
Digital Technical Journal 
Digital Equipment Corporation 

=-!- 

Volume 3 Number 4 

Fall 1991 



Cover Design 
High-performance screen display of bitonal images is one 
of the topics in this issue. The handwriting and manz~ally 
produced technical drawings on our cover are types of imnges 
that can be scanned, stored electronically, and then displayed 
on an X t m i n n l  screen; portions of an image can be enlarged 
or rotated on screen. 

The cover was designed by Sandra Calef of CalefAssociates. 

Editorial 
Jane C. Blake, Editor 
Helen L. Patterson, Associate Editor 
Kathleen M. Stetson, Associate Editor 
Leon Descoteaux, Associate Editor 

Circulation 
Catherine M. Phillips, Administrator 
Sherry L. Gonzalez 

Production 
Mildred R. Rosenzweig, Production Editor 
Margaret L. Burdine, 'Qpographer 
Peter R. Woodbury, Illustrator 

Advisory Board 
Samuel H .  Fuller, Chairman 
Richard W! Beane 
Robert M. Glorivso 
Richard J. Hollingsworth 
John W! McCredie 
Alan G. Nemeth 
Mahendra R. Patel 
E Grant Saviers 
Victor A. Vyssotsky 
Gayn B. Winters 

The Digital TecbnicalJour-nalis published quarterly by Digital 
Equipment Corporation, 146 Main Street MLOJ-3/B68, Maynard, 
Massachusetts 01754-2571. Subscriptions to  the Jorrrnal are $40.00 
for four issues and must be prepaid in U.S. funds. University and 
college professors and Ph.D. students in the electrical engineering 
and computer science fields receive complimentary subscriptions 
upon request. Orders, inquiries, and address changes should be 
sent to the Digital TechnicalJou?-nnl at the published-by address. 
Inquiries can also be sent electronically to DTJ@CRL.DEC COM. 
Single copies and back issues are available for S 16.00 each from 
Digital Press of Digital Equipment Corporation, I Burlington 
Woods Drive, Burlington, MA 01803-4539. 

Digital employees may send subscription orders on the ENET to 
RDVAX.:JOURNAL or by interoffice mail to mailstop h.lL01-3L368. 
Orders should include badge number, site location code, and 
address. All employees must advise of changes of address. 

Comments o n  the content of any paper are welcomed and may 
be sent to the editor at the published-by or network address. 

Copyright 0 1991 Digital Equipment Corporation. Copying 
without fee is permitted provided that such copies are made for 
use in educational institutions by faculty members and are not 
distributed for commercial advantage. Abstracting with credit 
of Digital Equipment Corporation's authorship is permitted. 
All rights reserved. 

The information in the Jozrrnal is subject to change without 
notice and should not be construed as a commitment by Digital 
Equipment Corporation. Digital Equipment Corporation assumes 
n o  responsibility for any errors that may appear in the Journal. 

ISSN 0898-901X 

Documentation Number EY-H8896DP 

The following are trademarks of Digital Equipment Corporation: 
ALL-IN-1, DECimage, DECnet, DECprint, DECserver, DECstation, 
DECwindows, Digital, the Digital logo, LAT, LN03, MicroVAX, 
Printserver, Qbus,  ReGIS, rtVAX, ULTRJX, VAX, VAXELN, 
VAXstation, VMS, VT1000, VT1200, VTl300, and VXT 2000. 

Apple DeskTop Bus is a trademark and LocalTalk is a registered 
trademark of Apple Computer, Inc. 

Motorola and 68000 are registered trademarks of Motorola, Inc 

Open Software Foundation is a trademark and OSF and OSF/l are 
registered trademarks of Open Software Foundation, Inc. 

PostScript is a registered trademark of Adobe Systems, Inc. 

Texas Instruments is a trademark of Texas Instruments, Inc 

UNIX is a registered trademark of UNDi System Laboratories, Inc 

X Window System is a trademar.k of the Massachusetts Institute 
of Technology. 

Book production was done by Digital's Database Publishing Group 
in Northboro, MA. 



I Contents 

7 Foreword 
Larry Cabrinety 

Image Processing, Video Terminals, and Printer Technologies 

9 Hardware Accelerators for Bitonal Image Processing 
Christopher J .  Payson, Christopher J. Cianciolo, 
Robert N. Crouse, and Catherine E W i s o r  

26 X Window Terminals 
Bjorn Engberg and Thomas Porcher 

36 ACCESS.bus, an Open Desktop Bus 
Peter A. Sichel 

43 Design of the DECprint Common Printer Supervisor 
for VMS Systems 
Richard Landau and Alan Guenther 

55 The Common Printer Access Protocol 
James D. Jones, Ajay I? Kachrani, and Thomas E. Powers 

61 Design of the Turbo Printserver 20 Controller 
Guido Simone, Jeffrey A. ~Metzger, and Gary Vaillette 



Editor's Introduction 

Jane C. Blake 
Editor 

Products designed for quality, high-performance 
presentation of data in both video and hard-copy 
form are the topics of papers in this issue of the 
Digital Tecl~nical Journal. The clesign chal lenges 
range from managing the huge storage require- 
ments of images for display on X terminals to ensur- 
ing high-performance in a feature-rich printer 
environment. 

Image processing is the subject of the opening 
paper by Chris Payson, Chris Cianciolo, Bob Crouse, 
and Cathy Winsor. The authors note that one advan- 
tage of scanning images for screen display is the 
input time saved; howevel; the scanned images 
and data can consume significant amounts of stor- 
age space. They then review tlie development of an 
image accelerator board that not only helps solve 
the problem of storage but also addresses the need 
for high-performance display-view and manipula- 
tion-of bitonal images In addition to specifics of 
the board implementation, the authors offer an 
overview of imaging concepts, terms, and future 
directions for image accelerators. 

The terminal on which the image accelerator 
board resides is DECimage 1200, an X terminal. 
X terminals development in general, including a 
discussion of the VT1200, is the subject of a paper 
by Bjorn Engberg and Tom Porcher. Bji5rn and Tom 
focus their discussion on a comparison of the 
X terminal and X workstation environments, and 
explain why X terminals are a low-cost alternative. 
The authors present the design choices debated by 
the engineers during the development of Digital's 
)i terminals, including the selection of a hardware 
platform, terminal and window management, 
X server, communications protocols, ancl font file 
systems. 

Vicleo terminal and workstation users need the 
assistance of a number of I/O devices, such as key- 

boards, mice, and tablets, all of which may not be 
made by the same company. A new open desktop 
bus, described by Peter Sichel, is a simple means to 
connect as many as 14 low-speed devices to a desk- 
top system. In his papel; Peter presents the project 
background, reviews the 12C technology on which 
the bus is based, and describes the protocol and the 
configuration process. 

Hard-copy presentation of data and recent devel- 
opments in printer technologies are the topics of the 
next three papers. Rick Landau and Alan Guenther 
review the DECprint Printing Services, which is 
software that controls numerous printer features 
for a wide range of printers. Also called a common 
prjnt symbiont, this component of the VMS print- 
ing system supports several page description lan- 
guages, handles multiple media simultaneously, 
and uses different 1 / 0  interconnections and com- 
munication protocols. 

Both DECprint Printing Services and the subject 
of the next paper, the common printer access pro- 
tocol, are part of the DECprint architecture. The 
CPAP provides the fi~ndamental services necessary 
for the presentation of data at the printer. Jim 
Jones, Ajay Kachrani, and Tom Powers describe the 
challenges of developing a protocol that operates 
in a heterogeneous, internetworking environment 
and that also ensures backward compatibility with 
older products. Their success in developing a high- 
performance protocol is evidenced by OSF accep- 
tance of CPAP for inclusion in a fiiture release of 
OSF/l. 

As was the case with the CpAp, performance 
was also key in the development of the turbo 
Printserver 20 controller. Guido Simone, Jeff Metzger, 
and Gary Vaillette explain that the requirements of 
complex documents demanded turbo controller 
performance that was five to eight times that of tlie 
current controller. To aid them in making design 
decisions, a performance analysis tool, RETrACE, 
was created and is described here. Authors also 
relate how they used existing chips in order to keep 
development costs low and still deliver a high- 
performance controller. 

The editors thank Liz Griego-Powell of the Video, 
Image and Print Systems Group for her help in 
preparing this issue. 
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processing. The X terminal user can now benefit 
from the graphical user interface, sophisticated 
applications, and standards of performance previ- 
ously available only on workstations. X terminals 
run ~ 1 1  server code which is operating system 
independent and ideally suited for heterogeneous, 
network-based computing environments. In this 
issue you will read about the engineering decisions 
made as the X terminals were developed. 

There is a growing need in the industry to have 
imaging applications run alongside conventional 
text and graphics applications. Technical docu- 
mentation is an example of this. Imaging applica- 
tions, however, have special requirenlents to achieve 
acceptable end-user performance. Although tlie XI1 
software can handle images as bit-map data, soft- 
ware and hardware assistance is required to achieve 
acceptable performance. Digital has designed 

For the millions of people worldwide who use DECimage hardware accelerators for rapid process- 
Digital's computer equipment, the computer is not ing of image data. This technology is included in 
the sophisticated system in the back room, or the the DECimage 1200 and will be incorporated in 
complex network. It is the equipment they use following generations of X terminals. To make this 
each day-the terminal or monitor, keyboard and possible, Digital developed extensions to the 
mouse, desktop printer or network printer system. X server software that support the high-speed 

Today's users demand products with high levels transport and display of image data. To assure open 
of usability and superior ergonomic features. standards, the extensions have been proposed to 
Digital's p r o d ~ ~ c t s  set worldwide standards for the MIT for incorporation into releases of the XI1 
user interface to computer systems. In the 90s our server software. 
focus is to offer products that operate in multi- In November 1990, Digital announced its next 
vendor environments with the goal of delivering a generation of X terminals. The VXT2000 terminal 
complete computing solution. In this issue you will provides virtual memory and supports both a tra- 
read about some of the Video, Image and Print Sys- ditional host-based model with software down- 
terns (VIPs) Group's products and technologies that loaded to the terminals as well as the server style of 
support network computing and standards-based X terminal computing. 
environments. The VXT2000 terminal was designed to support 

Digital entered the video terminal market in 1975 TCP/IP and WT protocols, and further demonstrates 
with the VT52 for its time-sharing users. Its replace- our commitment to openness and support for cus- 
ment, the VT100, embodied two important princi- tomers' multivendor environments. This same phi- 
ples-the use of standarcls in data com~nunications losophy is seen in our printer products and our open 
interchange and the protection of customer invest- desktop bus. 
ments through backward compatibility of new gen- Digital pioneered the distributecl printing busi- 
erations of products. The vT220, introduced in ness with networked laser printers. This prod- 
1983, and tlie cost-effective vT320 terminals saw uct area began when we combined two concepts 
the addition of functionality and ergonomic fea- which had not been combined before-mid-range 
tures which established Digital as a leader in the laser printers and networks. In the mid-1980s most 
conlmodities market. large-scale computing was done on  mainframe 

In March 1990, Digital entered the X terminal computers with large printers attached directly 
market with the introduction of the VT1000, fol- to these systems. Typically tliese dedicated print- 
lowed by the VT1200 and VT1300 terminals later ers were only accessible to users on that particular 
that year. The emergence of MIT's X Window system. Digital's distributed computing provided 
Systems as the accepted industry standard for an alternative to the mainframe. By combining the 
windowing systems provided a standards-based power of multiple systems in clusters or on net- 
environment for distributed applications display works, a new distributed large system was created. 
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A printing solution was needed to effectively work 
in this new distributed computing environment. 
The Printserver series addressed this need. 

PrintServer products enabled printing resources 
to be directly connected to networks for the first 
time, and since they were on the network and not 
tied to any one system, they were accessible by all 
systems on those networks. They enabled the com- 
plex printer functionality previously found only in 
dedicated mainframe printers to be distributed 
throughout end-user environments. 

As these mid-range printers migrated out of the 
computer room and into the office, new demands 
for functionality were created. Large groups of users 
brought many different requirements for printing, 
and our goal was to satisfy as many as possible in a 
single PrintServer. For example, some people need 
"A" size paper for office correspondence, while 
others may need "B" size paper for CAD/CAM or 
accounting work, and still others need trmsparen- 
cies for presentations. The PrintServer is fiexlble 
enough to have all of these different types of 
media available and offer both simplex and d~rplsc 
printing. 

In 1985 when Digital was first developing the 
PrintServer, there was no industry standard way 
of describing the contents of a page to a printer. 
Each major vendor had its proprietary language, 
and none offered the compatibility necessary to 
achieve our print system vision. Our goal was to 
create a family of products, from large to small, 
that offered compatibility for all applications. To 
achieve this goal we had to select a protocol 
that would enable us to print any file on any 
printer. At that time Adobe Systems, the developer 
of PostScript, was a small start-up company in 
Silicon Valley. PostScript was not a standard, and in 
fact, only a single PostScript laser printer model 
had been shipped, the original Apple Laserwriter. 
Our technical community felt PostScript was the 
best solution to our needs, and at that point Digital 
committed to adopting PostScript as our strategic 
page description language. Postscript printers and 
PostScript application support are now pervasive 
throughout the industry ant1 standard printing 
protocols enable interactive communication with 
hosts on the network. 

Signhcant advances have taken place in the 
PrintServer series over the past seven years. An 
entire MicroVAX I1 system was housed within the 

original PrintServer 40, along with custom h;ircl- 
ware acceleration boards developed by thc IIard- 
copy Group to enable printing a t  40 pages per 
minute. In this issue you will read about the single- 
board controller that replaces the MicroVAX I1 and 
offers far more processing power. Using the latest 
system-on-a-chip technology, our new turbo board 
provides leadership performance for our printers. 
The CCITT image decompression chip enables us to 
provide full-speed image printing to our customers 
as the image market develops. 

The first PrintServer syslcms supported printing 
from VMS hosts over DECnet networks. Since then 
the breadth of platform support has increased to 
include first ULTRIX systems and then IJNlX operat- 
ing systems. A software ki t  for Sun systems will be 
available soon. In expanding PrintServer connectiv- 
ity to include UNlX systems and TCt'/lP networks, 
we again faced the problem that no network print- 
ing protocol existed for TCP/IP. With the help of 

'I ora- Digital's experts at the Western Research Lz b 
tory, we were abie to develop a solution. In this 
issue, we discuss the creation of a network printer 
access protocol for T(:I'/IP. Toclay this network pro- 
tocol is a proposed standard at the Internet Engi- 
neering Task Force, the body controlling the 7'CP/IP 
protocol. 

The development of the ACCESS.bus procluct has 
brought an easy, standard way to link a desktop 
computer to many interactive user interfaces. This 
open desktop bus is currently implemented on the 
Personal DECstation 5000 workstation, and imple- 
mentations on future RISC workstations and video 
terminals is underway. Developers of Digital's procl- 
ucts will continue to place a high priority on open 
standards. The papers includccl in this issue of the 
Digital Tech~zicalJouriznl will provitlc insight into 
the key areas of technology used in the design and 
development of VIPs products. 
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Hardware Accelerators for 
Bitonal Image Processing 

Electronic imaging systemns transfer viezus of real-world scenes or objects into 
digital bits for storage, manipulation, and viewing. In the area of bitonal images, 
a large market exists in docz~rnent management, which coizsists of scanning vol- 
umes of papers for storage and retrieval. Hozuevel; high scan densities produce 
huge volz~mes of data, requiring compression and decoml~ression techniques topre- 
serve system memnory and imnprove systmz throughput. These tech~ziques, as well as 
general image processing algorithms, are conzpute-intensive and require high 
memory bandwidth. To address the nzemory issues, and to achieve interactive 
image display performancq Digital has designed a series of bitonal image hard- 
ware accelerators. The intent was to create interactive media view stations, with 
inzaging applications alongside other applications, In addition to achieuii lg rnem- 
ory, performance, and versatility goals, the hclrdware accelerators have signifi- 
cantly improvedjnal image legibility 

Bitonal image technology, which can be viewed as 
the electronic version of today's microfil~n method, 
is experiencing a high rate of growth. However, the 
electronic image data objects generatecl and manip- 
ulated in this technology are very large and require 
intensive processing. In a generic system, these 
requirements can result in poor image processing 
performance or reduced application performance. 
To address these needs, Digital has designed a series 
of imaging hardware accelerators for use in the doc- 
ument management market. 

This paper provides a brief tutorial on electronic 
imaging. It begins with a general description of the 
imaging data type and compares this type to the 
standard text and graphics data types. It continues 
with a discussion of specific issues in bitonal imag- 
ing, such as image data size, network transport 
method, rendering speed, and end-user legibility. 
The paper then focuses on Digital's DECimage 1200 
hardware accelerator for the VT1200 X window 
terminal developed by the Video, Image and Print 
Systems Group. It concludes with future image 
accelerator demands for the processing of multi- 
media applications and continuous-tone images. 

Introduction to Imaging 
Just as graphics technology blossomed in the 1980s, 
electronic imaging and its associatecl technologies 

should come of age in the 1990s. Digital imaging 
is already in use in many areas and new applica- 
tions are being created for both commercial and 
scientific markets. The emergence of digital images 
as standard data types supported by the majority 
of systems (like text and graphics of today) seems 
assured. For a greater understanding of specific 
imaging applications, this section presents general 
imaging concepts and terms used throughout the 
paper. 

Concepts and Terms 
In its simplest form, imaging is the digital repre- 
sentation of real-world scenes or objects. Just as a 
camera transfers a view of the real world onto a 
chemical film, an electronic imaging systenl trans- 
fers the same view into digital bits for storage, 
manipulation, and viewing. In this paper, the term 
image refers to the digital bits and bytes that repre- 
sent the real-world view. 

The process of digitizing the view may be done 
through various methods, e.g., an image scanner 
or image camera. A scanner is the conceptual 
inverse of a normal printer. A printer accepts an 
electronic stream of bits that describe how to 
place the ink on the paper to create the desired 
picture. Conversely, optical sensors in the scanner 
transfor~n light intensity values reflected from a 
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sheet of paper and create a stream of electronic bits 
to describe the picture. Similar sensors in the focal 
plane of a camera produce the other common digi- 
tization method, the electronic image camera. 

The format of a digitized image has many param- 
eters. A pixel is the common name for a group of 
digitized image bits that all correspond to the sane 
location in the image. This pixel contains informa- 
tion about the intensity and color of the image at 
one location, in a format that can be interpreted 
and transformed into a visible dot on a display 
device such as a printer or screen. The amount of 
information in the pixel classifies the image into 
one of three basic types. 

A bitonal image has only one bit in each pixel; 
the bit is either a one or a zero, representing one 
of two possible colors (usually black and white). 

A gray-scale image Iias multiple bits in each pixel, 
where each pixel represents an intensity value 
between one color (all zeros) and another color 
(all ones). Since the two colors are usually black 
and white, they produce a range of gray-scale 
values to represent the image. 

A color image has multiple components per 
pixel, wherc each component is a group of 
bits representing a value within a given range. 
Each component of a color image corresponds 
to a part of the color space in which it is repre- 
sented. Color spaces may be thought of as dif- 
ferent ways of representing the analog, visible 
range of colors in a digitized, numeric form. The 
most popular color spaces are television's YUV 
format (one gray-scale and two color compo- 
nents) and the bit-mapped computer display's 
RGB format (red, green, and blue components). 

The resolution of an image is simply the density 
of pixels per unit distance; the most common den- 
sities are measurecl in dots per inch (dpi), where 
a pixel is called a dot. For example, a facsimile 
machine (which is nothing more than a scannel; 
printer, and phone modem in the same unit) typi- 
cally scans and prints at 100 dpi, although newer 
models are capable of up to 400 dpi. As another 
example, most workstation display monitors are 
capable of 75- to 100-dpi resolution, and some high- 
end monitors achieve up  to 300-clpi resolution. 

To display an image at a density different from 
its scanned density, without altering the image's 
original size, requires the image to be scaled, so 
that the new image density matches the output 

media density. Scaling an image may be as simple as 
replicating and dropping pixels, or it may involve 
Interpolation and other algorithms that take neigh- 
boring pixels into account. Generally, the more 
complex scaling algorithms require more process- 
ing power but yield higher-quality images, where 
quality refers to how well the original scene is rep- 
resented in the resulting image. 

Before an image can be displayed, its pixel values 
often require conversion to account for the charac- 
teristics of the display device. As a simple example, 
a color image cannot retain its color when output 
to a black-and-white video monitor or printer. In 
general, when a device can display fewer colors 
than an image contains, the image pixel values must 
be quantized. Simple quantizing, or thresholding, 
can be used to reduce the number of image colors 
to the number of display colors, but can result in 
loss of image quality. Dithering is a more sophisti- 
cated method of quantizing, which produces the 
illusion of true gray scale or color. Although dither- 
ing need use no more colors than simple quantiz- 
ing, it results in displayed images of much higher 
quality. 

Image compression is a transforn~ation process 
used to reduce the amount of memory required to 
store the information that represents the image. 
Different compression methods are used for bitonal 
images than those used for gray-scale and color 
images. These methods are stantlardized to speclfy 
exactly how to compress and decompress each 
type of image. For bitonal images, the most corn- 
moll standards are the ones ~ ~ s e d  in facsimile 
machines, i.e., Recommendations ~ . 4  and ~ . 6  of the 
Comite Consultatif Internationale cle TkICgraphique 
et Telkphonique (CCITT).l.~ommonly known as 
the Group 3 and Group 4 standards, the desig- 
nations are often shortened to G3-ID, G3-2D, and 
~ 4 - 2 ~ .  referring to the particular standard group 
and to the coding method, which may be either 
one- or two-climensional. For gray-scale and color 
images, the Joint Photographic Experts Group 
(JPEG) standard is now emerging as a joint effort of 
the International Standards Organization (ISO) and 
CCITT.3 Whichever format or process is used, com- 
pression is a compute-intensive task that involves 
mathematically removing redundancy from the 
pixel data. 

A typical compression method creates an 
encoded bit stream which cannot be displayed 
directly; the compressed bits must be decom- 
pressed before anything recognizable may be 
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displayed. The term compression ratio represents 
the size of the original image divided by the size of 
the compressed form. For bitonal images using 
the CCITT standards, the ratio is commonly 20:l on 
normal paper documents, but can vary widely with 
the actual content of the image. The CCITT stan- 
dards are also "lossless" methods, which means that 
the decompressed image is guaranteed to be iden- 
tical to the original image (not one bit different). 
In contrast, many "lossy" compression methods 
allow the user to vary the compression ratio such 
that a low ratio yields a nearly perfect image repro- 
duction and a high ratio yields a visible degradation 
in image quality. This trade-off between compres- 
sion and image quality is very useful because of the 
wide range of applications in imaging. An applica- 
tion need pay no more in memory space and band- 
width than necessary to meet image quality 
requirements. 

A Nezu Data Type and Its Features 
The image data type is fundamentally different 
from text and graphics. When a user views charac- 
ters or pictures on a display device, the source of 
that view is usually not important. A sheet of text 
from a printer may have come from either a text file 
where the printer's own fonts were used, a graph- 
ics file where the characters were drawn with line 
primitives, or an image file where the original text 
document was scanned into the system. In any 
case, the same letters and words present the user 
with approximately the same information; the dif- 
ferences are mostly in character quality and format. 

In spite of their large storage space require- 
ments, images have several advantages over graph- 
ics or text. First, consider the process of getting 
the information into the computer. With the imag- 
ing process, documents may be scanned automati- 
cally in a few seconds or less, compared to the time 
required for someone to type the information cor- 
rectly (absolutely no errors) into a text file. Also, 
even though the software exists to convert elec- 
tronic raster images into graphic primitive files, the 
process loses detail from the original image and is 
relatively slow. Next, consider the variety of infor- 
mation possible on a sheet of paper: a user can- 
not easily reproduce a diagram or a signature on a 
document. A scanned image preserves not only the 
characters, but their font, size, boldness, relative 
position, any pictures on the page, and even 
smudges or tears depending on the quality of the 
image scan. 

The major drawback in the imaging process is 
increased data size, which results in storage mern- 
ory and network transport problems. High scan 
densities and color information components create 
large volumes of data for each image; a bitonal 
image scanned at 300 dpi from an 8.5-by-11-inch 
sheet of paper requires over 1 megabyte of mem- 
ory in its original pixel form. Therefore, compres- 
sion and decompression are integral parts of any 
imaging system. Even in compressed form, a bitonal 
image of a text page requires about 50 kilobytes 
of storage, whereas its American standard code 
for information interchange (ASCII) text equivalent 
requires only 4 to 5 kilobytes. Similarly, a graphics 
file to describe a simple block diagram is much 
smaller than its scanned image equivalent. 

Based on these advantages and limitations, sev- 
eral applications have emerged as perfect matches 
for imaging technology. Bitonal images are used 
in the expanding market of document manage- 
ment, which consists of scanning volumes of 
papers into images. These images are stored and 
indexed for later searching and viewing. Basically 
an electronic file cabinet, this system results in 
large savings in physical cabinet space, extremely 
fast document access, and the ability for multiple 
users to access the same document simultaneously. 
Gray-scale imaging is often used in medical appli- 
cations. Electronic versions of x rays can be sent 
instantly to any specialist in the world for diagno- 
sis, and the ordering of sequential computer-aided 
testing (CAT)-scan images into a "volume" can pro- 
vide valuable three-dimensional views. The appli- 
cations for color imaging are relatively new and 
still emerging, but some are already in use commer- 
cially, e.g., license and conference registration pho- 
tographs. A further extension to still imaging is 
digital video, which can be considerecl as a stream 
of still images. In conjunction with audio, digital 
video is commonly known as multimedia, applica- 
tions for which range from promotional presenta- 
tions to a manufacturing assembly process tutorial. 

In this paper, we focus on the static bitonal imag- 
ing method of representing real-world data inside 
computers. Static imaging is a simpler method of 
representing a broader range of information than 
the text and graphics media types, but it carries 
a greater requirement for processing power and 
memory space. In addition, static imaging can be 
viewed as one part of true multimedia, as can text, 
graphics, audio, video, and any other media for- 
mats. Yet static imaging does not have the system 
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speed requirements of a motion video and audio 
system. which must prescnt data at rcal-time rates. 
As long as the user can dcal with static images at 
an interactive rate, i.e., being able to view the 
images in thc format of choice ;IS F~st as the user 
c;un select them, thcn static imaging is ;I powcrhl 
rnctli;~ presentation tool. l'hc next section presents 
the importi~nt issues concerning bitonal imaging in 
a document management environment. 

Bitonal Imaging Issues 
As previously mentioned, bitonal electronic imag- 
ing as an dtcmativc to paper documents offers 
many benefits, such as retluccd physic11 storage 
space, instant and simultaneous access of scanned 
images, and in general a more accessible media. 
Serious issues need to be resolved before a produc- 
tive imaging operation can be implemented. The 
chief issues are the irnage data size, transport 
method, perceived rendering speed, and final legi- 
bility. In the following sections, we examine each 
issue and present solutions. 

Digitized Image Data Size 
The most important issue concerns irnage data sirs. 
Images are typically documents, drawings, or pic- 
tures that have been digitized into a computer- 
readable form for storage and retrieval. Depending 
on the dot density of the scanner, a single image 
can be 1 to 30 megabytes or  more in size. However, 
storing a single irnage in its scanned form is not the 
typical usage model. Instead, a company may have 
tens of thousands of scanned documents. Clearly, 
with today's storage technologies, a company can- 
not afford to store such a large volume of images 
in that format. 

A typical ASCII file representing the text on an 
8.5-by-11-inch sheet of paper requires approxi- 

mately 3 kilobytes of memory. If the same shcct of 
paper is digitized by scantling at various dot tlcn- 
sities, the resulting data files art. huge, ;IS sho\vn 
by the decompressed bitonal image sizes in 'Inable 1. 
Note that l'iible 2 includes the size of thc scanned 
image if scanned in way-scale and color motles, 
although using these modes woultl not makc sense 
on a black-and-white sheet of paper. The image 
sizcs are included for comparison and are discussed 
in the section Future Image Accelerator Require- 
ments. The data presented in Tables 1 and 2 illus- 
trates that the size of the original ASCII file is much 
smalkr than any of the scilru~ed versions. The data 
also gives evidence that scxnned Images, in gencr;~l, 
require considcrablc memory. 

Since the typical use for bitonal images is for 
volume document archival, an imaging application 
must include a compression process to reduce mem- 
ory usage. This process must transform the original 
scanned image file to a much smaller file without 
losing the content of the original scanned data. 

Compression algorithms may takc different paths 
to achieve the same result, but they share one basic 
process, the removal of redundant information to 
reduce the object size. A common compression 
routine searclies the pixel data for groupings, or 
"run lengths," of black or white pixels. Each run 
length is assigned a code significantly shorter than 
the run length itself. The cotles are assigned by 
statistics, where the most frequent run lengths 
are assigned the shortcst corles; statistics have been 
amassed on a variety of document types for differ- 
ent scan densities and document sizcs. A compres- 
sion proccss parses through the original image 
file, generating another file that contains the codes 
representing the original image. Figure 1, a sample 
bitonal imagc compression, illustrates these com- 
pressed codes in a serial bit stream. 

Table 1 Sample Bitonal Image Sizes 

Document Type 
(Paper Size) 

Scan 
Density 
(dpi) 

I Kilobytes of Data I 
Pixel Form Typical 
(Decompressed) Compressed 

A size 
(8.5 x 11 inch) 

E size 100 1826 106 
(44 x 34 inch) 200 7305 114 

300 16436 127 
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Table 2 Sample Gray-scale and Color 
l mage Sizes 

Document Type 
and Size 

Kilobytes of Data 
in Pixel Form 
(Decompressed) 

128 x 128 pixel, 12 bits per pixel 24 
gray-scale image 
512 x 512 pixel, 8 bits per pixel 
color image 
512 x 512 pixel, 24 bits per pixel 
color image 
8.5 x 11 inch, 100 dpi, 24 bits 2740 
per pixel, color image 

Several algorithms for bitomal compression are 
widely used totl;ty. As mentioned in the previous 
section, the most common for bitonal images are 
the CCII?' standards G3-1l3, <;3-2D, and ( ; 4 - 2 D ,  which 
all use the approach just described. For the one- 
dimensional method, the algorithm creates run 
lengths from all pixels on the same scan line. In the 
two-dimensional methods, the algorithm some- 
times creates run lengths the same way, but the 
previous scan line is also examined. Some codes 
represent run lengths and even whole scan lines 
as "the same as the one in the previous scan line, 
csccpt offset by .V pixels," where N is a small inte- 
ger. Tlic two-climensional method takcs advan- 
tage of most of the recluntlancy in an image and 
returns the smallc5t compressed file. In addition to 
prcscrving system memory, these compression 
methods significantly Improve network transport 
performance. 

