parameters are negotiated on a channel-by-
channel basis to allow different channels to fi~lly uti-
lize the capabilities of the specific network path.

With the introduction of FDDI, larger packet
sizes are now supported. The channel handshake
between two nodes negotiates a packet size that is
supported by the entire network path. Any path
that utilizes an Ethernet must use a packet size
of 1498 bytes or smaller. An FDDI-to-FDDI path on
the same extended ring must use a packet size of
4468 bytes or smaller. An increased packet size
reduces the number of messages required when
large blocks of data are sent. This increase in packet
size results in fewer messages, less handshaking,
and thus better network efficiency.

The PIPE-QUOTA value is used to limit the number
of messages sent to the remote system before wait-
ing for an acknowledgment. PIPE-QUOTA was imple-
mented to help prevent receiver overrun on the
remote system. Instead of using a fixed value, the
new implementation uses a value specified by the
LAN driver. This value factors in the LAN device's
receive ring size and is typically larger than the fixed
value of eight messages used previously Increasing
the PIPE-QUOTA value allows more data to be sent
between the nodes before an acknowledgment
message is required, thus increasing the protocol's
efficiency and reducing the network traffic.

These new features in VMS version 5.4-3 have
reduced the amount of handshaking required to
move data and the number of messages required to
move large amounts of data. The result is greater
applications availability through fewer network-
b;~sed delays.

Use of Hello Messages
The single-adapter implementation uses a HELLO
message to maintain the VC and not the channels.
Also, the handshake to verlfy connectivity is per-
formed by the VC, which forces all channels to use
the same characteristics. In comparison, the multiple-
adapter implementation uses HELLO messages to
trigger the channel handshake, test the network

path and maintain the channel in the open state,
and continuously verlfy the network topology.

To maintain the channel and test the network
path, each system multicasts a HELLO message
through each of its LAN adapters every 3 seconds.
Upon receipt of a HI:I.LO message (if the channel
is not open), a channel handshake begins. If the
channel is open, the network delay is computed
and the channel packet size is verified. When an
open channel does not receive a HELLO message
within 8 seconds, it declares a listen time-out and
the channel is closed.

Additional topology change detection is required
because FDDI-to-FDDI communications use large
packets. If two systems using FDDI adapters
exchange channel control messages, then both can
agree on a large packet size. However, if the net-
work is configured in the dumbbell configuration,
then only the small packet size can be used. (The
dumbbell configuration consists of two FDDI rings
separated by an Ethernet segment.)

Detection of the dumbbell configuration is per-
formed using the priority field in the frame control
byte of the FDDI message header. This field does not
exist in Ethernet messages and must be created
when forwarding an Ethernet message to an FDDI
ring. Ethernet-to-FDDI LAN bridges set this field's
value to zero. All LAVc messages transmitted by the
FDDI adapters use a non-zero value for the priority
field. When a channel control message is received,
the value of this field is checked. If the value is non-
zero, then large messages can be used because the
message did not traverse an Ethernet segment.

The priority field is also verified every time a
HELLO message is received and the channel is open.
A topology change is detected when a change in the
priority value is received. If the priority value goes
from zero to non-zero, the packet size is renegoti-
ated and a larger packet size may be used. If the pri-
ority value goes from non-zero to zero, the channel
packet size must be reduced. If this is the only chan-
nel with a larger packet size, then the VC closes and
forces the two systems to reassign the message
sequence numbers.

Listen Time-out
VMS version 5.4-3 now consistently times out chan-
nels in 8 to 9 seconds, whereas the single-adapter
implementation detects the failure in 8 to 15 seconds.
Reducing this time reduces the delays experienced
by applications when a LAVc node is removed from
the cluster. The result is an increase in applications
availability.

Digital Tecbnid Journal Vo1. .? hh .l Slrmmer 1991

Availability in VAXcluster Systems

The single-adapter implementation traverses the
VC list and scans each of the receive channels (RCH

structures embedded in the VC) to chcck for time-
out. Because this scan is CPI:-intensive, the algo-
rithm was designed to scan the VC list only once
every 8 seconds. Reducing this scan time required
the design of a new algorithm that reduces the CPu
utilization requirecl to locate the channels that have
timed out.

The VMS version 5.4-3 implementation places
each open channel into a ring of time-out queues.
The time-out routine maintains a pointer into the
ring of queues corresponding to the 8-second time-
out. Each second, the time-out routine cxccutes,
removes any channels pointed to by the time-out
pointer, and calls the listen time-out routine for
the channel. Nexl, the time-out pointer and the
8-second time-out pointer are updated to point to a
new set of queue headers in the ring. Active chan-
nels and channels receiving HELLO messages are
inserted into the ring of queues pointed to by the
current time pointer, which prevents them from
timing out. This implementation reduces CPLJ uti-
lization during the time-out scan by looking at only
the channels that have timed out.

Changes to Virtual Circuit Maintenunce
The single-adapter implementation closes the VC

and performs a channel control handshake every
time a new chiinnel is established. This implemen-
tation also forces c;icl1 channel to use the same
characteristics, specifically packet size, thereby
reducing the characteristics to the lowest common
denominator.

VMS version 5.4-3 does not close the VC each time
a new channel is established. The channel hand-
shake affects only the c h m e l and is used to negoti-
ate the channel characterbtics, including packet
size. The v C remains open a s long as a channel with
the corresponding packet size is open. This mainte-
nance increases ;ipplications availability by allow-
ing channels to F~il and reestablish transparently
without disrupting service at the vC ant1 systems
communication services (SCS) layers.

One Channel with Matching Characteristics
Required The VC can be opened as soon as the
first channel to the remote system is opened. When
the VC opens, its packet size is set to the packet size
of the channel being used. The VC can reniain open
as long as at least one channel with a compatible
packet size is open. The packet size is compatible if

the channel packet size is greater than or equal to
the packet size currently in use by the VC.

Transfers restricted to an FDDI ring can use a
larger packet size than those that traverse an
Ethernet LAN segment. PEDRWER now supports
variable packet sizes up to the size supported for
the FDDI ring. Each time the VC switches channels,
the new channel characteristics are copied into the
VC. The result is that as soon as the VC switches to
using the FDDI-to-FDDI channel, i t also switches to
using the larger packet size.

Receive Messnge Caching VMS version 5.4-3
introduces a receive message cache to prevent any
performance degradation when messages are
received out of order. Because of transmission and
network delays, messages are typically received out
of order at approximately the time a channel switch
occurs. Also, most of the channel selections are
invoked after locating a channel with a lower
network delay value, thus increasing the probabil-
ity that messages will be received out of order.

Channel Faikure Not Displayed Tlie mu 1 tiple-
adapter implementation does not display any mes-
sages when a channel fails. This choice was made to
maintain compatibility with the previous imple-
mentation. We also wished to reduce the number of
console messages and still provide enough data to
isolate the problem. However, without some chan-
nel failure notification, all but one channel could
fail without notice, thus negating all the availability
that was introduced by using multiple adapters.

The LAVc network failure analysis allows the
system or network manager to select one of the fol-
lowing levels of channel failure notification: no
notification, if not enabled; channel failure notifica-
tion, when barely enabled; or isolation of the failing
network component, when fully enabled. When
this feature is fully enabled, a failing network com-
ponent typically generates only a single console
message instead of displaying tens or hundreds of
chamel failure messages.

Channel Selection
VMS version 5.4-3 bases its selection of a single
transmit channel for a remote system first, on the
packet size and second, on the network delay
value. The channel selection algorithm searches for
an open channel with a compatible packet size so
that the VC does not have to be broken. If more than
one channel has a compatible packet size, the

Vol. j No. .J Snmmw 1991 Digital Tecbnicnl Journal

Nezu Availability Features of Local Area VAXcluster Systems

network delays are compared and the channel with
the lowest network delay value is chosen. The
selected channel is used until it fails, encounters an
error, or a channel with a lower network delay
value is found.

Channel selection is performed independently
for each remote system. This implementation means
that a two-node cluster increases its availability
through the use of more LAN adapters, but does not
achieve a performance benefit by increasing the
number of LAN adapters above two. Larger clusters,
however, can take advantage of the additional
UN adapters and thus achieve better cluster perfor-
mance. Multiple LAN adapters can also increase the
bandwidth available for use by the LAVc protocol.
However, the actual performance is very configura-
tion- and application-dependent.

Channel selection is limited to the transmit chan-
nel, but all channels are used to receive data. The
receive cache helps prevent retransmission by
the remote system by placing messages received
out of order into the receive cache until the previ-
ous messages are received. This receive algorithm is
compatible with any transmit channel selection
algorithm, e.g., in]-'EDRIVER or in any component
implementing NISCA.

Multiple-adapter Availability Summa y
The multiple-adapter LsWC s ~ ~ p p o r t added to VMS
version 5.4-3 increases the availability of applica-
tions and of the overall cluster. Availability is
increased by removing the LAN adapter as a single
point of failure. Clustcr availability is enhanced
through continuous testing of the network paths
and correction for network topology changes.

This implementation also increases network
utilization and cluster performance by taking full
advantage of a channel's characteristics. Larger
receive ring sizes reduce the protocol handshaking
overhead. Moreover, larger packet sizes reduce
the number of messages that must be sent for large
transfers.

The next section discusses how the PEDRNER
detects network delays and selects alternate paths.

Network Delay Detect-
VMS version 5.4-3 increases application availability
by detecting significant network delays and select-
ing alternate paths. As the network gets busy, it
becomes more clifficult for a LAVc node to send
cluster messages. These delays in network commu-
nications cause delays in cluster traffic and trans-

late into delays in the applications. Thus, through
delay detection and the use of alternate paths, VMS

version 5.4-3 reduces the delays for applications
and increases overall cluster performance.

Assumptions and Delny Calculatio~zs
PEDRIVER computes network delays through a
series of assumptions. The primary assumptions are
that the transmit and receive delays for a path are
equal, and that there are small internal delays asso-
ciated with the LAN device. iUthough these assump-
tions are occasionally invalid, PE1)RIVER uses them
because there are no round-trip messages available
in the NISCA protocol to compute the delay.

As the first step in the delay calculation for each
channel between nodes, each node time-stamps the
HELLO message just prior to transmission. When the
HELLO message is received, the time stamp is sub-
tracted from the local system time. This resulting
value equals the sum of the transmit queue delay,
the network delay, the receive queue delay, and the
difference in the two system times. Applying the
assumptions reduces this value to the sum of the
network delay and the difference in the two system
times.

The second step of the delay calculation is to
compare the delay times between different chan-
nels to the same remote system. This comparison is
a subtraction of the values computed above for
each channel. The computation removes the com-
mon factor (the difference in the two system times)
and results in the comparison of the two network
delays. When multiple channels cxist, PEDRIVER
attempts to use the channel with the lowest
network delay value.

Problems and Benefits Associated with
the Assumptions
The assumptions in the network delay calculation
do not always hold true. The arbitration delay to
transmit a message on the Ethernet, between a pair
of systems, is not always equal in both directions.
Over the long term, this assumption would be valid
if the systems are sending the same number of mes-
sages in each direction; however, this is not typi-
cally the case. When this assumption does not hold
true, i.e., if the transmit delay is longer than the
receive delay, then additional delay is introduced
when transmitting messages using this channel.

The assumption that internal delays are small
depends upon the network traffic and the transmit
traffic generated for an adapter by the other LrUV

Digital Technical Journal 1/01 .? No. 3 S ~ l ~ n ~ n e r I991 31

Availability in VAXcluster Systems

clients. If another LAY client is a heavy user of a par-
ticular IAN adapter, then transn~issions from this
adapter expcricncr ;tdditional queue delays while
waiting for the adapter. If the network is busy, mes-
sages in the transmit queue have an additional wait.

Finally, the network delay computed is the clelay
from the remote system to the local system. Since
the clelay is not ;tlways symmetric, it tlocs not
always represent the delay in the other direction,
LC.. transmitting messages to the remote system.
Yet, because the NIS<:I\ protocol does not have any
round-trip messilges, this is the best possible delay
value.

Even with these problems in the assumptions,
the network delay calculations increase the avail-
ability of the cluster by detecting large network
tlelays. With this data, P E D I l N E R is usually able to
select alternate paths around the network delays
when multiple channels exist, providing better
cluster performance and availability.

Figure 1 represents an example of network delay
detection. If LAN segment A is very busy, then
P E D R N E R can detect an additional network delay for
channels A 1 - B l , A1-B2, and A2-R1. PEDRIVEK can
then select an alternate path, that is, transmit pack-
ets only o n channel A2-B2. Use of channels A 1 - B l ,
A1-B2, and A2-B1 can resume when the network
traffic level o n I.AN segment A is reducetl to about
the level of LW segment B, or if channel A2-B2 fails.

LAVc Network Failure Analysis
VlIS version 5.4-5 uses multiple LAN acl;tpters to
increase availability by working around network

delays and failures. Channels fail as network fail-
ures occur, reducing the availability provided by
these extra channels. However, the VC remains
open, allowing cluster communication as long as a
single channel remains open.

To maintain compatibility with previous VMS ver-
sions, only VC failures are displayed on the local
console. Displaying messages about channel fail-
ures would only indicate a problem without help-
ing to locate the cause of the failure. Also, as the
cluster configuration gets larger, o r the number of
U N adapters increases, channel failure messages
increase (depending on what component failed)
beyond the point where they are helpful. Yet to
maintain cluster availability, the system o r network
manager needs to be told of the channel failures
that are reducing the availability.

The MVc network failure analysis, introduced
with virls version 5.4-3, is used to analyze the net-
work failures ant1 display the OPCOM messages that
call out the failing network component. This sup-
port requires a description of the physical network
used for LAVc communications. Depending upon
the description supplied, the system o r network
manager can select the level of failure reporting.
This level may range from channel failure reporting
to calling out the actual component that failed.

Display of Channel Failztres
There is a significant difference between displaying
the channel failures and performing UVc failure
analysis. This difference is shown in Figure 2, which
represents a multiple-adapter UVc configuration.

ETHERNET LAN SEGMENT A

I I I I
I ETHERNET ' ' ETHERNET '
I ADAPTER 1 ' ' ADAPTER 1 '

I
ETHERNET LAN SEGMENT I3

KEY:

I TERMINATOR

TRANSCEIVER

Figure I Network Delay Detection

3 2 Vol. .? No. .? .T~~~nmer. 1991 Digital Techizical Jozrrnal

New Availability Features of Local Area VAXclzcster Systems

ETHERNET LAN SEGMENT A

I

BRIDGE

DELNI A l - l
1 ETHERNET
I ADAPTER 1 I
I _ - _ _ _ _ I

- - - - - -
I ETHERNET I
I ADAPTER 2 1

I ETHERNET I
I ADAPTER 1
I _ _ - _ - _ I

- - - - - - -
I ETHERNET I
I ADAPTER 2

DELNI C u

DELNI B w
' ADAPTER 1
I _ _ - _ _ _ I

- - - - - - -
I ETHERNET

I ETHERNET
I ADAPTER 1
1 _ _ _ _ _ _ 1

- - - - - -
I ETHERNET I
I ADAPTER 2 1 C

I DELNI D I
ETHERNET LAN SEGMENT B

KEY:

1 TERMINATOR

TRANSCEIVER

Figure 2 Multiple-dpter Channel Failure

Looking from system VAX A, the following chan-
nels exist: A1-A2, A2-A1, Al-B1, A1-B2, A2-B1,
A2-B2, A1-Cl, A1 -C2, A2-C1, A2-C2, A l - D l ,
A1-D2, A2-Dl, and A2-D2. Let us assume that
DELNI B fails, causing the following channel failures:
Al-C1, A2-C1, A l - D l , and A2-Dl. A display of
channel failures would show that some interesting
event had just occurred but would leave it up to the
system or network manager to isolate the actual
failure. Also, since other channels are still open to
VAX C and VAX D (A1-C2, A2-C2, A1-D2, and
A2-D2), these nodes still remain in the cluster.
However, the number of channels to these nodes
has been halved, reducing cluster availability.

LAVc network failure analysis uses the physical
network description to analyze channel failures.
The working channel A1-C2 indicates that VAX A,
A l , DELNI A, LAN segment A, Ethernet-to-Ethernet
LAN bridge, LAN segment B, DELNI D, C2, and VAX C
function. The working channel A2-D2 indicates
that A2, DELNl C, D2, and VAX D also function. The
remaining components are DELNI B, C1, and D l . By
reviewing the failing channels for common failures,
we see that two channels use component C1, two
channels use component D l , and all four channels
use component DELNI B. Therefore, DELNI B has the
highest probability of causing the failure and is the
only network component displayed on the console.

In this small cluster configuration, LAVc network
failure analysis has reduced the messages displayed,
i.e., from four channel failure messages to one
component failure message. This simpler display
provides timely notification and better isolation of
network component failures, allowing the system
or network manager to repair the network earlier
and restore the full availability of the cluster.

Physical Network Description
LAVc network failure analysis requires a description
of the physical network. This description lists the
components used by the LAVC and the network
paths that correspond to the LAVc channels.

The network component description consists
of several pieces of data, including a component
type and text description provided by the system or
network manager. Some component types will
require additional data. There are several types of
network components: NODE, ADAPTER, COMPO-
NENT, and CLOUD. Each NODE component requires
a unique node name associated with it that matches
the SCSNODE SYSGEN parameter. The ADAPTER com-
ponent has at least one and sometimes two LAN

addresses associated with it. One LAN address is the
hardware address and the other, when specified, is
the DECnet LAN address. COMPONENTS are used to
describe all pieces of the network, both working

Digital Technical Journal VoL 3 No. 3 Strrnrner 1991 33

Availability in VAXcluster Systems

and nonworking. CLOUDS describe portions of the
network that are working only if all paths are work-
ing. Any path failure implies that the CLOUD com-
ponent may not be working.

Component descriptions can range from actual
devices and cables to internal CPI. bus adapters.
When the component is defined, an ID value is
returned for use in the network path description.
The choice of the components dc-scribccl is left to
the system or network manager and allows the
manager to select the desired level of network anal-
ysis. Each network component has a reference
count and a working count. The reference count is
incremented when a network path is defined that
utilizes the network component. The working
count is incremented each time a MVc ch:lnnel is
opened, and decremented each time an open LAVc
channel is closed.

The network path description consists of a
directed list of component identifier (ID) values.
For proper analysis, this list must start with the ID
value for the local node. Each successive ID value in
the list must be associated wit11 the next network
component through which a message would travel
when using this path. The final component ID value
is that of the remote node.

Each network path clescription must conti~in two
node ID vi~lues ancl two ;~rl;~ptcr 11) v;ilues. 'Ii) he use-
ful for analysis, the path description must contain
the node ID value for the nodc running the analysis.
Without this node ID value, the path cannot be
matched with any of the LAVc channels on that node.

Channel Mappi~zg and Processing
The network path descriptions are matched with
the LAVc channels by using the LAN addresses. If
possible, only the LAN hardware address is used
for the mapping function. This mapping provides
the best analysis because it remains constant with
respect to any LAN adapter. In clusters running
mixed VMS versions, the LAN hardware address is
not available for systems running a version prior to
VMS version 5.4-3. In prior versions, the DECnet LAN

address is used for the mapping function.
Each time a LAVc channel is opened, the network

path database is searched to locate a matching net-
work path description. If found, this description is
connected to the channel and a scan of all the com-
ponents in the path is performed. For each compo-
nent in the path, the working count is incrernented.
If the component switches from not working to
working, then a WORKING messagc is displayed.

When a LAVc channel fails, the corresponding
network path is placed on a failure List. 'llie na-
work path is then scanned and the working count
for each component is clecremented.

Failure Analysis
Relatecl channel failures are collectecl by delaying
10 seconds following tlie channel failure. Each
channel failure extends the time delay to the full 10
seconds. Once the 10-second delay has elapsed fol-
lowing the last channel failure, the full list of failing
network paths is processed.

Computing the failure probabilities begins by
reviewing each of the components in the network
path. If a component cannot be proven to work,
then it is placed on the suspect list and the compo-
nent's suspect count is incrernented. A component
is working if the working count is non-zero; a
CLOUD component is working if the working count
equals the reference count. Tliis step encls with a
list of suspect components, each with a suspect
count that represents the number of times this
component could have caused the failure.

Suspects are selected by comparing the suspect
counts for each of the components in a network
path. Each network path is reviewed indepen-
dently and a primary suspect is selected. The
primary suspect is the first component with the
highest suspect count in the network path. Sec-
ondary suspects are the other components in tlie
network path with the same suspect count value.
The primary and secondary suspects are displayed
after all the network paths have been reviewecl. The
other components in the suspect list are removed
from the list, and are not displayed because the fail-
ure analysis judged them to be unrelated to any of
the channel failures.

There are several limitations to the failure analy-
sis. The analysis requires an accurate description of
the physical network. The failure analysis is also
looking for a common network component fail-
ure. Therefore, an incorrect analysis results from
either an inaccurate network description, multiple
related failures, or too much detail.

The key to a valid network failure analysis is the
correct description of the physical network. Jn
Figure 2, if the network path A1-B1 incorrectly
listed DELNI B, then the failure analysis would find
that DELNI B is working and remove it from the sus-
pect list. The final analysis woulcl list both C1 and
D l as the failing components. Validation of the
network description can be performed by network

34 I/ol 3 iVo 5 .Sur>rrrzer 1991 Digital Technical joztrnal

New Availability Features of Local Area VAXcluster Systems

fault insertion and by reviewing the network
failure analysis. If the description is accurate, then
the failure analysis should display the expected
messages. If an inaccurate network description
exists, unexpected messages may be displayed.
In such cases, the network description should be
reviewed.

Multiple related failures may also cause an incor-
rect failure analysis. Referring again to Figure 2,
assume a correct network description. Instead of a
DELNI B failure, assume that both C1 and Dl have
failed. The failure analysis reviews the network
description and locates the single component
DELNI B because it is common to all of the failures.
In this case, the failure analysis does correctly
locate tlie area of the network (something con-
nected to DELNI B). However, further review is
required to identlfy that DELNI B itself has not failed,
but rather both C1 and Dl.

The choice of the network description, the num-
ber of components defined, and the path descrip-
tions, is left to the system or network manager.
This choice allows the manager to select the level
of Failure reporting needed to troubleshoot the net-
work. However, when the physical network descrip-
tion includes too much detail (e.g., transceiver
cables), it becomes difficult for the failure analysis
to reduce the components to a single f i ' l ' i ure.
Instead, a primary suspect and several secondary
suspects are usually displayed. Too much detail also
requires more CPlJ cycles and memory for analysis,
and in general is a bad trade-off.

In Figure 2, if the Ethernet adapter C1 fails, and
the transceiver cables are listed in the network
description, then the failure analysis displays two
messages. The primary suspect is listed as the
transceiver cable because it is the first component
that matches the failure in the path from A to C. The
Ethernet adapter C1 is listed as a secondary sus-
pect, because its suspect count matches the sus-
pect count of tlie primary suspect. In this example,
there are no network paths described that use
Ethernet adapter C1 without using the transceiver
cable connected between C1 and DELNI B. With the
network description provided, there is no way to
distinguish between these two components.
Therefore, both are displayed when either is a pri-
mary or secondary suspect.

Benefits
The LAVc network failure analysis, combined with
an accurate description of the physical network,

enables the system or network manager to maintain
the increased availability gained with the use of
multiple LAN adapters. Tirncly analysis and report-
ing of network componcnt failures significantly
reduces troubleshooting times and increases the
overall cluster availability.

Summary
VMS version 5.4-3 increases t l ~ e availability of Local
Area VAXcluster configurations by providing the fol-
lowing features:

Faster detection of channel failures

Support for the use of multiple adapters

Support for the use of additional network paths

Detection of network congestion

Analysis of network failures

The goals of these features are to

Provide higher cluster availability

Work around network congestion and network
component failures while keeping the cluster
running

Detect problems earlier and report them more
accurately, with network data that helps isolate
the failing network components

In addition to meeting these goals, the features in
WlS version 5.4-3 increase the cluster communica-
tion bandwidth.

Acknowledgments
I want to thank Kathy Perko and Steve Mayhew for
their help with the design of the multiple-adapter
version of PEDRNER. Kathy reviewed the code
during the implementation and provided valuable
input for both the code and this paper Thanks to
Scott H. Davis, Sandy Snaman, and Dave Thiel for
their contributions to the new PEDRNER design.
Thanks also to the LAN Group (Linda Duffell, Dave
Gagne, Rod Gamache, Bill Salkewicz, and Dick
Stockdale) for the VAX communication interface to
the LAN drivers, which simplified the design of the
new PEDWER. I also wish to acknowledge the LAN

Group for their help during the debug phase of this
implementation.

Digital Tecbnicnl Journal Vo1. .? No. .? Surnmer I991 3 5

Richard E. Stockdale
Judy B. Weiss I

Design of the
DEC LANcontroller 400
Adapter

The DEC LANcontroller 400, Digital's XIMI-to-Ethernet adapter (DEMM), connects
systems based on the Digital ,Y..\lI bus to an EthemeVlEEE 802.3 local area network
(LAN). These systems use the XllI bus either as the system bus @AX 6000 systems) or
as an I/O bzu (VU9000 system?. The new systems, which can utilize the full band-
width of the Ethewlet, are chalacterized by increased host processor speeds. The
DEMM adapter was designed to support these 1/0 requirements. In addition, con-
sole and monitor facilities were built into the adapterfirmware for debugging, ver-
ification, and user visibility. The adapter's performance for small packets exceeds
system capabilities, and Ethernet bandwidth is the limiting factor for large packets.

The high-performance DEC LANcontroller 400,
Digital's XMI-to-Ethernet adapter (DEMNA), con-
nects a system based on the Digital XMI bus to an
EthernetAEEE 802.3 local area network (LAN). This
adapter is intended for Digital systems that use the
xhlr bus either as the system bus @'Ax 6000 systems)
or as an I/O bus @AX 9000 systems). It is an intelli-
gent acl:rpter that implements the physical layer and
part of the data link layer of network protocol. The
term intelligent refers to the packet processing per-
formed by the adapter as part of the data link layer.

The DEMNA adapter was needecl to support the
I/O requirements of the VAX 6000 and VAX 9000 sys-
tems, which can utilize the full bandwidth of the
Ethernet. I'hc adapter also provides the ability to
configure thcse systems without a 111 bus. For these
systems, the I)I:..LINA adapter is the only Ethernet
connection available.

