
Digital Technical Journal
Digital Equipment Corporation

=-!-

Volume 3 Number 4

Fall 1991

Cover Design
High-performance screen display of bitonal images is one
of the topics in this issue. The handwriting and manz~ally
produced technical drawings on our cover are types of imnges
that can be scanned, stored electronically, and then displayed
on an X t m i n n l screen; portions of an image can be enlarged
or rotated on screen.

The cover was designed by Sandra Calef of CalefAssociates.

Editorial
Jane C. Blake, Editor
Helen L. Patterson, Associate Editor
Kathleen M. Stetson, Associate Editor
Leon Descoteaux, Associate Editor

Circulation
Catherine M. Phillips, Administrator
Sherry L. Gonzalez

Production
Mildred R. Rosenzweig, Production Editor
Margaret L. Burdine, 'Qpographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H . Fuller, Chairman
Richard W! Beane
Robert M. Glorivso
Richard J. Hollingsworth
John W! McCredie
Alan G. Nemeth
Mahendra R. Patel
E Grant Saviers
Victor A. Vyssotsky
Gayn B. Winters

The Digital TecbnicalJour-nalis published quarterly by Digital
Equipment Corporation, 146 Main Street MLOJ-3/B68, Maynard,
Massachusetts 01754-2571. Subscriptions to the Jorrrnal are $40.00
for four issues and must be prepaid in U.S. funds. University and
college professors and Ph.D. students in the electrical engineering
and computer science fields receive complimentary subscriptions
upon request. Orders, inquiries, and address changes should be
sent to the Digital TechnicalJou?-nnl at the published-by address.
Inquiries can also be sent electronically to DTJ@CRL.DEC COM.
Single copies and back issues are available for S 16.00 each from
Digital Press of Digital Equipment Corporation, I Burlington
Woods Drive, Burlington, MA 01803-4539.

Digital employees may send subscription orders on the ENET to
RDVAX.:JOURNAL or by interoffice mail to mailstop h.lL01-3L368.
Orders should include badge number, site location code, and
address. All employees must advise of changes of address.

Comments o n the content of any paper are welcomed and may
be sent to the editor at the published-by or network address.

Copyright 0 1991 Digital Equipment Corporation. Copying
without fee is permitted provided that such copies are made for
use in educational institutions by faculty members and are not
distributed for commercial advantage. Abstracting with credit
of Digital Equipment Corporation's authorship is permitted.
All rights reserved.

The information in the Jozrrnal is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes
n o responsibility for any errors that may appear in the Journal.

ISSN 0898-901X

Documentation Number EY-H8896DP

The following are trademarks of Digital Equipment Corporation:
ALL-IN-1, DECimage, DECnet, DECprint, DECserver, DECstation,
DECwindows, Digital, the Digital logo, LAT, LN03, MicroVAX,
Printserver, Qbus, ReGIS, rtVAX, ULTRJX, VAX, VAXELN,
VAXstation, VMS, VT1000, VT1200, VTl300, and VXT 2000.

Apple DeskTop Bus is a trademark and LocalTalk is a registered
trademark of Apple Computer, Inc.

Motorola and 68000 are registered trademarks of Motorola, Inc

Open Software Foundation is a trademark and OSF and OSF/l are
registered trademarks of Open Software Foundation, Inc.

PostScript is a registered trademark of Adobe Systems, Inc.

Texas Instruments is a trademark of Texas Instruments, Inc

UNIX is a registered trademark of UNDi System Laboratories, Inc

X Window System is a trademar.k of the Massachusetts Institute
of Technology.

Book production was done by Digital's Database Publishing Group
in Northboro, MA.

I Contents

7 Foreword
Larry Cabrinety

Image Processing, Video Terminals, and Printer Technologies

9 Hardware Accelerators for Bitonal Image Processing
Christopher J . Payson, Christopher J. Cianciolo,
Robert N. Crouse, and Catherine E W i s o r

26 X Window Terminals
Bjorn Engberg and Thomas Porcher

36 ACCESS.bus, an Open Desktop Bus
Peter A. Sichel

43 Design of the DECprint Common Printer Supervisor
for VMS Systems
Richard Landau and Alan Guenther

55 The Common Printer Access Protocol
James D. Jones, Ajay I? Kachrani, and Thomas E. Powers

61 Design of the Turbo Printserver 20 Controller
Guido Simone, Jeffrey A. ~Metzger, and Gary Vaillette

Editor's Introduction

Jane C. Blake
Editor

Products designed for quality, high-performance
presentation of data in both video and hard-copy
form are the topics of papers in this issue of the
Digital Tecl~nical Journal. The clesign chal lenges
range from managing the huge storage require-
ments of images for display on X terminals to ensur-
ing high-performance in a feature-rich printer
environment.

Image processing is the subject of the opening
paper by Chris Payson, Chris Cianciolo, Bob Crouse,
and Cathy Winsor. The authors note that one advan-
tage of scanning images for screen display is the
input time saved; howevel; the scanned images
and data can consume significant amounts of stor-
age space. They then review tlie development of an
image accelerator board that not only helps solve
the problem of storage but also addresses the need
for high-performance display-view and manipula-
tion-of bitonal images In addition to specifics of
the board implementation, the authors offer an
overview of imaging concepts, terms, and future
directions for image accelerators.

The terminal on which the image accelerator
board resides is DECimage 1200, an X terminal.
X terminals development in general, including a
discussion of the VT1200, is the subject of a paper
by Bjorn Engberg and Tom Porcher. Bji5rn and Tom
focus their discussion on a comparison of the
X terminal and X workstation environments, and
explain why X terminals are a low-cost alternative.
The authors present the design choices debated by
the engineers during the development of Digital's
)i terminals, including the selection of a hardware
platform, terminal and window management,
X server, communications protocols, ancl font file
systems.

Vicleo terminal and workstation users need the
assistance of a number of I/O devices, such as key-

boards, mice, and tablets, all of which may not be
made by the same company. A new open desktop
bus, described by Peter Sichel, is a simple means to
connect as many as 14 low-speed devices to a desk-
top system. In his papel; Peter presents the project
background, reviews the 12C technology on which
the bus is based, and describes the protocol and the
configuration process.

Hard-copy presentation of data and recent devel-
opments in printer technologies are the topics of the
next three papers. Rick Landau and Alan Guenther
review the DECprint Printing Services, which is
software that controls numerous printer features
for a wide range of printers. Also called a common
prjnt symbiont, this component of the VMS print-
ing system supports several page description lan-
guages, handles multiple media simultaneously,
and uses different 1 / 0 interconnections and com-
munication protocols.

Both DECprint Printing Services and the subject
of the next paper, the common printer access pro-
tocol, are part of the DECprint architecture. The
CPAP provides the fi~ndamental services necessary
for the presentation of data at the printer. Jim
Jones, Ajay Kachrani, and Tom Powers describe the
challenges of developing a protocol that operates
in a heterogeneous, internetworking environment
and that also ensures backward compatibility with
older products. Their success in developing a high-
performance protocol is evidenced by OSF accep-
tance of CPAP for inclusion in a fiiture release of
OSF/l.

As was the case with the CpAp, performance
was also key in the development of the turbo
Printserver 20 controller. Guido Simone, Jeff Metzger,
and Gary Vaillette explain that the requirements of
complex documents demanded turbo controller
performance that was five to eight times that of tlie
current controller. To aid them in making design
decisions, a performance analysis tool, RETrACE,
was created and is described here. Authors also
relate how they used existing chips in order to keep
development costs low and still deliver a high-
performance controller.

The editors thank Liz Griego-Powell of the Video,
Image and Print Systems Group for her help in
preparing this issue.

Biographies I

Christopher J. Ciancioio As a hardware design engineer in the Video, Image
and Print Systems Group, Chris Cianciolo is currently working on the design
for the group's latest imaging product. Chris joined Digital in 1985 after par-
ticipating in a co-op session in the Power Supply Engineering Group. He also
participated in co-op sessions for Charles Stark Draper Laboratory, Inc. on a
fiber-optic missile guidance system project. He received his B.!LE.E. from
Northeastern University in 1988 and is currently pursuing an M.S.E.E., also from
Northeastern.

n Robert N. Crouse Senior engineer Bob Crouse is a member of the Video,
Image and Print Systems Group. He is currently working on the advanced devel-
opment of new imaging technology for X window terminals. Bob was project
engineer for the development of a bitonal imaging accelerator for a low-end
VAXstation workstation. As a member of the Electronic Storage Development
Group, he designed a double-bit error detection and correction circuit for a VAX

mainframe. Bob received his B.S.E.E. from Northeastern University and holds one
patent.

Bjorn Engberg As a principal software engineer in the Video, Image and Print
Systems Group, Bjorn Engberg was the main architect and software project
leader for the VTlOOO and VT1200 X window terminals. He joined Digital in 1978
and worked as a development engineer at CSS in Sweden, where he modified
Digital's terminals for the European market. He relocated to the United States
in 1982 to work on the VT240, the v T 3 2 0 , the LJ250, and several advanced devel-
opment projects. Bjorn received an M.S.E.E. (honors) from the Royal Institute of
Technology in Stockholm.

Biographies

A. Alan Guenther As a member of the technical staff in the DECprint System
Software Group, Alan Guenther is involved in the ongoing design and implemen-
tation of the DECprint common print symbiont. Prior to this, he was the prima~y
designer and implementor of the distributed queuing services. Alan has worked
at Digital since 1973, both as a full-time employee and as an independent consul-
tant (from 1982 to 1990). After receiving a B.S. (honors, 1970) from the University
of Montana, he worked at the university until he joined Digital.

James D. Jones Jim Jones is a principal engineer in the Hardcopy Systems
Engineering Group. He joined Digital in 1974 and was part of a team developing
diagnostic programs for the DECsystem-10 and DECSYSTEM-20 systems. After run-
ning his own software business for five years, Jim rejoined Digital to design
printer controllers and software. Most recently, he provided software for the
PrintServer products, authored the Common Printer Access Protocol specifica-
tion, and is helping to define the next generation of network printers. Jim is a
member of IEEE and ACM ancl participates in the IETF.

Ajay F! Kachrani Principal software engineer Ajay Kachrani currently works
on the OSF/1 socket and XTI kernel interfaces and security project. Previously,
he led the development of the overall PrintServer software version 4.0 with
dual network protocol support (DECnet and TCP/IP), from inception through
field test. Ajay presented the CPAP protocol as an Internet standard to the IETF
and added PrintServer support in version 1.0 of the Palladium Print System at
MIT/Project Athena. Ajay holds a B.S.E.E. (honors) from the University of Mysore,
India, and an M.S.C.S. from the University of Lowell.

Richard B. Landau Richard Landau is the DECprint program manager for the
Video, Image and Print Systems Group. Working to improve the interaction of
printing software and hardware, he initiated the DECprint, Font, and Postscript
programs. Prior to this, Rick was the program and development manager for the
VAX DBMS, DATATRIEVE, CDD, and Rclb/VMS products and for the relational
database architecture. Before joining Digital in 1974, Rick was an independent
consultant and was also employed by Applied Data Research, Inc. He holds A.B.

(cum laude, 1969) and M.A. (1973) degrees in statistics from Princeton University.

Jeffrey A. Metzger Presently a senior engineer, Jeff came to Digital as a co-op
student in 1983, working first in the Semiconductor Engineering Group and then
in Hardcopy Engineering. He became a full-time employee after graduating from
Cornell University in 1985. He introduced Hardcopy to system-level logic simu-
lation, contributed to the hardware, software, and firmware development of the
PrintServer 20, and developed RETrACE, which is used to characterize the exe-
cution behavior of PrintServer systems. Jeff is currently working in the Entry
Systems Business Group on a next-generation processor product.

Christopher J. Payson Chris Payson joined Digital as a hardware design
engineer in 1989 after five co-op terms. He is currently working on XIE software
and image hardware accelerators. Chris previously worked on performance
testing, diagnostics, logic design, and demonstration software, all associated
with imaging. He is coapplicant for a patent related to an image clipping algo-
rithm and hardware logic. Chris received a B.S.C.E. from Rochester Institute of
Technology with highest honors and is currently pursuing an M.S.C.E. from
Northeastern University.

Thomas C. Porcher Principal engineer Tom Porcher is a member of the
Video, Image and Print Systems Group. He provided technical leadership in the
development of the v?iT 2000 X terminal. Previously he was a technical leader
for the ~ ~ 2 4 0 terminal, VN(Session Support Utility, and the DE<:term terminal
emulator, Tom holds five patents for work on the ~ ~ 2 4 0 terminal and on the multi-
session protocol used in the W340 and vT400 series terminals. Tom received his
B.S. in mathematics from Stevens Institute of Technology (1975). He is a member
of the ACM.

Thomas E. Powers As a consultant engineer in the Hardcopy Engineering
Firmware/Software Group, Torn Powers is a vendor liaison for desktop
Postscript printer products. He chairs the DECprint PAP Architecture Team
and was a contributor to the PrintServer 40 internal hardware/firmware archi-
tecture. Tom represented Digital on American and international standards com-
mittees on computer graphics from 1979 to 1989. He led several firmware teams
and is coinventor of the ReGIS Graphics Protocol. Tom has a B.S.E.E. from Tufts
University and an M.S.E.C.E. from the University of Massachusetts at Amherst.

Peter A. Sichel As a principal software engineer in the Video Terminals Archi-
tecture Group, Peter Sichel led the development of the ACCESS.bus architecture
and device protocol specifications, in addition to writing the initial ACCESS.bus
device firmware. He worked on the ~ ~ 4 2 0 video terminal and the DECterm
DECwindows terminal emulator, and helps maintain Digital standards for video
terminals and keyboards. Peter joined Digital in 1981 after receiving B.S. and M.S.

degrees in computer engineering from the University of Michigan.

Guido R. Simone Guido Simone is a principal engineer in the Print Systems
Engineering Group and was the project leader and architect for the turbo
PrintServer 20 controller. He is currently working on the development of a
new print system architecture to be used with advanced printing technologies.
In previous work, Guido was the project leader and architect for an rtVN(
78R32 CPU chip-based laser printer controller. Before joining Digital in 1980, he
received a B.S. in electrical engineering from Rensselaer Polytechnic Institute.

Biographies

Gary I? VaU1ette Senior hardwitre engineer Gary %Wetre has k e n lnvolved
in the design and implementation of printing system hardware since joinlng
Digital In 1983. His current work includes performance c ~ r e r i z a t i o n of
Postscript printers and Printserver proclucts, ancl hardware implcmcnlition of
CCIIT decompression in the turbo Printserver 20 product. Yrevloualy, Gary
worked at Data Genera1 Corporation and helped to develop their token bus
network product. He holds an A.A.E.E (1974) from Quinsigamond Community
College and expects to receive a B.S.C.S. (May 1992) from Boston Unlverslty.

Catherine F. Winsor As a senior engineer in the Video, Image and Print Sys
tcnls Group, (Lcthy Winsor has worked o n image accelerators. As the project
leader for the DliCi~nage 1200 hardware and the image utility library software,
Cathy was involved in the planning and development of an image-capable
vT1200. She is currently leading the project to support imaging on the next
generation of DigiLal's X terminals. The project inclucles an image accelerator
board and XIE software. Cathy received an A.R, in enginccring sciences from
Dartmouth College ancl a R.S.E.E, from the Tliayer School of Engineering.

I Foreword

Larry Cabrinety
Vice Presiclent,
Video, Image and Print
Systems Group

processing. The X terminal user can now benefit
from the graphical user interface, sophisticated
applications, and standards of performance previ-
ously available only on workstations. X terminals
run ~ 1 1 server code which is operating system
independent and ideally suited for heterogeneous,
network-based computing environments. In this
issue you will read about the engineering decisions
made as the X terminals were developed.

There is a growing need in the industry to have
imaging applications run alongside conventional
text and graphics applications. Technical docu-
mentation is an example of this. Imaging applica-
tions, however, have special requirenlents to achieve
acceptable end-user performance. Although tlie XI1
software can handle images as bit-map data, soft-
ware and hardware assistance is required to achieve
acceptable performance. Digital has designed

For the millions of people worldwide who use DECimage hardware accelerators for rapid process-
Digital's computer equipment, the computer is not ing of image data. This technology is included in
the sophisticated system in the back room, or the the DECimage 1200 and will be incorporated in
complex network. It is the equipment they use following generations of X terminals. To make this
each day-the terminal or monitor, keyboard and possible, Digital developed extensions to the
mouse, desktop printer or network printer system. X server software that support the high-speed

Today's users demand products with high levels transport and display of image data. To assure open
of usability and superior ergonomic features. standards, the extensions have been proposed to
Digital's p r o d ~ ~ c t s set worldwide standards for the MIT for incorporation into releases of the XI1
user interface to computer systems. In the 90s our server software.
focus is to offer products that operate in multi- In November 1990, Digital announced its next
vendor environments with the goal of delivering a generation of X terminals. The VXT2000 terminal
complete computing solution. In this issue you will provides virtual memory and supports both a tra-
read about some of the Video, Image and Print Sys- ditional host-based model with software down-
terns (VIPs) Group's products and technologies that loaded to the terminals as well as the server style of
support network computing and standards-based X terminal computing.
environments. The VXT2000 terminal was designed to support

Digital entered the video terminal market in 1975 TCP/IP and WT protocols, and further demonstrates
with the VT52 for its time-sharing users. Its replace- our commitment to openness and support for cus-
ment, the VT100, embodied two important princi- tomers' multivendor environments. This same phi-
ples-the use of standarcls in data com~nunications losophy is seen in our printer products and our open
interchange and the protection of customer invest- desktop bus.
ments through backward compatibility of new gen- Digital pioneered the distributecl printing busi-
erations of products. The vT220, introduced in ness with networked laser printers. This prod-
1983, and tlie cost-effective vT320 terminals saw uct area began when we combined two concepts
the addition of functionality and ergonomic fea- which had not been combined before-mid-range
tures which established Digital as a leader in the laser printers and networks. In the mid-1980s most
conlmodities market. large-scale computing was done on mainframe

In March 1990, Digital entered the X terminal computers with large printers attached directly
market with the introduction of the VT1000, fol- to these systems. Typically tliese dedicated print-
lowed by the VT1200 and VT1300 terminals later ers were only accessible to users on that particular
that year. The emergence of MIT's X Window system. Digital's distributed computing provided
Systems as the accepted industry standard for an alternative to the mainframe. By combining the
windowing systems provided a standards-based power of multiple systems in clusters or on net-
environment for distributed applications display works, a new distributed large system was created.

Foreword

A printing solution was needed to effectively work
in this new distributed computing environment.
The Printserver series addressed this need.

PrintServer products enabled printing resources
to be directly connected to networks for the first
time, and since they were on the network and not
tied to any one system, they were accessible by all
systems on those networks. They enabled the com-
plex printer functionality previously found only in
dedicated mainframe printers to be distributed
throughout end-user environments.

As these mid-range printers migrated out of the
computer room and into the office, new demands
for functionality were created. Large groups of users
brought many different requirements for printing,
and our goal was to satisfy as many as possible in a
single PrintServer. For example, some people need
"A" size paper for office correspondence, while
others may need "B" size paper for CAD/CAM or
accounting work, and still others need trmsparen-
cies for presentations. The PrintServer is fiexlble
enough to have all of these different types of
media available and offer both simplex and d~rplsc
printing.

In 1985 when Digital was first developing the
PrintServer, there was no industry standard way
of describing the contents of a page to a printer.
Each major vendor had its proprietary language,
and none offered the compatibility necessary to
achieve our print system vision. Our goal was to
create a family of products, from large to small,
that offered compatibility for all applications. To
achieve this goal we had to select a protocol
that would enable us to print any file on any
printer. At that time Adobe Systems, the developer
of PostScript, was a small start-up company in
Silicon Valley. PostScript was not a standard, and in
fact, only a single PostScript laser printer model
had been shipped, the original Apple Laserwriter.
Our technical community felt PostScript was the
best solution to our needs, and at that point Digital
committed to adopting PostScript as our strategic
page description language. Postscript printers and
PostScript application support are now pervasive
throughout the industry ant1 standard printing
protocols enable interactive communication with
hosts on the network.

Signhcant advances have taken place in the
PrintServer series over the past seven years. An
entire MicroVAX I1 system was housed within the

original PrintServer 40, along with custom h;ircl-
ware acceleration boards developed by thc IIard-
copy Group to enable printing a t 40 pages per
minute. In this issue you will read about the single-
board controller that replaces the MicroVAX I1 and
offers far more processing power. Using the latest
system-on-a-chip technology, our new turbo board
provides leadership performance for our printers.
The CCITT image decompression chip enables us to
provide full-speed image printing to our customers
as the image market develops.

The first PrintServer syslcms supported printing
from VMS hosts over DECnet networks. Since then
the breadth of platform support has increased to
include first ULTRIX systems and then IJNlX operat-
ing systems. A software ki t for Sun systems will be
available soon. In expanding PrintServer connectiv-
ity to include UNlX systems and TCt'/lP networks,
we again faced the problem that no network print-
ing protocol existed for TCP/IP. With the help of

'I ora- Digital's experts at the Western Research Lz b
tory, we were abie to develop a solution. In this
issue, we discuss the creation of a network printer
access protocol for T(:I'/IP. Toclay this network pro-
tocol is a proposed standard at the Internet Engi-
neering Task Force, the body controlling the 7'CP/IP
protocol.

The development of the ACCESS.bus procluct has
brought an easy, standard way to link a desktop
computer to many interactive user interfaces. This
open desktop bus is currently implemented on the
Personal DECstation 5000 workstation, and imple-
mentations on future RISC workstations and video
terminals is underway. Developers of Digital's procl-
ucts will continue to place a high priority on open
standards. The papers includccl in this issue of the
Digital Tech~zicalJouriznl will provitlc insight into
the key areas of technology used in the design and
development of VIPs products.

ChristopherJ. Payson
ChristopherJ. Cianciolo

Robert N Crouse
Catherine E Winsor

Hardware Accelerators for
Bitonal Image Processing

Electronic imaging systemns transfer viezus of real-world scenes or objects into
digital bits for storage, manipulation, and viewing. In the area of bitonal images,
a large market exists in docz~rnent management, which coizsists of scanning vol-
umes of papers for storage and retrieval. Hozuevel; high scan densities produce
huge volz~mes of data, requiring compression and decoml~ression techniques topre-
serve system memnory and imnprove systmz throughput. These tech~ziques, as well as
general image processing algorithms, are conzpute-intensive and require high
memory bandwidth. To address the nzemory issues, and to achieve interactive
image display performancq Digital has designed a series of bitonal image hard-
ware accelerators. The intent was to create interactive media view stations, with
inzaging applications alongside other applications, In addition to achieuii lg rnem-
ory, performance, and versatility goals, the hclrdware accelerators have signifi-
cantly improvedjnal image legibility

Bitonal image technology, which can be viewed as
the electronic version of today's microfil~n method,
is experiencing a high rate of growth. However, the
electronic image data objects generatecl and manip-
ulated in this technology are very large and require
intensive processing. In a generic system, these
requirements can result in poor image processing
performance or reduced application performance.
To address these needs, Digital has designed a series
of imaging hardware accelerators for use in the doc-
ument management market.

This paper provides a brief tutorial on electronic
imaging. It begins with a general description of the
imaging data type and compares this type to the
standard text and graphics data types. It continues
with a discussion of specific issues in bitonal imag-
ing, such as image data size, network transport
method, rendering speed, and end-user legibility.
The paper then focuses on Digital's DECimage 1200
hardware accelerator for the VT1200 X window
terminal developed by the Video, Image and Print
Systems Group. It concludes with future image
accelerator demands for the processing of multi-
media applications and continuous-tone images.

Introduction to Imaging
Just as graphics technology blossomed in the 1980s,
electronic imaging and its associatecl technologies

should come of age in the 1990s. Digital imaging
is already in use in many areas and new applica-
tions are being created for both commercial and
scientific markets. The emergence of digital images
as standard data types supported by the majority
of systems (like text and graphics of today) seems
assured. For a greater understanding of specific
imaging applications, this section presents general
imaging concepts and terms used throughout the
paper.

Concepts and Terms
In its simplest form, imaging is the digital repre-
sentation of real-world scenes or objects. Just as a
camera transfers a view of the real world onto a
chemical film, an electronic imaging systenl trans-
fers the same view into digital bits for storage,
manipulation, and viewing. In this paper, the term
image refers to the digital bits and bytes that repre-
sent the real-world view.

The process of digitizing the view may be done
through various methods, e.g., an image scanner
or image camera. A scanner is the conceptual
inverse of a normal printer. A printer accepts an
electronic stream of bits that describe how to
place the ink on the paper to create the desired
picture. Conversely, optical sensors in the scanner
transfor~n light intensity values reflected from a

Digilnl ~ & c ~ ? z ~ c L z ~ J o u ~ ? ~ ~ ~ Vol. .? No. 4 FctlI 19'11 9

Image Processing, Video Terminals, and Printer Technologies

sheet of paper and create a stream of electronic bits
to describe the picture. Similar sensors in the focal
plane of a camera produce the other common digi-
tization method, the electronic image camera.

The format of a digitized image has many param-
eters. A pixel is the common name for a group of
digitized image bits that all correspond to the sane
location in the image. This pixel contains informa-
tion about the intensity and color of the image at
one location, in a format that can be interpreted
and transformed into a visible dot on a display
device such as a printer or screen. The amount of
information in the pixel classifies the image into
one of three basic types.

A bitonal image has only one bit in each pixel;
the bit is either a one or a zero, representing one
of two possible colors (usually black and white).

A gray-scale image Iias multiple bits in each pixel,
where each pixel represents an intensity value
between one color (all zeros) and another color
(all ones). Since the two colors are usually black
and white, they produce a range of gray-scale
values to represent the image.

A color image has multiple components per
pixel, wherc each component is a group of
bits representing a value within a given range.
Each component of a color image corresponds
to a part of the color space in which it is repre-
sented. Color spaces may be thought of as dif-
ferent ways of representing the analog, visible
range of colors in a digitized, numeric form. The
most popular color spaces are television's YUV
format (one gray-scale and two color compo-
nents) and the bit-mapped computer display's
RGB format (red, green, and blue components).

The resolution of an image is simply the density
of pixels per unit distance; the most common den-
sities are measurecl in dots per inch (dpi), where
a pixel is called a dot. For example, a facsimile
machine (which is nothing more than a scannel;
printer, and phone modem in the same unit) typi-
cally scans and prints at 100 dpi, although newer
models are capable of up to 400 dpi. As another
example, most workstation display monitors are
capable of 75- to 100-dpi resolution, and some high-
end monitors achieve up to 300-clpi resolution.

To display an image at a density different from
its scanned density, without altering the image's
original size, requires the image to be scaled, so
that the new image density matches the output

media density. Scaling an image may be as simple as
replicating and dropping pixels, or it may involve
Interpolation and other algorithms that take neigh-
boring pixels into account. Generally, the more
complex scaling algorithms require more process-
ing power but yield higher-quality images, where
quality refers to how well the original scene is rep-
resented in the resulting image.

Before an image can be displayed, its pixel values
often require conversion to account for the charac-
teristics of the display device. As a simple example,
a color image cannot retain its color when output
to a black-and-white video monitor or printer. In
general, when a device can display fewer colors
than an image contains, the image pixel values must
be quantized. Simple quantizing, or thresholding,
can be used to reduce the number of image colors
to the number of display colors, but can result in
loss of image quality. Dithering is a more sophisti-
cated method of quantizing, which produces the
illusion of true gray scale or color. Although dither-
ing need use no more colors than simple quantiz-
ing, it results in displayed images of much higher
quality.

Image compression is a transforn~ation process
used to reduce the amount of memory required to
store the information that represents the image.
Different compression methods are used for bitonal
images than those used for gray-scale and color
images. These methods are stantlardized to speclfy
exactly how to compress and decompress each
type of image. For bitonal images, the most corn-
moll standards are the ones ~ ~ s e d in facsimile
machines, i.e., Recommendations ~ . 4 and ~ . 6 of the
Comite Consultatif Internationale cle TkICgraphique
et Telkphonique (CCITT).l.~ommonly known as
the Group 3 and Group 4 standards, the desig-
nations are often shortened to G3-ID, G3-2D, and
~ 4 - 2 ~ . referring to the particular standard group
and to the coding method, which may be either
one- or two-climensional. For gray-scale and color
images, the Joint Photographic Experts Group
(JPEG) standard is now emerging as a joint effort of
the International Standards Organization (ISO) and
CCITT.3 Whichever format or process is used, com-
pression is a compute-intensive task that involves
mathematically removing redundancy from the
pixel data.

A typical compression method creates an
encoded bit stream which cannot be displayed
directly; the compressed bits must be decom-
pressed before anything recognizable may be

10 Vol. 3 No.4 Fh11 1991 Digital Tecbvzical Journal

Hardzuare Accelerators for Bitonal Image Processing

displayed. The term compression ratio represents
the size of the original image divided by the size of
the compressed form. For bitonal images using
the CCITT standards, the ratio is commonly 20:l on
normal paper documents, but can vary widely with
the actual content of the image. The CCITT stan-
dards are also "lossless" methods, which means that
the decompressed image is guaranteed to be iden-
tical to the original image (not one bit different).
In contrast, many "lossy" compression methods
allow the user to vary the compression ratio such
that a low ratio yields a nearly perfect image repro-
duction and a high ratio yields a visible degradation
in image quality. This trade-off between compres-
sion and image quality is very useful because of the
wide range of applications in imaging. An applica-
tion need pay no more in memory space and band-
width than necessary to meet image quality
requirements.

A Nezu Data Type and Its Features
The image data type is fundamentally different
from text and graphics. When a user views charac-
ters or pictures on a display device, the source of
that view is usually not important. A sheet of text
from a printer may have come from either a text file
where the printer's own fonts were used, a graph-
ics file where the characters were drawn with line
primitives, or an image file where the original text
document was scanned into the system. In any
case, the same letters and words present the user
with approximately the same information; the dif-
ferences are mostly in character quality and format.

In spite of their large storage space require-
ments, images have several advantages over graph-
ics or text. First, consider the process of getting
the information into the computer. With the imag-
ing process, documents may be scanned automati-
cally in a few seconds or less, compared to the time
required for someone to type the information cor-
rectly (absolutely no errors) into a text file. Also,
even though the software exists to convert elec-
tronic raster images into graphic primitive files, the
process loses detail from the original image and is
relatively slow. Next, consider the variety of infor-
mation possible on a sheet of paper: a user can-
not easily reproduce a diagram or a signature on a
document. A scanned image preserves not only the
characters, but their font, size, boldness, relative
position, any pictures on the page, and even
smudges or tears depending on the quality of the
image scan.

The major drawback in the imaging process is
increased data size, which results in storage mern-
ory and network transport problems. High scan
densities and color information components create
large volumes of data for each image; a bitonal
image scanned at 300 dpi from an 8.5-by-11-inch
sheet of paper requires over 1 megabyte of mem-
ory in its original pixel form. Therefore, compres-
sion and decompression are integral parts of any
imaging system. Even in compressed form, a bitonal
image of a text page requires about 50 kilobytes
of storage, whereas its American standard code
for information interchange (ASCII) text equivalent
requires only 4 to 5 kilobytes. Similarly, a graphics
file to describe a simple block diagram is much
smaller than its scanned image equivalent.

Based on these advantages and limitations, sev-
eral applications have emerged as perfect matches
for imaging technology. Bitonal images are used
in the expanding market of document manage-
ment, which consists of scanning volumes of
papers into images. These images are stored and
indexed for later searching and viewing. Basically
an electronic file cabinet, this system results in
large savings in physical cabinet space, extremely
fast document access, and the ability for multiple
users to access the same document simultaneously.
Gray-scale imaging is often used in medical appli-
cations. Electronic versions of x rays can be sent
instantly to any specialist in the world for diagno-
sis, and the ordering of sequential computer-aided
testing (CAT)-scan images into a "volume" can pro-
vide valuable three-dimensional views. The appli-
cations for color imaging are relatively new and
still emerging, but some are already in use commer-
cially, e.g., license and conference registration pho-
tographs. A further extension to still imaging is
digital video, which can be considerecl as a stream
of still images. In conjunction with audio, digital
video is commonly known as multimedia, applica-
tions for which range from promotional presenta-
tions to a manufacturing assembly process tutorial.