Network Transport Constraints 
The network transport performance for an image 
is important, because i1n;lgc.s arc rnost often stored 
on a remote system and vicwctl on a widespread 
group of display stations. For example, onc group in 
an insurance company receives and scans claim 
papers to create a centralized image database, 
while users in another group acccss the tlocuments 
simultaneously to proccss claims. For thc imaging 
system to be productive, this image d;~ta needs 
to be transported quickly from one group to the 
other: telephone attendants answering calls must 
have immediate access to the data. 

Scanned image documents take a long time to 
transport between systems, simply because they are 
so large. When compression techniques arc used, a 
typical uncompressed image stored in 1 megabyte 
can be reduced to approximately 50 kilobytes. 
Since transport time is proportional to the number 
of packets that must be sent across the network, 
reducing the data size to 5 percent of its original 
size also reduces the transport time to 5 percent 
of the original time. Tliercfore, you can now send 
twenty compressed images in the same time previ- 
ously spent sending one uncompressed image. 

Even with compression techniques, the image 
files are still larger than their text file equivalents. 
Moreover, most network protocols limit their 
packet size to a maximum number of bytes, i.e., an 
image file larger than the maximum packet size 
gets divided over multiple packets. If  the protocol 
requires an acknowledgment between packets, then 
the transport of a large file over a busy network 
becomes a lengthy operation. 

IMAGE PIXELS 

m 
ONE SCAN LINE OF PIXELS 

' I  

600 WHITE 250 WHITE 845 WHITE 

/ 30 BLACK / 30BLACK \ 

COMPRESSED CODES IN A CONTINUOUS BIT STREAM 

Figure I Bitonal Image Compression 
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The platform for our most recent accelerator is 
the VT1200 X window terminal, which uses the 
local area transport (LAT) network protocol. We 
soon realized that the X server packet size was 
limited to 16 kilobytes and the typical A-size 
compressed document was approximately 50 kilo- 
bytes. With this arrangement, each image transport 
would have required four large data packets and 
four acknowledgment packets. Working with the 
X Window Terminal Base System Software Group, 
we were able to raise the packet size limit to 
64 kilobytes. The base system group also imple- 
mented a delayed acknowledgment scheme, which 
eliminates the need for the client to wait for an 
acknowledgment packet before sending the next 
data packet. Table 3 shows compressed image data 
taken during the DECimage 1200 dmiopment 
cycle. Notice that the network transport times 
for Digital document interchange format (DDIF) 
decrease sharply aftcr the pacltct changes. 

Perceived Rendering Speed 
Because the image scanning and compression 
operations occur only once, they are not as 
performance-critical as the decompression and 
rendering for display operations, which are done 
many times. Decompression and rendering are part 
of the system's display response time, which is a 
critical factor in a system designed for high-volume 
applications that access thousands of images daily 
This time is measured from the instant the user 
presses the key to select an image to view, to the 
moment the image is displayed completely on the 
screen. The display response time is a function of 
the disk read t h e ,  network transport time, and dis- 
play station render time. 

Although network transport time and disk file 
read time have a direct effect on the response time, 
accelerator developers rarely have any control over 

them. The disk access time data from the DECimage 
project analysis shown in Table 3 demonstrates that 
the disk file read time is a significant portion of the 
overall response time. Thus, the display station 
render time is the only area of the display response 
time which can be clearly intluencetl and is, there- 
fore, the main focus of our image accclcrators. The 
local processing that must occur a t  the display sta- 
tion is not a trivial task; an image must be tlecom- 
pressed, scaled, ant1 clipped to fit the user's current 
window size, and optionally rotated. 

The decompression procedure inverts the com- 
pression process; both are computationally com- 
plex. Input to the procedure is compressed data, 
and output is the original scan line pixel data, 
which can be written to a display device. Scaling 
the data to fit the current window or fill a region 
of interest is not trivial either: a huge input data 
stream must be processed (the decompressed, orig- 
inal file), and a moderate output data stream must 
be created (the viewable image to be displayed). 
While simple pixel replicate and drop algorithms 
may be used to scale the data, a more sophisticated 
scaling algorithm has been shown to greatly 
enhance the output image quality. 

In addition to scaling and clipping, the orthogo- 
nal rotation of images (in 90-degree increments) 
is a usefill function on a display station. Some docu- 
ments may have words running in one direction 
while pictures are oriented another way, or the user 
may wish to view a portrait-mode image in land- 
scape mode. In either case, orthogonal rotation 
can help the user understand the information; i.e., 
the increased time to rotate the view is warrantecl. 

When an image is scanned, particularly with a 
hand-held scanner, the paper is never perfectly 
aligned. Thus, the image often requires a rotation of 
1 to 10 degrees to make the view appear straight 
in the image file. However, multiple users want the 

Table 3 DDlF lmage File Read Time and File Transport Performance 

Network Transport Time 
(milliseconds) 

7 Disk Read Time 7 After Before 
(milliseconds) Packet Packet 

MicroVAX II VAX 8800 VAX 6440 Change Change 
lmage Size 
(kilobytes) 
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information from the document as quickly as pos- 
sible, and should not have to rotate the image by 
a few degrees to make it perfectly straight on the 
screen. Therefore, this minimal rotation should 
be done after the initial scanning process; i.e., 
only once, prior to indexing the material into 
the database, and not by every user in a distributed 
environment. Because any form of rotation is 
compute-intensive, allowing the user to perform 
minimal rotations at a high-volume view station 
would reduce the application's perceived ren- 
dering speed and add little value to the station's 
function. 

Final Legibility 
While the primary issue facing imaging applica- 
tions is data size, image viewing issues must also be 
addressed. In short, an effective bitonal imaging 
display system must be responsive to overall image 
display performance and the resulting quality of 
the image displayed. To enhance our products, we 
optimized the display performance parameters as 
best we could, given that some parameters are not 
under our control. Improvements to monitor reso- 
lution and scanner densities continue to increase 
the legibility of images. An affordable image system 
should increase the image legibility by rendering 
a bitonal image into a gray-scale image using stan- 
dard image processing techniques. We discuss the 
method used in our accelerators, i.e., an intelligent 
scale operation in the hardware pipeline, in the 
next section. 

Hardware Accelerator Design 
As explained in the previous section, transforming 
documents into a stream of electronic bits is not 
the demanding part of a bitonal imaging process 
for document management. Also, scanners and 
dedicated image data-entry stations abound in the 
marketplace already. Instead, the challenge lies in: 
(1) managing the image clata size to control 
memory costs and reduce network slowdown; 
(2) increasing the image rendering speed, i.e., 
decompress the image, scale it, and clip it to fit 
the window size with optional rotation; and 
(3) increasing the quality of the displayed images. 
This section describes the way our strategy 
influenced the design of DECimage products. We 
also discuss the chips used for decompression and 
scaling, and how Digital's existing client-server pro- 
tocols support these imaging hardware accelerators. 

General Design Strategy 
The number of applications using bitonal image 
data continues to increase. In general, these appli- 
cations attempt to offer low cost while achieving 
an interactive level of performance, defined as 
no more than 1 second from point of request to 
complete image display. Ultimately, software may 
provide this fi~nctionality without hardware accel- 
eration, but today's software cannot. Moreover, the 
parameters of image systems are not static; scan 
densities, overall image size, and the number of 
images per database will all increase. These 
increases will provide the most incentive for hard- 
ware assist at the low end of the X window ter- 
minals market, because software alone cannot 
perform the amount of processing that users will 
expect for their investment. 

The User Model Although a single model cannot 
suit every application, imaging is centered on cer- 
tain functions. Therefore, a user model built on 
these functions would be very useful in mapping 
individual steps to the hardware: hardware versus 
software performance, the function's frequency of 
use, and the cost of implementation. 

The general user model for bitonal imaging sys- 
tems is relatively simple. A small market exists for 
image entry stations, in which documents are 
scanned, edited, and indexed into a database. Wllile 
a high throughput rate is important at these sta- 
tions, a general-purpose image accelerator is not 
the solution-dedicated entry stations already 
exist in the market. Instead, we designed a general- 
purpose platform, or versatile media view station, 
to be used for imaging applications alongside other 
applications. The user model for this larger market 
is a set of operations for viewing and manipulating 
images already entered into a database. The most 
common operations in this model are decompres- 
sion, scaling, clipping, orthogonal rotation, and 
region-of-interest zooming. 

Display Performance and Quality Optimiz~~tion 
The main thrust of the DECimage accelerator is to 
achieve interactive performance for the operations 
defined in the user model. A secondary goal is to 
bring added value to the system by increasing the 
quality of the displayed image compared to tlie 
quality of the scanned image. A side effect of maxi- 
mizing performance in hardware is that the main 
system processor has work off-loaded from it, free- 
ing it for other tasks. 
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The general design of the accelerator uses a 
pipelined approach. Since maximum performance 
Is desired and a large amount of &ita must be p r o  
cessed by the accelerator board, multiple passes 
through the board are not feasible. Similarly, the tar- 
geted low cost does not aIlow a whole image buffer 
on the board. With one exception (rotation), all 
board processing should be done in one pipeline, 
with the system processor simply feeding the input 
end of the pipe and draining the output end. 
Because of the large amount of data to be read from 
the board and displayed on the screen, the proees 
sor should onIy have to move that data, not do any 
further operations on  it. To this end, any logic 
required to format the pixels for the display bitmap 
should be included in the pipeline. 

Cost Reduction through Less Expensive System 
Components The net cost of a bitonal imaging 
system is influenced by the capability of the assist 
hardwdre. The capability of the hardware implies 
flexibility in the choice of other system hardware. 
In this regard, the most significant impact on cost 
occurs in the memory and the display. A system that 
makes use of fast decompression and scaling hard- 
ware can quickly display compressed images from 
memory. This means either more images can be 
maintained in the same memory, or the system can 
operate with less memory than it would without 
the assist hardware; less memory means lower cost. 

A more dramatic effect on system cost is in the 
display. Imaging systems generally need higher- 
density displays than nonimaging systems, but the 
cost of a 150-dpl display is approximately twice the 
cost of a 100-dpi display of the same dimensions. 
However, we found that we could increase legibil- 
ity, i.e., expand a bitonal image to a gray-scale repre- 
sentation, by using an intelligent scale operation 
In the hardware pipeline. For example, a bitonal 
image rendered to a 100-dpi display using the intel- 
ligent scale process gives the perceived legibility 
of the same image rendered to a 150-dpi clisplay 
with a simple scaling method. That is, by adding the 
intelligent scale, a 100-dpi clisplay can be used 
where previously only a 150-dpi display would be 
adequate. 

Cost Reduction through Integration Presently, as 
in the L>E(:itnage 1200, hardware-assisted imagc 
manipulation exists as a board-lcvel option. Higher 
levels of integration with the base platlorm will 
provide lower overall cost for an imaging system. 

The most straightforwartl method of intcgr;ition is 
to relocate the hardware from the prcscnt option 
to the main system processor board; successive 
steps of ititcgration would consolidate mapped 
hardware to fewer total devices. The most cost- 
effective integration will be the inclusion of the 
mapped hardware in the processor in a way similar 
to a floating-point unit (1:1'1'). Just as graphics accel- 
eration is now being incli~ded in system processor 
design, images will eventually achieve the status of 
a required data type and thus be supported in the 
base system processor. 

Product DeBnition- What Does the User 
Want? 
The previously clescribecl strategy was used in the 
design of the image accelerator board for the 
DECimage 1200 systcm. Thc product requirements 
called for a low-cost, high-performance document 
image view station These reqi~irements evolved 
from the belief that most users currently investi- 
gating imaging systems are interested in applica- 
tions and hardware that will enable them to quickly 
and simultaneously view clocument images ant1 run 
their existing no~~imagingapplications. These users 
are involved with commercial and business appli- 
cations, rather than scientific applications. The 
DECimage 1200 system was planned for the manage- 
ment of insurance claims processing, hospital 
patient medical recortls, bank records, and manu- 
facturing documents. As previously stated, the 
imaging functions required for these view-oriented 
applications are high-speed decompression, seal- 
ing, rotation, zooming, and clipping. 

General Product Design 
In defining the image capable system, the key 
points in the product requirements list were 

High-performance image display 

Low cost 

Bitonal images only (not gray-scale or color) 

View-only functions 

The need for high-performance display influ- 
encecl the project team to design the hardware 
accelerator board to handle imagc decompression, 
scaling, and rotation. Previous performance test- 
ing on a 3-WJP (VAX-11/780 units of performance) 
CYU had yieldccl irn;tge software display times from 
5 to 19 seconds. These images were compressetl 
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INTERFACE MEMORY HARDWARE 

SYSTEM ADDRESSIDATA BUS 

t t t 

MEMORY MEMORY 

Figure 3 VT1200 3j)stern Arcbilect~~re 

The rotillion circuit handles 90- and 270-degree 
rotation, whereas 180-dcgree rotation is hanclled 
in the data packing shift registers by changing the 
shift direction. 'I'he circuit rotates an 8-by-8-bit 
block of data at a time. The first byte of cight con- 
secutive scan lines is written into eight intlividual 
byte-wicle registers. The most significant bit (MSB) 

of each of these registers is connected to the byte- 
wide rotation output port latch. A procchsor reatl 
of this port triggers a simultaneous shift in all of the 
rotation data registers so that the next bit of each 
register is now latched at the rotation output port 
for the next read. Figure 5 diagrams the rotation 
circuitry just described. 

To achieve the best performance, we pipelinecl 
the h~nctional blocks in the hardware. 'l'hc scaling 
engine docs not need to wait for the entire image 

to be decompressed before it can begin scaling; 
instead, scaling begins as soon as the first byte of 
data is output from the decompressor Thus tlif- 
ferent pieces of the image file are be~ng decom- 
pressed, scaled, and rotatecl siniultaneousl~~. The 
hardware pipeline also eliminates the need to 
store the fully uncompressed image (approximately 
1 megabyte of clata for A-size 300-dpi images) in 
memoly. The compressed image is wrltten from 
system memory to the accelerator board and a 
tleconipressetl, scaled, and clipped image is read 
from the board. Because of the speed of the hard- 
ware, the software can redisplay an image with dif- 
ferent scaling, clipping, or rotation parameters; it 
merely changes the harclware setup for the differ- 
ent parameters and sends the compressetl image 
file back through the accelerator board pipeline. 

BUFFER RAM BUFFER 

J- 4 
SYSTEM ADDRESSIDATA BUS 

t t 
COMMAND 
AND STATUS I REGISTER I ROTATION 

MATRIX 

Figure 4 Block Diagram of DECint~~ge 1200 Accelerator Hardtoare 

18 Ihl. .I IVO. 4 Fall I991 Digital Technical Journal 



Hardware Accelerators for Bitonal Image Processing 
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ASIC Design Description 
The ASIC design consists of a decompressor chip, 
which decodes the compressed image data to pixel 
image data, and a scaling chip, which converts the 
image from the input size to the desired display size. 

Deco7npressor Chip The decompressor chip acts 
as a CCI?T binary image decoder. The chip contains 
three distinct stages, which are pipelined for the 
most efficient data processing. Double buffering 
of compressed input data is implemented to enable 
simultaneous input data loading and image decod- 
ing to occur. Compressed data is loaded into the 
input buffer by the processor through a 16- or 32-bit 
port. Handshaking controls the transfer of decom- 
pressed data from the decompressor's 8-bit-wide 
output bus to the scaling chip. 

The first stage of the decompressor chip con- 
verts CC17T-standard Huffman codes, which are of 
variable-length, to 8-bit, fixed-length codes (FLCS).~ 
A sequential tree follower circuit is implemented 
to handle this conversion. Every Huffman code cor- 
responds to a unique path through the tree, which 
ends at a leaf indicating the FLC. The 8-bit FLC is 
sent to a first-in, first-out (FIFO) buffer, which holds 
the data for the second stage. 

The second stage of the chip generates a 16-bit, 
run-length value from the FLC. The lower 15 bits of 

or black pixels (called the run length). The upper 
bit of the word contains the run-length color code 
(0 for a white run and 1 for a black run). An FLC is 
read from the FIFO buffer and decoded into one of 
elght routine types. Each routine is made up of sev- 
eral states that control the color code toggling, run- 
length adder, and accumulator circuits. At tlie end 
of each routine, a new word containing the run- 
length and color information is written into a FIFO 
buffer for the h a 1  stage. 

The final stage of the decompressor chip con- 
verts the run-length and color information to black 
or white pixels. This stage outputs these pixels in 
16-bit chunks when the scaling chip sends a signal 
indicating a readiness to accept more data. 

Scaling Chip The primary purpose of the scaling 
chip is to input high-resolution document images 
(300 dpi) and scale them for display on a medium- 
density monitor (100 dpi). The chip offers inde- 
pendent scaling in the horizontal and vertical 
directions. The scaling design implemented in the 
chip is a patented algorithm that maps the input 
image space to the output image space. General 
1v1-to-N pixel scaling is provided where M and N are 
integers between 1 and 127, with the delta between 
them less than 65. IM represents the number of pix- 
els in and N represents the number of pixels out (in 
the approximated scale factor). 

Given an image input size and a desired display 
size, we must find the M and N scale Fdctors that 
best approximate the desired scale factor, within 
the range limits of M and N as previously stated. 
Thus an input width of 3300 and a desired out- 
put width of 550 are represented by an PI of 6 and 
an N of 1. The approximatecl 1l.I and N values are 
loaded into the chip scale registers for downscaling 
or upscaling. 

The chip scaling logic uses the scale register val- 
ues to increment the input pointer position and 
generate output pixels. A latched increment deci- 
sion term is updated every clock cycle, based on 
the previous term and the scale register values. 
When scaling down (where fewer pixels are output 
than are input), tlie logic increments the input 
pointer position every clock cycle, but only out- 
puts a pixel when the increment decision term is 
greater than or equal to zero. Figure 6a illustrates 
how this algorithm maps input pixels to outp~it  pix- 
els for a sample reduction. When scaling up (where 
every input pixel represents at least one outpiit 
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SCALE DOWN FROM 10 INPUT PIXELS TO 5 OUTPUT PIXELS 
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(a) Downscaling 

SCALE UP FROM 3 INPUT PIXELS TO 9 OUTPUT PIXELS 
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DECISION D=-1 D = l  D=-3 D=-1  D = l  D = - 3  D=-1  D = l  D = 3  
REGISTER 

OUTPUT • 
1 2 

(6) Upscaling 

Figure 6 Chip Scaling Examples 

pixel), thc logic outputs a pixel every clock cycle, 
but only increments the input pointer position 
when the increment decision tern1 is greater than 
or equal to zero. Figure 6b illustrates how this algo- 
rithm maps input pixels to output pixels for a sam- 
ple magnification. For both cases, the value of the 
pixel (black or white) being output is the value of 
the input pixel pointed at during that clock cycle. 
In this dcscription, simply substitute rows for pix- 
els to reprcscnt the vertical scaling process. 

Software Sz,lpport for the Hardware 
Software support is needed to enhance the func- 
tions of the hardware accelerator in our imagc view 
station. As mentioned in the section General 
Product Design, thc XIE protocol extends the X l l  
core protocol to enable the transfer of compressetl 
images across the wire ant1 to cnable image rendi- 

tion ancl display at the server using the hardware 
accelerator board. Like the X I 1  protocol, the XIE 
protocol consists of a client-side library called 
XIElib, which provides client applications access 
to image routines, and a server-side piece, which 
executes the client requests. The xrE server imple- 
ments support at two levels: device-independent 
and device-dependent. The device-dependent level 
supports the functions that benefit from optimi- 
zation for a particular platform, or functions that 
are implemented in hardware accelerators. The 
device-independent level enables quick porting of 
functionality from platforrn to platform. Figure 7 
illustrates the S/XIE client-server architecture. 

The client-side XlElib offers the minimum 
functions necessary for image rendition and dis- 
play The toolkit level offers higher-level routines 
that assist with windows application development. 
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Figure 7 W X I E  Architecttire 

An example of a routine at this level might be 
ImageDisplay, which displays an image in a previ- 
ously created window. ImageDisplay parameters 
might include x and y scaling values, the rotation 
angle, and region-of-interest coordinates. Whether 
programming with the XIE protocol at the library 
or toolkit level, applications developers benefit 
from the platform interoperability of the standard 
interface. Image accelerator hardware and opti- 
mized device-dependent XIE code changes the 
application's image display performance, but an 
application developed using the X E  protocol can 
run on any XlE-capable server. 

Accelerator Performance Results 
With the DECimage 1200 X terminal, we have 
achieved interactive performance rates, reduced 
memory usage, and increased final image legibility. 
We achieved these rates by transporting com- 
pressed files instead of huge pixel files and by imple- 
menting specialized image processing hardware. 
The DECimage 1200 can read, transport, decom- 
press, scale, and display an 8.5-by-11-inch bitonal 
document in 1 to 2 seconds. Successive displays, 
i.e., rotating, region-of-interest zooming, panning 
around the image, all occur in less than 1 second, 

which is essentially as fast as the user can ask for 
the displays. This speed is possible because the 
image already resides in compressed form in the 
server memory. Thus, the image does not have to 
be read from the disk or transported across the 
network. 

Future Image Accelerator 
Requirements 
Hardware accelerators will continue to be required 
for bitonal imaging until software can provide the 
same fiinctionality at the same performance level. 
This section discusses the more complex image 
schemes that are used for gray-scale imaging and 
multimedia applications. In contrast to bitonal 
imaging, these applications will require the use of 
hardware accelerators well into the future. 

Other applications will require richer user inter- 
faces utilizing continuous-tone images, video, and 
audio. All of these new data types are generally 
data-intensive, and compression or decompression 
of any one of them is a significant processing bur- 
den. Handling them in combination indicates that 
the need for specialized hardware assistance will 
persist for the foreseeable future. 

Continuous-tone Images 
Bitonal images are either black or white at each 
point, but some applications require smoothly 
shaded or colored images. These images are typi- 
cally referred to as continuous-tone images, a term 
that denotes either color or gray-scale, e.g., photo- 
graphs, X rays, and still video. The representation 
and required processing of this image format is 
significantly different from that of bitonal images. 

Continuous-tone images are represented by mul- 
tiple bits per pixel. This format allows a greater 
range of values for each pixel, which yields greater 
accuracy in the representation of the original 
object. Additionally, each pixel can consist of mul- 
tiple components, as in the case of color. The num- 
ber of bits used to represent a continuous-tone 
image is chosen according to the nature of the 
image. 

For example, medical X rays require a high 
degree of accuracy. Consequently, 12 bits are gener- 
ally regarded as the minimum acceptable for the 
rendering of this class of image. Color images typi- 
cally require 8 bits per pixel for each component 
(YUV or RGB format) for a total of 24 bits per pixel. 
Table 2 shows the relative size of samples of each 
image. The need to express these images in a 
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compressed format is obvious from the storage 
space rrequirements and the current storage media 
limits. 

Tlie comprcssion of continuoi~s-tone irnagcs can 
be accomplisliecl in sever;il ways. Hornrevel; most 
imaging applications are not closed systems; 
inevitably, each system needs to rnanipul;lte images 
that are not of its own making. For this reason wc 
aclopted the JPEG standard, wlhicl~ specifics an ;~lgo- 
rithm for the comprcssion of gray-scale and color 
images. Specifically, the JPEG compression methotl 
is based 011 the two-dimensional (2D) discretc 
cosine transform (DCT). The D<:T decomposes an 
8-by-8 rectangle of pixels into its 64 2D spatial- 
frequency components. Tllc sum of these 64 2 D  
sinusoids exactly reconstructs the 8-by-8 rectangle. 
However, tlie rect;~ngle is approximated-and com- 
pression is achieved-by tliscarding most of the 
64 components. 7'>,pically adjacent pixel values 
vary slowly, thus there is little energy in most of the 
discarded high-frequency components. 

The eclges of objects generally contribute to the 
high-frequency components of an image, whereas 
the low-frequency components are made up of 
intensities that vary more gradual ly. Tlie more 
frequency components included in the approxi- 
mation, the more accurate the approximation 
becomes. Table 4 shows some sample JPEG image 
compression  ratio^.^ 

The most popul;tr part of the JPEG stantlard, 
the "baseline" method, was defined to be easily 
mapped into software, firmware, or hardware. 
Straightforward D(X' algorithms can be efficiently 
implemented in firmware for programmable DSP 
chips, due to their pipclined architecture. The first 
systc1ns to embody the standarcl clitl so using DSPs, 

Table 4 Typical Compression Parameters 
for JPEG 

Compression Compression Rendered Image 
Ratio Method Integrity 

2:l Lossless Highest quality- 
no data loss 

12:l Lossy Excellent quality- 
indistinguishable 
from the original 
Good quality- 
satisfactory for 
most applications 

1OO:l Lossy Low quality- 
recognizable 

Lossy 

because any change to either the evolvilig standard 
or a standard extension coulcl be easily introduced 
to the firmware. The fastest implementations arc 
achieved by special-purpose hardware accelerators. 

The JPEG implementation tlocs not require harcl- 
ware, i.e., the algorithm can be pcrformed corn- 
plctely in software. Tlie case for hardware assist 
is made in performance. Table 5 clescribes tlie 
reduced instruction set compilter (IUSC) processor 
performance, in millions of operations per second 
(mops), needed to provide the specified operation 
at a motion video rate of 30 frames per second.: 
However, generic NSC processors of those speeds 
are not available today. Therefore, dedicated, cus- 
tom very large-scale integration (VLSI) devices 
(such ;I> the (:L550-10 from C-Cu be Microsystems) 
must be used to perform the  operation^.^ Even 
if the motion vidco rate is not required, the ASIC 

devices offer the simplest hartlware solution. 

Live Video and Video Compression 
Video captures the natural progression of events in 
an environment, and is therefore a natural and 
efficient way to communicate. Consider, for exam- 
ple, the assembly of a set of components. One way 
to express the assembly process is to show a series 
of photographs of the assembly at successive steps 
of completion. As an alternative, vicleo can show 
the actual assembly process from start to finish. 
Subtle details of the process such as part rotations 
and movements can be clearly conveyed, with tlie 
added dimension of time. 

Obviously, information expressed in video form 
can be valuable; howevel; significant problems arise 
in adapting video for use in computer systems. 
First, the huge data size of vitleo applications can 
strain the system's storage capability. Video can 
be characterized as a stream of continuous-tone 
images. Each of these images consists of pixel val- 
ues with individual components making up each 
pixel. For video to have full effectiveness, the still 
images must be presented at video rates. In manjf 
cases the rate to f a i t l ~ ~ l l y  reproduce motion is 
30 frames per secontl, which means that one 
minute of uncompressed video (512-by-480 pixels 
at 24 bits per pixel) would consume over 1 gigabyte 
of storage. In addition to storage demands, large 
volumes of data cause banclwiclth problems. 
Presenting 30 frames per second to tlie video out- 
put with the above parameters would require a 
transfer rate of more than 22 megabytes per sec- 
ond from the storage device to tlie video output. 
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Table 5 Processing Requirements for lmaging Functions 

Processor 
Imaging 7 Processor Operations per Pixel* 7 Operations 
Functions Read Write ALUt Multiply Total at 30 fps (mops) 

Pixel move .25 .25 0 0 .5 15 

Point operation 2 1 1 0 4 120 

3 x 3 convolve 9 1 8 9 27 81 0 

8 x 8DCT 24 1 14 16 65 1950 

8 x 8 block 128 1 191 0 320 9600 
matching 

'RISC processor, 1 M pixels, 30 frames per second (fps), 8 bits. 
tALU = arithmetic logic unit 

Thus, reducing the amount of data used to repre- 
sent the video stream would alleviate both storage 
and bandwidth concerns. 

The starting point for the compression of video 
is with still images and, as previously mentioned, 
the JPEG algorithm can be used to compress still 
continuous-tone images. Because video can be rep- 
resented as a sequence of still images, the algorithm 
could be applied to each still. This procedure 
would produce a sequence of compressed video 
frames, each frame independent of the other 
frames in the sequence. 

The evolving Motion Picture Experts Group 
(MPEG) standard takes advantage of frame-to-frame 
similarities in a video sequence, thereby enabling 
more efficient compression than the application 
of the JPEG algorithm alone.Vn most situations, 
video sequences contain high degrees of similar- 
ity between adjacent frames. The compression of 
video can be increased by encoding a frane using 
only the differences from the previous frame. The 
majority of scenes can be greatly compressed; how- 
ever, scene transitions, lighting changes, or condi- 
tions of extreme motion need to be compressed as 
independent frames. 

The need for hardware assist in this area is com- 
pelling. Table 5 shows that to sustain a SPEC; decorn- 
pression at 30 frames per second would require a 
1950-mops processor. The same result can be 
obtained using the CL550-10 JPEG Image Compres- 
sion Proce~sor .~  Although this device does not 
make use of interframe similarities to increase com- 
pression efficiency, a device implementing the 
MPEC standard would exploit these similarities. 
Table 5 shows that motion compensation, to be 
supported ;it 30 frames per seconcl, requires a 
9600-mops processor. 

Audio and Audio Compression 
Video is usually accompanied by audio. The audio 
can be reproduced as it was recorded (with the 
video), or it can be mixed with the video from 
a separate source (such as a compact disc (CD) 

player). The audio data is defined by application 
requirements. If the application allows lower 
quality, the audio can be sampled at lower rates 
with fewer bits per sample, such as telephony rates, 
which are sampled at 8 kilohertz and 8 bits per 
sample. For applications requiring high-quality 
(CD) audio, samples are usually taken at 44 kilo- 
hertz and 16 bits per sample. 

Integrating audio data into an application creates 
special problems. The major characteristic that 
differentiates audio from the other data formats 
presented here is its continuous nature. Audio 
must flow uninterrupted for it to convey any mean- 
ing. In video systems, the flow of frames may slow 
down under heavy system loading. The user may 
never notice it, or may not be annoyed by it. Audio, 
however, cannot slow or stop. For this reason, large 
buffers are used to allow for load variations that 
may affect audio reproduction. 