'I'he DEMNA adapter is controlled by a port driver
that resides in host menlory The interface between
the port driver and the DEMNA firmware (the port)
is a ring-bawd design which is optimized for low
system overhead and high performance.

The DEMNA adapter has the following major
features:

Supports EthernetAEEE 802.3 protocols

Si~pports up to 64 users (each one a separate
protocol such as local area transport [LAT] soft-
ware, DECnet network software, or clusters)

Supports two modes of addressing: virtual
addressing and 40-bit physical addressing

Allows buffer chaining on transmit

Performs packet filtering and validation on
receive

Supports Digital's maintenance operations pro-
tocol (MOP) functions

Provides support for diagnostic routines and
field service functions implemented through the
system console or diagnostic software

Has console and monitor facilities that allow a
console user to monitor DEMNA operation and
network utilization

This paper begins with a logic overview of the
DEMNA device. The sections that follow discuss the
factors that influenced design and implementation,
describe the major performance metrics and user
visibility operations, and review the design results
and future needs.

Logic Overview
The DEMNA adapter is a single-board XMI adapter
based on complementary metal-oxide semiconduc-
tor/transistor transistor logic (CMOS/TTL) technol-
ogy. As shown in Figure 1, the hardware consists of
four separate subsystems:

Vo6.3 No. .? Ocinmm 1991 Digital Technical Journal

Design of the DEC LANcontroller 400 Adapter

r-------------------------------

I I

I MICROPROCESSOR SUBSYSTEM
I

I
EPROM 1

I

REGISTER
ADDRESS I
ROM

I I

I
t 4 I

I CDAL BUS
I

I 4 4 I

ETHERNET

XMl BUS

I
1
I
I
I t + t
I DEMNA MEMORY BUS

I

I 4 4 I

KEY:

CVAX CMOSVAX
EEPROM ELECTRICALLY ERASABLE PROGRAMMABLE

READ-ONLY MEMORY
EPROM ERASABLE PROGRAMMABLE READ-ONLY MEMORY
LANCE LOCAL AREA NETWORK CONTROLLER FOR ETHERNET

1
1
I
I
1
I
I

MAC MEDIA ACCESS CONTROL
SIA SERIAL INTERFACE ADAPTER
SRAM STATIC RAM
SSC SYSTEM SUPPORT CHlP
XCI XMl CHlP INTERCONNECT

Figure I DEMM Block Diagram

MEMORY

XMI
INTERFACE 7

ARRAY

XCl BUS

XMI
CORNER

4

Microprocessor

4

TRANSCEIVERS1
LATCHES

Direct memory access (DMA) and shared memory

I
I
I
I
I

SUBSYSTEM

XMI interface

4

I I - - - - -

I
I
I

* I
I
I

ETHERNET

Ethernet

INTERFACE

The microprocessor subsystem contains the CMOS
VAX (CVAX) processor, system support chip (SSC),
boot read-only memory (ROM), Ethernet address
programmable read-only memory (PROM), electri-
cally erasable programmable read-only memory
(EEPROM), and random-access memory (ml). The
microprocessor subsystem provides an internal,
high-speed CDAL bus so that the CVAX processor
can fetch its instructions and execute them without
being delayed by the other controllers on the mod-

LANCE

ule. The firmware is stored in EEPROM, but is copied
to RAM for execution. The boot ROM contains the
initialization code and diagnostics. This subsystem
also provides a console interface through the SSC
for diagnostics, module debugging, and network
monitoring.

The DMA and shared memory subsystem pro-
vides the means of communication between the
CVAX processor and the other subsystems. The
devices arbitrating for this shared memory are the
CVAX processor, the gate array, and the Local Area
Network Controller for Ethernet (LANCE) chip.

The XMI interface subsystem contains the XMI
network adapter (XNA) gate array and the XMI
corner. The XNA gate array is the data-move engine
for the DEMNA adapter and contains all the XMI-
required registers.

Digilul Techtncul Journal Vol. :l No. 3 Summer 1991

t
SIA 4

Network Performance and Adapters

The Ethernet subsystem contains the LANCE

chip, the serial interface adapter (SLA) chip, and var-
ious bus interface logic modules. The Ethernet sub-
system receives packets from the Ethernet and
stores them in the shared memory. When transmit-
ting a packet on the Ethernet, the LANCE chip gets
the packets from shared memory and transmits
them on the Ethernet.

Design
The design of the DEMNA adapter was influenced by
many factors, including previous adapter design
experiences, available hardware such as Ethernet
chips, ancl system requirements. The DEMNA team
was assigned the following tasks:

Produce :I working Ethernet adapter that could
be used by operating systems such as vMs,
ULTRIX, ELN, and custom operating systems on
hardware configurations that use the m1 bus as
a system bus or an I/O bus

Deliver high performance, measured by the
amount of Ethernet bandwidth supported at var-
ious packet sizes, with minimized host overhead

Supply debugging features for design verifica-
tion ancl fielcl maintenance of the adapter

First, we reviewed previous adapters to deter-
mine what improvements could be made. We
learned that a complex host inlcrface cornp1ic;lted
host software and adapter firmware and gre;~lly
affected performance. One of these adapters, the
Digital BI Ethernet Network Adapter (DEBNA),
implemented a generic port interface that used
interlocked queues containing a queue entry with a
buffer name that indexed into a buffer descriptor
table (i.e., an additional level of indirection). In
addition to the firmware complexity, the hardware
was not well suited to a complex port interface.

Another area in which improvements could be
made over previous Ethernet adapters was the
amount of processing performed by the host proces-
sor during receive packet filtering, address transla-
tion, and buffer copies. Overall system performance
improves if this processing can be reduced by per-
forming part or all of these functions in the adapter.
This difference transforms the adapter from a dumb
adapter (much of the data link processing performed
by the host) to an intelligent adapter (much of the
processing performed by the adapter).

The results of our analysis of older Ethernet
adapters led us to choose a design that employs

a simple host interface, off-loads the host when-
ever possible, uses rings instead of queues, and sup-
plies the address of the buffer directly with the
ring entry rather than indirectly through another
data structure.

The design of the adapter was now consistent
with the needs of the new VAX 6000 and VAX 9000
systems. These systems, characterized by increased
host processor speeds, needed increased I/O per-
formance. The task of the DEMNA team was to fill
that need for Ethernet I/O.

Type of Adapter
The DEMNA product is a store-and-forward adapter,
i.e., it copies data to and from host memory by way
of temporary storage 011 the adapter. This data
transmission differs from that of a cut-through
adapter in which data flows directly between host
memory and the transmission medium. However,
the DEMNA adapter is acti~ally able to gain some of
the benefits of cut-through on the receive side.

Host In tevace
We designed a simple host interface, using rings
instead of queues. Interrupts to the host were kept
to a minimum, from one interrupt per packet at
light loads to a fraction of that number under heavy
loads. As seen in Figure 2, the port and the port
driver (host) share the following data structures,
which reside in host memory:

Port data block. This structure gives the port the
location of the rings and page tables in host mem-
ory and is a repository for error information.

Command and receive rings. These rings contain
information describing outstanding command
and transmit requests and buffer information for
receive buffers.

Transmit, receive, and command buffers. These
buffers contain packet data and command data.

These data structures constitute the primary
means of communication and data transfer between
the port and the port driver. Control status registers
(CSRs) are provided for port poll demand registers,
XMI context, and port initialization.

Two rings are used in the host interface: the com-
mand ring and the receive ring. Each ring consists
of 1024 bytes of physically contiguous memory, and
each ring contains entries that describe a buffer or a
set of buffer segments (when chaining transmit
buffers). The number of entries in the receive ring

38 W)1. .? No. .3 Su~nmer I991 Digital Tecbnical Jmrnal

Design of the DEC IANcontroller 400 Adapter

-

Y

HOST

ETHERNET

V

DEMNA

STARTISTOP +

READNRITE
DRIVER DEFAULTS

STATUS1 -
COMMAND INFO

I I DEMNA
)S - PORT

RING TRANSMITS -
RECEIVE

I I

Figure 2 DEMNA Port Inlerf~~ce

-

is fixed, since each entry points to a single contigu-
ous buffer. The size of each transmit ring entry is
variable and is fixed at initialization time.

The port and port driver process the entries in
each ring in sequential order, starting with the first
entry. A ring entry can be processed only by its
owner. When the last entry in the ring is reached,
processing starts again with the first entry.

Host interrupts are minimized by using a ring
release function, which counts the number of ring
entries processed for completion by the port and
the port driver. The port driver counts the number
of completed entries and writes this count to a
completion CSR when it has finished processing all
the completed transmit and receive ring entries.
The port maintains the same count and issues
another interrupt whenever it sees that its count
and the count last written by the port driver are dif-
ferent. This function ensures that the port driver is
interrupted only when it stops processing the rings
because there is nothing else to process. The port
driver can process multiple completed transmits
and receives after each interrupt as well. Thus, no
spurious interrupts are issued and the number of
interrupts is reduced by processing multiple com-
pletions at once.

Adapter Design
The firmware is written in \'m WCRO code. An
alternative was to use %iCRO for the transmit and
receive paths and a higher-level language for initial-

ization, shutdown, and error handling. However,
this approach was not chosen because it compli-
cates the interface and would have resulted in
firmware size difficulties.

C V m W M (used by the CVAX processor exclu-
sively) consists of 256 kilobytes and contains the
firmware and data structures (the firmware is
copied to IWM during self test). Smaller W M S would
have been slightly less expensive but would have
complicated the firmware update procedure and
limited the ability of the firmware to use the large
data structures needed for receive packet filtering.

Shared RhM (shared by the CVhX processor and
the LANCE chip) consists of another 256 kilobytes.
This Wit contains the transmit and receive buffers
as well as the LANCE transmit and receive rings.
There is a vast amount of buffering space here, so
the DEMNA device can tolerate a considerable
amount of inattention from the host before being
forced to discard incoming receive packets.

Erasable programmable read-only memory
(EPROM) consists of 128K bytes for diagnostics and
firmware boot code, including a backup copy of
sufficient operational firmware to allow an update
of EEPROM for initial load or subsequent update.
EEPROM consists of 64K bytes for operational
firmware, diagnostic patches, and error history data.

The gate array (data mover) handles the data
move and quadword rcacl/write operations. The
data-move operations transfer buffers between the
host and shared W I ~ . The quadword read/write

Digilal 7i.chirical Journal Vol 3 iVo .? S~llnrtier- 1991 39

Network Performance and Adapters

operations are used for control functions, such as
rcading ring cntrics, reading address translation
inlimnation, and writing ring si;i~iis on completion.
Once the firmware initiates a data-move opcration,
other work is performed by the firmware while thc
data move pmgresses.

Interrupts are very costly; therefore, we chose to
limit the number of interrupts fietdcd by the CVAX
processor. A LANCE interrupt costs CVAX inlcrrupt
overhead, plus a LANCE CSR access, plus some nor-
mal interrupt overhead to save and restore regis-
ters. A data-move interrupt is less costly, but the
firmware can be coded so that the data-move oper-
ation is usually complete, thus eliminating the need
for the interrupt. Polling is performecl for all LANCE-

and data-move-related functions, but interrupts are
used for local console I/o ancl error events.

Driver Design
The DEMNA team needed to design a driver that
would be compatible with existing drivers but that
would use all the features provided by the adapter.
For VMS systems, this meant using the set of com-
mon routines that provide much of the data link
functionality of the driver, but avoiding packet fil-
tering. Another goal was to limit the copying of data
by passing requests directly to the adapter.

For ULTRM systems, the driver runs at a lower
level with respect to packet filtering so it cannot
take advantage of this feature. However, buffer
chaining is used on the transmit side. As a transmit
request traverses the various software layers, it
accumulates buffer segments which the driver has
to concatenate into a transmit frame. To avoid
buffer copies in all but the extreme and infrequent
cases, the driver then passes up to 11 buffer seg-
ments to the adapter.

To allow customer-written drivers for special
applications, we documented the interface to make
it readily available to customers.

Debug Tools
The adapter has a very simple mission in life: to
transmit and receive packets. To verlfy operation,
some debug tools are needed. The goal for the
DEMNA team was to provide extensive debug tools
both in the operational firmware and in standalone
user tools. This design wuuld allow debugging and
verification in the dcvclopment lab and in other,
less-controlled environments. These clebug tools
are discussed further in the Visibility section.

Implementation
This section describes the implementation of the
DEMNA adapter through its major functional blocks:

Scheduler

Port processing

Command processing

Transmit task

Receive task

Console task

Monitor task

Scheduler
The scheduler is a round-robin routine that simply
checks for work, does it, checks for work, does it,
etc. There are no context switches, but some con-
text is maintained in registers and shared by all rou-
tines. The scheduler, when idle, consists of about
18 VAX MACRO instructions. Transmit and receive
tasks are given higher priority by duplicating their
scheduler entry. When not idle, one pass of the
scheduler processes four packets.

Port Processing
Port processing controls adapter initialization and
shutdown, LANCE initialization and restart, fatal
adapter error hanclling, gate array error handling,
and miscellaneous host interface h~nctions. This
task also handles firmware updates of EEPROM.

Command Processing
The command ring usually contains transmit
buffers, which can contain commands for special
functions. These commands are included in the
comrnand ring to allow the port driver to synchro-
nize control rccluests with transmit requests, e.g.,
user startup ant1 stopping.

Command processing routines are called by the
transmit task after the command buffer has been
read from host memory. The commands consist of
user startup (consisting of user context such as pro-
tocol type, packet format, physical address to use,
and multicast addresses to enable), user stopping,
read counters, and a set of maintenance commands.

Transmit Z I S ~
The transmit task copies a packet from the host
memory to adapter buffer memory and tells the

40 Vol. .3 No. 3 Summer 1991 Digilal Tecbdcal Journal

Design of the DEC LANcontroller 400 Adapter

LANCE to transmit it onto the Ethernet (store and
forward). After the LiLllCE has completed the
request, the firmware writes transmit status to the
command ring entry, signfying completion of the
transmit.

To minimize service time, the code in the trans-
mit path was carefully scrutinized. The number of
checks and branches was minimized for the opti-
mized path. The optimized path through the trans-
mit code is the 30-bit virtual addressing path, which
is the most used. However, the 40-bit physical
addressing path still results in better throughput
because this path does not require any address
translations, which are timely. The instruction sizes
were shortened when possible, using word instruc-
tions instead of longword instructions, to reduce
the amount of instruction prefetch by the CVAX pro-
cessor. Routines were placed on quadword bound-
aries to maximize cache efficiency. When waiting
for data moves to complete (getting the transmit
buffer from host memory) or obtaining address
translation information from the host, the firmware
was designed to perform other functions to increase
the probability that the operation would be per-
formed when the firmware needed it.

Receive Tmk
The receive task has the simple job of handing
received packets to the port driver. This task is com-
plicated by the need to off-load the host of part
of receive processing (including packet filtering,
packet validation, maintenance of counters, and
processing MOP messages) and to make duplicates
of packets when more than one user has requested
a copy. It is further complicated by the need to
provide buffering, which the port driver uses to
prevent the driver from supplying large numbers
of buffers. For enhanced performance, the firm-
ware deals with receive packets in small groups
(192 bytes) to allow the benefit of cut-through on
larger packets.

Packet filtering is done for the destination
address and for user type, either protocol type for
Ethernet, destination service access point (D S h P)

field for 802, and protocol identifier value for
802 subnetwork access protocol (SNAP) packets.
Additional filtering is done for users who request
all traffic or all multicast traffic. Filtering is done by
maintaining a 64-bit user mask, which accumulates
the list of users who want a copy of the packet
according to the characteristics of the packet and
what each user has requested.

Packet validation consists of length checks for
Ethernet frames (if the user is using a length field
after the protocol type) and for 802 frames. This
saves the driver a little work. Additionally, users can
request only packets smaller than a selected size;
the adapter discards packets that exceed this size.

The cut-through feature adds complexity and
reduces throughput on small packets, but provides
many benefits for larger packets. When a packet
larger than 192 bytes is received, the packet filtering
and validation of all but the length is done for the
first segment. This segment is then copied into the
host buffer, and subsequent segments are copied
appropriately. The last segment completes the
packet validation and cyclic redundancy check
(CRC). The difficulty occurs when the packet
validation fails or an error is detected, because the
packet is discarded ancl the context for the now-
free receive buffer has to be restored. The firmware
elects to save as little context as possible for each
packet and to regenerate buffer context after the
error, i.e., fetching the ring descriptor anew and
redoing the address translation.

Console Task
The console task accepts and parses console com-
mands and displays the requested data. There are
two means of accessing the console: local and
remote. The local console is accessed by a terminal
connected directly to the DEMNA adapter. The
remote console is accessed through MOP console
carrier commands directed at the adapter from
another system. A remote console may also be used
to access a DEMNA device on the local system (com-
ing in through transmit instead of receive). The
firmware does not distinguish between transmit or
receive operations from remote consoles. The con-
sole block accepts the commands and decodes
them, and the monitor block determines the status.
The monitor block passes this status back to the
console block where it is formatted and displayed
on the screen.

Due to code size limitations in the EEPROM, com-
pressed versions of the console screens are stored
in the EEPROM. At initialization time the screens are
uncompressed and stored in the mi. (The screen
compression saved 5 kilobytes in the EEPROM.) To
easily setup and maintain the screens. especially
since they often changed during the project, the
screens were set up in separate text files. The fields
in the screen were coded with different data types,
such as date or longword. The screen was then put

Digitul Technical Journal Vo1. 3 No. 3 S~tmrner 1991

Network Performance and Adapters

through a PASCAL program to convert it to a vm
MACRO data structure and compress it.

The local consoIe ant1 the remote console can be
run simultaneously. 'I'hey have separate input and
output buffers, the same decode and formatting
code, and different input and output methods.

The remote console uses the MOP console car-
rier, coming in on transmit or receive. The com-
mand/poll and response/acknowledge commands
are sent by the MOP program, i.e., either the
network control program (NCP) or a user program
that implements the MOP console carrier. The con-
sole code extracts the input characters from the
command/poll packet and returns a response/
acknowledge packet with any available data from
the remote console output buffer. When a com-
mand has been entirely received, it is decodecl and
executed and the response placed in the remote
console output buffer, which is sent back to the
user in response/acknowledge packets.

The local console is a terminal directly con-
nected to the DWNA device and interfaced through
the SSC universal asynchronous receiver transrnit-
ter (UART). This terminal connection receives and
transmits one character at a time. Characters are
collected into the local console input buffer and
complete commands are parsed and executed.
Response data is placed in the local console output
buffer. The local console uses interrupts to signal
when a character has been typed or when the IiART
is ready to transmit another character l'hese are the
only interrupts used on the module, except for
error interrupts. Since console interrupts are rela-
tively infrequent, they are less costly than polling.

Monitor Tmk
The monitor facility operates mainly during receive
or transmit. It d m runs as a low priority entry
in the scheduler to tlcai with debugging and veri-
fication activities (when debugging firmware is
enabled).

Perfortnunce
As stated previously, the primary goal of the DEMNA
adapter was higl~specd performance, i.e., this
adapter would not create a bottleneck when placed
in a system. The major performance metrics we
identified were throughput, service time, latency,
and reliability.

Throughput is the number of packets or bytes of
packet data that can be transmitted or received
per unit of time.

Service time is the time a packet spends in each
stage along its path from source through host
software and driver, through adiipler, over wire,
through adapter, and through driver and host
software to the destination.

Latency is another measure of service time. It is a
measure of delays encountered by queue depths
of more than one at various points.

Reliability is measured as the probability of packet
loss under a receive load. It is also measured as
adapter buffering and host buffer allocation
effectiveness. For some protocols, recovery from
packet loss takes a significant amount of time,
and the loss of a packet may be quite noticeable
to a user. Hence, recovery is related to a user's
perception of reliable operation.

The performance goal of the DEMNA team was to
minimize the service time through the adapter to
maximize throughput. This is most critical for small
packet sizes. If the service time is greater than the
time it takes to transmit or receive a packet, then
queue depths increase, increasing latency for s u b
sequent packets. Small packets are critical because,
obviously, they take less time to transmit or receive.

The speed of the Ethernet wire and the XMI bus
must also be considered. The Ethernet operates at
10 megabits per second. The available bandwidth
into memory and the capacity of the XMI are much
greater; thus, the Ethernet is the limiting factor. To
maintain maximum throughput, the DEMNA device
must write and read packets to and from host mem-
ory at a speed equal to or greater than the Ethernet
wire. If this speed is obtained, then the service time
of the DEMNA adapter must be less than the time it
takes to transmit or receive one 64-byte (small)
packet to or from the Ethernet wire to maintain
maximum throughput at all packet sizes.

Hardzuare
The primary hardware factors influencing adapter
performance are CVAX performance, DMA engine
throughput, and bus contention.

The gate array D m engine can sustain between
11.5 ant1 13.5 megabytes per second on a VAX 6000
system. When transferring packet data (and atten-
dant host ring processing), the firmware can s u s
tain about 5.8 megabytes per second. This is the
approximate rate at which the firmware would
deliver a burst of large packets that had been stalled
due to a lack of receive buffers.

V01. :3 No. .3 Strmrner I991 Digital Tecbnical Journal

Design of the DEC LANcontrol1c.r 400 Adapter

The CvAX chip used is the 60-microsecond vari-
ant (the same one used in the VAX 6000 Model 310
processor). As seen in Figure 1, the processor runs
on its own internal CDAL bus which has RA.M con-
taining firmware and private data structures. Thus
the processor does not contend for the same bus as
the gate array and the LANCE chip. However, the
CVAX processor does touch shared memory and
gate array registers; therefore the possibility of con-
tention is significant. Logic analyzer measurements
indicate that about 14 percent of CVAX cycles are
consumed while waiting for access to the sharetl
memory bus for minimum size packets. For large
packets the consumption is 33 percent, but the
cycles needed are considerably less than the remain-
der. The effect on the gate array accounts for
part of the difference between the speeds of 11.5 to
13.5 megabytes per second and of the 5.8 megabytes
per second mentioned above.

Firm ware
Throughput is limited by the Ethernet bandwidth
for packet sizes greater than 88 bytes. The average
packet size on Ethernet is approximately 150 to
450 bytes per packet for a mix of DECnet, LAT, and
cluster traffic. Table 1 represents the throughput
that the host software can see, given sufficient host
computes. These numbers show what might be
expected. Virtual addrcssing costs some perfor-
mance, and receive filtering accounts for most of
the difference between transmit and receive.

I t is interesting to look at the number of instruc-
tions executed by the CVAX processor for each
receive and transmit packet as the measure of how

Table 1 DEMNA Throughput

much work must be done for each packet. These
instruction counts are for minimum size packets in
virtual address mode and incrcase slightly with
increasing packet sizes

For a transmit, the number of instructions
required was about 134, consisting of 5 instructions
for work done in the scheduler to determine initial
transmit context, 77 instructions for the data trans
fer from host memory, 18 instructions to gct the
LANCE chip to begin transmitting, and 34 instruc-
tions to process packet completion and to update
status in the transmit ring entry in host memory.

For a receive, the number of instructions required
was about 160, consisting of 5 instructions for work
done in the scheduler to determine initial receive
context, 40 instructions to deal with the LANCE
operations, 20 instructions for packet filtering,
65 instructions for the data transfer to host memory
(including some time spent finding a user and
validating the packet length), and 30 instructions
for the prefetch of the next receive ring entry.

Some throughput was traded off in the interest of
reducing adapter-added latency. By processing
receive packets in groups of 192 bytes, the latency
contribution for any packet size is much smaller
than it woultl be if all the packet processing occurs
after the packet has been fully received. Thus the
time between the end of a packet on the wire
and the host interrupt is fairly constant from 64- to
1518-byte packets, 50 to 70 microseconds

Reliability
Reliability, or probability of loss, is measured by how
large a burst of traffic the adapter can withstand at

Packet
Length
(bY-tes)

I Microseconds I
Ethernet LANCE Transmit Transmit Receive Receive
Maximum Maximum Virtual Physical Virtual Physical

14880 14662 131 81 14633 12468 1291 8
13586 13404 12592 13361 12254 12830
12500 12345 12247 12340 11813 12227
11 574 11 441 1 1432 1 1438 11 441 11 441
10775 10660 10656 10658 10660 10660
9469 9380 9380 9380 9380 9380
8445 8374 8374 8374 8374 8374
4528 4508 4508 4508 4508 4508
2349 2344 2342 2344 2344 2344
11 97 11 95 11 95 1195 1195 1195
81 2 81 2 81 2 81 2 81 2 81 2

Digital Technical JozirnaI Vo1. 3 No. 3 S~lrnmer. 1991 4 3

Network Paformance ~d Adapt-

the maximum receive rate and deliver thesc pack-
ets to the host without losing any. Adapter reliabil-
ity was measured at various packet sizes. A burst of
5 seconds without packet loss was considered to be
of "infinite" duration.

Table 2 shows that the DEMNA adapter can sur-
vive a significant burst of activity without packet
loss. Such activity is unlikely, but possible, depend-
ing on the application being run and on the net-
work configuration.

This testing does not measure how host software
performs buffer aflocation for a user application or
for the adapter as a whole. For the latter, the DEMNA
adapter accounts for any lack of buffering by the
host by not discarding r packet if a buffer is not
immediately available. Instead, it walts up to three
seconds for the host to supply a buffer.

A system user looking at the operation of the net-
work sees three areas of complexity: thc systcm
software, the network controller, and the network.
When everythmg is wurking well, there is little
need to look at any of these areas except perhaps to
predict future operation (by extrapolating network
utllbtion or system usage) or to confirm that the
system is indeed nrnning well. When the system is
not running well, visibility into these areas is cru-
cinf to understanding what is wrong and how to
correct it. The console and monitor facilities were
buiit into adapter firmware from the outset; we
knew that thc visibility was crucial to i ~ d ; l ~ c r
debugging and verification and would later be help
ful to users.

The console also displays buffer occupancy on
the adapter for transmit and receive, user conligura-
tion as to protocol type and chardctcrlstics, buffer
availability counters, and host interrupt counters.
This data indicates how the spstcrn is running, i.e.,
whether sufficient buffers are allocated to the
device and to each user of the device. These coun-
ters also indicate how much attention the driver is
paying to the adapter. For example, if the system is
not tuned properly, the adapter may be generating
less than normal interrupts (because queuing delays
are affecting the system operation). These queuing
delays can be seen in the firmware counters, which
monitor the depth of adapter queues and the ability
of the adapter to give receives to the host, i.e.,
buffering on the adapter has been used to compen-
sate for queuing delays in the host.

