
PATHWORKS: PC Integration Software

Digital Technical Journal
Digital Equipment Corporation

Volume 4 Numt

ter 1992

Editorial
Jane C. Blake, Editor
Kathleen M. Stetson, Associate Editor
Helen L. Patterson, Associate Editor

Cover Design
The red and blue threads m e n together in our cover design
represent the many PC clients and server systems that are inte-
grated in a network enuironment by the outstanding "thread"
of PATEWORKS software. PAiWWORKSsoftware for the integration
of PCs over LANs and WANs is the featured topic in this issue.

The cover was designed by Kattwyn Cimis of the Corporate
Design Group.

Circulation
Catherine M. Phillips, Administrator
Sherry L. Gonzalez

Production
Mildred R. Rosenzweig, Production Editor
Margaret L. Burdine, Typographer
Peter R. Woodbury, Illustrator

-iy-
Samuel H. Fuller, Chairman
Robert M. Glorioso
John W McCredie
Mahendra R. Pate1
Victor A. Vyssotsky

Richard J. Hollingsworth
Alan G. Nemeth
E Grant Saviers
Gayn B. Winters

The Digital Technical Journal is published quarterly by Digital
Equipment Corporation, 146 Main Street ML01-3/BbS, Maynard,
~assachusetts 01754-2571. Subscriptions to the Journal &e $40100
for four issues and must be ureuaid in U.S. funds. Universitv and .
college professors and Ph.D. students in the electrical engineering
and computer science fields receive complimentary subscriptions
upon request. Orders, inquiries, and address changes should be
sent to the Digital Technical Journal at the published-by address.
Inquiries can also be sent electronically to DTJ@CRL.DEC.COM.
Single copies and back issues are available for $16.00 each from
Digital Press of Digital Equipment Corporation, 1 Burlington
Woods Drive, Burlington, MA 01830-4597.

Digital employees may send subscription orders on the ENET to
RDVAX::JOURNAL or by interoffice mail to mailstop ML01-3&8.
Orders should include badge number, site location code, and
address. All employees must advise of changes of address.

Comments on the content of any paper are welcomed and may
be sent to the editor at the published-by or network address.

Copyright o 1992 Digital Equipment Corporation. Copying
without fee is permitted provided that such co~ies are made for
use in educational institutions by faculty memiers and are not
distributed for commercial advantage. Abstracting with credit
of Digital Equipment Corporation's authorship is permitted.
All rights reserved.

The information in the Journal is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes
no responsibility for any errors that may appear in the Journal.

ISSN 0898-901X Documentation Number EY-J825E-DP

The following are trademarks of Digital Equipment Corporation:
WIN-1, DEC, DEC Etherworks, DECnet, DECperformance,
DECquery, DECwindows, Digital, the Digital logo, DNA,
excursion, LAT, PATHWORKS, ULTRIX, VAX, VAX C,
VAX Performance Advisor, VAX 4000, VAX 6000, VAXcluster,
VAXstation, and VAX.

3Com is a registered trademark of 3Com Corporation.

Apple, Appleshare, AppleTalk, LocalTalk, and Macintosh are
registered trademarks and Quickstart is a trademark of Apple
Computer, Inc.

Codeview, Microsoft, MS, and MSDOS are registered trademarks
and Windows is a trademark of Microsoft Corporation.

CRAY is a registered trademark of Cray Research, Inc.

i386, i486, and Intel are trademarks of Intel Corporation.

IBM, Micro Channel, and OS/2 are registered trademarks of
International Business Machines Corporation.

Motif is a registered trademark of Open Software Foundation, Inc.

Motorola and 68000 are registered trademarks of Motorola, Inc.

NetWare and Novell are registered trademarks of Novell, Inc.

Network General and Sniffer are registered trademarks of
Network General Corporation.

NPS and Sun are registered trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

X/Open is a trademark of X/Open Company Limited.

Book production was done by Digital's Database Publishing Group
in Northboro, MA.

Contents

6 Foreword
Joseph A. Carchidi

PATHWORKS: PC Integration Software

8 An Overviezo of the PATWWORKS Product Family
Alan Abrahams ant1 David A. Low

15 PATHWORKS for VMS File Server
Edward W Bresnahan and Siu Yin Cheng

24 The Development of an Optimized PATHWORKS
Transport Interface
Philip J. Wells

31 Design of the PATHWORKS for ULTRIX File Server
Anthony J . Rizzolo, Elizabeth A. Brewer, and Martha A. Chandler

40 DECnet Transport Architecture
Mitchell I? Lichtenberg and Jeffrey R. Curless

47 Microsofi Windows Network Virtual Device Drivers
in PATHWORKS for DOS
Andrew W Nourse

56 excursion for Windotus:
Integrating Two Windwing Systems
Dennis G. Giokas and Andrew T. Leskowitz

68 Capacity Modeling of PATHWORKS
Client-Server Workloads
Christopher E. Methot

I Editor3 Introduction

Jane C. Blake
Editor

server system on a LAN. However, as Anthony
Rizzolo, Beth Brewer, and Martha Chancller csplain
in their paper, a n~ultiple process model was cho-
sen rather than the single process used in the vMS
file server. The authors give their reasons for this
different approach as part of a general discussion of
the server design and implementation.