A more subtle problem in creating applications 
using audio is in synchronization. Audio data is 
usually included to add another dimension of infor- 
mation to the application (such as speech). 
Without a method of synchronizing the video and 
audio, one data stream will drift out of phase with 
the other. One way to include synchronization is to 
use time stamps on the audio and video. This is par- 
ticularly useful because standard time codes are 
used in most production machines. 

The compression of audio data is not as efficient 
as that of the other data formats. Since a statistical 
approach to coding audio is highly dependent on 
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the t).pe of input (i.e., voice, musical instrument), 
another method is requireel for gcncr;ilizetl inputs. 
Differential pulse code modu1;ition (t)I-'(:kl) is oftcn 
usecl to encocle ;iudio dat;~. DPCM cotles only the clz- 
ference betm~een adjacent sample values. Since the 
difference in value between samples is usually less 
than the magnitude of the sample, modest compres- 
sion can be achieved (4 : l ) .  The limitation using this 
technique is in the coding of high-frequency clat;~. 

II:ird\v;ire assist for the audio data format will 
probahly come in the form of hardware to perform 
functions other than compression. For instance, 
DSI-' algorithms can perform equalization, noise 
reduction, ;lnd special effects. 

Mu1 tinzedin 
As the term implies, multimctlia may integrate all 
of the previously mentioned image formats. The 
word "may" is important in this co~itext. 'l'his area 
has been mainly technology-driven, due to such 
factors as lack of st;lnclards, clcveloping I/() clevices, 
insufficient system bandwidth, differing clat;~ for- 
mats, and a vast amount of software integration. 

It is currently a topic of debate nrhcther typical 
users will require the ability to cre;itc, as opposed 
to only access. multimeclia source material. How- 
ever, for discussion purposes, multimedi;~ plat- 
forms can be classified into two c;~tcgories: 
authoring and user. Authoring refers to creation 
of multirneclia source material i111d requires differ- 
ent c;~pabilities than user platforms. In the creation 
of a multirncdia application, data from many differ- 
ent devices may need to be digitized and cross- 

referenced. As the data is incorporated, it is com- 
pressed and storecl. Authors require the c;ip;ibility 
to edit anti mix vitleo and audio passages to get the 
desired result. Moreover, the video and auclio m;ijr 
originate from different devices and may even be in 
different formats. 

As clefined above, " t~ser  systems" do not require 
all of the functions that authoring systems neecl: 
only decompression is required in a typical user 
system. Most existing user systems require at1 ana- 
log video source (vitleodisk), which is purchased 
as part of the application. The device control is pel= 
formed by the application, i.e., when a user selects 
a passage to be replayed, the application sends 
commands to the videodisk. Figure 8 depicts an 
authoring system and a user system, along with 
suggested 1/0 capability. 

Ncxt-generation multimedia platforms will make 
fill1 use of digital vitleo and audio. This implies that 
systems will be able to receive ancl transmit multi- 
media applications ant1 data over networks. This 
interactive capability miill improve the efficiency of 
many munclane applications and devices. For exam- 
ple, electronic mail can be extended with video and 
audio annotations, or meetings can be transformecl 
into vicleo teleconferencing. The adoption of com- 
pletely digital data for multimedia also implies that 
the platform I/O will change. Some user systems 
will not require analog device interfaces or control: 
the user will load the ;ipplication over the network 
or from at1 optic;~l disk. 

Each of the image formats described in this 
section has different characteristics, and each will 
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be presented in the embodiment of multimedia. 
Given the size, processing requirements (compres 
sion and decompression), and real-time demands of 
applications, hardware assist will be a necessity. 

Summary 
Imaging is a unique data type with special sys- 
tem requirements. To achieve interactive rates of 
bitonal image display performance today, hardware 
accelerators are needed; that has been the primary 
focus of this paper, In the future, a general-purpose 
processor should be able to handle the imaging pro- 
cess at the necessary speed, ancl beyond that, the 
processor should be affordable in a low-cost bitonal 
imaging system. However, the bitonal document 
processing market will not wait; it is in a high state 
of growth and requires that products like accelera- 
tors be developed for at least a few years. 

Continuous-tone documents and multimedia 
applications will place an even heavier processing 
load on an imaging system. These areas will require 
accelerators for several years. As imaging applica- 
tions, including bitonal, expand to cover more mar- 
kets, the quality enhancements and performance 
benchmarks met by accelerators today will set 
customer expectations. Consequently, our fiiture 
imaging products must be designed to meet these 
expectations. 
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X Window Terminals 

X window terminals occupy a niche behueen X window tvorkstations andgraphics 
terminals. Tbe purpose of temtinals in general is to provide low-cost rlsm access to 
bost computers or smaller dedicated systems. X u~indow terminals further the 
adt)ance in graphics terminals andprollide new and interesting u~ays to ~rtilize host 
systems. Ethernet cable provides for graphics perfornzarzce previously not seen in 
terminals. Tbe X Window System developed by lMlT allows nzt~ltiple applications 
to be displayed and controlled from the user's workstatio~z. Now, with X wi~zdozu 
terminals, the same powerjid user interface is available on host and other non- 
workstation computers. 

In mid 1987, the Video, Image and Print Systems 
(VIPs) Group began the design of Digital's first 
X window terminal, the VT'lOOO terminal and its 
code upgrade, the VT1200 terminal. Our goal was to 
design and implement an x window terminal that 
would aIlow the use of windowing capabilities on 
large computer systems. In 1989, Digital developed 
the VTUOO X terminal and in 1991 the VXT 2000 
X terminal. The designs of these X window termi- 
nals are all quite different. Our design approach 
changed as the underlying technology changed. 

This paper first compares host-system comput- 
ing with applications that run on workstations. 
It summarizes the significance of the X Window 
System developed by MIT and discusses the client- 
server model. The paper then presents the need for 
X window terminals and follows their development 
stages. It compares and contrasts Digital's differ- 
ent dcsign strategies for the VT1000, V7'1200, and 
VT1300 X terminals. The paper concludes with a 
sumrn:try of the recently announced W' 2000 
X terminal. 

Background 
Before the development of the X Window Sys- 
tem, there was very little overlap in functionality 
betwccn workstations and other kinds of comput- 
ers. Workstations had stunning and kist graphics, 
ancl many powerful applications were available on 
them. Those applications were not available to users 
of basic 80-by24 character-cell text display termi- 
nals connected to a host system located in a clean 
room. Graphics terminals, of course, allowed the use 
of ReGlS or another protocol for math and business 

graphics, but their performance was far below the 
expectations of a workstation user Few people 
have the patience to run, for example, a computer- 
aided design application on a VT240 terminal, assum- 
ing such a version of the application is available. 

Although a workstation offers fast graphics capa- 
bilities, its applications sometimes need more CI'U 

power or more disk space to do calculations in a 
timely fashion. Graphics applications written for 
workstations could not run on faster host comput- 
ers, which did not provide a display. Nor was there 
a standard way to get data from the host to display 
on a workstation. Each application required a 
unique solution to this problem. 

Since the introduction of the new client-server 
model of computing and modern networks, many 
tasks can be divided into subtasks that can run 
on the most suitable processor. The X Window Sys- 
tem uses the client-server approach. as shown in 
Figure 1. The application is viewed as an X client, 
and a workstation or a terminal can run an X server 
that controls the tlisplay. The X server also controls 
input from the keyboard and mouse or other point- 
ing devices. 

SERVER fi 
X CLIENT 

X WIRE 

Figure I Client-sen~er Model 
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An X client and an X server use an X wire to 
communicate, as shown in Figure 2. The X wire 
is simply a two-way error-free byte stream, which 
can be implemented in many different ways. The 
s Window System architecture does not stipu- 
late how the x wire should be implemented, but 
several de facto standards have emerged. Manu- 
facturers have designed X wires usually based on 
the data transport mechanisms that were available 
and convenient when the X Window System was 
implemented. The X wires use transmission control 
protocol/internet protocol (TCWIP), DECnet, Local 
Area Transport (LAT), and other protocols, and even 
shared memory buffers as a transport to avoid 
protocol overhead. A single implementation often 
supports several transport mechanisms. 

The X server typically executes on a processor 
with tlisplay hardware. The X client can execute on 
almost any processor. It may execute on the same 

Figure 2 X Wires 

X CLIENT 

TRADITIONAL 
WORKSTATION 
I I 

I APPLICATION 1 

X CLIENT 

GRAPHICS 
LIBRARY 

X CLIENT 

X CLIENT 

DISPLAY HARDWARE 

X WIRES 

X CLIENT 

CPU as the X server, or it may execute on a host, 
another workstation, or a compute server. The 
x server can be connected to several X clients 
sin~ultaneously, with any combination of local 
(running on the same CPU) or remote (running on 
another CPU) X clients. The X server treats local ancl 
remote clients equally. 

X SERVER 

Workstation Environment 
Figure 3 compares a traditional non-X windowing 
workstation with an X windowing workstation. In 
both workstations the application must use a 
graphics library to communicate with the display 
hardware and software. 

In an X windowing client environment, the 
library of routines is called Nib. An application 
designer can choose from a wide variety of toolkits, 
which are essentially a level of additional library 
routines between the application and Xlib. The use 
of a toolkit can signifxantly reduce the amount 
of work an application programmer has to do. The 
application software, Nib, optional toolkit, and 
other libraries compose the X client, as shown in 
Figure 4. 

With few exceptions, the X server comes with 
the display hardware and input devices (keyboartl 
and pointer) indicated in Figure 5. 

The X Window System with its flexibility neatly 
solves the problems of CPU power and disk space 
versus display availability. Applications written for 
X can execute on a wide variety of computers, and 
the results can be displayed on any of a multitude 
of devices, even on a workstation that would not 

X WINDOWING 
WORKSTATION 
I 1 

APPLICATION -1 
1 X WIRE I 

DISPLAY HARDWARE 1 - 1  

Figure 3 Inside the Workstation 
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APPLICATKW 

OmlONAL TOOLKIT 
AND O M R  LlBRAFllES 

Figure 4 7 ' h  X Client 

INPUT HARDWARE 

Figure 5 The X Server 

have the capacity to run the application locally, 
Figure 6 shows how the X W i d o w  System fits into 
a network environment. 

The X Window System has already generated 
many useful applicaclons, and its widespread popu- 
larity ensures that many more applications will be 
made available in the future. 

Need for X Terminals 
In a study to determine how workstations arc used, 
thc VIPs Group found that many users did not take 
advantage of the full potential of their work- 

NETWORK 
INTERFACE 

stations. In a software development or  document 
editing environment, the users often set up their 
workstations as terminals. They usually created a 
few terminal emulation windows and u.xd SET 
HOST or RLOGlN commands to connect fo a host 
system on which they stored their working envi- 
ronment and filcs. Only two features czf a work- 
station were frequently used. Users kept several 
terminal emul;~tors on tlieir screens at the same 
time, and set the terminal emulator windows to be 
larger than 80 by 24 characters. Only rarely did the 
average workstation uscr take advantage of the fill1 
power of graphics applications. 

The results of our s t ~ ~ d y  indicated a need for 
a cost-effcctivc altcrn;~tive to a workstation that 
would provide the features desired by a large num- 
ber of users. We envisioned a new kind of termi- 
nal, one that would allow people to have multiple 
windows of arbitrary size, to connect with mul- 
tiple hosts, and, since the X architecture allowed it, 
to be able to use the same kind of graphics as a 
workstation. 

From an X architecture standpoint, X terminals 
and X workstations are quite similar. They can in 
fact use the same hardware. For example, Digital's 
VT1300 terminal runs on the same hardware *as the 
VAXstation 3100 workstation. X terminal software 
can also be made to run well on hardware plat- 
forms that are not suitable for workstations. 

HOST CPU 1 HOST CPU 2 

X CLIENT X CLIENT X CLIENT 

NETWORK INTERFACE P-9 
ETHERNET 

I 
X WINDOWING WORKSTATION 

INTERFACE 

X SERVER I 

Figure 6 X Window Network Environment 
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The main architectural difference between 
the X terminal and X workstation software is that 
X terminals are closed systems that do not sup- 
port local user applications. Although this may 
seem to be an unnecessary restriction, it does allow 
X terminals to be made for less money. An open sys- 
tem that allows any user application to run locally 
must have an established CPU architecture, a sup- 
ported operating system, such as the VMS, UNM, 
or ULTRIX system, and, subsequently, sufficient 
memory and/or disk space to support such an envi- 
ronment. A closed system, on the other hand, can 
be designed with simpler hardware, a smaller oper- 
ating system, less memory, and thus lower cost. 
The absence of the ability to run user applications 
locally does not impact usability significantly since 
the user can run any desired application on another 
CPU. Digital's VTlOOO and VT1200 X terminals were 
designed based on this approach. 

X Terminal Environment 
x terminals often have local applications, but they 
must be built into the terminal by the designers. 
The W1200 terminal has a video terminal emulator 
(VTE), a window manager, and a terminal manager 
as the local applications. The WE allows the VT1200 
terminal to make American National Standards 
Institute (ANSI) character-cell connections to a 

host, via the Ethernet or the serial lines as shown 
in Figure 7. This capability makes the W1200 ter- 
minal useful in an environment that does not have 
X window support. 

Although any X server can run windows soft- 
ware, it does not provide a user interface. To manip- 
ulate the windows, the user needs a window 
manager. The window manager creates window 
frames that allow the user to invoke functions to 
move windows, resize windows, change stacking 
order, and use icons. This capability also makes the 
vT1200 terminal useful when no host is available to 
run a remote window manager. A terminal with a 
local window manager generates less network 
traffic, and window management is not slowed 
by host congestion or network round-trip delays. 
The VT1200 X terminal allows use of a remote win- 
dow manager, if the user prefers a different style of 
window management. 

The local terminal manager provides the user 
interface to initiate connections to host systems. 
It is also responsible for the terminal customization 
interface. 

All clients communicate with the X server using 
standard X wire commands only. Any window man- 
ager, remote or local, can manage all the windows 
on the screen, regardless of whether the clients are 
remote or local. 

HOST CPU 1 HOST CPU 2 

X CLIENT '7 APPLICATION APPLICATION X CLIENT '717 
I I I 

NETWORK INTERFACE 

ETHERNET 

I 
VT1200 X TERMINAL 

:F;;L 7 1 1  1 hDyw 1 1 
EML,ATOR MAhAGER MAhAGER 

I I I I 

X SERVER 

Figure 7 The X Teminnl Environment 
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Development of X Win& Tem'nals 
The development process of the VTlOOO and 
VT1200 X terminals has important lessons to teach 
us. The knowledge we gained in 1987 has helped us 
develop future generations of X terminals. 

When we designed the VTlOOO X terminal and 
its code upgrade, the VT1200, we held many discus- 
sions within the group and with people from other 
groups. We planned many iterations before we 
arrived at the findl architecture. It was by no means 
the only way to design an X terminal, and in 1989 
we tried a different approach with the design of the 
vT1300 terminal. We knew that the best decision at 
a particular time might be very different from the 
best decision one year later, since the technical and 
marketing environment is constantly changing. 
New tools, standards, and practices enter the field 
while others become obsolete. Newer products 
must always have new features to meet changing 
technology requirements. 

Hardware Platform 

col withoiit some compression of the wire protocol 
itself. We had to build Digital's first X terminal with 
an Ethernet interface. 

We needed to clctcrmine if this thisdrhu-e platform 
could give us sufficient performance. We made sev- 
eral performance estimates, based on what we 
knew then about the X server and other software 
components. We went through each step in as much 
detail as we could (before anything was built). We 
calculated how many instructions were necessary 
to perform each task in the chain of receiving a 
comm;ind and displaying it on the screen. By know- 
ing the speed of the CPU, we could estimate per- 
formance in characters or vectors per second. 
Our estimates showed that the VTl000 X terminal 
would not be exceedingly fast, but the perfor- 
mance would most probably be sufficient, defi- 
nitely faster than a VkVstation 2000 in most cases. 

In retrospect, acttial performance of the VTlOOO 
terminal and the later software upgrade, the 
VT1200, was close to our estimates, but i t  took srv- 
era1 passes of code optimization to achieve such 
~erformance. 

Our first step was to discuss the hardware plat- a 

We also discussed alternate hardware designs 
form and select the kind of CpU '0 use, memory for performance improvements, One solution pro. 
size, I/O considerations, type of display, etc. We posed two cpUs, the ~ ~ ~ 3 4 0 1 0  m~croprocessor to 
studied many different CPUs to determine which handle the display and a 68000 microprocessor to 
One woul'l provide the capabi1ities for the handle I/O and other tasks. Unfortunately, we fount1 
lowest cost. A VAX chip was rejected because, at the no easy way to balance the workload between the 
time, i t  was far too expensive for the required price two CPUs, We estimated that tile different software 
range of the VTlOOO terminal. The Motorola 68000 components would have the following relative CPU 
series CPUs are quite powerful, but we had to con- demands: 
sider other factors such as availability of software 
and hardware tools, cross compilers and linkers 
that could run on the VMS system, and hartlware 
clebi~gging facilities of sufficient power. We finally 
selected Texas Instruments' ~l\l~34010 micro- 
processor with video support and sevcral built-in 
graphics instructions that made it a cost-cffcctive 
solution. It also came with VMS developnlcnt tools, 
a C con~piler, an assembler and linker, a single-step, 
hartlware trace buffer with disassembler, and a 
powerful in-circuit emulator that made it possible 
to control execution in detail, inspect registers and 
memory, and set break points and hardware watch 
points (for example, break when writing value x 
into 1ocation;y). 

We further discussetl the kind of I/O to use. A 
sample implementation of the MIT X server on a 
VAXstation 2000 workstation and a primitive serial 
line protocol showed, as expected, that serial lines 
were clearly insufficient to carry the X wire yroto- 

Interrupts, 5 percent 

Communications, 10 percent 

Operating system, 5 percent 

x server (minus display routines), 60 percent 

Display routines, 20 percent 

To equalize the load between the CIJUs, we woultl 
11;1vc liatl to split the X server in two, a solution that 
was not feasible. Any other split of tasks would 
cause one Cf'U to spend most of its time waiting 
for the other, and the overall performance gain 
would be minimal. Communication between mul- 
tiple CPL:s is complex and is very difficult to debug. 
Therefore, we decided that two CPUs were not 
worth the trouble or the cost. The best way to 
tlouble pcsforniance is to install a single CPU that 
is twice as fast. At that time, the ~ ~ ~ 3 4 0 2 0  was 
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already being mentioned as a follow-up micro- 
processor. Since its software would be compatible 
with the ~ ~ ~ 3 4 0 1 0 ,  we decided to keep it in mind 
for possible use in a future terminal. 

Code Selection 
The use of read-only memory (K0M)based code 
versus downloaded code has been debated for 
some time. ROM-based code starts up faster and 
incurs less network traffic at startup time (espe- 
cially on a site with many X terminals), but is not 
flexible when software is upgraded. On the other 
hand, downloaded code can be easily distributed. 
An entire site can be upgraded with one or a few 
installations by a system manager as opposed to 
changing ROMs in a large number of terminals. 
w i t h  the VT1200 X terminal, customers can change 
ROM boards.) From the point of view of terminal 
business, it made sense to use ROM-based code in 
198% We reasoned that not all sites would have 
Ethernet, but with ROMs the X terminal would 
still be usefill as a multiwindow terminal emula- 
tor. We realized that such concerns would change 
with time, and on the whole, downloaded code 
would become the better approach. The only 
exceptions would be in the home or small office 
markets where a boot host or an Ethernet might not 
be available. Subsequent X terminals are being 
made in both downloaded (for example, in the 
VTUOO terminal) and ROM versions. 

Operating System Selection 
Next we considered which operating system to 
use. We looked at other vendors' operating sys- 
tems, but found they were either too complex and 
big or inadequate. One of our coworkers hacl writ- 
ten a very compact operating system for a VAX 
system used on another project. We used i t  in our 
prototype and then adapted it for the TMS34010 
processor. We implemented additional functions 
to run the rest of the software with minimum 
changes. 

There are many advantages to working with 
"your own" operating system. It is easy to make 
changes, to work around tricky problems, and to 
make special enhancements. Rut operating system 
code is difficult to debug. Timing is very critical, 
and throughout the project, we found strange bugs 
in code that had initially appeared to be all right 
to everyone involved. We found bugs under heavy 
load conditions after a rare sequence of events 

uncovered little timing windows and race condi- 
tions that had not been handled properly. Even 
with in-circuit emulators, such bugs could take 
weeks to track down. 

In the VT1300 we decided to use the VAXELN 
operating system. We wanted to avoid the possibil- 
ity of time wasted on finding and patching holes in 
the design of a new operating system. 

Local Terminal Manager 
The VTlOOO X terminal is self-starting at power-up, 
but without a host system, it needs a local user 
interface. We decided that this interface should 
resemble a workstation session manager and thus 
called it the local terminal manager. Although it 
covers a different set of functions, we wanted the 
local terminal manager to implement a similar set of 
objects and operations (the "look and feel" or style) 
of a workstation session manager. The style of the 
DECwindows session manager was chosen to make 
it easier for a user to switch between an x terminal 
and a DECwindows workstation. We wrote a subset 
toolkit for all the "customize" screens and ensured 
that the VTE could use the same subset toolkit for 
its "customize" screens. As DECwindows has pro- 
gressed, subsequent X terminals have adapted the 
new user interface preferences, in this case Motif. 

Local Terminal Emulator 
We considered a local terminal emulator to be an 
important component. We knew that X-based ter- 
minal emulators could run on the host, but in 1987 
hosts with X windowing support were rare. Since 
we were in the terminal group, a terminal that 
could not manipulate ordinary text by itself was 
considered unsellable. We wanted the ability to 
access both X and non-X hosts and we wanted 
to support multiple text windows. Therefore we 
defined the terminal emulator as an X client so that 
text windows could coexist with X client windows. 
This feature has proved to be exceptionally popu- 
lar. A large number of users use nothing but video 
terminal emulator windows. They are not inter- 
ested in X windowing graphics, but do want mul- 
tiple and/or larger text windows on a large screen. 

Local Window Manager 
We debated whether or not to implement a local 
window manager. The DECwindows window man- 
ager was under developn~ent and was constantly 
changing. The DECwindows window manager 
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contained far too many VMS dependencies to be 
ported easily. Aiso the X terminal did not have 
enough memory to run the DECwindows toolkit 
locally We could have ported other window man- 
agers, but they lacked the essential characteristics 
of the DECwindows window manager. For a while 
we considered letting the local clients have a primi- 
tive way to manage their own windows, until a full- 
featured window manager could be started on a 
host. Again, this alternative lacked tl-le DECwindows 
system's qualities. We eventually decided to write 
a window manager based only on Xlib and our 
subset toolkit calls. It has the essential characteris- 
tics of the DECwindows product. Also, since the 
DECwindows window manager of necessity would 
keep changing, we wrote the local window man- 
ager in such a way that it could relinquish control 
to a remote window manager. This solution gave us 
the most flexibility for this hardware platform. The 
recently announced VXT 2000 X terminal has been 
designed with virtual memory to accommodate a 
well-established unmodified window manager, the 
Motif Window Manager. 

X Server 
We also needed to choose an X server. We could 
have based our code on the distribution tape from 
MIT, but at the time the X Window System was not 
yet a manire product. Every implementor had to 
spend considerable time stabilizing the implemen- 
tation enough to yield a product and improve per- 
formance. Since the VMS DECwindows Group had 
been writing code for the server, we decided to use 
DECwindows code. Once the porting effort started, 
we found that most of the performance had been 
improved by VAx MACRO code. Consequently, we 
had to re-engineer all the modules or adapt new 
ones from the MiT tape. As we kept porting and 
enhancing performance, our code changed more 
and more until it became extremely difficult to 
track bug fixes made by the DECwindows Group. 
The MlT patches were also nearly impossible to use 
because of code changes and because our starting 
code was one step removed from the tape. 

Today the MIT X server is a mature product; 
patches and bug k e s  are readily avalable from 
MIT and from the x community. In our current 
X terminals, the high degree of portability of the 
MIT X server allows us to keep most of the M11' 
X server source code almost unchanged so patches 
are easily applied. 

Communicalions Pr-otocol 
Many commi~nications protocols were available, 
but our choice was dictated by market pressures 
rather than technical reasons. The market demanded 
TCP/IP. DECnet would have been acceptable, but 
i t  was running out of available addresses, at least 
within Digital. DECnet atldress space supports 
only 64,000 nodes and requires manual acldress 
ant1 namc ;issignments. After waiting weeks to get 
addresses for a few workstations, we realized that 
adding thousands of X terminals into Digital's inter- 
nal network woultl not be possible. DECriet Phase \' 
software hiis solved this problem. 

Next we looked at the LAT protocol used by 
Digital terminal servers and found that it had sev- 
eral advantiiges. First, thc VMS operating system 
supports the LAT protocol. WT uses unique 48-bit 
Ethernet addresses to identlfy each node, which 
allows a large node address space. LAT also does not 
require any system management to add another ter- 
minal. A user can connect a terminal to a power 
source, and the terminal autonlatically becomes 
part of the network. Our performance evaluations 
found that the LAT interface on the host could be 
written to incur less host overhead than DECnet, 
which is important when many X terminals are con- 
nected to hosts. 

Changes were needed in the VMS L4T driver to 
accommodate X wire and font service connections. 
The VkiS Software Engineering Group worketl with 
us to ensure that we would have those changes 
on schedule and in the appropriate VMS releases. 
As a result, we chose the LAT protocol for the VMS 
community and TCP/IP for users of ULTRIX and UNIX 

systems. 

Font File Systm 
Storing fonts and changing font file formats were 
major problems. Since the VTlOOO X terminal did 
not have a local file system, some fonts had to be 
stored in ROM to allow the VTlOOO terminal to hnc -  
tion in standalone mode. A quick review of the 
available DECwindows fonts showed that not all of 
them fit in the ROM space allowecl for the terminal. 
Furthermore, customer-designed fonts or new font 
releases coultl not be accommodated. The solution 
was to be able to read fonts from a host system. 
This approach provided a font service on the VMS 

system, and enabled font files to be read over the 
Internet. Wc designctl a process called the font dae- 
mon to run on the VhqS operating system. This pro- 

3 2 Vol. .$ iVo. 4 I~ulll99I Digital Technical Jout-tin1 



X Window Terminals 

cess could deliver font data on request to one or 
several VTlOOO terminals. The VMS system's font 
daemon uses the LAT protocol to deliver the fonts 
and protects somewhat against font file format 
changes. In many ways, the design of the font 
daemon makes it a precursor to a general font 
server, and i t  is very similar to the X Font Server 
being delivered by MIT in the latest release of the 
X Window System. 

To use the font service, the terminal user must 
speclfy a font path in the VT1200 local terminal 
manager. Specifying a host name is sufficient to 
access the default font path, although users with 
their own font files can optionally search other 
directories. At startup, the VT1200 terminal makes a 
font connection to the host's font service and deliv- 
ers the font path specification to the font service. 
The font service sends font names and other basic 
font information about all the fonts in the selected 
path. When the VT1200 X server needs a font, the 
VT1200 first searches the ROM-based fonts; if it is 
not there, a request to read the font is sent to the 
font daemon. The daemon sends the required infor- 
mation to the VT1200, and the X server can display 
characters from that font. Since memory is limited, 
the VT1200 has font caching, a mechanism to dis- 
card fonts no longer used or to discard the least 
used fonts. Our current X terminals increase the 
robustness of the font mechanism; for example, 
they provide recovery should the font service or its 
host become unavailable. 

The special LAT code that we used on VMS sys- 
tems for the font service was not available on 
UNIX and ULTRIX operating systems. Since inter- 
net protocol (IP) was available, we could use the 
trivial file transfer protocol (TFTP) to read a file 
from a host system, if the system manager set the 
proper protections. We chose TFTP for its ease 
of implementation and its wide availability on 
UNIX and ULTRIX systems. The TFTP font path in a 
VT1200 terminal specifies a host rr address and a 
complete path to a file (usually named font.paths) 
that contains the complete path to all the font 
files that the VT1200 can use. The terminal can 
then access all those font files, again through TFTP, 
to obtain font names and other basic information 
about each font When a client wishes to use a font, 
the proper font file can be read again, this time to 
load the complete font. Since this process is time- 
consuming, the font path pointing to the file has 
an alternate format in which the font name fol- 
lows the complete path to each file Using this alter- 

nate format, the VT1200 terminal does not have to 
open and read the font file until a client actually 
intends to use it. 

Comparison of X Terminals 
The VT1200 and VT1300 X window terminals 
were built using different approaches to solve 
the problems encountered during development. 
The X terminal is a new and flexible concept; there 
is no single "best" design. Table 1 compares the 
most important differences between tlie two termi- 
nals. We also include the specifics for the VXT 2000 
X terminal. 

The VT1200 is ROM-based; all its software is per- 
manently resident in the terminal. The VT1300 soft- 
ware is downloaded, so a host or bootserver on the 
same network must supply the terminal with a load 
image at power-up. 

Since downloaded terminals are dependent on 
the existence of at least one working host system, 
the user interface can be designed differently. 
While the VT1200 X terminal has a built-in user 
interface, the VT1300 does not need it. The VT1300 
terminal automatically makes an X connection to a 
host at power-up, and the user is presented with 
the same DECwindows login box as on a work- 
station. The VT1300 has no local clients; all clients 
run on the host system. 

The VT1200 terminal uses the LAT protocol for 
its ease of use and minimal network management 
demands. The VT13OO terminal uses the DECnet 
software already implemented in the VAXELN oper- 
ating system used internally. Both terminals sup- 
port TCP/IP. 