In this paper, we focus on the static bitonal imag-
ing method of representing real-world data inside
computers. Static imaging is a simpler method of
representing a broader range of information than
the text and graphics media types, but it carries
a greater requirement for processing power and
memory space. In addition, static imaging can be
viewed as one part of true multimedia, as can text,
graphics, audio, video, and any other media for-
mats. Yet static imaging does not have the system

Digital Technical Journal Vo1.3 No. 4 Fa11 1991 11

Image Processing, Video Terminals, and Printer Technologies

speed requirements of a motion video and audio
system. which must prescnt data at rcal-time rates.
As long as the user can dcal with static images at
an interactive rate, i.e., being able to view the
images in thc format of choice ;IS F~st as the user
c;un select them, thcn static imaging is ;I powcrhl
rnctli;~ presentation tool. l'hc next section presents
the importi~nt issues concerning bitonal imaging in
a document management environment.

Bitonal Imaging Issues
As previously mentioned, bitonal electronic imag-
ing as an dtcmativc to paper documents offers
many benefits, such as retluccd physic11 storage
space, instant and simultaneous access of scanned
images, and in general a more accessible media.
Serious issues need to be resolved before a produc-
tive imaging operation can be implemented. The
chief issues are the irnage data size, transport
method, perceived rendering speed, and final legi-
bility. In the following sections, we examine each
issue and present solutions.

Digitized Image Data Size
The most important issue concerns irnage data sirs.
Images are typically documents, drawings, or pic-
tures that have been digitized into a computer-
readable form for storage and retrieval. Depending
on the dot density of the scanner, a single image
can be 1 to 30 megabytes or more in size. However,
storing a single irnage in its scanned form is not the
typical usage model. Instead, a company may have
tens of thousands of scanned documents. Clearly,
with today's storage technologies, a company can-
not afford to store such a large volume of images
in that format.

A typical ASCII file representing the text on an
8.5-by-11-inch sheet of paper requires approxi-

mately 3 kilobytes of memory. If the same shcct of
paper is digitized by scantling at various dot tlcn-
sities, the resulting data files art. huge, ;IS sho\vn
by the decompressed bitonal image sizes in 'Inable 1.
Note that l'iible 2 includes the size of thc scanned
image if scanned in way-scale and color motles,
although using these modes woultl not makc sense
on a black-and-white sheet of paper. The image
sizcs are included for comparison and are discussed
in the section Future Image Accelerator Require-
ments. The data presented in Tables 1 and 2 illus-
trates that the size of the original ASCII file is much
smalkr than any of the scilru~ed versions. The data
also gives evidence that scxnned Images, in gencr;~l,
require considcrablc memory.

Since the typical use for bitonal images is for
volume document archival, an imaging application
must include a compression process to reduce mem-
ory usage. This process must transform the original
scanned image file to a much smaller file without
losing the content of the original scanned data.

Compression algorithms may takc different paths
to achieve the same result, but they share one basic
process, the removal of redundant information to
reduce the object size. A common compression
routine searclies the pixel data for groupings, or
"run lengths," of black or white pixels. Each run
length is assigned a code significantly shorter than
the run length itself. The cotles are assigned by
statistics, where the most frequent run lengths
are assigned the shortcst corles; statistics have been
amassed on a variety of document types for differ-
ent scan densities and document sizcs. A compres-
sion proccss parses through the original image
file, generating another file that contains the codes
representing the original image. Figure 1, a sample
bitonal imagc compression, illustrates these com-
pressed codes in a serial bit stream.

Table 1 Sample Bitonal Image Sizes

Document Type
(Paper Size)

Scan
Density
(dpi)

I Kilobytes of Data I
Pixel Form Typical
(Decompressed) Compressed

A size
(8.5 x 11 inch)

E size 100 1826 106
(44 x 34 inch) 200 7305 114

300 16436 127

12 Vol. .3 /Vo. 4 FLI// 1991 Digital Technical Jourrrnl

Hardware Acceleratorsfir BiLonnl Image Pro~essfn~q

Table 2 Sample Gray-scale and Color
l mage Sizes

Document Type
and Size

Kilobytes of Data
in Pixel Form
(Decompressed)

128 x 128 pixel, 12 bits per pixel 24
gray-scale image
512 x 512 pixel, 8 bits per pixel
color image
512 x 512 pixel, 24 bits per pixel
color image
8.5 x 11 inch, 100 dpi, 24 bits 2740
per pixel, color image

Several algorithms for bitomal compression are
widely used totl;ty. As mentioned in the previous
section, the most common for bitonal images are
the CCII?' standards G3-1l3, <;3-2D, and (; 4 - 2 D , which
all use the approach just described. For the one-
dimensional method, the algorithm creates run
lengths from all pixels on the same scan line. In the
two-dimensional methods, the algorithm some-
times creates run lengths the same way, but the
previous scan line is also examined. Some codes
represent run lengths and even whole scan lines
as "the same as the one in the previous scan line,
csccpt offset by .V pixels," where N is a small inte-
ger. Tlic two-climensional method takcs advan-
tage of most of the recluntlancy in an image and
returns the smallc5t compressed file. In addition to
prcscrving system memory, these compression
methods significantly Improve network transport
performance.

Network Transport Constraints
The network transport performance for an image
is important, because i1n;lgc.s arc rnost often stored
on a remote system and vicwctl on a widespread
group of display stations. For example, onc group in
an insurance company receives and scans claim
papers to create a centralized image database,
while users in another group acccss the tlocuments
simultaneously to proccss claims. For thc imaging
system to be productive, this image d;~ta needs
to be transported quickly from one group to the
other: telephone attendants answering calls must
have immediate access to the data.

Scanned image documents take a long time to
transport between systems, simply because they are
so large. When compression techniques arc used, a
typical uncompressed image stored in 1 megabyte
can be reduced to approximately 50 kilobytes.
Since transport time is proportional to the number
of packets that must be sent across the network,
reducing the data size to 5 percent of its original
size also reduces the transport time to 5 percent
of the original time. Tliercfore, you can now send
twenty compressed images in the same time previ-
ously spent sending one uncompressed image.

Even with compression techniques, the image
files are still larger than their text file equivalents.
Moreover, most network protocols limit their
packet size to a maximum number of bytes, i.e., an
image file larger than the maximum packet size
gets divided over multiple packets. If the protocol
requires an acknowledgment between packets, then
the transport of a large file over a busy network
becomes a lengthy operation.

IMAGE PIXELS

m
ONE SCAN LINE OF PIXELS

' I

600 WHITE 250 WHITE 845 WHITE

/ 30 BLACK / 30BLACK \

COMPRESSED CODES IN A CONTINUOUS BIT STREAM

Figure I Bitonal Image Compression

Digitul Technical Journal Wtl, .? No. 4 Fa11 1991 13

Image Processing, Video Terminals, and Printer Technologies

The platform for our most recent accelerator is
the VT1200 X window terminal, which uses the
local area transport (LAT) network protocol. We
soon realized that the X server packet size was
limited to 16 kilobytes and the typical A-size
compressed document was approximately 50 kilo-
bytes. With this arrangement, each image transport
would have required four large data packets and
four acknowledgment packets. Working with the
X Window Terminal Base System Software Group,
we were able to raise the packet size limit to
64 kilobytes. The base system group also imple-
mented a delayed acknowledgment scheme, which
eliminates the need for the client to wait for an
acknowledgment packet before sending the next
data packet. Table 3 shows compressed image data
taken during the DECimage 1200 dmiopment
cycle. Notice that the network transport times
for Digital document interchange format (DDIF)
decrease sharply aftcr the pacltct changes.

Perceived Rendering Speed
Because the image scanning and compression
operations occur only once, they are not as
performance-critical as the decompression and
rendering for display operations, which are done
many times. Decompression and rendering are part
of the system's display response time, which is a
critical factor in a system designed for high-volume
applications that access thousands of images daily
This time is measured from the instant the user
presses the key to select an image to view, to the
moment the image is displayed completely on the
screen. The display response time is a function of
the disk read t h e , network transport time, and dis-
play station render time.

Although network transport time and disk file
read time have a direct effect on the response time,
accelerator developers rarely have any control over

them. The disk access time data from the DECimage
project analysis shown in Table 3 demonstrates that
the disk file read time is a significant portion of the
overall response time. Thus, the display station
render time is the only area of the display response
time which can be clearly intluencetl and is, there-
fore, the main focus of our image accclcrators. The
local processing that must occur a t the display sta-
tion is not a trivial task; an image must be tlecom-
pressed, scaled, ant1 clipped to fit the user's current
window size, and optionally rotated.

The decompression procedure inverts the com-
pression process; both are computationally com-
plex. Input to the procedure is compressed data,
and output is the original scan line pixel data,
which can be written to a display device. Scaling
the data to fit the current window or fill a region
of interest is not trivial either: a huge input data
stream must be processed (the decompressed, orig-
inal file), and a moderate output data stream must
be created (the viewable image to be displayed).
While simple pixel replicate and drop algorithms
may be used to scale the data, a more sophisticated
scaling algorithm has been shown to greatly
enhance the output image quality.

In addition to scaling and clipping, the orthogo-
nal rotation of images (in 90-degree increments)
is a usefill function on a display station. Some docu-
ments may have words running in one direction
while pictures are oriented another way, or the user
may wish to view a portrait-mode image in land-
scape mode. In either case, orthogonal rotation
can help the user understand the information; i.e.,
the increased time to rotate the view is warrantecl.

When an image is scanned, particularly with a
hand-held scanner, the paper is never perfectly
aligned. Thus, the image often requires a rotation of
1 to 10 degrees to make the view appear straight
in the image file. However, multiple users want the

Table 3 DDlF lmage File Read Time and File Transport Performance

Network Transport Time
(milliseconds)

7 Disk Read Time 7 After Before
(milliseconds) Packet Packet

MicroVAX II VAX 8800 VAX 6440 Change Change
lmage Size
(kilobytes)

Vol. 3 No. 4 Fa11 1991 Digital Tecl~tticalJozrr~rrrl

Hardware Accelerators for Bitonal Image Processing

information from the document as quickly as pos-
sible, and should not have to rotate the image by
a few degrees to make it perfectly straight on the
screen. Therefore, this minimal rotation should
be done after the initial scanning process; i.e.,
only once, prior to indexing the material into
the database, and not by every user in a distributed
environment. Because any form of rotation is
compute-intensive, allowing the user to perform
minimal rotations at a high-volume view station
would reduce the application's perceived ren-
dering speed and add little value to the station's
function.

Final Legibility
While the primary issue facing imaging applica-
tions is data size, image viewing issues must also be
addressed. In short, an effective bitonal imaging
display system must be responsive to overall image
display performance and the resulting quality of
the image displayed. To enhance our products, we
optimized the display performance parameters as
best we could, given that some parameters are not
under our control. Improvements to monitor reso-
lution and scanner densities continue to increase
the legibility of images. An affordable image system
should increase the image legibility by rendering
a bitonal image into a gray-scale image using stan-
dard image processing techniques. We discuss the
method used in our accelerators, i.e., an intelligent
scale operation in the hardware pipeline, in the
next section.

Hardware Accelerator Design
As explained in the previous section, transforming
documents into a stream of electronic bits is not
the demanding part of a bitonal imaging process
for document management. Also, scanners and
dedicated image data-entry stations abound in the
marketplace already. Instead, the challenge lies in:
(1) managing the image clata size to control
memory costs and reduce network slowdown;
(2) increasing the image rendering speed, i.e.,
decompress the image, scale it, and clip it to fit
the window size with optional rotation; and
(3) increasing the quality of the displayed images.
This section describes the way our strategy
influenced the design of DECimage products. We
also discuss the chips used for decompression and
scaling, and how Digital's existing client-server pro-
tocols support these imaging hardware accelerators.

General Design Strategy
The number of applications using bitonal image
data continues to increase. In general, these appli-
cations attempt to offer low cost while achieving
an interactive level of performance, defined as
no more than 1 second from point of request to
complete image display. Ultimately, software may
provide this fi~nctionality without hardware accel-
eration, but today's software cannot. Moreover, the
parameters of image systems are not static; scan
densities, overall image size, and the number of
images per database will all increase. These
increases will provide the most incentive for hard-
ware assist at the low end of the X window ter-
minals market, because software alone cannot
perform the amount of processing that users will
expect for their investment.

The User Model Although a single model cannot
suit every application, imaging is centered on cer-
tain functions. Therefore, a user model built on
these functions would be very useful in mapping
individual steps to the hardware: hardware versus
software performance, the function's frequency of
use, and the cost of implementation.

The general user model for bitonal imaging sys-
tems is relatively simple. A small market exists for
image entry stations, in which documents are
scanned, edited, and indexed into a database. Wllile
a high throughput rate is important at these sta-
tions, a general-purpose image accelerator is not
the solution-dedicated entry stations already
exist in the market. Instead, we designed a general-
purpose platform, or versatile media view station,
to be used for imaging applications alongside other
applications. The user model for this larger market
is a set of operations for viewing and manipulating
images already entered into a database. The most
common operations in this model are decompres-
sion, scaling, clipping, orthogonal rotation, and
region-of-interest zooming.

Display Performance and Quality Optimiz~~tion
The main thrust of the DECimage accelerator is to
achieve interactive performance for the operations
defined in the user model. A secondary goal is to
bring added value to the system by increasing the
quality of the displayed image compared to tlie
quality of the scanned image. A side effect of maxi-
mizing performance in hardware is that the main
system processor has work off-loaded from it, free-
ing it for other tasks.

Digital Technical Jozrmal 1'01.3 No. 4 Full 1991 15

Image Processing, Video Terminals, and Printer Technologies

The general design of the accelerator uses a
pipelined approach. Since maximum performance
Is desired and a large amount of &ita must be p r o
cessed by the accelerator board, multiple passes
through the board are not feasible. Similarly, the tar-
geted low cost does not aIlow a whole image buffer
on the board. With one exception (rotation), all
board processing should be done in one pipeline,
with the system processor simply feeding the input
end of the pipe and draining the output end.
Because of the large amount of data to be read from
the board and displayed on the screen, the proees
sor should onIy have to move that data, not do any
further operations on it. To this end, any logic
required to format the pixels for the display bitmap
should be included in the pipeline.

Cost Reduction through Less Expensive System
Components The net cost of a bitonal imaging
system is influenced by the capability of the assist
hardwdre. The capability of the hardware implies
flexibility in the choice of other system hardware.
In this regard, the most significant impact on cost
occurs in the memory and the display. A system that
makes use of fast decompression and scaling hard-
ware can quickly display compressed images from
memory. This means either more images can be
maintained in the same memory, or the system can
operate with less memory than it would without
the assist hardware; less memory means lower cost.

A more dramatic effect on system cost is in the
display. Imaging systems generally need higher-
density displays than nonimaging systems, but the
cost of a 150-dpl display is approximately twice the
cost of a 100-dpi display of the same dimensions.
However, we found that we could increase legibil-
ity, i.e., expand a bitonal image to a gray-scale repre-
sentation, by using an intelligent scale operation
In the hardware pipeline. For example, a bitonal
image rendered to a 100-dpi display using the intel-
ligent scale process gives the perceived legibility
of the same image rendered to a 150-dpi clisplay
with a simple scaling method. That is, by adding the
intelligent scale, a 100-dpi clisplay can be used
where previously only a 150-dpi display would be
adequate.

Cost Reduction through Integration Presently, as
in the L>E(:itnage 1200, hardware-assisted imagc
manipulation exists as a board-lcvel option. Higher
levels of integration with the base platlorm will
provide lower overall cost for an imaging system.

The most straightforwartl method of intcgr;ition is
to relocate the hardware from the prcscnt option
to the main system processor board; successive
steps of ititcgration would consolidate mapped
hardware to fewer total devices. The most cost-
effective integration will be the inclusion of the
mapped hardware in the processor in a way similar
to a floating-point unit (1:1'1'). Just as graphics accel-
eration is now being incli~ded in system processor
design, images will eventually achieve the status of
a required data type and thus be supported in the
base system processor.

Product DeBnition- What Does the User
Want?
The previously clescribecl strategy was used in the
design of the image accelerator board for the
DECimage 1200 systcm. Thc product requirements
called for a low-cost, high-performance document
image view station These reqi~irements evolved
from the belief that most users currently investi-
gating imaging systems are interested in applica-
tions and hardware that will enable them to quickly
and simultaneously view clocument images ant1 run
their existing no~~imagingapplications. These users
are involved with commercial and business appli-
cations, rather than scientific applications. The
DECimage 1200 system was planned for the manage-
ment of insurance claims processing, hospital
patient medical recortls, bank records, and manu-
facturing documents. As previously stated, the
imaging functions required for these view-oriented
applications are high-speed decompression, seal-
ing, rotation, zooming, and clipping.

General Product Design
In defining the image capable system, the key
points in the product requirements list were

High-performance image display

Low cost

Bitonal images only (not gray-scale or color)

View-only functions

The need for high-performance display influ-
encecl the project team to design the hardware
accelerator board to handle imagc decompression,
scaling, and rotation. Previous performance test-
ing on a 3-WJP (VAX-11/780 units of performance)
CYU had yieldccl irn;tge software display times from
5 to 19 seconds. These images were compressetl

16 Vr,I. 3 No. 4 Fall 1991 Digital Technical Journc~l

Image Processing, Video Terminals, and Printer Technologies

INTERFACE MEMORY HARDWARE

SYSTEM ADDRESSIDATA BUS

t t t

MEMORY MEMORY

Figure 3 VT1200 3j)stern Arcbilect~~re

The rotillion circuit handles 90- and 270-degree
rotation, whereas 180-dcgree rotation is hanclled
in the data packing shift registers by changing the
shift direction. 'I'he circuit rotates an 8-by-8-bit
block of data at a time. The first byte of cight con-
secutive scan lines is written into eight intlividual
byte-wicle registers. The most significant bit (MSB)

of each of these registers is connected to the byte-
wide rotation output port latch. A procchsor reatl
of this port triggers a simultaneous shift in all of the
rotation data registers so that the next bit of each
register is now latched at the rotation output port
for the next read. Figure 5 diagrams the rotation
circuitry just described.

To achieve the best performance, we pipelinecl
the h~nctional blocks in the hardware. 'l'hc scaling
engine docs not need to wait for the entire image

to be decompressed before it can begin scaling;
instead, scaling begins as soon as the first byte of
data is output from the decompressor Thus tlif-
ferent pieces of the image file are be~ng decom-
pressed, scaled, and rotatecl siniultaneousl~~. The
hardware pipeline also eliminates the need to
store the fully uncompressed image (approximately
1 megabyte of clata for A-size 300-dpi images) in
memoly. The compressed image is wrltten from
system memory to the accelerator board and a
tleconipressetl, scaled, and clipped image is read
from the board. Because of the speed of the hard-
ware, the software can redisplay an image with dif-
ferent scaling, clipping, or rotation parameters; it
merely changes the harclware setup for the differ-
ent parameters and sends the compressetl image
file back through the accelerator board pipeline.

BUFFER RAM BUFFER

J- 4
SYSTEM ADDRESSIDATA BUS

t t
COMMAND
AND STATUS I REGISTER I ROTATION

MATRIX

Figure 4 Block Diagram of DECint~~ge 1200 Accelerator Hardtoare

18 Ihl. .I IVO. 4 Fall I991 Digital Technical Journal

Hardware Accelerators for Bitonal Image Processing

8 SCAN LINES OF IMAGE DATA the word contain the number of consecutive white .

8 x 8 ROTATION
ROTATION OUTPUT
MATRIX REGISTER

8-BYTE
BLOCK
#1

SCAN LlNE 0
SCAN LlNE 1

SCAN LlNE 2

SCAN LlNE 3
SCAN LlNE 4
SCAN LlNE 5
SCAN LlNE 6
SCAN LlNE 7

0 1 2 3 4 5 6 7

DISPLAY BYTE n

I

8-BYTE
BLOCK
#2

Figure 5 Rotation Matrix

8-BYTE
BLOCK
#3

ASIC Design Description
The ASIC design consists of a decompressor chip,
which decodes the compressed image data to pixel
image data, and a scaling chip, which converts the
image from the input size to the desired display size.

Deco7npressor Chip The decompressor chip acts
as a CCI?T binary image decoder. The chip contains
three distinct stages, which are pipelined for the
most efficient data processing. Double buffering
of compressed input data is implemented to enable
simultaneous input data loading and image decod-
ing to occur. Compressed data is loaded into the
input buffer by the processor through a 16- or 32-bit
port. Handshaking controls the transfer of decom-
pressed data from the decompressor's 8-bit-wide
output bus to the scaling chip.

The first stage of the decompressor chip con-
verts CC17T-standard Huffman codes, which are of
variable-length, to 8-bit, fixed-length codes (FLCS).~
A sequential tree follower circuit is implemented
to handle this conversion. Every Huffman code cor-
responds to a unique path through the tree, which
ends at a leaf indicating the FLC. The 8-bit FLC is
sent to a first-in, first-out (FIFO) buffer, which holds
the data for the second stage.

The second stage of the chip generates a 16-bit,
run-length value from the FLC. The lower 15 bits of

or black pixels (called the run length). The upper
bit of the word contains the run-length color code
(0 for a white run and 1 for a black run). An FLC is
read from the FIFO buffer and decoded into one of
elght routine types. Each routine is made up of sev-
eral states that control the color code toggling, run-
length adder, and accumulator circuits. At tlie end
of each routine, a new word containing the run-
length and color information is written into a FIFO
buffer for the h a 1 stage.

The final stage of the decompressor chip con-
verts the run-length and color information to black
or white pixels. This stage outputs these pixels in
16-bit chunks when the scaling chip sends a signal
indicating a readiness to accept more data.

Scaling Chip The primary purpose of the scaling
chip is to input high-resolution document images
(300 dpi) and scale them for display on a medium-
density monitor (100 dpi). The chip offers inde-
pendent scaling in the horizontal and vertical
directions. The scaling design implemented in the
chip is a patented algorithm that maps the input
image space to the output image space. General
1v1-to-N pixel scaling is provided where M and N are
integers between 1 and 127, with the delta between
them less than 65. IM represents the number of pix-
els in and N represents the number of pixels out (in
the approximated scale factor).

Given an image input size and a desired display
size, we must find the M and N scale Fdctors that
best approximate the desired scale factor, within
the range limits of M and N as previously stated.
Thus an input width of 3300 and a desired out-
put width of 550 are represented by an PI of 6 and
an N of 1. The approximatecl 1l.I and N values are
loaded into the chip scale registers for downscaling
or upscaling.

The chip scaling logic uses the scale register val-
ues to increment the input pointer position and
generate output pixels. A latched increment deci-
sion term is updated every clock cycle, based on
the previous term and the scale register values.
When scaling down (where fewer pixels are output
than are input), tlie logic increments the input
pointer position every clock cycle, but only out-
puts a pixel when the increment decision term is
greater than or equal to zero. Figure 6a illustrates
how this algorithm maps input pixels to outp~it pix-
els for a sample reduction. When scaling up (where
every input pixel represents at least one outpiit

Digital Technical Journal Vol. 3 No. 4 Fa11 1991 19

Image Processing, Video Terminals, and Printer Technologies

SCALE DOWN FROM 10 INPUT PIXELS TO 5 OUTPUT PIXELS
(M = Z A N D N = l)

INPUT

INCREMENT
DECISION D = l D = - l D = 1 D=-1 D = l D=-1 D = l D=-1 D = l D=-1
REGISTER

OUTPUT
1

(a) Downscaling

SCALE UP FROM 3 INPUT PIXELS TO 9 OUTPUT PIXELS
(M = l A N D N = 3)

INPUT

INCREMENT
DECISION D=-1 D = l D=-3 D=-1 D = l D = - 3 D=-1 D = l D = 3
REGISTER

OUTPUT •
1 2

(6) Upscaling

Figure 6 Chip Scaling Examples

pixel), thc logic outputs a pixel every clock cycle,
but only increments the input pointer position
when the increment decision tern1 is greater than
or equal to zero. Figure 6b illustrates how this algo-
rithm maps input pixels to output pixels for a sam-
ple magnification. For both cases, the value of the
pixel (black or white) being output is the value of
the input pixel pointed at during that clock cycle.
In this dcscription, simply substitute rows for pix-
els to reprcscnt the vertical scaling process.

Software Sz,lpport for the Hardware
Software support is needed to enhance the func-
tions of the hardware accelerator in our imagc view
station. As mentioned in the section General
Product Design, thc XIE protocol extends the X l l
core protocol to enable the transfer of compressetl
images across the wire ant1 to cnable image rendi-

tion ancl display at the server using the hardware
accelerator board. Like the X I 1 protocol, the XIE
protocol consists of a client-side library called
XIElib, which provides client applications access
to image routines, and a server-side piece, which
executes the client requests. The xrE server imple-
ments support at two levels: device-independent
and device-dependent. The device-dependent level
supports the functions that benefit from optimi-
zation for a particular platform, or functions that
are implemented in hardware accelerators. The
device-independent level enables quick porting of
functionality from platforrn to platform. Figure 7
illustrates the S/XIE client-server architecture.

The client-side XlElib offers the minimum
functions necessary for image rendition and dis-
play The toolkit level offers higher-level routines
that assist with windows application development.

20 Ihl. .? IVO. 4 R111 1991 Digital Technical Journrrl

Hardware Acceleratorsfor Bitonal Image Processing

DECWINDOWS IMAGE
TOOLKIT TOOLKIT

DISPLAY u
Figure 7 W X I E Architecttire

An example of a routine at this level might be
ImageDisplay, which displays an image in a previ-
ously created window. ImageDisplay parameters
might include x and y scaling values, the rotation
angle, and region-of-interest coordinates. Whether
programming with the XIE protocol at the library
or toolkit level, applications developers benefit
from the platform interoperability of the standard
interface. Image accelerator hardware and opti-
mized device-dependent XIE code changes the
application's image display performance, but an
application developed using the X E protocol can
run on any XlE-capable server.

Accelerator Performance Results
With the DECimage 1200 X terminal, we have
achieved interactive performance rates, reduced
memory usage, and increased final image legibility.
We achieved these rates by transporting com-
pressed files instead of huge pixel files and by imple-
menting specialized image processing hardware.
The DECimage 1200 can read, transport, decom-
press, scale, and display an 8.5-by-11-inch bitonal
document in 1 to 2 seconds. Successive displays,
i.e., rotating, region-of-interest zooming, panning
around the image, all occur in less than 1 second,

which is essentially as fast as the user can ask for
the displays. This speed is possible because the
image already resides in compressed form in the
server memory. Thus, the image does not have to
be read from the disk or transported across the
network.

Future Image Accelerator
Requirements
Hardware accelerators will continue to be required
for bitonal imaging until software can provide the
same fiinctionality at the same performance level.
This section discusses the more complex image
schemes that are used for gray-scale imaging and
multimedia applications. In contrast to bitonal
imaging, these applications will require the use of
hardware accelerators well into the future.

Other applications will require richer user inter-
faces utilizing continuous-tone images, video, and
audio. All of these new data types are generally
data-intensive, and compression or decompression
of any one of them is a significant processing bur-
den. Handling them in combination indicates that
the need for specialized hardware assistance will
persist for the foreseeable future.

Continuous-tone Images
Bitonal images are either black or white at each
point, but some applications require smoothly
shaded or colored images. These images are typi-
cally referred to as continuous-tone images, a term
that denotes either color or gray-scale, e.g., photo-
graphs, X rays, and still video. The representation
and required processing of this image format is
significantly different from that of bitonal images.

Continuous-tone images are represented by mul-
tiple bits per pixel. This format allows a greater
range of values for each pixel, which yields greater
accuracy in the representation of the original
object. Additionally, each pixel can consist of mul-
tiple components, as in the case of color. The num-
ber of bits used to represent a continuous-tone
image is chosen according to the nature of the
image.

For example, medical X rays require a high
degree of accuracy. Consequently, 12 bits are gener-
ally regarded as the minimum acceptable for the
rendering of this class of image. Color images typi-
cally require 8 bits per pixel for each component
(YUV or RGB format) for a total of 24 bits per pixel.
Table 2 shows the relative size of samples of each
image. The need to express these images in a

Digital Technical Journal Vol. .? No. 4 Full 1991 2 1

Image Processing, Video Terminals, and Printer Techn

compressed format is obvious from the storage
space rrequirements and the current storage media
limits.

Tlie comprcssion of continuoi~s-tone irnagcs can
be accomplisliecl in sever;il ways. Hornrevel; most
imaging applications are not closed systems;
inevitably, each system needs to rnanipul;lte images
that are not of its own making. For this reason wc
aclopted the JPEG standard, wlhicl~ specifics an ;~lgo-
rithm for the comprcssion of gray-scale and color
images. Specifically, the JPEG compression methotl
is based 011 the two-dimensional (2D) discretc
cosine transform (DCT). The D<:T decomposes an
8-by-8 rectangle of pixels into its 64 2D spatial-
frequency components. Tllc sum of these 64 2 D
sinusoids exactly reconstructs the 8-by-8 rectangle.
However, tlie rect;~ngle is approximated-and com-
pression is achieved-by tliscarding most of the
64 components. 7'>,pically adjacent pixel values
vary slowly, thus there is little energy in most of the
discarded high-frequency components.

The eclges of objects generally contribute to the
high-frequency components of an image, whereas
the low-frequency components are made up of
intensities that vary more gradual ly. Tlie more
frequency components included in the approxi-
mation, the more accurate the approximation
becomes. Table 4 shows some sample JPEG image
compression ratio^.^

The most popul;tr part of the JPEG stantlard,
the "baseline" method, was defined to be easily
mapped into software, firmware, or hardware.
Straightforward D(X' algorithms can be efficiently
implemented in firmware for programmable DSP
chips, due to their pipclined architecture. The first
systc1ns to embody the standarcl clitl so using DSPs,

Table 4 Typical Compression Parameters
for JPEG

Compression Compression Rendered Image
Ratio Method Integrity

2:l Lossless Highest quality-
no data loss

12:l Lossy Excellent quality-
indistinguishable
from the original
Good quality-
satisfactory for
most applications

1OO:l Lossy Low quality-
recognizable

Lossy

because any change to either the evolvilig standard
or a standard extension coulcl be easily introduced
to the firmware. The fastest implementations arc
achieved by special-purpose hardware accelerators.

The JPEG implementation tlocs not require harcl-
ware, i.e., the algorithm can be pcrformed corn-
plctely in software. Tlie case for hardware assist
is made in performance. Table 5 clescribes tlie
reduced instruction set compilter (IUSC) processor
performance, in millions of operations per second
(mops), needed to provide the specified operation
at a motion video rate of 30 frames per second.:
However, generic NSC processors of those speeds
are not available today. Therefore, dedicated, cus-
tom very large-scale integration (VLSI) devices
(such ;I> the (:L550-10 from C-Cu be Microsystems)
must be used to perform the operation^.^ Even
if the motion vidco rate is not required, the ASIC

devices offer the simplest hartlware solution.

Live Video and Video Compression
Video captures the natural progression of events in
an environment, and is therefore a natural and
efficient way to communicate. Consider, for exam-
ple, the assembly of a set of components. One way
to express the assembly process is to show a series
of photographs of the assembly at successive steps
of completion. As an alternative, vicleo can show
the actual assembly process from start to finish.
Subtle details of the process such as part rotations
and movements can be clearly conveyed, with tlie
added dimension of time.