The network is key to the exchange of data in the
PATHWORKS environment, ancl as is the case for
the server software, multivenclor systems must be
addressed to ensure smooth integration. Mitch
Lichtenberg and Jeff Curless describe how Digital
has extended Microsoft's LAN Manager across a LAN
or a WAN by using the DECnet transport protocol
as the transport layer. In addition, they present the

The integration of personal computers in a net- reasoning behind the design of the transport com-
work environment is the subject of this issue of the ponent for DOS and OS/2 products, ant1 review
Digital Technical Journal. The software products steps taken to reduce memory usage and improve
that bring about this integration are known collec- performance.
tively as PATHWORKS and are derived from Digital's Further details on the integration of DECnet and
Personal Computing Systems Architecture. The LAN environments are provided in the paper on two
engineering challenge for developers was to inte- network virtual device drivers for the Microsoft
grate a variety of client (PC) and server systems- Windows environment. As Andy Nourse explains,
DOS, Windows, OS/2, Macintosh, VMS, and ULTW- these drivers manage DECnet and NetUIOS opera-
and to ensure that the intricacies of the meshing tions and enable the Windows operating system
of these systems remained transparent to PC users. to support peripheral devices, memory resources,

In the opening paper, Alan Abrahams and David and software applications. Andy first gives readers
Low provide background for the papers that follow background on the Windows operating modes, and
by describing the technical aspects of the various then describes tlie development of the two virtual
hardware and software platforms, physical net- device drivers.
works, and protocols that had to be addressed by A significant new application in the PATWORKS
PATHWORKS developers. They also present an over- famil): called excursion, brings together the capabil-
view of the PATH'WORKS components which allow ities of X Windows, DECnet, and the i\licrosoft envi-
PC users to access network resources. ronment, resulting in the display of both Windows

Among the capabilities PATHWORKS enables, PC and X Windows on the same screen. Dennis Giokas
access to files on server systems is onc of the most and Andy Leskowitz present the integration philos-
important for users. Two file servers, one for VMS ophy behind the display server and the implemen-
and another for ULTRIX, were developed for this tation of the server architecture. They also relate
purpose. A paper on the development of the first of how designers approached the mapping of the win-
these, written by Ecl Bresnahan and Siu Yin Cheng, dows in the X and Windows environments.
contains an architectural overview of the VMS file The issue concludes with a paper by Chris
server. The authors also detail the mapping done to Methot on capacity modeling of PATHWORKS
bridge the differences between DOS, OS/2, and VMS client-server workloads. Chris describes a queuing
operating systems. In :I related paper, Phil Wells analytical model used to understand resource con-
describes performance improvements made in ver- sumption on the server ancl the special mocleling
sion 4.0 of the file server which were achieved by process requirecl in the client-server environment.
optimizing the transport interface ancl tlie data The paper works through a specific example of the
buffering algorithm. Me discusses the analysis of model's identification of bottlenecks in the system.
server performance for various interface models, The editors thank Star Dargin and Carnel Hoover
the implementation of the algorithm in tlie vMs for their help in preparing this issue.
server, and test results.

Like the VMS file server, the PATHWORKS software
for ULTRIX systems integrates PC clients with a

Biographies

Alan Abrahams Alan Abrahams is a consultant engineer in the Personal Com-
puting Systems Group Technical Office. He develops management and security
strategies for integrating PCs into enterprise-wide networks. Alan joined Digital
in 1982 and designed and implemented the PRO/Communications package. Since
1985, he has been the architect responsible for integrating Microsoft's LAN

Manager into Digital's PCSA and helped design Digital's NetBIOS emulation and
remote boot of MS-DOS systems. Alan received B.S degrees in computational and
statistical science and in mathematics from the University of Liverpool.

Edward W. Bresnahan Senior software engineer Edward Bresnahan has been
developing the PATHWORKS for VMS software since joining Digital's PCSG Server
Engineering Group in 1988. He is currently responsible for the design and devel-
opment of a high-performance data cache to be used in future PATHWORKS
server products. Prior to this, he was a co-op student at General Electric
Company and at Charles Stark Draper Laboratory. Ed holds a B.S.C.S. (1988, hon-
ors) from Northeastern University and is pursuing an M.S.C.S. part-time.

Elizabeth A. Brewer Beth Brewer is a supervisor in the PCIE Server Develop-
ment Group-Open Systems. Beth served as project leader for the PATHWORKS
for ULTRIX version 1.0 product as well as the principal architect and implemen-
tor of the PATHWORKS for ULTRE administration process. She also worked for
the PCIE Client Development Group-PC DECwindows. Beth joined Digital in
1987 after receiving a B.S. in mathematics with a minor in computer science
from the University of Massachusetts at Lowell.

Martha A. Chandler A senior software engineer in the PCIE Server Develop-
ment Group-Open Systems, Martha Chandler was project leader for the
PATHWORKS for ULTRJX version 1.1 product. She designed and implemented the
management interface for the PATHWORKS for ULTRIX server. Prior to this work,
Martha maintained MS-Windows terminal emulation for the PCIE Client Develop-
ment Group. Before joining Digital in 1988, she received a B.S. in mathematics
with a minor in computer science from the University of Massachusetts at
Lowell.

Biographies

Jeffrey R. Curless As a principal software engineer in the Personal Com- 7 puting Systems Group, Jeff Curless worked on the 0.512 data link driver and on

Siu Yin Cheng Since joining Digital in 1987, Siu Yin Cheng has worked on
server software in the Personal Computing Systems Group. As a senior software
engineer, she is responsible for the design and development of the server config-
uration utility for future IJATHWORKS products. Siu Yin designed and developed
the server collector process to extract performance data from the file server;
she also worked on server development. Prior to this, she led the system testing
of PATHWORKS server V2.0-2.2. Siu Yin received a B.S.C.S. (1987, honors) from
Brown University.

the PATHWORKS token ring implementation. He is currently developing a new
configuration utility to support the future direction of the PATH\-VORKS product
set. Since joining Digital in 1986, he has contributed to the development of
PATHWORKS software under both the DOS and OS/2 operating systems. Jeff holds
a B.S. in computer science from the University of New Hampshire.

Dennis G. Giokas Dennis Giokas is the group technical lead for PCSG's Net-
work Client Engineering and the engineering manager for its New User Interface
Group. His primary responsibility is technical lead for the next generation of the
PATHWORKS client. Prior to this work, Dennis contributed to PC DECwindows
development. Before joining Digital in 1984, lie was employecl by k c o Oil & Gas
and The Foxboro Company. Dennis holds a B.M. (1974) from the University of
Massachusetts at Lowell, an M.M. (1976) from the New England Conservatory,
and an M.S.C.S. (1989) from Boston University. He has two patents pending.