One problem that has plagued all X terminals is 
limited memory space. Workstations usually have a 
virtual memory systern, which provides large pag- 
ing and swap areas on a disk, and applications 
and x servers can use more memory space than 
the hardware has. Until now X terminals have not 
had virtual memory systems. If too many applica- 
tions made excessive demands, or if a client created 
large off-screen images (called "pixmaps" in the 
X Window System) the terminals quickly used all 
memory space. If the X server implementation 
was correct, an error was reported and a client 
might try a less demanding approach. In other 
cases, the terminal or client might simply crash. 
One alternative was to install more memory in the 
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Table 1 Comparison of X Window Terminals 

VT1200 Terminal VT1300 Terminal VXT 2000 Terminal 

Monochrome only 

1 bit plane 

Code in ROM 

No virtual memory 
2-4MB RAM 

TMS34010 CPU 

Special operating system 

Local clients: 
Terminal manager 
Window manager 
Video terminal emulator 

Local customization 

Choice of host (LAT only) 

LAT protocol 

TCPII P protocol 

Color only 

4 or 8 bit planes 

Code downloaded 
No virtual memory 

8-32MB RAM 

VAX CPU 
VAXELN operating system 

No local clients 

Customized on host 
just as a workstation 

Automatic X window 
login to boot host 

DECnet protocol 

TCP/I P protocol 

Monochrome and color 

1 or 8 bit planes 

Code downloaded 
Virtual memory 
4-16MB RAM 

VAX CPU 

Special operating system 
Local clients: 
Terminal manager 
Motif window manager 
DECterm terminal emulator 

Local customization 
Centralized customization 

Choice of host 
(LAT and TCPIIP using XDMCP) 

LAT protocol 

TCP/IP protocol 
Special hardware Available on several Uses standard hardware 

workstation platforms 

X terminal, although this can be costly and offers no 
guarantees. 

In the next generation of Digital's X terminals, 
the VXT 2000, this problem has found a cost- 
effective solution. Based on the ViLv ;~rchitecture, 
the VXT 2000 terminal uses virtual memory and 
downloaded code. The Digital InfoScrver, an 
Ethernet storage server, provides the load image, 
virtual memory paging space, fonts, ant1 customiza- 
tion storage. The same Infoserver also solves 
another problem: now the X terminal has access to 
a file system. This allows more extensive customi- 
zation, as well as centralized management of the 

customization of all X' terminals on the network. 
Figure 8 shows the configuration for the VXT 2000 
X terminal. 

Conclusion 
X terminals are not intended to replace work- 
stations. Nor will workstations replace host sys- 
tems or completely displace X terminals in the 
foresee;ible future. It is likely that Ilost computers 
will always be faster and have more memory and 
disk space than reasonably priced workstations 
of the same era. It is also likely that terminals can 
be built cheaper than workstations of reasonable 

Figure S The lrXT 2000 Netzuork? En.i/ir.onment 

HOST 

34 Wl. .3 No. 4 FLIII 1991 Digital Technical Jozcmrnl 

HOST 

ETHERNET 

VXT 2000 
X TERMINAL 

VXT 2000 
X TERMINAL INFOSERVER VXT 2000 

X TERMINAL 



X Window Terminals 

performance for some time to come. As long as that 
is the case, there will be a market for X terminals 
and host systems. Future X terminals will be faster, 
and have more built-in functionality, more local 
applications, X extensions, and most likely, addi- 
tional hardware features. X terminals will be the 
networked terminals of the 1990s. 
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ACCESS.bus, an Open Desktop Bus 

With the recent introduction of the ACCESS.6us product, Digital has aflmzed its 
commitment to open systems and thus to facilitating 6ett~r solutions for inter- 
active computing. This open desktop busproi~ides a simple, ~l~ziform way to link 
a desktop computer to as many CIS 14 low-speed I/O devices ssuh as a keyboard, 
mouse, tablet, or three-di~nensional tracker: ACCESS.bus features a 100-kilobit-per- 
second maximum data rate, hardware arbitration, dynamic reconJguration, n 
mature capabilities grammar to s~ipport generic device drivers, and ofJ-the-she& 
loz~cost 12C nzicrocontroller technology. 

As the cost of personal interactive computing 
decreases, the range of applications ant1 the need 
for specialized I/O clevices is growing dramatically. 
Traditional personal computers were designed to 
accept only a small number of standard devices; 
adding devices beyond those originally envisioned 
usually requires specialized hardware or software. 
Custom interfacing is expensive for ventlors and 
users ancl thus limits the availability of new devices. 

 ACCESS.^^^ provides a simple, uniform way to 
link a desktop computer to a number of low-speed 
I/O devices such as a keyboard, a mouse, a tablet, or 
a three-dimensional (3-D) tracker. Designed from 
the beginning as an open desktop bus, A<.:<:ESS.bus 
facilitates cooperative solutions using ecluipment 
from different vendors. This paper describes the 
 ACCESS.^^^ design and gives some insight into how 
the idea was adopted at Digital. 

Design Goal, Process, and Advantages 
The design goal for the desktop bus follows from 
our experience within the Vicleo, Image ant1 Print 
Systems (VIPs) Input Device Group with trying to 
support new devices on Digital terminals and 
workstations. While various new devices have been 
successfully prototyped over the years, the need 
for nonstandard hardware and custom software 
clrivers was always an expensive, time-consuming 
obstacle. Even after successfi~l prototyping, these 
devices could not be readily adapted to our stan- 
dard systems, limiting their use to custom applica- 
tions. In designing the desktop bus, our goal was to 
make it as easy as possible to interface previously 
unavailable I/O devices to our systems in a way 
that was both practical and marketable. This sec- 
tion explains the benefits of using a desktop bus, 

describes the process we went through to convert 
to a new bus architecture, and summarizes the key 
advantages of the chosen design. 

The basic desktop bus concept is illustrated in 
Figure 1. The bus allows multiple, low-speed I/O 
clevices to be interconnected and thus interfaced 
through a single host port. Desktop bus devices 
such as a keyboard or a tablet, which are not hand- 
held, provide two connectors and allow another 
device to be daisychained. A hand-held device 
such as a mouse can be placed at the end of the 
daisychain, or a connector expansion box can be 
attached to accommoclate additional devices that 
do not provide two connectors. 

F i e  1 Hnsic Desktop Bus 

HOST 
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ACCESS.Dzls, UIZ Open Deskto) Bus 

The desktop bus has the following benefits: 

Enables greater flexibility and variety of use 

Reduces the cost of connecting multiple devices 

Expedites bringing new technology to market 

Helps leverage third-party devices 

The first benefit, greater flexibility, can be simply 
achieved by allowing additional devices and more 
modular solutions. We further extended this bene- 
fit by designing a way for devices to be added at run 
time without disrupting system operation. Con- 
figuration should be automatic; connecting stan- 
dard devices should not require powering down or 
rebooting the system before a new device can be 
used. The desktop bus supports multiple like 
devices without switches or jumpers. 

The second benefit, reducecl cost, was crucial to 
having the bus accepted as a solution across a wide 
range of protlucts from low-end video terminals 
to high-end workstations. We recognized that con- 
temporary electrical techniques could eliminate 
the need for level translation circuits, -12 volt ( V )  

power supplies, and perhaps some of the protec- 
tive components used with RS-232 interfacing. 
Although many devices would now require two 
connectors, system cost woulcl decrease because 
we would need to supply only as many connectors 
as the number of devices to be attached, or possibly 
one more. 

The third benefit, expediting the time to market 
for new technology, allonls us to better satisfy 
changing requirements. Key to this benefit is hav- 
ing the means to connect new clevices without 
changing the system hardware or software. Based 
on our experience with input devices, we devel- 
oped the concept of device capability reporting 
and generic device protocols. Standard devices 
like keyboards and locators, e.g., mice, tablets, and 
trackballs, all work in similar ways. For this class 
of device, we define a simple device protocol and 
a way to parameterize and report device unique 
characteristics. A single generic driver can adapt 
itself to work with a class of similar devices so 
that no custom software is required for basic opera- 
tion of standard devices. 

Leveraging third-party devices, the fourth 
benefit, is aimed at satisfying diverse customer 
requirements. Because the use of computers con- 
tinues to proliferate, the r;lngc of applications far 
exceeds that which any one vendor can master. 

By making the bus truly open, we encourage third 
parties to add value to our systems. 

The benefits of a desktop bus are significant. But 
converting to a new architecture, especially one 
that is not backward compatible, is expensive in 
terms of the time and effort required. How does a 
large corporation build agreement to make such 
an investment decision? The desktop bus project 
started as a grass roots engineering effort and grad- 
ually built momentum. The process was one of 
dialogue to attract partners. Initially, three groups 
with slightly different objectives worked together 
to develop the bus. The visibility of separate groups 
jointly supporting the bus concept was essential to 
transform the idea into action. People are more 
willing to accept an idea that others around them 
have already adopted. 

The three groups that initiated the desktop 
bus project were our VIPs Input Device Group in 
Westford, MA, rnentionetl previously; the Work- 
station Systems Engineering (WSE) Group, located 
in Palo Alto, CA; and the Video Advancetl Develop- 
ment (A/D) Group in Albuquerque, NM. Our Input 
Device Group was looking for ways to simplify the 
process of prototyping specialized input clevices 
and of getting related software support for our 
video terminals and workstations. WSE was devel- 
oping a low-cost, personal workstation and needed 
a flexible way to support multiple input clevices 
without greatly increasing the cost of the base 
workstation. The Albuquerque A/D Group had been 
experimenting with next generation I/O devices, 
i.e., force-feedback joystick, 3-D tracker, and real- 
time audio and video, and was interested in having 
these technologies adopted by other Digital groups. 
This A/D Group had used 12C technology success- 
fully in one of its previous video projects. 

In January of 1990, engineers from each group 
realized they were working on similar problems 
and began to collaborate. The wSE Group was to 
build the desktop bus host interface and software 
drivers into their workstation; the Wps Group was 
to help define the device protocols and supply 
desktop bus keyboards and mice; ant1 the Albu- 
querque A/D Group was to support bus devel- 
opment and prototype additional devices. Within 
four months, WPS had clefined the basic protocols 
and could demonstrate a working IZC keyboard 
and mouse. These early prototypes helped per- 
suade WSE to support the project and, in turn, 
helped reinforce the importance of the project to 
the VIPs Group. 
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We began presenting the desktop bus idea to 
interested groups within Digital and received many 
useful suggestions includilig 

Use the same keycodes as on the LK201 keyboard 
to eliminate the need to rewrite keyboard 
lookup tables. 

Store the country keyboard variation inside 
the keyboard so users will not need to entcr it 
manually. 

Keep the devices simple, without modes. 

In addition, third-party input device vendors 
made the follonring suggestions. 

Use a modular connector that is easy to plug and 
unplug correctly. 

Provide enough power for several additional 
devices. 

Allow vendors to supply their own device 
drivers; tuning their own device drivcrs is part 
of the value added by thc vendor. 

The bus idea was elegant and generally well 
received. Most of the reservations centered around 
the likely impact on existing system components, 
the current problems, and whether conversion to 
the bus was feasible. Because we recognized that 
other groups were facing tight dcvclopmcnt sched- 
ules, wc did not pressure these groups to support 
our desktop bus work. We prescntetl the desktop 
bus as a possible solution to interfice problems, 
made our dcsign information available, and worked 
to incorporate suggestions. But as the development 
work progressed, more partners supported our 
effort. 

Once we decided to use a tlcsktop bus, we 
looked at available designs, including the Apple 
DeskTop Bus, the Musical Instrument Digital 
Interface (MIDI), and serial buses offered by other 
semiconductor vendors, and evaluated these alter- 
natives with respect to our design goal. Keya '1 d van- 
tagcs of the design chosen, i.e., the  ACCESS.^^^, are 

Off-the-shelf interintegrated circuit (12C) micro- 
controller technology with maximum data rate 
of 100 kilobits per second (kb/s). This technol- 
ogy is low-cost, yet fast enough for sophisticated 
input deviccs like a 3-D tracker. 

Built-in hardware arbitration. which simplifies 
the software and allows reliable communication 
without inventing a new protocol. 

Dynamic reconfiguration. The hardware and 
software allow bus devices to be "hot-plugged" 
and used immediately, without restarting the 
system. The devices are recognized automati- 
cally and assigned unique addresses. l'his advan- 
tage results in a plug-and-play user interface. 

A mature capabilities grammar to support generic 
device drivers. An extensible free-form grammar 
allows devices to describe their characteristics 
to a generic driver. Most common devices can 
work with standard drivers. 

Bus or network interconnection has become 
widely accepted as a means of providing flexible 
open sol~~tions. To appreciate ~cc~SS .bus ,  it is help 
ful to position its performance capabilities with 
respect to those of other network interconnect 
technologies, as shown in Table 1. 

Table 1 Network Interconnects 

Bus Type 

Order of Magnitude 
Performance 
(kilobits per second) 

Apple DeskTop Bus, 
ACCESS.bus 
LocalTalk 
Ethernet 
FDDl 

At first glance, the 100-kb/s speed of the 
ACCESS.bus may seem adequate for large desktop 
devices like printers and modems. Rut these 
devices can transmit long data streams indepen- 
dent of any user activity and, if not restricted, could 
compromise the interactive performance of the 
bus. Thus, ~ c c ~ S s . b u s  is intended for low-speed 
activities that people perform with their hands 
and is fast enough to handle multiple interactive 
devices like a keyboard, mouse, or 3-D tracker. 

Hardzuare Description 
Before discussing the AcCESS.bus design, we pre- 
sent a description of the Philips 12C technology 
upon which the design is based. Details of the 
specific  ACCESS.^^^ implementation follow. 

Interintegmted Circtlit Fundamentals 
ACCESS.bus extends the Philips ILC bus to operate 
off-board and, thus, connect desktop devices. The 
I'C is a two-wire serial clock and serial data 
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open-collector bus. An open-collector design means 
that the clock and data lines are normally in a high- 
impedance floating state and are pulled up to a log- 
ical high state. 

A device that wants to send a message waits for 
any message frame in progress to complete, then 
asserts a START signal to become bus master and 
begins to generate data and clock signals. The bus 
clock is synchronized among all devices by its 
wired AND connection. Each device, whether 
transmitting or receiving, stretches the low period 
of the clock until ready for the next bit to be trans- 
ferred. When the last device is ready, the bus clock 
is allowed to go high, generating a rising edge on 
the serial clock. At this time, all active devices 
sense the state of the bus data line. For a receiving 
device, the state represents the received data bit. 
For a transmitting device, the state determines 
whether the device has successfully asserted its 
data on the bus. A transmitter that is sending a logi- 
cal high state and detects that the data line is being 
held low by another sender, recognizes that it has 
lost arbitration and must try again later. When a 
"collision" or arbitration occurs, no data is lost, one 
message is transmitted and received, and the 
remaining messages must be sent again. 

12C data messages are transmitted as 8-bit bytes, 
with each byte being acknowledged by a ninth 
ACKNOWLEDGE bit from the receiver. 12C technol- 
ogy also defines unique START and STOP signals to 
delimit message frames. The first byte of any mes- 
sage frame is always the destination address. 

ACCESS. bus Pbysical Implmentat ion  
Details of the physical implementation of ACCESS.bus 
are as follows: 

Basic electrical configuration. ACCESS.bus uses 
four-pin, shielded, modular-type connectors that 
feature positive orientation and locking tabs. 
Data and power for the bus are transmitted over 
low-capacitance, four-wire, shielded cable. The 
four conductors are used for ground, serial data, 
serial clock, and +12 v. 

Available power. The maximum available power 
for all devices is 12 V at 500 milliamperes (mA). 
 ACCESS.^^^ devices may supply their own power 
from a separate source, if needed. A power-up 
reset circuit must still be provided to reset the 
device when bus power is applied. 

Cable length. The maximum cable length for 
the entire bus is 8 meters. The limiting factor is a 

maximum capacitance not to exceed 700 pico- 
farads (pF). 

Number of devices. The maximum number of 
ACCESS.bus devices allowed on the bus is 14. 
Limiting factors are the device addressing range 
and the power distribution (a total of 500 mA for 
all devices). 

Hardware interfaces. ACCESS.bus hardware inter- 
faces are implemented using standard 12C micro- 
controllers developed by the Signetics Company 
or under license from Philips Corporation. (Sig- 
netics Company is a division of North American 
Philips Corporation.) 

ACCESS. bus Protocol 
Every device on the bus is a microcontroller with 
an 12C interface and behaves as either a master 
transmitter or a slave receiver, exclusively, as 
defined by the 12C Bus Specification. 

Message Format 
A message transmits information between a device 
and the computer or between the computer and one 
or more devices. There is one exception: a device 
may attempt to reset other devices assigned to the 
same address by sending a Reset message to itself. 

ACCESS.bus messages have the following format: 

Byte Bit Number 
Number [ 1 2 3 4 5 6 7 8 ] 

4 through [ 
(length + 3) 

length + 4 [ 

destaddr 10 ] Destination 
address 

srcaddr 10 ] Source 
address 

length 

body 

checksum 

1 Protocol 
flag, length 
(the number 
of data bytes 
from 0 to 127) 

] Consists 
of 0 to 127 
data bytes 

Initially, devices respond to a default power-up 
address. During the configuration process, the com- 
puter assigns a unique address to every device on 
the bus. Messages are either device data stream 
(P=O) or control/status (P=l) ,  as indicated by the 
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protocol flag. The minimum length of a message is 
4 bytes; the maximum length is 131 bytes (127 data 
bytes and 4 bytes for overhead). The message 
checksum is computed as the logical XoR of all pre- 
vious bytes, including the message address. 

Standard Messages 
The ~ c C ~ S s . b u s  protocol defines the seven stan- 
dard interface messages summarized in Table 2. 
Parameters defined within the body of the message 
are listed in parentheses. 

Identzjication 
Since the ACCESS.bus is a bus-topology network, 
unique identification strings are used to distinguish 
devices. These strings arc structured as follows: 

unique address, and connect devices to the appropri- 
ate software driver. Configuration normally occurs 
at systcm start-up, or at any time when the com- 
puter detects the addition or removal of a devicc. 

Pou,er-up/Reset Phase 
When reset or powerecl up, a device always reverts 
to the default adrlrcss and sends an Attention 
message to alert thc computer to its presence. At 
system start-up or rrinitialization, the conlputer 
sends a Reset message to all I?C addresses in the 
ACCESS.bus device address range (14 messages) to 
ensure that all devices on the bus respond at the 
power-up default address. 

Identzjication Phase 

protocol revision: 1 byte (e.g., "A") To begin address assignment, the computer sends 

module revision: 7 bytes (e.g., "X1.3 ") an Identification message at the device default 

vendor name: 8 bytes (e.g., "DEC ") address. Every device at this address must then 

module name: 8 bytes (e.g., "LK501 ") respond with an Identification Reply message. As 

device number: 32-bit signed integer each device sends its message, the ILC arbitration 
mechanism automatically separates the messages 

The module revision, vendor name, and  nodule 
name strings are left-justified ASCII character 
strings padded with spaces. The device number 
string is a 32-bit two's complement signed integer 
and may be either a random number (if negative) or 
a unique serial number (if positive). 

Configuration Process 
The configuration process is used to detect what 
devices are prescnt on the bus, assign each device a 

, . - 
based on the identification strings. The computer 
can then assign an address to each device by includ- 
ing the matching identification string in the Assign 
Address message. When a device receives this mes- 
sage and finds a complete match with the identifi- 
cation string, it moves its device address to the new 
assigned value. As soon as a device has a unique 
address, it is allowed to send data to the computer. 

The 12C physical bus protocol allows multiple 
devices on the bus at the samr time if those devices 

Table 2 Standard ACCESS.bus Protocol Messages 

Computer-to-device Messages Purpose 

Reset ( )  
ldentification Request ( )  

Assign Address (identification string, 
new address) 
Capabilities Request (offset) 

Force device to power-up state and default 12C address. 
Ask device for its "identification string." 
Tell device with matching "identification string" to change its 
address to "new address." 
Ask device to send the fragment of its capabilities information 
that starts at "offset." 

Device-to-computer Messages 
-- 

Attention (status) Inform computer that a device has finished its power-upheset 
test and needs to be configured; "status" is the test result. 

ldentification Reply (identification string) Reply to ldentification Request with device's unique 
"identification string." 

Capabilities Reply (offset, data fragment) Reply to Capabilities Request with "data fragment," a fragment 
of the device's capabilities string; the computer uses "offset" 
to reassemble fragments. 
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are transmitting exactly the same message. In the 
rare event that two like devices report the same 
random number or are mistakenly assigned to the 
same address, each interactive device transmits a 
Reset message to its assigned address prior to send- 
ing its first data message after being assigned a new 
address. The self-addressed Reset message forces 
other devices at the same address back to the 
power-up default address, as if they had just been 
hot-plugged. The message guarantees that each 
device has a unique address, but not until the 
device is actually used. The pseudo-random number 
(or serial number, if available) distinguishes devices 
at identification time before they are used, allowing 
the host to inventory which devices are present. 

Capabilities Phase 
Device capabilities is the set of information that 
describes the functional characteristics of an 
i\cc~ss.bus peripheral. The purpose of capabilities 
information is to allow software to recognize and 
use the features of bus devices without prior 
knowledge of their particular implementation. By 
having locator devices report their resolution, for 
example, generic software can be written to sup- 
port a range of device resolutions. Capabilities 
information provides a level of device indepen- 
dence and modularity. 

The structure of capabilities information is 
designed to be simple and compact for efficiency, 
but also extensible to support new devices without 
requiring changes to existing software or periph- 
erals. These objectives are supported by making 
the structure hierarchical and representing capabil- 
ities information in a form that applications (and 
humans) can use directly. The capabilities informa- 
tion is an ASCII string constructed from a simple, 
readable grammar. The grammar allows text strings 
to be formed into lists, nested lists, and lists with 
tagged elements. The capabilities string for a loca- 
tor might read as follows: 

( p r o t ( 1 o c a t o r )  
t y p e ( m o u s e )  
b u t t o n s (  1 ( L )  2 ( R )  3(M) ) 

d i m ( 2 )  r e 1  r e s ( 2 0 0  i n c h )  r a n g e ( - 1 2 7  1 2 7 )  
d O ( d n a m e ( X ) )  
d l ( d n a r n e ( Y ) )  

1 

After assigning a unique address to a device, the 
computer retrieves the device's capabilities string 
as a series of fragments using the Capabilities 
Request and Capabilities Reply messages. The com- 

puter then parses the capabilities string to choose 
the appropriate application driver for the device. 
The parsed string is also made available to applica- 
tion programs using the device. 

Normal Operation 
During normal operation, the computer periodi- 
cally requests inactive devices to identlfy them- 
selves. If a device is found to be missing, or a new 
device appears by sending an Attention message at 
the default address, the computer sends an Identi- 
fication Request message to each device address 
previously recorded as in use (up to 14 messages) to 
confirm which devices are still present. The com- 
puter also sends a Reset message to each device 
address previously recorded as not in use. The com- 
puter then begins the address assignment process 
by sending an Identification message to the default 
address and assigning each device that responds to 
an unused device address. 

Generic Device Concepts 
ACCESS.bus uses the concept of generic device 
drivers to support familiar I/O devices using only a 
few drivers. Generic specifications for keyboards, 
locators, and text devices have been developed. 

The keyboard device protocol attempts to define 
the simplest set of functions from which a Digital 
LK201 or a common personal computer keyboard 
user interface can be built. A generic keyboard con- 
sists of an array of key stations assigned numbers 
between 8 and 255. When any key station transi- 
tions between open and closed, the entire list of 
key stations currently closed or depressed is trans- 
mitted to the host. This reporting scheme is firnc- 
tionally complete; the host can detect every key 
transition, and the scheme provides information 
about the full state of the keyboard on each report. 
No special resynchronization reports are required. 

In addition to reporting key stations, the generic 
keyboard device can support simple feedback 
mechanisms such as keyclicks, bells, and light- 
emitting diodes. These mechanisms are controlled 
explicitly from the host so that minimal keyboard 
state modeling is required. The capabilities infor- 
mation is used to identlfy the keyboard mapping 
table and the feedback mechanisms available. The 
keyboard mapping table can also be stored in the 
keyboard itself as part of the capabilities string. 
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Locators 
The locator device protocol is designed to  accom- 
modate a range of basic locator devices such as 
a mouse or tablet. More complex devices cxn be 
modeled as a combination of basic devices or can 
provide their own device driver, thus minimizing 
the burden on the protocol. 

A generic locator consists of one or more dimen- 
sions described by numeric values and, optionally, 
a small number of key switches. The standard driver 
requires the locator device to identify the type of 
data it  will report from a small list of options and 
adjusts to handle this data type. These options are 

Number of dimensions, e.g., two, for a mouse or 
a tablet 

r Dimension type: absolute, i.e., rcfercnced to 
some b e d  origin, like a tablet: or relative, i.e., 
changed since last report, like a mouse 

Resolution in divisions per unit, e.g., counts per 
inch or counts per revolution 

Dynamic range of values that can be reported, 
i.e., the minimum and maximum values 

Number of key switches, from 0 to 15 

The assignment of scalar-value dimensions 
returned from one or more devices to the user 
interface functions is left to the application. How- 
ever, to accommodate most conventions. the scalar 
dimensions and the key switches can be labeled in 
the capabilities string. 

Text Devices 
The text device protocol is intended to provide a 
simple way to transmit character tlata to and from 
character devices such as a bar code reader or a 
small character display. A generic text device tnns- 
mits a stream of 8-bit bytes from a character set. 
Simple control messages are defined to support 
flow control and to select communication parame- 
ters that might be used to interface with a modem. 
The capabilities string contains information that 
identdies the speciClc character set and communi- 
cation parameters used. 

Summary 
Tlic ~ c c ~ s s . b u s  network interconnect offers the 
possibility of a standardized, low-speed, plug-and- 
play berial communications channel that can untan- 
gle peripheral interfacing and open the way to new 

applications. As the advantages of this open desk- 
top bus design become well known. we expect 
wider adoption of this product. The I\<:<:ess.l~us 
is currently implemented on Digital's Personal 
DECstation 5000 workstation, with implementa- 
tions underway for the next gcncrntion of RIsC 
workslations and video terminals. 
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Design of the DECprint 
Common Printer Supervisor 
for VMS Systems 

DECprint Printing Services software controls a variety ofprinter features for a wide 
range of printers. It supports several differentpage description languages, handles 
multiple media simultaneously, and uses d i p e n t  I/O interconnections and commu- 
nication protocols. Operating within the I M S  prznting environment, it imple- 
ments a large number of user-specijied options to the PRINT command. DECprint 
Printing Services functions as the szlpervisor in the W S  printing system for. all 
Postscriptprinters szlpplied by Digital. The common printer st~pervisor has an espe- 
ciallyflem'ble internal structure and processing method to serve complex printing 
environments. 

The increasing variety and complexity of printing 
devices in the last decade have strained the abili- 
ties of operating systems to support them. Users 
demand access to, and control over, the increas- 
ingly sophisticated features of their printers. At the 
same time, application programming resources are 
stretched by the requirement to support various 
devices and features. Modern operating systems 
include printing systems that support printers and 
insulate applications from many details of printing. 

DECprint Printing Services software was designed 
to handle a wide variety of printers, with a range 
of I/O connections, media hand ling capabilities, 
finishing equipment, data syntaxes, and so forth. 
It provides the controlling software that supports 
the full  range of Digital printers capable of printing 
Postscript documents. 

DECprint Printing Services functions as a compo- 
nent of the VMS printing system at the level of 
printer supervisor, called symbiont in VMS termi- 
nology. The supervisor is known within Digital as 
the DECprint common printer supervisor or com- 
mon print symbiont (CPS). It is called common 
because it replaces a number of different symbionts 
and is common to a range of printers. CPS is a com- 
pletely new program developed by the Video, 
Image and Print Systems Group. 

This paper explores the environment in which 
printing systems now reside. It describes the struc- 
ture and functions of DECprint Printing Services and 

the design of CPS, focusing on its capabilities within 
the VMS system. The paper then discusses the oper- 
ation of the VMS printing system and the enhanced 
printing environment made possible by CPS. 

Printing System Dimensions 
A printing system is the set of software and hard- 
ware components through which print requests 
pass from the time the user decides to print a docu- 
ment until the appropriate hard copy arrives. 

The variety of printing devices in use is a chal- 
lenge for the printing system and for applica- 
tion programmers. We use the word "printer" in 
this article to imply the fill1 range of output devices 
that are attached to systems and networks. A sys- 
tem today must support a wide number of dimen- 
sions: marking technologies, media, medium sizes, 
speeds, transmission rates, and interconnects. 

The DECprint Model of Printing 
The DECprint model of printing is composed of sev- 
eral layers. Each layer has defined functions and I/O 
interfaces. The layers of the DECprint model and their 
relationships to VMS and CPS are shown in Figure 1. 
This model of printing describes a useful structure 
with consistent functions and responsibilities. 

Application. An application program creates 
information that the user may want to print. All 
types of applications fit into the model at this 
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DECPRINT ARCHITECTURE VMS CPS 

I APPLICATION 1 

JOB 
SUBMISSION 
INTERFACE - - - - - - -  

(NETWORK) 
PRINTING 
INTERFACE 

PRlNT 
CLIENT 

PRlNT 
SPOOLER 

PRlNT 
SERVICE 

PRINTER SUPERVISOR 
ACCESS 
INTERFACE - - -  

MARKING 
ENGINE 

FINISHING 
EQUIPMENT n PRINTER 

COMMAND 
LANGUAGE 

SYS$SNDJBC 

QUEUE 
MANAGER 

PRlNT 
SYMBIONT PRlNT 

SYMBIONT 

Figure I Relationships of the VMS Printing System Chmnponents to the DECprint Model 

level, from data processing programs :md simple 
text editors to high-quality dacument formatting 
and publishing applications. The application may 
present a printing interface directly to the user, 
or may create a final form document from which 
the user can access other printing intcrktces. 

User printing interface. A user expresses the 
desire to print through a user interface to the 
printing system. The interface may be oriented 
to written commands, to user selection of 
menu choices, or to a point-and-sclcct griiphical 
interface. 

Job submission interface. LJscr interface pro- 
grams communicate with the lower Icvcls of the 
printing system through an application program- 
ming interface (API) to the print client. Thc API 
contains fill1 capabilities for crcating, destroying, 
and managing print jobs of all  typcs. Thc job sub- 
mission interface may be operating sptcm- 
specific or may be based on emerging standards 
for network printing. 