Obviously, information expressed in video form
can be valuable; howevel; significant problems arise
in adapting video for use in computer systems.
First, the huge data size of vitleo applications can
strain the system's storage capability. Video can
be characterized as a stream of continuous-tone
images. Each of these images consists of pixel val-
ues with individual components making up each
pixel. For video to have full effectiveness, the still
images must be presented at video rates. In manjf
cases the rate to f a i t l ~ ~ l l y reproduce motion is
30 frames per secontl, which means that one
minute of uncompressed video (512-by-480 pixels
at 24 bits per pixel) would consume over 1 gigabyte
of storage. In addition to storage demands, large
volumes of data cause banclwiclth problems.
Presenting 30 frames per second to tlie video out-
put with the above parameters would require a
transfer rate of more than 22 megabytes per sec-
ond from the storage device to tlie video output.

22 1/01 .j No. 4 Fu/l I991 Digital Techlcical Jourrinl

Hardware Accelerators for Bitonal Image Processing

Table 5 Processing Requirements for lmaging Functions

Processor
Imaging 7 Processor Operations per Pixel* 7 Operations
Functions Read Write ALUt Multiply Total at 30 fps (mops)

Pixel move .25 .25 0 0 .5 15

Point operation 2 1 1 0 4 120

3 x 3 convolve 9 1 8 9 27 81 0

8 x 8DCT 24 1 14 16 65 1950

8 x 8 block 128 1 191 0 320 9600
matching

'RISC processor, 1 M pixels, 30 frames per second (fps), 8 bits.
tALU = arithmetic logic unit

Thus, reducing the amount of data used to repre-
sent the video stream would alleviate both storage
and bandwidth concerns.

The starting point for the compression of video
is with still images and, as previously mentioned,
the JPEG algorithm can be used to compress still
continuous-tone images. Because video can be rep-
resented as a sequence of still images, the algorithm
could be applied to each still. This procedure
would produce a sequence of compressed video
frames, each frame independent of the other
frames in the sequence.

The evolving Motion Picture Experts Group
(MPEG) standard takes advantage of frame-to-frame
similarities in a video sequence, thereby enabling
more efficient compression than the application
of the JPEG algorithm alone.Vn most situations,
video sequences contain high degrees of similar-
ity between adjacent frames. The compression of
video can be increased by encoding a frane using
only the differences from the previous frame. The
majority of scenes can be greatly compressed; how-
ever, scene transitions, lighting changes, or condi-
tions of extreme motion need to be compressed as
independent frames.

The need for hardware assist in this area is com-
pelling. Table 5 shows that to sustain a SPEC; decorn-
pression at 30 frames per second would require a
1950-mops processor. The same result can be
obtained using the CL550-10 JPEG Image Compres-
sion Proce~sor .~ Although this device does not
make use of interframe similarities to increase com-
pression efficiency, a device implementing the
MPEC standard would exploit these similarities.
Table 5 shows that motion compensation, to be
supported ;it 30 frames per seconcl, requires a
9600-mops processor.

Audio and Audio Compression
Video is usually accompanied by audio. The audio
can be reproduced as it was recorded (with the
video), or it can be mixed with the video from
a separate source (such as a compact disc (CD)

player). The audio data is defined by application
requirements. If the application allows lower
quality, the audio can be sampled at lower rates
with fewer bits per sample, such as telephony rates,
which are sampled at 8 kilohertz and 8 bits per
sample. For applications requiring high-quality
(CD) audio, samples are usually taken at 44 kilo-
hertz and 16 bits per sample.

Integrating audio data into an application creates
special problems. The major characteristic that
differentiates audio from the other data formats
presented here is its continuous nature. Audio
must flow uninterrupted for it to convey any mean-
ing. In video systems, the flow of frames may slow
down under heavy system loading. The user may
never notice it, or may not be annoyed by it. Audio,
however, cannot slow or stop. For this reason, large
buffers are used to allow for load variations that
may affect audio reproduction.

A more subtle problem in creating applications
using audio is in synchronization. Audio data is
usually included to add another dimension of infor-
mation to the application (such as speech).
Without a method of synchronizing the video and
audio, one data stream will drift out of phase with
the other. One way to include synchronization is to
use time stamps on the audio and video. This is par-
ticularly useful because standard time codes are
used in most production machines.

The compression of audio data is not as efficient
as that of the other data formats. Since a statistical
approach to coding audio is highly dependent on

Digital Technical Journal Vol -3 No 4 Fal l 1991 2 3

Image Processing, Video Terminals, and Printer Technologies
-

the t).pe of input (i.e., voice, musical instrument),
another method is requireel for gcncr;ilizetl inputs.
Differential pulse code modu1;ition (t)I-'(:kl) is oftcn
usecl to encocle ;iudio dat;~. DPCM cotles only the clz-
ference betm~een adjacent sample values. Since the
difference in value between samples is usually less
than the magnitude of the sample, modest compres-
sion can be achieved (4 : l) . The limitation using this
technique is in the coding of high-frequency clat;~.

II:ird\v;ire assist for the audio data format will
probahly come in the form of hardware to perform
functions other than compression. For instance,
DSI-' algorithms can perform equalization, noise
reduction, ;lnd special effects.

Mu1 tinzedin
As the term implies, multimctlia may integrate all
of the previously mentioned image formats. The
word "may" is important in this co~itext. 'l'his area
has been mainly technology-driven, due to such
factors as lack of st;lnclards, clcveloping I/() clevices,
insufficient system bandwidth, differing clat;~ for-
mats, and a vast amount of software integration.

It is currently a topic of debate nrhcther typical
users will require the ability to cre;itc, as opposed
to only access. multimeclia source material. How-
ever, for discussion purposes, multimedi;~ plat-
forms can be classified into two c;~tcgories:
authoring and user. Authoring refers to creation
of multirneclia source material i111d requires differ-
ent c;~pabilities than user platforms. In the creation
of a multirncdia application, data from many differ-
ent devices may need to be digitized and cross-

referenced. As the data is incorporated, it is com-
pressed and storecl. Authors require the c;ip;ibility
to edit anti mix vitleo and audio passages to get the
desired result. Moreover, the video and auclio m;ijr
originate from different devices and may even be in
different formats.

As clefined above, " t~ser systems" do not require
all of the functions that authoring systems neecl:
only decompression is required in a typical user
system. Most existing user systems require at1 ana-
log video source (vitleodisk), which is purchased
as part of the application. The device control is pel=
formed by the application, i.e., when a user selects
a passage to be replayed, the application sends
commands to the videodisk. Figure 8 depicts an
authoring system and a user system, along with
suggested 1/0 capability.

Ncxt-generation multimedia platforms will make
fill1 use of digital vitleo and audio. This implies that
systems will be able to receive ancl transmit multi-
media applications ant1 data over networks. This
interactive capability miill improve the efficiency of
many munclane applications and devices. For exam-
ple, electronic mail can be extended with video and
audio annotations, or meetings can be transformecl
into vicleo teleconferencing. The adoption of com-
pletely digital data for multimedia also implies that
the platform I/O will change. Some user systems
will not require analog device interfaces or control:
the user will load the ;ipplication over the network
or from at1 optic;~l disk.

Each of the image formats described in this
section has different characteristics, and each will

I10 AND DEVICE
CONTROL
COMPRESSION1
DECOMPRESSION

VIDEODISK

NETWORK

VIDEODISK

COMPACT
DISK

NETWORK

VIDEOCASSETTE
RECORDER

24 Vol .J No. 4 E:~~ll I991 Digital Techiricnl Jonrnal

110 AND DEVICE
CONTROL
DECOMPRESSION

Hctrdware Acceleratorsfor Bitonal Image Processing

be presented in the embodiment of multimedia.
Given the size, processing requirements (compres
sion and decompression), and real-time demands of
applications, hardware assist will be a necessity.

Summary
Imaging is a unique data type with special sys-
tem requirements. To achieve interactive rates of
bitonal image display performance today, hardware
accelerators are needed; that has been the primary
focus of this paper, In the future, a general-purpose
processor should be able to handle the imaging pro-
cess at the necessary speed, ancl beyond that, the
processor should be affordable in a low-cost bitonal
imaging system. However, the bitonal document
processing market will not wait; it is in a high state
of growth and requires that products like accelera-
tors be developed for at least a few years.

Continuous-tone documents and multimedia
applications will place an even heavier processing
load on an imaging system. These areas will require
accelerators for several years. As imaging applica-
tions, including bitonal, expand to cover more mar-
kets, the quality enhancements and performance
benchmarks met by accelerators today will set
customer expectations. Consequently, our fiiture
imaging products must be designed to meet these
expectations.

Acknowledgments
The authors wish to express thanks to the
X Window Terminal Hardware and Software Design
Groups for their support in developing the
DECimage 1200 option. The two major ASICs used
in the design were developed for previous pro-
jects, and those two design teams are also offered
our thanks. Special thanks to Frank Glazer and
Tim Hellman for their insightful research on the
image rendering process.

References and Note

1. Standardization of Group 3 Facsimile Appa-
ratus for Doc~lnzent Transmission, CCITT
Recommendations, Volume vl-Fascicle VI1.3,
Recommendation ~ . 4 (1980).

2. Facsimile Coding Schemes and Coding Control
Functions for Group 4 Facsimile Apparatus,
CCITT Recommendations, Volume Wl-Fascicle
WJ.3, Recommendation T.6 (1984).

3. Digital Compression and Coding of Continuous-
Tone Still Images, Part I, Requirements and
Guidelines, ISO/IEC JTCl Draft International
Standard 10918-1 (November 1991).

4. J. Mauro, X Image Extension Concepts, Version
2.4 (Cambridge: MIT X Consortium, June 1988).

5. D. A. Huffinan, "A Method for the Construction
of Minimum Redundancy Codes," Proceedings
IRE, V O ~ . 40 (1962): 1098-1101.

6. G. K. Wallace, "The JPEG Still Picture Compres-
sion Algorithm," Communications of the ACM,
vol. 34, no. 4 (April 1991): 30-44.

7 Table 5 is adapted from Y. Kim, "Image Com-
puting Requirements for the 1990's: From Multi-
media to Medicine," Proceedings of Electronic
Imaging West (April 1991).

8. CL550 JPEG Image Compression Processoq Pre-
liminary Data Book (San Jose, CA: C-Cube
Microsystems Inc., November 1990).

9. Coding of fMoving Pictures ancl Associated
Audio, Committee Draft of Standard I S 0 11172:
ISO/MPEG 90/176 (December 1990).

Digital Technical Journal Vo1.3 iVo. 4 Full 1991 25

Bjorn Engberg
Thomas Porcher

X Window Terminals

X window terminals occupy a niche behueen X window tvorkstations andgraphics
terminals. Tbe purpose of temtinals in general is to provide low-cost rlsm access to
bost computers or smaller dedicated systems. X u~indow terminals further the
adt)ance in graphics terminals andprollide new and interesting u~ays to ~rtilize host
systems. Ethernet cable provides for graphics perfornzarzce previously not seen in
terminals. Tbe X Window System developed by lMlT allows nzt~ltiple applications
to be displayed and controlled from the user's workstatio~z. Now, with X wi~zdozu
terminals, the same powerjid user interface is available on host and other non-
workstation computers.

In mid 1987, the Video, Image and Print Systems
(VIPs) Group began the design of Digital's first
X window terminal, the VT'lOOO terminal and its
code upgrade, the VT1200 terminal. Our goal was to
design and implement an x window terminal that
would aIlow the use of windowing capabilities on
large computer systems. In 1989, Digital developed
the VTUOO X terminal and in 1991 the VXT 2000
X terminal. The designs of these X window termi-
nals are all quite different. Our design approach
changed as the underlying technology changed.

This paper first compares host-system comput-
ing with applications that run on workstations.
It summarizes the significance of the X Window
System developed by MIT and discusses the client-
server model. The paper then presents the need for
X window terminals and follows their development
stages. It compares and contrasts Digital's differ-
ent dcsign strategies for the VT1000, V7'1200, and
VT1300 X terminals. The paper concludes with a
sumrn:try of the recently announced W' 2000
X terminal.

Background
Before the development of the X Window Sys-
tem, there was very little overlap in functionality
betwccn workstations and other kinds of comput-
ers. Workstations had stunning and kist graphics,
ancl many powerful applications were available on
them. Those applications were not available to users
of basic 80-by24 character-cell text display termi-
nals connected to a host system located in a clean
room. Graphics terminals, of course, allowed the use
of ReGlS or another protocol for math and business

graphics, but their performance was far below the
expectations of a workstation user Few people
have the patience to run, for example, a computer-
aided design application on a VT240 terminal, assum-
ing such a version of the application is available.

Although a workstation offers fast graphics capa-
bilities, its applications sometimes need more CI'U

power or more disk space to do calculations in a
timely fashion. Graphics applications written for
workstations could not run on faster host comput-
ers, which did not provide a display. Nor was there
a standard way to get data from the host to display
on a workstation. Each application required a
unique solution to this problem.

Since the introduction of the new client-server
model of computing and modern networks, many
tasks can be divided into subtasks that can run
on the most suitable processor. The X Window Sys-
tem uses the client-server approach. as shown in
Figure 1. The application is viewed as an X client,
and a workstation or a terminal can run an X server
that controls the tlisplay. The X server also controls
input from the keyboard and mouse or other point-
ing devices.

SERVER fi
X CLIENT

X WIRE

Figure I Client-sen~er Model

26 Vvl. .? Nr). 4 1:iiIl 1991 Digital Tecbnical Journrrl

X Window Ternzinals

An X client and an X server use an X wire to
communicate, as shown in Figure 2. The X wire
is simply a two-way error-free byte stream, which
can be implemented in many different ways. The
s Window System architecture does not stipu-
late how the x wire should be implemented, but
several de facto standards have emerged. Manu-
facturers have designed X wires usually based on
the data transport mechanisms that were available
and convenient when the X Window System was
implemented. The X wires use transmission control
protocol/internet protocol (TCWIP), DECnet, Local
Area Transport (LAT), and other protocols, and even
shared memory buffers as a transport to avoid
protocol overhead. A single implementation often
supports several transport mechanisms.

The X server typically executes on a processor
with tlisplay hardware. The X client can execute on
almost any processor. It may execute on the same

Figure 2 X Wires

X CLIENT

TRADITIONAL
WORKSTATION
I I

I APPLICATION 1

X CLIENT

GRAPHICS
LIBRARY

X CLIENT

X CLIENT

DISPLAY HARDWARE

X WIRES

X CLIENT

CPU as the X server, or it may execute on a host,
another workstation, or a compute server. The
x server can be connected to several X clients
sin~ultaneously, with any combination of local
(running on the same CPU) or remote (running on
another CPU) X clients. The X server treats local ancl
remote clients equally.

X SERVER

Workstation Environment
Figure 3 compares a traditional non-X windowing
workstation with an X windowing workstation. In
both workstations the application must use a
graphics library to communicate with the display
hardware and software.

In an X windowing client environment, the
library of routines is called Nib. An application
designer can choose from a wide variety of toolkits,
which are essentially a level of additional library
routines between the application and Xlib. The use
of a toolkit can signifxantly reduce the amount
of work an application programmer has to do. The
application software, Nib, optional toolkit, and
other libraries compose the X client, as shown in
Figure 4.

With few exceptions, the X server comes with
the display hardware and input devices (keyboartl
and pointer) indicated in Figure 5.

The X Window System with its flexibility neatly
solves the problems of CPU power and disk space
versus display availability. Applications written for
X can execute on a wide variety of computers, and
the results can be displayed on any of a multitude
of devices, even on a workstation that would not

X WINDOWING
WORKSTATION
I 1

APPLICATION -1
1 X WIRE I

DISPLAY HARDWARE 1 - 1

Figure 3 Inside the Workstation

Digilnl Tecbnicnl Joztptrnl Vol. .? No. 4 Full 1991 27

Image Processing, Video Wrminals, and Printer Technologies

APPLICATKW

OmlONAL TOOLKIT
AND O M R LlBRAFllES

Figure 4 7 ' h X Client

INPUT HARDWARE

Figure 5 The X Server

have the capacity to run the application locally,
Figure 6 shows how the X W i d o w System fits into
a network environment.

The X Window System has already generated
many useful applicaclons, and its widespread popu-
larity ensures that many more applications will be
made available in the future.

Need for X Terminals
In a study to determine how workstations arc used,
thc VIPs Group found that many users did not take
advantage of the full potential of their work-

NETWORK
INTERFACE

stations. In a software development or document
editing environment, the users often set up their
workstations as terminals. They usually created a
few terminal emulation windows and u.xd SET
HOST or RLOGlN commands to connect fo a host
system on which they stored their working envi-
ronment and filcs. Only two features czf a work-
station were frequently used. Users kept several
terminal emul;~tors on tlieir screens at the same
time, and set the terminal emulator windows to be
larger than 80 by 24 characters. Only rarely did the
average workstation uscr take advantage of the fill1
power of graphics applications.

The results of our s t ~ ~ d y indicated a need for
a cost-effcctivc altcrn;~tive to a workstation that
would provide the features desired by a large num-
ber of users. We envisioned a new kind of termi-
nal, one that would allow people to have multiple
windows of arbitrary size, to connect with mul-
tiple hosts, and, since the X architecture allowed it,
to be able to use the same kind of graphics as a
workstation.

From an X architecture standpoint, X terminals
and X workstations are quite similar. They can in
fact use the same hardware. For example, Digital's
VT1300 terminal runs on the same hardware *as the
VAXstation 3100 workstation. X terminal software
can also be made to run well on hardware plat-
forms that are not suitable for workstations.

HOST CPU 1 HOST CPU 2

X CLIENT X CLIENT X CLIENT

NETWORK INTERFACE P-9
ETHERNET

I
X WINDOWING WORKSTATION

INTERFACE

X SERVER I

Figure 6 X Window Network Environment

28 Vo1. .3 No 4 lull 1991 Digital Techtricnl Journrrl

X Window Terminals

The main architectural difference between
the X terminal and X workstation software is that
X terminals are closed systems that do not sup-
port local user applications. Although this may
seem to be an unnecessary restriction, it does allow
X terminals to be made for less money. An open sys-
tem that allows any user application to run locally
must have an established CPU architecture, a sup-
ported operating system, such as the VMS, UNM,
or ULTRIX system, and, subsequently, sufficient
memory and/or disk space to support such an envi-
ronment. A closed system, on the other hand, can
be designed with simpler hardware, a smaller oper-
ating system, less memory, and thus lower cost.
The absence of the ability to run user applications
locally does not impact usability significantly since
the user can run any desired application on another
CPU. Digital's VTlOOO and VT1200 X terminals were
designed based on this approach.

X Terminal Environment
x terminals often have local applications, but they
must be built into the terminal by the designers.
The W1200 terminal has a video terminal emulator
(VTE), a window manager, and a terminal manager
as the local applications. The WE allows the VT1200
terminal to make American National Standards
Institute (ANSI) character-cell connections to a

host, via the Ethernet or the serial lines as shown
in Figure 7. This capability makes the W1200 ter-
minal useful in an environment that does not have
X window support.

Although any X server can run windows soft-
ware, it does not provide a user interface. To manip-
ulate the windows, the user needs a window
manager. The window manager creates window
frames that allow the user to invoke functions to
move windows, resize windows, change stacking
order, and use icons. This capability also makes the
vT1200 terminal useful when no host is available to
run a remote window manager. A terminal with a
local window manager generates less network
traffic, and window management is not slowed
by host congestion or network round-trip delays.
The VT1200 X terminal allows use of a remote win-
dow manager, if the user prefers a different style of
window management.

The local terminal manager provides the user
interface to initiate connections to host systems.
It is also responsible for the terminal customization
interface.

All clients communicate with the X server using
standard X wire commands only. Any window man-
ager, remote or local, can manage all the windows
on the screen, regardless of whether the clients are
remote or local.

HOST CPU 1 HOST CPU 2

X CLIENT '7 APPLICATION APPLICATION X CLIENT '717
I I I

NETWORK INTERFACE

ETHERNET

I
VT1200 X TERMINAL

:F;;L 7 1 1 1 hDyw 1 1
EML,ATOR MAhAGER MAhAGER

I I I I

X SERVER

Figure 7 The X Teminnl Environment

Digital Technical Journal 1/01. 3 A'o. 4 Fall 1991 29

Image Processing, Video Terminals, and Printer Technologies

Development of X Win& Tem'nals
The development process of the VTlOOO and
VT1200 X terminals has important lessons to teach
us. The knowledge we gained in 1987 has helped us
develop future generations of X terminals.

When we designed the VTlOOO X terminal and
its code upgrade, the VT1200, we held many discus-
sions within the group and with people from other
groups. We planned many iterations before we
arrived at the findl architecture. It was by no means
the only way to design an X terminal, and in 1989
we tried a different approach with the design of the
vT1300 terminal. We knew that the best decision at
a particular time might be very different from the
best decision one year later, since the technical and
marketing environment is constantly changing.
New tools, standards, and practices enter the field
while others become obsolete. Newer products
must always have new features to meet changing
technology requirements.

Hardware Platform

col withoiit some compression of the wire protocol
itself. We had to build Digital's first X terminal with
an Ethernet interface.

We needed to clctcrmine if this thisdrhu-e platform
could give us sufficient performance. We made sev-
eral performance estimates, based on what we
knew then about the X server and other software
components. We went through each step in as much
detail as we could (before anything was built). We
calculated how many instructions were necessary
to perform each task in the chain of receiving a
comm;ind and displaying it on the screen. By know-
ing the speed of the CPU, we could estimate per-
formance in characters or vectors per second.
Our estimates showed that the VTl000 X terminal
would not be exceedingly fast, but the perfor-
mance would most probably be sufficient, defi-
nitely faster than a VkVstation 2000 in most cases.

In retrospect, acttial performance of the VTlOOO
terminal and the later software upgrade, the
VT1200, was close to our estimates, but i t took srv-
era1 passes of code optimization to achieve such
~erformance.

Our first step was to discuss the hardware plat- a

We also discussed alternate hardware designs
form and select the kind of CpU '0 use, memory for performance improvements, One solution pro.
size, I/O considerations, type of display, etc. We posed two cpUs, the ~ ~ ~ 3 4 0 1 0 m~croprocessor to
studied many different CPUs to determine which handle the display and a 68000 microprocessor to
One woul'l provide the capabi1ities for the handle I/O and other tasks. Unfortunately, we fount1
lowest cost. A VAX chip was rejected because, at the no easy way to balance the workload between the
time, i t was far too expensive for the required price two CPUs, We estimated that tile different software
range of the VTlOOO terminal. The Motorola 68000 components would have the following relative CPU
series CPUs are quite powerful, but we had to con- demands:
sider other factors such as availability of software
and hardware tools, cross compilers and linkers
that could run on the VMS system, and hartlware
clebi~gging facilities of sufficient power. We finally
selected Texas Instruments' ~l\l~34010 micro-
processor with video support and sevcral built-in
graphics instructions that made it a cost-cffcctive
solution. It also came with VMS developnlcnt tools,
a C con~piler, an assembler and linker, a single-step,
hartlware trace buffer with disassembler, and a
powerful in-circuit emulator that made it possible
to control execution in detail, inspect registers and
memory, and set break points and hardware watch
points (for example, break when writing value x
into 1ocation;y).

We further discussetl the kind of I/O to use. A
sample implementation of the MIT X server on a
VAXstation 2000 workstation and a primitive serial
line protocol showed, as expected, that serial lines
were clearly insufficient to carry the X wire yroto-

Interrupts, 5 percent

Communications, 10 percent

Operating system, 5 percent

x server (minus display routines), 60 percent

Display routines, 20 percent

To equalize the load between the CIJUs, we woultl
11;1vc liatl to split the X server in two, a solution that
was not feasible. Any other split of tasks would
cause one Cf'U to spend most of its time waiting
for the other, and the overall performance gain
would be minimal. Communication between mul-
tiple CPL:s is complex and is very difficult to debug.
Therefore, we decided that two CPUs were not
worth the trouble or the cost. The best way to
tlouble pcsforniance is to install a single CPU that
is twice as fast. At that time, the ~ ~ ~ 3 4 0 2 0 was

3 0 Vo1. .3 No 4 Full 1991 Digital TecbwicalJournnl

X Window Erminnls

already being mentioned as a follow-up micro-
processor. Since its software would be compatible
with the ~ ~ ~ 3 4 0 1 0 , we decided to keep it in mind
for possible use in a future terminal.

Code Selection
The use of read-only memory (K0M)based code
versus downloaded code has been debated for
some time. ROM-based code starts up faster and
incurs less network traffic at startup time (espe-
cially on a site with many X terminals), but is not
flexible when software is upgraded. On the other
hand, downloaded code can be easily distributed.
An entire site can be upgraded with one or a few
installations by a system manager as opposed to
changing ROMs in a large number of terminals.
w i t h the VT1200 X terminal, customers can change
ROM boards.) From the point of view of terminal
business, it made sense to use ROM-based code in
198% We reasoned that not all sites would have
Ethernet, but with ROMs the X terminal would
still be usefill as a multiwindow terminal emula-
tor. We realized that such concerns would change
with time, and on the whole, downloaded code
would become the better approach. The only
exceptions would be in the home or small office
markets where a boot host or an Ethernet might not
be available. Subsequent X terminals are being
made in both downloaded (for example, in the
VTUOO terminal) and ROM versions.

Operating System Selection
Next we considered which operating system to
use. We looked at other vendors' operating sys-
tems, but found they were either too complex and
big or inadequate. One of our coworkers hacl writ-
ten a very compact operating system for a VAX
system used on another project. We used i t in our
prototype and then adapted it for the TMS34010
processor. We implemented additional functions
to run the rest of the software with minimum
changes.

There are many advantages to working with
"your own" operating system. It is easy to make
changes, to work around tricky problems, and to
make special enhancements. Rut operating system
code is difficult to debug. Timing is very critical,
and throughout the project, we found strange bugs
in code that had initially appeared to be all right
to everyone involved. We found bugs under heavy
load conditions after a rare sequence of events

uncovered little timing windows and race condi-
tions that had not been handled properly. Even
with in-circuit emulators, such bugs could take
weeks to track down.

In the VT1300 we decided to use the VAXELN
operating system. We wanted to avoid the possibil-
ity of time wasted on finding and patching holes in
the design of a new operating system.

Local Terminal Manager
The VTlOOO X terminal is self-starting at power-up,
but without a host system, it needs a local user
interface. We decided that this interface should
resemble a workstation session manager and thus
called it the local terminal manager. Although it
covers a different set of functions, we wanted the
local terminal manager to implement a similar set of
objects and operations (the "look and feel" or style)
of a workstation session manager. The style of the
DECwindows session manager was chosen to make
it easier for a user to switch between an x terminal
and a DECwindows workstation. We wrote a subset
toolkit for all the "customize" screens and ensured
that the VTE could use the same subset toolkit for
its "customize" screens. As DECwindows has pro-
gressed, subsequent X terminals have adapted the
new user interface preferences, in this case Motif.

Local Terminal Emulator
We considered a local terminal emulator to be an
important component. We knew that X-based ter-
minal emulators could run on the host, but in 1987
hosts with X windowing support were rare. Since
we were in the terminal group, a terminal that
could not manipulate ordinary text by itself was
considered unsellable. We wanted the ability to
access both X and non-X hosts and we wanted
to support multiple text windows. Therefore we
defined the terminal emulator as an X client so that
text windows could coexist with X client windows.
This feature has proved to be exceptionally popu-
lar. A large number of users use nothing but video
terminal emulator windows. They are not inter-
ested in X windowing graphics, but do want mul-
tiple and/or larger text windows on a large screen.

Local Window Manager
We debated whether or not to implement a local
window manager. The DECwindows window man-
ager was under developn~ent and was constantly
changing. The DECwindows window manager

Digital Tecbnical Jozcrnal Vd. 3 IVo. 4 Fall 1991 31

Image Processing, Video Terminals, and Printer Tech

contained far too many VMS dependencies to be
ported easily. Aiso the X terminal did not have
enough memory to run the DECwindows toolkit
locally We could have ported other window man-
agers, but they lacked the essential characteristics
of the DECwindows window manager. For a while
we considered letting the local clients have a primi-
tive way to manage their own windows, until a full-
featured window manager could be started on a
host. Again, this alternative lacked tl-le DECwindows
system's qualities. We eventually decided to write
a window manager based only on Xlib and our
subset toolkit calls. It has the essential characteris-
tics of the DECwindows product. Also, since the
DECwindows window manager of necessity would
keep changing, we wrote the local window man-
ager in such a way that it could relinquish control
to a remote window manager. This solution gave us
the most flexibility for this hardware platform. The
recently announced VXT 2000 X terminal has been
designed with virtual memory to accommodate a
well-established unmodified window manager, the
Motif Window Manager.

X Server
We also needed to choose an X server. We could
have based our code on the distribution tape from
MIT, but at the time the X Window System was not
yet a manire product. Every implementor had to
spend considerable time stabilizing the implemen-
tation enough to yield a product and improve per-
formance. Since the VMS DECwindows Group had
been writing code for the server, we decided to use
DECwindows code. Once the porting effort started,
we found that most of the performance had been
improved by VAx MACRO code. Consequently, we
had to re-engineer all the modules or adapt new
ones from the MiT tape. As we kept porting and
enhancing performance, our code changed more
and more until it became extremely difficult to
track bug fixes made by the DECwindows Group.
The MlT patches were also nearly impossible to use
because of code changes and because our starting
code was one step removed from the tape.

Today the MIT X server is a mature product;
patches and bug k e s are readily avalable from
MIT and from the x community. In our current
X terminals, the high degree of portability of the
MIT X server allows us to keep most of the M11'
X server source code almost unchanged so patches
are easily applied.

Communicalions Pr-otocol
Many commi~nications protocols were available,
but our choice was dictated by market pressures
rather than technical reasons. The market demanded
TCP/IP. DECnet would have been acceptable, but
i t was running out of available addresses, at least
within Digital. DECnet atldress space supports
only 64,000 nodes and requires manual acldress
ant1 namc ;issignments. After waiting weeks to get
addresses for a few workstations, we realized that
adding thousands of X terminals into Digital's inter-
nal network woultl not be possible. DECriet Phase \'
software hiis solved this problem.

Next we looked at the LAT protocol used by
Digital terminal servers and found that it had sev-
eral advantiiges. First, thc VMS operating system
supports the LAT protocol. WT uses unique 48-bit
Ethernet addresses to identlfy each node, which
allows a large node address space. LAT also does not
require any system management to add another ter-
minal. A user can connect a terminal to a power
source, and the terminal autonlatically becomes
part of the network. Our performance evaluations
found that the LAT interface on the host could be
written to incur less host overhead than DECnet,
which is important when many X terminals are con-
nected to hosts.

Changes were needed in the VMS L4T driver to
accommodate X wire and font service connections.
The VkiS Software Engineering Group worketl with
us to ensure that we would have those changes
on schedule and in the appropriate VMS releases.
As a result, we chose the LAT protocol for the VMS
community and TCP/IP for users of ULTRIX and UNIX

systems.

Font File Systm
Storing fonts and changing font file formats were
major problems. Since the VTlOOO X terminal did
not have a local file system, some fonts had to be
stored in ROM to allow the VTlOOO terminal to hnc -
tion in standalone mode. A quick review of the
available DECwindows fonts showed that not all of
them fit in the ROM space allowecl for the terminal.
Furthermore, customer-designed fonts or new font
releases coultl not be accommodated. The solution
was to be able to read fonts from a host system.
This approach provided a font service on the VMS

system, and enabled font files to be read over the
Internet. Wc designctl a process called the font dae-
mon to run on the VhqS operating system. This pro-

3 2 Vol. .$ iVo. 4 I~ulll99I Digital Technical Jout-tin1

X Window Terminals

cess could deliver font data on request to one or
several VTlOOO terminals. The VMS system's font
daemon uses the LAT protocol to deliver the fonts
and protects somewhat against font file format
changes. In many ways, the design of the font
daemon makes it a precursor to a general font
server, and i t is very similar to the X Font Server
being delivered by MIT in the latest release of the
X Window System.