Andrew T. Leskowitz A principal software engineer in the PCSG X Server
Development Group, Andy Leskowitz is the project leader for the excursion
display server. Since coming to Digital in 1987, he has contributed to various
X development projects and designed the PATHWORKS LANSESS component.
Andy's prior experience includes engineering positions at Datatrol, The
Foxboro Company, and Raytheon Company. He has a B.S. (1776) in biology from
Swarthmore College. Andy has applied for a patent related to his X server devel-
opment work.

Mitchell P. Lichtenberg Mitch Lichtenberg is a principal software engineer
in the Personal Computing Systems Group. He is responsible for the design and
implementation of the PATHWORKS network client transport architecture and
for various other aspects of Digital's PATHWORKS PC integration products. Before
joining Digital in 1986, he was employed by the Xerox Palo Alto Research Cen-
ter as a software engineer in the Xerox Artificial Intelligence Systems Division.
Mitch holds a B.S. (1986) from Worcester Polytechnic Institute.

David A. Low David Low is a consultant engineer in the Personal Computing
Systems Group. Since joining P<:S<; in 1988, David has worked in a variety of
advanced development tasks involving I-'C networking teclinolog)~ He is cur-
rently concerned with assessing approaches for pen-bnsed computing and wire-
less PC networking. David has an A.B. in mathematics and an M.A.S. in computer
science from Boston University. He is a member of AAAS, IEEE, ;~nd ACM.

Christopher E. Methot Chris Methot has been analyzing client-server per-
formance since joining Digital in 1986. He has workecl in performance cliarac-
terization of LAVc systems and has contributed to VAX Performance Summaries.
Currently, he supervises capacity/performance engineering in the Personal
Computing Systems Group. In addition to developing the PATHWORKS client-
server modeling process, his group is developing a standard performance test
for Macintosh servers and has benchmarked many of Digital's hardware servers.
Chris holds a B.S. (1967) in industrial design from the University of Cincinnati.

Andrew W. Nourse Principal software engineer Andrew Nourse has worked
on network software for the I'ATHWORKS and DECnet-DOS products for the past
six years. He developed Microsoft W~ndows and non-Wintlows networking
applications, libraries, and drivers Prior to this, he wrote network utilities for
DECSYSTEM-20, DECsystem-10, and KSTS/E product$. Andy received a U.S. in elec-
trical engineering and compilter science from the Massachusetts Institute of

J Technology in 1974 and joined Digital in 1976.

Anthony J. Rizzolo A principal software engineer in the PClE Server Develop-
ment Group-Open Systems, Anthony Rizzolo designed and implemented the
PATHWORKS for U L W X file server process. He also designed the data link and
port driver layers for the PATHWORKS for DOS product. Prior to this work, Tony
was a member of the Internal Software Support Group and the TOPS-10 Engineer-
ing Group, where he designed ant1 implemented the data link layer for the KLNI
Ethernet adapter. Tony joined Digital in 1981. He received a I3 S.E.E. from Stevens
Institute of Technology.

Philip J. Wells Phil Wells is the I'XI'HWORKS server architect ant1 is responsi-
ble for coordinating the design ant1 implementation of the I'ATHWORKS server
products. In previous positions at Digital, Phil worked for Corporate Tele-
comnlunications designing Digital's internal network, the EASYNET, and helped
support data centers and networks while in the Internal Software Services
Group. Phil joined Digital in 1976 as a computer operator in the Corporate Data
Center.

Joseph A. Carchidi
Group Engineering Managq
PC Integration

In the 1990s, a major shift is occurring in personal
computing, from isolated, individual work on desk-
tops to work in groups whose members are located
throughout an enterprise. To support this impor-
tant change, Digital has developed a family of prod-
ucts, called PATISWORKS, that enables personal
computer users to make the shift from the stand-
alone machine to the network environment and the
resources of larger computer systems.

The roots of PATHWORKS were in place as early
as 1980. Digital's engineering management recog-
nized that a significant part of the growth in the
computer industry would be redirected from
minicomputer to microcomputer products. As the
80s progressed, we learned from our experience
in personal computer hardware development and
from the direction taken by the growing and highly
competitive microcomputer market that industry
standard-based products were more important
than unique technologies; that is, open systems,
comprising standard devices and interconnects,
were what customers wanted, not more propri-
etary systems.

Digital's VAXmate personal computer, intro-
duced in 1987, was built on the industry standard
model. Moreover, it offered something no other
PC offered at that time: the VAXrnate had the net-
work built in. With foresight, engineering manage-
ment determined that our microcomputer business
would tie to our long-standing strength in building
networks. Our strategy thus changed from a focus
on hardware development to the development of
microcomputer software.

The critical question then asked-and the one
that lead to PATHWORKS development within Engi-
neering-was whether to provide customers with
an upgrade path similar to those of competitors
in the PC LAN business at that time, i.e., file and
print services, or a network environment that
embraced the primary technologies used by cus-
tomers, i.e., a complete set of networking appli-
cations that included file and print services, mail,
x servers, and terminal emulators. The strategy that
took hold was the latter; we would develop a broad
set of products that recognized customers' invest-
ments in a range of personal computer and net-
work software. Unlike other single-product PC LAN
offerings, this set of products would be engineered
to couple large server systems based on CISC and
RlSC technologies with the primary microcomputer
systems and would support operation over a local
or wide area network. Furthermore, the mapping

between the disparate systems would have to be
transparent to users, and without concessions on
performance.

This chosen strategy, of course, was not the eas-
ier of the two to implement. One of our initial tasks
was to select which operating systems to support
among the many microcomputer operating sys-
tems available in the market. We decided to define
the scope of our early clevelopment work by sup-
porting the most widely popular personal comput-
ers, which are those based on the DOS, OS/2. ant1
Macintosh operating systems. Another important
decision was the choice of a network transport that
would serve as the basis for the interconnection of
the systems selected. We selected Microsoft's LAN
Manager software as this transport. MS-NET, the
predecessor to LAN Manager, had the advantage of
being network transport independent, thus allow-
ing us to utilize the DECnet network to extend the
PC LAN software to a wide area network.