Print client. The client accepts requests through 
its MI, performs defaulting for the user, assists in 
selecting the correct print service, gathers the 
print instructions and document files, and sub- 
mits the job to the print service. The protocol 
used to submit the job may be operating system- 
specific or may be based on emerging standards 
for network printing. The print service may be 
local to the print client (and the user), or it may 
be locatecl rlsewhere in the network. 

Print service. The print service is a convenient 
abstraction that includes the yrint spooler and all 
subsequent layers in the execution of the yrint 
job, for some set of physical printers. Printers 
are often grouped together based on their static 
characteristics, such as type of printer, printer 
data syntax, and default media. 

Print spooler. The print spooler accepts the print 
job from the clicnt, spools the files and queues 
the job for later execution if necessary, and 
then schedules the job for execution. Jf  the job 
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requires resources that are not immediately avail- 
able, human intervention may be necessary. For 
example, if a job requires a special print medium, 
then an operator or other printer attendant must 
provide the medium for the printer. If the job 
requires a special font, the spooler may be able to 
obtain the font from a library without human 
intervention. 

Printer supervisor. The supervisor directly con- 
trols the printer. It interprets the print instruc- 
tions for the job, manages the printer and its fin- 
ishing equipment, and writes the document data 
to the page description language (PDL) inter- 
preter. It also monitors the status of the printer, 
supplies some resources on demand, and responds 
to error conditions. On the VMS operating sys- 
tem, the printer supervisor is called a symbiont; 
on ULTRIX and UNLX systems, a daemon. 

PDL interpreter. Generally, final form docurnent 
data is written in a data syntax intended for print- 
ing, but it is not in the native form required 
by the marking engine. A PDL interpreter trans- 
forms the printer language into the lower-level 
form for the marking engine. For example, in a typ- 
ical laser printer, a PostScript interpreter trans- 
forms the Postscript language into a device-level 
bit map and media control instructions for 
the print engine. In a simpler impact printer, 
the controller turns characters and control 
sequences into pin timing and paper movement 
instructions. 

Marking engine. The marking engine consists of 
the media transport and printing mechanisms, 
generally controlled at a low level. Marking may 
be done by a wide spectrum of technologies, and 
the media used may also vary widely. For the 
most part, descriptions in this paper use raster 
devices such as laser printers as examples. 

Finishing equipment. The overall printing sys- 
tem includes finishing options that are not often 
considered part of the (largely electronic) print- 
ing system. Currently affordable components of 
the printing system are typically automated. For 
example, several years ago duplex (two-sided) 
printing was not economical for most office 
applications; totby i t  is, and many office printers 
include this finishing feature. Stapling, on the 
other hand, is still not economical for most office 
applications, though i t  is implemented in many 
high-end production printers. 

Implementations of the model in various operat- 
ing systems and printers may express the layers 
differently, sometimes skipping certain layers. The 
VMS printing system contains components at most 
levels of the DECprint model. The DECprint com- 
mon printer supervisor (CPS) operates within the 
VMS system, as indicated in Figure 1. We designed 
CPS to satisfy the requirements and projected needs 
of users, system managers, and programmers. In the 
next section we discuss the design of CPS. 

Sharing Devices 
Printers are often shared, especially high-end or 
specialized, expensive devices. Since shared print- 
ers are not always immediately available to the 
user or application program, the printing system 
is required to hold jobs for printing later. The sys- 
tem rnust be able to store the user's instructions for 
printing, along with the contents of the document, 
until they are needed. 

Insulating the Application from Details 
A printing system insulates applications from the 
details of printing devices. For example, DECprint 
Printing Services provides communications mecha- 
nisms and protocols, determines whether a shared 
device is currently busy, and sometimes translates 
printer data syntax. 

Application programmers generally prefer to 
deal with as few external interfaces as needed to 
perform the task. Thus it is desirable to minimize 
the number of different classes of printing devices 
while maximizing the variety and flexibility of 
printing devices. The DECprint architecture speci- 
fies that the printing system take responsibility for 
matching the needs of the application to the capa- 
bilities of the output device, whenever possible. 
For example, a printing system might need the abil- 
ity to transform the printer data stream from a 
data syntax used by the application to a data syntax 
used by the printer. Hidden transformation makes 
the system easier for applications to use. DECprint 
Printing Services provides a certain number of 
printer data syntax transformations of this type, 
from languages such as DEC PPL3 (which is com- 
monly referred to as "ANSI" within Digital) and 
ReGIs to PostScript, and from Postscript to printer 
bit maps. 

Inteml Structure of CPS 
In designing CPS, our primary goal was to create a 
flexible system that would handle all the printer 
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features we could foresee and many that we could 
not foresee, ;l system that could be modified as 
needed to handle not just new printers but new 
classes of printers. CPS is capable of rnan;cging a 
wide variety of character, line, page, and docun~ent 
printers. 

To create a flexible printing system, we needed to 
design a highly modular internal structure. This inter- 
nal structure comblncs modules into sequences a t  
several levels to provide a general framework for 
controlling and manipulating I/O devices. 

At the bottom level of the structure are filter 
modules, which are lightweight, independently 
schedulable subprocesses within a VMS process. 
Filter modules communicate with each other by 
means of 1/0 routines and a shared data structure 
containing job information. Pointers to the I/O rou- 
tines and shared data are suppliecl in the invoca- 
tion of the filter module. The effect of the stream 
I/O rolltines is much like that of pipes in the UNIX 
operating systems. 

At the next higher level is a set of communicating 
filter modules; edch stream of filter modules is 
called a job step. Finally, a module calletl the print 
job analyzer combines a sequence of job steps to 
handle a complete print job. 

Filter Modules and Job Steps 
Filter motlules can read input from a preceding filter 
modulc ancl write data to a succeeding filter mocl- 
ule. 1:iltcr modules may perform functions such as 
reading a file, converting carriage control, translat- 
ing data syntax, or writing data to the printer. A 
filter module receives as arguments an input stream 
and an output stream, like a UNlX process, and a 
sh:crctl tl;lt:c structure, unlike a UhTX process. A s~m-  
ple filter moclulc reads clata from the input stream, 
processes tl:cta. and writes data to the output stream. 

A filter modulc may condition its operation based 
on information from the shared data structure or 
the contents of the data stream For example, a 
translator filtcr module might format data based on 
the page size, margins, and aspect ratio specified 
in the shared data structure, or based on control 
sequences in the data stream, or both. 

Not all filter modulcs use the input or o u t p ~ ~ t  
streams. The file reacler filter module reads from the 
file instead of the input stream Similarly, thc device 
outpi~t  module writes to the printer instead of the 
output stream. 

A job step is a set of filter modules piped together 
to perform one complete subtask A subtask may be 

21s simple as "create a separator pagc" or as complex 
as the sequence "read a file, perform cnrri;cge con- 
trol conversion, add /HErU)ER, tranblatc from ANSI 
data syntax to Postscript, and write thc rcsult to 
the printer." A print job is a set of job steps that per- 
forms all functions the user requests explicitly or 
implicitly. The CPS facility that translates selected 
printer data syntaxes into the Postscript language is 
tliscussed in the section Data Syntax Translation. 

Print Job Analyzers 
To simplify the addition of new printers and new 
classes of printers, CPS contains a software struc- 
ture that corresponds to the hardware mechanisms 
of a printer. 

A print job analyzer (PJA) determines which 
job steps are recluired to process a job. CPS inclucles 
a separate print job analyzer for each major class 
of printer that i t  supports: serial PostScript, 
PrintServer, and LN03 Image printer devices. When 
the symbiont begins execution, a PJA is chosen based 
on the type of device associated with the queue. 
This PJA is used until the symbiont is stoppecl. If a 
terminal device, such as a TT or TX or LT device, is 
associated with the queue, then the PJA for a serial 
device is invoked. If an LD device is used, then the 
PJA for an LN03Q printer is chosen. Otherwise, the 
PJA associated with PrintServer devices is used. 

Each PJA contains a list of all job steps required to 
execute a job on the class of printers it supports. 
The PJA selects the job steps it needs from this list, 
depending upon the instructions received from the 
qileue manager. 

Job steps are linked togethec The first job step 
chosen by the I'JA is linked to the termination of the 
1'jA itself; when the PJA finishes compiling the job, 
it terminates, thus starting the execution of the job. 
At the beginning of each job step, each filter mod- 
ule is assigned stack space and a stack frame. Its ini- 
tial program counter address and arguments are 
stored in its saved registers for process activation. 

cps uses a piped stream I/O mechanism similar in 
function to a UNIX stream; a filter motlule's input 
comes from the output of the previous module, and 
its output becomes input to the following motlule. 
By convention, the first filter module of the job step 
is activatecl first in the job step; when a filter blocks 
for output, the next filter module is activated. That 
filter module then runs until it blocks for input or 
output, at which point the previous or following 
filter module is activated. 
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Table 1 Simplified Job-step Sequence 

Job Step 

init-ps-device 

check-prologues 

sheet-count 

job-burst 

sheet-size 

wait-sheet-size 

file-setup 

get-vmbytes 

wait-vmbytes 

file-out 

sync 

in it-ps-device 

sheet-count 

wait-sheet-count 

job-trailer 

sync 

disconnect 

Function 

Ensure the device is "fixed up." 

Ensure that persistent 
prologues are loaded. 

Get the beginning page count. 

Print job burst page. 

Get the current sheet-size. 

Wait for the sheet-size before 
continuing. 

Send any file /SETUP modules. 

Get the amount of local printer 
memory available on the 
printer. 

Wait for the local printer 
memory message from the 
printer. 

Read the file to print and send 
it to the DECansi translator. 

Wait for the printer to finish all 
pages. 

Ensure the device is "fixed up." 

Get the ending page count. 

Wait for the page count to 
come back. 

Print the job trailer page. 

Wait for the printer to finish 
the job-trailer page. 

Release the printer. 

JOBSTEPS - 
FILTER 
MODULES I 

Table 1 shows a simplified listing of the job steps 
compiled by the serial PJA to process a simple job: 
one file to be printed in ANSI mode. Each of the job 
steps shown contains one or more filter modules 
piped together. For example the job-burst job step 
has two modules piped together: the job-burst mod- 
ule and the write-to-printer module. Figure 2 shows 
several job steps with several filter modules each. 

If an error occurs at any point in the processing 
of a job, CPS skips job steps until it reaches the 
identified error job step set by the PJA. In Table 1, 
the error job step points to the sync job step that 
precedes the job-trailer job step. In this case, CPS 
resynchronizes with the printer and prints the job- 
trailer page, including the error message. 

Event Handling 
In addition to the output side of processing a job, 
there is a corresponding input side. The input side 
reads messages from the printer, parses them, and 
notifies the appropriate handler of the event. The 
handler is chosen based on the type of message sent. 

CPS internal messages are dispatched to the 
appropriate symbiont routines. For instance, 
printer resource messages contain information 
that affect CPS internal operations: paper size is 
stored for later use by layup (the general map- 
ping of page images to sheets) and translators; 
virtual memory size is stored for translators; and 
page count is stored for later use in accounting. 

VMBYTES I hm 
OUTPUT OUTPUT TRANSLATOR 

DEVICE 
OUTPUT 

Note that data flows from top to bottom and job steps progress from left to r~ght. 

Figure 2 Job Steps and Filter Modzdes 
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I'rintcr status mcss;igcs arc dispatched to the 
operiitor and, in some cascs, to the current user. 
(:PS uses the normal IT.\IIS 013<:OM notification 
mechanism to scntl messages to the system opcr- 
ator. If the uscr specified /No'l'll:Y in thc print 
inslructions, then (:I-'s uses the Vals $ ~ R K ' I ' I I R ~ :  
system scrvice to send the message to the uscr 
also. 

In some cases, printer status messages require 
additioni~l processing. For example, paper jams 
require special k~ndling on somc printers: since 
CPS cannot deter~lline how many pages were lost 
in thc jam, it invokes human intervention by pl:~c- 
ing the job on hold. 'l'lie operator or uscr c;in 
determine what parts ofthc job, ifany, to reprint. 

Program status messages and uscr data messages 
arc dispatched to the job log. If the user specified 
/NOTIFY. then they are also tlisplayed with the 
$BI<K?'~-IRU s).stem scr\.ice. 'l'hese messages may 
be printcd or logged. 

The input ancl output sitles of the symbiont run 
 s synchronously most of the time, but occasionally it 
is neccssnry for the output sidc to wait for a mes- 
sage from thc printer. 'l'his synchronization bctwccn 
the input side and output side of the symbiont is 
accomplished by an internal event-signaling facil- 
ity. When synchronization is required, the o u t p ~ ~ t  
side waits for a specific narncd event and the input 
side signals that event when i t  is detected. For 
example, at the end of a job, CPS needs the final 
printer sheet-count in order to calculate the 
sheet-count for the job; this count is printed on the 
trailer page and stored in the VMS accounting 
records. When CPS nccds the sheet-count, the out- 
put side waits for an event n;lrned sheet-count. The 
input side parses the Incoming sheet-count mes- 
sage, stores the returned value in the shared clata 
structure, and signals the sheet-count event. Tlie 
processing of this event is asynchronous: at the 
time the message comes in, the output side may or 
may not have stalled while waiting for the 
sheet-count event. If the output side was waiting 
for that event, it is scheduled for further process- 
ing; if the output side was not waiting, the event is 
remembered, in case the output side attempts to 
wait for this condition in the near future. 

In the next section we describe the mays CPS is 
controlled and managed in the VMS printing system 
ancl how it expands printing capabilities in the VMS 
environment. 

Tbe VMS Printing System Enuironment 
CPS functions as a component of the W S  prlnting 
system at the level of printer supervisor. As such, it 
interacts with, and is shapetl by, the othcr compo- 
nents of the VMS system. ?'lie term printer super- 
visor is used in this paper to Ile consistent with the 
terminology of the emerging International Stan- 
clards Organization (ISO) Document Printing Appli- 
cation draft standard, ISO/IEC DIS 10175. 

Components 
The VMS Batch/Print system is a general queue man- 
agement service, capable of queuing, scheduling, 
and executing jobs in response to a variety of user- 
specified  instruction^.^ On the ViMS system, the 
printing instructions arc stored in a print job 
object, whkh  is placed in a queue of jobs for a 
printer. Modern print jobs often resemble batch 
jobs, due to complex stored processing instruc- 
tions and the heavy comp~~t ing  load placed on 
graphics printer controllers. 

The vMs printing system contains components at 
most levels of the DECprint architectural model. 

User priming interface. The VMS system includes 
interactive Digital Command Language (DCL) 
interfaces for printing and managing print jobs, 
printers, and the printing system itself.* For 
DECwindows applications. the 1)ECwintlows Print 
Widget provides a graphical interface that per- 
mits users to specify all the options for printing, 
and the ALL-IN-1 application provitles character- 
cell menus for choosing print options, including 
the enhanced options offered by CPS. 

Job submission interface. The VMS system 
includes program call interfaces that give the 
program all the capabilities of the DCL user 
intcrl'ace.3 

Print client and service for remote printing. The 
distributed queuing services product currently 
provides transparent remote printing in net- 
works using a proprietary network protocol. 

Print spooler. The vMs Job Controllel; recently 
replaced by the VMS Queue Manager, functions as 
queue manager and scheduler. (The function of 
spooling printer data to temporary files is per- 
formed by the W S  file system and is transparent 
to most components of the printing system.) 

Printer supervisors. The vMS system provides 
two standard symbionts to support most line 
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printers and serial printers. PRTSMB supports 
printers attached directly to communication 
ports on the CPU, e.g., the printer port on a VN(  

workstation. LATSYM provides support for print- 
ers attached to the serial or parallel ports of 
DECserver nctniork communications servers. For 
Postscript printers, CPS is used instead of these 
standard symbionts. 

The VMS printing system also contains compo- 
nents that affect CPS processing. 

Device control libraries are collections of small 
text sequences that can be inserted into the data 
stream from the symbiont to the printer. The 
sequences are ideally organized into text libraries 
containing named modules, with a separate 
library for each type of output device. Device 
control modules can be associated with a printer 
queue by the system manager as part of a FORM 

definition or a job reset function, or accessed 
directly by the user with the /SETUIJ qualifier. 

Device control libraries frequently contain 
device-specific control sequences that alter the 
format of the text and pages, for example, setting 
printer paper margins, setting character pitch, or 
enabling landscape printing. They may also con- 
tain downloadable font data or preprinted data 
for each page. 

VMS form definitions contain page size and mar- 
gin specifications that guide the print formatting 
process for a print job. The user can also spec* 
page setup strings and can prohibit the symbiont 
from wrapping lines during processing. 

VMS Print Queues 
VMS has several distinctly different types of queues. 
Execution queues process jobs through a symbiont, 
and generic queues transfer jobs to other queues. 
Often generic queues are used for load balancing: 
one generic queue may feed several printers of sim- 
ilar capability and location. 

CPS also uses generic queues in an unusual way. 
Default attributes can be specified for generic 
queues that cause all jobs submitted through the 
queues to inherit certain default print instructions. 
For example, a queue can be established that, by 
default, assumes that jobs are Postscript docu- 
ments, or assumes that jobs should be printed in 
landscape orientation. This ability to set default 
queue attributes is essential for supporting applica- 
tions that can spec@ the queue name for a print 

job, but cannot spec@ certain other qualifiers such 
as DATA-TYPE. It can also permit users of old appli- 
cations to access new features of the printing 
system. 

TrMS Print Commands and Interfnces 
The VMS printing system is manipulated through 
DCL commands and qualifiers. Many of the 
qualifiers are handled by the queue manager and 
have no impact on the operation of print sym- 
b iont~;  others directly affect the operation of C K 2  

The VMS system also supplies a call interface to 
these functions. 3 

W S  Interfaces to Symbionts 
The VMS Job Controller/Queue Manager provides 
two interfaces for customizing print symbionts: the 
PSM module-replacement interface, and the SMB 

server symbiont interface. CPS is currently imple- 
mented as a single-stream symbiont through the 
SMB interface. 

The SMB interface permits a user to replace the 
flow of control of the symbiont with a separate pro- 
cess. The process may be written in any style and 
structure suitable to the task at hand, and need fol- 
low only certain minor guidelines with respect to 
the operating system environment. To use the SMB 
interface, we replaced the entire symbiont process. 
The result was much greater flexibility, but we 
were required to write more program code. 

The SiLlB interface provides services to the sym- 
biont process through subroutine entry points and 
callbacks that pass messages between the symbiont 
and the VMS queue manager. Messages from the 
system to the symbiont s p e c 0  fi~nctions such as 
start up, shut down, begin job, pause, resume, and 
interrupt. Messages from the symbiont to the 
system return information such as job status, job 
completed, device status and error information, 
and checkpoint and accounting data. 

Range of Printers Supported 
CPS currently supports the full range of Postscript 
printers supplied by Digital, from a low-speed 
color printer up to a 40-page-per-minute laser 
printer that can handle 11 different paper sizes. 

Special I/O Processing 
CPS supports several different means of communi- 
cation with the printer: serial, Ethernet, and a spe- 
cial high-speed video connection. 
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The serial connection may be either a direct con- 
nection betwccn the con~puter and the printer or 
a local arc;l transport (LAT) connection by which 
printer is attached to a serial port of a DLCscrver 
terminal server. The two methods differ only in 
the way jobs are started and terminated. For 
LAT-connected printers, CPS must establish ant1 dis- 
miss the LAT connection at the start and end of 
each job. 

Once the connection is established with the 
serial printer (via LAT or direct connect), CPS begins 
a rlialogue with the printer using an asynchronous 
serial line protocol and PostScript programs. Thc 
asynchronous serial line protocol, clcfined by 
Adobe Systems Inc., consists of five control charac- 
ters that alter or cluery the state of the printcr. 

The symbiont forces the printer into an idle state 
by a series of control/T, control/C, and control/D 
characters. When a control/T results in an IDLE 
message from the printer, the symbiont and printer 
are reacly to process a job. 

PrintServer printers on Ethernet networlts are 
DECnet nodes. To write to a PrintServer printer, CIJS 
establishes a DECnet task-to-task session at the 
beginning of the job. The dialogue required for syn- 
chronizing serial printers is not necessary for the 
Ethernet printers; the PrintServer protocols pro- 
vide synchronization ant1 device control opera- 
tions through separate control channels. 

Printers connected through Ethernet use several 
protocols, which are layered on  DECnet task-to-task 
communications. The protocol used depends upon 
the version of the Printserver code. 

The local area print service (LAPS) protocol was 
developed for the Printserver family and is still in 
use. The Common Printer Access Protocol (CPAP) 
will replace LAPS in all Printserver printers.' PAP is 
based on the earlier Reid-Kent protocol, Internet 
Socket 170, and is being cliscussed as a possible new 
Internet s t a n ~ h r d . ~  

Special Processing for "Dumb" Printers 
In some printer configurations, it is economical to 
use the workstation or CPU as the printer con- 
troller. In this case, the printer includes only the 
print engine and nledia handling and finishing 
equipment, ancl none of the electronics, comput- 
ers, and interpreter programs that render the 
graphics language into the elements required by the 
print engine (usually an array of pixels). Such a 
"dumb" printer is physically comectcd to the com- 
puter by a very high-speed link such as a direct 

vicleo connection or data bus. For such a controller- 
less printer to be generally useful, the printing 
s),stcm must emulate an existing class of printer. 

l 'he LNO3 Image printer (LN03Q) is a bit-map 
printer of this type. It uses a special high-speed 
D h U  bit-map interface that plugs into a Q-bus and 
provides the speed required for printing scanned 
images. The protocol between this interface and 
the printer consists of bit maps and a small amount 
of status and synchronization information. 

The engine itself includes only the laser imaging 
and paper handling equipment. CPS handles the 
rcst of the controller functions in the host com- 
puter. Because of the level of support and emula- 
tion provided, the LNOQQ printer appears to be an 
orclinary PostScript job printer with some special 
image c~pabilities. 

For a given print job, CPS performs the normal 
processing up to the point at which the PostScript 
language data stream would normally be sent to the 
printer At this point, CI-'S directs the data stream to 
a special PostScript interpreter subroutine tliat pro- 
duces a bit-map image of the printed page in mem- 
ory. The bit-map image is then sent to the printer 
through a special LNV21 direct memory access I/O 

interface on the Q-bus. 
The software for the LN03Q printer also has one 

special processing path. The 1.N03Q printer is 
intended as an image printer for bit-map images. 
CPS supports image files containing page images 
that are scanned or precomputed at device resolu- 
tion (300 clots per inch) and optionally compressed 
with Comiti: Consultatif Internationale de Tklk- 
grapl~ique et Tklkphonique (CCI-7") Group 3 (ID) or 
Group 4 (2D) compression rnetllotls. Image files can 
be transmitted directly to the printer without con- 
verting to PostScript. Image files can only be sent 
directly to the printer if they are printed one page 
per sheet; i.f the user requests printing multiple pages 
per sheet, or other lajr~ip functions, then the image 
is processed througli the PostScript interpreter. 

Image files are structured in Digital document 
interchange format (DDIF), which expresses text, 
graphics, and images together. Files intended for the 
I.NO3Q printer must contain only image bit maps. 

If the print job specifies DATA-TYPE=DDIF or the 
file is a DDIF file, then CPS examines the file in a spe- 
cial mode. If the file correctly contains only iniage 
bit maps, (:PS decompresses the images in memory 
if necessary, using the DECimage Image Support 
Libr:lry routines. and then sends the uncompressed 
bit map directly to the LNO3Q print engine. Thus 
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the image goes directly to the printer without pass- 
ing through the PostScript interpreter. 

Special Processing in CPS 
CPS includes a number of special features and func- 
tions to satisfy the requirements of the DECprint 
architecture and the VMS printing system. In this 
section, we discuss the features that extend the 
process of standard print symbionts or are com- 
pletely new. 

Reading Print Instructions 
CPS reads the print instructions for a job from the 
VMS queue manager through the S M B $ W -  
MESSAGE and SMB$READ-MESSAGE-ITEM functions 
of the SMB interface. Print instructions are 
expressed as attributes with values. Each attribute 
has an associated numeric code and symbol, called 
an item code, and a value of a specific data type. 
The symbiont reads each item code and value, and 
stores the information in a static data structure. 
The information is used later to determine the pro- 
cessing sequence for the job, special information to 
be displayed on separator pages, and so forth. 

Bidirectional Communication with 
PostScript Printers 
CPS requires a full duplex communications path to 
PostScript printers since they report many condi- 
tions by sending messages to the host computer. 
These messages include device status messages, 
program status and error messages, user data mes- 
sages, and replies to CPS inquiries. 

CPS also requests information from the printer 
for synchronization, formatting, and accounting 
purposes. For instance, to determine how to for- 
mat ANSI text, the symbiont needs to know what 
paper is loaded in the printer. 

CPS receives the messages from the printer and 
parses them to determine what it should do with 
the message. If the message is device status, then 
CPS routes the message to the operator and/or the 
user whose job is being printed. If the message is an 
internal CPS communication, then CPS processes it. 
Otherwise, the message is either a program status 
message or a user data message. In either case it is 
logged for the user. 

All messages are parsed except user data mes- 
sages. Messages from the printer's interpreter are 
converted to a standard format that would, if 
desired, permit the message to be translated into 
the user's native language. 

Data Syntax Translation 
CpS provides a facility that translates selected 
printer data syntaxes into the PostScript language. 
The translating programs are subroutines, some 
quite large and complex, that accept a data stream 
in one format and produce a data stream in another 
format. The translators are responsible for all for- 
matting, including sheet size, page orientation, 
aspect ratio, and type sizes; CPS is responsible for 
all I/O and coordination with the printer. The trans- 
lation facility currently supports the following 
printer data syntaxes: DEC PPL3, ReGIS, Tektronix 
4010/4014, and PCL Level 4. 

The translation facility has several restrictions. A 
file may consist of only one data syntax, and all files 
in a job must be of the same data syntax. 

In general, CpS performs the translation from 
one data syntax to another on the host computer. 
In this way, simple printers that support only the 
PostScript language internally can be extended 
to support a number of printer languages. This 
reduces the requirement for a complex printer con- 
troller that supports multiple data syntaxes inter- 
nally. Host translation can guarantee consistent use 
across jobs of the printer's internal fonts, page ori- 
entation, finishing equipment, and page layup The 
general mapping of page images to sheets supplied 
as part of CPS requires that the printer operate in 
PostScript mode. To ensure consistent use of fonts 
and consistent positioning of pages with respect to 
finishing such as duplexing and stapling, all lan- 
guage translation must be done by the symbiont. 

Page Layup Multiple Pages per Sheet 
Page layup is the process of printing more than one 
page image on a sheet of paper. When more than 
one page image is placed on a sheet of paper, the 
images are rotated and scaled to fit on the page, but 
are altered in no other way. The layup facility works 
with all data types, including PostScript and PCL 
data syntaxes. Layup also permits formatting for 
larger paper sizes and then printing on smaller 
sheets. 

Layup is invoked explicitly with one or both 
of the extended qualifiers NUMBER-UP and LAYUP- 
DEFINITION. NUMBER-UP specifies the maximum 
number of page images that will be printed on a 
single side of a sheet; for example, two-up printing 
is specified by the "NUMBER-UP=2" option. Two or 
four page images per side may save significant quan- 
tities of paper for draft printing, handouts, and the 
like. Up to 100 page images may be placed on a 
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single sheet of paper for thumbnail draft printing to 
review the overall layout of a document. 

Layup may also be invoked through a combina- 
tion of PAGE-SIZE and SHEET-SIZE with NUMBER-UP. 
For example, the combination of PAGE-SIZE=E, 
SHEET-SIZE=A,NUMBER-UP= 1 permits printing 
clraft copies of large-format documents on small 
paper. Conversely, the combination of PAGE- 
SlZE=A,SHEET-SIZE=B,NUMBEK-UP=1 magnifies the 
smaller page to fit the larger sheet. 

h p l e x  Printing 
Printing on both sides of the paper introduces a 
number of new options and interactions that 
require special processing in CPS. CPS begins each 
docilment on the first side of a new sheet, so that 
recto and verso (right-hand and left-hand) pages 
and alternating margins are aligned with the cor- 
rect sides of sheets as they are stacked by the 
printer. This function also interacts with the clircc- 
tion in which the medium is pliysically loaded into 
the printer if the medium is not symmetric left-to- 
right, top-to-bottom, or front-to-back, such as pre- 
drilled paper. 

The interactions of PDI- coordinate systems, page 
layup, media selection, asynimetric media, duplex 
printing, and binding are the most elusive engineer- 
ing problems in the printing application space. No 
general model of these interactions has been devel- 
oped, despite considerable effort in standards com- 
mittees. It appears that it is necessary to implcn~ent 
every possible option. 

Separator Pages 
CPS prints all the separator pages definecl by the 
VMS queuing system as well as some generated by 
CPS. Flag, burst, and trailer pages for job :~nd file lev- 
els are available as defined by VMS, and contain 
the same information presented in a highly legible 
format. In addition to the s~;inclard \rb,ls infor- 
mation, the job trailer page also contains the first 
two PostScript language errors returned from the 
printer. This often makes it unnecessary to use 
MESSAGES=PRINT to see simple errors. 

To ensure that the job separator pages can always 
be printed correctly, CPS rcscts the PDL interpreter 
in the printer before printing these pages. The CPS- 
generated separator pages do not alter the coordi- 
nate system ol'the interpreter; the user's docunicnt 
starts printing with the default PostScript state. File 
separator p;igcs, in contrast, print in the current 

PostScript environment, including the altcrctl page 
geometry, e.g., l a p p  establishctl by the print job. 

CPS defines two new separator pages. I'llt: file 
error page is printed when a file cannot bc opened 
or an error occurs while reading tlie file. 'l'he file 
error page illforms the user of the error condition 
which cauhcd it to be printed. The job log page con- 
tains up to 40 lines of the job log file. The job log file 
contalns job evcnts such as job start ancl job com- 
pletion as well as program status messages and user 
data returned from the printer. 

Managing Printer Resources 
Once co~nmunication is established with the 
serial printer, the symbiont must establish what 
resources are available on the printer. These 
resources include prologues, which are commonly 
used PostScript routines, the amount of available 
virtual memory, and the meclium in the default 
paper tray. For example, CPS persistently loacls the 
Postscript p ro log~~e for the output of the ANSI text 
translator into the Postscript interpreter. This 
resource might be lost to the printer because of a 
power failure or might become obsolete due to a 
software upgrade. CPS interrogates the printer at 
the beginning of any job requiring the translator 
prologue and loads a new prologue, if necessary, 
CPS also performs s~rnilar processing for the 
PostScript prologue that is used to generate tlie 
separator pages. 