To use the font service, the terminal user must
speclfy a font path in the VT1200 local terminal
manager. Specifying a host name is sufficient to
access the default font path, although users with
their own font files can optionally search other
directories. At startup, the VT1200 terminal makes a
font connection to the host's font service and deliv-
ers the font path specification to the font service.
The font service sends font names and other basic
font information about all the fonts in the selected
path. When the VT1200 X server needs a font, the
VT1200 first searches the ROM-based fonts; if it is
not there, a request to read the font is sent to the
font daemon. The daemon sends the required infor-
mation to the VT1200, and the X server can display
characters from that font. Since memory is limited,
the VT1200 has font caching, a mechanism to dis-
card fonts no longer used or to discard the least
used fonts. Our current X terminals increase the
robustness of the font mechanism; for example,
they provide recovery should the font service or its
host become unavailable.

The special LAT code that we used on VMS sys-
tems for the font service was not available on
UNIX and ULTRIX operating systems. Since inter-
net protocol (IP) was available, we could use the
trivial file transfer protocol (TFTP) to read a file
from a host system, if the system manager set the
proper protections. We chose TFTP for its ease
of implementation and its wide availability on
UNIX and ULTRIX systems. The TFTP font path in a
VT1200 terminal specifies a host rr address and a
complete path to a file (usually named font.paths)
that contains the complete path to all the font
files that the VT1200 can use. The terminal can
then access all those font files, again through TFTP,
to obtain font names and other basic information
about each font When a client wishes to use a font,
the proper font file can be read again, this time to
load the complete font. Since this process is time-
consuming, the font path pointing to the file has
an alternate format in which the font name fol-
lows the complete path to each file Using this alter-

nate format, the VT1200 terminal does not have to
open and read the font file until a client actually
intends to use it.

Comparison of X Terminals
The VT1200 and VT1300 X window terminals
were built using different approaches to solve
the problems encountered during development.
The X terminal is a new and flexible concept; there
is no single "best" design. Table 1 compares the
most important differences between tlie two termi-
nals. We also include the specifics for the VXT 2000
X terminal.

The VT1200 is ROM-based; all its software is per-
manently resident in the terminal. The VT1300 soft-
ware is downloaded, so a host or bootserver on the
same network must supply the terminal with a load
image at power-up.

Since downloaded terminals are dependent on
the existence of at least one working host system,
the user interface can be designed differently.
While the VT1200 X terminal has a built-in user
interface, the VT1300 does not need it. The VT1300
terminal automatically makes an X connection to a
host at power-up, and the user is presented with
the same DECwindows login box as on a work-
station. The VT1300 has no local clients; all clients
run on the host system.

The VT1200 terminal uses the LAT protocol for
its ease of use and minimal network management
demands. The VT13OO terminal uses the DECnet
software already implemented in the VAXELN oper-
ating system used internally. Both terminals sup-
port TCP/IP.

One problem that has plagued all X terminals is
limited memory space. Workstations usually have a
virtual memory systern, which provides large pag-
ing and swap areas on a disk, and applications
and x servers can use more memory space than
the hardware has. Until now X terminals have not
had virtual memory systems. If too many applica-
tions made excessive demands, or if a client created
large off-screen images (called "pixmaps" in the
X Window System) the terminals quickly used all
memory space. If the X server implementation
was correct, an error was reported and a client
might try a less demanding approach. In other
cases, the terminal or client might simply crash.
One alternative was to install more memory in the

Digital Technical Journal Vo1.3 No. 4 Fall 1991 33

Image Processing, Video Terminals, and Printer Technologies

Table 1 Comparison of X Window Terminals

VT1200 Terminal VT1300 Terminal VXT 2000 Terminal

Monochrome only

1 bit plane

Code in ROM

No virtual memory
2-4MB RAM

TMS34010 CPU

Special operating system

Local clients:
Terminal manager
Window manager
Video terminal emulator

Local customization

Choice of host (LAT only)

LAT protocol

TCPII P protocol

Color only

4 or 8 bit planes

Code downloaded
No virtual memory

8-32MB RAM

VAX CPU
VAXELN operating system

No local clients

Customized on host
just as a workstation

Automatic X window
login to boot host

DECnet protocol

TCP/I P protocol

Monochrome and color

1 or 8 bit planes

Code downloaded
Virtual memory
4-16MB RAM

VAX CPU

Special operating system
Local clients:
Terminal manager
Motif window manager
DECterm terminal emulator

Local customization
Centralized customization

Choice of host
(LAT and TCPIIP using XDMCP)

LAT protocol

TCP/IP protocol
Special hardware Available on several Uses standard hardware

workstation platforms

X terminal, although this can be costly and offers no
guarantees.

In the next generation of Digital's X terminals,
the VXT 2000, this problem has found a cost-
effective solution. Based on the ViLv ;~rchitecture,
the VXT 2000 terminal uses virtual memory and
downloaded code. The Digital InfoScrver, an
Ethernet storage server, provides the load image,
virtual memory paging space, fonts, ant1 customiza-
tion storage. The same Infoserver also solves
another problem: now the X terminal has access to
a file system. This allows more extensive customi-
zation, as well as centralized management of the

customization of all X' terminals on the network.
Figure 8 shows the configuration for the VXT 2000
X terminal.

Conclusion
X terminals are not intended to replace work-
stations. Nor will workstations replace host sys-
tems or completely displace X terminals in the
foresee;ible future. It is likely that Ilost computers
will always be faster and have more memory and
disk space than reasonably priced workstations
of the same era. It is also likely that terminals can
be built cheaper than workstations of reasonable

Figure S The lrXT 2000 Netzuork? En.i/ir.onment

HOST

34 Wl. .3 No. 4 FLIII 1991 Digital Technical Jozcmrnl

HOST

ETHERNET

VXT 2000
X TERMINAL

VXT 2000
X TERMINAL INFOSERVER VXT 2000

X TERMINAL

X Window Terminals

performance for some time to come. As long as that
is the case, there will be a market for X terminals
and host systems. Future X terminals will be faster,
and have more built-in functionality, more local
applications, X extensions, and most likely, addi-
tional hardware features. X terminals will be the
networked terminals of the 1990s.

Acknatvledgments
We wish to thank the members of the vT1200 devel-
opment team who worked many long hours on this
project. Thanks to everyone inside and outside
the Video, Image and Print Systems Group who
contributed helpful suggestions, constructive criti-
cism, and important hours using and testing the
products. Thanks to the LAT and Ws Software
Engineering Groups for incorporating the changes
needed for the VT1200 X terminal to be useful.
Thanks to the VIPs Quality Group for ensuring that
as few bugs as possible remained in the product
when shipped.

Digital Techtaical Jocrrttal Vo1. 3 Aio. 4 f i l l 1991 3 5

Peter A. Sicbel I

ACCESS.bus, an Open Desktop Bus

With the recent introduction of the ACCESS.6us product, Digital has aflmzed its
commitment to open systems and thus to facilitating 6ett~r solutions for inter-
active computing. This open desktop busproi~ides a simple, ~l~ziform way to link
a desktop computer to as many CIS 14 low-speed I/O devices ssuh as a keyboard,
mouse, tablet, or three-di~nensional tracker: ACCESS.bus features a 100-kilobit-per-
second maximum data rate, hardware arbitration, dynamic reconJguration, n
mature capabilities grammar to s~ipport generic device drivers, and ofJ-the-she&
loz~cost 12C nzicrocontroller technology.

As the cost of personal interactive computing
decreases, the range of applications ant1 the need
for specialized I/O clevices is growing dramatically.
Traditional personal computers were designed to
accept only a small number of standard devices;
adding devices beyond those originally envisioned
usually requires specialized hardware or software.
Custom interfacing is expensive for ventlors and
users ancl thus limits the availability of new devices.

 ACCESS.^^^ provides a simple, uniform way to
link a desktop computer to a number of low-speed
I/O devices such as a keyboard, a mouse, a tablet, or
a three-dimensional (3-D) tracker. Designed from
the beginning as an open desktop bus, A<.:<:ESS.bus
facilitates cooperative solutions using ecluipment
from different vendors. This paper describes the
 ACCESS.^^^ design and gives some insight into how
the idea was adopted at Digital.

Design Goal, Process, and Advantages
The design goal for the desktop bus follows from
our experience within the Vicleo, Image ant1 Print
Systems (VIPs) Input Device Group with trying to
support new devices on Digital terminals and
workstations. While various new devices have been
successfully prototyped over the years, the need
for nonstandard hardware and custom software
clrivers was always an expensive, time-consuming
obstacle. Even after successfi~l prototyping, these
devices could not be readily adapted to our stan-
dard systems, limiting their use to custom applica-
tions. In designing the desktop bus, our goal was to
make it as easy as possible to interface previously
unavailable I/O devices to our systems in a way
that was both practical and marketable. This sec-
tion explains the benefits of using a desktop bus,

describes the process we went through to convert
to a new bus architecture, and summarizes the key
advantages of the chosen design.

The basic desktop bus concept is illustrated in
Figure 1. The bus allows multiple, low-speed I/O
clevices to be interconnected and thus interfaced
through a single host port. Desktop bus devices
such as a keyboard or a tablet, which are not hand-
held, provide two connectors and allow another
device to be daisychained. A hand-held device
such as a mouse can be placed at the end of the
daisychain, or a connector expansion box can be
attached to accommoclate additional devices that
do not provide two connectors.

F i e 1 Hnsic Desktop Bus

HOST

36 NJ/. 3 No. 4 Fall 1991 Digital Technical Journal

PRINTER

TRACKBALL KEYBOARD TABLET

CONNECTOR
EXPANSION
BOX

MOUSE

JOYSTICK

JOYSTICK ~~~~~E
WAND -

ACCESS.Dzls, UIZ Open Deskto) Bus

The desktop bus has the following benefits:

Enables greater flexibility and variety of use

Reduces the cost of connecting multiple devices

Expedites bringing new technology to market

Helps leverage third-party devices

The first benefit, greater flexibility, can be simply
achieved by allowing additional devices and more
modular solutions. We further extended this bene-
fit by designing a way for devices to be added at run
time without disrupting system operation. Con-
figuration should be automatic; connecting stan-
dard devices should not require powering down or
rebooting the system before a new device can be
used. The desktop bus supports multiple like
devices without switches or jumpers.

The second benefit, reducecl cost, was crucial to
having the bus accepted as a solution across a wide
range of protlucts from low-end video terminals
to high-end workstations. We recognized that con-
temporary electrical techniques could eliminate
the need for level translation circuits, -12 volt (V)

power supplies, and perhaps some of the protec-
tive components used with RS-232 interfacing.
Although many devices would now require two
connectors, system cost woulcl decrease because
we would need to supply only as many connectors
as the number of devices to be attached, or possibly
one more.

The third benefit, expediting the time to market
for new technology, allonls us to better satisfy
changing requirements. Key to this benefit is hav-
ing the means to connect new clevices without
changing the system hardware or software. Based
on our experience with input devices, we devel-
oped the concept of device capability reporting
and generic device protocols. Standard devices
like keyboards and locators, e.g., mice, tablets, and
trackballs, all work in similar ways. For this class
of device, we define a simple device protocol and
a way to parameterize and report device unique
characteristics. A single generic driver can adapt
itself to work with a class of similar devices so
that no custom software is required for basic opera-
tion of standard devices.

Leveraging third-party devices, the fourth
benefit, is aimed at satisfying diverse customer
requirements. Because the use of computers con-
tinues to proliferate, the r;lngc of applications far
exceeds that which any one vendor can master.

By making the bus truly open, we encourage third
parties to add value to our systems.

The benefits of a desktop bus are significant. But
converting to a new architecture, especially one
that is not backward compatible, is expensive in
terms of the time and effort required. How does a
large corporation build agreement to make such
an investment decision? The desktop bus project
started as a grass roots engineering effort and grad-
ually built momentum. The process was one of
dialogue to attract partners. Initially, three groups
with slightly different objectives worked together
to develop the bus. The visibility of separate groups
jointly supporting the bus concept was essential to
transform the idea into action. People are more
willing to accept an idea that others around them
have already adopted.

The three groups that initiated the desktop
bus project were our VIPs Input Device Group in
Westford, MA, rnentionetl previously; the Work-
station Systems Engineering (WSE) Group, located
in Palo Alto, CA; and the Video Advancetl Develop-
ment (A/D) Group in Albuquerque, NM. Our Input
Device Group was looking for ways to simplify the
process of prototyping specialized input clevices
and of getting related software support for our
video terminals and workstations. WSE was devel-
oping a low-cost, personal workstation and needed
a flexible way to support multiple input clevices
without greatly increasing the cost of the base
workstation. The Albuquerque A/D Group had been
experimenting with next generation I/O devices,
i.e., force-feedback joystick, 3-D tracker, and real-
time audio and video, and was interested in having
these technologies adopted by other Digital groups.
This A/D Group had used 12C technology success-
fully in one of its previous video projects.

In January of 1990, engineers from each group
realized they were working on similar problems
and began to collaborate. The wSE Group was to
build the desktop bus host interface and software
drivers into their workstation; the Wps Group was
to help define the device protocols and supply
desktop bus keyboards and mice; ant1 the Albu-
querque A/D Group was to support bus devel-
opment and prototype additional devices. Within
four months, WPS had clefined the basic protocols
and could demonstrate a working IZC keyboard
and mouse. These early prototypes helped per-
suade WSE to support the project and, in turn,
helped reinforce the importance of the project to
the VIPs Group.

Digital Technical Joztrnal b1.3 No. 4 Full 1991 37

Image Processing, Video Terminals, and Printer Technologies

We began presenting the desktop bus idea to
interested groups within Digital and received many
useful suggestions includilig

Use the same keycodes as on the LK201 keyboard
to eliminate the need to rewrite keyboard
lookup tables.

Store the country keyboard variation inside
the keyboard so users will not need to entcr it
manually.

Keep the devices simple, without modes.

In addition, third-party input device vendors
made the follonring suggestions.

Use a modular connector that is easy to plug and
unplug correctly.

Provide enough power for several additional
devices.

Allow vendors to supply their own device
drivers; tuning their own device drivcrs is part
of the value added by thc vendor.

The bus idea was elegant and generally well
received. Most of the reservations centered around
the likely impact on existing system components,
the current problems, and whether conversion to
the bus was feasible. Because we recognized that
other groups were facing tight dcvclopmcnt sched-
ules, wc did not pressure these groups to support
our desktop bus work. We prescntetl the desktop
bus as a possible solution to interfice problems,
made our dcsign information available, and worked
to incorporate suggestions. But as the development
work progressed, more partners supported our
effort.

Once we decided to use a tlcsktop bus, we
looked at available designs, including the Apple
DeskTop Bus, the Musical Instrument Digital
Interface (MIDI), and serial buses offered by other
semiconductor vendors, and evaluated these alter-
natives with respect to our design goal. Keya '1 d van-
tagcs of the design chosen, i.e., the ACCESS.^^^, are

Off-the-shelf interintegrated circuit (12C) micro-
controller technology with maximum data rate
of 100 kilobits per second (kb/s). This technol-
ogy is low-cost, yet fast enough for sophisticated
input deviccs like a 3-D tracker.

Built-in hardware arbitration. which simplifies
the software and allows reliable communication
without inventing a new protocol.

Dynamic reconfiguration. The hardware and
software allow bus devices to be "hot-plugged"
and used immediately, without restarting the
system. The devices are recognized automati-
cally and assigned unique addresses. l'his advan-
tage results in a plug-and-play user interface.

A mature capabilities grammar to support generic
device drivers. An extensible free-form grammar
allows devices to describe their characteristics
to a generic driver. Most common devices can
work with standard drivers.

Bus or network interconnection has become
widely accepted as a means of providing flexible
open sol~~tions. To appreciate ~cc~SS .bus , it is help
ful to position its performance capabilities with
respect to those of other network interconnect
technologies, as shown in Table 1.

Table 1 Network Interconnects

Bus Type

Order of Magnitude
Performance
(kilobits per second)

Apple DeskTop Bus,
ACCESS.bus
LocalTalk
Ethernet
FDDl

At first glance, the 100-kb/s speed of the
ACCESS.bus may seem adequate for large desktop
devices like printers and modems. Rut these
devices can transmit long data streams indepen-
dent of any user activity and, if not restricted, could
compromise the interactive performance of the
bus. Thus, ~ c c ~ S s . b u s is intended for low-speed
activities that people perform with their hands
and is fast enough to handle multiple interactive
devices like a keyboard, mouse, or 3-D tracker.

Hardzuare Description
Before discussing the AcCESS.bus design, we pre-
sent a description of the Philips 12C technology
upon which the design is based. Details of the
specific ACCESS.^^^ implementation follow.

Interintegmted Circtlit Fundamentals
ACCESS.bus extends the Philips ILC bus to operate
off-board and, thus, connect desktop devices. The
I'C is a two-wire serial clock and serial data

38 1/01, .J IVO. 4 Fd111 1991 Digital Technical Journal

ACCESS.bus, a n Open Desktop Bus

open-collector bus. An open-collector design means
that the clock and data lines are normally in a high-
impedance floating state and are pulled up to a log-
ical high state.

A device that wants to send a message waits for
any message frame in progress to complete, then
asserts a START signal to become bus master and
begins to generate data and clock signals. The bus
clock is synchronized among all devices by its
wired AND connection. Each device, whether
transmitting or receiving, stretches the low period
of the clock until ready for the next bit to be trans-
ferred. When the last device is ready, the bus clock
is allowed to go high, generating a rising edge on
the serial clock. At this time, all active devices
sense the state of the bus data line. For a receiving
device, the state represents the received data bit.
For a transmitting device, the state determines
whether the device has successfully asserted its
data on the bus. A transmitter that is sending a logi-
cal high state and detects that the data line is being
held low by another sender, recognizes that it has
lost arbitration and must try again later. When a
"collision" or arbitration occurs, no data is lost, one
message is transmitted and received, and the
remaining messages must be sent again.

12C data messages are transmitted as 8-bit bytes,
with each byte being acknowledged by a ninth
ACKNOWLEDGE bit from the receiver. 12C technol-
ogy also defines unique START and STOP signals to
delimit message frames. The first byte of any mes-
sage frame is always the destination address.

ACCESS. bus Pbysical Implmentat ion
Details of the physical implementation of ACCESS.bus
are as follows:

Basic electrical configuration. ACCESS.bus uses
four-pin, shielded, modular-type connectors that
feature positive orientation and locking tabs.
Data and power for the bus are transmitted over
low-capacitance, four-wire, shielded cable. The
four conductors are used for ground, serial data,
serial clock, and +12 v.

Available power. The maximum available power
for all devices is 12 V at 500 milliamperes (mA).
 ACCESS.^^^ devices may supply their own power
from a separate source, if needed. A power-up
reset circuit must still be provided to reset the
device when bus power is applied.

Cable length. The maximum cable length for
the entire bus is 8 meters. The limiting factor is a

maximum capacitance not to exceed 700 pico-
farads (pF).

Number of devices. The maximum number of
ACCESS.bus devices allowed on the bus is 14.
Limiting factors are the device addressing range
and the power distribution (a total of 500 mA for
all devices).

Hardware interfaces. ACCESS.bus hardware inter-
faces are implemented using standard 12C micro-
controllers developed by the Signetics Company
or under license from Philips Corporation. (Sig-
netics Company is a division of North American
Philips Corporation.)

ACCESS. bus Protocol
Every device on the bus is a microcontroller with
an 12C interface and behaves as either a master
transmitter or a slave receiver, exclusively, as
defined by the 12C Bus Specification.

Message Format
A message transmits information between a device
and the computer or between the computer and one
or more devices. There is one exception: a device
may attempt to reset other devices assigned to the
same address by sending a Reset message to itself.

ACCESS.bus messages have the following format:

Byte Bit Number
Number [1 2 3 4 5 6 7 8]

4 through [
(length + 3)

length + 4 [

destaddr 10] Destination
address

srcaddr 10] Source
address

length

body

checksum

1 Protocol
flag, length
(the number
of data bytes
from 0 to 127)

] Consists
of 0 to 127
data bytes

Initially, devices respond to a default power-up
address. During the configuration process, the com-
puter assigns a unique address to every device on
the bus. Messages are either device data stream
(P=O) or control/status (P=l) , as indicated by the

Digital Techirical Jourrial Vol. 3 1%. 4 Fall 1991

Image Processing, Video Terminals, and Printer Technologies

protocol flag. The minimum length of a message is
4 bytes; the maximum length is 131 bytes (127 data
bytes and 4 bytes for overhead). The message
checksum is computed as the logical XoR of all pre-
vious bytes, including the message address.

Standard Messages
The ~ c C ~ S s . b u s protocol defines the seven stan-
dard interface messages summarized in Table 2.
Parameters defined within the body of the message
are listed in parentheses.

Identzjication
Since the ACCESS.bus is a bus-topology network,
unique identification strings are used to distinguish
devices. These strings arc structured as follows:

unique address, and connect devices to the appropri-
ate software driver. Configuration normally occurs
at systcm start-up, or at any time when the com-
puter detects the addition or removal of a devicc.

Pou,er-up/Reset Phase
When reset or powerecl up, a device always reverts
to the default adrlrcss and sends an Attention
message to alert thc computer to its presence. At
system start-up or rrinitialization, the conlputer
sends a Reset message to all I?C addresses in the
ACCESS.bus device address range (14 messages) to
ensure that all devices on the bus respond at the
power-up default address.

Identzjication Phase

protocol revision: 1 byte (e.g., "A") To begin address assignment, the computer sends

module revision: 7 bytes (e.g., "X1.3 ") an Identification message at the device default

vendor name: 8 bytes (e.g., "DEC ") address. Every device at this address must then

module name: 8 bytes (e.g., "LK501 ") respond with an Identification Reply message. As

device number: 32-bit signed integer each device sends its message, the ILC arbitration
mechanism automatically separates the messages

The module revision, vendor name, and nodule
name strings are left-justified ASCII character
strings padded with spaces. The device number
string is a 32-bit two's complement signed integer
and may be either a random number (if negative) or
a unique serial number (if positive).

Configuration Process
The configuration process is used to detect what
devices are prescnt on the bus, assign each device a

, . -
based on the identification strings. The computer
can then assign an address to each device by includ-
ing the matching identification string in the Assign
Address message. When a device receives this mes-
sage and finds a complete match with the identifi-
cation string, it moves its device address to the new
assigned value. As soon as a device has a unique
address, it is allowed to send data to the computer.

The 12C physical bus protocol allows multiple
devices on the bus at the samr time if those devices

Table 2 Standard ACCESS.bus Protocol Messages

Computer-to-device Messages Purpose

Reset ()
ldentification Request ()

Assign Address (identification string,
new address)
Capabilities Request (offset)

Force device to power-up state and default 12C address.
Ask device for its "identification string."
Tell device with matching "identification string" to change its
address to "new address."
Ask device to send the fragment of its capabilities information
that starts at "offset."

Device-to-computer Messages
--

Attention (status) Inform computer that a device has finished its power-upheset
test and needs to be configured; "status" is the test result.

ldentification Reply (identification string) Reply to ldentification Request with device's unique
"identification string."

Capabilities Reply (offset, data fragment) Reply to Capabilities Request with "data fragment," a fragment
of the device's capabilities string; the computer uses "offset"
to reassemble fragments.

40 V i . .3 No. 4 FaLl lYW Digitul Technical Journal

ACCESS.Dus, an Open Desktop Bus

are transmitting exactly the same message. In the
rare event that two like devices report the same
random number or are mistakenly assigned to the
same address, each interactive device transmits a
Reset message to its assigned address prior to send-
ing its first data message after being assigned a new
address. The self-addressed Reset message forces
other devices at the same address back to the
power-up default address, as if they had just been
hot-plugged. The message guarantees that each
device has a unique address, but not until the
device is actually used. The pseudo-random number
(or serial number, if available) distinguishes devices
at identification time before they are used, allowing
the host to inventory which devices are present.

Capabilities Phase
Device capabilities is the set of information that
describes the functional characteristics of an
i\cc~ss.bus peripheral. The purpose of capabilities
information is to allow software to recognize and
use the features of bus devices without prior
knowledge of their particular implementation. By
having locator devices report their resolution, for
example, generic software can be written to sup-
port a range of device resolutions. Capabilities
information provides a level of device indepen-
dence and modularity.

The structure of capabilities information is
designed to be simple and compact for efficiency,
but also extensible to support new devices without
requiring changes to existing software or periph-
erals. These objectives are supported by making
the structure hierarchical and representing capabil-
ities information in a form that applications (and
humans) can use directly. The capabilities informa-
tion is an ASCII string constructed from a simple,
readable grammar. The grammar allows text strings
to be formed into lists, nested lists, and lists with
tagged elements. The capabilities string for a loca-
tor might read as follows:

(p r o t (1 o c a t o r)
t y p e (m o u s e)
b u t t o n s (1 (L) 2 (R) 3(M))

d i m (2) r e 1 r e s (2 0 0 i n c h) r a n g e (- 1 2 7 1 2 7)
d O (d n a m e (X))
d l (d n a r n e (Y))

1

After assigning a unique address to a device, the
computer retrieves the device's capabilities string
as a series of fragments using the Capabilities
Request and Capabilities Reply messages. The com-

puter then parses the capabilities string to choose
the appropriate application driver for the device.
The parsed string is also made available to applica-
tion programs using the device.

Normal Operation
During normal operation, the computer periodi-
cally requests inactive devices to identlfy them-
selves. If a device is found to be missing, or a new
device appears by sending an Attention message at
the default address, the computer sends an Identi-
fication Request message to each device address
previously recorded as in use (up to 14 messages) to
confirm which devices are still present. The com-
puter also sends a Reset message to each device
address previously recorded as not in use. The com-
puter then begins the address assignment process
by sending an Identification message to the default
address and assigning each device that responds to
an unused device address.

Generic Device Concepts
ACCESS.bus uses the concept of generic device
drivers to support familiar I/O devices using only a
few drivers. Generic specifications for keyboards,
locators, and text devices have been developed.

The keyboard device protocol attempts to define
the simplest set of functions from which a Digital
LK201 or a common personal computer keyboard
user interface can be built. A generic keyboard con-
sists of an array of key stations assigned numbers
between 8 and 255. When any key station transi-
tions between open and closed, the entire list of
key stations currently closed or depressed is trans-
mitted to the host. This reporting scheme is firnc-
tionally complete; the host can detect every key
transition, and the scheme provides information
about the full state of the keyboard on each report.
No special resynchronization reports are required.

In addition to reporting key stations, the generic
keyboard device can support simple feedback
mechanisms such as keyclicks, bells, and light-
emitting diodes. These mechanisms are controlled
explicitly from the host so that minimal keyboard
state modeling is required. The capabilities infor-
mation is used to identlfy the keyboard mapping
table and the feedback mechanisms available. The
keyboard mapping table can also be stored in the
keyboard itself as part of the capabilities string.

Digital Technical Jorrmal Vo1.j No. 4 Fall 1991 4 1

Image Processing, Video Terminals, and Printer Technologies

Locators
The locator device protocol is designed to accom-
modate a range of basic locator devices such as
a mouse or tablet. More complex devices cxn be
modeled as a combination of basic devices or can
provide their own device driver, thus minimizing
the burden on the protocol.

A generic locator consists of one or more dimen-
sions described by numeric values and, optionally,
a small number of key switches. The standard driver
requires the locator device to identify the type of
data it will report from a small list of options and
adjusts to handle this data type. These options are

Number of dimensions, e.g., two, for a mouse or
a tablet

r Dimension type: absolute, i.e., rcfercnced to
some b e d origin, like a tablet: or relative, i.e.,
changed since last report, like a mouse

Resolution in divisions per unit, e.g., counts per
inch or counts per revolution

Dynamic range of values that can be reported,
i.e., the minimum and maximum values

Number of key switches, from 0 to 15

The assignment of scalar-value dimensions
returned from one or more devices to the user
interface functions is left to the application. How-
ever, to accommodate most conventions. the scalar
dimensions and the key switches can be labeled in
the capabilities string.

Text Devices
The text device protocol is intended to provide a
simple way to transmit character tlata to and from
character devices such as a bar code reader or a
small character display. A generic text device tnns-
mits a stream of 8-bit bytes from a character set.
Simple control messages are defined to support
flow control and to select communication parame-
ters that might be used to interface with a modem.
The capabilities string contains information that
identdies the speciClc character set and communi-
cation parameters used.

Summary
Tlic ~ c c ~ s s . b u s network interconnect offers the
possibility of a standardized, low-speed, plug-and-
play berial communications channel that can untan-
gle peripheral interfacing and open the way to new

applications. As the advantages of this open desk-
top bus design become well known. we expect
wider adoption of this product. The I\<:<:ess.l~us
is currently implemented on Digital's Personal
DECstation 5000 workstation, with implementa-
tions underway for the next gcncrntion of RIsC
workslations and video terminals.

Acknowledgments
Many people contributed to the design and devel-
opment of ACCESS.bus. I would especially like to
acknowledge Tom Stockebrand and Tom Furlong
for their vision and early support; Chris Cued, Mark
Shepard, and Ernie Souliere for their contributions
to the ACCESS.bus electrical design and protocols;
and Robert Clemens for the excellent demonstra-
tion hardware and firmware development support.

General References

D. Lieberman, "Desktop Bus Is Born Free," Elec-
tronic Engineering Times (September 2, 1991): 16.

ACCES.bus Develol~er'.~ Kit (Palo Alto, CA: Digital
Equipment Corporation, Workstation Systems
Engineering TRI/ADD Program, 1991).

Signetics 12C Bus SpeciJication (Sunnyvale, CA:
Signetics Company, a Division of North American
Philips Corporation, Februa~y 1987).

42 Vol. .3 No. 4 I+!// 1391 Digi fa l Tecbrrical Journal

Richard Landau
Alan Guentber

Design of the DECprint
Common Printer Supervisor
for VMS Systems

DECprint Printing Services software controls a variety ofprinter features for a wide
range of printers. It supports several differentpage description languages, handles
multiple media simultaneously, and uses d i p e n t I/O interconnections and commu-
nication protocols. Operating within the I M S prznting environment, it imple-
ments a large number of user-specijied options to the PRINT command. DECprint
Printing Services functions as the szlpervisor in the W S printing system for. all
Postscriptprinters szlpplied by Digital. The common printer st~pervisor has an espe-
ciallyflem'ble internal structure and processing method to serve complex printing
environments.

The increasing variety and complexity of printing
devices in the last decade have strained the abili-
ties of operating systems to support them. Users
demand access to, and control over, the increas-
ingly sophisticated features of their printers. At the
same time, application programming resources are
stretched by the requirement to support various
devices and features. Modern operating systems
include printing systems that support printers and
insulate applications from many details of printing.

DECprint Printing Services software was designed
to handle a wide variety of printers, with a range
of I/O connections, media hand ling capabilities,
finishing equipment, data syntaxes, and so forth.
It provides the controlling software that supports
the full range of Digital printers capable of printing
Postscript documents.

DECprint Printing Services functions as a compo-
nent of the VMS printing system at the level of
printer supervisor, called symbiont in VMS termi-
nology. The supervisor is known within Digital as
the DECprint common printer supervisor or com-
mon print symbiont (CPS). It is called common
because it replaces a number of different symbionts
and is common to a range of printers. CPS is a com-
pletely new program developed by the Video,
Image and Print Systems Group.

This paper explores the environment in which
printing systems now reside. It describes the struc-
ture and functions of DECprint Printing Services and

the design of CPS, focusing on its capabilities within
the VMS system. The paper then discusses the oper-
ation of the VMS printing system and the enhanced
printing environment made possible by CPS.

Printing System Dimensions
A printing system is the set of software and hard-
ware components through which print requests
pass from the time the user decides to print a docu-
ment until the appropriate hard copy arrives.