In the papers in this issue, you will read about
some of the extensive work that has been accom-
plished since we first embarked upon this software
effort. Engineers have designed and implemented
file servers and network transports that allow PCs
to access files, applications, storage, and print

services on the larger VMs and ULTNX server
systems. Further, a PATHWORKS application, called
excursion, brings together the X Window System,
the Windows environment, and the DECnet net-
work. The effect is to link X-so important to users
of UNIX systems-with the PC DOS system environ-
ment. These combined efforts represent a hallmark
in Digital's progress toward open, heterogeneous
computing.

Our achievement in the I'ersonal Computing Sys-
tems Group has been our steady progress toward
providing customers the open computing environ-
ment they need. The breadth of our product offer-
ing has taken on clear definition within the Last
year, and we will now begin the work of adding
depth to the PATHWORKS product set. The possibili-
ties for future developments are truly astounding.
Looking ahead five years from now, client work-
stations will have the power of supercomputers,
and the dramatic progress in parallel computing
will bring additional opportunities for data sharing
and application developments which are in embry-
onic stages today. Our challenge in software engi-
neering will be to make all these systems work
together in a well-integrated, easy-to-use, well-
deployed computing environment.

Alan Abrahams
DavidA. Low

An Overview of the PATHWORKS
Product Family

As l/?e lz~rlnber of persontll co~nputers continues to grotu, so does the demand for
netzl~orkir~~q/~roducts ~rnd sewices to allozu these PCs to share rzetzuorked resmrrces.
Di'qit~rl:s Per:sorral Co~'onrl)~rlirlg ,Yjste~ns Architecture elloh1c.s the irltcgrution of
PCs into Digital's enlcrprise-zuicle net~ilork systems. The soJ'llilure products dez~el-
oped llsilzg 117is arc l~ i f ec t~~re arcJ referred to as the l?47HWOh'KS producl Jirlililj!
t!-1TWORK\ products sri,!)l)orl a rlarictji of PC/~luljbr~rw- UILJ upemtilzg syslelns, and
acconrn~od~~te d ~ p ' ~ r e 1 1 t ~ J ~ ~ i ~ ~ ~ ~ netzuorks and l~tlnsport and serr~ice protocols. This
fle.~ibi/itj~ allo~ils PC ~lscrs to crcccss resolrrce.~ o~~t.si~le their Pc, o i ~ ~ i r o r r ~ l ~ e l ~ t , such NS

remote Jilts, printe?:c, ~l~lt(ihrr.scs, ~ [n d electronic mail.

When the IB&I (;orpor;~tion introducctl its first
personal computer in 1981, few could 11;1ve fore-
seen that by 1992 millions of PCs woultl have been
sold worldwide, r;~clically changing the computer
market in the proccss. l'hc term P(: usually implies
an Intel 80x86 family or a Motorola 08000 series
proccssor, sized to fit under a desk or smaller
and commonly priced under $5000. The low price
has helped to luel an explosive growth in the
number of hard\x7arc products and software appli-
cations ;~vailable for PC platforms. 13Cs are now
ubiquitous and reprcscnt the largcst cl;~ss of net-
worked computers.

Even before the introduction of the PC, small
computers were being networked together to
share data ancl hartlw:lre resources. In 1990, as
many as i O percent of the installed 1'Cs were net-
workctl.' By 1994, an estimated 75 percent of the
increasing number of P<:s will be linked together
with products from many networking vcndors.
These vendors provitle services that commonly
include transparent acccss to remote files, printers,
databasrs, and electronic mail.

Digital Equipment Corporation is a worldwide
leatler in networking services. Since 1986, we have
been tleveloping the Personal Computing Systems
Architecture (PCSA) to meet the growing needs of
PC client-server applic;~tions in local ant1 wide area
network systems. Many technical obstacles were
met and overcome in the design and tlevelopme~it
of PC integration products. The PATHIVORKS prod-
uct Fdmilj: derived from PCSA, reflects the cliversity

of Digital's custon~ers' neecls ancl environments.
I'ATHWORKS software products support a variety of
I'C platforms and operating systems, and accomrno-
date different pliysic;~l networks and transport and
service protocols.

'lb help the reader comprehend the scope of the
PATHWORKS offerings, we begin this paper with a
basic cliscussion of PC hardware ant1 software, fol-
lowed by informsition about the vnrious protocols
~ ~ s e d in PC networking. We then describe how
Digital's PATHWORKS product set allows integratio~i
of P<:s into network systems.

PC Hardware
This section describes the IJATH\VORKS Intel ancl
Macintosh client platforms ant1 introduces relatecl
PATHLVORKS services.

Intel Platforms
The most populs~r operating systems in the world,
1Uivll's PC-DOS, Mia-osoft's MS-DOS, and Microsoft
Windows, are designed to take advantage of the ka-
tures of the family of Intel chips that includes the
8086, 80286, i386, and i486 microprocessors.

The 80x86 memory architectures have evolved
from 16-bit adtlressing with implicitly referenced
64-kilobyte segments in the 8086 processor, to
32-bit addressing with a paged virtual memory in
the i386 or higher processors. Recent Intel pro-
cessors have featilres previously associated with
minicomputers. The i486 chip, for example, hiis

;III i~ltegr;~tcd tloating-point processol; instruction
;IIICI tl;11;1 C;ICIICS. ;~ncl h;u-dw;trc support for multi-
t;lsking. 'l'his I-;mgc of ~>roccssor ci~pi~cily Iiighlights
;I ni;~jor concern of the clcsigners of L>igit;~l's
PrYl'llWOIIKS protlucts, i.c.. how to cfficie~itly ;lccom-
mocl;~te tlie r:lngc of cliffcring h~nction;~lit!~ foi~ntl i n
thc inst;~llecl Intel-l~:~sctl l1(;s.