For traditional resources such as paper, CPS relies 
on status messages from the printer to indicate that 
the printer is stopped because paper supply is 
empty or jammed These conditions are relayed to 
the operator and to the current user by standard 
\wS mechanisms. 

Library Search Lists 
In the standard \/&IS print symbiont, only one 
device control library may be associated with a 
queue. This is not a problem since the standard VklS 

print symbiont deals with only one data syntax. 
(Recall that device control libraries are often writ- 
ten in device-dependent data syntax.) CPS, on the 
other hand, uses more than one clata syntax when 
printing a non-Postscript job: the dat;~ stream to the 
printer is PostScript, but the data stream to the 
translator is in another data syntax. 

Early versions of symbionts that supported 
PostScript suffered from the same restriction: only 
one device control library was available, and its 
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modules were expressed in Postscript. This made it 
impossible for users to share device control 
libraries with their standard VMS print symbiont 
and their non-Postscript printers. 

To solve the problem of multiple data syntaxes 
in a job, CPS introduced device control library 
search lists. The system manager, rather than speci- 
fying a single file specification in the INITIALIZE/ 
QUEIIE/LIBRARY command, creates a logical name 
instead. CPS translates that specific logical name 
and uses each element of the result as a dev~ce  con- 
trol library. Each library in the search list can have a 
data syntax associated with it by adding the 
qua1 ilier, /DATA-TYPE=. 

CPS supplies a device control library, 
CPS$DEVCTI., which must be included in the search 
list, usually as the first, o r  only, element in the 
search list. 

Summary 
The DECprint model of printing describes a useful 
structure with consistent functions and responsi- 
bilities. CPS is an advanced print symbiont that runs 
in the VMS printing system. It includes many spe- 
cialized functions to support the features of a wide 
range of modern pr~nting devices. It provides, w e  
feel, an extraordinary level of support It was 
designed with a highly modular and flexible inter- 
nal structure to permit enhancements to be engi- 
neered with minimal interactions with current 
operations. 

CPS is currently shipping its fourth version. This 
version fi~lly supports the ten different Postscript 
printers supplied by Digital, which range from a 
low-speed color prlnter to a high-speed laser 
printer. It also supports five different data syntaxes 
in which applications can write documents. We 
expect that more printers ant1 more capabilities 
will be added in future versions, and that CPS will 
require a minimum of additional engineering effort 
due to its very general internal structure. 
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The Common Printer Access Protocol 

The DEC PrintServer Supporting Host Software version 4.0 incorporates Digital's 
Jrst implementation of the new common printer access protocol (CPAP). This pro- 
tocol is compatible with the local area print server (LAP$) protocol, which was 
optimized for UVS access and DECnet transport, and with the Reid-Kent proto- 
col, a Postscript-based, TCPIIP-connected print server for n client-server environ- 
ment. The CPAP protocol supports a variety of data presentation protocols 
and allowsprinters to be connected to driving applicatiom by various commutzica- 
tions and process-to-process intmfaces. The protocol also couples entities running 
difSerent operating systems across disparate networks. Because of its superior 
performance, the new CPAP protocol has been accepted by the Open Software 
Foutzdation for incl~lsion in a fzltztre release of OSF/I. 

The presentation of computerized data has become 
a remarkably sophisticated and subtle operation. 
Video displays now support windows with com- 
plex allocations of display space, variable fonts, and 
real-time user input operations. Printing devices 
now offer support for publication-quality fonts, 
line art, and images. These devices can present 
visual objects on a variety of media, from many 
sources, and in variable orientations and presenta- 
tion modes. In addition, both video and printing 
devices are now decoupled from dedicated com- 
puting environments, and are shareable from many 
hosts and by many users or programs. 

Now, only the simplest printing devices are lim- 
ited to presenting just characters, and many users 
are finding such restricted capabilities inadequate. 
Also, most printing devices still require dedicated 
connections to single computers. However, more 
printers now offer full network accessibility; i.e., 
network printers are capable of offering sophisti- 
cated services to a wide variety of users and their 
applications. 

The paper entitled "Design of the DECprint 
Common Printer Supervisor for VMS Systems" 
in this issue of the Digitnl Technical Joz~rnal 
describes access methods and interrelations 
among services that provide for these increasingly 
sophisticated data presentation capabilities.' The 
printer access protocol (PAP), a service interface in 
the DECprint architecture, couples the printer 
supervisor component to the logical printer for 
presenting data and otherwise controlling a physi- 

cal printing device. The common printer access 
protocol (CPAP) described in this paper provides 
the fundamental services required by a printer 
supervisor for the presentation of data and collec- 
tion of accounting information. In addition, the 
CPAP supplies easier network access between 
printer supervisors and printers, as well as ancil- 
lary control of printers for network management 
and device configuration. The CPAP also provides 
services to distribute the processing requirements 
of the printer itself, most notably a mechanism for 
delivery of network font services. This last capabil- 
ity allows a printer to offer what amounts to vir- 
tual services, i.e., the ability to configure itself 
dynamically to the demands of a print job without 
the involvement of the printer supervisor. 

This paper begins with a discussion of the 
influence of existing protocols and the DECprint 
architecture on our CPAP design goals. The sections 
that follow present the printer session concepts 
and the functional interface between the protocol 
and applications. We then describe the implemen- 
tation of the new protocol in a server environment, 
including interoperability, compatibility, and the 
translation of the older PrintServer protocol. At the 
close of the paper, we discuss ongoing standard- 
ization issues. 

History 
The PrintServer 40, Digital's first fully networked 
printer, was first shipped in 1986. Its local area print 
server (LAPS) protocol was analogous to later 
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printer access protocols. The Printserver 40 was a 
ground-breaking product for Digital, ant1 the I.~\l-'s 
protocol was a major aspect of the Printserver 
tlevclopment effort, portions of which cl;ite back to 
1983. l'hc L,U-'S protocol was dcsignetl ;inel clevel- 
oped with p;irticular product-oriented tleliverables 
in mind, and was optinlized for \')Is ;icccss and 
DECnct transport. While this protocol precl;ites 
much of the architectural work now being imple- 
mented in Digital's printing products, i t  was (;lncl 
still is) a significant element of I'rinLScr\~er archi- 
tecture and in~plementation. 

Work heg;ln on Inore general I-'i\Ps in 1987 as 
part of the early nwrk on the Dl:(:l>rint architcc- 
ture (known ;it tlie time as the Printing S)rste~ns 
Model). The specifics of what would become the 
CPAI-' emerged in late 1988 in two internal papers 
by Brian Reid ancl Chris Kent of Digital's Western 
Research Laboratory. These papers prcscnted the 
initial design concepts for ;I Postscript-based, 
'l'(:P/II'-connected (transmission control protocol/ 
internet protocol) print server in a clc;irly clefinecl 
client-server environment. 'l'his print server proto- 
col came to be known as the Itcid-Kent protocol. 

Design Rationale and Goals 
B). e;irljr 1988. design goals for (and constraints on) a 
PAP were well understootl, ant1 hatl been collectetl 
and published as part of Digital's Printing Systems 
Motlcl. (:hief among these go;lls and constr;~ints was 
the need to support a variety of tl;ita prcscnt;ition 
protocols, ancl to ;~llow printers to be connected to 
driving ;~pplic;itions by a v;lriety of communica- 
tions ;ind process-to-process interfaces. 

'l'hc increasing corpor;itc conimitmcnt to open 
s).stcms made it clear that a I',\I' woultl also have to 
couple entities running v;irious operating s!?Xems 
across tlifferent netmiorks. l'hus, the UE(:print I'AP 
architecture tc;im decided e;irlj. in the design pro- 
cess that a PAP should be designed Sor public 
access: that is, the specification for the protocol 
should be piit into the public domain and submit- 
tecl for intlustsy stantlardization. 

Interopcrability is a most serious constraint. 
Digit211 has a strong tradition of maintaining back- 
ward compatibility within and among its product 
families. In a distributed processing environment, 
however, backward compatibility t;~l<cs on the 
added burclen of interoperability >lultiplc clients 
must communicate with multiple servers. any of 
which can be upgraded to new versions of sup- 
ported protocols asynchronously. Adclressing this 

problem was :I major conceptual test in tlie first 
implement:ition of a CPAP server. This is discussed 
in more tletail in the section The <:PI\P Scrvcr 
Implenient;~tion. 

The Reid-Kent protocol met many of the techni- 
cal tlesign requirements for a new PAP. It was built 
on industry-stantl;ird components, and contained 
no proprict;iry technology that would prevent its 
public;~tion. 

However, certain PAP design goals were not cov- 
ered by the Reid-Kent protocol in its 1988 version. 

There was no facility to select a specilic page 
clescription 1angil;lge (PDL) for printers support- 
ing multiple interpreters. 

There was no method for soliciting the capabili- 
ties and media ;ivailable on the printec 

The only 1angu;ige supported was English 
(contrary to the corporate guidelines for 
i~~tern;ition;iliz;~tion). 

Data sent from the printer was not categorized; 
user-specific information was mixed with operii- 
tor and service data. 

No means was provicled to solicit the status of 
the printer. 

There was no encoding to discriminate between 
binasy and test files. 

I-Iowever, these flaws were largely omissions 
from tlie design goals, not fundamental conflicts 
with them. The architecture team decided that the 
Reid-Kent protocol coulcl be extended to address 
these omissions without serious conflict. In f ~ c t ,  
the neccss;iry extensions were clesignecl to allow 
clients and servers conforming to the original Reid- 
Kent protocol to remain in conformity with the full 
<:PL\P specification. 

Architecture 
The CPAP is primarily ;I communication-oriented 
protocol, i t . ,  tlie presentation of its function is 
closely coupled with its encoding. The major syn- 
tactic fe;~tures of the (:PAP derived from the Reid- 
Kent protocol are tlie following. 

All encodings are ASCII strings. This eases the 
generation of protocol streams and ensures inde- 
pendence from the underlying communications 
channels. 

No data fields are fixecl length. This provides for 
extensibility of the protocol and eases the gener- 
ation of a protocol stream. 

- 
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Multiple channels of communication use the 
same basic format. Common parsing of separate 
channels simplifies implementations. 

Simple numeric tolens clefine the operators. 

Session Concepts 
The CPM architecture defines separate contexts for 
each type of work the CPAP can perform. Each con- 
text requires that a separate session be established 
for its own tasks, and each session involves the cre- 
ation and use of a separate network connection 
between the co~~trolling client and the server. Each 
connection identifies the type of session the initia- 
tor requires. The CPAP defines three different ses- 
sion types: print, management, and console. 

The set of CPAP operators allowed for a session is 
restricted to those needed to support that type of 
session. All session types have access to printer 
status and configuration information. In addition, 
multiple concurrent sessions are permitted. Print 
sessions and management sessions may have one or 
more virtual circuits active to a printer at a time. 
The use of multiple circuits permits the streaming 
of data to the printer over logically separate chan- 
nels, thereby eliminating application protocol over- 
head for the most frequent operations. In contrast, 
console sessions use a single virtual circuit for 
exchange of data with remote terminals. 

Print Sessions Print sessions usually consist of a 
series of documents printed for a user on a given 
host by a printing service (a "printer supervisor" 
as defined by the DECprint architecture). With the 
operators provided by the CPAP, the printing ser- 
vice can determine the language interpreters, 
printer options, fonts, prologues, and media that 
are currently installed at the server. These opera- 
tors also provide the current operational state, 
number of jobs queued to the printer, and the cur- 
rent job status. These features permit the printing 
service to select the printer (server) that can satisfy 
the user's request and to determine a method for 
submitting the job to the printer 

Once the printing service has begun a session 
and identified itself, i t  identifies the user and the 
user's job code to the printer. This information may 
be used by the printer to provicle usage information 
to a centralized accounting service. The printing 
service can then present documents to the printer. 
A transaction between the printing service and the 
printer establishes which interpreter the printer 

will use for each clocu~ne~lt ant1 which virtual cir- 
cuit will be used for its transmission. 

Selection of the proper virtual circuit for trans- 
mission of documents to the printer is performed 
by passing tokens from the printer to the printing 
service. The tokens are then mapped to whichever 
virtual-circuit service is being used by both the 
printing service and the print server This map- 
ping approach avoids passing network-specific 
information within the protocol. Not only does the 
approach make the CPAP independent of the net- 
works on which it might run, it ensures that the 
network services need no knowledge of CPAI' 
encodings. Such virtual-circuit mapping is criti- 
cal to allow CPN' client-server processing to be 
implemented in a heterogeneous, internetworking 
environment. 

During the printing of the document, some data 
presentation interpreters (Postscript, for example) 
send data back to the user or print service. In addi- 
tion, the printer may run out of paper or toner, 
may have a fill1 output tray, or may encounter other 
exception conditions not directly related to the 
interpretation of page description data. The CPAP 

categorizes such conditions and delivers relevant 
messages to the user, the operator, or the event logs. 

Upon completion of the job, the printing service 
is notified of the meclia used, the number of pages 
printed, and the printer processing time required 
to complete the job. The protocol also includes a 
provision to abort jobs, e.g., an improperly formed 
document that might otherwise hang the printer. 

Managelnent Sessions The CPAP supports certain 
printer services through management hosts. A man- 
agement host is a network entity (not necessarily 
the same entity as the printing service) with which 
the printer can exchange information or request 
services. Such services include 

Time service 

Centralized event logging 

Centralized accounting 

Program loading and configuration 

Font services 

An important aspect of the CPAP is that the 
printer is always passive with regard to initiating 
management services. A candidate management 
host advertises that it has services to offer, and a 
print server accepts or rejects the offer. Once a 
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connection with one or more management hosts 
is established, the printer may use such hosts as 
servers for time synchronization, configuration file 
access, and font lookup. Additional functions for 
these hosts may be loading program images, event 
logging, accounting, and general fde access. 

File naming to access general file services is a 
problem that needs special attention if the server 
and the protocol are to maintain independence 
from the host operating systems. Commonly used 
files are identified in the CPAP by reserved tokens, 
such as $CONFIG, $DEFAULTS, $RESOURCES, and 
$SETUP. Arbitrary path names are allowed, but can 
access only a limitetl domain (from a known root 
directory) to preserve file system independence 
and to maintain security. 

Translation to the host's services is provitletl 
by the host itself. This permits the printer to be 
served by different hosts using a wide variety of 
operating systems (and their implicitly tliffcrcnt 
file-naming conventions and syntaxes) without any 
awareness of a management host's implementation 
by the server. 

Console Sessions A console session is a form of 
printer management. Thc content of the data 
exchanged during a console session is specific to 
the printer, and is not specfied by the CPAP. 
Services performed within a console session might 
include 

= Operator services, such as telling a printer what 
media have been loaded (e.g., by color, weight. 
or transparency), or setting physical printcr 
defaults (e.g., duplex versus simplex, or default 
medium selection) 

= Network management configuration services, 
such as controlling tlomain access to or from 
the printer 

Troubleshooting or debugging services 

Digital's implementation of console services on 
current PrintServer products conforms to the 
Enterprise Management Architecture. 

Application Program Interface 
The h~nctional interface to any protocol provides 
an additional abstraction between a11 application 
and a protocol. This abstraction answers many of 
today's software application needs, including inter- 
operability, portability, moctularity, and reusabil- 
ity across multiple architectures. An application 

programming interface ( M I )  that alloars access to 
all (:PAP facilities is included in the protocol's 
specitication. 

A connection block, which is passed as a parame- 
ter to all functions, provides support for vari- 
ous printer types, their device identifications, and 
descriptors for command and data channels. This 
support includes separate command and data 
channels for printers supporting multiple virtual 
circuits or channels. Just as in the case of the date  
stream form of the protocol, the API form allows 
separate channels for data and commands. 

A separate command channel allows ease of con- 
trol flow between client and server. This may 
include the client receiving the server's status or 
events, or the client sending aborts to the server. 
For devices that support only a single channel, the 
generic printer driver can set both command and 
data channels to the same value. For supporting 
multiple jobs active at the same time (job overlap), 
;I job identification (ID) parameter is passed with 
all functions. 

To support various message types, the address 
of a read-callback routine is passed to the open 
printer function along with a pointer to read-call- 
back arguments. These arguments may signal vari- 
ous events, or may consist of messages for the user, 
operator, accounting, or resources available in the 
printer. 

An early version of the generic functional inter- 
face was part of i\.IIT Project Athena's Palladium 
Print System. The printer supervisor in Digital's 
LN03R ScriptPrinter product was modified to cre- 
ate a generic printer interface for both the 
ScriptPrinter device and the PrintServcr family. 
This conversion from an API-accessible base took 
one \\reek to execute, whereas it typically takes 
six montlis of effort to develop a new printer 
supervisor for a device as complex as the 
PrintServer product. 

The CPAP Server Implementation 
The implementation of a protocol gives rise to 
problems different from those related to its design. 
When defining the architecture, one strives to pro- 
vide an ideal that includes all of the desired features 
in an elegant manner. When performing an imple- 
mentation, one finds that elegance often has to take 
a back seat to pragmatics. This is especii~lly true 
when the new protocol is intended to replace two 
different protocols in a new version of an existing 
product. Merely implementing the new protocol 
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is not enough-the implementation must some- 
how coexist with the protocols being replaced. 

Digital's first production implementation of the 
CPM was targeted for the DEC PrintServer Sup- 
porting Host software version 4.0, which loads and 
drives the PrintServer family of printers. For the 
rest of this paper, we refer to this software by the 
PrintServer product designation of LPS version 4.0. 

We started the implementation by modifying 
Digital's ULTRlX PrintServer client, which already 
used the Reid-Kent subset of the CPAP, to use 
DECnet network transport and run on the VMS oper- 
ating system. We then updated the LPS server 
code to permit either DECnet or TCP/IP transport. 
This was accomplished by using the direct-to-port 
communication features of the VAXELN operating 
system. The server establishes a circuit using the 
appropriate transport and then spawns a process 
for dealing with each incoming connection. Thus, 
the same code can service print sessions, manage- 
ment sessions, and console sessions without con- 
cern for the type of network transport. 

The CPAP was, by design, directly upward- 
compatible with the Reid-Kent protocol subset. 
However, Digital's PrintServer offerings prior to 
LPS version 4.0 were LAPS-based, and LAPS was not 
CPU-compatible. To permit users of existing 
PrintServer printers to continue to use these 
products, we had to find a way for the new CPAP 

implementation to coexist with the older LAPS 

application protocol. We achieved this coexistence 
by having the server perform translations from the 
older protocol to the new one in the server itself. 
When the client establishes the initial connection, 
the server senses which protocol is being used by 
the client system. If the initial message indicates 
the use of LAPS, the server spawns incoming and 
outgoing filters to deal with the incoming connec- 
tion, and a new internal circuit replaces the 
network connection to handle the interpretation 
of the C P P .  

The coding of the LAPS filters was the last step 
in implementation before testing began. The 
PrintServer 20, PrintServer 40, PrintServer 40 plus, 
and the new turbo PrintServer 20 all had to be 
tested using both L M S  and the Reid-Kent subset of 
the CPAP. In addition, the new implementations of 
the management client and the console client on 
the VMS system requirecl verification. This verifi- 
cation entailed a multitude of tests using the LPS 
symbiont running on older versions of the VMS 

operating system, the newer common print sym- 

biont (CPS), several versions of the ULTRIX oper- 
ating system, and a source kit version running on 
a Sun Microsystems workstation. 

Unfortunately, this testing uncovered latent 
defects in the implementation of the existing prod- 
ucts. We had to analyze each of these defects and 
plan corrective action. Since updating the existing 
products in the field is a difficult process (both 
technically and procedurally), we corrected most 
of the defects by altering the server to deal with the 
problems. Retesting was performed over several 
baselevels to ensure that our changes caused no 
regression. 

At one of the early baselevels, the interface 
between the network distribution software and the 
server's Postscript interpreter was updatecl to use a 
stream-based connection in place of the previous 
packet protocol. This update permitted the new 
CPAP data channel to be mapped by reference to 
the input of the Postscript PDL or any other PDL 
supported by the printec This change alone per- 
mitted the performance of the server to be main- 
tained even when the server was translating from 
the old M ' S  protocol to the CPM. 

In general, development proceeded incremen- 
tally, i t . ,  key features were identified and added 
with each baselevel. While this technique limits the 
complexity of producing the product, i t  raises an 
important business issue. Specifically, the provi- 
sion of enhanced services in a client-server envi- 
ronment often exposes aspects of the proverbial 
"chicken-and-egg" situation. There is little call to 
offer enhanced features in a server if clients have 
not been programmed to solicit the features. How- 
ever, clients are not readily upgraded to solicit 
features that might not be widely available. 

The LI'S version 4.0 project team met its backward 
compatibility design goals by including the LAPS-to- 
CPM filters. In doing so, they ~lndercut the need 
to provide the enhanced feature support that the 
CPM was designed to deliver, since existing clients 
(earlier versions) could not avail themselves of 
the added features. In addition, the risks of includ- 
ing full CPAP support in LPS version 4.0 (possible 
increase in time to market, and the creation or expo- 
sure of more latent defects in all supported environ- 
ments) seemed to outweigh the benefits. However, 
a last-minute change to use the new protocol's data 
channel for loading fonts yielded such a large per- 
formance advantage that resistance to using the 
new features crumblecl, and the project team was 
allowed to submit the fill1 protocol to field test. 
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Standardization 
Network printing became widely available in the 
mid-1980s, but products from different vendors 
were not compatible. Network printing protocols 
were largely proprietary efforts by vendors who 
had developed them for their own printer prod- 
ucts. Digital's Printserver 40 and its LAPS protocol 
were typical in this regard. By the late 1980s, 
network printing was an established and competi- 
tive technology, but there was still little inter- 
operability among the various vendors' products. 

In the absence of printing protocol standards, the 
Internet Engineering Task Force (IETF) formed a 
Network Printing Protocol working group in 
early 1990. This group's charter was to examine 
printing protocols then in existence or under devel- 
opment, assess their applicability to Internet-wide 
use, and suggest changes. Digital's representatives 
to the Im working group on the Palladium 
Printing Systems standardization reported the inter- 
est shown in Digital's Reid-Kent protocoI. Thus, in 
July of 1990, Digital submitted a version of the PAP 
that was under consideration by the DECprint PAP 
architecture team. 

Early consideration of this PAP by IETF and the 
LPS version 4.0 implementation effort ran concur- 
rently. This provided a unique opportunity for 
Digital's implementers to obtain feedback from a 
very knowledgeable architectural community. In 
turn, they could report implementation experi- 
ences that affected the review and progress of the 
specification towards standardization. Implemcn- 
tations of CPAP clients and servers by companies 
other than Digital are in progress. 

As part of Project Athena's Palladium Printing 
System, the CPAP has been accepted by the Open 
Software Foundation for inclusion in a future 
release of OSF/l . 

A draft of the CPAP is being circulated among 
Internet members for comment. Meanwhile, work 
on future enhancements continues. Work is now in 
progress to specify a superset of the existing pro- 
tocol that deals with authentication and encryp- 
tion to strengthen security. This work is being 
done in the spirit of the original migration from the 
Reid-Kent protocol to the CPAP; i.e., the security 
features being added will not adversely impact 
users who do not need the new features. 
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Design of the Turbo 
PrintServer 20 Controller 

The turbo PrintServer 20 controller is a peformunce enhancement of the original 
PrintServer 20 system controller: The turbo controller was developed to enable 
Postscript code to execute fmter and thus improve page throughput for complex 
documents. The RETrACE analysis system was designed to analyze the performance 
of the original Printsewer 20 system and estimate expected performance future 
systems. The turbo controller's processor and its three subsystems for memory, 
write buffeq and bit-map data tramfer were selected based on the analysis results. 
Performa~zce tests conducted on both the original and the turbo PrintServer 20 
indicate the enhanced processing performance of the turbo controller 

In 1988 the turbo controller project was conceived 
as a means of extending the life of the PrintServer 20 
platform by introducing a performance-enhanced 
system controller. The system controller in the 
PrintServer 20 is housed within and powered by 
the printer or "print engine"; it is a concise imple- 
mentation of a single-board computer containing a 
CPU, a memory subsystem, an Ethernet interface, 
and a printer interface. It supplies an environment 
in which a multitasking software system manages 
communications with remote clients and with the 
print engine, performs data conversion from the 
page description language (PostScript) to bit-map 
images, and provides management of physical print 
engine resources. 

The original controller provided a maximum 
print speed of 20 pages per minute, but this perfor- 
mance could not be maintained when the docu- 
ment included complex text, graphics, or images. To 
improve page throughput for complex documents, 
a controller was needed on which PostScript code 
could execute faster. To enhance performance, the 
competition was moving toward controllers based 
on new industry-standard reduced instruction set 
computer (RISC) processors. Therefore, to be com- 
petitive, Digital's new controller was required to 
improve performance by five to eight times that of 
the original controller, which had been based on 
the rtVAX microprocessor. 

As challenging as the performance improve- 
ment would be to achieve, budgetary pressures 
forced restrictions on the implementation strategy 

We were to use existing, qualified chips wherever 
possible in order to avoid new part qualification 
costs and application-specific integrated circuit 
(ASIC) development costs. 

Early investigations indicated that the perfor- 
mance target was indeed achievable with existing 
inexpensive RISC processors, as well as a high- 
speed Digital proprietary VAX processor. A RISC 
processor would require porting a 2.5-megabyte 
(MB) software system, which was far beyond the 
scope of the project. The highest performance 
VAX processor and the associated support chips, 
which would not cause a problem with the soft- 
ware system, were far too expensive to be consid- 
ered. Alternatives were therefore limited to less 
expensive, lower speed VAX processors: the low- 
risk, 60-nanosecond (ns) CMOS VAX or CVAX pro- 
cessor was proven, and the higher speed and more 
cost-effective "system on a chip" or SOC processor 
was under development. Either choice would have 
a minimal impact on the software system and 
would provide a cost-effective solution. 

The original performance estimates for the CVAX 
and the SOC processors in general-purpose process- 
ing environments were below the lower bound of 
the performance target. The design team was also 
uncertain of the actual execution characteristics of 
the PrintServer software. For these reasons, it was 
decided to begin the project with a performance 
analysis of the original controller to determine the 
expected perforlnance of a design based on either 
processor. 
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This paper discusses the problems encountered 
during o l ~ r  analysis and the solutions devised by the 
H;irdcopy Systcms Engineering Group to overcome 
them. The R1:'l'rACE tool suite, a performance analy- 
sis system, is described and the analysis results are 
provicled. The paper then discusses the hardware 
architecture of the tilrbo controller and ends with a 
presentation of the performance results obtained 
for standard PostScript benchmarks. 

Perfomzance Analysis of tbe Original 
Controller 
The PrintServcr 20 software system consists of a 
VAXELN oprmting system, an Adobe Systems, Inc. 
I1ostScript interpreter, and a substantial amount of 
software to manage communications and resources. 
The task of analyzing its performance was compli- 
cated by two additional factors First, the softw;~rc 
system's behavior depended on the characteristics 
of the user's PostScript tlocument. PostScript is 
an interpreted progranirning language. Thus, like 
any computer program, low-level machine perfor- 
mance can be dr~mat ic~l ly  affected by the program 
being executed. Second, and more painful, the 
proprietary nature of the Postscript interpreter 
prohibited us from obtaining code sources, and clis- 
cussing its internal architecture with engineers 
from Adobe Systems. 

While the characterization of a complex, par- 
tially proprietary, real-time software system is 
diff~cult, it is not impossible. Programmer counter 
address (PC) traces have offered many systenis 
designers very detailed insight into the execution 
performance and characteristics of systems, PC 
traces provide a means to observe a system at a 
macroscopic level, allowing a view of the complex 
interactions between the hardware and software 
systems. System designers can use capturcd atlclress 
traces from current machine performance to extra- 
polate expected performance of future s y ~ t e ~ ~ i s  and 
help them make architectural trade-offs. 

The RETrACE Analysis System 
The R.ETrACE tool suite was created to provide 
a nonintn~sive means of capturing real-time PC 

traces and analyzing the captured addresses. The 
tool suite consists of both hardware and software 
components. 

In order to keep expenses at a minimum, existing 
hardware was used wllerever possible. Only one 
small module had to be developed to complete the 
RETrACE hardware platform. 

The RETrACE hardware consists of the following: 

Two interconnect boards boot and operate a 
system controller on a table top. Developed as 
part of the original Printserver 20, the boards 
connect the controller to a print engine and an 
Ethernet. 

The PrintServer 20 server controller was modi- 
fied for use as an intelligent trace buffer system. 

The PrintServer 20 server controller's memory 
capacity (l2MR) was extended using the standard 
~ M B  memory module used on the Kanji version 
of the PrintServer 20. 

The KETrACE mother board was developed specif- 
ically for this tool suite. It contains a 32-bit wide, 
first-in, first-out (FIFO) buffer and two loosely 
coupled state machines. 

A standard PrintServer 20 system controller and 
print engine were used as the "system under 
observation." 

The console terminal was selected from the stan- 
dard VT series of terminals. 

A diagram of the RETrACE hardware system is 
shown in Figure 1. 

The KETrACE mother board performed the data 
capture, using the modified controller's memory as 
a large buffer. The board monitored the processor 
bus of the system under observation by copying 
all aclclresses and communications between the 
rtVA?( processor and its external floating-point 
unit. This copied data was placed into a FIFO buffer 
that in turn was written into the memory of the 
modified controller using a direct memory access 
(DIMA) device. Since a standard PrintServcr 20 con- 
troller and its optional memory expansion provide 
16MR of storage, approximately 3 seconds of real- 
time execution address traces could be captured. 
The data capture continued until the trace buffer 
memory was exhausted, at which point the data 
was i~ploaded over a network connection to a VAX 
VMS computer for analysis. 