The variety of printing devices in use is a chal-
lenge for the printing system and for applica-
tion programmers. We use the word "printer" in
this article to imply the fill1 range of output devices
that are attached to systems and networks. A sys-
tem today must support a wide number of dimen-
sions: marking technologies, media, medium sizes,
speeds, transmission rates, and interconnects.

The DECprint Model of Printing
The DECprint model of printing is composed of sev-
eral layers. Each layer has defined functions and I/O
interfaces. The layers of the DECprint model and their
relationships to VMS and CPS are shown in Figure 1.
This model of printing describes a useful structure
with consistent functions and responsibilities.

Application. An application program creates
information that the user may want to print. All
types of applications fit into the model at this

Digital Technical Journal Vol. 3 No. 4 Fall 1991 43

linage Processing, Video Terminals, and Printer Technologies

DECPRINT ARCHITECTURE VMS CPS

I APPLICATION 1

JOB
SUBMISSION
INTERFACE - - - - - - -

(NETWORK)
PRINTING
INTERFACE

PRlNT
CLIENT

PRlNT
SPOOLER

PRlNT
SERVICE

PRINTER SUPERVISOR
ACCESS
INTERFACE - - -

MARKING
ENGINE

FINISHING
EQUIPMENT n PRINTER

COMMAND
LANGUAGE

SYS$SNDJBC

QUEUE
MANAGER

PRlNT
SYMBIONT PRlNT

SYMBIONT

Figure I Relationships of the VMS Printing System Chmnponents to the DECprint Model

level, from data processing programs :md simple
text editors to high-quality dacument formatting
and publishing applications. The application may
present a printing interface directly to the user,
or may create a final form document from which
the user can access other printing intcrktces.

User printing interface. A user expresses the
desire to print through a user interface to the
printing system. The interface may be oriented
to written commands, to user selection of
menu choices, or to a point-and-sclcct griiphical
interface.

Job submission interface. LJscr interface pro-
grams communicate with the lower Icvcls of the
printing system through an application program-
ming interface (API) to the print client. Thc API
contains fill1 capabilities for crcating, destroying,
and managing print jobs of all typcs. Thc job sub-
mission interface may be operating sptcm-
specific or may be based on emerging standards
for network printing.

Print client. The client accepts requests through
its MI, performs defaulting for the user, assists in
selecting the correct print service, gathers the
print instructions and document files, and sub-
mits the job to the print service. The protocol
used to submit the job may be operating system-
specific or may be based on emerging standards
for network printing. The print service may be
local to the print client (and the user), or it may
be locatecl rlsewhere in the network.

Print service. The print service is a convenient
abstraction that includes the yrint spooler and all
subsequent layers in the execution of the yrint
job, for some set of physical printers. Printers
are often grouped together based on their static
characteristics, such as type of printer, printer
data syntax, and default media.

Print spooler. The print spooler accepts the print
job from the clicnt, spools the files and queues
the job for later execution if necessary, and
then schedules the job for execution. Jf the job

Vol. .? No. 4 Fa11 1991 Digital Tecbnical Journal

Design of the DECprint Common Printer Supervisor for VMS Systems

requires resources that are not immediately avail-
able, human intervention may be necessary. For
example, if a job requires a special print medium,
then an operator or other printer attendant must
provide the medium for the printer. If the job
requires a special font, the spooler may be able to
obtain the font from a library without human
intervention.

Printer supervisor. The supervisor directly con-
trols the printer. It interprets the print instruc-
tions for the job, manages the printer and its fin-
ishing equipment, and writes the document data
to the page description language (PDL) inter-
preter. It also monitors the status of the printer,
supplies some resources on demand, and responds
to error conditions. On the VMS operating sys-
tem, the printer supervisor is called a symbiont;
on ULTRIX and UNLX systems, a daemon.

PDL interpreter. Generally, final form docurnent
data is written in a data syntax intended for print-
ing, but it is not in the native form required
by the marking engine. A PDL interpreter trans-
forms the printer language into the lower-level
form for the marking engine. For example, in a typ-
ical laser printer, a PostScript interpreter trans-
forms the Postscript language into a device-level
bit map and media control instructions for
the print engine. In a simpler impact printer,
the controller turns characters and control
sequences into pin timing and paper movement
instructions.

Marking engine. The marking engine consists of
the media transport and printing mechanisms,
generally controlled at a low level. Marking may
be done by a wide spectrum of technologies, and
the media used may also vary widely. For the
most part, descriptions in this paper use raster
devices such as laser printers as examples.

Finishing equipment. The overall printing sys-
tem includes finishing options that are not often
considered part of the (largely electronic) print-
ing system. Currently affordable components of
the printing system are typically automated. For
example, several years ago duplex (two-sided)
printing was not economical for most office
applications; totby i t is, and many office printers
include this finishing feature. Stapling, on the
other hand, is still not economical for most office
applications, though i t is implemented in many
high-end production printers.

Implementations of the model in various operat-
ing systems and printers may express the layers
differently, sometimes skipping certain layers. The
VMS printing system contains components at most
levels of the DECprint model. The DECprint com-
mon printer supervisor (CPS) operates within the
VMS system, as indicated in Figure 1. We designed
CPS to satisfy the requirements and projected needs
of users, system managers, and programmers. In the
next section we discuss the design of CPS.

Sharing Devices
Printers are often shared, especially high-end or
specialized, expensive devices. Since shared print-
ers are not always immediately available to the
user or application program, the printing system
is required to hold jobs for printing later. The sys-
tem rnust be able to store the user's instructions for
printing, along with the contents of the document,
until they are needed.

Insulating the Application from Details
A printing system insulates applications from the
details of printing devices. For example, DECprint
Printing Services provides communications mecha-
nisms and protocols, determines whether a shared
device is currently busy, and sometimes translates
printer data syntax.

Application programmers generally prefer to
deal with as few external interfaces as needed to
perform the task. Thus it is desirable to minimize
the number of different classes of printing devices
while maximizing the variety and flexibility of
printing devices. The DECprint architecture speci-
fies that the printing system take responsibility for
matching the needs of the application to the capa-
bilities of the output device, whenever possible.
For example, a printing system might need the abil-
ity to transform the printer data stream from a
data syntax used by the application to a data syntax
used by the printer. Hidden transformation makes
the system easier for applications to use. DECprint
Printing Services provides a certain number of
printer data syntax transformations of this type,
from languages such as DEC PPL3 (which is com-
monly referred to as "ANSI" within Digital) and
ReGIs to PostScript, and from Postscript to printer
bit maps.

Inteml Structure of CPS
In designing CPS, our primary goal was to create a
flexible system that would handle all the printer

Digital Technical Jourrrul Vo1. 3 IVO. 4 Full 1991 4 5

Image Processing, Video TerrninaIs, and Printer Technologies

features we could foresee and many that we could
not foresee, ;l system that could be modified as
needed to handle not just new printers but new
classes of printers. CPS is capable of rnan;cging a
wide variety of character, line, page, and docun~ent
printers.

To create a flexible printing system, we needed to
design a highly modular internal structure. This inter-
nal structure comblncs modules into sequences a t
several levels to provide a general framework for
controlling and manipulating I/O devices.

At the bottom level of the structure are filter
modules, which are lightweight, independently
schedulable subprocesses within a VMS process.
Filter modules communicate with each other by
means of 1/0 routines and a shared data structure
containing job information. Pointers to the I/O rou-
tines and shared data are suppliecl in the invoca-
tion of the filter module. The effect of the stream
I/O rolltines is much like that of pipes in the UNIX
operating systems.

At the next higher level is a set of communicating
filter modules; edch stream of filter modules is
called a job step. Finally, a module calletl the print
job analyzer combines a sequence of job steps to
handle a complete print job.

Filter Modules and Job Steps
Filter motlules can read input from a preceding filter
modulc ancl write data to a succeeding filter mocl-
ule. 1:iltcr modules may perform functions such as
reading a file, converting carriage control, translat-
ing data syntax, or writing data to the printer. A
filter module receives as arguments an input stream
and an output stream, like a UNlX process, and a
sh:crctl tl;lt:c structure, unlike a UhTX process. A s~m-
ple filter moclulc reads clata from the input stream,
processes tl:cta. and writes data to the output stream.

A filter modulc may condition its operation based
on information from the shared data structure or
the contents of the data stream For example, a
translator filtcr module might format data based on
the page size, margins, and aspect ratio specified
in the shared data structure, or based on control
sequences in the data stream, or both.

Not all filter modulcs use the input or o u t p ~ ~ t
streams. The file reacler filter module reads from the
file instead of the input stream Similarly, thc device
outpi~t module writes to the printer instead of the
output stream.

A job step is a set of filter modules piped together
to perform one complete subtask A subtask may be

21s simple as "create a separator pagc" or as complex
as the sequence "read a file, perform cnrri;cge con-
trol conversion, add /HErU)ER, tranblatc from ANSI
data syntax to Postscript, and write thc rcsult to
the printer." A print job is a set of job steps that per-
forms all functions the user requests explicitly or
implicitly. The CPS facility that translates selected
printer data syntaxes into the Postscript language is
tliscussed in the section Data Syntax Translation.

Print Job Analyzers
To simplify the addition of new printers and new
classes of printers, CPS contains a software struc-
ture that corresponds to the hardware mechanisms
of a printer.

A print job analyzer (PJA) determines which
job steps are recluired to process a job. CPS inclucles
a separate print job analyzer for each major class
of printer that i t supports: serial PostScript,
PrintServer, and LN03 Image printer devices. When
the symbiont begins execution, a PJA is chosen based
on the type of device associated with the queue.
This PJA is used until the symbiont is stoppecl. If a
terminal device, such as a TT or TX or LT device, is
associated with the queue, then the PJA for a serial
device is invoked. If an LD device is used, then the
PJA for an LN03Q printer is chosen. Otherwise, the
PJA associated with PrintServer devices is used.

Each PJA contains a list of all job steps required to
execute a job on the class of printers it supports.
The PJA selects the job steps it needs from this list,
depending upon the instructions received from the
qileue manager.

Job steps are linked togethec The first job step
chosen by the I'JA is linked to the termination of the
1'jA itself; when the PJA finishes compiling the job,
it terminates, thus starting the execution of the job.
At the beginning of each job step, each filter mod-
ule is assigned stack space and a stack frame. Its ini-
tial program counter address and arguments are
stored in its saved registers for process activation.

cps uses a piped stream I/O mechanism similar in
function to a UNIX stream; a filter motlule's input
comes from the output of the previous module, and
its output becomes input to the following motlule.
By convention, the first filter module of the job step
is activatecl first in the job step; when a filter blocks
for output, the next filter module is activated. That
filter module then runs until it blocks for input or
output, at which point the previous or following
filter module is activated.

46 W>1. .I No. 4 Full 1991 Digital Technical Jozrrnrrl

Design of the DECpl.int Common Printer Szlperuisor for VMS Systems

Table 1 Simplified Job-step Sequence

Job Step

init-ps-device

check-prologues

sheet-count

job-burst

sheet-size

wait-sheet-size

file-setup

get-vmbytes

wait-vmbytes

file-out

sync

in it-ps-device

sheet-count

wait-sheet-count

job-trailer

sync

disconnect

Function

Ensure the device is "fixed up."

Ensure that persistent
prologues are loaded.

Get the beginning page count.

Print job burst page.

Get the current sheet-size.

Wait for the sheet-size before
continuing.

Send any file /SETUP modules.

Get the amount of local printer
memory available on the
printer.

Wait for the local printer
memory message from the
printer.

Read the file to print and send
it to the DECansi translator.

Wait for the printer to finish all
pages.

Ensure the device is "fixed up."

Get the ending page count.

Wait for the page count to
come back.

Print the job trailer page.

Wait for the printer to finish
the job-trailer page.

Release the printer.

JOBSTEPS -
FILTER
MODULES I

Table 1 shows a simplified listing of the job steps
compiled by the serial PJA to process a simple job:
one file to be printed in ANSI mode. Each of the job
steps shown contains one or more filter modules
piped together. For example the job-burst job step
has two modules piped together: the job-burst mod-
ule and the write-to-printer module. Figure 2 shows
several job steps with several filter modules each.

If an error occurs at any point in the processing
of a job, CPS skips job steps until it reaches the
identified error job step set by the PJA. In Table 1,
the error job step points to the sync job step that
precedes the job-trailer job step. In this case, CPS
resynchronizes with the printer and prints the job-
trailer page, including the error message.

Event Handling
In addition to the output side of processing a job,
there is a corresponding input side. The input side
reads messages from the printer, parses them, and
notifies the appropriate handler of the event. The
handler is chosen based on the type of message sent.

CPS internal messages are dispatched to the
appropriate symbiont routines. For instance,
printer resource messages contain information
that affect CPS internal operations: paper size is
stored for later use by layup (the general map-
ping of page images to sheets) and translators;
virtual memory size is stored for translators; and
page count is stored for later use in accounting.

VMBYTES I hm
OUTPUT OUTPUT TRANSLATOR

DEVICE
OUTPUT

Note that data flows from top to bottom and job steps progress from left to r~ght.

Figure 2 Job Steps and Filter Modzdes

Digital Technical JOUTIIU~ Vo1. 3 No. 4 Fa11 1991 47

Image Processing, Video Terminals, and Printer Technologies

I'rintcr status mcss;igcs arc dispatched to the
operiitor and, in some cascs, to the current user.
(:PS uses the normal IT.\IIS 013<:OM notification
mechanism to scntl messages to the system opcr-
ator. If the uscr specified /No'l'll:Y in thc print
inslructions, then (:I-'s uses the Vals $ ~ R K ' I ' I I R ~ :
system scrvice to send the message to the uscr
also.

In some cases, printer status messages require
additioni~l processing. For example, paper jams
require special k~ndling on somc printers: since
CPS cannot deter~lline how many pages were lost
in thc jam, it invokes human intervention by pl:~c-
ing the job on hold. 'l'lie operator or uscr c;in
determine what parts ofthc job, ifany, to reprint.

Program status messages and uscr data messages
arc dispatched to the job log. If the user specified
/NOTIFY. then they are also tlisplayed with the
$BI<K?'~-IRU s).stem scr\.ice. 'l'hese messages may
be printcd or logged.

The input ancl output sitles of the symbiont run
 s synchronously most of the time, but occasionally it
is neccssnry for the output sidc to wait for a mes-
sage from thc printer. 'l'his synchronization bctwccn
the input side and output side of the symbiont is
accomplished by an internal event-signaling facil-
ity. When synchronization is required, the o u t p ~ ~ t
side waits for a specific narncd event and the input
side signals that event when i t is detected. For
example, at the end of a job, CPS needs the final
printer sheet-count in order to calculate the
sheet-count for the job; this count is printed on the
trailer page and stored in the VMS accounting
records. When CPS nccds the sheet-count, the out-
put side waits for an event n;lrned sheet-count. The
input side parses the Incoming sheet-count mes-
sage, stores the returned value in the shared clata
structure, and signals the sheet-count event. Tlie
processing of this event is asynchronous: at the
time the message comes in, the output side may or
may not have stalled while waiting for the
sheet-count event. If the output side was waiting
for that event, it is scheduled for further process-
ing; if the output side was not waiting, the event is
remembered, in case the output side attempts to
wait for this condition in the near future.

In the next section we describe the mays CPS is
controlled and managed in the VMS printing system
ancl how it expands printing capabilities in the VMS
environment.

Tbe VMS Printing System Enuironment
CPS functions as a component of the W S prlnting
system at the level of printer supervisor. As such, it
interacts with, and is shapetl by, the othcr compo-
nents of the VMS system. ?'lie term printer super-
visor is used in this paper to Ile consistent with the
terminology of the emerging International Stan-
clards Organization (ISO) Document Printing Appli-
cation draft standard, ISO/IEC DIS 10175.

Components
The VMS Batch/Print system is a general queue man-
agement service, capable of queuing, scheduling,
and executing jobs in response to a variety of user-
specified instruction^.^ On the ViMS system, the
printing instructions arc stored in a print job
object, whkh is placed in a queue of jobs for a
printer. Modern print jobs often resemble batch
jobs, due to complex stored processing instruc-
tions and the heavy comp~~t ing load placed on
graphics printer controllers.

The vMs printing system contains components at
most levels of the DECprint architectural model.

User priming interface. The VMS system includes
interactive Digital Command Language (DCL)
interfaces for printing and managing print jobs,
printers, and the printing system itself.* For
DECwindows applications. the 1)ECwintlows Print
Widget provides a graphical interface that per-
mits users to specify all the options for printing,
and the ALL-IN-1 application provitles character-
cell menus for choosing print options, including
the enhanced options offered by CPS.

Job submission interface. The VMS system
includes program call interfaces that give the
program all the capabilities of the DCL user
intcrl'ace.3

Print client and service for remote printing. The
distributed queuing services product currently
provides transparent remote printing in net-
works using a proprietary network protocol.

Print spooler. The vMs Job Controllel; recently
replaced by the VMS Queue Manager, functions as
queue manager and scheduler. (The function of
spooling printer data to temporary files is per-
formed by the W S file system and is transparent
to most components of the printing system.)

Printer supervisors. The vMS system provides
two standard symbionts to support most line

48 Vo1. -3 No. 4 Fall 1391 Digital Technical Jounnl

Design of the DECprint Common Printer Szlperuisor for V&lS Systems

printers and serial printers. PRTSMB supports
printers attached directly to communication
ports on the CPU, e.g., the printer port on a VN(

workstation. LATSYM provides support for print-
ers attached to the serial or parallel ports of
DECserver nctniork communications servers. For
Postscript printers, CPS is used instead of these
standard symbionts.

The VMS printing system also contains compo-
nents that affect CPS processing.

Device control libraries are collections of small
text sequences that can be inserted into the data
stream from the symbiont to the printer. The
sequences are ideally organized into text libraries
containing named modules, with a separate
library for each type of output device. Device
control modules can be associated with a printer
queue by the system manager as part of a FORM

definition or a job reset function, or accessed
directly by the user with the /SETUIJ qualifier.

Device control libraries frequently contain
device-specific control sequences that alter the
format of the text and pages, for example, setting
printer paper margins, setting character pitch, or
enabling landscape printing. They may also con-
tain downloadable font data or preprinted data
for each page.

VMS form definitions contain page size and mar-
gin specifications that guide the print formatting
process for a print job. The user can also spec*
page setup strings and can prohibit the symbiont
from wrapping lines during processing.

VMS Print Queues
VMS has several distinctly different types of queues.
Execution queues process jobs through a symbiont,
and generic queues transfer jobs to other queues.
Often generic queues are used for load balancing:
one generic queue may feed several printers of sim-
ilar capability and location.

CPS also uses generic queues in an unusual way.
Default attributes can be specified for generic
queues that cause all jobs submitted through the
queues to inherit certain default print instructions.
For example, a queue can be established that, by
default, assumes that jobs are Postscript docu-
ments, or assumes that jobs should be printed in
landscape orientation. This ability to set default
queue attributes is essential for supporting applica-
tions that can spec@ the queue name for a print

job, but cannot spec@ certain other qualifiers such
as DATA-TYPE. It can also permit users of old appli-
cations to access new features of the printing
system.

TrMS Print Commands and Interfnces
The VMS printing system is manipulated through
DCL commands and qualifiers. Many of the
qualifiers are handled by the queue manager and
have no impact on the operation of print sym-
b iont~; others directly affect the operation of C K 2

The VMS system also supplies a call interface to
these functions. 3

W S Interfaces to Symbionts
The VMS Job Controller/Queue Manager provides
two interfaces for customizing print symbionts: the
PSM module-replacement interface, and the SMB

server symbiont interface. CPS is currently imple-
mented as a single-stream symbiont through the
SMB interface.

The SMB interface permits a user to replace the
flow of control of the symbiont with a separate pro-
cess. The process may be written in any style and
structure suitable to the task at hand, and need fol-
low only certain minor guidelines with respect to
the operating system environment. To use the SMB
interface, we replaced the entire symbiont process.
The result was much greater flexibility, but we
were required to write more program code.

The SiLlB interface provides services to the sym-
biont process through subroutine entry points and
callbacks that pass messages between the symbiont
and the VMS queue manager. Messages from the
system to the symbiont s p e c 0 fi~nctions such as
start up, shut down, begin job, pause, resume, and
interrupt. Messages from the symbiont to the
system return information such as job status, job
completed, device status and error information,
and checkpoint and accounting data.

Range of Printers Supported
CPS currently supports the full range of Postscript
printers supplied by Digital, from a low-speed
color printer up to a 40-page-per-minute laser
printer that can handle 11 different paper sizes.

Special I/O Processing
CPS supports several different means of communi-
cation with the printer: serial, Ethernet, and a spe-
cial high-speed video connection.

Digitcrl Techrrical Journal 1/01. 3 No. 4 Fcd1 I991 49

Image Processing, Video Terminals, and Printer Technologies

The serial connection may be either a direct con-
nection betwccn the con~puter and the printer or
a local arc;l transport (LAT) connection by which
printer is attached to a serial port of a DLCscrver
terminal server. The two methods differ only in
the way jobs are started and terminated. For
LAT-connected printers, CPS must establish ant1 dis-
miss the LAT connection at the start and end of
each job.

Once the connection is established with the
serial printer (via LAT or direct connect), CPS begins
a rlialogue with the printer using an asynchronous
serial line protocol and PostScript programs. Thc
asynchronous serial line protocol, clcfined by
Adobe Systems Inc., consists of five control charac-
ters that alter or cluery the state of the printcr.

The symbiont forces the printer into an idle state
by a series of control/T, control/C, and control/D
characters. When a control/T results in an IDLE
message from the printer, the symbiont and printer
are reacly to process a job.

PrintServer printers on Ethernet networlts are
DECnet nodes. To write to a PrintServer printer, CIJS
establishes a DECnet task-to-task session at the
beginning of the job. The dialogue required for syn-
chronizing serial printers is not necessary for the
Ethernet printers; the PrintServer protocols pro-
vide synchronization ant1 device control opera-
tions through separate control channels.

Printers connected through Ethernet use several
protocols, which are layered on DECnet task-to-task
communications. The protocol used depends upon
the version of the Printserver code.

The local area print service (LAPS) protocol was
developed for the Printserver family and is still in
use. The Common Printer Access Protocol (CPAP)
will replace LAPS in all Printserver printers.' PAP is
based on the earlier Reid-Kent protocol, Internet
Socket 170, and is being cliscussed as a possible new
Internet s t a n ~ h r d . ~

Special Processing for "Dumb" Printers
In some printer configurations, it is economical to
use the workstation or CPU as the printer con-
troller. In this case, the printer includes only the
print engine and nledia handling and finishing
equipment, ancl none of the electronics, comput-
ers, and interpreter programs that render the
graphics language into the elements required by the
print engine (usually an array of pixels). Such a
"dumb" printer is physically comectcd to the com-
puter by a very high-speed link such as a direct

vicleo connection or data bus. For such a controller-
less printer to be generally useful, the printing
s),stcm must emulate an existing class of printer.

l 'he LNO3 Image printer (LN03Q) is a bit-map
printer of this type. It uses a special high-speed
D h U bit-map interface that plugs into a Q-bus and
provides the speed required for printing scanned
images. The protocol between this interface and
the printer consists of bit maps and a small amount
of status and synchronization information.

The engine itself includes only the laser imaging
and paper handling equipment. CPS handles the
rcst of the controller functions in the host com-
puter. Because of the level of support and emula-
tion provided, the LNOQQ printer appears to be an
orclinary PostScript job printer with some special
image c~pabilities.

For a given print job, CPS performs the normal
processing up to the point at which the PostScript
language data stream would normally be sent to the
printer At this point, CI-'S directs the data stream to
a special PostScript interpreter subroutine tliat pro-
duces a bit-map image of the printed page in mem-
ory. The bit-map image is then sent to the printer
through a special LNV21 direct memory access I/O

interface on the Q-bus.
The software for the LN03Q printer also has one

special processing path. The 1.N03Q printer is
intended as an image printer for bit-map images.
CPS supports image files containing page images
that are scanned or precomputed at device resolu-
tion (300 clots per inch) and optionally compressed
with Comiti: Consultatif Internationale de Tklk-
grapl~ique et Tklkphonique (CCI-7") Group 3 (ID) or
Group 4 (2D) compression rnetllotls. Image files can
be transmitted directly to the printer without con-
verting to PostScript. Image files can only be sent
directly to the printer if they are printed one page
per sheet; i.f the user requests printing multiple pages
per sheet, or other lajr~ip functions, then the image
is processed througli the PostScript interpreter.

Image files are structured in Digital document
interchange format (DDIF), which expresses text,
graphics, and images together. Files intended for the
I.NO3Q printer must contain only image bit maps.

If the print job specifies DATA-TYPE=DDIF or the
file is a DDIF file, then CPS examines the file in a spe-
cial mode. If the file correctly contains only iniage
bit maps, (:PS decompresses the images in memory
if necessary, using the DECimage Image Support
Libr:lry routines. and then sends the uncompressed
bit map directly to the LNO3Q print engine. Thus

50 Vrl. .? No. 4 Fall 1991 Digilrrl Technical Jozrrnal

Design of the DECprint Common Printer Supervisor for VMS Systems

the image goes directly to the printer without pass-
ing through the PostScript interpreter.

Special Processing in CPS
CPS includes a number of special features and func-
tions to satisfy the requirements of the DECprint
architecture and the VMS printing system. In this
section, we discuss the features that extend the
process of standard print symbionts or are com-
pletely new.

Reading Print Instructions
CPS reads the print instructions for a job from the
VMS queue manager through the S M B $ W -
MESSAGE and SMB$READ-MESSAGE-ITEM functions
of the SMB interface. Print instructions are
expressed as attributes with values. Each attribute
has an associated numeric code and symbol, called
an item code, and a value of a specific data type.
The symbiont reads each item code and value, and
stores the information in a static data structure.
The information is used later to determine the pro-
cessing sequence for the job, special information to
be displayed on separator pages, and so forth.

Bidirectional Communication with
PostScript Printers
CPS requires a full duplex communications path to
PostScript printers since they report many condi-
tions by sending messages to the host computer.
These messages include device status messages,
program status and error messages, user data mes-
sages, and replies to CPS inquiries.

CPS also requests information from the printer
for synchronization, formatting, and accounting
purposes. For instance, to determine how to for-
mat ANSI text, the symbiont needs to know what
paper is loaded in the printer.

CPS receives the messages from the printer and
parses them to determine what it should do with
the message. If the message is device status, then
CPS routes the message to the operator and/or the
user whose job is being printed. If the message is an
internal CPS communication, then CPS processes it.
Otherwise, the message is either a program status
message or a user data message. In either case it is
logged for the user.

All messages are parsed except user data mes-
sages. Messages from the printer's interpreter are
converted to a standard format that would, if
desired, permit the message to be translated into
the user's native language.

Data Syntax Translation
CpS provides a facility that translates selected
printer data syntaxes into the PostScript language.
The translating programs are subroutines, some
quite large and complex, that accept a data stream
in one format and produce a data stream in another
format. The translators are responsible for all for-
matting, including sheet size, page orientation,
aspect ratio, and type sizes; CPS is responsible for
all I/O and coordination with the printer. The trans-
lation facility currently supports the following
printer data syntaxes: DEC PPL3, ReGIS, Tektronix
4010/4014, and PCL Level 4.

The translation facility has several restrictions. A
file may consist of only one data syntax, and all files
in a job must be of the same data syntax.

In general, CpS performs the translation from
one data syntax to another on the host computer.
In this way, simple printers that support only the
PostScript language internally can be extended
to support a number of printer languages. This
reduces the requirement for a complex printer con-
troller that supports multiple data syntaxes inter-
nally. Host translation can guarantee consistent use
across jobs of the printer's internal fonts, page ori-
entation, finishing equipment, and page layup The
general mapping of page images to sheets supplied
as part of CPS requires that the printer operate in
PostScript mode. To ensure consistent use of fonts
and consistent positioning of pages with respect to
finishing such as duplexing and stapling, all lan-
guage translation must be done by the symbiont.

Page Layup Multiple Pages per Sheet
Page layup is the process of printing more than one
page image on a sheet of paper. When more than
one page image is placed on a sheet of paper, the
images are rotated and scaled to fit on the page, but
are altered in no other way. The layup facility works
with all data types, including PostScript and PCL
data syntaxes. Layup also permits formatting for
larger paper sizes and then printing on smaller
sheets.

Layup is invoked explicitly with one or both
of the extended qualifiers NUMBER-UP and LAYUP-
DEFINITION. NUMBER-UP specifies the maximum
number of page images that will be printed on a
single side of a sheet; for example, two-up printing
is specified by the "NUMBER-UP=2" option. Two or
four page images per side may save significant quan-
tities of paper for draft printing, handouts, and the
like. Up to 100 page images may be placed on a

Digital Tecbtrical Journal Vol. 3 No. 4 Fa11 1991 5 1

Image Processing, Video Terminals, and Printer Technologies

single sheet of paper for thumbnail draft printing to
review the overall layout of a document.

Layup may also be invoked through a combina-
tion of PAGE-SIZE and SHEET-SIZE with NUMBER-UP.
For example, the combination of PAGE-SIZE=E,
SHEET-SIZE=A,NUMBER-UP= 1 permits printing
clraft copies of large-format documents on small
paper. Conversely, the combination of PAGE-
SlZE=A,SHEET-SIZE=B,NUMBEK-UP=1 magnifies the
smaller page to fit the larger sheet.

h p l e x Printing
Printing on both sides of the paper introduces a
number of new options and interactions that
require special processing in CPS. CPS begins each
docilment on the first side of a new sheet, so that
recto and verso (right-hand and left-hand) pages
and alternating margins are aligned with the cor-
rect sides of sheets as they are stacked by the
printer. This function also interacts with the clircc-
tion in which the medium is pliysically loaded into
the printer if the medium is not symmetric left-to-
right, top-to-bottom, or front-to-back, such as pre-
drilled paper.

The interactions of PDI- coordinate systems, page
layup, media selection, asynimetric media, duplex
printing, and binding are the most elusive engineer-
ing problems in the printing application space. No
general model of these interactions has been devel-
oped, despite considerable effort in standards com-
mittees. It appears that it is necessary to implcn~ent
every possible option.

Separator Pages
CPS prints all the separator pages definecl by the
VMS queuing system as well as some generated by
CPS. Flag, burst, and trailer pages for job :~nd file lev-
els are available as defined by VMS, and contain
the same information presented in a highly legible
format. In addition to the s~;inclard \rb,ls infor-
mation, the job trailer page also contains the first
two PostScript language errors returned from the
printer. This often makes it unnecessary to use
MESSAGES=PRINT to see simple errors.

To ensure that the job separator pages can always
be printed correctly, CPS rcscts the PDL interpreter
in the printer before printing these pages. The CPS-
generated separator pages do not alter the coordi-
nate system ol'the interpreter; the user's docunicnt
starts printing with the default PostScript state. File
separator p;igcs, in contrast, print in the current

PostScript environment, including the altcrctl page
geometry, e.g., l a p p establishctl by the print job.

CPS defines two new separator pages. I'llt: file
error page is printed when a file cannot bc opened
or an error occurs while reading tlie file. 'l'he file
error page illforms the user of the error condition
which cauhcd it to be printed. The job log page con-
tains up to 40 lines of the job log file. The job log file
contalns job evcnts such as job start ancl job com-
pletion as well as program status messages and user
data returned from the printer.

Managing Printer Resources
Once co~nmunication is established with the
serial printer, the symbiont must establish what
resources are available on the printer. These
resources include prologues, which are commonly
used PostScript routines, the amount of available
virtual memory, and the meclium in the default
paper tray. For example, CPS persistently loacls the
Postscript p ro log~~e for the output of the ANSI text
translator into the Postscript interpreter. This
resource might be lost to the printer because of a
power failure or might become obsolete due to a
software upgrade. CPS interrogates the printer at
the beginning of any job requiring the translator
prologue and loads a new prologue, if necessary,
CPS also performs s~rnilar processing for the
PostScript prologue that is used to generate tlie
separator pages.