Adapter Operation
When the adapter is not malfunctioning, visibility
into adapter utilization is important. The console
displays program counter (PC) sampling results for
the firmware, showing how busy the adapter is and
where time is being spent. When looking at the I/O
subsystem as a whole, it is important to know how
much the ackapter is contributing to queuing delays,
buffer occupancy, and added latency This adapter
operation can be seen by looking at how busy the
adapter is and how many buffers it has outstanding.

For adapter failure or problems on the XMI, the
console displays error information which has been
saved in EEPROM. This error data consists of fatal
error contest, data transfer or XivlI error context,
and results of self-test.

System Opmtion Network Operation
The console displays xP/ll utilization a s apportioned The DEMNA device normally sees all packets on the
among the MI devices. This data comes from sun- wire (excluding packets less than 64 bytes in length
pling done by the firmware of the "last XMI node [runt packets] and collision fragments). When look-
active on the bus.' From this, the user can estimate ing at the adapter operation through the console
total XMI utilization. facility, the user sees current network utilization

Table 2 DEMNA Receive Burst Tolerance

Packet Burst Burst Burst Burst
Length Virtual Virtual Physical Physical
(bytes) (packets) (microseconds) (packets) (microseconds)

64 3250 221 661 3843 2621 06

72 51 16 381 677 11591 864741
lnfinite lnfinite

88 Infinite Infinite Infinite Infinite

44 Vol. .? No. 3 Summer 1991 Digital Technical Journal

Design of the DEC LANcontroller 400 Adayter

and network error information. For transmit errors,
the console displays the number of errors and date
and time of the last occurrence. For receive errors,
the console displays the number of errors, date and
time, source address, and protocol type. Addition-
ally, receive errors that are not counted (because
they do not pass receive filtering) are displayed For
example, error information is displ;cyed for a node
generating packets with <:R<: errors regardless of the
destination of these packets.

The console also provides the command SHOW
NETWORK to display network utilization in node
addresses and protocol types. For this command,
the receive firmware calls a monitor facility routine
for each pitckct seen on the wire. This routine main-
tains statistics for each source and destination node
address, consisting of the number of packets and
the number of bytes. At three-second intervals, the
console calls a monitor routine which adds statis-
tics over the prior interval to cumulative data for
each node, collects top nodes and protocol data,

and clears the interval data to prepare for the next
three seconds of monitoring. Figure 3 represents a
sample network monitoring display.

Debug Tools
The monitor task provided other debugging fi~nc-
tions during adapter debugging and internal field
test. These functions are not visihle features in the
finished product. However, they are extensions to
the functionality and illustrate the benefits of visi-
bility into the adapter. A user program, XNAVON,
was written to access the following functions.

Traffic generation. It is difficult to generate
heavy loads on an adapter, particularly because
of logistics. Other systems are needed with
enough processing power to generate the load.
Using the XNAMON program, only one system
was needed. XNAMON was run on it to direct
other adapters to generate traffic to another
node with a particular packet size at a specified
rate. Since traffic generation could be done

- N e t w o r k - 21-APR-1991 1 1 : 29 :38 -

- 3000002 u s e c s - 2 1 . 6 % N I -
U s e r P k s / S e c B y t / P k % N I - C u r

60 -07 N I S c a 571 21 4 1 0 . 7 %
60 -03 DECnet 1 7 7 645 9 . 4 %
60 -04 L a t 1 6 7 6 4 1 .I%
60-02 MopRC 1 8 8 7 0 .1%
80 -41 LAST 7 8 2 0 .0%
FE-00 2 271 0 .0%

Nodes

- 0 0 : 0 0 : 3 3 - 1 9 . 7 % N I -
P a c k e t s B y t e s (k) % N I - T o t

1501 9 3041 8 . 1 %
6358 4021 1 0 . 0 %
5765 379 1 . 2 %

6 5 9 5 6 0 . 1 %
206 1 7 0 .0%

5 4 2 0 0 . 0 %

P a c k e t s

KEY:

usecs
N I
%NI
NlSca
MopRC
LAST
Pkslsec
ByVPk

MICROSECONDS
NETWORK INTERCONNECT (TRANSMISSION MEDIUM)
PERCENTAGE OF AVAILABLE BANDWIDTH UTILIZED
NETWORK INTERCONNECT SYSTEM COMMUNICATIONS ARCHITECTURE
MAINTENANCE OPERATIONS PROTOCOL REMOTE CONSOLE
LOCAL AREA STORAGE TRANSPORT
PACKETS PER SECOND
BYTES PER PACKET

Figure 3 Network Monitoring Display

Digital Technical Journal Vol. j No. 3 S~crnrner 1991 4 5

Network Performance and Adapters

regardless of system state (except for power
on), there was always a good supply of traffic
generators.

Packet tracing. This fiinction allowed a nocle to
sc;un the rcccivc strc;im for packcts with selected
source and destination adtlrcsscs and protocol
types. Either the packet heaclcr or the entirc
packet was saved for matching packets. This
fiinction was used extensively during initial
debugging for validating transmit functionalit!:
Later it was used for valiclation of MOP and
related functionality by creating trace files on a
known good node. We then ran functional
scripts through a test generator, which used the
traffic generator on one node to send a test
packet to the node under test. The command
and the response were traced by the trace nocle
and the test program collected the trace data ancl
compared it agnlnst known good data. Packet
tracing was also used to wr&y packet filtering by
devising a test program that could start up par-
ticular user configurations and loop back any
packets received.

Adapter test. The ability to exercise a module
under stress was critical to adapter hardware ver-
ification. ?'he functionality in question was the
Ethernet subsystem and the XMl interface
through the gate array. The monitor facility pro-
vided this test functionality by doing MOP loop-
back operations to another nocle while doing
various data transfer operations to host memory.
Data compares were done on completed trans-
actions to validate data integrity. The XNAMON
program provided the interface for this function
and the remote display of its results.

Remote debugger. The access to DEMNA inter-
nals allowed remote adapter memory dumps
and remote inspection of data structures while
the adapter was running.

The DEMNA adapter meets the requirements of
the VA)(6000 and VAX 9000 systems. In fact, the pcr-
formance for small packets exceeds the capability
of these systems. For larger packets, Ethernet
bandwidth is the limiting factor. Our experience
illustrates some advantages ancl disadvantages of
choosing a firmware-based design over an interface
implemented entirely in hardware.

Adzlantages of a Fimware-based Design
The advantages of designing an adapter in firmware
are as follows:

The firmware can usually off-load host computes
by doing more pre-processing.

The firmware can be changed easily (bug fiies or
changes in fi~nctionality), thus reducing long-
term maintenance and support costs. Also,
changes can be made in the field by a firmware
upgrade rather than requiring module rework at
a manufacturing site.

By designing in the firmware, designers can
avoid software driver complexity and the neces-
sity of hardware redesign.

The firmware can provide powerful debugging
mechanisms and tools.

The firmware is very flexible. Changes to sup-
port hardware problems or additional off-load of
host computes can be considered late in the
design cycle. This may also allow new port archi-
tecture and addressing changes for creating new
products.

Firmware designs allow extensive fi~nctionality
for lower product and development cost than a
total hardware design.

Firmware designs allow the hardware to be
released earlier in the development cycle.

Disadvantages of a Firmware-based
Design
The disadvantages of designing an adapter in firm-
ware are:

The adapter is generally more expensive, consid-
ering the cost of a microprocessor subsystem
with enough computes for the job.

The adapter is slower in terms of latency. Some
applications may be more sensitive than others,
given the same throughput, but may have
slightly larger service times per packet. The
effect can be viewed in terms of buffer occu-
pancy: an adapter with lower latency may uti-
lize, on average, few buffers.

The approach is not feasible for transmission
media much faster than Ethernet, because the per-
formance requirements of the microprocessor

46 1'01.3 No. 3 Summer I991 Digital Tecbnical Journal

Design of the DEC LANcontroller 400 Adapter

become extreme or the hardware assists for the
microprocessor become too complex and costly.

Future Directions
Several characteristics disti~lguish future antici-
pated system design from current systems (sucl~ as
the VAX 6000 and VAX 9000 systems).

Increased host processor power

Simplified bus design

Increased I/O bandwidth requirelnents

Increased host processor speed moves the I/O
bottleneck from the host to the 1/0 subsystem. To
supply the I/O needs, the I/O subsystem must
provide faster media, e.g., fiber distributecl clata
interface (FDDI) in the near term, or multiple con-
nections to slower media (such as Ethernet). The
I/O adapters will be expected to provide signifi-
cantly greater throughput with a smaller adapter
contribution to latency. The effective performance

the basic data size of the system to avoid cache
thrashing and unnecessary read-mode-write
transactions.

Reduced latency. The adapter should minimize
its contribution to transmit and receive Intcncy.
This may mean reducing some of the filnclions
done by an intelligent adapter on receive, in order
to spectl clelivery to the host ;iltcr packet recep-
tion is complete. These functions include packet
filtering, handling of maintenance operations
packets, length validation, and maintaining coun-
ters data. Improving packet liltcring by host soft-
ware would eliminate the reason for placing this
function on the adapter in the first place.

Filtering in host software is considerably more
difficult than in the adapter. The difficulty
comes from the need to deal with extreme user
configurations. The DEMNA is bounded by limit-
ing the users and node addresses. The extreme
cases must still be done by host software.

of the system will be more sensitive to latency. For Acknowledgments
example, an application using a single threaded
commancl/rcsponse protocol is extremely depen- The authors would like to acknowledge the follow-

dent on the amount of ser\iice time through the ,/(> ing members of the DEMNA (lesign team: Barbara

subsystem at each end. As the processing speed Aichinger, Keith Bilafer, Mark Cacciapouti, Don

increases, application overhead is reduced and Dossa, Linda Duffell, Bernie Hall, Jeff Huber, Helen

throug~lput becomes dominatecj by the service McGreal, Jonathan Mooty, m r e O'Keefe, David

time of the adapter and the transmission time. Oliver, Brian Pars, Art Singer, Andy Stewart, Fred

Faster processors place a greater burden on the Templin, Vicky Triolo, Ecl Tulloch, and Don Villani.

system bus and I/O interface, which necessitates a
simpler bus protocol. This might consist of elimi-
nating costly fiinctionality such as byte masking
and interlocks. However, a simpler interface to the
I/O adapter will require considerable change to the
port protocol to ensure its efficiency.

The characteristics needed in future adapters are
as follows:

Greater throughput. This means more connec-
tions to a slower medium, such as a single
adapter supporting n~ultiple Ethernet connec-
tions. Or it means a faster medium. Additionally,
configur;~tions using Ethernets as point-to-point
links will be more common, thus implying a
heavier load on each Ethernet.

Simpler host interface. This is necessitated by
the simpler bus protocol. Bus overheacl should
be minimized, which includes the elimination of
such filnctionality as page t h l e access for virtual
address translation. Also, the bus transfer size
used by the adapter should be compatible with

General References
DEC LAA1controller 400 Prog~w~nmer's Guide
(Maynard: Digital Equipment Corporation, Orcler
NO. EK-DEMNA-PGOO1, 1990).

DEC LAiVcontroller 400 Console User's Guide
(Maynard: Digital Equipment Corporation, Order
No. EK-DEMNA-UG-001, 1990).

D. ~Mirchandani and I? Biswas, "Ethernet Perfor-
mance of Remote DECwindows Applications,"
Digital Technical Journal, vol. 2, no. 3 (Summer
1990): 84-94.

D. Boggs et al., "Measured Capacity of an Ethernet:
Myths and Reality," Proceedings of SIGCOMkl '88
(ACM SIGCOMM, 1988): 222-234.

The Ethernet: A Local Arcu Network, Data Link
Layer and Physical Layer Specijications, Version 2.0
(Digital Equipment Corporation, Intel Corporation,
and Xerox Corporation, Order No. AA-K759B-TK,
1982).

Digital Techrricnl Journal Vol ? iVo 3 S1~11rn7er 1991 47

Satish L. Rege I

The Architecture and
Implementation of a
High-performance FDDI Adapter

With tbe advent o f f b w distributsd data interfnce (FDDI) techno lo^, Digital saw
the need to define an architecture for a highperformance adapter that coz~ld trans-
mitdata 30 times faster than previously built Ethernet adopters. We specijiied afrst
generation FDDI data link layer adapter architecture that is capable of meeting the
maximum FDDIpacket-carrying upudty The UEC FUnIcontroller 400 is an imple-
mentation of thk architecture. This adapter acts as an inteiface between &MI-based
CPUs, such as the VAX 6000 and VAX 9000 series of com)zrters, and an FDDI local
area network.

Fiber distributed data interface (FODI) is the second
generation local area network (LAN) technology.
FDDI is de f i ed by the American National Standards
Institute (ANSO FDDl standard and will coexist with
Ethernet, the first generation LAN technology.

The architecture and implementation presented
in this paper are h r the DEC FDDlcontroller 400,
Digital's high-performance, XMI-to-FDDI adapter
known as DEMFA. This adapter provides an interface
between an FDDI LAN and Digital's xMI-based CPUs,
presently the VAX 6000 and VAX 9000 series of com-
p u t e r ~ . ~ ' DEMFA implements all functions at the
physical layer and most functions at the data link
layer.*'

We begin the paper by differentiating between
an architecture and an implementation. Then we
present our project goal and analyze the problems
encountered in meeting this goal. Next we give a
historical perspective of Digital's LAN adapters. We
follow this discussion by describing in detail the
architecture and implementation of DEMFA. FlnaLIy,
we close the paper by prescntlng some results of
performance measurement at the adapter hardware
level.

Adapter Architecture and
Implementation
Before we discuss the DIrh41:il architecture and its
implementation, it is necessary to understand
what is meant by an adaptcr architecture and an

implementation of that architecture. An adapter
architecture specifies a set of functions and the
method of executing these functions. An imple-
mentation that incorporates all of these functions
and conforms to the method of executing these
functions becomes a member of the adapter archi-
tecture family. Thus, for a givcn architecture, many
implementations are possible.

To grasp the concept presented in the previous
paragraph, consider the VAX CPU architecture. This
architecture defines the instruction set, which is
composed of a set of arithmetic, logical, and other
functions, and a format for the instruction set that a
processor should implement to be classified as a
VAX computer. Examples of VAX implementations
are the VAX 11/780 and the VAX 9000 computers,
which both conform to the VAx CPU architecture.

Our Goal and the Problem Definition
Our goal was to define an architecture for an FDDI
adapter that meets the ultimate performance goal
of transmitting approximately 450,000 packets per
second (packets/s). This goal is considered ultimate
because 450,000 packets/s is the maximum packet-
carrying capacity of FDDI. Note that this transmis-
sion rate is approximately 30 times greater than that
of Ethernet, which can transmit approximately
15,000 packets/s.

Before dcCining the problem, the basic properties
of XMI and FDDI must be understood. XMI is a

48 Vo1.3 No. 3 Summer 1991 Digital Technical Journal

The Architectzlre and Implementation of a High-performance Adapter

64-bit-wide parallel bus that can sustain a 100-
megabyte-per-second (MB/s) bandwidth for multi-
ple interfaces.' Each interface attached to the XMI
bus is rcfcrred to as a commander when it requests
data or a responder when it delivers data. xM1 is an
interconnect that can have transactions from sev-
eral commanders and responders in progress simul-
taneously.

FDDI is a packet-oriented serial bus that operates
using the token ring protocol and has a bandwidth
of 100 mcgabits per second (Mb/s)." FDDI is capable
of transmitting packets as small as 28 bytes, which
take 2.24 microseconds to transmit. Therefore,
FDDI can carry approximately 450,000 minimum-
size packets/s. The largest packet that FDDI can
carry is 4508 bytes. The WSIIIEEE 802.5 standard
defines the FDDI operation; Digital has developed
its own implementation of the FDDI base technol-
ogy as a superset of the ANSI standard.-l

Our problem was to architect an adapter that
could interface M I , i.e., a parallel high-bandwidth
CPU bus for VLX computers, to a serial fiber-optic
networking bus. To avoid being the bottleneck in a
system, such an adapter must be able to transmit or
receivc 450,000 packets/s.

ANSI defines the protocol for interfacing an
adapter to an FDDI LAN.9ut we had to define the
protocol between the adapter and the W S and
ULTRIX operating systems used by most VAX com-
puters. Thus, solving the problem required us to
architect a data link layer adapter that would satisfy
both protocols and meet the FDDI maximum packet
transfer capability.

Historical Perspective
The computer industry has built many LAN

adapters since the inception of Ethernet ten years

ago. The first LAN adapter built by Digital was the
UNIBUS-to-NI adapter (UNA). (NI is Digital's alias for
Ethernet.) The Digital Ethernet-to-XM1 network
adapter, known as DEMNA, is Digital's most recent
Ethernet adapter.'

Let us choose the maximum throughput rate
expressed in packets per second as a performance
metric for LAN adapters. T11e historical perspective
shows that the first adapter to meet the Ethernet
packet-carrying capacity is the DEMKA. Therefore,
it took approximately eight years and six genera-
tions for an Ethernet adapter to achieve this
throughput rate. Consequently, many designers
thought that our goal of meeting the ultimate FDDI
packet-carrying capacity was impossible.

But the DEMFA architecture, a first generation
FDDI data link layer adapter architecture, can meet
the maximum FDDI packet-carrying capacity. In
this sense, the DEMFA architecture is ultimate.

Traditional Adapter Architectures
In this section, we analyze the traditional adapter
architecture and show that by using this architec-
ture we could not meet our performance goal.
Figure 1 is a block diagram of a traditional adapter,
e.g., DEMNA. In such a design, a CPU in the adapter
operates on every transmitted and received packet.
Thus, using this traditional architecture to build an
ultimate FDDI adapter would require a CPU capable
of handling 450,000 packcts/s. To predict the per-
formance of such a CPU, wc extrapolated from the
performance data of the CPU used in DEM,UA.- This
traditional adapter can handle approximately
15,000 packets/s using a CPU ratecl at 3 VN(units of
performance (WPs).

If we assume a linear model to extrapolate the
performance of a CPrJ from DEMNA to DBMFA, an

BUFFER
MEMORY

ADAPTER
MICROPROCESSOR

Figure I Block Dicgram of a Traditional Adapter

Digital Technical Jorcrnal Vol. 3 No. .? Srmmer 1991 49

t

- ADAPTER
MICROPROCESSOR
MEMORY

Network Performance and Adapters

ultimate FDDI adapter would require at least a
90-WP CPU. Such a cpU was neither available nor
cost-effective for timely shipment of our adapter.
Besides, it would be extravagant to use a 90-WP
CPU in an adapter whose host CPU may have a per-
formance as Iow as 3 to 4 WPs. Therefore, we
looked for a different solution.

DEMFA Arcbitectzcre
The DEMFA architecture is characterized by tht fol-
lowing specifications for functionality and the
means to achieve this functionality:

As mentioned earlier, the DEMFA achltecture
implements all functions at the p h ~ s i d iayer
and a major subset of the functions at the &a
I ink layer.

The architecture requires that this functionality
be implemented in pipelined stages, which are
used to receive and transmit packets over the
FDDI ring without C P U interference.

The DElMFA architecture specifies a ring interface
for communicating between the plpcllncd
stages. Rings operate as queues that alto* buffer-
ing between pipelined stages, enabling these
stages to proceed In an asynchronous fashion.

The architecture requires a packet-filtering
capability in the pipelined stage nearest to the
FDDI ring; thb capability helps to minimize
adapter and host resource utilization.

The architecture specifies the DEMFA port,
which minimizes the information transfer
required to interact with the host operating
system. This interaction takes place during both
initialization and the normal operation of receiv-
ing and transmitting packets.

In the following sections, wc elabonte on different
features of the DEMFA architecture.

Pipelined Architecture with No C'PU
Interference
Once we determined that the traditional architec-
ture of a CPU processing the packets could not meet
our performance goal, we began to investigate
alternative architectures. The requirement was to
either process one receive packet or queue one
transmit packet in a time period less than or equal
to the time it takes to transmit on an FDDI ring.

Thus, the device we ard~itttcred must process
28-byte packets in less t h 7 2.24 microseconds. A
little thought will show that if wc are able to meet
the requirements for processing small packets at
the FDDl bandwidth, then the requirements for
lnrger packets can be easlly met.

Our final choice was a three-stage pipeline
approach which broke down the complcsity of
implementation while meeting our performance
goai. As shown in Figure 2, the three stagcs of the
pipeline in the adapter are the FDDI corncr and
parser (FCI') stage, the ring entry movcr (REM)
stage, and the host protocol &coder (HPD) stage.
Figure 2 also shows two other functions required
of the adapter: the buffering of packets, which
requires a memory called the packet buffer mem-
ory (PBM) and a memory interface called the packet
memory interface (PMI); and the local intelligence,
also called the adapter manager (AM).

DEMFA Functions
This section presents brief descriptions of the
DEMFA functions and the pipelined stages in which
these functions are performed. This, according
to our definition, is the DEMFA architecture. A later
section, One Implementation of the DEMFA Archi-
tecture, describes an implementation in detail.

The FCP stage converts serial photons on the
FDD[ring into packets and then writes the packets
into PBM longwords, 32 bits at a time. The parser
implements the logical link control (LLC) filtering
functionality This stage is also responsible for cap-
turing the token on the FDDI ring, transmitting
packets, and implementing thc physical layer, e.g.,
media access control (MAC), fiinctionality required
by the FDDI standard.

The REM stage is responsible for distributing
packets received over the FDDI ring to the host
computer and to the tw. This stage also collects the
packets from the host and the AM to queue for FDDI

transmission.
The HPD stage interfaces with the XMI bus to

move received packets from PBM to the host mem-
ory and to move transmit packets from the host
memory to the PBM.

The PBM stores the packets received over the
FDDI ring and the packets to be transmitted over
the FDDI ring. It also stores the control structures
required for accessing these packets. The PMI arbi-
trates the requests made by the three pipelined
stages and the AM to access the PBM.

Vo1.3 No. 3 Summer 1991 Digital Tecbnicnl Journal

The Architecture and Implementation of a High-performance Adapter

--

(MEMORY 1 PACKET SUBSYSTEM

I BUFFER
MEMORY

PACKET
PMl BUS MEMORY RMC BUS

INTERFACE

HOST PROTOCOL
DECODER
STAGE

RING ENTRY
MOVER STAGE

MEMORY n

FDDI CORNER

PARSER STAGE

PACKET PIPELINEJ
. - - - - - - - - -
-

I MICROPROCESSOR
I SUBSYSTEM

Figure 2 DEMFA Block Diagmm

The AM implements the functionalities of self-
test and initialization in the adapter and also a sub-
set of the SMT function required by the ANSI FDDI
specification."The adapter manager performs no
function in either the receipt or transmission of
individual packets to the host.

We use ring interfaces to communicate within
the adapter and between the adapter and the host.
These interfaces are described in detail immedi-
ately following the next section.

Performance Constraints on the Pipelined
Stages
Consider the three pipelined stages and their ring
interfaces. At any time, the three independent
stages are processing different packets. Thus, if the
HPD stage is processing received packet 0, the REM
stage may be working on received packet 4 and the
FCP on received packet 7 Note that packets 1 ,2 , and
3 wait on a ring between the REM stage and the HPD
stage. Similarly packets 5 and 6 wait on a ring
between the FCP stage ant1 the REM stage. The PBM

must have enough bandwidth to service the three
stages. It also must service them with low latency
so that the first-in, first-out (FIFO) buffers in the
FCP stage do not overflow.

By dividing the processing of a packet over the
three stages and the ring interfaces used to queue
packets between these stages, we reduced the
complexity of the total adapter functionality. Any
implementation of this architecture specification
would consist of three loosely coupled designs that
use ring interfaces to communicate with one
another.

Each stage must process a packet in less time
than it takes to transmit the packet on the FDDI
ring. As we mentioned previously, this transmission
time is 2.24 microseconds for the smallest packet. A
larger packet may take longer to process than a
small packet, but such a packet also takes longer to
transmit on the FDDI ring.

Thus, to meet our performance goal, we archi-
tected a three-stage pipeline implementation, with
each stage meeting a packet-processing time

Digital Technical Jounral Vol 3 No .3 S~11rz1rzer 1991

Network Performance and Adapters

dependent upon the packet size. In addition, our
;~rchitecture specified a PI111 with sufficient
Ii-lemory bandwidth to service the asynchronous
requests from the three stages with minimal
latency.

Ring Interface-The Core of the DEMFA
Architecture
The ring interface forms the core of the DEMFA
architecture. An interface is necessary to exchange
data between he adapter and the host computer
and also between the different stages and ~LII IC-

tional units of Lhe adapter. Such an interlace usually
consists of a data structure and a protocol for com-
munication. We cvaluatecl various data structures,
including a linked list or queue data structure, and
found that a ring data structure is efficient to
manipulate and would be easy to implement in
state machines, if desirable.

Implementation of Ring Str~ictures Ring struc-
ture implementation requires a set of consecutive
memory atlclresses, as shown in Figure 3. The ring
begin pointer and the ring end pointer define the
beginning and end of a ring. Two entities, the trans-
mitter and the receiver. interface with a ring to
exchange data. l'he transmitter interface delivers
data to the receiver interface using the ring struc-
ture. This data resides in memory that is managed
by one of the two interfaces. If the transmitter inter-
face manages the memory, the ring is called a trans-
mit ring. If the receiver intcrface manages the
memory, the ring is called a receive ring.

OWNERSHIP ONE ENTRY
BEGIN IN THE RING
POINTER -+

BUFFER

TRANSMITER
INTERFACE - RlNG

RlNG
END
POINTER -

RECEIVER
INTERFACE -

Q u r e 3 Ring and Ring Interfcices

Rings are divided into entries that consist ofsev-
era1 bytes each; the number of bytes in an entry is
an integral tllultiple of longwords. A ring, in Lurn,
must contain an integral number of entries. The
entry size and the number of entries in a ring deter-
mine the ring size. We chose an entry size that is a
power of two in bytes and the number of ring
entries to be divisible by two, as well. These
choices helped to simplify the hardware implemen-
tation used to peruse these rings.

Each entry consists of

An ownership bit, which indicates whether the
transmitter interface or the receiver interface
owns the entry

Buffer pointers, which point to transmitted or
received data

A buffer descriptor, which contains the length of
the buffers, and status and error fields

The definitions of these fields in an entry and the
rules for using the information in these fields con-
stitute the ring protocol.