Altlio~~gh this I > (: m;~rltct h;~s I1;icl little tle jure
rcgul;ltion, II).\JI 'S ni;~rket presence II;IS sh;~pccl the
tle krcto intcrktce st;~ntl:~rcls. 'l'he inclus~ry st;~ncl;~rtl
;~rcliitect~~rc (1 s~) s!.stcm I,LIS and the vicleo gr:lpli-
ics ; I I - ~ ; I) , (\I(;,\) cljspl;~)' tccli~~ologics ; ~ r c cx;~rnj,les o f
such S ~ ; I I I C I ; I ~ C I S .

'l'hc most common s).stcnl I,us, the 1% bus, pro-
\:itles 10-bit d ; ~ t ; ~ ;~ccess to a 24-bit (i t . . 16-nlcgnbyte)
adclress sp;~cc. I'Iiysic;~l ;uid electric:~l i~iterk~ce con-
vcntions h;~vc I,cc~i est;~blishccl ;uitl t1ioi1s;inds of
interfitcc I,o;~rcls :ire ;~\.;tiI;~l>[c. ll%M introtlucetl the
ISX bus ancl 1;itc.r clc\:elopccl the Micro Ch;u~~nel
Arcliitccti~re (;\l(:i\) I,us, whicll pro\:ides 32-bit d ;~ t :~
:rcccss to ;I .32-l,it (i.e.. -i-gig;~b)~te) :~tlclrcss sp;~cc,
:tuto~n;rtic h ~ ~ s sizing, ;Inel ;~ccclcrntecl cl;~t;~ 1r;lnsfer
mcchnnisn~s. l'hc ,k\(:l\ btrs is not coml,:~tible \vith
the 1% l ~ i ~ s . (:onsccltrcntl!: ;I I ~ L I I ~ I [> C ~ o f ~ l l ; ~ n u f ; ~ c t ~ ~ r -
crs other thi~n ilIhI joinecl forces ;rntl clevisetl the
exlcncletl IS,\ (l i lh, \) I>us, wit11 fcnturcs ;111;1logo~1s
to those o f the M(:,\ bi~s. Eve11 tllough 1)igitnl's P(:s
ilse cither thc ISi\ or lilSi\ bus, we support our cus-
tomers' ,\4(:,\ bus m:rchincs tllro~~gll soft\v;~rc and
~,cripl~rr;~l tlc\,ice offerings.

(; r ;~pl~ic;~l user intcrf;~ces ((;I Is) such ;IS the one
l>rc~viclccl 1,). the Microsoft Winclo\vs softw;~re ;Ire
becoming thc rule r;ctIicr th;i~i the exception. 1IIhl's
color gr;lpliics ;~ t l ;~ l~ tcr (,(:<;,\) clispl:~)' w:rs ;ul e;rrly
s t ;~~id ;~~-d ; ~ t i 2 0 columns I,!. LOO rows ;~nd a r;lnge
of 4 colors. \I<;,\ is ;I more rcccrit st;~ntl:~rcl, with
v;~ri;~nts th;~t can gcncr;rtc ;I screen up to 1024 by
768 in 256 colors. There is n o witlely :~cccptecl tlis-
play st;rntl:i~-cl be!~ontl v(;,\. ;inrl it 11i;1!* he sufficient
for n~anuk~cti~rcrs o f innov;itive tlispl;~!- technolo-
gies t o provitlc tle\xicc tlrivcrs for tr-:rnsp:rrent use
I>\, Nlicrosoft Wintlows ;~pplic;~tions. For ex;~ml,le,
thr 1',\'1'1 IL '~Ol<KS ~ S c u r s i o ~ i for Winclo\vs clisj,l;ly
scrvcr. \vhich iniplcrucnts the S Wintlow S!.stem
protocol ;~ntl ol>c~.;~tcs in the hilicrosoft Wlinclosvs
en\.ironment, l~scs the tlisl,l:~)~ clrivcrs sul,plictl
xvitll tlic Windows softw;~rc. 'l'lic excursion server
t11~1s Icver;~gcs ;III!' LIC\Y dis1)1;1!. technologies with
\vhich \Vinclo\v:, rlrivcrs arc su~~j~liecl . Ho\vrvel; tlie
st;lntl;llonc 1)OS-l,:~setl S Wintlow Sjrstem servers
sr~ppliccl \vith the ~'IYI'HWORKS softw;lrc must be
nloclihctl to i ~ s c ;I new clispl;~y tcclinolog):

Network interk~ce c;~rcls (NICs) provide :~ccess
to 1oc;il ;rrc;l network (IAN) systems. NK;s th;tt
;~clhere to ISA. hlC.4. ;~ncl ElSr\ st;rntlarcls ;Ire avail-
:ible from clozcns of m;~nuf;~cturers for 111;un). net-
working topologies. 1)igit;rl m;inuf;~ctures NI(;s
for thick, thin, 2nd twisted-pair Ethernet connec-
tions. I't\THWOliKS prociucts support tlic Nrtwol-k
I>;~t;~link Interklce Sl,eciticr~tion (NI>IS) :~nd tlius
;cccommocl;~te Ethernet :inel token ring c;~rtls from
other \rentlors. NI>IS :dso pcrmits the use of p;~r;~llel
tr;rnsl,ort st;~clts in the I',VI'I-IWOI<KS for I>os and
PATl~lVOllKS for OS/2 procli~cts. 1)igit;ll also supplies
NetW~re drivers for its I)E(; EthcrWORl<S c;~rtls for
use 011 Novell ne t~~or l t s .