For traditional resources such as paper, CPS relies
on status messages from the printer to indicate that
the printer is stopped because paper supply is
empty or jammed These conditions are relayed to
the operator and to the current user by standard
\wS mechanisms.

Library Search Lists
In the standard \/&IS print symbiont, only one
device control library may be associated with a
queue. This is not a problem since the standard VklS

print symbiont deals with only one data syntax.
(Recall that device control libraries are often writ-
ten in device-dependent data syntax.) CPS, on the
other hand, uses more than one clata syntax when
printing a non-Postscript job: the dat;~ stream to the
printer is PostScript, but the data stream to the
translator is in another data syntax.

Early versions of symbionts that supported
PostScript suffered from the same restriction: only
one device control library was available, and its

52 Vol. 3 No, 4 Fall 1991 Digital Technical Jourrial

Design of the DECprint Com~non Printer Supervisor for VMS Systems

modules were expressed in Postscript. This made it
impossible for users to share device control
libraries with their standard VMS print symbiont
and their non-Postscript printers.

To solve the problem of multiple data syntaxes
in a job, CPS introduced device control library
search lists. The system manager, rather than speci-
fying a single file specification in the INITIALIZE/
QUEIIE/LIBRARY command, creates a logical name
instead. CPS translates that specific logical name
and uses each element of the result as a dev~ce con-
trol library. Each library in the search list can have a
data syntax associated with it by adding the
qua1 ilier, /DATA-TYPE=.

CPS supplies a device control library,
CPS$DEVCTI., which must be included in the search
list, usually as the first, o r only, element in the
search list.

Summary
The DECprint model of printing describes a useful
structure with consistent functions and responsi-
bilities. CPS is an advanced print symbiont that runs
in the VMS printing system. It includes many spe-
cialized functions to support the features of a wide
range of modern pr~nting devices. It provides, w e
feel, an extraordinary level of support It was
designed with a highly modular and flexible inter-
nal structure to permit enhancements to be engi-
neered with minimal interactions with current
operations.

CPS is currently shipping its fourth version. This
version fi~lly supports the ten different Postscript
printers supplied by Digital, which range from a
low-speed color prlnter to a high-speed laser
printer. It also supports five different data syntaxes
in which applications can write documents. We
expect that more printers ant1 more capabilities
will be added in future versions, and that CPS will
require a minimum of additional engineering effort
due to its very general internal structure.

Acknourbdgmen ts
We would like to thanlc Peter Conklin for actively
initiating CPS and Gary L. Brown for even more
actively expanding it. We would also like to thank
past and current CPS tlevelopers: Ned Batchelder,
Cathy Callahan, Mark DeVries, Rich Emmel, Dave
Gabbe, David Larrick, Klara Levin, Mary Marotta,
Doug Stcfnnclli, ant1 Charlotte Timlege. We would
like to thanl< Bill Fisher for his extensive comments

on this article. Finally, we thank the many sites and
people who have tested the DECprint Printing
Services software.

References

1. VMS Utility Routines !Manual (Maynard: Digital
Equipment Corporation, Order No. AA-LA67&TE,
1990).

2. VMS DCL Dictionary, 2 vols. (Maynard: Digital
Equipment Corporation, Order Nos. AA-PBKSA-TE
and AA-PBK~A-TE, 1991).

3. ViVIS System Services Rejkrence (Maynard: Iligital
Equipment Corporation, Order No. AA-LA~~A-TE,
1991).

4. J. Jones, A. Kachrani, and T. Powers, "The
Common Printer Access Protocol," Digital
TechnicnlJozlmal, vol. 3, no. 4 (Fall 1991, this
issue): 55-60.

5. B. Reid and C. Kent, "TCP/IP Printserver Print
Server Protocol," Western Research La6 Techniccll
Note TN-4 (Maynard: Digital Equipment
Corporation, 1988).

General References

Guide to iMni~ztaining a KM.Y System (Maynard:
Digital Equipment Corporation, Order No.
AA-LA~~A-TE, 1990).

DECprint Printing Services User's Guide (Maynard:
Digital Equipment Corporation, Order No.
A A-PBZGA-TE, 1991).

DECprin t Printing Services System Manager's
Gzlide ((Maynard: Digital Equipment Corporation,
Order No. AA-PBZFA-TE, 1990).

Digital ANSI-Complia~zt Printing Protocol Level -3
Programming Reference Manual (Maynard: Digital
Equipment Corporation, Order No. EK-PPI.V3-PM,
1991).

Digital ~1\5I-Compliant PrLnting Protocol Level 3
Programming S~~pplement (Maynard: Digital
Equipment Corporation, Order No. EK-PPLV3-PS,
1991).

PostScript Translator's Reference ~Manualji,r ReGIS
and Tektronix 4010/4014 (Maynard: Digital
Equipment Corporation, Order No. AA-PBWFA-TE,
1991).

Digital Tecbtrical Jorrrrral Val. .3 No, 4 Fall 1991 5 3

Image Processing, Video Terminals, and Printer Technologies

PostScript Printers Programmer's .Ytrppbment
 mayn nard: Digital Equipment Corporation, Order
No. EK-POSTP-PS, 1991).

Postscript Language Reference Manual, 2nd ed.,
Adobe Systems Incorporated, ISBN 0-201-18127-4
(Reading, MA: Addison-Wesley, 1990).

Information Technology- Text and OfJice Sys-
tems-Document Printing Application (DPA),
ISO/IEC JTCl/SC18 N, Draft International Standards
10175-1 and 10175-2 (September 1991).

CDA Base Services Tecbnictrl Oueruieu~ (Maynard:
Digital Equipment Corporation, Order No.
A A-PHJYA-'E, 1991).

Creating Compound Documents Using CDA Rase
Services (Maynard: Digital Equipment Corporation,
Order NO. I\I\-I'HK2A-TE, 1089).

Writing Converlers Using CDA Base Services
(Maynard: Digital Equipment Corporation, Order
NO. AA-PHKIA-TE, 1991).

CDA Base Services Reference Mcrnual, 2 vols.
(Maynard: Digital Equipment Corporation, Order
NOS. AA-PHJW-TE and AA-PHKOA-TE, 1991).

CDA: DDII: Technical Spect!Jcation (Maynard: Digital
Equipment Corporation, Order No.)\I\-PI-IK3A-TE,
1991).

CDA: DTIF Tecbtiic~zl Speczpcation (Maynard: Digital
Equipment Corporation, Order No. AA-PHK~A-TE,
1991).

DDIS . ~ y n t ~ u Specflcation (Maynard: Digital
Equipment Corporation, Order No. EL-00081-00-1,
1987).

54 Vo1. .3 A'o. 4 I.'nlllYJ)I Digital Technical Journal

James D. Jones
Ajay l? Kachram'

Thomas E. Powers

The Common Printer Access Protocol

The DEC PrintServer Supporting Host Software version 4.0 incorporates Digital's
Jrst implementation of the new common printer access protocol (CPAP). This pro-
tocol is compatible with the local area print server (LAP$) protocol, which was
optimized for UVS access and DECnet transport, and with the Reid-Kent proto-
col, a Postscript-based, TCPIIP-connected print server for n client-server environ-
ment. The CPAP protocol supports a variety of data presentation protocols
and allowsprinters to be connected to driving applicatiom by various commutzica-
tions and process-to-process intmfaces. The protocol also couples entities running
difSerent operating systems across disparate networks. Because of its superior
performance, the new CPAP protocol has been accepted by the Open Software
Foutzdation for incl~lsion in a fzltztre release of OSF/I.

The presentation of computerized data has become
a remarkably sophisticated and subtle operation.
Video displays now support windows with com-
plex allocations of display space, variable fonts, and
real-time user input operations. Printing devices
now offer support for publication-quality fonts,
line art, and images. These devices can present
visual objects on a variety of media, from many
sources, and in variable orientations and presenta-
tion modes. In addition, both video and printing
devices are now decoupled from dedicated com-
puting environments, and are shareable from many
hosts and by many users or programs.

Now, only the simplest printing devices are lim-
ited to presenting just characters, and many users
are finding such restricted capabilities inadequate.
Also, most printing devices still require dedicated
connections to single computers. However, more
printers now offer full network accessibility; i.e.,
network printers are capable of offering sophisti-
cated services to a wide variety of users and their
applications.

The paper entitled "Design of the DECprint
Common Printer Supervisor for VMS Systems"
in this issue of the Digitnl Technical Joz~rnal
describes access methods and interrelations
among services that provide for these increasingly
sophisticated data presentation capabilities.' The
printer access protocol (PAP), a service interface in
the DECprint architecture, couples the printer
supervisor component to the logical printer for
presenting data and otherwise controlling a physi-

cal printing device. The common printer access
protocol (CPAP) described in this paper provides
the fundamental services required by a printer
supervisor for the presentation of data and collec-
tion of accounting information. In addition, the
CPAP supplies easier network access between
printer supervisors and printers, as well as ancil-
lary control of printers for network management
and device configuration. The CPAP also provides
services to distribute the processing requirements
of the printer itself, most notably a mechanism for
delivery of network font services. This last capabil-
ity allows a printer to offer what amounts to vir-
tual services, i.e., the ability to configure itself
dynamically to the demands of a print job without
the involvement of the printer supervisor.

This paper begins with a discussion of the
influence of existing protocols and the DECprint
architecture on our CPAP design goals. The sections
that follow present the printer session concepts
and the functional interface between the protocol
and applications. We then describe the implemen-
tation of the new protocol in a server environment,
including interoperability, compatibility, and the
translation of the older PrintServer protocol. At the
close of the paper, we discuss ongoing standard-
ization issues.

History
The PrintServer 40, Digital's first fully networked
printer, was first shipped in 1986. Its local area print
server (LAPS) protocol was analogous to later

Digital TechnicalJournal Vol. 3 No. 4 Full 1991 5 5

Image Processing, Video Terminals, and Printer Technologies

printer access protocols. The Printserver 40 was a
ground-breaking product for Digital, ant1 the I.~\l-'s
protocol was a major aspect of the Printserver
tlevclopment effort, portions of which cl;ite back to
1983. l'hc L,U-'S protocol was dcsignetl ;inel clevel-
oped with p;irticular product-oriented tleliverables
in mind, and was optinlized for \')Is ;icccss and
DECnct transport. While this protocol precl;ites
much of the architectural work now being imple-
mented in Digital's printing products, i t was (;lncl
still is) a significant element of I'rinLScr\~er archi-
tecture and in~plementation.

Work heg;ln on Inore general I-'i\Ps in 1987 as
part of the early nwrk on the Dl:(:l>rint architcc-
ture (known ;it tlie time as the Printing S)rste~ns
Model). The specifics of what would become the
CPAI-' emerged in late 1988 in two internal papers
by Brian Reid ancl Chris Kent of Digital's Western
Research Laboratory. These papers prcscnted the
initial design concepts for ;I Postscript-based,
'l'(:P/II'-connected (transmission control protocol/
internet protocol) print server in a clc;irly clefinecl
client-server environment. 'l'his print server proto-
col came to be known as the Itcid-Kent protocol.

Design Rationale and Goals
B). e;irljr 1988. design goals for (and constraints on) a
PAP were well understootl, ant1 hatl been collectetl
and published as part of Digital's Printing Systems
Motlcl. (:hief among these go;lls and constr;~ints was
the need to support a variety of tl;ita prcscnt;ition
protocols, ancl to ;~llow printers to be connected to
driving ;~pplic;itions by a v;lriety of communica-
tions ;ind process-to-process interfaces.

'l'hc increasing corpor;itc conimitmcnt to open
s).stcms made it clear that a I',\I' woultl also have to
couple entities running v;irious operating s!?Xems
across tlifferent netmiorks. l'hus, the UE(:print I'AP
architecture tc;im decided e;irlj. in the design pro-
cess that a PAP should be designed Sor public
access: that is, the specification for the protocol
should be piit into the public domain and submit-
tecl for intlustsy stantlardization.

Interopcrability is a most serious constraint.
Digit211 has a strong tradition of maintaining back-
ward compatibility within and among its product
families. In a distributed processing environment,
however, backward compatibility t;~l<cs on the
added burclen of interoperability >lultiplc clients
must communicate with multiple servers. any of
which can be upgraded to new versions of sup-
ported protocols asynchronously. Adclressing this

problem was :I major conceptual test in tlie first
implement:ition of a CPAP server. This is discussed
in more tletail in the section The <:PI\P Scrvcr
Implenient;~tion.

The Reid-Kent protocol met many of the techni-
cal tlesign requirements for a new PAP. It was built
on industry-stantl;ird components, and contained
no proprict;iry technology that would prevent its
public;~tion.

However, certain PAP design goals were not cov-
ered by the Reid-Kent protocol in its 1988 version.

There was no facility to select a specilic page
clescription 1angil;lge (PDL) for printers support-
ing multiple interpreters.

There was no method for soliciting the capabili-
ties and media ;ivailable on the printec

The only 1angu;ige supported was English
(contrary to the corporate guidelines for
i~~tern;ition;iliz;~tion).

Data sent from the printer was not categorized;
user-specific information was mixed with operii-
tor and service data.

No means was provicled to solicit the status of
the printer.

There was no encoding to discriminate between
binasy and test files.

I-Iowever, these flaws were largely omissions
from tlie design goals, not fundamental conflicts
with them. The architecture team decided that the
Reid-Kent protocol coulcl be extended to address
these omissions without serious conflict. In f ~ c t ,
the neccss;iry extensions were clesignecl to allow
clients and servers conforming to the original Reid-
Kent protocol to remain in conformity with the full
<:PL\P specification.

Architecture
The CPAP is primarily ;I communication-oriented
protocol, i t . , tlie presentation of its function is
closely coupled with its encoding. The major syn-
tactic fe;~tures of the (:PAP derived from the Reid-
Kent protocol are tlie following.

All encodings are ASCII strings. This eases the
generation of protocol streams and ensures inde-
pendence from the underlying communications
channels.

No data fields are fixecl length. This provides for
extensibility of the protocol and eases the gener-
ation of a protocol stream.

-

Val. .I iVo 4 k ~ l l 1991 Digilal Techiricnl Jorrriznl

The Corn~non Printer Access Protocol

Multiple channels of communication use the
same basic format. Common parsing of separate
channels simplifies implementations.

Simple numeric tolens clefine the operators.

Session Concepts
The CPM architecture defines separate contexts for
each type of work the CPAP can perform. Each con-
text requires that a separate session be established
for its own tasks, and each session involves the cre-
ation and use of a separate network connection
between the co~~trolling client and the server. Each
connection identifies the type of session the initia-
tor requires. The CPAP defines three different ses-
sion types: print, management, and console.

The set of CPAP operators allowed for a session is
restricted to those needed to support that type of
session. All session types have access to printer
status and configuration information. In addition,
multiple concurrent sessions are permitted. Print
sessions and management sessions may have one or
more virtual circuits active to a printer at a time.
The use of multiple circuits permits the streaming
of data to the printer over logically separate chan-
nels, thereby eliminating application protocol over-
head for the most frequent operations. In contrast,
console sessions use a single virtual circuit for
exchange of data with remote terminals.

Print Sessions Print sessions usually consist of a
series of documents printed for a user on a given
host by a printing service (a "printer supervisor"
as defined by the DECprint architecture). With the
operators provided by the CPAP, the printing ser-
vice can determine the language interpreters,
printer options, fonts, prologues, and media that
are currently installed at the server. These opera-
tors also provide the current operational state,
number of jobs queued to the printer, and the cur-
rent job status. These features permit the printing
service to select the printer (server) that can satisfy
the user's request and to determine a method for
submitting the job to the printer

Once the printing service has begun a session
and identified itself, i t identifies the user and the
user's job code to the printer. This information may
be used by the printer to provicle usage information
to a centralized accounting service. The printing
service can then present documents to the printer.
A transaction between the printing service and the
printer establishes which interpreter the printer

will use for each clocu~ne~lt ant1 which virtual cir-
cuit will be used for its transmission.

Selection of the proper virtual circuit for trans-
mission of documents to the printer is performed
by passing tokens from the printer to the printing
service. The tokens are then mapped to whichever
virtual-circuit service is being used by both the
printing service and the print server This map-
ping approach avoids passing network-specific
information within the protocol. Not only does the
approach make the CPAP independent of the net-
works on which it might run, it ensures that the
network services need no knowledge of CPAI'
encodings. Such virtual-circuit mapping is criti-
cal to allow CPN' client-server processing to be
implemented in a heterogeneous, internetworking
environment.

During the printing of the document, some data
presentation interpreters (Postscript, for example)
send data back to the user or print service. In addi-
tion, the printer may run out of paper or toner,
may have a fill1 output tray, or may encounter other
exception conditions not directly related to the
interpretation of page description data. The CPAP

categorizes such conditions and delivers relevant
messages to the user, the operator, or the event logs.

Upon completion of the job, the printing service
is notified of the meclia used, the number of pages
printed, and the printer processing time required
to complete the job. The protocol also includes a
provision to abort jobs, e.g., an improperly formed
document that might otherwise hang the printer.

Managelnent Sessions The CPAP supports certain
printer services through management hosts. A man-
agement host is a network entity (not necessarily
the same entity as the printing service) with which
the printer can exchange information or request
services. Such services include

Time service

Centralized event logging

Centralized accounting

Program loading and configuration

Font services

An important aspect of the CPAP is that the
printer is always passive with regard to initiating
management services. A candidate management
host advertises that it has services to offer, and a
print server accepts or rejects the offer. Once a

Digital Tecbrrical Jourrral Vol 3 AJo. 4 Fall 1991 57

Image Processing, Video Terminals, and Printer Technologies

connection with one or more management hosts
is established, the printer may use such hosts as
servers for time synchronization, configuration file
access, and font lookup. Additional functions for
these hosts may be loading program images, event
logging, accounting, and general fde access.

File naming to access general file services is a
problem that needs special attention if the server
and the protocol are to maintain independence
from the host operating systems. Commonly used
files are identified in the CPAP by reserved tokens,
such as $CONFIG, $DEFAULTS, $RESOURCES, and
$SETUP. Arbitrary path names are allowed, but can
access only a limitetl domain (from a known root
directory) to preserve file system independence
and to maintain security.

Translation to the host's services is provitletl
by the host itself. This permits the printer to be
served by different hosts using a wide variety of
operating systems (and their implicitly tliffcrcnt
file-naming conventions and syntaxes) without any
awareness of a management host's implementation
by the server.

Console Sessions A console session is a form of
printer management. Thc content of the data
exchanged during a console session is specific to
the printer, and is not specfied by the CPAP.
Services performed within a console session might
include

= Operator services, such as telling a printer what
media have been loaded (e.g., by color, weight.
or transparency), or setting physical printcr
defaults (e.g., duplex versus simplex, or default
medium selection)

= Network management configuration services,
such as controlling tlomain access to or from
the printer

Troubleshooting or debugging services

Digital's implementation of console services on
current PrintServer products conforms to the
Enterprise Management Architecture.

Application Program Interface
The h~nctional interface to any protocol provides
an additional abstraction between a11 application
and a protocol. This abstraction answers many of
today's software application needs, including inter-
operability, portability, moctularity, and reusabil-
ity across multiple architectures. An application

programming interface (M I) that alloars access to
all (:PAP facilities is included in the protocol's
specitication.

A connection block, which is passed as a parame-
ter to all functions, provides support for vari-
ous printer types, their device identifications, and
descriptors for command and data channels. This
support includes separate command and data
channels for printers supporting multiple virtual
circuits or channels. Just as in the case of the date
stream form of the protocol, the API form allows
separate channels for data and commands.

A separate command channel allows ease of con-
trol flow between client and server. This may
include the client receiving the server's status or
events, or the client sending aborts to the server.
For devices that support only a single channel, the
generic printer driver can set both command and
data channels to the same value. For supporting
multiple jobs active at the same time (job overlap),
;I job identification (ID) parameter is passed with
all functions.

To support various message types, the address
of a read-callback routine is passed to the open
printer function along with a pointer to read-call-
back arguments. These arguments may signal vari-
ous events, or may consist of messages for the user,
operator, accounting, or resources available in the
printer.

An early version of the generic functional inter-
face was part of i\.IIT Project Athena's Palladium
Print System. The printer supervisor in Digital's
LN03R ScriptPrinter product was modified to cre-
ate a generic printer interface for both the
ScriptPrinter device and the PrintServcr family.
This conversion from an API-accessible base took
one \\reek to execute, whereas it typically takes
six montlis of effort to develop a new printer
supervisor for a device as complex as the
PrintServer product.

The CPAP Server Implementation
The implementation of a protocol gives rise to
problems different from those related to its design.
When defining the architecture, one strives to pro-
vide an ideal that includes all of the desired features
in an elegant manner. When performing an imple-
mentation, one finds that elegance often has to take
a back seat to pragmatics. This is especii~lly true
when the new protocol is intended to replace two
different protocols in a new version of an existing
product. Merely implementing the new protocol

58 Vol. .? No. 4 Fall I991 Digital Techirical Journal

The Conzmon Printer Access Protocol

is not enough-the implementation must some-
how coexist with the protocols being replaced.

Digital's first production implementation of the
CPM was targeted for the DEC PrintServer Sup-
porting Host software version 4.0, which loads and
drives the PrintServer family of printers. For the
rest of this paper, we refer to this software by the
PrintServer product designation of LPS version 4.0.

We started the implementation by modifying
Digital's ULTRlX PrintServer client, which already
used the Reid-Kent subset of the CPAP, to use
DECnet network transport and run on the VMS oper-
ating system. We then updated the LPS server
code to permit either DECnet or TCP/IP transport.
This was accomplished by using the direct-to-port
communication features of the VAXELN operating
system. The server establishes a circuit using the
appropriate transport and then spawns a process
for dealing with each incoming connection. Thus,
the same code can service print sessions, manage-
ment sessions, and console sessions without con-
cern for the type of network transport.

The CPAP was, by design, directly upward-
compatible with the Reid-Kent protocol subset.
However, Digital's PrintServer offerings prior to
LPS version 4.0 were LAPS-based, and LAPS was not
CPU-compatible. To permit users of existing
PrintServer printers to continue to use these
products, we had to find a way for the new CPAP

implementation to coexist with the older LAPS

application protocol. We achieved this coexistence
by having the server perform translations from the
older protocol to the new one in the server itself.
When the client establishes the initial connection,
the server senses which protocol is being used by
the client system. If the initial message indicates
the use of LAPS, the server spawns incoming and
outgoing filters to deal with the incoming connec-
tion, and a new internal circuit replaces the
network connection to handle the interpretation
of the C P P .

The coding of the LAPS filters was the last step
in implementation before testing began. The
PrintServer 20, PrintServer 40, PrintServer 40 plus,
and the new turbo PrintServer 20 all had to be
tested using both L M S and the Reid-Kent subset of
the CPAP. In addition, the new implementations of
the management client and the console client on
the VMS system requirecl verification. This verifi-
cation entailed a multitude of tests using the LPS
symbiont running on older versions of the VMS

operating system, the newer common print sym-

biont (CPS), several versions of the ULTRIX oper-
ating system, and a source kit version running on
a Sun Microsystems workstation.

Unfortunately, this testing uncovered latent
defects in the implementation of the existing prod-
ucts. We had to analyze each of these defects and
plan corrective action. Since updating the existing
products in the field is a difficult process (both
technically and procedurally), we corrected most
of the defects by altering the server to deal with the
problems. Retesting was performed over several
baselevels to ensure that our changes caused no
regression.

At one of the early baselevels, the interface
between the network distribution software and the
server's Postscript interpreter was updatecl to use a
stream-based connection in place of the previous
packet protocol. This update permitted the new
CPAP data channel to be mapped by reference to
the input of the Postscript PDL or any other PDL
supported by the printec This change alone per-
mitted the performance of the server to be main-
tained even when the server was translating from
the old M ' S protocol to the CPM.

In general, development proceeded incremen-
tally, i t . , key features were identified and added
with each baselevel. While this technique limits the
complexity of producing the product, i t raises an
important business issue. Specifically, the provi-
sion of enhanced services in a client-server envi-
ronment often exposes aspects of the proverbial
"chicken-and-egg" situation. There is little call to
offer enhanced features in a server if clients have
not been programmed to solicit the features. How-
ever, clients are not readily upgraded to solicit
features that might not be widely available.

The LI'S version 4.0 project team met its backward
compatibility design goals by including the LAPS-to-
CPM filters. In doing so, they ~lndercut the need
to provide the enhanced feature support that the
CPM was designed to deliver, since existing clients
(earlier versions) could not avail themselves of
the added features. In addition, the risks of includ-
ing full CPAP support in LPS version 4.0 (possible
increase in time to market, and the creation or expo-
sure of more latent defects in all supported environ-
ments) seemed to outweigh the benefits. However,
a last-minute change to use the new protocol's data
channel for loading fonts yielded such a large per-
formance advantage that resistance to using the
new features crumblecl, and the project team was
allowed to submit the fill1 protocol to field test.

Digital Techtrical Journal Vo1. j No. 4 Fall I991 59

Image Processing, Video Terminals, and Printer Technologies

Standardization
Network printing became widely available in the
mid-1980s, but products from different vendors
were not compatible. Network printing protocols
were largely proprietary efforts by vendors who
had developed them for their own printer prod-
ucts. Digital's Printserver 40 and its LAPS protocol
were typical in this regard. By the late 1980s,
network printing was an established and competi-
tive technology, but there was still little inter-
operability among the various vendors' products.

In the absence of printing protocol standards, the
Internet Engineering Task Force (IETF) formed a
Network Printing Protocol working group in
early 1990. This group's charter was to examine
printing protocols then in existence or under devel-
opment, assess their applicability to Internet-wide
use, and suggest changes. Digital's representatives
to the Im working group on the Palladium
Printing Systems standardization reported the inter-
est shown in Digital's Reid-Kent protocoI. Thus, in
July of 1990, Digital submitted a version of the PAP
that was under consideration by the DECprint PAP
architecture team.

Early consideration of this PAP by IETF and the
LPS version 4.0 implementation effort ran concur-
rently. This provided a unique opportunity for
Digital's implementers to obtain feedback from a
very knowledgeable architectural community. In
turn, they could report implementation experi-
ences that affected the review and progress of the
specification towards standardization. Implemcn-
tations of CPAP clients and servers by companies
other than Digital are in progress.

As part of Project Athena's Palladium Printing
System, the CPAP has been accepted by the Open
Software Foundation for inclusion in a future
release of OSF/l .

A draft of the CPAP is being circulated among
Internet members for comment. Meanwhile, work
on future enhancements continues. Work is now in
progress to specify a superset of the existing pro-
tocol that deals with authentication and encryp-
tion to strengthen security. This work is being
done in the spirit of the original migration from the
Reid-Kent protocol to the CPAP; i.e., the security
features being added will not adversely impact
users who do not need the new features.

Acknowledgments
'I'he CPAP effort has bccn the \vork of many clcvel-
opcrs. Chris Kent and Brian Kcid drafted the b:~se

architecture and created the first prototype imple-
mentations. Jim Jones championed the proto-
col in the DECprint PAP architecture team (Alan
Guenther, Tom Hastings, Jim Jones, Tom Powers,
and Eric Rosen) and coded the LPS version 4.0
server. Carol Gallagher wrote the LAPS filters to
translate from the old protocol to the new. Mike
Augeri and John McLain ported the management
and console clients to the VMS system from the
ULTRIX system. J. K. Martin rewrote the Berkeley
Software Development (BSD) source kit to use the
new protocol. Ajay Kachrani developed our UUIRK
and MIT Athena clients ant1 represented the proto-
col during early phases of the IETF standardization
effort. Many others supportetl these efforts, and
others are yet beginning to develop new CPAP
clients. We thank them all for their efforts.

Reference

1. R. Landau and '4. Guenther, "Design of the
DECprint Colnmon Printer Supervisor for VMS

Systems:' Digital Tecbi~ical Journal, vol. 3, no. 4
(Fall 1991, this issue): 43-54.

60 W.3 No. 4 Full 1991 Digital Technical Journal

Guido Sirnone
Jenrey A. Metzge r

Gary Vaillette

Design of the Turbo
PrintServer 20 Controller

The turbo PrintServer 20 controller is a peformunce enhancement of the original
PrintServer 20 system controller: The turbo controller was developed to enable
Postscript code to execute fmter and thus improve page throughput for complex
documents. The RETrACE analysis system was designed to analyze the performance
of the original Printsewer 20 system and estimate expected performance future
systems. The turbo controller's processor and its three subsystems for memory,
write buffeq and bit-map data tramfer were selected based on the analysis results.
Performa~zce tests conducted on both the original and the turbo PrintServer 20
indicate the enhanced processing performance of the turbo controller

In 1988 the turbo controller project was conceived
as a means of extending the life of the PrintServer 20
platform by introducing a performance-enhanced
system controller. The system controller in the
PrintServer 20 is housed within and powered by
the printer or "print engine"; it is a concise imple-
mentation of a single-board computer containing a
CPU, a memory subsystem, an Ethernet interface,
and a printer interface. It supplies an environment
in which a multitasking software system manages
communications with remote clients and with the
print engine, performs data conversion from the
page description language (PostScript) to bit-map
images, and provides management of physical print
engine resources.

The original controller provided a maximum
print speed of 20 pages per minute, but this perfor-
mance could not be maintained when the docu-
ment included complex text, graphics, or images. To
improve page throughput for complex documents,
a controller was needed on which PostScript code
could execute faster. To enhance performance, the
competition was moving toward controllers based
on new industry-standard reduced instruction set
computer (RISC) processors. Therefore, to be com-
petitive, Digital's new controller was required to
improve performance by five to eight times that of
the original controller, which had been based on
the rtVAX microprocessor.

As challenging as the performance improve-
ment would be to achieve, budgetary pressures
forced restrictions on the implementation strategy

We were to use existing, qualified chips wherever
possible in order to avoid new part qualification
costs and application-specific integrated circuit
(ASIC) development costs.

Early investigations indicated that the perfor-
mance target was indeed achievable with existing
inexpensive RISC processors, as well as a high-
speed Digital proprietary VAX processor. A RISC
processor would require porting a 2.5-megabyte
(MB) software system, which was far beyond the
scope of the project. The highest performance
VAX processor and the associated support chips,
which would not cause a problem with the soft-
ware system, were far too expensive to be consid-
ered. Alternatives were therefore limited to less
expensive, lower speed VAX processors: the low-
risk, 60-nanosecond (ns) CMOS VAX or CVAX pro-
cessor was proven, and the higher speed and more
cost-effective "system on a chip" or SOC processor
was under development. Either choice would have
a minimal impact on the software system and
would provide a cost-effective solution.

The original performance estimates for the CVAX
and the SOC processors in general-purpose process-
ing environments were below the lower bound of
the performance target. The design team was also
uncertain of the actual execution characteristics of
the PrintServer software. For these reasons, it was
decided to begin the project with a performance
analysis of the original controller to determine the
expected perforlnance of a design based on either
processor.

Digitcrl Technical Jounzal Vo1. 3 No. 4 Fall 1991 61

Image Processing, Video Terminals, and Printer Technologies

This paper discusses the problems encountered
during o l ~ r analysis and the solutions devised by the
H;irdcopy Systcms Engineering Group to overcome
them. The R1:'l'rACE tool suite, a performance analy-
sis system, is described and the analysis results are
provicled. The paper then discusses the hardware
architecture of the tilrbo controller and ends with a
presentation of the performance results obtained
for standard PostScript benchmarks.