Due to the design of the original PrintServer 20 
system, many large data areas and code sections 
were mapped into different explicit memory spaces. 
This s~ibdivision providetl a means of determining 
which code function was executing in any given 
segment of the address trace. With a simple statisti- 
cal study it was possible to generate software exe- 
cution histograms and to determine many of the 
characteristics of the system, including translation 
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buffer, floating point, instruction stream (I-stream) 
versus data stream (D-stream), read versus write, 
and interrupt performance. Hit rates for fully asso- 
ciative caches of separate I-stream and D-stream, 
as well as a combined I- and D-stream cache, were 
also provided. These hit rates were determined for 
first-level write-through caches from 128 bytes up 
to 256 kilobytes (KB). Thus an upper bound for an 
optimum-performance cached memory system 
was determined. 

Both processors under consideration possessed 
the ability to access a memory subsystem at speeds 
greater than that achievable with existing low-cost 
dynamic random-access memory (DRAM) technol- 
ogy. The performance numbers predicted by the 
processor groups indicated that cached memory 
subsystems were required. Because these sub- 
systems can be expensive and their performance is 
subject to the peculiarities of the software that 
executes on them, a multilevel memory simulator 
was developed to allow accurate studies to be per- 
formed on proposed cache architectures. 

The simulator was config~ired at run-time to sim- 
ulate a n  arbitrary hierarchical memory system that 
was N levels deep, with an arbitrary size, associa- 
tivity, performance, and behavior at each level. 
The memory level nearest the processor was 
defined as the first level, and the last as main mem- 
ory. The simulator processed a trace file by walk- 
ing each address in the file through the memory 
hierarchy starting nearest the processor at the first 
level. If a copy of the address was found at a given 
memory level, then a hit was signaled and the next 
address was processecl. If that address was not 

found, then a miss was signaled and the simulator 
would proceed to the next level of memory in the 
hierarchy. 

Whenever a hit occurred at a given level, it 
was logged and all levels of memory in the hier- 
archy above it would allocate entries based on 
their defined allocation rules. While this procedure 
indicated the memory system performance for 
a proposed architecture, the overall system per- 
formance was still unknown. Using a simple rule 
based on  the average execution time per address 
for the existing controller, and scaling that time 
based on the clock speed increase of proposed pro- 
cessors, an overall performance number was esti- 
mated for a system based on either processor with 
any arbitrary memory architecture. 

Benchmark Selection 
The RETrACE tools suite provided the components 
required to study the execution characteristics of 
the PrintServer system without changing the char- 
acteristics of its normal operation. The only diffi- 
culty was to narrow the focus of the benchmark list 
to provide a representative sample of Postscript 
documents to print. Due to time constraints, the 
list was limited to five benchmarks. 

BMI The B M I  benchmark stresses those aspects of 
the system that convert the mathematical represen- 
tations of characters to bit-map representations, 
which comprise the form that is printed. This 
benchmark uses several fonts in standard character 
orientations, stressing both very large and small 
character sizes. 
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B.W2 Of the same type as I3M1. this benchmark 
stresses thc transforms from mathcm;~tic;~l lo bit- 
m;~ppcd character representations; howcvcr, thc 
chnracters printed are at arbitrary orientations 
with sizes ranging from typical to very sm;tll. 

6M.3 The HA43 benchmark is one of the standard 
benchmarks for Postscript performance tlualifica- 
tion. It is a simple 41-page document that contains 
sevcrnl different fonts. The benchmilrk is designed 
to ch;trncterizc the standarcl text-hanilling per- 
formance of a printer. This benchmark is printed 
twicc to ensure that all characters to be printecl 
have been converted from mathem;~tical outlines 
to bit-map representations of the characters. Thus 
the focus of the benchmark is to move the text 
data through the system, to copy the character bit 
maps to the l M B  region in memory that contains 
the image to be printed, and to print thc image. It 
should be noted that this is the only benchmark 
that printed at engine speed on the PrintScrver 20 
system controller powered by thc rtVU system. 

HOUSE A binary image He, the HOUSE benchmark 
was used to stress the communlcations aspects of 
the PrintServer system. 

SCHEM The SCHEM benchmark was a vector repre- 
scntetion of a logic schematic. This benchmark was 
used to atrcss the Postscript interpretcrb ability to 
interpret nonnative Postscript codc ant1 to exhibit 
the characteristics of drawing vectors. 

Analysis Results 
The thrust of the analysis was to provitle credible 
evidencc to support architectural ant1 implemen- 
tation tr:tde-offs. The major areas of focus \\/ere 

Memory s),stem organization 

I'rintei- interface performance 

Main memory b;tndwidth 

0vcr;lll system performance 

Memory System Organization The statistical anal- 
ysis of the tracc information provided many clues 
to direct our investigation towartl the optimum 
mcmorv system architecture. The ovcr;~ll rcad-to- 
write ratio for the observed benchmarks rangccl 
from as low as 4.3: 1 up to 5.5:1, which mr:lns for 
a writc-~hrough cache system with ;I tlicoretical 
100 percent read hit rate, rile writes would dcgr:tde 

the overall hit rate to approximately 81 to 84 per- 
cent. As the analysis of the data progressed, it was 
understood that the write data must be stutlied 
very closely since it could have a dramatic impact 
on the overall cache miss rate. During the cache 
model simulations, the hit rates of the I-stream 
were between 85 to 90 percent. However, the 
D-stream hit rates were between 35 to 45 percent, 
with writes accounting for 60 to 90 percent of the 
total D-stream misses. To achieve the greatest posi- 
tive effect on the hit rate of the systern, enhance- 
ment of write-miss performance was the most 
adv;lntagcous. The two options to improve this per- 
formancc were either to implement a write-back 
cache or to atltl a write buffer to the system. Further 
cache simulations showed that a write buffer would 
provide an 8 to 16 percent overall system perfor- 
mance improvement, which was equal to that of a 
write-back cache. The write buffer, however, was 
the more straightforward solution to implement. 

Cache analysis revealed that the processors 
required different memory architectures. The CVAX 

had an internal 1U, two-way set associative cache. 
This was to be configured as a mixed I -  and D-stream 
cache. An additional 32KH to 6 4 ~ ~ .  two-cycle write- 
through cache was to be added externally. This 
woultl also be configured as a mixed I- and D-stream 
cache. A single-longwortl, two-cycle write buffer 
would provitle enough buffering to reduce the 
dramatic impact of write misses. The SOC was 
proposed to have ;in internal write-back cache 
between 5 K B  ant1 8 K H ,  with each 1KB region niak- 
ing up a single set. Cache simulations indicated 
that with a minimum internal mixed 1- and D-stream 
cache of SKB, five-way set associative, an external 
data cache woulcl have to be over 6 4 ~  to have even 
a negligible effect on overall system performance. 
Therefore no external cache was recommendetl. To 
mitigate the write-miss penalty a two-cycle write 
buffer of 4 to 6 longwords was recommentled. 

As an acceleration technique, the original 
PrintServer 20 controller contained a memory 
access capability that allowed data written to mem- 
ory to be logically ORed with data that was already 
stored. This technitluc was particularly useful when 
the software system was writing the image that was 
ultimately printed. As part of the process of gener- 
ating an image to print, the individual cli;~racters 
appearing on a page must be copied from a region 
of memory called the font cache to another region 
callccl the frame buffer. The frame buffer contains 
the actual data  that is sent to the print engine. 

64 Vol. .? No. 4 Fall 1991 Digital Technicul Journal 



Design of the Turbo Printserver 20 Controller 

To complicate things, the data written to the frame 
buffer must be able to overlay data that may already 
be there, thus requiring a logical OR function. 

When a document was printing at or near the 
maximum engine speed of 20 pages per minute, 
analysis showed this low-level copying function 
consumed approximately 20 percent of the total 
system time allotted to generate and print one page. 
Thus a logical OR function in the memory system 
would reduce the number of memory data cycles 
from "2 reads 1 write" to "1 read 1 write," and 
reduce the impact from a second read occupying a 
useful cache location. Without this capability, the 
degradation would be between 5 and 10 percent of 
overall system performance when printing at or 
near 20 pages per minute. Therefore memory capa- 
bility with a logical OR function was recommencletl. 

Printer Interface Performance When a PrintServer 
20 is printing, every page that exits the printer 
requires the IMB frame buffer to be copied from 
memory to the print engine interface. Changing a 
program-controlled printer interface to one driven 
by a DMA device provided two significant advan- 
tages. The first was to reduce the real-time require- 
ments on the PrintServer software system, and the 
second was to allow for a limited degree of paral- 
lelism on the controller. The parallelism was due to 
the ability of the processor to continue to execute 
from its cache memory system while the DMA 
device accessecl memory. 'The processor only stops 
executing when a cache miss occurs. 

Main Memory Bandwidth With a CVAX processor 
configured as recommended in tlie section Memory 
System Organization, the main memory system 
bandwidth requirement of the processor was 
60 percent. For the SOC, it was 70 percent when 
an existing D W M  controller was used. A DMA- 
driven printer interface required 15 percent, and 
a n  Ethernet interface required nominally 4 percent 
with bursts up to 20 percent. Each subsystem was 
scrutinized to reduce its required memory band- 
width. The resulting recommendation was to add a 
32-bit bus to the memory subsystem to provide a 
dedicated channel for all data being sent to the 
printer interface. This provision would reduce 
required memory bandwidth for the printer inter- 
face from 15 percent to about 7 percent. The sys- 
tem would then have a nominal memory bandwidth 
requirement of 71 percent for a CVAX system and 
81 percent for an SOC. 

Overall System Performance The execution char- 
acteristics of the original PrintServer 20 provided 
some interesting surprises. Most floating-point 
calculations were performed in double precision; 
and even more interesting, for each floating-point 
operation, there was a floating-point conversion 
from single to double precision, and then back 
again. Since the precise operations were not 
required, a simple compiler switch removed the 
conversions and provided a 3 percent overall sys- 
tem performance improvement for floating-point- 
intensive PostScript documents. A second surprise 
came from the results of the BM3 benchmark, 
whicli indicated a translation buffer hit rate of 
85 percent. At the time of the discovery, the 
PrintServer 20 was configured with a standard 
MicroVLY processor; however, by substituting an 
rtVAX, which uses one less memory access to refer- 
ence its page tables, an 11 percent system per- 
formance improvement was achieved. With this 
improvement, the rtVm processor provided 
enough power to allow the original PrintServer 20 
to ship with its 20-page-per-minute designation. 
This information led the turbo controller designers 
to determine that the translation buffer of the SOC 
would be large enough for all the entries required. 

Results 
The final analysis revealed that the expected perfor- 
mance of a CVAX or SOC processor would place 
either design on the low side of the performance 
requirement. Therefore close attention to detail 
would be required during tlie implementation 
phase of the project as every ounce of performance 
mattered. The expectation was to have a choice 
between an SOC processor with a 40-11s cycle time 
and a CVAX processor with a 60-ns cycle time. The 
performance improvements of the two processors 
are compared in Table 1. 

Table 1 Performance Improvement Relative 
to  Original PrintServer 20 Controller 

SOC CVAX 
Benchmark Processor Processor 

BM1 

BM2 
BM3 
HOUSE 
SCHEM 
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AS the project schedule progressed, the risk asso- In each case existing chips satisfied some of the 
ciated with the new ScX: processor decreased. As rcquirements for tlie subsystem. In tlic rncl these 
this risk window collapsed, it was understood that chips met all our requirements, but only bec;~ust: 
a turbo controller based on the SOc processor they were used in ways not originally intcrldcd by 
would not only perform better, but would also cost the chip designers. 
less as it would not require an external cache. 

Main Memory 
Turbo Controller Hardware Design 

Since the sOc has a bus interface that is compati- 
The turbo controller was destined for a relatively ble , i t h  the CvAX chip, the most obvious chip to 
high-end printer. Therefore the hardware archirec- as a memory colltroller was the CVhy 
ture had to proviclc maximum performance, even nlellloly controller (CiL,;m) chip., It responds to all  
though thib impletllentation woulcl increase costs. bus cycles by the SOC, since i t  was 
Ik~sed on the rcsults obtained during REI'aiCE analy- already used on a number of platforms supportetl 
sis, the hardware desikn had the f0Jlowing in l~ le-  by the V ~ S E L N  operating system, its use greatly 
mentation goals: simplified porting VAXELN to the turbo controller, 

The SOC would provide the CPU, the floating- 
point accelerator (FPA), and the cache subsystem. 
No second-level cache would be implemented. 

A four- to six-entry write buffer would be 
implemented. 

The transfer of bit-map data to the print engine 
would require n 32-bit DMA subsyslc~li with scan- 
erasc capability. 

The memory subsystem would support OR-mode 
memory access by the CPU and scan-erase access 
by the D h l ~  controller. 

Although both the SOC and rtVA;ri chips comply 
with the VAx architecture standard and both are 
conceptually very similar, they have significant dif- 
ferences in the bus interface. For example, the 
SO<: uses a quadword cycle (one %-bit address fol- 
lowed by two 32-bit data reads) to fill one internal 
cache block, while the rrVAX processor, which does 
not support caching, does not use this type of 
cycle. Also, thc clocking system on the SOC was 
enhanced, and the timing relationships between 
signals were moditicd to improve performance. 

The changes to the SOC bus ~nterfacc, plus the 
required functional changes revealed by RETrACE 
analysis. meant that very little of the original 
PrintSer\er 20 controller design could be applied 
to the new controller. One of the lirst questions to 
be answered before the design of the turbo con- 
troller coultl begin, was whether or not one or 
more ASIC5 woulcl be required for the design. This 
question had to be answered for three subsystems: 

Mainmemory 

Write buffer 

Bit-map data transfer subsystem 

However, the turbo controller requires two special 
memory modes that are not provided directly by 
the CMCTL, namely OR mode and scan-erase mode. 
It  was essent~al to dev~se ;I way to include these 
two modes if the CM<TI'L were to be use<l. 

OR-mode memory is a technique used to improve 
performance during the writing of the page bit 
map into memory (scan conversion). During nor- 
mal memory operation (called replace mode), the 
destination operand in memory is replaced by the 
source operand. During an OR-mode write cycle, 
the destination oper;incl is modified a5 follows. 

For each logical zero in the source data being 
written, the corresponding destination bit in 
memory remains unchanged. 

For each logical one in the source data being 
written, the corresponding destination bit in 
memory is written with the corresponding bit in 
tlie pattern register. 

The pattern register is a 32-bit register which 
determines the "color" pattern of the "ink" being 
written on the page. 

Figure 2 shows :I portion of the logic between 
the CMCTL and the memory array that implements 
the OR-mode function in hardware. The OR-mode 
operation is accomplished by inverting the source 
data and connecting it  to 32 independent write 
enables of the memory array. When a zero is writ- 
ten, it is inverted and the write cycle for that bit 
becomes a read cycle, thus preventing any change 
to the memory contents When a one is written, it 
is inverted and the write is allowed to occur, but 
the data actually written depends on the value pre- 
viously written into the pattern register. 
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MEMORY DATA BUS FROM CMCTL 32 
f 

f 1 

PATTERN 1 REGISTER I 

OR-MODE 
WRITE 
DATA PATH 

MAIN MEMORY 
ARRAY 

Figure 2 OR-mode Circuit 

Two features of the CMCTL chip make it possible 
to implement OR-mode memory. First, its 6 4 ~ ~  
address space is diviclecl into 4 arrays of 4 banks 
(16 banks total). Second, the CMCTL chip can selec- 
tively disable parity checking on an array. 

The large address space of the CMCTL allows the 
use of 2 arrays for replace mode and 2 arrays for 
OR mode, since the turbo controller supports up to 
32MB of memory. The control signals of the two 
sets of arrays are combined such that OR mode and 
replace mode access the same physical memory, 
though in ciiffcrent ways. Parity error detection 
is disabled on the OR-mode arrays; thus a read- 
through OR-mode address space cannot cause a par- 
ity error. This is necessary because OR-mode write 
cycles may corrupt parity. Normally any bit map 
created  sing OR-mode write cycles is read using 
OR-mode reacl cycles. 

The other special mode required for the main 
memory system is called scan-erase mode. It is an 
operating mode designed to improve bus utiliza- 
tion during the transfer of the bit map from main 
memory to a FIFO buffer connected to the printer 
data lines. This mode is made possible by a side 
effect of the error-correcting code (ECC)/parity 
generation logic in the CMCTL. Any time a masked 
write occurs (any write other than an aligned long- 
word, such as a byte write), the destination long- 
word must first be reacl by the CMCTL, then 
combined with the bytes to be written in order 
to generate the parity or ECC check bits for that 
longword. 

Three operations occur (luring a single scan- 
erase cycle. Refer to the circuit drawing in Figure 3. 

1. The bus master asserts the signal's "bit-map 
load" and "bit-map erase" and requests a masked 
write. The CMCTL performs a read, and the bit 
map is read onto the memory data bus. 

2. Bit-map data is automatically transferred from 
the memory data bus into the FIFO buffer. 

3. The CMCTL performs a write. However, since 
the bit-map erase signal has disabled the data 
path and the pull-down resistors have set the 
data-in lines to all zeros, the write cycle, which 
was intended by the designers of the chip as a 
masked write, has in fact become a memory 
clear operation. 

Write Buffer 
The ~ ~ 3 2 2 0  chip was chosen as the base for the 
write buffer subsystem. It provides a six-entry FIFO 

buffer for address, clata, and byte mask and detects 
whether the processor has requested a read at a 
memory location for which a write is still pentling. 
It also supports two operating modes: I.R3000 
mode and Harvard mode. 

If it were not for the Harvartl-mode feature, it 
would have been more tlifficult to inclucle the 
LR322O chip into the turbo controller. The LIi3000 
processor, for which this chip was designed, has 
staggered address timing. Some of the address and 
byte-mask bits are asserted on the falling edge of 
the clock, and the remaining bits are asserted on 
the rising edge of the clock. When the LK3220 chip 
is configured in LR3000 mode, the processor sub- 
system must meet these timing requirements. 
However, when the LR3220 chip is configured in 
Harvard mode, all address, data, and byte-mask 
information is read at the same rising clock edge. 

The basic strategy for including the write buffer 
into the turbo controller was to insert the write buf- 
fer between the SOC and the rest of the system as 
shown In Figure 4 The SOC would issue seael and 
write requests to the write buffel; and the write 
buffer would issue reatl and write requests to the 
rest of the system. During CPU cycles the SOC and 
the write buffer have a master-slave relationship 
in which the SOc is the master. The relationship 
between the write buffer and the rest of the system 
is also a master-slave relationship; however, the 
write buffer is the master. In fact, the write-buffer 
output interface must look almost identical to the 
SOC. 
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Figure 3 Scan-erase Circuit 

The structure of the write-buffer subsystem is entries in the LR3220 chip have data, the bus cycle 
shown in Figure 5. 'l'he bus interface unit responds generator (BCG) removes the next entry ant1 issues 
to read or write requests from the SO<:. During a write request to the appropriate subsystem. 
write cycles, the bus interface writes the data into The write-buffer subsystem allows the SOC to 
the LR3220 chip and immediately alerts thc SOC to "read around" the write buffer, provided the address 
terminate the cycle quickly. Whenever one or more being read does not have a pending write in the 

MEMORY 
CONTROLLER 
(CMCTL) 

UNIVERSAL 
DIRECT MEMORY I ACCESS I 
CONTROLLER 

pq 
TO PRINT ENGINE 

Figure 4 Interconnection of Turbo Controller S~~bsystems 
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Figure 5 Write B2qfe.r 

SOCCONTROL 

LR322O. To handle this, the BCG includes an arbitra- 
tion circuit. When the SOC requests a read cycle, 
the bus interface unit of the write buffer passes 
the request to the BCG. The BCG responds once 
it has completed any write cycle currently in 
progress, provided that the address to be read does 
not have a pending write in the write buffer. When 
the slave device being read acknowledges the BCG, 
the acknowledgment is passed back to the bus 
interface and finally to the SOC to terminate the 
cycle. The BCG then resumes its task of removing 
entries from the LR3220 chip and issuing writes to 
the rest of the system. 

In order to maintain data coherency, the write- 
buffer subsystem enforces some additional 
protocols. 

BUS LOCAL 
BUS CYCLE 

INTERFACE GENERATOR CONTROL 
SYSTEM CONTROL 

UNIT 

All writes to any location other than main 
memory require a write-flush cycle; that is, the 
bus interface must wait until the LR3220 chip 
is empty before writing the data to it. Further- 
more, the bus interface must wait until the BCG 
has finished the cycle before it acknowledges the 
SOC and allows it to perform the next cycle. 

All reads to any location other than main mem- 
ory require a read flush, which has the same 
restrictions as a write flush. These restrictions 
are required to avoid the possibility of reading 
around a pending I/O space write, which often 
has side effects to other addresses. 

- 

The write-buffer subsystem must pass all DMA 
bus transactions to the S O c  to ensure that all 
cached memory locations that are modified by 
DMA cycles have their corresponding cache 
entry invalidated. 

Bit-map Transfer Subsystem 
The bit-map transfer subsystem transfers bit-map 
data, created by the Postscript interpreter, to the 
print engine. It is composed of the 32-bit DMA con- 
troller, a FIFO subsystem, ant1 scan-erase logic in 
main menlory as described in the section Main 
Memory. 

The main requirements for the 32-bit DMA con- 
troller were 

- 

- 

32MB address range 

ADDRESS IN 

LATCH 

Ability to transfer 32 bits at a time 

-- ADDRESS OUT 

Ability to transfer the frame buffer forward 
(incrementing the source address) or backward 
(decrementing the source address) 

None of the available DMA controller chips met 
all our requirements, but the AMD 9516 universal 
DMA controller (UDC) met some of them. The IJDC 
is a 16-bit DMA controller with a 1 6 ~ ~  address 
range and the ability to increment or decrement the 
source address. There were two drawbacks to the 
use of this chip. The software would have to ensure 
that the frame buffer was always within the lower 
1 6 ~ ~  of memoly, and the l JDc  would iise twice as 
much bus bandwidth since it  could transfer only 
16 bits at a time. 

It was proposed that the UDc could be used as a 
full 32-bit DMA controller if it was connectecl to the 
bus "incorrectly" by shifting the data/address lines 
to the left by one bit. That is, data/address line 0 on 
the UDC would be connected to datahddress line 1 
on the bus; data/address line 1 of the UDC would be 
connected to dataladdress line 2 on the bus; etc. 
This type of connection doubles the address range 
of the chip and causes the source address on the 

SOC DATAIADDRESS 
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bus to increment by 4 bytes (32 bits) instead of 
2 bytes (16 bits). 

This decision had a few implerncnt;ition impacts. 
For example, the register definitions were now 
incorrect, since all the bits in all the registers were 
shifted one bit to the left. However, once the soft- 
ware was modified to compensate for this, the UDC 
functioned properly as a 32-bit DMA controller. 
When combined with the scan-erase feature of 
main memory, it allowed us to achieve our bit-map 
transfer goal of reading 32 bits from memory, load- 
ing it into the FIFO subsystem, and clearing the 
memory location, all in a single DMA cycle. 

In this section, the performance of the original 
PrintServer 20 is compared to the enhanced perfor- 
mance of the turbo PrintServer 20. 

Except for performance, the original PrintServer 
20 and the turbo PrintServer 20 have identical func- 
tional capabilities. Table 2 lists the five functional 
subsets that were characterized for performance 
on both printers. The first four functional subsets 
were rated using the PostScript real-time operator; 
they measure the elapsed CPU time needed to 
complete a test. The last fullctional subset was 
rated according to thc rate of pages exiting 
the printer. The term "DECnet/DI-'Sn refers to the 
DECnet job (a job is one of sevcr;~l multiprocessing 
tasks running on the controller) and the "dis- 
tributed PrintServer softniarc" job. The term 
"printer system" refers to the complete printer 
system, including the Postscript job and the print- 
ing overhead jobs. The printer system was rated 
according to the rate of pages esi ting the printer. 

Table 3 reports the general attributes of the five 
files that were run with the RETrKE system and 
characterized for performance. 

Table 2 Functional Subsets of the Printers 

Functional Subsets Characterization 

Postscript job Math operations per second 

PostScript job 
PostScript job 

DECnetIDPS jobs 

Text: characters per second 
Graphics: vector inches per 
second 
DECnetIDPS: kilobytes per 
second 

Printer system Image printing: square 
excluding inches per second 
DECnetIDPS 

Table 3 Benchmark File Attributes 

File Name General Attributes of File 

Contains 39 pages of text with 
13 fonts of various sizes. Some 
text strings are at varying angles. 

BM2.PS Contains 1 page of spiral text 
of various point sizes. 

BM3.PS Contains 41 pages of text with 
5 fonts. 

HOUSE.PS Contains a 1-page bitonal image 
of 3000 blocks (DECnet limited). 

SCHEM.PS Contains a 65-page schematic 
of graphics (vectors) and text. 

Math Operators Performance of the 
PostScript Job 
Figure 6 illustrates the controllers' performance 
rcsults in math operations per second. The test 
determines the time needed to perform 50,000 
primitive math operators (e.g., adding two num- 
bers 50,000 times) during a Postscript test docu- 
ment. The real-time operator reads the current 
time, and the repeat construct repeats the math 
operator. This test measures the performance of 
the CPU only. 

ADD DIV MUL SQRT COS EXP LOG 

KEY: 

O ORIGINAL CONTROLLER 
TURBO CONTROLLER 

TURBO = 6.7 x ORIGINAL CONTROLLER 

Ffgure 6 PostScriptJoO PerJbr~nance with Math 

Te3ct Performance of the PostScript Job 
Figure 7 compares the text performance of the 
PostScript job on the original controller and the 
turbo controller. The test determines how long it 
takes the PostScript job to compose 250,000 equally 
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FONT POINT SIZE 

KEY. 

I ORIGINAL CONTROLLER 
W TURBO CONTROLLER 
TURBO = 5.2 X ORIGINAL CONTROLLER 

Figure 7 PostscriptJob Peflorzance with Text 

sized characters to the page buffer in memory, 
which eventually is sent to the print engine to be 
printed. 

Graphics Performance of Postscript Job 
An important means of characterizing graphics per- 
formance is in vector inches per second. Figure 8 
shows the results obtained by running a Postscript 
vector program in which all vectors are at 
45 degrees and vector lengths are from 0.1 inch to 
3 inches. 

VECTOR LENGTH (INCHES) 

KEY. 

C ORIGINAL CONTROLLER 
W TURBO CONTROLLER 
TURBO = 4.6 X ORIGINAL CONTROLLER 

Figure S PostScrt$l Job Perfonnunce 
with Gr~p5ic-s 

The image test characterized the complete printer 
system, including the Postscript job and the print- 
ing overhead jobs, but exclutling the DECnet/DPS 
time required to transfer an image file to a printer. 
Three one-square-inch bitonal images at device 
resolution were placed into the user dictionary 
and were used repeatedly during the performance 
measurement. The result of using these precached 
images was to eliminate the DECnet and DPS soft- 
ware time that would be required to transfer a full- 
page image from a host to the printer. Performance 
was measured by printing 10 pages of 80 square 
inches of image per page. 

The pages were printed landscape and portrait 
to measure the image performance both on axis and 
off axis. (On axis means that the printer sequen- 
tially prints all bits of a word from the image on a 
single scan line. Off axis by 90 degrees means that 
the printer prints one bit from each word and does 
not print the next bit in the word until it is at 
the same position on the next scan line.) Figure 9 
shows the results of the image performance test in 
square inches per second. 

ON AXIS OFF AXIS 

KEY: 

- ORIGINAL CONTROLLER 
TURBO CONTROLLER 

TURBO = 3.0 x ORIGINAL CONTROLLER 

Figure 9 Image Pe'erf rmance M e u s ~ ~ r m e n t  
of the Printing System 

DECnet/DPS Jobs Performance 
DECnet/DPS transfer rates can be ignored for text 
and graphics files, but these rates can consume 
most of the time needed to print large image files. 
For example, a single, letter-size page of image 
contains more than 1MB of image data, but the 
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corresponding Postscript file contains more than 
23413. Because the iniagc tl;ita is representetl in hner-  
ican standard code for information interchange 
(AS<:II) 11exadecim;tl cliar;~ctcrs in I'ostScript, 8 bits 
of the PostScript file are necdetl to represent 4 bits 
of image data. 

.li) mcasurc DE(:nct/DPS, ;I Postscript file of 1 Mn 

of comments w;is sent to the printer. l 'hc clock w;is 
started when the beginning of the file was received 
by the Postscript interpreter ant1 stoppccl when the 
end of the file was received. Thc assumption of this 
test method was that the Postscript interpreter can 
parse comment lines much faster than I)E(:net/DI'S 
can transfer them. 

The I)E<:net/I)PS transfer rate is basically propor- 
tional to the slo\\ler of the host and printer proces- 
sors. Figure 10 shows the DI:Cnct/DPS results. 

RETrACE Benchmark Files 
The benchmark files listed in Table 4 arc charac- 
terized both by the elapsed time from file arrival 

KEY: 

90 

80 
0 
Z 70 
0 
Y s o -  
cn 
5 50-  
a 
(1, 4 0 -  
LU 
t- 
t 3 0 -  m 

2 2 0 -  
Y 

10 

0 

ORIGINAL CONTROLLER 
TURBO CONTROLLER 

TURBO = 4.9 ORIGINAL CONTROLLER 

- 

- 

- 

Figure I 0  DECnet/DPS Jobs Petjbrrrlance 

to file printed and by the amount of (:PC1 timc used 
to print the job. For example, in the BMS bench- 
mark, the speed is limited by the 20-page- 
per-minute print engine, but the crrr timc nccded 
to print the file can be used as a perfi)rmance 
me;iSurcment. 

'I'he turbo controller enhanced the performance of 
the PrintScrver 20 printer system. Its design was 
promptcd by the need to maintain print speed 
performance for complex documents containing 
text, graphics, and images. The RETrACE system was 
clesigned to analyze the Printserver 20 system to 
determine which architectural changes would pro- 
vide the greatest improvement in PostScript perfor- 
mance. By optimizing hardware only in areas where 
it was truly worthwhile, we were able to use exist- 
ing chips and reduce development costs. The sub- 
systems of the turbo controller hardware that 
were optimized as a result of this analysis were 
the processor (SOC which provided CPU, floating- 
point accelerator, and cache subsystem), a memory 
s~~bsystem with OR-mode and scan-erase access, 
a write-buffer subsystem, and a 32-bit DMA sub- 
system. Results of the performance tests for five 
benchmarks, including PostScript jobs, indicate the 
levels of cnhanced performance. 
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Table 4 Benchmark Files Characterized by Elapsed Time and CPU Time (Seconds) 

Benchmark Original Turbo Original Turbo delta delta 
File CPU CPU Elapsed Elapsed CPU Elapsed 

BM1 

BM2 

BM3 

HOUSE 

SCHEM 
'Limited by engine. 
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Further Readings 

The Dlgltal Technical Journal 
p~iblishesl~apers that explore 
the technological foundations 
of Digital's majorproducts. Each 
Journal focuses on at  least one 
product area andpresents a 
compilation of papers written 
by the engineers who developed 
the product. The content for 
the Journal is selected by the 
Jo~irnal Advisory Board. 
Digital engineers who ZUOLIM 
like to contribute a paper 
to the Journ;~l should contact 
the editor at  RDVAX::BLAKE. 