Only the interface that owns an entry has the
right to use all the information in that entry. This
right includes using the buffer pointers to operate
on data in the buffers. Both interfaces have the right
to read the ownership bit, but only the interface
with ownership may write this bit.

The two interfaces can exchange entries by tog-
gling the ownership bit. After toggling this bit, the
tr;~nsmitter and receiver interfaces need to prod
c;tcll other to indicate that the ownership bit has
been toggled. This is accomplished using two hard-
wired Boolean values, by means of an interrupt, or
by writing a single-bit register. Hardwired Boolean
values are used when both the transmitter and the
receiver are on the adapter. Either the interrupt
scheme or the method of writing a single-bit regis-
ter is used when the transmitter and receiver con-
verse over an external bus, e.g., an XIMI bus.

The word "signal" is used henceforth to repre-
sent the prodding of one interface by the other.
A transmitter interface uses "transmit done" to sig-
nal the receiver interface that data has been trans-
mitted. A receiver intcrface uses "receive done"
to signal the transmitter interface that the data has
been received. Note that we have defined the
DF1II:A port protocol in such a way that the number
of interrupts used to signal the host across XMI is
minimized to reduce the host performance degra-
dation caused by interrupts.

5 2 I/ol No. 3 S~lrnrner I991 Digital Technical Jorrmal

The Architecture and Implementation of a High-performance Adupter

The unit of data exchanged between the transmit-
ter interface and thc receiver interface is a packet. A
packet may be written in a single buffer ifthe packet
is small or over multiple buffers if the packet is large.
In this paper, we ~ lse the term buffer to refer generi-
cally to buffers in the adapter or in the host. The
buffers in the adapter are always 512 bytes in size
and, when referred to specifically, are called pages.
The buffers in the host may be of different sizes.

An exchange of data requires single or multiple
buffers, depending upon the packet and buffer
sizes. One field of two bits in the buffer descriptor is
used to designate the beginning and end of packet.
These bits are called the start of a packet (SOP) and
the end of a packet (EOP). Thus, for a one-buffer
packet both the SOP and the EOP are asserted. For a
multiple-buffer packet, the first buffer has the Sop

asserted, the middle buffers have both the SOP and
the EOP deasserted, and the last buffer has the EOP
asserted. The buffer descriptor also contains fields
that we do not describe in this paper.

Data Exchange on a TransmitRing Data exchange
between a transmitter interface and a receiver
interface is accomplished in a similar manner on
both transmit and receive rings. Therefore, we dis-
cuss the exchange in detail for a transmit ring; for a
receive ring, we note only the dissimilarities.

The events that occur during the data exchange
on a transmit ring are shown in Figure 4. The pro-
cess is as follows. The transmitter interface man-
ages the memory used to exchange data and has
two pointers to the ring entries, i.e., the fill pointer
and the transmitter free pointer. The transmitter
interface uses the fill pointer to deliver data to the
receiver interface. The transmitter interface uses
the transmitter frce pointer to recover and manage
the buffers freed by the receiver interface. The
receiver interface uses only one pointer, i.e., the
receive pointer, which points to the next entry that
the receiver interface interrogates to receive data.

To understand how data is transmitted, assume
that the pointers move from top to bottom, as
shown in Figure 4. Initially, all the pointers desig-
nate the 1oc;ltion indicated by the begin pointer.

A transmitter that has data to transmit to a
receiver uses the entry indicated by the fill pointer.
First, the transmitter verifies that it owns the entry
by checking the ownership bit. Second, the trans-
mitter writes the buffer address and the remaining
fields in the entry In the case of a single buffer

packet, the transmitter interface writes a single
entry and then toggles the ownership bit and sig-
nals the receiver interface.

For multiple buffers, the transmitter interface
increments the fill pointer and repeats the two
steps described in the previous paragraph to write
all the buffer addresses and the length and status
information. Then the transmitter interface toggles
the ownership bits of all later entries of the multi-
ple buffers before toggling the ownership bit of the
first entry. This protocol preserves the atomicity of
the packet transfer between the transmitter and

RING BEGIN- f OWNERSHiP
POINTER FNTRY

ENTRY ADDRESSES
OF FREE] ,BUFFERS

I " ! I

TRANSMITTER 1-1
INTERFACE

RECEIVER
INTERFACE

1 -
RECEIVE
POINTER

FILL I y l J ' m D w s s E s
POINTER + 0 OF FILLED

BUFFERS

RlNG BEGIN
POINTER +

ADDRESSES

::F';'E'R'RE \ I RECEIVE
POINTER

TRANSMlnER
INTERFACE -

POINTER

RECEIVER
INTERFACE -

ADDRESSES' 1-
OF FREE
BUFFERS POINTER

RlNG END +(1 (
POINTER

I
RECEIVE RlNG

KEY:

0 THE TRANSMITTER OWNS THE ENTRY
1 THE RECEIVER OWNS THE ENTRY

Note that the pointers move in a downward direction

Figure 4 Data Exchange on Transmit and
Receive Rings

Digital Technical J o u d VoL 3 No. .? Summer I991 5 3

Network Performance and Adapters

receiver interfaces. Then the transmitter interface
sign21ls the receiver interface th;~t ;I packet is av;til-
able on the transmit ring. l'his sign;ll alerts the
receiver interface, which then ex;~mincs thc cntly
pointed to by the receive pointer. 'l'he receivcr inter-
face operates on the entry dnt;~ if it owns the entry

The receiver interface returns the entries to the
transmitter interface by toggling the ownership
bits and then signals receipt of data to indicate the
return of the entries (and hence the free buffers).
Note that there is no need to return these free
buffers in ;I packet, atomic fashion. The transmitter
interface uses the transmitter free pointer to exam-
ine the ownership bits in the entry and to reclaim
the buffers.

The interfaces operate asynchronously, since each
one can transmit or receive data at its own speed. If
the transmitter interface can transmit faster than the
receiver interface is able to receivc, the transmit ring
fills up. Under such circumstances, the receiver
interface owns all the entries in a transmit ring, the
fill pointer equals the transmitter free pointer, and
data transmission stops. Conversely, if the receiver

interface is faster than the transmitter interface, the
tr;~nsmit ring will he nearly empty In this case, the
transmitter free pointer ;lnd the receive pointer are
almost always equal.

Note the following invariants that apply to the
pointers when data is eschanged on a transmit ring:
the fill pointer cannot pass the tr;insmitter free
pointer; the transmitter free pointer cannot pass
the receive pointer; and the receive pointer cannot
pass the fill pointer.

Data Exchange on a Receive Ring As also shown
in Figure 4, the operntion of data eschange on a
receive ring is similar to that operation on the trans-
mit ring, with the following differences. The
receiver interface manages the memory used for
exchanging data. Consequently, the receiver inter-
face has two pointers, the receiver free pointer and
the receive pointer, and the transmitter interface
has only one pointer, the fill pointer.

Table 1 shows the various DEMFA rings and the
transmitters and receivers that interface with each
ring.

Table 1 DEMFA Rings and Their Transmitter and Receiver Interfaces

Rings Transmitter Receiver Remarks

Rings in Packet Buffer Memory

RMC Receive Ring FDDl Corner
and Parser Stage

RMC Transmit Ring Ring Entry
Mover Stage

HPD Receive Ring Host Protocol
Decoder Stage

HPD Transmit Ring Ring Entry
Mover Stage

AM Receive Ring Adapter
Manager

AM Transmit Ring Ring Entry
Mover Stage

--
Rings in Host Memory

Ring Entry
Mover Stage

FDDl Corner
and Parser Stage

Ring Entry
Mover Stage

Host Protocol
Decoder Stage

Ring Entry
Mover Stage

Adapter
Manager

Contains data that originated on the FDDl ring.

Contains data that originated at the host or
the AM, destined for the FDDl ring.

Contains data that originated at the host,
destined for the FDDl ring.

Contains data that originated at the FDDl ring,
destined for the host.
Contains data that originated at the AM,
destined for the FDDl ring or the host.

Contains data that originated at the FDDl ring,
destined for the AM.

Host Receive Ring Host Protocol
Decoder Stage

Host Transmit Ring Host

Command Ring Host
(Transmit Ring)

Unsolicited Ring Adapter
(Receive Ring)

Host Contains data that originated at the FDDl ring
or the AM, destined for the host.

Host Protocol Contains data that originated at the host,
Decoder Stage destined for the FDDl ring.

Adapter Contains commands that originated at the
Manager host for the AM; note that the AM replies in

the same ring.

Host Contains unsolicited messages from the AM
Manager to the host.

54 Vol 3 N o J .T~~/n~?zei' 1391 Dig i ld Technical Jozrrrurl

The Architecture and Implementation of a High-performance Adapter

Subsystem Level Functionality
The basic functions that an FDDI LAN adapter is
required to perform are receiving and transmitting
packets over the FDDI ring. The adapter must be
able to establish and maintain connection to the
FDDI network. The connection management (CMT)
protocol, a subset of the station management (SMT)
protocol, specifies the rules for this connection."

The implementation of the complex CMT algo-
rithm in an adapter requires an intelligent compo-
nent, such as a microprocessor, that can receive,
interpret, and transmit packets. Note that the num-
ber of CMT packets that flow over the FDDI ring con-
stitutes only a small fraction of the normal traffic.
Therefore, a low-performance CPU is adequate to
implement connection management. The CPU in
the DEMFA device is called the adapter manager.

The packets in the receive stream that originated
on the 1:DDI ring and are addressed to this host or
adapter (together called the node) can take one of
the following paths:

Packets not addressed to this node are for-
warded over the FDDI ring.

Packets addressed to this node are delivered to
the host computer.

Packets addressed to this node are delivered to
the AIM.

The delivery of packets to the host computer
implies that the adapter has a pointer to a free mem-
ory buffer in which to deposit the received packet.
The DEMFA port, described in the next section,
specifies the rules for extracting free buffer point-
ers from the host memory.

For each packet that the host needs to transmit,
the adapter must know the buffer address or
addresses and the extent of each buffer. The DEMFA
port defines the method to exchange this buffer
information. In addition, the host and the adapter
microprocessor must be able to exchange informa-
tion. The DEMFA port defines the protocol for this
communication also.

structure. Such structures are more efficient to tra-
verse than queue structures.

The DEMFA port defines the four separate host
rings listed in Table 1 :

The host receive ring, which contains pointers
to free buffers into which a packet received over
the network can be deposited

The host transmit ring, which contains point-
ers to filled buffers from which packets are
removed and transmitted over the FDDI ring by
the adapter

The host command ring, which sends com-
mands to the AM

The unsolicited ring, which the AM uses to initi-
ate communication with the host CPU

By using four host rings, we were able to differen-
tiate between the fast and frequent data movement
to and from the FDDI ring and the comparatively
slow and infrequent data movement required for.
communication with the AM.

One Implementation of the DEMFA
Architecture
Previous sections specified the DEMFA architecture.
The remainder of this paper describes an implemen-
tation of the DEMFA architecture. In the following
sections, we present details of the implementation
for the packet buffer memory and the packet mem-
ory interface; the three pipelined stages, FCP, REM

and HPD; and the adapter manager.

Packet Buffer Memory and Packet
Memory Interface
The packet buffer memory stores the data received
over the FDDI ring before delivering this data to the
host. The PBM also stores data from the host before
transmitting over the FDDI ring.

PBM consists of two memories: the packet buffer
data memory and the packet buffer ring memory.
Virtually, the packet buffer data memory divides
into seven areas-one used by the AM and three
each for data reception and data transmission to

DEMFA Port and from the three external interfaces. These three
The DEMFA port specifies the data structure and interfaces are the FCP stagc, the HPD stage, and the
protocol used for communication between the hi. The areas are accessetl and managed by the six
adapter and the host computer. Rather than invent a rings residing in the packet buffer ring memory and
new protocol, we modified the DEMNA port specifi- listed in Table 1. Note that the division is consid-
cation.' The data structure used to pass informa- ered virtual because the ph~.sical memory locations
tion between the host and the adapter is a ring of the areas change over time.

Digilul Technical Journal 1/01, .3 No. .? S u l n ~ n e ~ . 1991 5 5

Network Performance and Adapters

The three pipelined stages and the memory
refresh circuitry use the packet memory inter-
face @MI) to access PBM. The PMI arbitrates and
prioritizes the requests for memory access from
these four requesters. Physically, the PMI has three
Lnterfaces: the FCP stage, the REM stage, and the
HPI) stage. Virtually, the PMI has four interfaces; the
HPD interface multiplexes traffic from both the
host and the adapter manager. The PMI also has the
functionality to refresh the dynamic memory and
to implement a synchronizer between the 80-
nanosecond FDDI clock and the 64-nanosecond
XMI clock.

All interfaces request access to the memory by
invoking a request/grant protocol. Some accesses
are longword (4-byte) transactions that require
one to two memory cycles; others are hexaword
(32-byte) transactions and require a burst of mem-
ory cycles.

The interfaces have the following priorities: (1)
refresh memory circuitry, (2) the REM stage, (3) the
FCP stage, and (4) the HPD stage. The refresh mem-
ory circuitry has the highest priority because data
loss in the dynamic memory is disastrous. Also the
refresh circuitry makes a request once every 5 to 10
microseconds, thus ensuring that the lower priority
requesters always have access to the memory. The
REM has the second highest priority becatwe it
always requests one longword, which requires one
memory cycle. Once the REM receives data, by
design it waits at least two cycles before making the
next request. Thus, the REM does not monopolize
the memory, and the FCP can always get its requests
serviced. The FCP stage requires guaranteed mem-
ory bandwidth with small latency to avoid an over-
flow or underflow condition in its PIFOs. Finally,

PARSER

KEY:

the HPD interface has the lowest priority because
no data loss occurs if memory access is denied for a
theoretically infinite amount of time. Our adapter
design has mechanisms that guarantee memory
access to the HPD.

FDDI Comer and Parser Stage
The PCP stage, illustrated in Figure 5, provides the
interface between the FDDI ring and the packet
buffer memory. This stage can receive or trans-
mit the smallest packet in 2.24 microseconds, as
required by our performance constraints.

The receive stream in this stage converts the
incommgstream of photons from the FI)DI ring into
a serial bit stream using the fiber-optic transceiver
(FOX) chip. The clock and data conversion chip
then recovers the clock and converts the incoming
code from 5 to 4 bits. The MAC chip converts this
electronic serial bit stream to a byte stream. The
MAC chip implements a superset of the ANSI MAC

~tandard.~ Digital has a specific implementation of
the MAC chip.' The ring memory controller (WlC)
interfaces with the byte-wide stream from the MAC,

converts the bytes into 32-bit words, and writes
these words to the PBM, using the RMC receive ring
and the ring protocol.

The transmit stream accesses a packet from
the PBM, waits for the token on the FDDI ring, and
transmits the packet as a stream of photons. This
stage can generate and append 16 bytes of cyclic
redundancy code (CRC) to every packet before
transmitting.

The parser component of this stage interfaces
with the RMC bus to generate a forwarding vector
that has a variety of information including the data
link user identity and the destination of the packet,

FIBER IN

t
FIBER OUT

ELM

FOX FIBER-OPTIC TRANSCEIVER
CDC-R CLOCK AND DATA CONVERSION RECEIVER
CDC-T CLOCK AND DATA CONVERSION TRANSMI-ER
ELM ELASTICITY BUFFER AND LINK MANAGEMENT
MAC MEDIA ACCESS CONTROL
RMC RING MEMORY CONTROLLER

Figure 5 F n D I Corner and Parser Stage

-
CDC-R

CDC-T

56 Vol. 3 No. 3 Surnmer 1991 Digital Technical Journal

V

FOX

-f

The Architect~ire and Implementation of n High-performance Ahpter

i.e., the host or the AM. The parser extracts packet
headers from the RiMC bus and operates on the FDDI
and the LLC parts of the packet headers. The parser
then processes this information in real time, using a
content-addrcssable memory (C ~ I) that stores the
profiles of data link and other users. As a result, the
parser generates a forwarding vector that contains
the destination address of either the host user or
the AM user. The forwarding vector destination
field is given a "discard" value, if the packet header
does not match any user profile. Note that the for-
warding vector is a part of the buffer descriptor
field in the R&tC receive ring.

Ring Entry Mover Stage
The ring entry mover stage performs four major
functions: (1) moving filled packets from receive
rings to transmit rings, (2) returning free packets

from transmit rings to receive rings, (3) managing
buffers, and (4) collecting statistics. Figure 6 shows
the various rings, the ring entry mover, and the
movement of filled and free packets.

The REM moves filled packets from receive rings
to transmit rings by copying pointers rather than
copying data. (Copying pointers is a much faster
operation than data copy.) Note in Figure 6 that for
a given interface, no filled packet moves from its
receive ring to its transmit ring. For example, no
filled packet moves from the RMC receive ring to
the RMC transmit ring. Also, in this design thcrc is
no need for a path from the HPD receive ring to the
AM transmit ring.

A second function performcd by the REM stage is
to return free packets from the transmit rings to the
proper receive rings. Transmit rings point to free
packets after the receiver interface has consumed

RlNG ENTRY MOVER

* PACKET *

I \
\

AM AM
RECEIVE

RING RING

HPD AM

RING RING

RMC RECEIVE NO YES YES
RlNG

HPD RECEIVE YES NO NO (BY DESIGN)
RlNG (

YES NO
RlNG AM I YES

KEY:

HPD HOST PROTOCOL DECODER
RMC RlNG MEMORY CONTROLLER
AM ADAPTER MANAGER

Figure 6 Movement of Filled Packets by the Ring Entry Mover

Digital Techrrical Journal 1/01, .3 iVo. 3 Summ.er 1991 57

Network Performance and Adapters

the information UI the packet. The REM, which is a
transmitter interface on all transmit rings in the
PBM, owns these buffers &er the appropriate
receiver interface cogkles the ownership bit. The
REM returns the buffers to the original receive ring
by using information in the color field, a subset of
the buffer descriptor field. The color field contains
color information that designates the receive ring
to which the buffers belong. This color information
is written into the buffer descriptors of the free
buffers during initialization. Note that during ini-
tialization, the adapter free buffers in the I'UM are
allocated to the three receive rings with which the
REM interfaces.

The REM also performs buffer resource manage-
ment. Note that a reserved pool of buffers exists for
traffic arriving over the FDDI ring. This FDDI traffic
has two destinations, namely the host CPU and the
adapter manager. To ensure that one destination
does not monopolize the pool of buffers, the pool
is divided into two parts: host allocation ancl AM

allocation. The REM delivers no more than the allo-
cated number of buffers to one ctestination.

The fourth major function that the REkl performs
is to collect statistics. The REM collects statistics in
discard counters for packets that cannot be deliv-
ered due to lac]< of resources. The REM interrupts
the when these counters are half full. The AIM
reads, processes, and stores these counters for

statistical purposes. The hM read operation resets
these counters. There are a number of other coun-
ters in HEM.

Host Protocol Decoder Stage
The host protocol decoder interfaces with the X\II

bus, fetches and interprets cntries from the host
receive and transmit rings, and moves d;ita between
the host and the I-'Bkl. This stage also acts as a gateway
for the AM to get to the host memory or to the PRM.

Figure 7 is a block diagram of the HPD stage. The
receive and transmit pipelines store and retrieve
receive ant1 transmit data from the host memory.
The two pipelines work in parallel. We now explain
the operation of the receive pipeline in detail. The
transmit pipeline operates in a similar manner;
thus, we highlight only the differences.

HPD Receive Pipeline The receive pipeline has
three stages: (1) the fetch and decode host receive
entry stage, (2) the data mover stage, and (3) the
receive buffer clescriptor write stage. Most pipe-
lines n7ork in a lockstep fashion; that is, each
stage takes the same amount of time to process
input. In our design, the processing time varies for
each stage in the pipeline. For example the data
mover stage will take a much longer time to trans-
fer 4500-byte packets than to transfer 100-byte
packets. The fetch and decode host receive entry

INTERFACE L~
t

TO AM

KEY:

-

0
2

-
RECEIVE PIPELINE +

PMI PACKET MEMORY INTERFACE
AM ADAPTER MANAGER

Fi'yure 7 Host Protocol Decoder Stage

- L L DECODE HOST -
w - RECEIVE STAGE

ENTRY STAGE

I3

58 Wjl .3 No .j Cl~rrzrrzer I991 Digital Technical Jozrrnnl

RECEIVE
BUFFER
DESCRIPTORS
WRITE STAGE

m -
I
a

-

- -
TRANSMIT

MOVER
STAGE

ENTRY STAGE

TRANSMIT PIPELINE -

TRANSFvtlT
BUFFER
DESCRIPTORS
WRITE STAGE

The Architecture and bnplementation of n High-perJwrnance A(kil)ter

stage, on the other hand, may take the same amount
of time to decode entries for packets of either size.
Consequently, stages use interlocks to signal the
completion of work.

The fetch and decode host receive entry stage
has knowledge of the format and size of the ring and
seqi~entially fctches host receive ring entries. If the
adapter does not own an entry, this stage waits for a
signal from the host before fetching the entry again.
If the adapter does own the entry, this stage
decodes the entry to determine the address of the
free buffer in the host memory and the number of
bytes in the buffer. The stage then passes this buffer
information to the data mover stage and the address
of the host entry to the receive buffer descriptor
write stage. In addition, this stage prefetches the
next entry to keep the pipeline firll, in case data is
actively received over the FDDI ring.

In parallel, the PMI interface stage part of the HPD
chip fetches the next entry from the HPD transmit
ring. Decoding this entry determines the address of
the buffer in the PBM and the amount of data in the
buffer. The packet buffer bus interface passes the
buffer address and length information to the data
mover stage and the address of the HPD transmit ring
entry to the receive buffer descriptor write stage.

Now, the data mover stage has pointers to the
host free buffer and its extent and to the PBM filled
buffer and its extent. The stage proceeds to move
the data from the PBM to the host memory over the
XMI bus. Depending on the XhlI memory design,
this transfer involvcs octaword or hexaword bursts.
The process of moving clata continues until the
depletion of packet data in the PBM.

The data mover stage signals the receive buffer
descriptor stage when the packet moving is com-
plete. The receive buffer clescriptor stage writes in
the status fields of the host receive ring entry and
the HPD transmit ring entry. This stage also gives
ownership of the filled buffer to the host and of the
free buffer to the REM. The REM can then return the
free buffer to the ring of origin.

HPD Transmit Pipeline The HPD transmit and
receive pipelines are symmetrical. The HPD receive
pipeline delivers data from the HPD transmit ring to
the host receive ring. The hPD transmit pipeline
delivers data from the host transmit ring to the HPD
receive ring.

There is one exception to the symmetry The
transmit pipeline does not fetch an entry from the
HPD receive ring in PBM to determine if there are

enough free buffers available. A harclmrare interface
between the PMI and the HI'D, i.e., a Boolean signal,
indicates whether there are enough buffers to
accommodate the largest possible size transmit
packet. This exception is an artifact of our imple-
mentation; we wanted to reduce the accesses to the
PBM, since its bandwidth is a scarce resource.

Adapter Manager
The local intelligence, also known as the adapter
manager, implements various necessary adapter
firnctions including self-test and the initialization.
The Akl also implements part of the CMT code that
manages the FDDI connection."' In addition, the
AM interfaces with the host to start and stop data
link users by dynamically manipulating the parser
data base.

Tracing a Packet through the A w t e r
The major steps for data transfer incorporate the
subfunctions previously discussed. This section
traces the path of a packet P through the adapter,
first on the receive stream and then on the transmit
stream. We assume that adapter initialization is
complete and that all data structures in the packet
memory and parser data base are properly set. In
this example, we further assume that packet P is
small enough to fit into a single buffer. Large pack-
ets require multiple buffers.

Receive Stream
A packet destined for the host passes through the
three major pipelined stages in the adapter. A brief
description of the intrastage operation and details
of the interstage functioning follocrr. The four parts
of Figure 8 illustrate the receive process.

FDDI Cornel* and Parser Stage Figure 8(a) shows
packet P on the FDDl ring; the packet is actually a
stream of photons. This stage converts the stream
of photons into a packet. At this point, a free buffer
is available for packet P in both the hhlC receive ring
and the host receive ring. The FCIJ stage owns the
free buffer in the RIM<: receive ring.

The stage determines if packet P is addrebsed to
this node, forwards the packet on the wDI ring,
and copies the packet for this adapter if it is
addressed to this node. This stage also generates a
CRC for the packet. The FCP stage then deposits the
copied packet into the free buffer in the RMC
receive ring entry shown in F ig~~re 8@).

Digital Technical Jozrrnal Vol j iVo 3 S~rjnmer 1991 59

Network Performance and Adapters

0 +q() "I DECODER
MOVER El - M C I E;:2ER I

--.
PACKET P RECEIVE I RECEIVE L

RlNG RING RING ON THE RING

(a;) Receive Stream - Packet on the FDDI Ring

FILLED BUFFER
WlTH PACKET P

-
HOST
RECEIVE
RING

PROTOCOL
&! DECODER

I

DECODER
I STAGE

PARSER
RMC

TRANSMIT RECEIVE
STAGE

CORNER FDDl RlNG 0E-L MOVER El
I RING RING

@) Receive S m m - Packet at the RMC Receive Ring

RLLED BUFFER
WITH PACKET P

ENTRY
MOVER
STAGE

CORNER FDDl RlNG

PARSER
STAGE

TRANSMIT
- TI s
RECEIVE

RMC
RECEIVE

RlNG I RING RING

(c) Receive Stream - Packet a t the HPD Transmit Ring

FILLED BUFFER
WITH PACKET P

r[7 FREE PACKET TO
BE RETURNED TO THE
RMC RECEIVE RlNG

MOVER
STAGE STAGE PARSER

HOST
RECEIVE . STAGE

TRANSMIT RECEIVE
RlNG ' RlNG RlNG

(d) Receive Stream - Packet in the Host hlemory on the Host Receive Ring

Figure 8 Receive Stream-The Receipt of a Packet from the FDDI Ring to the Host Memory

After depositing the complete packet, this stage
writes the buffer descriptor and toggles the owner-
ship bit. The ring entry mover now owns packet P.
The FCP stage is free to receive the next packet,
which is stored in the next buffer in the RMC
receive ring.

ber of pages in packet F? This stage also has an
account of the number of pages outstanding on the
HPD transmit ring. The REM delivers packet P to the
HPD transmit ring provided the host resource allo-
cation is not exceeded.