Perfomzance Analysis of tbe Original
Controller
The PrintServcr 20 software system consists of a
VAXELN oprmting system, an Adobe Systems, Inc.
I1ostScript interpreter, and a substantial amount of
software to manage communications and resources.
The task of analyzing its performance was compli-
cated by two additional factors First, the softw;~rc
system's behavior depended on the characteristics
of the user's PostScript tlocument. PostScript is
an interpreted progranirning language. Thus, like
any computer program, low-level machine perfor-
mance can be dr~mat ic~l ly affected by the program
being executed. Second, and more painful, the
proprietary nature of the Postscript interpreter
prohibited us from obtaining code sources, and clis-
cussing its internal architecture with engineers
from Adobe Systems.

While the characterization of a complex, par-
tially proprietary, real-time software system is
diff~cult, it is not impossible. Programmer counter
address (PC) traces have offered many systenis
designers very detailed insight into the execution
performance and characteristics of systems, PC
traces provide a means to observe a system at a
macroscopic level, allowing a view of the complex
interactions between the hardware and software
systems. System designers can use capturcd atlclress
traces from current machine performance to extra-
polate expected performance of future s y ~ t e ~ ~ i s and
help them make architectural trade-offs.

The RETrACE Analysis System
The R.ETrACE tool suite was created to provide
a nonintn~sive means of capturing real-time PC

traces and analyzing the captured addresses. The
tool suite consists of both hardware and software
components.

In order to keep expenses at a minimum, existing
hardware was used wllerever possible. Only one
small module had to be developed to complete the
RETrACE hardware platform.

The RETrACE hardware consists of the following:

Two interconnect boards boot and operate a
system controller on a table top. Developed as
part of the original Printserver 20, the boards
connect the controller to a print engine and an
Ethernet.

The PrintServer 20 server controller was modi-
fied for use as an intelligent trace buffer system.

The PrintServer 20 server controller's memory
capacity (l2MR) was extended using the standard
~ M B memory module used on the Kanji version
of the PrintServer 20.

The KETrACE mother board was developed specif-
ically for this tool suite. It contains a 32-bit wide,
first-in, first-out (FIFO) buffer and two loosely
coupled state machines.

A standard PrintServer 20 system controller and
print engine were used as the "system under
observation."

The console terminal was selected from the stan-
dard VT series of terminals.

A diagram of the RETrACE hardware system is
shown in Figure 1.

The KETrACE mother board performed the data
capture, using the modified controller's memory as
a large buffer. The board monitored the processor
bus of the system under observation by copying
all aclclresses and communications between the
rtVA?(processor and its external floating-point
unit. This copied data was placed into a FIFO buffer
that in turn was written into the memory of the
modified controller using a direct memory access
(DIMA) device. Since a standard PrintServcr 20 con-
troller and its optional memory expansion provide
16MR of storage, approximately 3 seconds of real-
time execution address traces could be captured.
The data capture continued until the trace buffer
memory was exhausted, at which point the data
was i~ploaded over a network connection to a VAX
VMS computer for analysis.

Due to the design of the original PrintServer 20
system, many large data areas and code sections
were mapped into different explicit memory spaces.
This s~ibdivision providetl a means of determining
which code function was executing in any given
segment of the address trace. With a simple statisti-
cal study it was possible to generate software exe-
cution histograms and to determine many of the
characteristics of the system, including translation

62 &)I. 3 No. 4 t211l 1991 Digital Techtriccil Jourtrrrl

Design of the Turbo PrintServer 20 Controller

NETWORK
I

RETRACE
CONSOLE
TERMINAL PRINTSERVER 20

SYSTEM
4 CONTROLLER

INTERCONNECT RETRACE MOTHER INTERCONNECT
MODULE BOARD MODULE

PRINTSERVER PO
SYSTEM
CONTROLLER

SYSTEM UNDER
OBSERVATION

Figure I RETrACE Analysis System H~irdzuare

buffer, floating point, instruction stream (I-stream)
versus data stream (D-stream), read versus write,
and interrupt performance. Hit rates for fully asso-
ciative caches of separate I-stream and D-stream,
as well as a combined I- and D-stream cache, were
also provided. These hit rates were determined for
first-level write-through caches from 128 bytes up
to 256 kilobytes (KB). Thus an upper bound for an
optimum-performance cached memory system
was determined.

Both processors under consideration possessed
the ability to access a memory subsystem at speeds
greater than that achievable with existing low-cost
dynamic random-access memory (DRAM) technol-
ogy. The performance numbers predicted by the
processor groups indicated that cached memory
subsystems were required. Because these sub-
systems can be expensive and their performance is
subject to the peculiarities of the software that
executes on them, a multilevel memory simulator
was developed to allow accurate studies to be per-
formed on proposed cache architectures.

The simulator was config~ired at run-time to sim-
ulate a n arbitrary hierarchical memory system that
was N levels deep, with an arbitrary size, associa-
tivity, performance, and behavior at each level.
The memory level nearest the processor was
defined as the first level, and the last as main mem-
ory. The simulator processed a trace file by walk-
ing each address in the file through the memory
hierarchy starting nearest the processor at the first
level. If a copy of the address was found at a given
memory level, then a hit was signaled and the next
address was processecl. If that address was not

found, then a miss was signaled and the simulator
would proceed to the next level of memory in the
hierarchy.

Whenever a hit occurred at a given level, it
was logged and all levels of memory in the hier-
archy above it would allocate entries based on
their defined allocation rules. While this procedure
indicated the memory system performance for
a proposed architecture, the overall system per-
formance was still unknown. Using a simple rule
based on the average execution time per address
for the existing controller, and scaling that time
based on the clock speed increase of proposed pro-
cessors, an overall performance number was esti-
mated for a system based on either processor with
any arbitrary memory architecture.

Benchmark Selection
The RETrACE tools suite provided the components
required to study the execution characteristics of
the PrintServer system without changing the char-
acteristics of its normal operation. The only diffi-
culty was to narrow the focus of the benchmark list
to provide a representative sample of Postscript
documents to print. Due to time constraints, the
list was limited to five benchmarks.

BMI The B M I benchmark stresses those aspects of
the system that convert the mathematical represen-
tations of characters to bit-map representations,
which comprise the form that is printed. This
benchmark uses several fonts in standard character
orientations, stressing both very large and small
character sizes.

Digital Technical Journal Vo1.3 No. 4 Fa11 I991 63

Image Processing, Video Terminals, and Printer Technologies

B.W2 Of the same type as I3M1. this benchmark
stresses thc transforms from mathcm;~tic;~l lo bit-
m;~ppcd character representations; howcvcr, thc
chnracters printed are at arbitrary orientations
with sizes ranging from typical to very sm;tll.

6M.3 The HA43 benchmark is one of the standard
benchmarks for Postscript performance tlualifica-
tion. It is a simple 41-page document that contains
sevcrnl different fonts. The benchmilrk is designed
to ch;trncterizc the standarcl text-hanilling per-
formance of a printer. This benchmark is printed
twicc to ensure that all characters to be printecl
have been converted from mathem;~tical outlines
to bit-map representations of the characters. Thus
the focus of the benchmark is to move the text
data through the system, to copy the character bit
maps to the l M B region in memory that contains
the image to be printed, and to print thc image. It
should be noted that this is the only benchmark
that printed at engine speed on the PrintScrver 20
system controller powered by thc rtVU system.

HOUSE A binary image He, the HOUSE benchmark
was used to stress the communlcations aspects of
the PrintServer system.

SCHEM The SCHEM benchmark was a vector repre-
scntetion of a logic schematic. This benchmark was
used to atrcss the Postscript interpretcrb ability to
interpret nonnative Postscript codc ant1 to exhibit
the characteristics of drawing vectors.

Analysis Results
The thrust of the analysis was to provitle credible
evidencc to support architectural ant1 implemen-
tation tr:tde-offs. The major areas of focus \\/ere

Memory s),stem organization

I'rintei- interface performance

Main memory b;tndwidth

0vcr;lll system performance

Memory System Organization The statistical anal-
ysis of the tracc information provided many clues
to direct our investigation towartl the optimum
mcmorv system architecture. The ovcr;~ll rcad-to-
write ratio for the observed benchmarks rangccl
from as low as 4.3: 1 up to 5.5:1, which mr:lns for
a writc-~hrough cache system with ;I tlicoretical
100 percent read hit rate, rile writes would dcgr:tde

the overall hit rate to approximately 81 to 84 per-
cent. As the analysis of the data progressed, it was
understood that the write data must be stutlied
very closely since it could have a dramatic impact
on the overall cache miss rate. During the cache
model simulations, the hit rates of the I-stream
were between 85 to 90 percent. However, the
D-stream hit rates were between 35 to 45 percent,
with writes accounting for 60 to 90 percent of the
total D-stream misses. To achieve the greatest posi-
tive effect on the hit rate of the systern, enhance-
ment of write-miss performance was the most
adv;lntagcous. The two options to improve this per-
formancc were either to implement a write-back
cache or to atltl a write buffer to the system. Further
cache simulations showed that a write buffer would
provide an 8 to 16 percent overall system perfor-
mance improvement, which was equal to that of a
write-back cache. The write buffer, however, was
the more straightforward solution to implement.

Cache analysis revealed that the processors
required different memory architectures. The CVAX

had an internal 1U, two-way set associative cache.
This was to be configured as a mixed I - and D-stream
cache. An additional 32KH to 6 4 ~ ~ . two-cycle write-
through cache was to be added externally. This
woultl also be configured as a mixed I- and D-stream
cache. A single-longwortl, two-cycle write buffer
would provitle enough buffering to reduce the
dramatic impact of write misses. The SOC was
proposed to have ;in internal write-back cache
between 5 K B ant1 8 K H , with each 1KB region niak-
ing up a single set. Cache simulations indicated
that with a minimum internal mixed 1- and D-stream
cache of SKB, five-way set associative, an external
data cache woulcl have to be over 6 4 ~ to have even
a negligible effect on overall system performance.
Therefore no external cache was recommendetl. To
mitigate the write-miss penalty a two-cycle write
buffer of 4 to 6 longwords was recommentled.

As an acceleration technique, the original
PrintServer 20 controller contained a memory
access capability that allowed data written to mem-
ory to be logically ORed with data that was already
stored. This technitluc was particularly useful when
the software system was writing the image that was
ultimately printed. As part of the process of gener-
ating an image to print, the individual cli;~racters
appearing on a page must be copied from a region
of memory called the font cache to another region
callccl the frame buffer. The frame buffer contains
the actual data that is sent to the print engine.

64 Vol. .? No. 4 Fall 1991 Digital Technicul Journal

Design of the Turbo Printserver 20 Controller

To complicate things, the data written to the frame
buffer must be able to overlay data that may already
be there, thus requiring a logical OR function.

When a document was printing at or near the
maximum engine speed of 20 pages per minute,
analysis showed this low-level copying function
consumed approximately 20 percent of the total
system time allotted to generate and print one page.
Thus a logical OR function in the memory system
would reduce the number of memory data cycles
from "2 reads 1 write" to "1 read 1 write," and
reduce the impact from a second read occupying a
useful cache location. Without this capability, the
degradation would be between 5 and 10 percent of
overall system performance when printing at or
near 20 pages per minute. Therefore memory capa-
bility with a logical OR function was recommencletl.

Printer Interface Performance When a PrintServer
20 is printing, every page that exits the printer
requires the IMB frame buffer to be copied from
memory to the print engine interface. Changing a
program-controlled printer interface to one driven
by a DMA device provided two significant advan-
tages. The first was to reduce the real-time require-
ments on the PrintServer software system, and the
second was to allow for a limited degree of paral-
lelism on the controller. The parallelism was due to
the ability of the processor to continue to execute
from its cache memory system while the DMA
device accessecl memory. 'The processor only stops
executing when a cache miss occurs.

Main Memory Bandwidth With a CVAX processor
configured as recommended in tlie section Memory
System Organization, the main memory system
bandwidth requirement of the processor was
60 percent. For the SOC, it was 70 percent when
an existing D W M controller was used. A DMA-
driven printer interface required 15 percent, and
a n Ethernet interface required nominally 4 percent
with bursts up to 20 percent. Each subsystem was
scrutinized to reduce its required memory band-
width. The resulting recommendation was to add a
32-bit bus to the memory subsystem to provide a
dedicated channel for all data being sent to the
printer interface. This provision would reduce
required memory bandwidth for the printer inter-
face from 15 percent to about 7 percent. The sys-
tem would then have a nominal memory bandwidth
requirement of 71 percent for a CVAX system and
81 percent for an SOC.

Overall System Performance The execution char-
acteristics of the original PrintServer 20 provided
some interesting surprises. Most floating-point
calculations were performed in double precision;
and even more interesting, for each floating-point
operation, there was a floating-point conversion
from single to double precision, and then back
again. Since the precise operations were not
required, a simple compiler switch removed the
conversions and provided a 3 percent overall sys-
tem performance improvement for floating-point-
intensive PostScript documents. A second surprise
came from the results of the BM3 benchmark,
whicli indicated a translation buffer hit rate of
85 percent. At the time of the discovery, the
PrintServer 20 was configured with a standard
MicroVLY processor; however, by substituting an
rtVAX, which uses one less memory access to refer-
ence its page tables, an 11 percent system per-
formance improvement was achieved. With this
improvement, the rtVm processor provided
enough power to allow the original PrintServer 20
to ship with its 20-page-per-minute designation.
This information led the turbo controller designers
to determine that the translation buffer of the SOC
would be large enough for all the entries required.

Results
The final analysis revealed that the expected perfor-
mance of a CVAX or SOC processor would place
either design on the low side of the performance
requirement. Therefore close attention to detail
would be required during tlie implementation
phase of the project as every ounce of performance
mattered. The expectation was to have a choice
between an SOC processor with a 40-11s cycle time
and a CVAX processor with a 60-ns cycle time. The
performance improvements of the two processors
are compared in Table 1.

Table 1 Performance Improvement Relative
to Original PrintServer 20 Controller

SOC CVAX
Benchmark Processor Processor

BM1

BM2
BM3
HOUSE
SCHEM

Digital Techrrical Jorrrnal Vo1. .? No. 4 FLI// /99/ 65

Image Processing, Video Terlninals, and Printer Technologies

AS the project schedule progressed, the risk asso- In each case existing chips satisfied some of the
ciated with the new ScX: processor decreased. As rcquirements for tlie subsystem. In tlic rncl these
this risk window collapsed, it was understood that chips met all our requirements, but only bec;~ust:
a turbo controller based on the SOc processor they were used in ways not originally intcrldcd by
would not only perform better, but would also cost the chip designers.
less as it would not require an external cache.

Main Memory
Turbo Controller Hardware Design

Since the sOc has a bus interface that is compati-
The turbo controller was destined for a relatively ble , i t h the CvAX chip, the most obvious chip to
high-end printer. Therefore the hardware archirec- as a memory colltroller was the CVhy
ture had to proviclc maximum performance, even nlellloly controller (CiL,;m) chip., It responds to all
though thib impletllentation woulcl increase costs. bus cycles by the SOC, since i t was
Ik~sed on the rcsults obtained during REI'aiCE analy- already used on a number of platforms supportetl
sis, the hardware desikn had the f0Jlowing in l~ le- by the V ~ S E L N operating system, its use greatly
mentation goals: simplified porting VAXELN to the turbo controller,

The SOC would provide the CPU, the floating-
point accelerator (FPA), and the cache subsystem.
No second-level cache would be implemented.

A four- to six-entry write buffer would be
implemented.

The transfer of bit-map data to the print engine
would require n 32-bit DMA subsyslc~li with scan-
erasc capability.

The memory subsystem would support OR-mode
memory access by the CPU and scan-erase access
by the D h l ~ controller.

Although both the SOC and rtVA;ri chips comply
with the VAx architecture standard and both are
conceptually very similar, they have significant dif-
ferences in the bus interface. For example, the
SO<: uses a quadword cycle (one %-bit address fol-
lowed by two 32-bit data reads) to fill one internal
cache block, while the rrVAX processor, which does
not support caching, does not use this type of
cycle. Also, thc clocking system on the SOC was
enhanced, and the timing relationships between
signals were moditicd to improve performance.

The changes to the SOC bus ~nterfacc, plus the
required functional changes revealed by RETrACE
analysis. meant that very little of the original
PrintSer\er 20 controller design could be applied
to the new controller. One of the lirst questions to
be answered before the design of the turbo con-
troller coultl begin, was whether or not one or
more ASIC5 woulcl be required for the design. This
question had to be answered for three subsystems:

Mainmemory

Write buffer

Bit-map data transfer subsystem

However, the turbo controller requires two special
memory modes that are not provided directly by
the CMCTL, namely OR mode and scan-erase mode.
It was essent~al to dev~se ;I way to include these
two modes if the CM<TI'L were to be use<l.

OR-mode memory is a technique used to improve
performance during the writing of the page bit
map into memory (scan conversion). During nor-
mal memory operation (called replace mode), the
destination operand in memory is replaced by the
source operand. During an OR-mode write cycle,
the destination oper;incl is modified a5 follows.

For each logical zero in the source data being
written, the corresponding destination bit in
memory remains unchanged.

For each logical one in the source data being
written, the corresponding destination bit in
memory is written with the corresponding bit in
tlie pattern register.

The pattern register is a 32-bit register which
determines the "color" pattern of the "ink" being
written on the page.

Figure 2 shows :I portion of the logic between
the CMCTL and the memory array that implements
the OR-mode function in hardware. The OR-mode
operation is accomplished by inverting the source
data and connecting it to 32 independent write
enables of the memory array. When a zero is writ-
ten, it is inverted and the write cycle for that bit
becomes a read cycle, thus preventing any change
to the memory contents When a one is written, it
is inverted and the write is allowed to occur, but
the data actually written depends on the value pre-
viously written into the pattern register.

66 Yol. .3 No. 4 Fall 1991 Digilal Techrrical Journal

Desirrn o f the Turbo Printserver 20 Controller

MEMORY DATA BUS FROM CMCTL 32
f

f 1

PATTERN 1 REGISTER I

OR-MODE
WRITE
DATA PATH

MAIN MEMORY
ARRAY

Figure 2 OR-mode Circuit

Two features of the CMCTL chip make it possible
to implement OR-mode memory. First, its 6 4 ~ ~
address space is diviclecl into 4 arrays of 4 banks
(16 banks total). Second, the CMCTL chip can selec-
tively disable parity checking on an array.

The large address space of the CMCTL allows the
use of 2 arrays for replace mode and 2 arrays for
OR mode, since the turbo controller supports up to
32MB of memory. The control signals of the two
sets of arrays are combined such that OR mode and
replace mode access the same physical memory,
though in ciiffcrent ways. Parity error detection
is disabled on the OR-mode arrays; thus a read-
through OR-mode address space cannot cause a par-
ity error. This is necessary because OR-mode write
cycles may corrupt parity. Normally any bit map
created sing OR-mode write cycles is read using
OR-mode reacl cycles.

The other special mode required for the main
memory system is called scan-erase mode. It is an
operating mode designed to improve bus utiliza-
tion during the transfer of the bit map from main
memory to a FIFO buffer connected to the printer
data lines. This mode is made possible by a side
effect of the error-correcting code (ECC)/parity
generation logic in the CMCTL. Any time a masked
write occurs (any write other than an aligned long-
word, such as a byte write), the destination long-
word must first be reacl by the CMCTL, then
combined with the bytes to be written in order
to generate the parity or ECC check bits for that
longword.

Three operations occur (luring a single scan-
erase cycle. Refer to the circuit drawing in Figure 3.

1. The bus master asserts the signal's "bit-map
load" and "bit-map erase" and requests a masked
write. The CMCTL performs a read, and the bit
map is read onto the memory data bus.

2. Bit-map data is automatically transferred from
the memory data bus into the FIFO buffer.

3. The CMCTL performs a write. However, since
the bit-map erase signal has disabled the data
path and the pull-down resistors have set the
data-in lines to all zeros, the write cycle, which
was intended by the designers of the chip as a
masked write, has in fact become a memory
clear operation.

Write Buffer
The ~ ~ 3 2 2 0 chip was chosen as the base for the
write buffer subsystem. It provides a six-entry FIFO

buffer for address, clata, and byte mask and detects
whether the processor has requested a read at a
memory location for which a write is still pentling.
It also supports two operating modes: I.R3000
mode and Harvard mode.

If it were not for the Harvartl-mode feature, it
would have been more tlifficult to inclucle the
LR322O chip into the turbo controller. The LIi3000
processor, for which this chip was designed, has
staggered address timing. Some of the address and
byte-mask bits are asserted on the falling edge of
the clock, and the remaining bits are asserted on
the rising edge of the clock. When the LK3220 chip
is configured in LR3000 mode, the processor sub-
system must meet these timing requirements.
However, when the LR3220 chip is configured in
Harvard mode, all address, data, and byte-mask
information is read at the same rising clock edge.

The basic strategy for including the write buffer
into the turbo controller was to insert the write buf-
fer between the SOC and the rest of the system as
shown In Figure 4 The SOC would issue seael and
write requests to the write buffel; and the write
buffer would issue reatl and write requests to the
rest of the system. During CPU cycles the SOC and
the write buffer have a master-slave relationship
in which the SOc is the master. The relationship
between the write buffer and the rest of the system
is also a master-slave relationship; however, the
write buffer is the master. In fact, the write-buffer
output interface must look almost identical to the
SOC.

Digital Techrical Journal Wd.3 No. 4 Fall 1991 67

Image Processing, Video Terminals, and Printer Technologies

FIFO BUFFER
n

BIT-MAP LOAD

DATA TO
PRINT ENGINE

MEMORY DATA BUS FROM CMCTL I !2
/ I I

REPLACE-MODE
WRITE DATA PATH

BIT-MAP ERASE

WRITE ENABLE
FROM CMCTL COMMON

WRITE
ENABLE

MAIN MEMORY
ARRAY

Figure 3 Scan-erase Circuit

The structure of the write-buffer subsystem is entries in the LR3220 chip have data, the bus cycle
shown in Figure 5. 'l'he bus interface unit responds generator (BCG) removes the next entry ant1 issues
to read or write requests from the SO<:. During a write request to the appropriate subsystem.
write cycles, the bus interface writes the data into The write-buffer subsystem allows the SOC to
the LR3220 chip and immediately alerts thc SOC to "read around" the write buffer, provided the address
terminate the cycle quickly. Whenever one or more being read does not have a pending write in the

MEMORY
CONTROLLER
(CMCTL)

UNIVERSAL
DIRECT MEMORY I ACCESS I
CONTROLLER

pq
TO PRINT ENGINE

Figure 4 Interconnection of Turbo Controller S~~bsystems

68 I+)/. .(No. 4 I:LI// 1991 Digital Techrricnl Jonrnnl

Design of the Turbo Printserver 20 Controller

Figure 5 Write B2qfe.r

SOCCONTROL

LR322O. To handle this, the BCG includes an arbitra-
tion circuit. When the SOC requests a read cycle,
the bus interface unit of the write buffer passes
the request to the BCG. The BCG responds once
it has completed any write cycle currently in
progress, provided that the address to be read does
not have a pending write in the write buffer. When
the slave device being read acknowledges the BCG,
the acknowledgment is passed back to the bus
interface and finally to the SOC to terminate the
cycle. The BCG then resumes its task of removing
entries from the LR3220 chip and issuing writes to
the rest of the system.

In order to maintain data coherency, the write-
buffer subsystem enforces some additional
protocols.

BUS LOCAL
BUS CYCLE

INTERFACE GENERATOR CONTROL
SYSTEM CONTROL

UNIT

All writes to any location other than main
memory require a write-flush cycle; that is, the
bus interface must wait until the LR3220 chip
is empty before writing the data to it. Further-
more, the bus interface must wait until the BCG
has finished the cycle before it acknowledges the
SOC and allows it to perform the next cycle.

All reads to any location other than main mem-
ory require a read flush, which has the same
restrictions as a write flush. These restrictions
are required to avoid the possibility of reading
around a pending I/O space write, which often
has side effects to other addresses.

-

The write-buffer subsystem must pass all DMA
bus transactions to the S O c to ensure that all
cached memory locations that are modified by
DMA cycles have their corresponding cache
entry invalidated.

Bit-map Transfer Subsystem
The bit-map transfer subsystem transfers bit-map
data, created by the Postscript interpreter, to the
print engine. It is composed of the 32-bit DMA con-
troller, a FIFO subsystem, ant1 scan-erase logic in
main menlory as described in the section Main
Memory.

The main requirements for the 32-bit DMA con-
troller were

-

-

32MB address range

ADDRESS IN

LATCH

Ability to transfer 32 bits at a time

-- ADDRESS OUT

Ability to transfer the frame buffer forward
(incrementing the source address) or backward
(decrementing the source address)

None of the available DMA controller chips met
all our requirements, but the AMD 9516 universal
DMA controller (UDC) met some of them. The IJDC
is a 16-bit DMA controller with a 1 6 ~ ~ address
range and the ability to increment or decrement the
source address. There were two drawbacks to the
use of this chip. The software would have to ensure
that the frame buffer was always within the lower
1 6 ~ ~ of memoly, and the l JDc would iise twice as
much bus bandwidth since it could transfer only
16 bits at a time.

It was proposed that the UDc could be used as a
full 32-bit DMA controller if it was connectecl to the
bus "incorrectly" by shifting the data/address lines
to the left by one bit. That is, data/address line 0 on
the UDC would be connected to datahddress line 1
on the bus; data/address line 1 of the UDC would be
connected to dataladdress line 2 on the bus; etc.
This type of connection doubles the address range
of the chip and causes the source address on the

SOC DATAIADDRESS

Digital Tecbnical Journal Vd. 3 No. 4 F~1lll99l 69

SYSTEM DATNADDRESS
DATA IN DATA OUT

SOC BYTE MASK

MULTIPLEXER

LR3220 WRITE BUFFER SYSTEM BYTE MASK

Image Processing, Video Terminals, and Printer Technologies

bus to increment by 4 bytes (32 bits) instead of
2 bytes (16 bits).

This decision had a few implerncnt;ition impacts.
For example, the register definitions were now
incorrect, since all the bits in all the registers were
shifted one bit to the left. However, once the soft-
ware was modified to compensate for this, the UDC
functioned properly as a 32-bit DMA controller.
When combined with the scan-erase feature of
main memory, it allowed us to achieve our bit-map
transfer goal of reading 32 bits from memory, load-
ing it into the FIFO subsystem, and clearing the
memory location, all in a single DMA cycle.

In this section, the performance of the original
PrintServer 20 is compared to the enhanced perfor-
mance of the turbo PrintServer 20.

Except for performance, the original PrintServer
20 and the turbo PrintServer 20 have identical func-
tional capabilities. Table 2 lists the five functional
subsets that were characterized for performance
on both printers. The first four functional subsets
were rated using the PostScript real-time operator;
they measure the elapsed CPU time needed to
complete a test. The last fullctional subset was
rated according to thc rate of pages exiting
the printer. The term "DECnet/DI-'Sn refers to the
DECnet job (a job is one of sevcr;~l multiprocessing
tasks running on the controller) and the "dis-
tributed PrintServer softniarc" job. The term
"printer system" refers to the complete printer
system, including the Postscript job and the print-
ing overhead jobs. The printer system was rated
according to the rate of pages esi ting the printer.

Table 3 reports the general attributes of the five
files that were run with the RETrKE system and
characterized for performance.

Table 2 Functional Subsets of the Printers

Functional Subsets Characterization

Postscript job Math operations per second

PostScript job
PostScript job

DECnetIDPS jobs

Text: characters per second
Graphics: vector inches per
second
DECnetIDPS: kilobytes per
second

Printer system Image printing: square
excluding inches per second
DECnetIDPS

Table 3 Benchmark File Attributes

File Name General Attributes of File

Contains 39 pages of text with
13 fonts of various sizes. Some
text strings are at varying angles.

BM2.PS Contains 1 page of spiral text
of various point sizes.

BM3.PS Contains 41 pages of text with
5 fonts.

HOUSE.PS Contains a 1-page bitonal image
of 3000 blocks (DECnet limited).

SCHEM.PS Contains a 65-page schematic
of graphics (vectors) and text.

Math Operators Performance of the
PostScript Job
Figure 6 illustrates the controllers' performance
rcsults in math operations per second. The test
determines the time needed to perform 50,000
primitive math operators (e.g., adding two num-
bers 50,000 times) during a Postscript test docu-
ment. The real-time operator reads the current
time, and the repeat construct repeats the math
operator. This test measures the performance of
the CPU only.

ADD DIV MUL SQRT COS EXP LOG

KEY:

O ORIGINAL CONTROLLER
TURBO CONTROLLER

TURBO = 6.7 x ORIGINAL CONTROLLER

Ffgure 6 PostScriptJoO PerJbr~nance with Math

Te3ct Performance of the PostScript Job
Figure 7 compares the text performance of the
PostScript job on the original controller and the
turbo controller. The test determines how long it
takes the PostScript job to compose 250,000 equally

70 Vol. .? No. 4 Fa11 1991 Digital Technical Journal

Design of the Turbo Printserver 20 Controller

FONT POINT SIZE

KEY.

I ORIGINAL CONTROLLER
W TURBO CONTROLLER
TURBO = 5.2 X ORIGINAL CONTROLLER

Figure 7 PostscriptJob Peflorzance with Text

sized characters to the page buffer in memory,
which eventually is sent to the print engine to be
printed.

Graphics Performance of Postscript Job
An important means of characterizing graphics per-
formance is in vector inches per second. Figure 8
shows the results obtained by running a Postscript
vector program in which all vectors are at
45 degrees and vector lengths are from 0.1 inch to
3 inches.

VECTOR LENGTH (INCHES)

KEY.

C ORIGINAL CONTROLLER
W TURBO CONTROLLER
TURBO = 4.6 X ORIGINAL CONTROLLER

Figure S PostScrt$l Job Perfonnunce
with Gr~p5ic-s

The image test characterized the complete printer
system, including the Postscript job and the print-
ing overhead jobs, but exclutling the DECnet/DPS
time required to transfer an image file to a printer.
Three one-square-inch bitonal images at device
resolution were placed into the user dictionary
and were used repeatedly during the performance
measurement. The result of using these precached
images was to eliminate the DECnet and DPS soft-
ware time that would be required to transfer a full-
page image from a host to the printer. Performance
was measured by printing 10 pages of 80 square
inches of image per page.

The pages were printed landscape and portrait
to measure the image performance both on axis and
off axis. (On axis means that the printer sequen-
tially prints all bits of a word from the image on a
single scan line. Off axis by 90 degrees means that
the printer prints one bit from each word and does
not print the next bit in the word until it is at
the same position on the next scan line.) Figure 9
shows the results of the image performance test in
square inches per second.

ON AXIS OFF AXIS

KEY:

- ORIGINAL CONTROLLER
TURBO CONTROLLER

TURBO = 3.0 x ORIGINAL CONTROLLER

Figure 9 Image Pe'erf rmance M e u s ~ ~ r m e n t
of the Printing System

DECnet/DPS Jobs Performance
DECnet/DPS transfer rates can be ignored for text
and graphics files, but these rates can consume
most of the time needed to print large image files.
For example, a single, letter-size page of image
contains more than 1MB of image data, but the

Digital Technical Journal Vol. 5 iVo 4 F~r11 1991 71

Image Processing, Video Terminals, and Printer Technologies

corresponding Postscript file contains more than
23413. Because the iniagc tl;ita is representetl in hner-
ican standard code for information interchange
(AS<:II) 11exadecim;tl cliar;~ctcrs in I'ostScript, 8 bits
of the PostScript file are necdetl to represent 4 bits
of image data.

.li) mcasurc DE(:nct/DPS, ;I Postscript file of 1 Mn

of comments w;is sent to the printer. l 'hc clock w;is
started when the beginning of the file was received
by the Postscript interpreter ant1 stoppccl when the
end of the file was received. Thc assumption of this
test method was that the Postscript interpreter can
parse comment lines much faster than I)E(:net/DI'S
can transfer them.

The I)E<:net/I)PS transfer rate is basically propor-
tional to the slo\\ler of the host and printer proces-
sors. Figure 10 shows the DI:Cnct/DPS results.