The Apple Macintosh I)<; cnlhoclics ; I I intcgr;~ted
h;~rdware ;111cl software system ;ircliitecture th;~t h;~s
not been clonccl by competitors ;lnd thus h;~s fewer
\l:~ri;mts tIi;rn the Intcl-h;wccl PCs. m~ci~itosh P<:s use
the Motorol;~ 68000 series microl>rocessor. The
later \rersions of these microprocessors provide
32-bit operations on ;I 32-bit ircltlress bus. with
virtu;~l paged memory Applic;~tion progr;lrnniers
;Ire largel). shieltletl h-om the untlcrlying h;~rtlw;~re
I,!, ;III extensive oper;~ting s!.stern ;11>1>lic;1tion pro-
gr;~mming intcrfi~ce (AIII),

Al l current M;~cintosh IT;s ;Ire equipped with bit-
m;~ppecl gr;cl~Iiics, sountl-gener:~ti~lfi liardw:~re, ;I
clesktop IJLIS h)r kc),bo;~rd rund mo~lsc connection,
; ~ n c l ;In i-\(,l,leli~llc network comrnunic:~tions port.
Some M;~cintosli I'(:s Ii;~ve system hi~ses t l i ; ~ ~ permit
periplicr;~l c;~rcl extensions. All ,MacintosIi I'<:s ;~llom~
communication b), 11le;uis of the Apple'17;~lk f;~mUy
of ~xotocols over the Loc:~l'l',ilk LL\N.? Ethernet/
I,oc;~lTalk britlges ;mtl routers ;Ire av;iilahle from
sever;~l venclors. 1)igit;tl's PRI'HWOHKS protluct krm-
il!. inclutles VMS Apple'l';~lk transport st:lcks ;rncl ;III

Apl>leT;~Ik/l)l:.<:net g:ltewa!:

PC Operating Systems
The I'I\THLVOI<KS procluct set supports sever;~l.
client opcr;~ting ~ !~s t cn~s , 11;lrncly .\IS-l>OS, Microsoft
W'intlows, Apple ,M:~cintosh. :~ntl OS/2, ;I joint effort
of I h N l ;Inti Microsoft.

Nlicrosoft's MS-I>OS (;lnd 11iM's l'(;-L)oS) opcr;~ting
systeni e\lolvecl as ;I collection o f services for ;I

single-ti~sking, Intel-b;~secl I>(:. In ;~cldition to file
:~ncl print services. 1)OS 1,rovitlcs ;I simple fr:~me-
\vork for I/(), mcrnor)r m;rn;lgement. ;tntl other

PATHWORKS: PC Integration Software

system services. A command line interpreter is used
to load an application, which may invoke DOS ser-
vices or take over various hardware functions on its
own. Although DOS is evolving in the direction of
providing a protected virtual machine environ-
ment, applications may bypass or subvert systems
services provided by current DOS versions. This
complicates the design of DOs client systems ser-
vices such as PATHWORKS networking software.

Microsoft Windows Environment
Microsoft Windows software operates over the
DOS operating system to provide a protected
multitasking (nonpreemptive scheduling) virtual
machine operating environment and a graphical
user interface. Unlike DOS, the Windows environ-
ment imposes severe constraints on application
structure and interface design, and on the design of
system support software such as PATHWORKS net-
work drivers. Although much of the success of
the Windows software is due to its ability to multi-
task traditional DOS applications, there is a rapidly
growing number of Windows-specific applications
that take advantage of the graphical environment,
such as the PATHWORKS excursion for Windows
server.

Macintosh Client Software
The first Macintosh client was an integrated multi-
tasking hardware and software system with a
well-defined application structure and interface
definition. Subsequent hardware and software
development has refined and extended operating
system services. The Macintosh Communications
Toolbox, for instance, defines an API that is used
by the PATHWORKS Macintosh client to enable
Macintosh PCs to participate in a DECnet network.

OS/2 Operating System
OS/2 was conceived by Microsoft and lHM as a
protected-mode operating system. 0S/2 software
features preemptive multitasking, process threads,
interprocess communication, and an extensive
GUI. OS/2 provides only limited support for DOS
applications, partly because of the constraints of
the Intel 80286 microprocessor, and has yet to
achieve its anticipated popularity. However, OS/2
remains a powerful operating system and applica-
tions development environment, and IBM is address
ing perceived inadequacies. Digital's PATHWORKS
family includes OS/2 LAN Manager server and client
offerings.

PC Networks
Even before IBM coined the term PC, microprocessor-
based machines were using networks to share
expensive hard disks. Sales of networks on which
PCs act as both servers and clients have under-
gone tremendous growth and have outpaced mini-
computer networks in the last several years. The
most common service offered by PC networks is
transparent access to remote files and printers,
which permits PC applications to share resources
provided by a network server.

The popularity of PC networks has also spawned
a variety of distributed applications such as data-
base, electronic mail, and group productivity prod-
ucts. Most PC client-server applications are simply
PC applications that simultaneously share files
stored on a remote file server. These applications
use a file server to achieve their distributed nature.

PC networks are implemented over more than
a dozen underlying physical layers; Digital's
PATHWORKS products support Ethernet, token ring
networks, and asynchronous lines. AJI mini-
computer ancl mainframe vendors have products
that permit PCs to obtain services from their
enterprise-wide networks. Digital's PATHWORKS
for VMS and PATHWORKS for ULTRIX products pro-
vide transparent file and print services to DOS,
Windows, OS/2, and Macintosh PC clients. PC files
stored 011 the VMS or ULTRTX operating system may
be accessed by other PCs or by users of the host
operating system. In addition, PATHWORKS prod-
ucts provide database access, X Window System
support, terminal emulation, electronic mail, and
many other services familiar to those in a Digital
environment.

As noted above, PC networks use many physi-
cal networking protocols. In the following sec-
tions, we describe PC transport protocols and the
application-level service protocols used to encode
the remote service primitives.

Transport Protocols
Commercial PC networks use a wide variety of
transport and service protocols. Although mini-
computer transports are available to meet some
needs, most vendors have introduced their own to
address concerns such as performance and size,
which are critical in competitive concerns such as
performance and code size.

The network basic I/O system (NetBIOS) soft-
ware, developed by IBM, defines an interface to a
connection-oriented transport, a connectionless

10 Vol. 4 No. I Winter 19% Digital Technical Jozr.rnal

datagr;~ni service, and ;I n;ime service i\l)l.' In atlcli-
tion to being the Microsoft LAN 1Man;lger transport
i~iterbcc, NetHIOS h;is become a witlely ;rccepted
st;mtlard for I)(: applic:~tions communicating
tlirectly with triinsports.