The REM delivers the packet by copying page
pointers from the IWC receive ring to the HPD
transmit ring, as shown in Figure 8(c). Note that
the HPD transmit ring is large enough to write all

Ring Entry Mover Stage The REM cxtracts the
packet buffer descriptor and determines the nurn-

60 Vi. .3 No. 3 S ~ ~ n z m ~ ? r I991 Digital Tecbwdcal J o u d

The Architecture and Implementation of a High-pe~formance AdaJter

pointers from the RiiC receive ring and the AM
receive ring. The REM then transfers ownership of
the HPD transmit ring entry to the HPD stage and
the RMC receive ring entries to the FCP stage.

HPD Stage The HPD receive pipeline operates on
a packet it owns in the HPD transmit ring. As shown
in Figure 8(d), after fetching the address of the free
host buffer, this pipeline moves packet P from the
PBM to the host memory and toggles the ownership
bit of the host entry. Simultaneously, the HPD
returns ownership of the free buffers in the HPD
transmit ring to the ring entry mover stage. The
REM returns these buffers to the RMC receive ring as
free buffers.

Transmit Stream
To transmit data from the host transmit ring to the
FDDI ring, the packet must pass through the same
three stages as for the receive stream, but in the
reverse direction.

HPDStage For the receive stream, the HPD receive
pipeline prefetches the free buffer from the host
receive ring. In contrast, the HPD transmit pipeline
must wait for the host to fill the transmit buffer and
transfer ownership to the host transmit ring. The
HPD stage then moves the data from the host mem-
ory to the PBM if the hardwired signal between the
REM and the HPD indicates that a sufficient number
of pages is available. Finally, the HPD transfers own-
ership of the host transmit ring entry to the host
and the HPD receive ring entry to the REM.

Ring Entry mover Stage The REM moves the packet
from the HPD receive ring to the RiiC transmit ring.
Again, the REM copies pointers from ring to ring
and toggles the ownership bit on the rt.MC transmit
ring.

FDDI Corner and Parser Stage Although the
packet is available in PBM for transmission, the FCP
stage must receive a token before transmitting over
the FDDI ring. Once the transmission is complete,
the buffer on the RiiC transmit ring is now free.
The FCP stage returns ownership of the buffer to
the REM, which then returns the free buffer back
to the HPD receive ring or the AM receive ring,
depending upon the origin. Again, the free buffers
are returned by copying buffer pointers.

The receive and transmit streams for the adapter
manager are similar to those for the host; therefore,
we do not describe these processes.

Hardware and Firmware
Implementation
The hardware implementation of DEMFA consisted
of four large gate arrays, custom very large-scale
integration (WI) chips, dynamic and static random
access memories (RAMS), and jelly bean logic.
Figure 9 is a photograph of the DEMFA board.

The four gate arrays specified and designed by
the group are the parser, the adapter manager inter-
face (h i I) , the host protocol decoder, and the
packet memory controller (PMC), which incorpo-
rated the function of the packet memory interface
and the ring memory controller. We now describe
aspects of the gate array development. Note that we
used the Compacted Array technology developed
using LSI logic for our implementation. The gate
arrays have 224-pin surface mount packaging.

Table 2 shows various gate arrays, the total gate
count for each gate array, and the percentage of
control gates and data path gates. Control gates are
defined as gates required for implementing state
machines used for control. Data path gates are gates
required for registers and multiplexors, for exam-
ple. Note that the complexity of gate arrays is pro-
portional to the percentage of control gates. The
gate arrays in Table 2 were fairly complex because
they consisted of approximately 50 percent control
gates.

Module Implementation
We used the 11-by-9-inch XMI module for imple-
menting the adapter. Early in the project we defined
the pin functions for various gate arrays. Once these
were defined we could design our module. SPICE
modeling helped in arriving at a correct module
design with the first fabrication. The design was
thorough and completed early in the project.

Firmware Implementation
The DEMFA firmware has three major functions:
self-test, FDDI management (using Common Node
Software), and adapter functional firmware. The
DEMFA team implemented the adapter functional
firmware while other groups designed the two
remaining components. The DEMFA functional firm-
ware can initialize the adapter and then interact
with the host to start and stop data link layer users,
as well as perform other functions. The firmware is
implemented in the C language for the Motorola
68020 system. The total image size is approximately
160 kilobytes.

Digital Technical Journal Vo1.3 No. 3 S~unrner 1991 61

Network Performance and Adapters

Figure 9 The DEMFA Board

Table 2 Gate Counts for DEMFA Gate Arrays

Data Control
Gates Gates
(Percent (Percent

Gate Array Total Gates of total) of total)

Parser 20296 39 61
PMC 61 537 40 60
HPD 81 265 34 66
AM I 15002 49 51

The graph presented in Figure 10 shows the adapter
performance for the receive and transmit streams at
the adapter hardware level for this implementation.
The data represents throughput measured in
megabits per second as a function of packet size
measured in bytes. Figure 10 illustrates that the
receive and transmit streams meet the 100-Mb/s
throughput when the packet size is approximately
69 bytes. The bottlenecks in this implementation of

the DEMFA architecture are (1) the PMI and (2) the
combination of the XlMI interface, bus, and memory.
We implemented these interfaces in a conservative
manner to reduce our risks and to produce the
product in a timely fashion.

O 1 20 50 ' 200 500 ' 2000 5000
10 100 1000 10000

PACKET SIZE (BYTES)

KEY:
..--- RECEIVE THROUGHPUT
- TRANSMIT THROUGHPUT

Figure 10 Adapter Performance

62 Vol. 3 No. 3 Summer 1991 Digital Technical Journal

Tlge Architecture and Implementation of a High-performance Adapter

For more detailed performance data, see the
paper entitled "Performance Analysis of a High-
speed FDDI Adapter" in this issue of the Digital
Technical Journal."

conclusion
The goal of the DEMFA project was to Specify an
architecture for an adapter that would be at least
30 times faster than any previously built adapter.
The architecture also had to be easy to implement.
This paper describes the architecture and an imple-
mentation of DEMFA. Performance measurenlents
of the adapter show that this first implementation
successfiilly meets close to the maximum FDDI
tliroughput capacity; thus, the DEMFA performance
can be considered ultimate. Already, a number of
adapters have been designed basecl on ideas bor-
rowed from the DEMFA architecture and implemen-
tation. In a few years, architectures similar to this
one may become the norm for data link and even
transport layer adapters, rather than the exception.

Acknowledgments
I wish to acknowledge and thank my manager,
Howard Hayakawa, who out of nowhere presented
me with the challenge of defining an architecture
and an implementation for an FDDI adapter that
would have a performance 30 times that of any
existing adapter. I must have taken leave of my
senses to take on such a challenge. But the end
results were worth the effort.

I would also like to thank Gerard Koeckhoven,
who agreed to be the engineering manager for this
adapter project. He took on the consequent chal-
lenge and the risk and supported me all along the
way. In addition, I want to recognize Mark Kempf
for the many hours he spent helping us during
tlie conceptualization period and for cliiseling our
design. The TAN architects were of great assis-
tance in making sure that our adapter met the FDDI
standard.

I also wish to acknowledge the following mem-
bers of the DEMFA project team for their contribu-
tions: Santosh Hasani and Ken Wong, who designed
the parser gate array; Dave Valley and Dominic
Gasbarro, who designed the MI gate array; Andy
Russo and John Bridge, who designed the HPD gate
array; Ron Edgar, along with the other PMC design-
ers, Walter Kelt, Joan Klebes, Lea Walton, and Ken
Wong; Ed Wu and Bob Hommel, who designed and
implemented the module; the team that imple-
mented the functional firmware, Ed Sullivan, David

Dagg, Da-Hai Ding, and Martin Griesmer; and Ram
Kalkunte, for designing and building a simulation
model to accurately predict the performance well
before the adapter was ready. Also, I would like to
thank VMS and ULTTUX group members Dave Gagne,
Bill Salkewicz, Dick Stockdale, and Fred Templin.

References
1. B. Allison, "An Overview of the VAX 6200

Family of Systems," Digital Technical Journal,
no. 7 (August 1988): 10- 18.

2. D. Fite, Jr., T. Fossum, and D. Manley, "Design
Strategy for the VAx 9000 System," Digital
Technical Journal, vol. 2, no. 4 (Fall 1990):
13-24.

3. H. Yang, B. Spinney, and S. Towning, "FDDI
Data Link Development:' Digital Technical
Journal, vol. 3, no. 2 (Spring 1991): 31-41.

4. A. Tanenbaum, Computer Networks (Engle-
wood Cliffs, NJ: Prentice Hall, Inc., 1981).

5. B. Allison, "The Architectural Definition
Process of the VAx 6200 Family," Digital
TecbnicalJoumal, no. 7 (August 1988): 19-27.

6. Token Ring Access Method and Physical
Layer Specifications, ANSI/IEEE Standard
802.5-1989 (New York: The Institute of Elec-
trical and Electronics Engineers, Inc., 1989).

7 R. Stockdale and J. Weiss, "Design of the
DEC LANcontroller 400 Adapter," Digital
TecbnicalJournal, vol. 3, no. 3 (Summer 1991,
this issue): 36-47.

8. FDDI Station Management (SMT), Preliminary
Draft, Proposed American National Standard,
ANSI X3T9/90-X3T9.5/84-49, REV. 6.2 (May
1990).

9. Token Ring Media Access Control (MAC),
(International Standards Organization, refer-
ence no. IS0 9314-2, 1989).

10. E! Ciarfella, D. Benson, and D. Sawyer, "An
Overview of the Common Node Software,"
Digital TecbnicalJournal, vol. 3, no. 2 (Spring
1991): 42-52.

11. R. Kalkunte, "Performance Analysis of a
High-speed FDDI Adapter," Digital Technical
Journal, vo1.3, no.3 (Summer 1991, this issue):
64-77

Digital Tecbnical Journal Vol. .? No. .? S~rmmer 1991 63

Performance Analvsis of a
High-speed FDDI Adapter

The DEC FDDIcontroller 400 host-to-FDDI network adapter implements real-time
processilzg functionality in hardware, unlike conventional microprocessor-based
des ig~~~. To develop this high-performance product with the available technological
resources and at minimal cost, we optimized the ahpter design by creating a simu-
lation model. This model, apart from predictingperformance, enabled engineers
to analyze the functional correctness and the performance impact oj'potential
designs. As a result, our implementation delivers close to ultimatepe@omzance for
an FDDI adapter and surpasses the initial project expectations.

As high-performance systems become available and
the use of distributed computing proliferates, the
need for high-performance networks increases.
Faster interconnects are required to achieve such
performance goals. Consequently, network adapters
must be able to function at higher speeds. In adopt-
ing fiber distributed data interface (FDDI) local
area network (LAN) technology as a follow-on to
Ethernet, Digital recognized the need to build an
industry-leading network adapter to service its high-
performance platforms. As a result, we designed
and developed the DEC FDDIcontroller 400 procl-
uct. To track the adapter performance through the
design and development stages, we created a simu-
lation model; our objective was to ensure that the
device met our performance goals. This paper begins
with a description of the DEC FDDIcontroller 400,
followecl by a brief historical perspective and state-
ment of the performance objectives of the adapter
project. We then discuss in detail the modeling
methodology and the results achieved. In addition,
we present validation of these results in the form of
measurements taken on prototype hardware.

me DEC FDDIcontroller 400
The DEC FDDIcontrolJer 400, also known as the
DEMFA, is a high-speed FDDI network adapter.
Attached to a host machine running under either
the VMS or the ULTRM. operating system, the DEMFA
enables the host to communicate with other net-
work entities through the FDDI ring. The DEMFA
adapter implements Iligital's proprietary ?<MI bus
protocol and can be used with any system that

has an m i 1 backplane.' Laboratory measured perfor-
mance data presented later in the paper shows that
the adapter hardware can sustain a practically infi-
nite stream of frames at the full FDDI data band-
width of 100 megabits per second (Mb/s) for frame
sizes 69 bytes or larger on the receive stream and
51 bytes or larger on the transmit stream. Even the
smallest, i.e., 20-byte dataless, FDDI frames can be
received at 36 Mb/s and transmitted at 47 Mb/s.

The DEMFA is an FDDl Class-R single attachment
station (SAS) that interfaces to the FDDI token ring
network through the DECconcentrator 500. A port
driver resident in the host controls the DEMFA
port. The port, the port driver, and the adapter
hardware implement the American National Stan-
clards Institute (ANSI) data link and physical layer
functionality for FDDI LANs. This foundation sup-
ports user protocols such as the Open Systems
Interconnection (OSI), DECnet, the transmission
control protocol with the internet protocol
(TCP/IP), and local area transport (LAT).' Figure 1
shows a typical network configilration using the
DEC FDDIcontroller 400 adapter with other Digital
FDDI products.

The x M I bus is capable of transferring data at
rates up to 800 Mb/s and can serve as either a CPU-
to-memory interconnect, e.g., in the VAX 6000 plat-
form, or an I/O bus, e.g., in the VAX 9000 platform.'^"
Also, Digital plans to include the xMI bus in future
systems.

FDDI is a timed-token, fiber-optic ring that provides
a network data bandwidth of 100 Mb/s.' In addition
to this high data rate, the advantages of low signal

64 Vol. 3 No. 3 Scimmer 2991 Digital Tecbmcal Jozimal

Performance Analysis of a High-speed FDDI Adapter

VAX 6000 SYSTEM

FDDICONTROLLER 400
NETWORK ADAPTER I DEC

VAX 9000 SYSTEM DECSTATION 5000

FDDICONTROLLER 400 FDDICONTROLLER 700
NETWORK ADAPTER NETWORK ADAPTER I-

DECCONCENTRATOR 500
WIRING CONCENTRATOR

FDDI RING NETWORK

WIRING CONCENTRATOR

DECBRIDGE 500 DECCONCENTRATOR 500 H FDDI-TO-ETHERNET BRIDGE I .I WIRING CONCENTRATOR I .

Figure I Typical Network ConJiguration

attenuation, low noise susceptibility, high security,
and low cost (as the technology matures) will make
FDDI a popular interconnect of the 1990s."

Historical Perspective and Performance
Objectives of the DErMFA
With the advent of high-performance systems and
distributed computing strategies, the need for high-
performance networking options has increased.
Traditionally, 1/0 adapters have been built to serve
the current performance needs. As a consequence,
such adapters offer little or no network perfor-
mance scalability to accommodate future increases
in demand. Scalability is important to ensure that
the adapter does not become a bottleneck when
such demands exist. Nonscalable adapters become
obsolete, and the resulting frequent hardware
upgrades increase system cost.

The first Ethernet adapters, which complied
with the IEEE 802.3 standard, were built in the early
1980s. Only recently do adapters exist that can pro-
cess frames at the maximum Ethernet throughput
rate of 10 Mb/s.'As mentioned earlier, FDDI has the
capability of supporting speeds an order of magni-
tude higher than Ethernet. Since the header in an
FDDl frame is three times smaller than that for
Ethernet, FDDI frame arrival rates can be as much
as 30 times the Ethernet arrival rate. Considering
the various constraints, Digital set out with the
goal to build an FDDI adapter that could process
frames 150 bytes and larger at 100 Mb/s, i.e., the

adapter would be able to process approximately
80,000 frames per second (framesh). Also, twenty
microseconds was deemed an acceptable adapter
latency for the smallest FDDI frames. Considering
the relatively small number of frames a host system
can process today, these adapter criteria repre-
sented an ambitious goal-one which would make
a product with high-performance scalability as
faster CPUs became available.

Performance Modeling Considerations
During the development of a high-performance prod-
uct, changes in architectural functionality, teclmol-
ogy constraints, and cost considerations can result in
design modifications. It is desirable to track the per-
formance of the product through its development to
understand the impact of such modifications.

The DEMFA consists of many hardware entities that
perform the desired adapter fu~~c t ions .~ Although
such hardware adapters have the obvious advantage
of superior performance over conventional, i.e.,
microprocessor-based adapter cards, this advantage
does not come without the risks associated with
hardwired logic. Such risks have a negative impact
on project budget and schedule and necessitate a
risk management strategy to ensure that product
goals are successfully met. Performance modeling of
the adapter and extending the use of such modeling
to evaluate various designs formed part of this strat-
egy. The following subsections describe the goals
and tasks of the DEhlFA performance modeling.

Digital Techtrical Journal Vol. .3 No. .? Stlmmer 2991 65

Network Performance and Adapters

Goals
The set of performance modeling goals for the
DEMFA evolved throughout the development
process. Three mnjor goals were performance
projection, buffer sufficiency analysis, and design
testing through simulation.

Performance Projection In the early phases of
the design, the primary goal of the model was to
project the adapter performance. This prediction
gave us confidence that the design could meet our
performance expectations.

Buffer Sufficiency Analysis Buffer capacity plays
an important part in the performance of a design.
Whereas too much of this resource is wastefill, too
little has a negative effect on performance. It was
critical to cletermine the extent of buffering neces-
sary to attain the desired target performance at the
least cost. The performance model considered the
dependencies on this resource. The amount of
buffering was varied and the effects of such varia-
tion, manifested in the simulation results, were ana-
lyzed. Using these results as input to a cost/benefits
equation helped the designers make intelligent
decisions concerning buffer capacity.

Design Esting tbrozigh Simc~lation As develop-
ment progressed, important design issues arose
that could not be solved by simple analysis. The per-
formance model served as a platform that could be
enhanced to solve these more complex problems
by simulation. Designs were analyzed to determine
their impact on adapter performance. Because the
simulation methodology afforded greater testabil-
ity, we were able to make the designs more robust
and to answer design questions in a significantly
shorter time than other methods. Consequently,
modficattons to the hardware were made at an
early design stage and at negligible cost.

Tmks
To accomplish performance modeling, we faced
the following basic tasks: choosing the metrics,
defining the workload, and deciding on a modeling
methodology. Relevant metrics to measure the per-
formance of a product are crucial. We chose met-
rics that are simple to understand and provide
insight into the behavior of the product. Also, areas
in which workload dcvelopment is required must
be identified and investigatetl in detail. An incorrect
workload invalidates all performance data. And the

methodology used to model the system must be
well thought-out beforehand, so that the model is
accurate and also flexible enough to be easily
changed.

Definition ofMetrics The main performance met-
rics used were throughput and frame latency.
Throughput is the rate at which frames are pro-
cessed and is measured in megabits per second or
frames per second. The units can be converted eas-
ily from one to the other, if the average frame size is
specified. In this paper, throughput is expressed in
megabits per second.

Frame latency is the elapsed time measured in
microseconds between the time at which a frame is
queued for service at a facility and the time at
which the service is completed. The following
descriptions illustrate the approach used to mea-
sure receive and transmit latency. The host receives
frames from and transmits frames to the FDDI ring.
Receive frame latency is the time elapsed between
(1) the arrival of the last bit of the frame into the
adapter from the FDDI ring and (2) the time the
frame becomes available to the host for processing.
Transmit frame latency is the elapsed time between
(1) the time the adapter starts processing a frame
from the host and (2) the exit time of the first bit
of the frame from the adapter destined for the
FDDI ring.

The adapter can process transmit and receive
frames simultaneously. We defined performance
metrics to analyze a variety of traffic scenarios to
gain insight into the adapter behavior. For the con-
text of this paper, we consider the DEMFA process-
ing pure frame streams only, i.e., the expressions
"receive throughput" and "receive latency" refer to
a pure receive stream of frames containing no trans-
mit frames. Similarly, "transmit throughput" and
"transmit latency" refer to a pure transmit stream
of frames.

Workload Definition Using a relevant traffic
workload is very important in any simulation
model. Since most systems are workload-sensitive,
defining an incorrect workload may result in irrele-
vant data. We identified two areas in which we
needed to define workloads. We then characterized
the traffic patterns and built a workload model for
performance simulation based on these patterns.

Frame receive and transmit workloads. The
receive and transmit workloads are stimuli for
the performance simulation. These workloads

Vol 3 No. 3 Sltjnrner. 1991 Digital Technical Journal

Performance Analysis of a High-speed FDDIAdapter

mimic traffic due to frame arrival on the FDDI
ring (i.e., the receive workload) or frame trans-
mission from the host (i.e., the transmit work-
load). The receive workload model generates
frames which the DEMFA model receives,
whereas the transmit workload acts as a source of
frames to be transmitted by the DEMFA model on
the FDDI ring. These workloads must be charac-
teristic of actual FDDI traffic. Since FDDI LANs did
not exist when the DEMFA was in the develop
ment stage, we used our experiences with
Ethernet to derive these workloads, as we explain
in greater detail in the FDDI Token Ring section.

XMI traffic workload. Apart from the DEMFA
traffic, there may be other traffic on the XMI
bus due to CPU-to-memory transactions or from
other I/O adapters attached to the system. The
load on the XMI bus impacts the performance
of the DEMFA. Consequently, we designed a
workload model to mimic the traffic pattern on
the bus. We based our model on the traffic pat-
terns observed for real xMI bus traffic. The per-
formance of DEMFA may degrade as this traffic
increases because the DEMFA traffic and the non-
DEMFA traffic consume common resources. The
other traffic is referred to as the XMI interference
workload. The XMI Workload Generator section
describes the model for this workload.

Modeling Methodology The simulation model has
a hierarchical design to allow the construction of
smaller, more manageable blocks, i.e., submodels.
The structure also allows changes to be made easily.
The SIMULA language implements the simulation
model.!'The simulation-class and queuing constructs
in this language are tailored to help simulation
and m ~ d e l i n g . ' ~ , ' ~ The object-oriented structures
present other advantages to model development. A
debug procedure coded into the model prints status
information about all the queues in the model. This
information helped us trace the path of frames
through the system.

One important first step in designing a simulation
model is to determine the detail at which to model.
Two factors that influence the level of detail are the

Existing knowledge of the design. Usually, infor-
mation gathered from the behavioral and ana-
lytical models of a design helps to make a
performance model abstraction. Designs with
behavior that cannot be analyzed by these lower-
level models have to be modeled in greater
detail.

Expectation of performance model accuracy.
Typically, a performance model predicts results
accurate to within + 10.0 percent of the perfor-
mance that would be achieved with the actual
hardware.

During the design phase, behavioral and struc-
tural models of hardware were in development.
This hardware was partitioned across important
functional boundaries. Hardware within these bound-
aries would be modeled and tested thoroughly by
the respective development engineers. Hence, to
include details of these pieces of hardware in our
model would have resulted in redundant effort.
Since the interfaces and the gross filnctionality of
the hardware within these boundaries are relevant
to performance, we did include these components
in our model. Existing hardware components, such
as the FDDI chip set, were grouped together before
being modeled for filnctionality. Each submodel
was designed and tested separately to ensure con-
formity to the functionality and performance of
other behavioral and structural models. This strat-
egy resulted in the base-level performance model
that we used to generate preliminary performance
data for the DEMFA.

As development progressed, we encountered
design changes of various complexities. Simple
design changes resulted in very small changes in
the performance model. But larger and more com-
plex design changes required that we investigate
behavior both specific to the piece of hardware of
which the design is a part and generalized to the
adapter system environment in which the piece
operates. Models that represent the changes were
included and interfaced as submodels. These sub-
models served the dual purposes of testing the new
design and of improving the accuracy of the perfor-
mance model.

Design of the Simulation Model
The performance simulation model consisted of
the following major components:

FDDI ring

FDDI chip set and parser

Packet memory controller

Host interface

XMI system

Host system

Digital Technical Journal Wl. .J No. 3 Szcmmw 1991

Network Performance and Adapters

?'lie base-level model evolved over time, as we
gained insight into the behavior of the individual
components and defined work1o;ids. The model
evolved further to support the neetl to analy~e new
clesigns through simulation. This section briefly
describes the components of the final model, as
listed above.

FDIII Token R i l z ~
'l'he FD1)I token ring was modeled to act as a source
of received frames and as a sink of transmit frames.
Gross functionality for the remainder of the FDDI
nodes and network components was desirable.
Consequently, we designed a bl;ick-box model for
thc 1 : l) ~ I ring that provides two-way interaction
with the FDDI chip set and parser model. This FDDI
model allocates time on the FDDI ring for transmit
and receive transactions. The model ;ilso controls a
receive workload generator when frames are
received by the ;id;~ptcr.

The receive workload generator is an analytical
model used to create clfirent patterns of receive traf-
fic to the DEMFjl. 'I'hc- parameters input to this work-
load model are the average frame size, the frame-size
distribution, the frame type, the load, and the num-
ber of back-to-back frame arrivals (i . ~ . , the burst rate
or "burstiness" of the fr;tme arrivals). We varied these
parameters to generate desired workloads.

The average frame size and frame-size distribu-
tion parameters generate different size frames.
Actual frame sizes c;in be specified as normally
or exponentially distributed about the mean or as
constant. The workload model can generate station
management (SM'I'), L1.C SNN?/SAI', or LLC non-
SNAP/SI\I' frame types and can create a load between
0 and 100 Mb/s. If workloads are less than the peak
FDDI biindwidth, i.e., 100 LMb/s, the fr;ime arrival pat-
tern can be specificd ;IS an exponential, constant, or
normal distribution. 'l'he model can generate a witle
range of synthetic traffic patterns, but to obtain
cretlible performance results, we characterized the
traffic ns seen in re;ilistic networks.

Several studies had been conducted on large
Ethernet W s within Digital; a case study by
D. Chiu and R. Sudama is one example." We ana-
lyzed the results from these studies to understand
the frame-size clistribution in such networks. From
the analysis we concluded that

Frame sizes 011 the networks are related to user
protocols. Frames in a test sample were dis-
tributed about a few discrete frame sizes (i.e.,

modes of the distribution) rather than over a
wide range of frame sizes.

The probability f~~nc t ion of the frame sizes near
each mode can be approximated as a normal dis-
tribution centered about the mode.

A composition analysis of the measurements pro-
vided different modal mean sizes, standard devia-
tions, and the probabilities of frames belonging
to the different modes. We used these values to
statistically create Ethernet network traffic. For our
performance measurements, it was necessary for us
to change this traffic pattern appropriately to
reflect the differences that exist between FDDI LANs
and Ethernet LANs. The FDDI frame header is
smaller than the Ethernet header, and the largest
FDDI frame is approximately three times the size of
the Iargcst Ethernet frame. We factored these
changes into the Ethernet model to produce an
FDDI workload model. The FDDI workload has
either four or five modes.

The four-mode distribution contained a major-
ity of frames grouped around 60, 576, 1518, ancl
4496 bytes. The standard deviations of the frames
around these mean values were 22,5,2, and 2 bytes,
respectively. The frame volumes at these modal
values represented contributions of 29 percent,
67 percent, 3 percent, and 1 percent, respectively,
to the total load.