RETrACE Benchmark Files
The benchmark files listed in Table 4 arc charac-
terized both by the elapsed time from file arrival

KEY:

90

80
0
Z 70
0
Y s o -
cn
5 50-
a
(1, 4 0 -
LU
t-
t 3 0 - m

2 2 0 -
Y

10

0

ORIGINAL CONTROLLER
TURBO CONTROLLER

TURBO = 4.9 ORIGINAL CONTROLLER

-

-

-

Figure I 0 DECnet/DPS Jobs Petjbrrrlance

to file printed and by the amount of (:PC1 timc used
to print the job. For example, in the BMS bench-
mark, the speed is limited by the 20-page-
per-minute print engine, but the crrr timc nccded
to print the file can be used as a perfi)rmance
me;iSurcment.

'I'he turbo controller enhanced the performance of
the PrintScrver 20 printer system. Its design was
promptcd by the need to maintain print speed
performance for complex documents containing
text, graphics, and images. The RETrACE system was
clesigned to analyze the Printserver 20 system to
determine which architectural changes would pro-
vide the greatest improvement in PostScript perfor-
mance. By optimizing hardware only in areas where
it was truly worthwhile, we were able to use exist-
ing chips and reduce development costs. The sub-
systems of the turbo controller hardware that
were optimized as a result of this analysis were
the processor (SOC which provided CPU, floating-
point accelerator, and cache subsystem), a memory
s~~bsystem with OR-mode and scan-erase access,
a write-buffer subsystem, and a 32-bit DMA sub-
system. Results of the performance tests for five
benchmarks, including PostScript jobs, indicate the
levels of cnhanced performance.

Acknowledgments
Chris Mayer cle5igned and jmplcmentetl the
IiIi'l'rACE multilevel cache simulatoc He developed
a ticketing algorithm that simplified the manage-
ment of delayetl behawor memory constructs such
as write buffers

Reference
1. D. K. Morgan, "The CVAX CMCTL-A CMOS

Memory Controller Chip," Digital Technical
Journal, vol. 1, no. 7 (August 1988): 139-143.

Table 4 Benchmark Files Characterized by Elapsed Time and CPU Time (Seconds)

Benchmark Original Turbo Original Turbo delta delta
File CPU CPU Elapsed Elapsed CPU Elapsed

BM1

BM2

BM3

HOUSE

SCHEM
'Limited by engine.

72 I/ol .i /\lo I 1:~111 1991 Digilrrl Technicnl Journal

Further Readings

The Dlgltal Technical Journal
p~iblishesl~apers that explore
the technological foundations
of Digital's majorproducts. Each
Journal focuses on at least one
product area andpresents a
compilation of papers written
by the engineers who developed
the product. The content for
the Journal is selected by the
Jo~irnal Advisory Board.
Digital engineers who ZUOLIM
like to contribute a paper
to the Journ;~l should contact
the editor at RDVAX::BLAKE.

Topics covered in previous issues of the Digital
Technical Jourruzl are as follows:

Availability in VAXcluster Systems/
Network Performance and Adapters
Vol. 3, No. -3, S ~ ~ m m e r I99I
Discussions of VhlS volume shadowing, VAXcluster
application design, ancl new availability features of
local area VNtcluster systems, together with details
of high-performance Ethernet and FDDI adapters,
and an analysis of FDDI LAN performance

Fiber Distributed Data Interface
Vol. 3, No. 2, Spring 1991
The FDDI JAN system and Digital's products that
support this technology, with an overview and
papers on the physical and data link layers,
Common Node Software, bridge and concentrator
devices and related management software, and an
rJ1.TR.N network adapter

Transaction Processing, Databases, and
Fault-tolerant Systems
Vol. 3, No. 1, Winter 1991
The architecture and products of Digital's dis-
tributed transaction processing systems, with
information on monitors, performance measure-
ment, system sizing, database availability, commit
processing, and fault tolerance

VAX 9000 Series
Vol. 2, No. 4, Fall I990
The technologies and processes used to build
Digital's first mainframe computer, including
papers on the architecture, microarchitecture,
chip set, vector processor, and power system,
as well as CAI) and test methodologies

DECwindows Program
Vol. 2, No. 3, Summer 1990
An overview and descriptions of the enhance-
ments Digital's engineers have made to MIT'S
X Window System in such areas as the server, tool-
kit, interface language, and graphics, as we1 l as
contributions made to related industry standards

VAX 6000 Model 400 System
Vol. 2, No. 2, Sjring 1990
The highly expandable and configurable midrange
family of VAX systems that includes a vector proc-
essor, a high-performance scalar processor, and
advances in chip design and physical technology

Compound Document Architecture
Vol. 2, No. I , Winter I990
The CDA family of architectures and services that
support the creation, interchange, and processing
of compound documents in a heterogeneous net-
work environment

Distributed Systems
Vol. I, No. 9, June 1989
Products that allow system resource sharing
throughout a network, the methods and tools
to evaluate product and system performance

Storage Technology
Vol. I , No. 8, February 1989
Engineering technologies used in the design, man-
ufacture, and maintenance of Digital's storage and
information management products

CVAX-based Systems
Vol. I , No. 7, A~ig~lst 1988
CVAX chip set design and multiprocessing archi-
tecture of the midrange V/LY 6200 family of systems
and the MicroVAX 3500/3600 systems

Software Productivity Tools
Vol. I , No. 6, February 1988
Tools that *assist programmers in the development
of high-quality, re1 iable software

VAXcluster Systems
Vol. I , No. 5, September 1987
System communication architecture, design anci
implementation of a distributed lock manager, ;~ntl
performance measurements

VAX 8800 Family
Vol. I , No. 4, Febr~iary 1987
The microarchitecture, internal boxes, VAXRI bus,
and VMS support for the \'AX 8800 high-end multi-
processor, simulation, and CAD methodology

Digital Tecbnical Journal k 1 . .3 No. 4 Fc1111391 73

Networking Products
I/ol. I, iVo. -3, Septtnnber 2986
The Digital Network Archilccture (DN/\). nctworl<
performance, LANbridge 100, I)t':(:net-l 1:I'IUX ; ~ n d
DECnet-DOS, monitor design

MicroVAX I1 System
14)I. 1. l i t) . 2, ,VI~irc.h 1986
The implementation of the microprocessor and
floating point chips, (:,U> suite, ,lilicro\iZS nrork-
station, disk controllers, and 'l'K50 tape drive

VAX 8600 Processor
Vol. I , ,Vo. 1, A~ ig~ i s t 1985
The system design with pipelined architecture,
the I-bos, F-bos, packaging consitlerations, signal
integrity ;md design for rcli;~bility

Subscriptions to the Uigiil~d 72chrzicril.Jo~~1.n~il are
available on a !re;~rl!: prepaid basis. l 'he sul>scrip-
tion rate is S40.00 per year (four issues). Kecluests
should be sent to (Zathy Phillips, Digital Equipment
Corporation. ~ ~ 0 1 - j / ~ 6 8 , 146 >lain Street, >laynard,
i\M 01754, LY.S.A. Subscriptions must be paid in I..S.

dollars, and checks should be made pa).;~ble to
Digital Equipment Corpor:~tion.

Single copies ant1 past issues of the Digil~ll
Tec/~?zical Jo~~r izc~l can be orclered from Digital
Press at a cost of 510.00 per copy.

Technical Papers by Digital Authors

R. Al-Jim, "A Methotlology for Evaluating Ilecision
Making Architectures for Autom;~tecl Manufactur-
ing Systems." Eleventh IIAC Conference (August
1990).

S. Angebrannclt, R . Hyde, D Luong, and N. Sirilvara,
"Intepra~ing Audio and Telephony in a Distributed
Workstation Environment," I'roceetlings of the
Summer I992 l/.TI;iVI,Y ConJkrence (June 1991).

S. Batra, M. Mallar): and A. Torabi, "1;requency
Response of 'l'hin-film Heads with Longitutlinal
and Transverse Aiisotropy," IJilX Inter~rz~i'y '90
(April 1990).

R. Csencsits, N IZicl,J. Dion and S. Arsenault,
"Interfacial Structure and Atlhesio~i of hiletal-on-
polyamide," Iizlcrncrtional Sjimposiurnj?w Rsling
and Failure Analysis (October 1990)

R. Csencsits, J Rose, R. St. Amand, L. Elliott,
A. Hartzell, L. Kisselgof, and J. Lloyd, "Alum~nuni
Interconnect Microstructl~re ancl Its Role in
Electromigr;~tion," I~ltc.rr~ationu1 Synll,o.sizlrn
for Testirlg and Fclilzire Arlulysis (October 1990)

J. Delahunty and T. Kielt): "Automated Pareto
Analj.sis for (;ontinuously Improving a VLSl
Fabrication 12rea's Process St;~bility," Aduulzced
Setnic.or~~lr~c.lor i l f ~ ~ n ~ $ l ~ t ~ ~ r i n g Con. ference
(September 1990).

S. Dell, "Promoting Equality of the S e x \ through
Techn~cal Writing," Socic,ty.fi)i* 7ecI~ni~ul Comnfil-
nicalio~z (August 1990).

B. Doyle and K. ~Mistry, "A Lifetime Prediction
Method for Hot-carrier Degradation in Surface-
channel P-&lOS Devices," IEEIi ficzn.scictior2s on
Electron Devices (May 1990).

E. Freedman ant1 Z. Cvet;~novic, "Efficient
Decomposition and Performance of Parallel
IWE, FFT, Monte Carlo Siniul;~tions Simples
ancl Sparse Solvers," IEEE S ~ ~ ~ e r c o m n p ~ t i g YO
(November 1990).

A. Gartlel ant1 I? Deosthali, "Nub-centeretl Pro-
tluction Control of Wifcr Fabrication," Acluu~zced
Sernicond~lctor bfcrn~lfclct~~rirzg Confererzce
(September 1990).

A. Hartzell. "Introduclion of Argon as a Heat
Transfer Gas in a Single Wafer RIE System,"
Intenzcitional Sj~~n/~osiunz for Tesling and
Fciilurc Analysis (October 1990).

A. Heyman and J. Thotluvelil, "Linear Averaged and
S;lmpled Data Models for Largc Signal Control of
High Power Factor AC-DC Converters," IEEE Power
Electronics Sf~ecialists (June 1990).

I.. Hill, "Vicleo Signal Analysis h r EA4l Control,"
/FEE Electronz~lg '91 (1991).

L. Hill and A. Metsler, "Vicleo Subsystem Design
for EM1 Control," IEEEElectromag '92 (1991).

S. Kasturi, "Forcetl Convection: The Key to the
Versatile Reflow Process," AlEPCON East '90
(June 1990).

D. Mirchandani ant1 l? Biswas, "Characterization
; ~ n d Modeling Ethernet Performance of
Distributed DECwitldows Applications,"
i-lCiW Sigrnetrics (May 1990).

W Metz, "Automated On-line Opti~liization of an
Epit;lsial Process," Znternatio7zal Semicolzductor
il.lun~fc~ctzlring .Ycience Symn~>osium (May 1990).

K. Mist~y, I3. Doyle, and D. Krakailer, "Impact of
Snapback Induccd Hole Injection on Gate Oxide
Reli;~bility in N-MOSFliT's," IIY3:'Electron Deuice
Letters (October 1990).

74 Val. .f No. 4 FUN 1991 Digilnl Tcchtrical Jorrrnnl

C . Pan, "Gas Lubrication," ASME/STLE Tribology
Conference (October 1990).

A. Philipossian, "Fluid Dynamics Analysis of
Thermal Oxidation Systems via Residence Time
Distribution (RDT):' Electromechanical Society
(October 1990).

M. Sidman, "Convergence Properties of an
Adaptive Runout Correction System," ASME
Winter Meeting (November 1990).

M. Sidman, "Parametic System Identification
on Logarithmic Frequency Response Data,"
IEEE Transuctions on Automatic Control
(September 1991).

D. Skendzic, "Two Transistor Flyback Converter
Design for EM1 Control," IEEE Symposium on
Electromagnetic Compatibility (August 1990).

A. Smith and W Goller, "New Domain Configura-
tion in Thin-film Heads," Intermag PO (April 1990).

H. Smith and J. Beagle, "SIMS for Accurate
Process Monitoring in CoSi2-on-Si MOSFET
Technology:' Secondary Ion Mass Spectromety
(September 1989).

J. Thottuvelil, "Using SPICE to Model the Dynamic
Behavior of DC-to-DC Converters Employing Mag-
netic Amplifiers," IEEE Applied Power Electronics
Conference (March 1990).

R. Ulichney, "Frequency Analysis of Ordered
Dither," Hard-copy Output OE/LASE 89 SPZE '89
Proceedings (1991).

R. Ulichney, "Challenges in Device Independent
Image Rendering ," Applied Vision Optical Society
ofAmerica Tech~zical Digest Series '89 (1991).

E. Zimran, "Performance Efficient Mapping of
Applications to Parallel and Distributed Archi-
tectures," International Conference on Parallel
Processing (August 1990).

Digital Press

Digital Press is the book publishing group of
Digital Equipment Corporation. The Press is an
international publisher of computer books and
journals on new technologies and products for
users, system and network managers, program-
mers, and other professionals. Proposals and ideas
for books in these and related areas are welcomed.

The following book descriptions represent a
sample of the books available from Digital Press.

VAXNMS: Writing Real Programs i n DCL
Paul C. Anagnostopoulos, 1989, softbound,
409 pages, Order No. EY-C168E-DP-EEB ($29.95)

This book contains information that can help the
reader learn to write powerful and well-organized
programs in DCL, the command language for the
v iu t /v~S operating system. The text includes a
review of the syntax and semantics of DCL and a
discussion of significant issues in the development
of serious DCL software. Programming paradigms
are presented, as well as the correct way to
implement them. The book presents good pro-
gramming techniques and helps the student to
make effective use of the VMS operating system.

X WINDOW SYSTEM TOOLKIT:
The Complete Programmer's Guide
a n d Specification
Paul J. Asente and Ralph R. Swick, 1990, softbound,
1000 pages, Order No. EY-E757E-DFEEB ($44.95)

This book consists of two parts, "Programmer's
Guide" and "Specification." "Programmer's Guide"
describes how to use the X Toolkit to write
applications and widgets, and includes many
exan~ples. Each chapter in this part contains an
application writer's section and a widget writer's
section. Application programmers need to read the
widget writer's sections only if they are curious
about what is going on behind the scenes;
widget programmers should read both sections.
"Specification" provides a complete and concise
description of every component of the X Toolkit
Intrinsics, as standardized by the MIT X Consor-
tium. The level of detail in this part is sufficient
to enable a programmer to create a new imple-
mentation of the X Toolkit.

PRODUCTION SOFTWARE THAT WORKS:
A Guide t o the Concurrent Development
of Realtime Manufacturing Systems
John A. Behuniak, Iftikhar Ahrnad, and
Ann M. Courtright, 1992, softbound, 204 pages,
Order No. EY-H895E-DP-EEB ($24.95)

This is a practical guidebook for manufacturing
managers and process engineers who must develop
better process methodologies to stay competitive
and for developers of realtime manufacturing
software who need to cut time and costs from their
work. The presentation, which provides useful
advice and easy-to-follow procedures, atldresses
three basic tasks of realtime software development

Digital Tecbwical Jourtutl Vi l . 3 No. 4 Full 1991 75

Further Readings

In a manufacturing plant: (1) managing the design
of the system; (2) setting up and managing a
development organization; and (3) implementing
tools for successful completion and management.

UNDL FOR VmMS USERS
Philip E. Bourne, 1990, softbound, 368 pages,
Order No. EYC 177EDPEEB ($2895)

This book emphasizes the practical aspects of
maklng the transition from the VMS to the UNE
operating system. Every concept presented is
illustrated with one or more examples, comparing
how to perform a particular task in each of the
two operating systems. The book is organized in a
logid order and covers the following topics: fun-
damental concepts to be grasped before touching
the keyboard, the k t terminal sessions, the lirst
commands, editing, communicating with users,
resource utilization, using devices, more advanced
commands, using high-level languages, program-
ming the operating system, text processing, and
networking. Appendixes provide extensive cross-
reference tables to make this a valuable reference
tool for even the experienced UNlX user.

LOGBTICAL EXCELLENCE:
It's Not Business as Usual
Donald J. Bowersox. Patricia J. Daugherty,
Cornelia L. Drogue, Richard N. Gerrnain, and
Dale S. Rodgers, 1992,300 pages,
Order No. EY-H953E-DP-EEB

This book focuses on the interpretation of research
findings that have been compiled to help managers
who seek to improve logistical competency within
their organization. It provides a sequential model,
the best practices of "excellent" logbtics managers
with supportiw statistical evidence, and extensive
coverage of Electronic Data Interchange in the
logistics process. It also includes a brief overview
of the expanding role that logistics has recently
played in the overall corporate strategy of increas-
ing speed and quality. To facilitate interest and ease
of readtng, an action-oriented case dialogue runs
throughout the eight chapters.

WRITING VAXIVMS APPLICATIONS USING
PASCAL
Theo de Klerk, 1991, hardbound, 748 pagcs,
Order No. EY-F592E-DP-EEB ($39.95)

Written for the profcssional application progr;im-
mer on thc v,\x/v,\~s operating system using the

VAX Pascal programming language, this is the first
book to actually discuss the construction of real
VMS applications. It sets forth a methodology for
producing high-quality, professional vMS wpli-
cations by focusing on the aspects of the vM.5
operating system crucial to every well-written
application.

THE DIGITAL GUIDE TO SOFTWARE
DEVELOPMENT
The staff of the Corporate User Information
Products (CUIP/ASG), Digital Equipment
Corporation, 1989, softbound, 239 pages,
Order No. EYX178E-DP-EEB ($2194)

TIfE DIGITAL GUIDE TO SOF71BlRE DEVELOPMENT
is the first p~~blished description of the method-
ology that Digital uses to design and develop its
software. For the enginccr and other professionals
associatecl \+lit11 the crc;~tion ant1 marketing of
softw;irc ;~pplic;itions, this book givcs a rare look a t
the practiccs of an intlustry leader ant1 provicles a
model for others who wish to introduce software
engineering mcthods and tools into their own
companies. Also discussed are the use of selected
VMS case tools to expedite the process; the roles of
team and team leaders; the use of review meetings
and dactunents; and formal proceclures for testing
and maintenance. The guide jncludes numerous
diagrams and tables, clear guiclelines for the coding
and documcntation of software tnodules, a listing
of related vMs documcntation, ancl coding guide-
lines for VAX C.

DIGITAL GUIDE TO DEVELOPING
INTERNATIONAL SOFTWARE
The staff of the Corporate User Information
Products (CUPIASG), Digital Equipment
Corporation, 1991, softbound, 381 pages,
Order NO. EY-F577E-DP-EEB ($28.95)

This book introduces the ground-breaking pack-
aging and design guidelines recommended by
DigitaJ for products destined for overseas markets.
Already used by more than 400 independent soft-
ware vendors and development groups, as we1 l as
by Digital engineers, this book offers an approach
that greatly simplifies the steps required to adapt
software to local markets once the parent product
has been released. The book features a description
of Digital's international product model, a scheme
for separating the core functions of a product from
those that require translation or moclific;~tion for

76 &>I. .3 Na 4 Fa11 1991 Digital Technicul Journal

specific markets. AJso included are guidelines for
developers working in DECwindows, VMS, and
U L T ~ environments; special considerations
involved in preparing a product for multibyte Asian
languages or for multilanguage environments; and
appendixes with information on the systems issues
in computer architecture.

USING MS-DOS KERMIT: Connecting your
PC t o the Electronic World, Second Edition
Christine M. Gianone, 1991, softbound,
344 pages with software disk included,
Order No. EY-H893E-DP-EEB ($34.95)

As in the first edition, this software package leads
the novice step by step through installation, com-
munication setup, terminal emulation, file transfer,
and script programming, and also serves as a com-
plete reference work for the experienced user.
Complete with 5%-inch diskette containing the
official MS-DOS KERMIT Version 3.11 program from
Columbia University, this revision includes a new
section on local area networks, additional material
on running Kermit in windowed environments
such as Microsoft Windows and Quarterdeck
DesqView, a new appendix containing tables of
the escape sequences used by Kermit's text and
graphics terminal emulators, and expanded
descriptions of many of Kermit's features.

ENTERPRISE NETWORKING:
Working Together Apart
Raymond H. Grenier and George S. Metes, 1991,
hardbound, 260 pages, Order No. EY-H878E-DP-EEB
($29.95)

To successfully compete in the next century, com-
panies must recognize and adapt to exponential
changes, including the dispersion of markets and
resources and acceleration in market demands.
ENTERPRISE NETWORKIIVG: Working Together
Apart, describes how management can support
this distributed electronic information environ-
ment and move through planned transitions to
a new organization, cotlfident they will prosper.
Intended for individuals in charge of directing
transition of information-focused groups that
extend across geographies, this book is segmented
into four parts. The Introduction, Part I, defines
the assumptions and realities. Part 11 focuses on
Capability Based Environments. Part 111 tliscusses
Simultaneous Distributed Work, both Goals and
Processes, and Continuous Design and Quest for

Quality. The Epilogue, Part IV, concludes with
three appendices detailing Benchmarking, Build-
ing Networks, and Networking Capabilities.

THE ART OF TECHNICAL DOCUMENTATION
Katherine Haramundanis, 1992, softbound,
267 pages, Order No. EY-H892E-DP-EEB ($28.95)

Written primarily for novice and aspiring technical
writers within the computer industry, The Art
of Technical Doczcmentation has unique features,
including its advice on planning and process,
research techniques, use of graphics, audience
analysis, definition of quality, standards, and
careers that are valuable to experienced technical
writers as well. Haramundanis views the practice
of technical writing as being different from that
of scientific writing, and closer to investigative
reporting. In keeping with this premise, this book
is not a style guide that deals with all aspects of
typography and copy editing, but instead presents
the distilled knowledge of the author's many years
experience.

A COMPREHENSIVE GUIDE TO Rdb/VMS
Lilian Hobbs and Kenneth England, 1991,
softbound, 352 pages, Order No. EY-H873E-DP-EEB
($34.95)

The RdbrVMS relational database system was
developed by Digital Equipment Corporation for
vtD(computers using the VMS operating system.
This system is one of a number of information
management products that work together to
facilitate the sharing of information. The RdblVMS
system is used, for example, in high-performance
transaction processing systems. This book is based
on RdbMS Version 4.0, which Digital made avail-
able to customers at the end of 1990, and thus
includes the latest functionality.

DIGITAL GUIDE TO DEVELOPING
INTERNATIONAL USER INFORMATION
Scott Jones, Cynthia Kennelly, Claudia Mueller,
Marcia Sweezey, Bill Thomas, and Lydia Velez, 1992,
softbound, 214 pages, Order No. EY-H894~-DFEEB
($24.95)

Designed for the busy professional, this book
presents models that extend beyond Digital and
English speaking countries in a quick read/
reference format. Nine chapters and four appen-
dices outline methods for creating written, visual,

Digital Tecbnical Jortrtwl Vi1.3 No, 4 Fall 1991 77

and verbal information for cost-effective trans-
la tion. Primarily for information specialists,
including writers, editors, illustrators, course
developers, and their managers, this book will also
help software developers and students enhance
their background in technical communication.

PRACTICAL KNOWLEDGE ENGINEERING:
Creathg Successful Commercial Expert
Systems
Richard t! Kelly, Jr., softbound, 212 pages,
Order No. EY-F591 E-DP-EEB ($28.95)

This book is a concise guide to practical methods
for initiating, designing, building, managing,
and demonstrating commercial expert systems.
It is a front-line report of what works (and what
does not) in the construction of expert systems,
drawn from the author's decade of experience
gained working on such projects in all m;ijor
areas of application for American, Europc;in, and
Japanese organizations. It also briefly reviews
the knowledge representation, programming,
anti management techniques commonly used to
implement expert systems today, and describes the
intellectual, organizational, financial, and manage-
rial issues that knowledge engineers face d d y in
performing their jobs. Among the topics covered
are: prospecting for "legitimaten problems; fore-
casting costs, establishing project metrics and
writing specifications; prepatkg for system
"demos"; interviewing and selecting engineering
team members; and solving common difficulties
in clesign and implementation.

COMPUTER PROGRAMMWG AND
ARCHITECTURE: T h e VAX, Second Edition
Henry M. Levy and Richard H. Eckhouse, Jr., 1989,
hardbound, 444 pages, Orcler No. EY-6740~-DP-EEB
($38.00)

This book is both a reference for computer profes-
sionals and a text for students. A systems approach
helps the reader understand the issues crucial to
thc comprehension, design, and use of modern
computer systems. Using the VAX computer as an
example, the first half of the book is a text suitable
for a complete course in assembly language pro-
gramming. The second half of the book describes
l~igher-level systems issues in computer arcl~itcc-
ture, namely, support for operating systcms and
operating systems structures, virtual memory,
parallel processing, microprogramming, caches,
and translation buffers.

VMS FILE SYSTEM INTERNALS
Kirby McCoy, 1990, softbound, 460 pages,
Order No. N-F575E-DP-EEB ($49.95)

VMS FILE SYSTEM INTERNALS, based on VMS Version
5.2, is a book for system programmers, software
specialists, system managers, applications design-
ers, and other VAX/VMS users who need to under-
stand the interfaces to and the data structures,
algorithn~s. and basic synchronization mechanisms
of thc VhIS Nc system. This system is the part of
the VAX/VMS operating system responsible for
storing and managing files and information in
memory and on secondary storage. The book is
also intended as a case study of the VMS implcmen-
tation d a file system for graduate and advanced
undergraduate courses in operating systems.

DECNET PHASE V: An OSI Implementation
Jamcs &l;irtin and Joe Leben, 1992, hardbound,
572 pags , Orcler No. EY-H882E-DI-'-EEB ($49.95)

This book provides a first in-depth look at DECnet
Phase V and the important issues that must be
resolved in the design and implementation of very
large networks. It presents key Open Systems lnter-
connection (0%) concepts and shows how DECnet
P11;ise V harclware and software products imple-
ment international standards associated with the
OSI model.

VAX/VMS OPERATING SYSTEM CONCEPTS
David Miller, 1991, hardbound, 512 pages,
Order No. EY-F590E-DP-EEB ($44.95)

This book begins with an overview that centers
on one visible aspect of an operating system,
terminal input and output; it proceeds into well-
organized chapters on process definition, paging
and memory management, security, protection
ancl privacy; and it concludes with a chapter
on operating systems at Digital Equipment
Corporation. Each chapter provides an intro-
duction, theoretical discussion, generally recog-
nized solutions, algorithms and data structures,
and questions to encourage review of the central
concept presented.

THE VMS USER'S GUIDE
James E Peters, 111 and Patrick J. Holmay, 1990,
softbound, 304 pages, Order No. EY-6739~-DP-EEH
($28.95)

This up-to-date guide for new VMS users provides
a sequence of steps for learning the VMS operating

V b 1 . 3 NO. 4 Fa11 1991 Digital Technical Jourrral

system and includes hands-on experiments with
step-by-step instructions. The book also can be
used as a reference for commands and utilities.
TIIE RVIS USER'S GUIDE, reflecting vlMS Version 5,
provides complete VMS coverage-from logging
in to creating command procedures; contains
a thorough discussion of files and directories;
covers both the EDT and the EVE editors in detail;
and introduces programming with VAXTPU

The guide includes learning aids in each chapter,
such as summaries that contain tables of the
commantls introduced in the chapter, exercises
to reinforce and extend the skills learned, and
review quizzes.

THE MATRIX: Computer Networks and
Conferencing Systems Worldwide
John S. Quarterman, 1990, softbound, 719 pages,
Order No. EY-~176~-UP-EER ($49.95)

This is the first reference book to describe in detail
the extensive yet largely unpublicized web of
public and private networks and conferencing
systems that has spread to virtually every corner
of the world. The first half provides extensive
background information on the history, terminol-
ogy, standards, protocols, technologies, worldwide
networked communities, and probable future
course of networking systems throughout the
world. The second half describes specific confer-
encing systems and the interconnections between
them-according to geographic region worldwide.
Maps are included when available. Syntaxes and
gateways are provided for sending mail from one
system to another. Additional chapters discuss a
number of well-known worldwide networks,
including the Internet and selected commercial
systems. Two appendices provide essential infor-
mation on pi~blic data networks worldwide and
on selectecl legal issues.

X AND MOTIF QUICK REFERENCE GUIDE
RandiJ. Rost, 1990, softbound, 369 pages,
Order No. El'-E758E-DP-EEB ($24.95)

Based on the newly releasecl X Window System
Version 11, Release 4 and Motif Version 1.0, this
one-volume guicle combines three major reference
works on XLib, X Toolkit Intrinsics, and Motif
programming libraries in a compact, easy-to-access
format. Features include complete descriptions
of approximately 400 XLib routines, 200 X Toolkit
Intrinsics, and 200 Motif routines. The guide is
organized into five major reference sections-

"X Protocol," " XLib," "X Tool kit Intrinsics," "Motif,"
and "General X"; all routines and data structures
are organized alphabetically within each of these
sections.

FIFTH GENERATION MANAGEMENT:
Integrating Enterprises through Human
Networking
Charles M. Savage, 1990, hardbound, 267 pages,
Order No. EY-~186~-DP-EEB ($28.95)

This book explores the challenges managers face
as their organizations transition from the indus-
trial era to the new era of knowledge networking.
The author contends that new technologies like
computer integrated manufacturing (CIM) will
not be successful iintil organizations transform
their structures from the steep hierarchies of
second generation management to the flattened
networks of the fifth generation. The book
contains two parts. In Book 1, "Five Days that
Changed the Enterprise," Savage narrates a case
study of senior executives confronting the prob-
lems of a traditional organization as they work to
transform their company into a networked
organization. In Book 2, "Integrating Enterprises
through Human Networking," Savage draws on
contemporary management literature and his own
consulting experiences to present a logical case for
his recommendations. A concluding chapter offers
ten practical considerations that organizations
must address to prepare for change.

X WINDOW SYSTEM: The Complete Guide
t o XLib, PROTOCOL, XLFD, and ICCCM,
X Version 11, Release 4, Second Edition
Robert W Scheifler and James Gettys,
with Jim Flowers, Ron Newman, and
David Rosenthal, 1990, softbound, 851 pages,
Order NO. EY-E755E-DP-EEB ($49.95)

By combining four MIT X Consortium standards
into one volunle, this book is the most complete
and up-to-date X Window System reference
available. In addition to the four standards, also
included are instructive diagrams, a detailed
glossary, and a comprehensive subject-oriented
index. The book consists of four main parts, each
with a standard specification produced by the
MIT X Consortium for X Version 11, Release 4:
Part I , "Xlib-C Language X Interface"; Part 11,
"X Window System Protocol"; Part 111, "Inter-
Client Communications Conventions Manual";
and Part rv, "X Logical Font Description."

Digital Technical Journal Vo1.3 No. 4 Fa11 1991

Purther Reudings

To receive a copy of our latest canlog or further
information on these or other publicathns from
Digital Press, please write:

Digital Press
Department EEB
1 Burlington Woods Drive
Budington, MA 01803-4539

Or, you can order by calling DECdirect at
800-DIGIT' (800-344-4825).

When ordering be sure to refer to Catalog
Code BEB.

80 %I. .? No. 4 Fa11 1991 Digital Tech3aical Jourtral

ISSN 0898-901X

Prinrccl in 11.5 A EY-H8896-DPl91 12 02 18.0 DBPINRO Copyright 0 Digital Equ~pment Corporation All Rights Reserved

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Hardware Accelerators for Bitonal Image Processing
	X Window Terminals
	ACCESS.bus, an Open Desktop Bus
	Design of the DECprint Common Printer Supervisor for VMS Systems
	The Common Printer Access Protocol
	Design of the Turbo PrintServer 20 Controller
	Further Readings
	Back cover