Figure 1 sl~ows tli;~t Netl$lOS c;cn be imple~iientecl
by I)(: network venclors over ;I v:~riety of unclerl).ing
trimsports. I>igit;~l's I~ArllWOliKS products h;lve
Netl31os interk~ces to tlie I>L(:net protocol ;und the
tr;~nsrnission control protocol/iriternet protocol
(T(:l'/IP). Ii Othcr popul:ir conimerci;~l transports
i11corpor;lting NctlllOS illterkices ;ire the internet
~xicltet cxch;~nge (Il-'X'), tlic Xerox Network System
(XNS), ;~ntl the Netl%lOS extenclcd user interface
(NctllEI.II). iLl;~ny of these tr;lnsports ;~lso 1i;ive a
n;itive trrlnsport ,\l)l t I i ; i t ; i l lows the ;~l>plic;~tion to
m;~lie i ~ s c of fcitt~~rcs not ;n~:~ilable tl1rough the
NctlHOS interfitce.

71'lic 'l'(:W11' protocol fiui~ily is beginning to
;~chicvc some \/isibility in tlie I](; nctworli marltet.
At first largely ;~ssoci;itccl with llNiX :inti L!rrn11)< net-
works ant1 Sun ~Microsystenis Network File Service
(NFS) protocol, 1'<:I'/11' h:~s been lately offered as
;11i untlerlying tr;lnsport for NetlilOS in several ven-
clors' ~>roclucts, i~icl~~cling 1)igit;il's I1~\TH\V0RKS kim-
il): In ;~tltlition to tr;lnsp;lrent tile ;~ntl print services,
I)(: ilscrs of 'I'(:I'/II' recj~rire ;~cccss to ;I .il:~riet)' of
tools ;111tl utilities, such :IS 1ii;til ;~ntl termin;~l cmi11i1-
tion, wliich rn;t), rcscmblc l l N l X or III:l 'l<IX tools ;inel
utilities. I)igit:~ls l'Xl.H\VOttltS h1111ily has adoptetl
the ;~ppro ;~c l~ of m:iint;~ining ~x~r:~l lel T<;Wll' and
I)T:<:net i~iipleme~~tations, both of which luve ;I

I)(:-centric rathcr th:in a host-centric orielitation.
The I',\?'H\VOI<KS '1'(;1'/11' implcn~ent;~tion operates

o.ifc.r either ; i n Ethernet or ;I token ring net\vork,

APPLICATION P
NETBIOS APPLICATION
PROGRAM INTERFACE I

APPLICATION PROGRAM

TRANSPORTS '+zl

ant1 provides a f le transfer protocol (FTl') iltilit!; a
1'EL.NET terminal emulatol-, ;tncl ;I Berkeley Software
Distribution (BSD)-l ike socket intertiice for ;il>pl ic;i-
tion clevelopers.

Mi111y of Digital's customers have extensive
DECnet networks. Digitirl's I'/\THWOItKS protluct
farnily provicles I)(: clients with filll 1'Ii;tse I\ / encl-
node function;tlit): inclutling file access l istcner
(FAI.), net\vorl< file transfer (NYI'), co11im;tncl termi-
nal ((;TI':Rh,l), ;~ncl network utilities. I',\I'tiW/ORKS
proclucts :~lso support ;I NetlllOS iml>lernenti~tio~~
that uses the 1)EC:net protocol as a trimsport. 'The
l~ATII\VORKS DECnet imp1emcnt;ition opcr;ttes o\ler
either :In Ethel-net or a token ring net\vot-k ;und pro-
vidcs :I 1)SI)-like socket interhicc for ;ippIication
developers.

NetWare soft.tv:tre from Novell Corporation is ;I

j>o]>u Inr h~~iiily of I>(: ~?et\vorIi services, Ilic internet
p;icl<el. excliilnge protocol is No\,ell's cleri.i,ative o f
tlie Xerox internet cl:~t;igr;im protocol. 11% i s the
network tl-;~ns~>o~-t that iuiderlies S~-'X, a secl~~cncecl
reliable protocol. IPX is alho i~setl by tlic NetW~re
core protocol, N<:l'. No\rell ;~lso suly>lies a n iniple-
ment;~tion of the Netl%lOS intcrk~cc over the It'X
protocol. I>igit;~l supports the IPS/SPS protocol on
L)OS clients thro~rgh the 1)1\1'I ILVO'ORKS for h1cLWtre
coexistence product. ;tncI has :~nnouncetl plans to
integr;~te NetlKire protoco1.s into I)iYl'l-lWOllKS prod-
ucts in :a w;~!, th:~t],ilrallcls current use of I.i\N
~Man;iger protocols.

The Apl~IeXilk Famil!r o f protocols employed by
~Macintosll I'<;s ;tccommocl;ttes three liartlnrare lay-
crs: token ring, Ethernet, ;~ncl I.oc;~l'T;~lk. Al>l>leT;~lk
inclutles ;I tl;itagr;~ni delivery protocol. routing ant1
n;ume binding protocols, ;uncI sever;~l ~ession-le\~el
and service protocols.

For efhciencj: ni;injr I)(: network vendors h ;~ \~e
invented their own protocols. For example, I,otli
tlie IHM/Plicrosoft NetHElJl ;lncl the ..i<:om (;orpora-
tion NRI' t1-:111~1>ort ~ro tocols h;~ve been oplimizecl
to work on IAN topoJogie~.(~ 1)igital's I'XI'HWORKS
software provides the loci11 ;ma tr;lnsport ([,AT)
;~nd local ;lre:t system tl-;insport (I.hS-1') protocols o n
se.iier:il o f its client pl;~tforms; these protocols ;Ire
usetl to xccess termin;~I scrviccs ;~nd InfoServcr
disk services.