The five-mode frame sizes were grouped around
33, 80, 576, 1518, and 4496 bytes. The standard
deviations of the frames around these means were
1, 20, 5, 2, and 2, respectively. The frame volumes at
these modes contributed 26 percent, 15 percent,
55 percent, 3 percent, and 1 percent, respectively,
to the total load.

111 the above FDDI workload model, the mode of
1518 bytes is determined by the Ethernet network's
m;ixirnum framc-size capacity and, similarly, the
mode of 4496 bytes is determined by the FDDI
network's maximum frame-size capacity. These
two rnodal frame sizes represent traffic generated
by large data transfer operations, e.g., file transfers.
Contributions due to these two modes vary from
network to network. We considered different
contributions and found their effect on adapter
throughput to be negligible. ?'herefore, only one
case for each workload is presented in this paper.

FDDI Chip Set and Parser
The FDDI chip set, also referred to as the FDDI
corner, is the base-level technology that was part

68 Vol .i iVo 3 S~rrrz~ner 1991 Digital Technical Joztrtml

Performance Ancllysis of a High-speed FDDI Adapter

of Digital's strategy to build high-performance,
low-cost data links for FDDI LANs. This chip set per-
forms serial-to-parallel data conversion, acts as an
interface to the packet memory in the data link
layer, and can support a data rate of 100 Mb/s."The
entire chip set, except for the ring memory con-
troller (RMC), was modeled as a black box with a
specified per-frame latency. The IWC and the asso-
ciated first in, first out (FIFO) buffers for the receive
and transmit stream staging were modeled in
greater detail. The detail was necessary to capture
any overflow or underflow conditions that might
occur in the FIFO buffers. We also modeled the
interaction between the transmit and receive
streams. The RMC model, which served as the front
end of the chip set model, was also capable of gen-
erating control and data transactions to perform
read/write memory operations.

The parser hardware off-loads some host frame
processing to the adapter. The parser reads infor-
mation about a receive frame from the RMC bus and
creates a forwarding vector, which is appended to
the frame. This forwarding vector is used by differ-
ent entities in the adapter and the host to efficiently
process a frame. The parser latency to generate this
vector varies with the frame type and size. The
parser model helped to analyze the impact of this
latency on performance. This model mimics the
hardware to produce a forwarding vector for a
given frame with a pertinent latency.

Packet Menzory Controller
The packet memory controller (PMC) is the heart of
the adapter system. The ring entry mover stage, the
packet buffer memory, and the packet memory
interface constitute the functionality in the PMC."
The PMC controls the arbitration and servicing of
requests to and from memory to effect the efficient
transfer of information. The PMC also controls the
movement of pointers corresponding to every
frame. These pointers and the associated protocol
generate work for the RMC, the host interface, or
the adapter manager.

The high throughput capability of FDDI rings can
result in traffic patterns that cause a strain on the
packet memory. The PMC model allowed us to study
such scenarios. It is also important to analyze the
working and performance of the ring entry mover,
which moves frames between different interfaces
by manipulating the control information of a stored
frame. The control information and frame data
reside in the packet memory.

Host Inter$ace
The host interface, also called the host protocol
decoder, moves data between the adapter and the
host system through an XMI bus and also interfaces
with the PMC. We modeled the interface to include
details of the dual direct memory access (DMA)

design (one channel for the receive stream and one
for the transmit stream), the staging buffers associ-
ated with each DMA channel, the XMI interface, and
the PMC interface. The host interface also has the
capability of scheduling write operations while
waiting for the delivery of read information.
Priority schemes to complete such transactions,
i.e., handshake mechanisms, are important from a
performance perspective and, hence, were
included in the model.

XMI System
The XMI system interacts with the host system and
was modeled to include details of the xM1 bus and
memory. This model consists of an xM1 bus sub-
model that interfaces to the XMI end of the host
interface model of the adapter. The submodel also
interacts with a memory model and an XMI work-
load generator model. The bus submodel imple-
ments the XMI protocol.

Memory Model The memory model was designed
to generate responses to transactions that request
memory. Latency for these requests is the memory
access time, which includes a queue wait time.
There are basically two types of systems that sup-
port the DEMFA, as shown in Figure 2. The type is
determined by whether the XMI is used as the CPU
bus, denoted in this paper as the XMI (Cpu) bus con-
figuration, or as the I/O bus, denoted as the XMI (I/O)
bus configuration. The only difference between the
two systems is memory access time. This time is
greater ifXi1I is used as the I/O bus; there is an added
latency on the read transactions performed to fetch
memory from locations that are not local to the
bus. The memory space that is local to the CPu bus is
accessed through another I/O adapter mechanism.
Such I/O adapters, CPU buses, and main memory
bandwidth all play a role in determining the access
times in such systems. The model presented in this
paper depicts the VAX 9000 I/O architecture and cur-
rent implementation. Performance may vary with
other implementations.

XNI Workload Generator We designed the mI
worMoad generator to represent the load on the

Digilal Technical Journnl Vo'01.3 No. .J Summer 1991

Network Performance and Adapters

MEMORY mu
uu

XMl BUS

DEMFA ATACHED TO AN XMI (CPU) BUS

h h c5
h h h h

I t 0
5

CPU MEMORY - - ADAPTER
m - - -

I I I I
SYSTEM BUS

'4 DEMFA AlTACHED TO AN XMI (110) BUS v

Figure 2 System Types That Support the DEMM

XMI bus, excluding traffic from the DEMFA. This
load tends to have a deteriorating effect on DEMFA
performance and thus, is referred to as the XMI
interference workload. It was important not only
to model the amount of load but also to capture
the arrival pattern of this traffic. The workload
model generated traffic based on three inputs: the
total XMI bandwidth used by other)(MI nodes, the
average length of each xMI transaction, and the
burst rate of the frame arrivals. Transaction lengths
on XMI vary from one to five XMI cycles (i.e.,
64-nanosecond cycles). The maximum number of
nodes that can exist on an XMI bus is 14. Thus, the
burst rate can vary from 1 to 13.

Typically, traffic on an XMI bus consists of many
back-to-back transactions of various sizes. We
decided to use the worst case values for both the
burst rate and the transaction length in the XMI
interference workload presented in this paper. The
worst case burst rate is 13, and the worst case trans-
action length is 5 XMI cycles.

Host System
The host system consists of the CPU, disks, layered
software, the operating system, the device driver,
and a host workload generator. The host system
was modeled in accordance with assumptions pre-
sented in the section Results from Performance
Simulation. The CPU, disks, host software, and the
operating system were modeled in such a way that

they do not become bottlenecks during frame
reception or transmission. A model of the device
driver handles frame transmission and reception.
The driver interacts with a host workload genera-
tor, which creates different traffic patterns for trans
mission. This workload generator has the same
capabilities as the receive workload generator d i s
cussed in an earlier section.

Results from Performance Simulation
The data presented in this section was generated
using the simulation model of the adapter. This
data represents the hardware performance of the
DEMFA; system performance with the DEMFA as a
component is not within the scope of this paper.
We input parameters to the simulation model that
defined traffic patterns and ran simulations for a
sufficient length of time to ensure that we captured
steady-state behavior. The models maintain statis-
tics of relevant events and quantities and print out
this information at the end of a simulation. As dis-
cussed previously, the hardware performance of
the DEMFA varies depending upon whether the
system is implemented to use the XM1 bus as a CPU
bus or as an I/O bus. This section presents simula-
tion results for both uses, where appropriate.

Assumptions
For our simulation purposes, we made several
assumptions. These assumptions make the results

Vol. .? No. 3 Sztmmer 1991 Digital Technical Journal

Performance Analysis of n High-speed FDDI Adapter

more general and bring out the hardware perfor-
mance characteristics of the DEMFA, indicating the
upper bounds of performance that the adapter can
achieve.

CPU and Softzuare Capabilities The device driver
and the host software do not become bottlenecks
during frame reception and transmission. We
assumed that the host CPu had enough computing
ability to process frames without posing as a perfor-
mance bottleneck.

Memo y Bandzuidth Frames sent from or received
by the host result in XMI bus transactions that are
written to or read from the host memory.
Throughput varies with the memory implementa-
tion and interleaving. We assumed that the memory
implementation and interleaving were selected
such that no overloading of the memory occurs,
thus eliminating wasted bus cycles.

Bzlffer Alignment and segmentation We assumed
that data for transmission and buffers for reception
were hexaword (i.e., 32-byte) aligned and that
frames were unsegmented.

Simulation Traffic No error frames or error trans-
actions were simulated, since we assumed these to
be negligible. No adapter manager traffic was sirnu-
lated during the performance measurements, since
these represent a very negligible fraction of the
frames received during steady-state ring operation.

Throughput Measurements
Measurements were made to determine the through-
put that the adapter can sustain for received and
transmitted frames. It is important to understand
how throughput is related to the load, the bursti-
ness of frame arrivals, the percent M I interference,
and the frame size. This section presents the results
of the throughput measurements as functions of
these parameters.

Received Throzlghpzit as a Function of the Load
The graph shown in Figure 3 is the result of several
experiments conducted by varying the load for
33-byte received frames. The frame arrival rates
depend on the load and the arrival rate distribution.
As mentioned earlier, the model is capable of simu-
lating traffic with different arrival patterns. Figure 3
shows that, with an exponential arrival pattern, the
throughput increases at a rate proportional to the

LOAD (MEGABITSISECOND)

KEY:
. EXPONENTIAL
- CONSTANT

Figure 3 Receive Throz~ghpz~t as n Function
of the Load for a 33-byte Frame

load up to a certain point, and then gradually
decreases until the load is 100 Mb/s. The decrease in
throughput is caused by the loss of resources due to
excessive loading.

We simulated traffic with a constant arrival pat-
tern and conducted the same experiments. These
results are also shown in Figure 3. Observe that the
point of maximum throughput and the rate at
which the throughput decreases after reaching the
maximum vary with the arrival pattern of traffic.
After performing experiments on other frame sizes,
we concluded that there is no fixed relationship
between the maximum achievable throughput and
the throughput at FDDI saturation (i.e., 100-Mb/s
load). Also, there is graceful degradation in through-
put after the peak.

Receive Throughput for Four- and Five-mode
Workloads We measured adapter receive through-
put for four- and five-mode workloads with a load of
100 Mb/s. The XMI interference workload was var-
ied, and the results are presented in Figure 4. The
adapter can receive the workload at 100 Mb/s, if the
XMI interference workload remains moderate.
Figure 4 also shows that there is very little differ-
ence in performance between the four- and five-
mode workloads. Large frames constitute a major
part of both workloads, and larger frames can be eas-
ily supported by DEMFA at full FDDI data bandwidth.

Receive Throughput as a Function of Frame Size
Figure 5 shows the throughput as a function of the
frame size and the XMI interference workload, with
DEMFA attached to an XMI (CPU) bus. Smaller frames

Digital Tecbm'ccrl Jozmzal Vo1. 3 iVo 3 Sunzmer 1991 71

Network Performance and Adapters

20 40 60

XMI INTERFERENCE (PERCENT)

KEY:

M FOUR-MODE WORKLOAD
6. - - . -t FIVE-MODE WORKLOAD

Figure 4 Receive Tl~roughput as a Function
of XMIInterferennce fo nn
XMI (CPU Bus Configuration

have a lower throughput rate than larger ones
because of high control/data overhead Shce con-
trol transactions consume bandwidth, the band-
width available for data movement 1s reduced.
Consequently, the overall throughput rate is lower.
Another reason for lower adapter throughput is the
XMI utilization by traffic Prom other nodes on the
XMI bus. This XMl interference results in less avail-
able XM1 bandwidth for the adapter and hence, less
throughput.

O1 20 50 ' 200 500 ' 2000 5000 '
10 100 1000 10000

FRAME SIZE (BYTES)

KEY:

XMl INTERFERENCE WORKLOAD
- . - . - . - 60 PERCENT

40 PERCENT
. 20 PERCENT

0 PERCENT

Figure 5 Receive Throclghpz~t as a Function
of the Frame Size for an
XMI (CPW Bus Configuration

The adapter throughput for an XMI (VO) bus
configuration differs only slightly from that for an
XMl (CPU) bus configuration. Any differences that
exist are for frames smaller than 64 bytes, since
the adapter experiences a per-frame latency cost
because the memory is not local to the XMI bus.

Transmit Throughput for Four- and Five-mode
Workloads Figure 6 illustrates the transmit
throughput for a four-mode workload as a function
of the XMI interference. We performed simulations
to obtain throughput data for the DEMFA when
attached to an XMI (CPU) bus or to an XliI (1/0) bus.
Throughput for the XMI (CPU) bus configuration is
100 Mb/s and is insensitive to low, x M I interference
loads. Whereas, XMI (I/(>) bus configuration mea-
surements are negatively affected by all levels of
XMI interference traffic. The higher read latency
that is inherent to an XMI (I/O) bus configuration
degrades further with increasing interference traf-
fic. In addition the degradation appears to be linear.
The throughputs observed for the five-mode work-
loads are very similar to the data shown in Figure 6.

Transmit Throughput as a Function of the Frame
Size Figure 7 shows the throughput as a function
of the frame size when the DEMFA is attached to an
XMI (CPU) bus. Throughput is also presented for
various XMI interference workloads. As in the case
of receive throughput, transmit throughput
degrades as the frame size decreases and the XMI
interference load increases. This degradation is

XMI INTERFERENCE (PERCENT)

KEY:

XMI (CPU) BUS
& - - - - -+ XMI (110) BUS

Figure G Transmit Throughput as n Function
of XMI Interference for a
Four-mode Workload

72 Vo1. .3 No. 3 S ~ ~ r n r n r r 1991 Digital Technical Joutnal

Performance Analysis of a High-speed FDDI Adapter

20 50 ' 200 500 ' 2000 5000 '
10 100 1000 10000

FRAME SlZE (BYTES)
KEY.

XMI INTERFERENCE WORKLOAD
- 60 PERCENT

.
40 PERCENT
20 PERCENT
0 PERCENT

Figure 7 Transmit Throughput us a Function
of the Frame Size for an
XMI (CPU) Bus Configuration

again attributed to high control/data overhead and
lower XU1 bandwidth availability.

Figure 8 shows adapter transmit throughput as a
function of the frame size for an xi\lr (I/O) bus con-
figuration. The transmit throughput is less when
the DEMFA is used with an XMI (I/O) bus rather than
with an XMI (CPIJ) bus, due to the larger amount of

FRAME SlZE (BYTES)
KEY:

XMI INTERFERENCE WORKLOAD
- -
-LA-

60 PERCENT
40 PERCENT - . - . - . - - 20 PERCENT
0 PERCENT

Figure 8 Transmit Throughput us cl Function
of the Frame Size for the
X M I (I/O) Bus Configuration

read access time resulting from the XMI (I/O) bus
configuration. The transmit operation consists
mainly of read transactions and hence, this latency
is crucial to transmit performance.

Latency Measurements
Latency, as it relates to the DEMFA, is explained in
the Definition of ~Metrics section. We measured the
latency for receive and transmit frames. Frame
latency consists of two components: the active
component, which contributes to the time when
the frame or a portion thereof is being processed at
a service center (also called the service time); and
the passive component, which is the time when the
frame or a portion thereof waits for access to the
service center. All latency data presented in this
section represents averages across a large number
of samples. When measuring the latency of a frame,
we applied the maximum load that can be sus-
tained continuously for that frame size and type.

Receive Latency as a Function of the Frame Size
Figure 9 represents the receive latency data as a
function of the frame size for an XMI (CPU) bus con-
figuration. Latency is also presented for various XMI
interference levels. We present performance data
for only one XMI configuration because there is lit-
tle variation between the results for the XMI (CPU)
bus and ?UMI (I/O) bus configurations. Both frame

KEY:
FRAME SlZE (BYTES)

XMI INTERFERENCE WORKLOAD - . - . - . - 60 PERCENT
40 PERCENT

- - . - . . * . 20 PERCENT
0 PERCENT

Figure 9 Receive Latency as a Function
of the Frame Size for an
X M / (CPW Btts Configuration

Digital TecbnicalJournnl Vol. .3 No. 3 Surn7ner 1991 73

Network Performance and Adapters

size and latency are plotted using logarithmic scales.
The data illustrates that XMI latency increases lin-
early with increased XMI interference.

Transmit Latency as a Function of the Frame Size
Figure 10 presents transmit latency results for an
XMI (CPli) bus configuration and Figure 11 presents
the results for an XMI (V0) bus configuration. The
latency was measured as a function of the frame
size for various XMI interference workloads.
Transmit taEency is more sensitive to the system
type and to the XMI interference workload because
most XMI transactions that constitute transmit traf-
fic are read operations. There is a distinctly higher
Latency cost associated with these transactions in
the XMI (v0) bus configuration as compared to the
MI (CPU) bus configuration. As in the case of
receive latency, the transmit latency degrades with
XMI interference.

Perfortname Measurements with the
Prototype DEMFA
The intent of performing measurements with the
prototype DEMFA was twofold. First, we wanted to
confirm the performance predictions arrived at
through simulation. And second, we wanted to
measure some features that we did not implement
in the model, either because they were not quantifi-
able or because they were too complex to model.

FRAME SlZE (BYTES)
KEY:

XMI INTERFERENCE WORKLOAD
- . - . - . - 60 PERCENT

40 PERCENT
. . . - 20 PERCENT

0 PERCENT

Figure I 0 Transmit Latency us a Function
of the Frame Size for an
XMI (CPLr) Bus Configuration

KEY:
FRAME SlZE (BYTES)

XMI INTERFERENCE WORKLOAD - . -. - . - . 60 PERCENT
40 PERCENT

. . - . . . - . 20 PERCENT
0 PERCENT

Figure I 1 Transmit Latency as a Function
of the Frame Size for an
X M I (I/O) Bus Con figuration

Again, we present only hardware performance
measurements; system performance with the
DEMFA is beyond the scope of this paper.

Measurement Setups
The experimental configuration required to per-
form the measurements on the prototype DEMFA
is shown in Figure 12. This configuration con-
sists of a VAX 6000 processor connected to a
DECconcentrator 500. The VAX 6000 system has an
XMI backplane. The DEMFA occupies one of the

OPERATING SYSTEM
AND DEVICE DRIVER I DEc VAX 6000 I SYSTEM rJ FDDITEsT:'

(GENERATES AND
FDDICONTROLLER 400 MONITORS TRAFFIC AT
(DEMFA) FULL FDDI BANDWIDTH)

DECCONCENTRATOR 500 *
WIRING CONCENTRATOR

FDDI RING NETWORK

Figure 12 Laboratory Set@ for DEMFA
Performance Meaurernenls

74 W1.3 No. 3 S~rmmer 1991 Digital Techmical Journal

Performance Analysis o f a High-sbeed FDDI Adapter

slots in the XlMI backplane and is part of the %MI
(CPU) bus configuration in this system. An FDDI
tester is also attached to the DECconcentrator 500
and acts as a source of frames. The FDDI tester is
a usefill tool for testing the DEhlFA product; the
tester is capable of transmitting traffic at 100 Mb/s
and can generate frames of various sizes and types
with different destination addresses. A standalone
software driver and operating system runs on the
VAX 6000 system and is used for DEMFA hardware
performance tests. A logic analyzer is used to mea-
sure elapsed time and count events.

Throz~ghput Measurements
The device driver measures receive and transmit
throughput and is designed to perform minimal
processing for each frame.

Receive Tbrougbyut iMemurements We measured
the receive throughput by sending a continuous
stream of frames at 100 Mb/s from the FDDI tester to
the DEMFA. We varied the frame size for the tests
and ran each test for a length of time sufficient to
verdy data convergence.

We compared the prototype measurements with
the modeled results for receive throughput as a
function of the frame size for an XMI (CPU) bus con-
figuration. This validation of the receive throughput
results is shown in Figure 13. The hardware mea-
surements demonstrate that the adapter can receive
frame sizes above 69 bytes at 100 Mb/s. Throughput
degrades for smaller frame sizes. These measure-
ments closely validate the modeled results. The

O 1 20 50 200 500 2000 5000
10 100 1000 10000

FRAME SIZE (BYTES)
KEY:

If - - - --0 MEASURED
W MODELED

Figure 13 Validation of Receive
Tbrougbput Results

throughput for the performance model demon-
strates that the DEMFA can continuously receive
frames greater than 65 bytes at 100 Mb/s. 'There is a
slight difference between the measured and mod-
eled results at the lower frame sizes because resid-
ual XMI interference traffic exists in the measured
system. This experimental error is unavoidable, but
the difference is a small percentage of the total
throughput and is therefore acceptable.

Transmit Tl9rougbput Menszirements To measure
the transmit throughput, we forwarded frames
from the driver to the FDDI ring at the maximum
possible rate. The throughput was calculated from
the number of frames that could be sent in a unit of
time. The adapter can transmit frames larger than
51 bytes at 100 Mb/s. Transmit throughputs mea-
sured in the laboratory validate the modeled results
as closely as the receive throughput validation
results shown in Figure 13. The modeled through-
put results were lower than the measured results
because we used a conservative approach to mod-
eling the memory latency.

Multisegmented and Misaligned Frames Seg-
mentation and alignment of transmit frame buffers
in host memory is variable. Typically, frames consist
of two segments, the first containing the frame
header information and the second containing the
data. Since the DEMFA must access control and data
separately, segmentation makes this process less
efficient, from a hardware perspective, than if the
data and control information exist in the same
buffer. Also, buffers may be aligned to start on
different byte boundaries. Since the DEMFA trans-
actions begin on hexaword (i.e., 32-byte) bound-
aries, hexaword alignment of frame data in the host
buffers is the most efficient arrangement from the
adapter's perspective. We measured throughp~it
with unsegmented and two-segmented frames, and
with frames aligned on longword, quadword, and
hexaworcl byte boundaries. Segmentation and align-
ment variations cause negligible throughput degra-
dation for frames 64 bytes or larger.

Latency Measurements
We used the logic analyzer to measure the frame
latency. The logic analyzer responds to signals that
indicate the starting and ending times for process-
ing a frame. The difference between these two times
is the frame latency. The events were chosen such
that the measurements conformed to the definition

Digital Technical Jozrrnal Vol. .3 iVo. 3 Summer I991

Network Performance and Aclapters

of latency as described in the Definition of Metrics
section.

Note that the traffic pattern used to meamre
latency in this section differs from the workload
illustrated in the section Performance Results from
Simulation. Here, a single frame was received or
transmitted, and we measured latency due to that
frame only. Whereas previously, we used the simu-
lation model to measure latency as an averngc
across a large number of frames representing a toad
equal to the maximum sustainable adapter through-
put. The workloads differ because of the practical
difficulty to perform latency measurements on a
large number of frames.

Receive Lateracy The receive frame latency predic-
tions from the performance model and adapter ser-
vice time measurements taken from the prototype
hardware are shown in Figure 14. These latency mea-
surements validate the model predictions in a way
similar to that for the throughput measurements.

T r a m i t Latency We also compared transmit
latency measurements to predictions from the per-
formance model and h)und these measurements
to approximate the modeled results. But actual
latency measurements were slightly lower than the
modeled results, again due to a conservative mod-
eled latency.

Conclusions
The performance model was intended to track the
performance of the prototype hardware to an accu-
racy of + 10.0 percent. The comparisons between

5 2 -

1
20 50 200 500 ' 2000 5000

10 100 1000 10000

FRAME SIZE (BYTES)
KEY:

D----a MEASURED
U MODELED

Figure 14 Validation of Receive Frame
Latency Results

modeled and measured results tlcmonstratc that
the model actually surpasses our go;~l. The n ~ c ; ~ -
sured performance for the XMI (110) bus configur;l-
tion using a VAX 9000 system validated the modeled
results as closely as did the corresponding results
for the XMI (CPU) bus configuration. Disparit): if
any, between the modeled and the measured results
basically stem from unavoidable measurement
errors for receive frames and pessimistic memory
latency assumptions for transmit frames.

Throughput due to the four- and five-mode work-
loads is nearly the same. The average frame size for
these distributions is 496 bytes and 487 bytes,
respectively. Thus, throughput is a function of the
frame size and independent of the number of
modes that exist in the workload. Also, this data
leads to the conclusion that the DEMFA may never
pose as a performance bottleneck in a real network
environment.

For the simulation, we chose an XMI work-
load with an extremely high burst rate. Actual
XMI systems may result in better throughput
than that presented in this paper. The resources
required to create XMI workload variations are not
easily accessible, so we did not perform measure-
ments on the prototype adapter under different
workloacl conditions. But since other measurements
validated the model predictions so closely, measur-
ing performance with varied XMI workloads proved
unnecessary.

Valitlation of the results that we predicted
through simulation increased our confidence in
various design mechanisms that were verified
using the performance model as a test platform.
When designing new I/O architecture or memory
implementations, our performance model allows
changes to be made easily in order to determine the
impact of such changes on performance. The mod-
eling strategy proved very effective and helped to
deliver a high-quality product with better perfor-
mance than what was intended initially.

Ackmn.uledgments
I wish to acknowledge all members of the DEMFA

development group for their help in modeling the
adapter. Their openness to examine new designs to
enhance performance resulted in this high-speed
adapter. I am also grateful to the group for assisting
with the performance measurements. Finally, I
wish to extend special thanks to Howard Hayakawa,
Gerard Koeckhoven, Satish Rege, Andy Russo, and
Dick Stockdale.

76 W>1. .3 No. .? Summer 2991 Digital Techirical Journal

Performance Analysis of 61 High-speed FDDI Acla11tt.r

Refeences
1. R. Gillett, "Interfacing a VLY Microprocessor

to a High-speed Multiproccssing Bus," Digital
Technical Journal, no. 7 (August 1988):
28-46.

2. W Hawe, R. Graham, and I? Hayden, "Fiber
Distributed Data Interface Overview," Digital
Technical Journal, vol. 3, no. 2 (Spring 1991):
10- 18.

3. B. Allison, "iin Overview of the VLY 6200
Family of Systems," Ui~~i tal Technical Journal,
no. 7 (August 1988): 19-27.

4. D. Fite, Jr., T. Fossum, and D. Manley, "Design
Strategy for the VAX 9000 System," Digital
Technical Journal, vol. 2, no. 4 (Fall 1990):
13-24.