Topics covered in previous issues of the Digital 
Technical Jourruzl are as follows: 

Availability in VAXcluster Systems/ 
Network Performance and Adapters 
Vol. 3, No. -3, S ~ ~ m m e r  I99I 
Discussions of VhlS volume shadowing, VAXcluster 
application design, ancl new availability features of 
local area VNtcluster systems, together with details 
of high-performance Ethernet and FDDI adapters, 
and an analysis of FDDI LAN performance 

Fiber Distributed Data Interface 
Vol. 3, No. 2, Spring 1991 
The FDDI JAN system and Digital's products that 
support this technology, with an overview and 
papers on the physical and data link layers, 
Common Node Software, bridge and concentrator 
devices and related management software, and an 
rJ1.TR.N network adapter 

Transaction Processing, Databases, and 
Fault-tolerant Systems 
Vol. 3, No. 1, Winter 1991 
The architecture and products of Digital's dis- 
tributed transaction processing systems, with 
information on monitors, performance measure- 
ment, system sizing, database availability, commit 
processing, and fault tolerance 

VAX 9000 Series 
Vol. 2, No. 4, Fall I990 
The technologies and processes used to build 
Digital's first mainframe computer, including 
papers on the architecture, microarchitecture, 
chip set, vector processor, and power system, 
as well as CAI) and test methodologies 

DECwindows Program 
Vol. 2, No. 3, Summer 1990 
An overview and descriptions of the enhance- 
ments Digital's engineers have made to MIT'S 
X Window System in such areas as the server, tool- 
kit, interface language, and graphics, as we1 l as 
contributions made to  related industry standards 

VAX 6000 Model 400 System 
Vol. 2, No. 2, Sjring 1990 
The highly expandable and configurable midrange 
family of VAX systems that includes a vector proc- 
essor, a high-performance scalar processor, and 
advances in chip design and physical technology 

Compound Document Architecture 
Vol. 2, No. I ,  Winter I990 
The CDA family of architectures and services that 
support the creation, interchange, and processing 
of compound documents in a heterogeneous net- 
work environment 

Distributed Systems 
Vol. I, No. 9, June 1989 
Products that allow system resource sharing 
throughout a network, the methods and tools 
to evaluate product and system performance 

Storage Technology 
Vol. I ,  No. 8, February 1989 
Engineering technologies used in the design, man- 
ufacture, and maintenance of Digital's storage and 
information management products 

CVAX-based Systems 
Vol. I ,  No. 7, A~ig~lst 1988 
CVAX chip set design and multiprocessing archi- 
tecture of the midrange V/LY 6200 family of systems 
and the MicroVAX 3500/3600 systems 

Software Productivity Tools 
Vol. I ,  No. 6, February 1988 
Tools that *assist programmers in the development 
of high-quality, re1 iable software 

VAXcluster Systems 
Vol. I ,  No. 5, September 1987 
System communication architecture, design anci 
implementation of a distributed lock manager, ;~ntl 
performance measurements 

VAX 8800 Family 
Vol. I ,  No. 4, Febr~iary 1987 
The microarchitecture, internal boxes, VAXRI bus, 
and VMS support for the \'AX 8800 high-end multi- 
processor, simulation, and CAD methodology 
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Networking Products 
I/ol. I, iVo. -3, Septtnnber 2986 
The Digital Network Archilccture (DN/\). nctworl< 
performance, LANbridge 100, I)t':(:net-l 1:I'IUX ; ~ n d  
DECnet-DOS, monitor design 

MicroVAX I1 System 
14)I. 1. l i t ) .  2, ,VI~irc.h 1986 
The implementation of the microprocessor and 
floating point chips, (:,U> suite, ,lilicro\iZS nrork- 
station, disk controllers, and 'l'K50 tape drive 

VAX 8600 Processor 
Vol. I ,  ,Vo. 1, A~ ig~ i s t  1985 
The system design with pipelined architecture, 
the I-bos, F-bos, packaging consitlerations, signal 
integrity ;md design for rcli;~bility 

Subscriptions to the Uigiil~d 72chrzicril.Jo~~1.n~il are 
available on a !re;~rl!: prepaid basis. l 'he  sul>scrip- 
tion rate is S40.00 per  year (four issues). Kecluests 
should be sent to (Zathy Phillips, Digital Equipment 
Corporation. ~ ~ 0 1 - j / ~ 6 8 ,  146 >lain Street, >laynard, 
i\M 01754, LY.S.A. Subscriptions must be paid in I..S. 

dollars, and checks should be made pa).;~ble to 
Digital Equipment Corpor:~tion. 

Single copies ant1 past issues of the Digil~ll 
Tec/~?zical Jo~~r izc~l  can be orclered from Digital 
Press at a cost of 510.00 per  copy. 

Technical Papers by Digital Authors 

R. Al-Jim, "A Methotlology for Evaluating Ilecision 
Making Architectures for Autom;~tecl Manufactur- 
ing Systems." Eleventh IIAC Conference (August 
1990). 

S. Angebrannclt, R .  Hyde, D Luong, and N. Sirilvara, 
"Intepra~ing Audio and Telephony in a Distributed 
Workstation Environment," I'roceetlings of the 
Summer I992 l/.TI;iVI,Y ConJkrence (June 1991). 

S. Batra, M.  Mallar): and A. Torabi, "1;requency 
Response of 'l'hin-film Heads with Longitutlinal 
and Transverse Aiisotropy," IJilX Inter~rz~i'y '90 
(April 1990). 

R. Csencsits, N IZicl,J. Dion and S. Arsenault, 
"Interfacial Structure and Atlhesio~i of hiletal-on- 
polyamide," Iizlcrncrtional Sjimposiurnj?w Rsling 
and Failure Analysis (October 1990) 

R. Csencsits, J Rose, R. St. Amand, L. Elliott, 
A.  Hartzell, L. Kisselgof, and J. Lloyd, "Alum~nuni 
Interconnect Microstructl~re ancl Its Role in 
Electromigr;~tion," I~ltc.rr~ationu1 Synll,o.sizlrn 
for Testirlg and Fclilzire Arlulysis (October 1990) 

J. Delahunty and T. Kielt): "Automated Pareto 
Analj.sis for (;ontinuously Improving a VLSl 
Fabrication 12rea's Process St;~bility," Aduulzced 
Setnic.or~~lr~c.lor i l f ~ ~ n ~ $ l ~ t ~ ~ r i n g  Con. ference 
(September 1990). 

S. Dell, "Promoting Equality of the S e x \  through 
Techn~cal Writing," Socic,ty.fi)i* 7ecI~ni~ul  Comnfil- 
nicalio~z (August 1990). 

B. Doyle and K. ~Mistry, "A Lifetime Prediction 
Method for Hot-carrier Degradation in Surface- 
channel P-&lOS Devices," IEEIi ficzn.scictior2s on 
Electron Devices (May 1990). 

E. Freedman ant1 Z. Cvet;~novic, "Efficient 
Decomposition and Performance of Parallel 
IWE, FFT, Monte Carlo Siniul;~tions Simples 
ancl Sparse Solvers," IEEE S ~ ~ ~ e r c o m n p ~ t i g  YO 
(November 1990). 

A. Gartlel ant1 I? Deosthali, "Nub-centeretl Pro- 
tluction Control of Wifcr Fabrication," Acluu~zced 
Sernicond~lctor bfcrn~lfclct~~rirzg Confererzce 
(September 1990). 

A. Hartzell. "Introduclion of Argon as a Heat 
Transfer Gas in a Single Wafer RIE System," 
Intenzcitional Sj~~n/~osiunz for Tesling and 
Fciilurc Analysis (October 1990). 

A. Heyman and J. Thotluvelil, "Linear Averaged and 
S;lmpled Data Models for Largc Signal Control of 
High Power Factor AC-DC Converters," IEEE Power 
Electronics Sf~ecialists (June 1990). 

I.. Hill, "Vicleo Signal Analysis h r  EA4l Control," 
/FEE Electronz~lg '91 (1991). 

L. Hill and A. Metsler, "Vicleo Subsystem Design 
for EM1 Control," IEEEElectromag '92 (1991). 

S. Kasturi, "Forcetl Convection: The Key to the 
Versatile Reflow Process," AlEPCON East '90 
(June 1990). 

D. Mirchandani ant1 l? Biswas, "Characterization 
; ~ n d  Modeling Ethernet Performance of 
Distributed DECwitldows Applications," 
i-lCiW Sigrnetrics (May 1990). 

W Metz, "Automated On-line Opti~liization of an 
Epit;lsial Process," Znternatio7zal Semicolzductor 
il.lun~fc~ctzlring .Ycience Symn~>osium (May 1990). 

K. Mist~y, I3. Doyle, and D. Krakailer, "Impact of 
Snapback Induccd Hole Injection on Gate Oxide 
Reli;~bility in N-MOSFliT's," IIY3:'Electron Deuice 
Letters (October 1990). 
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C .  Pan, "Gas Lubrication," ASME/STLE Tribology 
Conference (October 1990). 

A. Philipossian, "Fluid Dynamics Analysis of 
Thermal Oxidation Systems via Residence Time 
Distribution (RDT):' Electromechanical Society 
(October 1990). 

M. Sidman, "Convergence Properties of an 
Adaptive Runout Correction System," ASME 
Winter Meeting (November 1990). 

M. Sidman, "Parametic System Identification 
on Logarithmic Frequency Response Data," 
IEEE Transuctions on Automatic Control 
(September 1991). 

D. Skendzic, "Two Transistor Flyback Converter 
Design for EM1 Control," IEEE Symposium on 
Electromagnetic Compatibility (August 1990). 

A. Smith and W Goller, "New Domain Configura- 
tion in Thin-film Heads," Intermag PO (April 1990). 

H. Smith and J. Beagle, "SIMS for Accurate 
Process Monitoring in CoSi2-on-Si MOSFET 
Technology:' Secondary Ion Mass Spectromety 
(September 1989). 

J. Thottuvelil, "Using SPICE to Model the Dynamic 
Behavior of DC-to-DC Converters Employing Mag- 
netic Amplifiers," IEEE Applied Power Electronics 
Conference (March 1990). 

R. Ulichney, "Frequency Analysis of Ordered 
Dither," Hard-copy Output OE/LASE 89 SPZE '89 
Proceedings (1991). 

R. Ulichney, "Challenges in Device Independent 
Image Rendering ," Applied Vision Optical Society 
ofAmerica Tech~zical Digest Series '89 (1991). 

E. Zimran, "Performance Efficient Mapping of 
Applications to Parallel and Distributed Archi- 
tectures," International Conference on Parallel 
Processing (August 1990). 

Digital Press  

Digital Press is the book publishing group of 
Digital Equipment Corporation. The Press is an 
international publisher of computer books and 
journals on new technologies and products for 
users, system and network managers, program- 
mers, and other professionals. Proposals and ideas 
for books in these and related areas are welcomed. 

The following book descriptions represent a 
sample of the books available from Digital Press. 

VAXNMS: Writing Real Programs i n  DCL 
Paul C. Anagnostopoulos, 1989, softbound, 
409 pages, Order No. EY-C168E-DP-EEB ($29.95) 

This book contains information that can help the 
reader learn to write powerful and well-organized 
programs in DCL, the command language for the 
v iu t /v~S  operating system. The text includes a 
review of the syntax and semantics of DCL and a 
discussion of significant issues in the development 
of serious DCL software. Programming paradigms 
are presented, as well as the correct way to 
implement them. The book presents good pro- 
gramming techniques and helps the student to 
make effective use of the VMS operating system. 

X WINDOW SYSTEM TOOLKIT: 
The  Complete Programmer's Guide 
a n d  Specification 
Paul J. Asente and Ralph R. Swick, 1990, softbound, 
1000 pages, Order No. EY-E757E-DFEEB ($44.95) 

This book consists of two parts, "Programmer's 
Guide" and "Specification." "Programmer's Guide" 
describes how to use the X Toolkit to write 
applications and widgets, and includes many 
exan~ples. Each chapter in this part contains an 
application writer's section and a widget writer's 
section. Application programmers need to read the 
widget writer's sections only if they are curious 
about what is going on behind the scenes; 
widget programmers should read both sections. 
"Specification" provides a complete and concise 
description of every component of the X Toolkit 
Intrinsics, as standardized by the MIT X Consor- 
tium. The level of detail in this part is sufficient 
to enable a programmer to create a new imple- 
mentation of the X Toolkit. 

PRODUCTION SOFTWARE THAT WORKS: 
A Guide t o  the Concurrent  Development 
of Realtime Manufacturing Systems 
John A. Behuniak, Iftikhar Ahrnad, and 
Ann M. Courtright, 1992, softbound, 204 pages, 
Order No. EY-H895E-DP-EEB ($24.95) 

This is a practical guidebook for manufacturing 
managers and process engineers who must develop 
better process methodologies to stay competitive 
and for developers of realtime manufacturing 
software who need to cut time and costs from their 
work. The presentation, which provides useful 
advice and easy-to-follow procedures, atldresses 
three basic tasks of realtime software development 
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Further Readings 

In a manufacturing plant: (1) managing the design 
of the system; (2) setting up and managing a 
development organization; and (3) implementing 
tools for successful completion and management. 

UNDL FOR VmMS USERS 
Philip E. Bourne, 1990, softbound, 368 pages, 
Order No. EYC 177EDPEEB ($2895) 

This book emphasizes the practical aspects of 
maklng the transition from the VMS to the UNE 
operating system. Every concept presented is 
illustrated with one or more examples, comparing 
how to perform a particular task in each of the 
two operating systems. The book is organized in a 
logid  order and covers the following topics: fun- 
damental concepts to be grasped before touching 
the keyboard, the k t  terminal sessions, the lirst 
commands, editing, communicating with users, 
resource utilization, using devices, more advanced 
commands, using high-level languages, program- 
ming the operating system, text processing, and 
networking. Appendixes provide extensive cross- 
reference tables to make this a valuable reference 
tool for even the experienced UNlX user. 

LOGBTICAL EXCELLENCE: 
It's Not Business as Usual 
Donald J. Bowersox. Patricia J. Daugherty, 
Cornelia L. Drogue, Richard N. Gerrnain, and 
Dale S. Rodgers, 1992,300 pages, 
Order No. EY-H953E-DP-EEB 

This book focuses on the interpretation of research 
findings that have been compiled to help managers 
who seek to improve logistical competency within 
their organization. It provides a sequential model, 
the best practices of "excellent" logbtics managers 
with supportiw statistical evidence, and extensive 
coverage of Electronic Data Interchange in the 
logistics process. It also includes a brief overview 
of the expanding role that logistics has recently 
played in the overall corporate strategy of increas- 
ing speed and quality. To facilitate interest and ease 
of readtng, an action-oriented case dialogue runs 
throughout the eight chapters. 

WRITING VAXIVMS APPLICATIONS USING 
PASCAL 
Theo de Klerk, 1991, hardbound, 748 pagcs, 
Order No. EY-F592E-DP-EEB ($39.95) 

Written for the profcssional application progr;im- 
mer on thc v,\x/v,\~s operating system using the 

VAX Pascal programming language, this is the first 
book to actually discuss the construction of real 
VMS applications. It sets forth a methodology for 
producing high-quality, professional vMS wpli- 
cations by focusing on the aspects of the vM.5 
operating system crucial to every well-written 
application. 

THE DIGITAL GUIDE TO SOFTWARE 
DEVELOPMENT 
The staff of the Corporate User Information 
Products (CUIP/ASG), Digital Equipment 
Corporation, 1989, softbound, 239 pages, 
Order No. EYX178E-DP-EEB ($2194) 

TIfE DIGITAL GUIDE TO SOF71BlRE DEVELOPMENT 
is the first p~~blished description of the method- 
ology that Digital uses to design and develop its 
software. For the enginccr and other professionals 
associatecl \+lit11 the crc;~tion ant1 marketing of 
softw;irc ;~pplic;itions, this book givcs a rare look a t  
the practiccs of an intlustry leader ant1 provicles a 
model for others who wish to introduce software 
engineering mcthods and tools into their own 
companies. Also discussed are the use of selected 
VMS case tools to expedite the process; the roles of 
team and team leaders; the use of review meetings 
and dactunents; and formal proceclures for testing 
and maintenance. The guide jncludes numerous 
diagrams and tables, clear guiclelines for the coding 
and documcntation of software tnodules, a listing 
of related vMs documcntation, ancl coding guide- 
lines for VAX C. 

DIGITAL GUIDE TO DEVELOPING 
INTERNATIONAL SOFTWARE 
The staff of the Corporate User Information 
Products (CUPIASG), Digital Equipment 
Corporation, 1991, softbound, 381 pages, 
Order NO. EY-F577E-DP-EEB ($28.95) 

This book introduces the ground-breaking pack- 
aging and design guidelines recommended by 
DigitaJ for products destined for overseas markets. 
Already used by more than 400 independent soft- 
ware vendors and development groups, as we1 l as 
by Digital engineers, this book offers an approach 
that greatly simplifies the steps required to adapt 
software to local markets once the parent product 
has been released. The book features a description 
of Digital's international product model, a scheme 
for separating the core functions of a product from 
those that require translation or moclific;~tion for 
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specific markets. AJso included are guidelines for 
developers working in DECwindows, VMS, and 
U L T ~  environments; special considerations 
involved in preparing a product for multibyte Asian 
languages or for multilanguage environments; and 
appendixes with information on the systems issues 
in computer architecture. 

USING MS-DOS KERMIT: Connecting your 
PC t o  the Electronic World, Second Edition 
Christine M. Gianone, 1991, softbound, 
344 pages with software disk included, 
Order No. EY-H893E-DP-EEB ($34.95) 

As in the first edition, this software package leads 
the novice step by step through installation, com- 
munication setup, terminal emulation, file transfer, 
and script programming, and also serves as a com- 
plete reference work for the experienced user. 
Complete with 5%-inch diskette containing the 
official MS-DOS KERMIT Version 3.11 program from 
Columbia University, this revision includes a new 
section on local area networks, additional material 
on running Kermit in windowed environments 
such as Microsoft Windows and Quarterdeck 
DesqView, a new appendix containing tables of 
the escape sequences used by Kermit's text and 
graphics terminal emulators, and expanded 
descriptions of many of Kermit's features. 

ENTERPRISE NETWORKING: 
Working Together Apart 
Raymond H. Grenier and George S. Metes, 1991, 
hardbound, 260 pages, Order No. EY-H878E-DP-EEB 
($29.95) 

To successfully compete in the next century, com- 
panies must recognize and adapt to exponential 
changes, including the dispersion of markets and 
resources and acceleration in market demands. 
ENTERPRISE NETWORKIIVG: Working Together 
Apart, describes how management can support 
this distributed electronic information environ- 
ment and move through planned transitions to 
a new organization, cotlfident they will prosper. 
Intended for individuals in charge of directing 
transition of information-focused groups that 
extend across geographies, this book is segmented 
into four parts. The Introduction, Part I,  defines 
the assumptions and realities. Part 11 focuses on 
Capability Based Environments. Part 111 tliscusses 
Simultaneous Distributed Work, both Goals and 
Processes, and Continuous Design and Quest for 

Quality. The Epilogue, Part IV, concludes with 
three appendices detailing Benchmarking, Build- 
ing Networks, and Networking Capabilities. 

THE ART OF TECHNICAL DOCUMENTATION 
Katherine Haramundanis, 1992, softbound, 
267 pages, Order No. EY-H892E-DP-EEB ($28.95) 

Written primarily for novice and aspiring technical 
writers within the computer industry, The Art 
of Technical Doczcmentation has unique features, 
including its advice on planning and process, 
research techniques, use of graphics, audience 
analysis, definition of quality, standards, and 
careers that are valuable to experienced technical 
writers as well. Haramundanis views the practice 
of technical writing as being different from that 
of scientific writing, and closer to investigative 
reporting. In keeping with this premise, this book 
is not a style guide that deals with all aspects of 
typography and copy editing, but instead presents 
the distilled knowledge of the author's many years 
experience. 

A COMPREHENSIVE GUIDE TO Rdb/VMS 
Lilian Hobbs and Kenneth England, 1991, 
softbound, 352 pages, Order No. EY-H873E-DP-EEB 
($34.95) 

The RdbrVMS relational database system was 
developed by Digital Equipment Corporation for 
vtD( computers using the VMS operating system. 
This system is one of a number of information 
management products that work together to 
facilitate the sharing of information. The RdblVMS 
system is used, for example, in high-performance 
transaction processing systems. This book is based 
on RdbMS Version 4.0, which Digital made avail- 
able to customers at the end of 1990, and thus 
includes the latest functionality. 

DIGITAL GUIDE TO DEVELOPING 
INTERNATIONAL USER INFORMATION 
Scott Jones, Cynthia Kennelly, Claudia Mueller, 
Marcia Sweezey, Bill Thomas, and Lydia Velez, 1992, 
softbound, 214 pages, Order No. EY-H894~-DFEEB 
($24.95) 

Designed for the busy professional, this book 
presents models that extend beyond Digital and 
English speaking countries in a quick read/ 
reference format. Nine chapters and four appen- 
dices outline methods for creating written, visual, 
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and verbal information for cost-effective trans- 
la tion. Primarily for information specialists, 
including writers, editors, illustrators, course 
developers, and their managers, this book will also 
help software developers and students enhance 
their background in technical communication. 

PRACTICAL KNOWLEDGE ENGINEERING: 
Creathg Successful Commercial Expert 
Systems 
Richard t! Kelly, Jr., softbound, 212 pages, 
Order No. EY-F591 E-DP-EEB ($28.95) 

This book is a concise guide to practical methods 
for initiating, designing, building, managing, 
and demonstrating commercial expert systems. 
It is a front-line report of what works (and what 
does not) in the construction of expert systems, 
drawn from the author's decade of experience 
gained working on such projects in all m;ijor 
areas of application for American, Europc;in, and 
Japanese organizations. It also briefly reviews 
the knowledge representation, programming, 
anti management techniques commonly used to 
implement expert systems today, and describes the 
intellectual, organizational, financial, and manage- 
rial issues that knowledge engineers face d d y  in 
performing their jobs. Among the topics covered 
are: prospecting for "legitimaten problems; fore- 
casting costs, establishing project metrics and 
writing specifications; prepatkg for system 
"demos"; interviewing and selecting engineering 
team members; and solving common difficulties 
in clesign and implementation. 

COMPUTER PROGRAMMWG AND 
ARCHITECTURE: T h e  VAX, Second Edition 
Henry M. Levy and Richard H. Eckhouse, Jr., 1989, 
hardbound, 444 pages, Orcler No. EY-6740~-DP-EEB 
($38.00) 

This book is both a reference for computer profes- 
sionals and a text for students. A systems approach 
helps the reader understand the issues crucial to 
thc comprehension, design, and use of modern 
computer systems. Using the VAX computer as an 
example, the first half of the book is a text suitable 
for a complete course in assembly language pro- 
gramming. The second half of the book describes 
l~igher-level systems issues in computer arcl~itcc- 
ture, namely, support for operating systcms and 
operating systems structures, virtual memory, 
parallel processing, microprogramming, caches, 
and translation buffers. 

VMS FILE SYSTEM INTERNALS 
Kirby McCoy, 1990, softbound, 460 pages, 
Order No. N-F575E-DP-EEB ($49.95) 

VMS FILE SYSTEM INTERNALS, based on VMS Version 
5.2, is a book for system programmers, software 
specialists, system managers, applications design- 
ers, and other VAX/VMS users who need to under- 
stand the interfaces to and the data structures, 
algorithn~s. and basic synchronization mechanisms 
of thc VhIS Nc system. This system is the part of 
the VAX/VMS operating system responsible for 
storing and managing files and information in 
memory and on secondary storage. The book is 
also intended as a case study of the VMS implcmen- 
tation d a  file system for graduate and advanced 
undergraduate courses in operating systems. 

DECNET PHASE V: An OSI Implementation 
Jamcs &l;irtin and Joe Leben, 1992, hardbound, 
572 pags ,  Orcler No. EY-H882E-DI-'-EEB ($49.95) 

This book provides a first in-depth look at DECnet 
Phase V and the important issues that must be 
resolved in the design and implementation of very 
large networks. It presents key Open Systems lnter- 
connection (0%) concepts and shows how DECnet 
P11;ise V harclware and software products imple- 
ment international standards associated with the 
OSI model. 

VAX/VMS OPERATING SYSTEM CONCEPTS 
David Miller, 1991, hardbound, 512 pages, 
Order No. EY-F590E-DP-EEB ($44.95) 

This book begins with an overview that centers 
on one visible aspect of an operating system, 
terminal input and output; it proceeds into well- 
organized chapters on process definition, paging 
and memory management, security, protection 
ancl privacy; and it concludes with a chapter 
on operating systems at Digital Equipment 
Corporation. Each chapter provides an intro- 
duction, theoretical discussion, generally recog- 
nized solutions, algorithms and data structures, 
and questions to encourage review of the central 
concept presented. 

THE VMS USER'S GUIDE 
James E Peters, 111 and Patrick J. Holmay, 1990, 
softbound, 304 pages, Order No. EY-6739~-DP-EEH 
($28.95) 

This up-to-date guide for new VMS users provides 
a sequence of steps for learning the VMS operating 
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system and includes hands-on experiments with 
step-by-step instructions. The book also can be 
used as a reference for commands and utilities. 
TIIE RVIS USER'S GUIDE, reflecting vlMS Version 5, 
provides complete VMS coverage-from logging 
in to creating command procedures; contains 
a thorough discussion of files and directories; 
covers both the EDT and the EVE editors in detail; 
and introduces programming with VAXTPU 

The guide includes learning aids in each chapter, 
such as summaries that contain tables of the 
commantls introduced in the chapter, exercises 
to reinforce and extend the skills learned, and 
review quizzes. 

THE MATRIX: Computer Networks and 
Conferencing Systems Worldwide 
John S. Quarterman, 1990, softbound, 719 pages, 
Order No. EY-~176~-UP-EER ($49.95) 

This is the first reference book to describe in detail 
the extensive yet largely unpublicized web of 
public and private networks and conferencing 
systems that has spread to virtually every corner 
of the world. The first half provides extensive 
background information on the history, terminol- 
ogy, standards, protocols, technologies, worldwide 
networked communities, and probable future 
course of networking systems throughout the 
world. The second half describes specific confer- 
encing systems and the interconnections between 
them-according to geographic region worldwide. 
Maps are included when available. Syntaxes and 
gateways are provided for sending mail from one 
system to another. Additional chapters discuss a 
number of well-known worldwide networks, 
including the Internet and selected commercial 
systems. Two appendices provide essential infor- 
mation on pi~blic data networks worldwide and 
on selectecl legal issues. 

X AND MOTIF QUICK REFERENCE GUIDE 
RandiJ. Rost, 1990, softbound, 369 pages, 
Order No. El'-E758E-DP-EEB ($24.95) 

Based on the newly releasecl X Window System 
Version 11, Release 4 and Motif Version 1.0, this 
one-volume guicle combines three major reference 
works on XLib, X Toolkit Intrinsics, and Motif 
programming libraries in a compact, easy-to-access 
format. Features include complete descriptions 
of approximately 400 XLib routines, 200 X Toolkit 
Intrinsics, and 200 Motif routines. The guide is 
organized into five major reference sections- 

"X Protocol," " XLib," "X Tool kit Intrinsics," "Motif," 
and "General X"; all routines and data structures 
are organized alphabetically within each of these 
sections. 

FIFTH GENERATION MANAGEMENT: 
Integrating Enterprises through Human 
Networking 
Charles M. Savage, 1990, hardbound, 267 pages, 
Order No. EY-~186~-DP-EEB ($28.95) 

This book explores the challenges managers face 
as their organizations transition from the indus- 
trial era to the new era of knowledge networking. 
The author contends that new technologies like 
computer integrated manufacturing (CIM) will 
not be successful iintil organizations transform 
their structures from the steep hierarchies of 
second generation management to the flattened 
networks of the fifth generation. The book 
contains two parts. In Book 1, "Five Days that 
Changed the Enterprise," Savage narrates a case 
study of senior executives confronting the prob- 
lems of a traditional organization as they work to 
transform their company into a networked 
organization. In Book 2, "Integrating Enterprises 
through Human Networking," Savage draws on 
contemporary management literature and his own 
consulting experiences to present a logical case for 
his recommendations. A concluding chapter offers 
ten practical considerations that organizations 
must address to prepare for change. 

X WINDOW SYSTEM: The Complete Guide 
t o  XLib, PROTOCOL, XLFD, and ICCCM, 
X Version 11, Release 4, Second Edition 
Robert W Scheifler and James Gettys, 
with Jim Flowers, Ron Newman, and 
David Rosenthal, 1990, softbound, 851 pages, 
Order NO. EY-E755E-DP-EEB ($49.95) 

By combining four MIT X Consortium standards 
into one volunle, this book is the most complete 
and up-to-date X Window System reference 
available. In addition to the four standards, also 
included are instructive diagrams, a detailed 
glossary, and a comprehensive subject-oriented 
index. The book consists of four main parts, each 
with a standard specification produced by the 
MIT X Consortium for X Version 11, Release 4: 
Part I ,  "Xlib-C Language X Interface"; Part 11, 
"X Window System Protocol"; Part 111, "Inter- 
Client Communications Conventions Manual"; 
and Part rv, "X Logical Font Description." 
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Purther Reudings 

To receive a copy of our latest canlog or further 
information on these or other publicathns from 
Digital Press, please write: 

Digital Press 
Department EEB 
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