5. E Ross, "FDDI-A Tutorial," IEEE Communi-
cations Magazine, vol. 24, no. 5 (May 1986):
10- 17

6. S. Joshi, "High-Performance Networks: A
Focus on the Fiber Distributed Data Interface
(FDDI) Standard," IEEE MICRO u u n e 1986):
8- 14.

7. R. Stockdale and J. Weiss, "Design of the
DEC LAhrcontroller 400 Adapter," Digital
TechnicalJournal, vol. 3, no. 3 (Summer 1991,
this issue): 36-47.

8. S. Rege, "The Architecture and Implementa-
tion of a High-performance FDDI Adapter,"
Digital Technical Journal, vol. 3, no. 3
(Summer 1991, this issue): 48-63.

9. Progmmmer's Reference Manual for SI~WULA
for ViU: under RVIS O/~owtin,q Sj~slern (North
Berwick, Scotland: lit\SE I.td., 1991).

10. G. Birtwistle, 0. Dahl, B. Myhrhaug, and
K. Nygaard, SIMUJA BEGIiV (Kent, England:
Chartwell-Bratt Ltd., 1980).

11. L. Kleinrock, Qzleueing Systems, vols. 1 and 2
(New York: John Wiley and Sons, 1976).

12. D. Chiu and R. Sudama, "A Case Study of
DECnet Applications and Protocol Perfor-
mance," Procee~lillgs of the ACM SIGMETRICS
Conference (May 1988).

13. H. Yang, B. Spinney, ancl S. Towning, "FDDI
Data Link Development," Digital Technical
Jotlrncil, vol. 3 no. 2 (Spring 1991): 31-41.

Digital Techmcal Jourtrnl W)l . .? No. 3 Summer 1991 77

Performance Analysis of FDDI

The performance of an FDDI Lrli\r depends upon configuration and workload
parameters such ns the extent of the ring, the number of stations or2 the ring, the
number of stations that are waiting to transmit, and the frame size. In addition,
one key parameter that rietiuork managers can control to inzprove performance is
the t~zrget token rotation time (TTRT). Analytical modelirzg and simulation meth-
ods were used to investigate the efSect of the TTRT on vario~~sperformance metrics
for diffirent ring configtlmtions. This analysis demonstrated that setting the TTRT
at 8 tnillisecondsprovides goodperformance over a wide range of configurations
arid workloads.

Fiber distributed data interface (FDDI) is a 100-mega-
bit -per-second (Mb/s) local area network (LAN)

defined by the American National Standards
Institute (ANSI).',* This standard allows as many as
500 stations to communicate by means of fiber-
optic cables using a timed-token access protocol.
Normal data traffic and time-constrained traffic,
such as voice, video, and real-time applications, are
supported. All major computer and communica-
tions vendors and integrated circuit manufacturers
offer products that comply with this standard.

Unlike the token access protocol defined by the
IEEE 802.5 standard, the timed-token access proto-
col used by FDDI allows synchronous and asyn-
chronous traffic simultane~usly.~ The maximum
access delay, i.e., the time between successive trans-
mission opportunities for a station, is bounded
for both types of traffic. Although this delay is short
for synchronous traffic, that for asynchronous traf-
fic varies with the network configuration and load
and can be as long as 165 seconds. Long maximum
access delays are undesirable and can be avoided
by properly setting the network parameters and
configurations.

This paper begins with a description of the
timed-token access method used by FDDI stations
and then proceeds to discuss how various parame-
ters affect the performance of these systems. The
target token rotation time (TTRT) is one of the key

This paper is a modified version of "Performance Analysis of
FDDI Token Ring Networks: Effect of Parameters and Guidelines
forSettingmtT," by Raj Jain, published in the Proceedings of the
SIGCOMM '90, September 1990. Copyright 1990, Association for
Computing Machinery, Inc.

parameters. We investigated the effect of the TTRT
on FDDI LAN performance and developed guide-
lines for setting the value of this parameter. The
results of our investigation constitute a significant
portion of this paper.

Timed-token Access Method
The token access method for network communica-
tion, as defined by the IEEE 802.5 standard, operates
in the following manner. A token circulates around
the ring network. A station that wants to transmit
information waits for the arrival of the token.
Upon receiving the token, the station can transmit
for a fixed time interval called the token holding
time (THT). The station releases the token either
immediately after completing transmission or after
the arrival of all the transmitted frames. The time
interval between two successive receptions of
the token by a station is called the token rotation
time (TRT). Using this scheme, a station on an
n-station ring may have to wait as long as n times
the THT interval to receive a token. This maximum
access delay may be unacceptable for some applica-
tions if the value of either n or THT is large. For
example, voice traffic and real-time applications
may require that this delay be limited to 10 to 20
milliseconds (ms). Consequently, using the token
access method severely restricts the number of
stations on a ring.

The timed-token access method, invented by
Grow, solves this problem by ensuring that all sta-
tions on a ring agree to a target token rotation time
(TTRT) and limit their transmissions to meet this
target.l There are two modes of transmission:

78 Vol. 3 No. 3 Summer 1991 Digital Technical Journal

Peflormance Analysis of FDDI

synchronous and asynchronous. Time-constrained
applications such as voice and real-time traffic use
the synchronous mode. Traffic that does not have
time constraints uses the asynchronous mode. A
station can transmit synchronous traffic whenever
it receives a token; however, the total transmission
time for each opportunity is short. This time is allo-
cated at the ring initialization. A station can trans-
mit asynchronous traffic only if the TRT is less than
the TTRT.

The basic algorithm for asynchronous traffic is as
follows. Al l stations on a ring agree on a target
token rotation time. Each station measures the time
elapsed since last receiving the token, i.e., the TRT.
On token arrival, a station that wants to transmit
computes a token holding time using the following
formula:

THT = TTRT - TRT

If the value of THT is positive, the station can trans-
mit for this time interval. After completing trans-
mission, the station releases the token. If a station
does not use its entire THT, other stations on the
ring can use the remaining time through successive
applications of the algorithm.

Note that even though the stations attempt to
keep the TRT below the target, they do not always
achieve this goal. The TRT can exceed the target by
as much as the sum of all synchronous-transmission
time allocations; however, these allocations are lim-
ited so that their sum is less than the TTRT. As a
result, the TRT is always less than twice the TTRT.

Perfoomnance Parameters
The performance of any system depends upon both
system parameters and workload parameters as
shown in Figure 1. There are two kinds of system
parameters: fixed and user-settable. Fixed parame-
ters cannot be controlled by the network manager
and vary from one ring to another. Cable length and
the number of stations on a ring are examples of
fixed parameters. It is important to study network
performance with respect to these parameters; if
performance is sensitive to them, each set of fixed
parameters may require a different guideline. Sys-
tem parameters that can be set by the network man-
ager or the individual station manager include
various timer values. Most of these timers influence
the reliability of the ring and the time it takes to
detect a malfunction. The key settable parameters

I PERFORMANCE
PARAMETERS I

SYSTEM I WORKLOAD I
I""d""'

TARGET TOKEN I SYNCHRONOUS I
ROTATION TIME I LENGTH TIME (TTRT) ! ALLOCATION ! n STATIONS

LOAD PER
STATION

NUMBER
OF ACTIVE
STATIONS

Note that the oararneters shown in the dashed boxes were not considered in this studv.

INTERBURST ; BURST-SIZE FRAME-SIZE
TIME I I DISTRIBUTION I DISTRIBUTION : DISTRIBUTION ! I I I

Figure I Pet$or~nu?zce Parameters

I INTERFRAME

~ \~ !& lBUTION I !

Digital Techtucal Journal Vo1.3 No. 3 Summer 1991 79

Network Performance and Adapters
-

th:tt affect system pcrform;~nce are the TTRT ant1
the s).nchronous time allocations.

In this 1>;11xr, the perlbrmance was stuclied uncles
asynchronous traffic co~idit ions only The presence
of synchronous traffic will further restrict the choice
of'l"l'KI', as discussed later in the section Guidelines
for Setting the 'l'arget 'Ioken Rotation Time.

'I'he worklo;ttl also has a significant impact 011

perl'ormance. A guiclcline o r recommendation may
be suit;lhle for one workloacl but not for itnother.
'l'lie key n7orkload parameters are the number of
active stations and the load p e r station. Hy active
w e mc;m stations on ;I ring that ;lrc cither tratlsmit-
ting or m1;titing to tr;tnsmit. A ring m;ty contain ;I

large number of stations, but getierally only it few
arc. ;tctivc ;it any given time. Active stations include
the currently transmitting station, if any. and stit-
tions th;tt ha1.c I '~ ; I I I I~S to transmit and are waiting
for thc. ;tcccss right, i.e.. for ;I usable token t o arrive.
The load pe r station varies with the number of sta-
tions, thc. intcr\:;tl between bi~rsts , the number of
frames per burst, and the frame size.

Performance Metrics
The qi~ali ty of service a system proviclcs is mea-
surecl by its productivity and responsiveness.'
For an FDDI LAN, protluctivity is measured by its
throughput, and responsiveness is measurecl by the
response time and maximum access delay.

The procluctivity metric of concern to the net-
work manager is the total throughput measured in
megabits pe r second. Over any reasonable time
interval and for most loads, the throughp~lt is equal
to the loacl. I:or example, if the load on a ring is
10 blb/s, then the thrortghput is also 40 Mb/s. But
this docs not holtl if tlie loacl is high. For esample,
if there itre three stations on a ring, each with a
100-,Mh/s load, tlie totitl arrival rate is 300 Mb/s
and the throughpi~t is consiclerably less-close to
100 Mb/s. Thus, the key productivity metric is not
tlie throughput under low load but the maximum
obtainable throughput under high load. This latter
quantity is also known 21s the usable bandwidth of
tlie network. Ancl tlit. ratio of the usable bandwidth
to the nomin;tl bancl\viclth (e.g., 100 Mb/s for an FDDI
LAN) is calleel the efl'icicncy of the network. For
instance, if w e consicler a set of configuration and
xiiorkloacl parameters with a usable FDDI bandwidth
of at most 90 Mb/s, the efficiency is 90 percent.

The response tinie is the tinie interval between
the arrival of :I frame and the completion of its
tran.smission, including queuing delay, i t . , from

the first bit in to the last bit out. This metric is mean-
in<fi~l only if a ring is not satur:~tccl, bcc;tuse ;it
loads near o r above capacity the response time
approaches infinity. With such loads, the m;~ximum
access delay for a station, i.e., the time interval
between wanting to transmit and receiving a token,
has more significance.

Another metric that is of interest for a s11;lred
resource such as FDDT is the fairness with which the
resource is allocated. Fairness is particularly impor-
tant under a heavy load. Given such a load, the asyn-
chronous bandwidth is allocated equally to all
active stations. However, tlie I:DDI protocols arc fair
only if the priority levels are not implemented. In
the case of multiple priority implement;~tion, it is
1x)ssible for two stations with the sarne priority and
the same load to have different throughput clcpend-
ing upon their location.(' Low-priority stations
that are close to high-priority stations may get
better service than those farther downstream. 1%
assumed a single priority implementation to keep
the analysis simple. Since such implementations
have no fairness problem, this metric will be dis-
cussed 110 further in this paper.

W used two methods to analyze performance:
analytical mocleling and simulation. We first pre-
sent the analytical model usecl to compute the effi-
ciency and niasimum access delay of a network
under a lieavy load. Then w e discuss the simulation
moclel workload used to analyze the response time
at loads below the usable bandwidth.

A Simple Analytical Model
The maximurn access delay and efficiency are
me;tningfill only under heavy load. Therefore, w e
assume that there are n active stations, each gcner-
ating enough frames to saturate the FDDl network.

Basic Equations
For an FDDI network with a ring latency D (i.e , the
time it takes a bit to travel around the ring) and a
TTRT value of T, the efficiency and maximum access
delay are computed using tlie following formulas:

n (T D)
Efficiency = n T + D

Maximum access delay = (n - 1) T + 2 0 (2)

Equations (1) and (2) constitute the analytical
model. Their derivation is simple and is presented
in the next section. Those readers who are not
interested in the details can proceed to the section
Application of the Model.

80 I / o I 3 .Vo. 3 Sunliner 1991 Digital Technical Jotirtral

Performance Analysis of FDDI

Derivation
First consider a ring with three active stations, as
shown in Figure 2. (Later, we will consider the
general case of n active stations.) The figure shows
the space-time diagram of various events on the
ring. The space is shown horizontally, and the time
t is shown vertically. The token reception is
denoted by a thick horizontal line segment. The
interval of time during which transmission of
frames takes place is indicated by a thick vertical
line segment.

SPACE

KEY:

S1. S2, S3 STATIONS
I TOKEN

I TRANSMISSION OF FRAMES

TARGET TOKEN ROTATION TIME
RING LATENCY
TOKEN PATH

Note that the numbers in this figure refer to event numbers
discussed In the text.

Figure 2 Space-time Dingmm of Events
with Three Active Stations on
an FDDI Network

Assume that all stations are idle until t = D, when
the three active stations suddenly get a large (infi-
nite) burst of frames to transmit. The sequence of
events shown in Figure 2 is as follows:

1. t = 0. Station S1 receives the token and resets
its own token rotation timer to zero. Since the
station has no frames to transmit, the token
proceeds to the next station S2.

2. t = t,,. Station S2 receives the token and
resets its token rotation timer to zero. t,? is
equal to the signal propagation delay from S1
to S2.

3. t = t,,. Station S3 receives the token and
resets its token rotation timer to zero. t , , is
equal to the signal propagation delay from S1
to S3.

4. t = D. Station S1 receives the token. Since S1
now has an infinite supply of frames to trans-
mit, it captures the token and determines that
the TRT is D. Thus, the time interval during
which S1 can hold the token, the di.fference
between TTRT and TRT, is T - D.

5. t = T. The THT at station S1 expires. S1
releases the token.

6. t = T + t,,. Station S2 receives the token. S2
last received the tolten at t = t,,; thus, the
value of TRT is T. S2 cannot use the token at
this time and releases it.

7. t = T + t,,. Station S3 receives the token. S3
last received the token at t = t,,; thus, its TRT
is also T. S3 cannot use the token at this time
and releases it.

8. t = T + D. Station S1 receives the token. S1
last received the token at t = D; its TRT is also
T. (Note that the TRT is measured from the
instant the token arrives at a station's receiver,
i.e., event 4 for station S1, and not from the
time it leaves a station's transmitter, i.e., event
5.) S1 cannot use the token and releases it.

9. t = T + D + t12. Station S2 receives the token.
Since TRT is only D, it sets the THT to the
remaining time, i.e., T - D. S2 transmits for
that interval and releases the token at t = T +
D + t,, + (T - D).

10, t = 2T + t,,. The THT at station S2 expires. S2
releases the token.

Digital Tecbrrical Journal Vol. .? No. .? S~m.mer 1991 81

Network Performance and Adapters

11. t = 2T + t,,. Station S3 receives the token.
Since TRT Is T, S3 releases the token.

12. t = 2T + D. Station S1 receives the tokcn.
Since TRT is T, S1 releases the token.

13. t = 2T + D + t,,. Station S2 receives the
token. Since TRT is T, S2 releases the tokcn.

14. t = 2T + D + t,,. Station S3 receivcs the
tokcn. Sincc 1'1c1' is only D, it transmits for the
timc intcrv;~l T - D and rc1e:ises the tokcn at
t = 2 T + D + I , , + (T D) .

15. t = 3T + t,,. The TI-IT at station S3 expires. S3
releases the token.

16. t = 3T + D. Station S1 receives the token, and
the sequence of events begins to repeat. The
token passes through stations S1, S2, and S3,
all of which find it unusable.

19. t = 3T + 20. The cycle continues with S1 cap-
turing the token as in event 4.

The above discussion illustrates that the system
goes through a cycle of events and that the cycle
time is 3T + D. During every cycle, each of the
three stations transmits for a time interval equal to
T - D; the total transmission time is 3 (T - D).
The number of bits transmitted during this time is
3 (T - D) X 108, and the throughput equals 3 (T - D)
X 108/ (3T + D) bits per second. The efficiency, i.e.,
the ratio of the throughput to the FDDI bandwidth
of 100 Mb/s, is 3 (T - D) / (3T + D).

During the cycle, each station waits for a time
interval of 2T + 20 after releasing the token for
another opportunity to transmit. This interval is the
maximum access delay. For lower loads, the access
delay is shorter.

Thus, for a ring with three active stations,

Efficiency =
3 (T - D)
3T+ D

Maximurn access dclay = (3 - 1) T + 2 0
= 2 T + 20

To generalize the above analysis for n active
stations, substitute n for 3. Equations (1) and (2)
are the results; the derivation is completc.

Application of the Model
Equations (1) and (2) can be used to cornputc the
maximum access delay and the efficiency for any
FIIDI ring configuration. For cxarnple, consider a
ring with 16 stations and a total fiber length of
20 kilometers (km). (Using a two-fiber cable, this
corresponds to a cable length of 10 krn.) Light waves
travel along the fiber at a speed of 5.085 ~iiicro-
seconds per kilometer @s/km). The station dclay
bet\veen receiving and transmitting a bit is approsi-
mately 1 ,us per station. The ring latency can be com-
puted as follows:

Ring latency D = (20 km) X (5.085 ps/km)

+ (16 stations) x (1 ps/station)

= 0.12 milliseconds (ms)

Assuming a TTRT of 5 ms and all 16 stations active,

16 (5 - 0.12)
Efficiency = 16 X 5 + 0.12

= 97.5 percent

Maximum access delay = (16 - 1) X 5 + 2 X 0.12

= 75.24 ms

Thus, on this ring, the maximum possible
throughput is 97.5 Mb/s. If the load is greater than
this for any substantial length of time, the queues
will build up, thc response time will increase,
and the stations may start to lose frames due to
insufficient buffers. The maximum access delay is
75.24 ms; thus, asynchronous stations may have to
wait as long as 75.24 ms to receive a usable token.

The key advantage of this model is its simplicity,
which allows us to see immcdintely the effect of
various parameters on network performance. With
only one active station, which i s usually the case,
equation (1) becomes

T - D
Efficiency (n = 1) = - T + D

As the number of active stations increases, the
efficiency increases. With a very large number of
stations,

D
Maximum efficiency (n = x) = 1 - - T

This efficiency formula is easy to remember
and permits "back-of-the-envelope" calculations of
FDDI W N performance. This special case of n = -s-

has already been studied.'

82 Vo6.3 No. 3 Surnrnev 1991 Digital Tecbnical Journal

Performance Analysis of FDDI

Similarly, we can use equation (2) to calculate the
maximum access delay with one active station as
follows:

Maximum access delay (n = 1) = W

That is, a single active station may have to wait as
long as twice the ring latency between successive
transmissions because every alternate token that it
receives would be unusable. For n = m, the maxi-
mum access delay approaches infinity

Simulation Workload
One way to measure the responsiveness of a sys-
tem is to use simulation to analyze the response
time. This metric depends upon the frame arrival
pattern of the workload and is discussed further
in the Response Time section. The workload we
used in our simulations was based on an actual mea-
surement of traffic at a customer site. The chief
application at this site was the warehouse and
inventory control (WC). Hence, we named the
workload WIC.

Previous network measurements show that when
a station wants to transmit, it generally transmits
not one frame, but a burst of frames. The WIC work-
load has this trait as well. Therefore, we used
a bursty Poisson arrival pattern in our simula-
tion model with an interburst time of 1 ms and
five frames per burst.

We limited the frames to two sizes: 65 percent of
the frames were small (100 bytes), and 35 percent
were large (512 bytes). This workload constitutes a
total load per station of 1.22 Mb/s. Forty stations,
each executing this load, would utilize 50 percent
of the FDDI bandwidth. Higher load levels can be
obtained either by reducing the interburst time or
increasing the number of stations on the ring.

Guidelines for Setting the Target
Toben Rotation Time
This section presents the rules specified by the
ANSI FDDI media access control standard for setting
the value of the TTRT. We also discuss efficiency,
maximum access delay, and response time con-
siderations, as well as reasons to limit the value
of TTRT.

ANSI FDDI Standard
According to the ANSI FDDl standard, the following
rules must be observed when setting the TTRT:

1. Since the TRT can be as long as twice the TTRT, a
synchronous station may have to wait a time
interval of up to 2T before receiving the token.
Therefore, synchronous stations should request
a TTRT value of one-half the required service
interval. For example, a voice station that wants
to receive a token every 20 ms or less should
request a TTRT of 10 ms.

2. The TTRT must allow transmission of at least one
maximum-size frame in addition to the syn-
chronous time allocation, if any. That is,

TTRT > ring latency + token time
+ maximum frame time
+ synchronous time allocation

The maximum-size frame on FDDI is 4500 bytes
plus preamble and takes approximately 0.361 ms
to transmit. The maximum ring latency is 1.773
ms. The token time (11 bytes including 8 bytes of
preamble) is 0.00088 ms. This rule, therefore,
requires that the TTRT be set at a value greater
than or equal to 2.13 ms plus the synchronous
time allocation. Violating this rule, for cx;~mple,
by overallocating the synchronous bandwidth,
results in unfairness and starvation, i.e., some
stations are unable to transmit.

3. A station must request a TTRT greater than or
equal to the station parameter T-min. The
default maximum value of T-min is 4 ms. Gen-
erally, most stations do not request a TTRT less
than 4 ms.

4 . A station must request a TTRT less than or equal
to the station parameter T-max. The default
minimum value of T-max is 165 ms. Assuming
that there is at least one station with T-max
equal to 165 ms, the TTRT on a ring cannot
exceed this value. (In practice, many stations
will use a value of 2" X 40 ns = 167.77216 ms,
which can be conveniently derived from the
symbol clock using a 22-bit counter.)

Efficiency and Maximum Access Delay
Considerations
In addition to the rules specified by the standard,
the TTRT values should be chosen to allow high-
performance operation of a ring. This section dis-
cusses these performance considerations.

Figure 3 is a plot of efficiency as a function of the
TTRT. Three configurations called "Typical," "Big,"
and "Largest" are shown.

Digital Technical Journal Vo1.3 No. 3 Summer 1991 83

Network Performance and Adapters

Figure 3 Efficiency crs a Function of the TTRT

100

The 'Iypical configuration consists of 20 single
attachment stations (Sl\Ss) on a 4-km fiber ring. The
numbers used are lxised on ;in intuitive feeling of
what a typic~il ring would look like ;incl not basecl
on any survey of actual inst;tlI;~tiorls. Twenty offices
locatccl on a 50 m by 5 0 m floor rccluirc a 2-km
cable or a 4-km fiber.

'l'he Big cotlfigiiration consists oS 100 S4Ss on a
200-kni fiber. 'l'his configuration represents a rea-
sonabl). large ring with ;icccpt;iblc reli;il>ility.
Configuring a single ring \vith consiclerably Inore
than this number of stations incrc;ises the proba-
bility of bit errors.'

The Largest conliguration consists of SO0 dual
attachment stations (DASs) ancl a ring that has
wral>ped. A can have one or two media access
controllers (Mt\(:s). In this configuration, each DAS
has two M*\Cs. Thus, the I.A\J consists of 1000 M,\<ls

- ,-- TYPICAL

in ;I single 1ogic;tl ring. l'liis is the I;~rgest number of
4I1\(:s ;illo\ved on ;in I:I)I>I LAN. Ikcceding this num-
ber \vould require recomputation of all default
parameters specified in thc st;tnd;ircl.

Figure 3 shows th;tt for all threc configurations,
the efficiency incrc:iscs as the '1"SRT increasrs. 'l'he
efficiency is very lolv at I''I'I11' \.slues close to the
ring latency but increases as tlic 'I"1'1C1' incre;ises.
Thus, to ensure a minimal efficicncy, the minimum
allo\ved '1"TlCS on I:nur is 4 ms. l'his direct relation-
ship hetnieen the efficienc)~ :und the 'I"1'K'I' may Leacl
some to conclude th;tt the 1;irgest possible '1"SliT be
chosen. IIowevcl; notice ;tlso th:it the efficiency
gained by iincrc;tsing the ?I"I'RT, i.c., the slope of the
efficiency curve, t1ecre;tsrs ;is the TTI17' increases.
The "knee" of the curve depends upon the ring

BIG
LARGEST

75 -

50 -

25 -

1

0 5 10 15 20

T R T (MILLISECONDS)

configuration. For larger configurations, the knee
O C C L I ~ S at larger Tl'IiT values. Even for the Largest
configuration, the knee occurs in the range of 6 to
10 Ins. For the Typical configuration. the T1'RT has
little effect on efficiency as long as the '1"I'RT is in
the allowed range of 4 to 165 ms.

Figure 4 sl~ows the niaxirnurn access delay as a
function of the T'I'IiT for the three configurations.
To sho\v the complete range of possibilities, we
usetl ;t semilogarithmic scale on the graph. The vcr-
tical scale is logarithmic, while the horizontal scale
is linear. The figure shows that increasing the TTR'l'
brings about a corrcsponding increase in the masi-
mum access delay for a1 I three configurations.

LARGEST

BIG

TYPICAL

l T R T (MILLISECONDS)

Figure 4 ,Mc~.~imz~m Access Delay as a
Function of the TTRT

7:lble 1 presents the performance metrics for the
maximum access delay and the efficiency as func-
tions of the TTRT. As eviclenced in the table, on the
Largest ring, a TTRT of 165 ms causes a maximum
access tlclay as long as 165 seconds. This means that
in a worst-case situation, a station may h:t\le to wait
several minutes to receive ;t us;lblc token. For many
applications, this delay is unacceptable; therefore, a
rctlucccl number of stations or a smaller TTRT may
be preferal~le.

Response Time
Figure 5 shows the average response time as a func-
tion of the TTRT for a relatively large configuration,
i.e., 100 stations and 10 I<m of fiber. The WIC work-
load was sirnulatecl at three load levels: 28, 58, and
90 percent. Tn7o of the three curves are horizontal

84 Vol .? IW 3 Suni~rrer. I991 Digital Technical Jozrrnal

Perfortrzance Analysis of FDDI

Table 1 Maximum Access Delay and Efficiency as Functions of the l T R T

TTRT I Maximum Access Delay 1 I Efficiency
(ms) (seconds) (percent) I

Typical Big Largest Typical Big Largest
20 SAS 100 SAS 500 DAS 20 SAS 100 SAS 500 DAS
4krn 200 km 200 km 4km 200 krn 200 km

4 0.08 0.40 4.00 98.94 71 -87 49.55

8 0.1 5 0.79 8.00 99.47 85.92 74.77

12 0.23 1.19 11.99 99.65 90.61 83.1 8
16 0.30 1.59 15.99 99.74 92.95 87.38

20 0.38 1.98 19.98 99.79 94.36 89.91

165 3.1 4 16.34 164.84 99.97 99.32 98.78

straight lines indicating that TTRT has no effect on
the response times at these loads. The TTRT only
affects the response time at a heavy load. In fact, it is
only near the usable bandwidth that the TTRT has
any effect on the response time.

To summarize the results presented so far, if the
FDDI load is below saturation, the TTRT has little
effect. At saturation, a larger value of TTRT gives a
larger usable bandwidth and therefore increased
efficiency But a longer TTRT also results in longer
maximum access delays. The selection of the TTRT
requircs a trade-off between these two require-
ments. To facilitate making this trade-off, the two
performance metrics for the three configurations
are listed in Table 1. TTRT values in the allowable
range of 4 to 165 ms are shown. The data shows that
a very small value of TTRT, such as 4 ms, is undesir-
able, because the resulting efficiency on the Largest

I I I I I

0 5 10 15 20

l T R T (MILLISECONDS)

Figure 5 Response Time as a Function of TTRT

ring is poor (50 percent). A very large value of
TTRT, such as 165 ms, is also undesirable, because it
results in long maximum access delays. The 8-ms
value is the most desirable, since it yields 75 per-
cent or more efficiency on all configurations and
results in a maximum access delay of less than one
second on Big rings. Eight milliseconds is, there-
fore, the recommended default TTRT.

Problems with a Large TTRT
There are three additional reasons for preferring an
8-ms TTRT over a large TTRT such as 165 ms. First, a
large TTRT allows a station to receive a large num-
ber of frames back-to-back. To operate in such an
environment, all adapters must be designed with
large receive buffers. Although memory is not con-
sidered an expensive part of a computer, its cost
is significant for low-cost components such as
adapters. The board space for the additional mem-
ory required by choosing a larger TTRT is consider-
able as are the bus holding times required for such
large back-to-back transfers.

Second, a very large TTRT results in an exhaustive
service discipline (i.e., all frames are transmitted in
one token capture), which has several known draw-
backs. For example, exh;custive service is unfair.
Frames coming to higher load stations have a
greater chance of finding the token during the same
transmission opportunity, whereas frames arriving
at low load stations may have to wait. Thus, the
response time is inversely dependent upon the
load, i.e., higher-load stations yield lower response
times and vice versa.9

Third, with exhaustive service, the response
time of a station is dependent upon station location

Digital ?i.chnical Journal Vol. 3 No. .3 Summer 1991 85

Network Performance and Adapters

with respect to that of high-load stations. The sta-
tion immediately downstream from a high-load sta-
tion may obtain better throughput than the one
immediately upstream.

R a m ~ s Otber Tban the TTRT
Tbat Aflecf ~ ~ n c e
Many parameters other than the TTRT affect the
performance of a network. This section discusses
four configuration and workload parameters: the
extent of the ring, the total number of stations, the
number of active stations, and the frame size.

&tent of the Ring
The total length of the fiber is called the extent of
the ring. The maximum allowed extent on an FDDI
LAN is 200 km. Figures 6 and 7 are graphs illustrat-
ing the efficiency and maximum access delay as
functions of the extent. A star-shaped ring with all
stations at a fixed radius from the wiring closet is
assumed. The total cable length, shown along the
horizontal axis, is twice the radius times the num-
ber of stations. As is evident from the figures, rings
with a larger extent have a slightly lower efficiency
and a longer maximum access delay than those with
smaller extents.

20 MACs
100 MACs

1000 MACs

TTRT = 8 MILLISECONDS

I I I I I

0 50 100 150 200

EXTENT OF THE RING
(TOTAL FIBER LENGTH IN KILOMETERS)

Fig~ire 6 Efliciency as a Function
of the Extent oftbe Ring

Note that in Figure 7, the increase in maximum
access delay for each configuration is not apparent
due to the semilogarithmic scale.

TTRT = 8 MILLISECONDS

EXTENT OF THE RING
(TOTAL FIBER LENGTH IN KILOMETERS)

Figure 7 Maximum Access Delay as a Function
of the Extent of the Ring

Total Number of Stations
The total number of stations on a ring includes
active and inactive stations. h general, increasing
the number of stations adds to the ring latency
becanse of the additional fiber length and addi-
tional station delays. Thus, the number of stations
affects the efficiency and maximum access delay in
a way similar to that of the extent; a ring that con-
tains a larger number of stations than another has a
lower efficiency and a longer maximum access
delay. In addition, a large number of stations on
a ring increases the bit-error rate. Consequently,
large rings are not desirable.

Number ofActive Stations
As the number of active stations, i.e., MACs,
increases, the total load on the ring increases.
Figures 8 and 9 show the ring performance as a
hnction of the number of active MACs on the ring.
We considered a maximum-size ring with a 'l'TRT
value of 8 ms for the analysis. The figures show that
increasing the number of active lMCs has a slight
positive effect on the efficiency, but considerably
increases the maximum access delay. Therefore,
it is preferable to keep a minimal number of active
stations on each ring by segregating small groups
on separate rings.

Frame Size
Frame size does not appear in the simple models of
efficiency and maximum access delays, because

Vol. 3 No. 3 Summer I991 Digital Technical Journul

Pegormance Analysis of FDDI

I I I I I

0 250 500 750 1000

NUMBER OF ACTIVE MACs

Figure 8 Efficiency as n Function of the
Number of Active MACs

frame size has little impact on FDDI performance.
In our analysis, we assumed that transmission
stops at the instant the THT expires; however, the
standard allows stations to complete the trans-
mission of the last frame.

The extra time used by a station after THT expiry
is called asynchrono~is overflow. Assuming all
frames are of fixed size, let F denote the frame
transmission time. During every transmission
opportunity, an active station can transmit as many
as k frames:

100,000 TTRT = 8 MILLISECONDS t RING LATENCY = 1.773
MILLISECONDS

Here, r 1 is used to denote rounding up to the
next integer value. The transmission time is equal
to k times F, which is slightly more than Tminus D.
With asynchronous overflow, the modified effi-
ciency and maximum access delay formulas
become

nkF
Efficiency = n (k F + D) + D

Maximum access delay = (n - 1) (kF + D) + W

Notice that substituting kF = T - D in the above
equations results in Equations (1) and (2).

Figures 10 and 11 show the efficiency and the
maximum access delay as functions of the frame
size. Frame size has only a slight effect on these
metrics. Larger frame sizes do have the following
effects:

The probability of error is greater in a larger
frame.

Since the size of protocol headers and trailers
is fixed, larger frames require less protocol
overhead.

The time to process a frame increases only
slightly with the size of the frame. A larger frame
size results in fewer frames and, hence, in less
processing at the host.

Overall, we recommend using as large a frame size
as the reliability considerations allow.

l o o t

TYPICAL

BIG

W
LARGEST

0
OI

I I I I

0 250 500 750 1000

NUMBER OF ACTIVE MACs

I I I I I

0 1000 2000 3000 4000

FRAME SIZE (OCTETS)

Figure 9 Maximum Access Delay as n Function Figure 10 Efficiency as n Function
of the Number of Active MAGS of tlge Frame Size

Digital Technical Journal Vo1.3 No. 3 Summer 1991 87

Network Performance and Adapters

100,000 t T R T = 8 MILLISECONDS

LARGEST

BIG

TYPICAL

FRAME SIZE (OCTETS)

Figzlie I 1 Mu.~imrmz Accc.ss Delay as a Ar~~ctiolz
o f t b c ~ Awme Si,ze

Summary
Although many parameters affect the performance
of an FDDI ring network, the target token rotation
time (TTRT) is the key parameter that network
m;in;igers can control to optimize this perfor-
mance. We analyzed the effect of other par;inieters
such as the extent of the ring (the length of the
cable), the total number of stations, the number of
active stations, and frame size. From our data we
concluded the following:

Rings with a large extent and those with a large
number of stations are undesirable because they
yield a longer maximunl access delay and have
only a slight positive effect on the efficiency of
the ring.

It is preferable to minimize the number of active
stations on a ring to avoid increasing the maxi-
mum access delay.

A large frame size is desirablc. taking into consid-
eration the acceptable probability of error.

The value of TTRT does not significantly affect
the response time unless the load is near saturation.
Under very heavy load, response time. is not a
suitable metric. Instead, maximum access delay,
i.e., the time between wanting to transmit and
being able to do so, is more meaningful.

A larger value of TTRT improves the efficiency,
but it also increases the maximum access delay. A
good trade-off is provided by setting TTRT at 8 ms.
Since this value provides good perform;incc for all
ranges of configurations, we recommend that the
default value of TTRT be set at 8 ms.

References
1. E Ross, "An Overview of FDDI: The Fiber

Distributed Data Interface," IEEE Jorlr.rzcrl on
SelectedAreas in Comrnunicatioiis, vol. 7, no. 7
(September 1989): 1043-51.

2. Fiber Distributed Data Interface (FDD1)-
Token Ring media Access Control (IVAC), ANSI
X3.139-1987 (New I'ork: American National
Standards Institute, 1987).

3. Token Ring Access Method and Physical Layer
Spedfications, ANSI/IEEE Standard 802.5-1985,
ISO/DIS 8802/5 (New York: The Institute of Elec-
trical and Electronics Engineers, Inc., 1985).

4. R. Grow, "A Timed-token Protocol for Local Area
Networks," Proceedings of the IEEE Electro '52
Conference on Token Access Protocols, Paper
17/3, Boston, MA (May 1982).

5. R. Jain, The Art oJ- Computer Systems Perfor-
mance Analysis, ISBN 0-471-50336-3 (New York:
John Wiley & Sons, 1991).

6. D. Dykeman and W Bux, "Analysis and Tuning of
the FDDl Media Access Control Protocol," IEEE
Jozi~rzal on Selected Areas in Communications,
vol. 6, no. 6 Uuly 1988): 997-1010.

7. J. Ulm, "A Timed-token Ring Local Area Network
and Its Performance Characteristics," Pioceed-
ings of the Seventh IEEE Conference on Local
Cornputer Networks (February 1982): 50-56.

8. R. Jain, "Error Characteristics of Fiber Distrib-
uted Data Interface (FDDI)," IEEE Transact.ions
on Cornmunicc~tio~zs, vol. 38, no. 8 (August
1990): 1244-1252.

9. W Bux and H. Truong, "Mean-delay Approxi-
mation for Cyclic-service Queueing Systems,"
Performance Evalua/ion, vol. 3 (Amsterdam:
North-Holland, 1983): 187-196.

Vo1.3 No. 3 Summer I991 Digital Technical Journal

I Further Headings

The Digital Technical Journal
publishes papers tbcit exlllore
the technological foundations
ofDigital's majorprodzicts. Each
Journal focuses 077 at least one
product area andpresents a
compilation ofpapers written
by the engineers who developed
the product. The content for
the Journal is selected by the
Joc~rnal Advisory Board.
Digital engineers zubo would
like to contribute a pciper
lo the Journal should contact
the editor at RDVAX:RLAKE.

Topics covered in previous issues of the Digital
Technical Journal are as follonls:

Fiber Distributed Data Interface
Vol. 3, No. 2, Spring 19.91

Transaction Processing, Databases, and
Fault-tolerant Systems
Vol. 3, No. I, Winter 1991

VAX 9000 Series
Vol. 2, No. 4, Fall 1990

DECwindows Program
Vol. 2, No. 3, Summer 1990

VAX 6000 Model 400 System
Vol. 2, No. 2, Spring 1990

Compound Document Architecture
Vol. 2, No. I, Winter 1990

Distributed Systems
Vol. 1, No. 9, June 1989

Storage Technology
Vol. I, No. 8, Februaty 1989

CVAX- based Systems
Vol. I, No. 7, August 1988

Software Productivity Tools
Vol. I, No. 6 February 1988

VAXcluster Systems
Vol. 1, No. 5, September 1987

VAX 8800 Family
Vol. I, Ab. 4, February 1987

Networking Products
Vol. I, 1Vo.3, September 1986

MicroVAX Il System
Vol. I, No. 2, March I986

VAX 8600 Processor
Vol. I, No. I, August I985

Subscriptions to the Digital Technical Journal are
available on a yearly, prepaid basis. Thc subscrip-
tion rate is $40.00 per year (four issues). Requests
should be sent to Cathy Phillips, Digital Equipment
Corporation, ~ ~ 0 1 - 3 / ~ 6 8 , 1 4 6 Main Strcet, Maynard,
MA 01754, U.S.A. Subscriptions must be paid in U.S.
dollars, and checks should be made payable to
Digital Equipment Corporation.

Single copies and past issues of the Digital Techniccil
Journal can be ordered from Digital Press at a cost
of $16.00 per copy.

Technical Papers by Digital Authors

R. Abbott, "Scheduling I/O Requests with Dead-
lines: A Performance Evaluation," IElifi Real-titne
Systems Symposium (December 1990).

S. Batra, "Magnetic Superexchange in nc &
CA2:YI<;," Thirty-fiftI3 Conference on Magnetism
and MagneticMaterials (October 1990).

A. Conn, J. Parodi, and M. Taylor, "The Place for
Biornetrics in a User Authentication Taxonomy,"
Thirteenth National Compter Security
Conference (October 1990).

S. Das, "Suppression of Barkhausen Noise in an
MR Head," Thirty-fzj7h Conference on Magnetism
and Magnetic Materials (October 1990).

I? Fang, "Yield Modeling in a Custom IC
Manufacturing Line," Advanced Semiconductor
iMnnc~facttiring Conference (September 1990).

E. Freedman and 2. Cvetanovic, "Perfect
Benchmarks Decomposition and Performance
on VAX Multiprocessors," IEEE Supercomputing '90
(November 1990).

L. Jaynes, "The Effect of Symbols on Warning
Compliance," Thirty-fozirth Human Factors
Society (October 1990).

M. Joshi, "Making Wafers in the JIT Style,"
Advanced Semiconductor ~Wc~nz~act~r.r;hg
Conference (September 1990).

K. Mistry and B. Doylc, "Electron Traps, Interface
States ancl Enhanced A c Hot-carrier L)egradation,"
IEEE Device Resecirch Uune 1990).

LXgl t r r l Tcchnicd Journal Vol. 3 No. .? Strmrner I991

Further Readings

Digital Press

Digital Press is the book publishing group of Digital
Equipment Corporation. The Press is an interna-
tional publisher of computer books and journals on
new technologies and products for users, system
and network managers, programmers, and other
professionals. Proposals and ideas for books in
these and related areas are welcomed.

The following book descriptions represent a sam-
ple of the hooks available from Digital Press.

VAX/VMS INTERNAIS AND DATA
STRUCTURES: Version 5.2
Ruth E. Goldenberg and Lawrence J. Kenah,
with the assistance of Denise E. Dumas, 1991,
hardbound, 1427 pages, Order No. EY-C171E-DP-EEB
($124.95)

This is a totally revised edition of the most authori-
tative and complete description of the V ' /vMS
operating system in the industry. The book features
new chapters on symmetric multiprocessing, the
reorganized executive, VAX interrupts and excep-
tions, and the I/O subsystem, including device
drivers and interrupt service routines. The addi-
tion of symmetric multiprocessing to the VAX/VMS
operating system prompted major revisions to
chapters concerning hardware and software inter-
rupts, memory management, and synchronization.
The authors have also taken every opportunity to
clarlfy difficult concepts, to collect related mate-
rial into single chapters, and to standardize and
simpl~fy the numerous figures contained in this
reference.

VMS FILE SYSTEM INTERNALS
Kirby McCoy, 19W, softbound, 460 pages,
Order No. EY-F575E-DP-EEB ($49.95)

VMS FILE SYSTEM IKlERC4LS, based on VMS
Version 5.2, is a book for system programmers,
software specialists, system managers, applica-
tions designers, and other VAX/VMS users who
need to understand the interfaces to and the data
structures, algorithms, and basic synchronization
mechanisms of the VMS file system. This system is
the part of the VAX/VMS operating system respon-
sible for storing and managing files and informa-
tion in memory and on secondary storage. The
book is also intended as a case study of the VMS
implementation of a file system for graduate
and advanced undergraduate courses in operating
systems.

VAX ARCHITECTURE REFERENCE MANUAL,
Second Edition
Richard A. Brunner, Editor, 1991, softbound,
560 pages, Order No. EY-F576E-DP-EEB ($44.95)

This book describes the data types, instructions,
calling standards, addressing modes, registers,
exception and interrupt handling, memory man-
agement, and process structure common to all VAX
computers-from the Microviu; 11 to the VAX 9000.
New sections describe the VAX shared-memory
model supported in VAX multiprocessor computers
and the recently added vector processing exten-
sions implemented by the VAX 9000 and VAX 6000
model 400 systems. The book introduces the
design goals and terminology of the VAX instruction
set, including those for memory management,
exception and interrupt handling, process control,
and vector processing. The description of each
instruction gives format, operations, condition
codes, instruction-specific exceptions, opcodes,
and mnemonics.

A COMPREHENSIVE GUIDE TO Rdb/VMS
Lilian Hobbs and Kenneth England, 1991,
softbound, 352 pages, Order No. EY-H873E-DP-EEB
($34.95)

The R d b m S relational database system was devel-
oped by Digital Equipment Corporation for V k u
computers using the VkIS operating system. This
system is one of a number of information manage-
ment products that work together to facilitate the
sharing of information. The Rdb/VIMS system is
used, for example, in high-performance transaction
processing systems. This book is based on Rdb/VMS
Version 4.0, which Digital made available to cus-
tomers at the end of 1990, and thus includcs the lat-
est functionality.

MIT PROJECT ATHENA: A Model for
Distributed Campus Computing
George A. Champine, 1991, hardbound, 282 pages,
Order No. EY-H875E-DP-EEB ($28.95)

MIT Project Athena has emerged as one of the
most important models for next-generation dis-
tributed computing in an academic environment.
MIT pioneered this new approach, based on the
client-server model, to support a network of work-
stations. The project began in 1983 as a five-year
project, with Digital Equipment Corporation and
IBM as its two major industrial sponsors. Now a
production system of networked workstations,

90 Vo1. 3 No. 3 Str~~mrneu I991 Digital Technical Joztrnal

Project Athena is replacing time-sharing (which MIT
also pioneered) as the preferred model of com-
puting at MIT. The size and uniqueness of Project
Athena has led to widespread interest in its design,
implementation, and performance.

UNDERSTANDING CLOS: The Common Lisp
Object System
Jo A. Lawless and Molly M. Miller, 1991, softbound,
1% pages, Order No. EY-F59lE-DP-EEB ($26.95)

The Common Lisp Object System (CLOS) is an
extension to Common Lisp that brings object-
oriented programming (OOP) to this popular ver-
sion of the Lisp language. Written for computer
professionals and students, UlVDERSTANDIlVG CLOS
quickly introduces necessary object-oriented pro-
gramming concepts and provides complete syntac-
tic descriptions of all CLOS functions adopted by
the ANSI X3J13 standards committee. Also included
is an 800-line sample application, as well as a bibli-
ography, a glossary, and an index.

COMMON LISP: The Language, Second Edition
Guy L. Steele, Jr., 1990, softbound, 1029 pages,
Order No. NC187E-DP-EEB ($38.95)

The first edition of COMMON LISP: The Language,
which sold over 60,000 copies, became the de
facto standard for the Common Lisp program-
ming language. This second edition is approxi-
mately twice the size of the first edition. The book
reflects, as ciosely as possible, the decisions and
recommendations made by ANSI committee X3J13,
bridging the gap between the first edition and the
forthcoming rUVSI standard. It describes many of
the changes made to the Common Lisp program-
ming language, relative to the structure of the first
edition, and discusses those areas that are likely to
be revised further.

To receive a copy of our latest catalog or further
information on these or other publications from
Digital Press, please write or call:

Digital Press
Department EEB
12 Crosby Drive
Bedford, MA 01730
(617) 276 -1536

Or, you can order by calling DECdirect at 800-DIGITAL
(800-344-4825).

When ordering be sure to refer to Catalog Code EEB.

Book Review
The Art of Computer Systenzs Performance
Analysis: Techniques for Experimental Design,
Measz~rement, Simulation, and Modelit?g,
R. Jain, John Wiley &Sons, Inc., New York, 1991.
720 pages (ISBN 0-471-50336-3).

This is an edited version of a forthcoming review by
Robert Y Al-Jaar in the Performance Evnlz~ation
Review of the ACM SIGMETRICS.

The author achieves the major objectives presented
in his preface. Raj Jain provides computer profes-
sionals simple and straightforward performance
analysis techniques in a comprehensive textbook.
He gives basic modeling, simulation, measurement,
experimental design, and statistical analysis back-
ground, and emphasizes and integrates the model-
ing and measurement aspects. The autlior discusses
common mistakes and games in performance anal-
ysis studies, and illustrates the presented tech-
niques using examples and case studies from the
field of computer systems.

The book consists of 36 chapters organized in the
following six parts: "An Overview of Performance
Evaluation," "Measurement Techniques and Tools,"
"Probability Theory and Statistics," "Experimental
Design and Analysis," "Simulation," and "Queueing
Models"; nearly the same level of attention is given
to each part. Each chapter has a set of carefully
designed exercises; solutions to selected exercises
are presented at the end of the book. Each part con-
cludes with a comprehensive list of references,
appropriately selected from the extensive list that
follows the exercise solutions. The book also
includes an appendix that contains statistical tables
and formulas.

Part I emphasizes the importance of performance
analysis for designers, administrators, and users of
computer systems. The author introduces the field
of computer systems performance analysis and
presents examples of problems that one should be
able to solve after reading the book. He discusses
22 common mistakes that occur in performance
evaluation studies and presents in a "box" format
a summary checklist to help avoid these mistakes.
This format is an effective presentation technique
used judiciously throughout the book to highlight
important techniques and summarize major results.
The author advocates a 10-step approach to per-
formance analysis and discusses the selection of
performance evaluation techniques and metrics.

D f @ d T&cbnfcal Journal Vol. 3 No. 3 Summer 1991

I enjoyed reading this coverage of issues critical
to the success of any performance engineering
project but often ignored. The discussions remind
experts of the importance of these matters and
encourage newcomers to develop the correct atti-
tude toward performance.

Part Il begins with explanations of workload
types. The author emphasizes several major consid-
erations for workload selection. He then discusses
monitors, including program execution monitors
and accounting logs. Of particular interest is the
discussion of the design of software monitors.

Capacity planning and benchmarhg sections
include enlightethg material on common mistakes
of inexperienced analysts and the games and tricks
played by experienced analysts. By discussing such
practical topics as load drivers and remote-terminal
emulators (rrTEs), the book provides comprehen-
sive information on performance analysis, a wel-
come departure from the format of many other
books which consider such a discussion 'unlntel-
lectual." The art of data presentation techniques
follows. The quality and format of the presenta-
tions in the book clearly indicate that the author
does practice what he preaches.

Part II concludes with a discussion of ratio
games. The author uses case studies and examples
to explain how to choose an appropriate base
system and ratio metric. He also outlines strategies
for defending oneself from ratio games played by
others.

Part ID introduces the basic concepts of proba-
bility and statlstlcs, using examples and case studies
from the computer field to convince the reader
that these concepts have practical importance.
The author explains how to summarize measured
data and use sample data to compare systems;
provides an easy-to-read introduction to simple Lin-
ear regression models; and discusses other regres
sion models.

The overall treatment of experimental design
and analysb Is so comprehensive and thorough that
Part rv is practically a short book on experimen-
tal design techniques. The author explains the basic
concepts, terminology, and design techniques, and
discusses in detail a variety of experimental
designs.

Part V contains a good introduction to simulation
as a tool for computer performance analysis. The
author provides a checklist of common simula-
tion mistakes and describes the Monte Carlo, trace-
driven, and discrete-event simulation methods.

Adding a discussion of process-oriented, as
opposed to event-oriented, simularion methods
would provide the reader with a more complete
perspective of current simulation methods.

This part next describes the analysis of simu-
lation results. Included are model verification and
validation techniques, accompanied by algorithms
to aid the reader in the implementation. The book
also contains in-depth coverage of random number
generatars. Part V concludes with a brief discussion
of current areas of research in simulation. Pointers
to references for process- and object -oriented simu-
lation methods would be a welcomed addition.

Part VI introduces the basic concepts and nota-
tion of queueing models, key tools for evaluating
the performance of computer systems. Includcd is
a clear, step-by-step analysis of single queues; a
discussion of stochastic processes; an explanation
of queuelngnetworks nnd related operational anal-
ysis techniques; ancl a demonstration of the convo-
lution algorithm. The author also introduces the
reader to the practical technique of hierarchical
decomposition of large queueing networks. Part vI
concludes with a discussion on the limitations
of queueing theory. To choose the appropriate
modeling approach, analysts must be aware of
these limitations.

This is a truly landmark book which achieves the
author's stated objectives. A strong point of the
book isits equal treatment of modeling, simulntion,
measurement, and cxl>crimental clcsign in thc con-
text of computer systems. I believe that most of the
chapters can be used as 45-minute lectures, as the
author claims. Senior students in engineering and
computer science will generally have the matlie-
matical sophistication required to understand the
material covered in this book. The Art of Cornp~fiter
Systems Performance Analysis is indeed an ency-
clopedia on the performance analysis of computer
systems, and should be on the bookshelf of every
computer professional.

Robert Y. Al-Jaar, Ph.D., Principal Systems Engineer
Porting and Performance Engineering <;roup
Digital Equipment Corporation
Marlborough, Massachusetts 01752-9122
July 24, 1991

Note: The book reviewed was written by an
author who contributed a paper to this issue of
the Journal. The editor included this review as
one that might be of interest to our readers. The
rcview expresses the opinions of the reviewer.

92 Vol 3 V I . .3 S~ltnnzer 1991 Digital Technical Jorrn~nl

TSSN 0898-90 1X
- ,
- 8 . . - . - , . - 8 I,

Printed in U.S.A. EY-H890E-DPl91 09 02 20.0 DBPINRO Copyright 0 Digital Equipment Corporation. All Rights Reserved.

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Design of VMS Volume Shadowing Phase II - Host-based Shadowing
	Application Design in a VAXcluster System
	New Availability Features of Local Area VAXcluster Systems
	Design of the DEC LANcontroller 400 Adapter
	The Architecture and Implementation of a High-performance FDDI Adapter
	Performance Analvsis of a High-speed FDDI Adapter
	Performance Analysis of FDDI
	Further Readings
	Back cover