,Yerl.)iccz Protocols
Service protocols encotle I?igli-level service
requests at the application I;~).er: these protocols
;Ire often venclor-specific, Typic;~lly. an application
issues 21 st;mtlarcl I/O request, such as "open tile;' to

PATHWORKS: PC Integration Software

a systems interface to obtain tr;insparent access to a
remote file or print s c ~ \ ~ i c e . l 'he request mqr be
either intercepted (c.g., in Novcll's NetWire soft-
ware on 110s) or cli:~nnelccl througli tlie operating
system (e.g., in the J4icrosoft l.,\S ,Ll;in;iger or Apple
M:~cinLosh soft\v;ire) to ;I reclirector or shell soft-
ware module that encoclcs i t into ;I service protocol
packet. 'I'he rcdirector then sencls the ser\,ice
request to the 1oc;il tr;insport. When the response
piickct arrives from the scr\-icc: provider, the rctli-
rector interprets thc service protocol ;md provitlcs
the application nlitli the appropriately forrn;ittecl
response. The redirector ni;iy ;~Iso provicle :In ,\l'I
for access to nontransparent services such as peer-
to-peer communication ;rnd m;unagcment of ;I

remote serves. Figure 2 illustrates the role of ser-
vice protocols in fulfilling ;I client request.

The Jlicrosoft I.i\N ,Ll;tn;igcr retlircctor softn7;ire
uses the server mcss;ige block (SMB) protocol to
;iccess remote file ;incl print ~er\~ices. ' l'his proto-
col may run over multiple tra~isl~orts, e.1 , c .I i trans-
port ;~ccesst.cl by means of a Nctl$lOS interface. 'l'he
rcclircctor also provides a client)\PI over the SklU

protocol for m;iny nonlransl>;ircnt services such ;IS

peer-to-peer commi~nic;itions via n:in~ecl pipes, ;I

messziging service. anel remotc scrvcr m;inagcmcnt.
Novell's NctWare sol't\lrlare irses the S<:P protocol

to ;iccess remote file ;11it1 print scr\,ices. l'liis popu-
lar service protocol runs onl), on tlie IPS tr;insl,ort
st;ick. The Net\Y",ire shell provitlcs client APIs ovcr
S(:l' for m;m). not1tr;msp;ircnt services S L I C ~ ;IS trims-
:~ction tr;icking, sem;iphores. ;inti remote servcr
n1;in;igemcnt.

Apple's AppleSharc softwarc iises the Applc'liilk
s i~i te of protocols. 'l'hcse protocols include the
App1e'l':ilk filing protocol (AH') ant1 printer ;iccess

FILE I:,

OPERATING Id-1
LOCAL
STORAGE I

REDIRECTOR

f TRANSPORT f

TRANSPORT TRANSPORT

17rotocoI (Pl\P), which permit tr;rnsparent file ;lnd
printer redirection.

Sun's Nl:S system h;is wic1cspre;itl m~~ltivcndor
support in (!NIX ;ind I'1,TRlX environments. There
arc ;I variety of I'C protlucts that mrork over the
11' lxotocol family to pro\~itlc lile ser\,ices from a
st;unclarcl I ' N I S or I 1:I'IUX S F S server.

Commensurate with Digital's role as a network
integrator, the PA'I'IIWOKKS protluct Family is large
;inel diverse. In the l'ollo\\~ing sections we character-
ize the I'I\'I'HWORI(S family by its client platforms,
scrvcr platforms and services, and physical net-
works and network protocols. Table 1 shows the
history of the PXl'lllV'OlNS protluct faiiiljr.

Since its introduction in 1986, the PATWOIIKS
protluct family has continuetl to expand the list of
client pl;itforms, servers. alitl transports it sup-
ports. 'l'hc most popu1;ir client platforms are Intel-
basccl and operate uncles nos and/or Microsoft
Windows. l'hcse clicnts c;in be serviced by VMS,

Il.TlU>;, and OS/2 servers. The Macintosh clients
c;in be serviced by V.\.lS servers.

Thc PATHWORKS p rod~~c l Eimily offers transparent
file ;ind print ser\.ices throi~gh tnro technologies:
the microso oft L,\N M;in;igcr is used for DOS, OS/2,
ant1 Wintlonis client pl;itforn~s: ,\ppleShare is used
for .\l;icintosh platforms. In ;~cltlition, on DOS and
Winclo\\;s p1;itforms ;I c1u:il-scr\.icc stlick approach
is L I S C ~ to allow tliese pl;itl'or~ns to access native
NetWirc services tliroi~gh the PIYI'IIX;ORKS for
Nct\Ulre (:oexistence procluct. 'l';~ble 2 shows how
clients and s ~ r \ ~ e r s can be connected by means of dif-
fcrent transports. 'I'he first column is a list of the sup-
ported servers; each cell shows the transports that
can be i~secl to connect the client and the server.

The 1,lacintosh client ;~lso supports the DECnet
tr;lnsport. Ilowever, lile ant1 print services are only
;i\.nilable through the Apple'li~lk stack. Clients also
have access to a nunil,cr of tr;lnsport gateways,
including AppleTalk-DE<:net. S.25, ant1 the System
Nctworl\: Arcliitect~~re (SSA), the latter two through
Digital nctniork proclucts.

The clcf;~ult PA'l'IIW/OIWS network protocol is the
I)l:(;net protocol. 1'(:1'/II-' is av;~il;~l,le as an optional
atltl-on to the base platlorm. 'l'he 1)l:Cnet protocol
allows the user to access tlie following services in
;rcldition to the transparent file and print services:

A fill1 set of management tools (e.g., the DECnet
network control progrzim for managing the
tr:insport).

Table 1 Product His tory

Area Supported 1986-89 1990 1991

File and Print Service LAN Manager LAN Manager LAN Manager
Appleshare Appleshare

Server VMS VMS VMS
ULTRIX ULTRIX
OS/2 os/2

Transport DECnet DECnet DECnet
AppleTal k AppleTal k
TCP/I P TCPII P

NetBEUl

Network Ethernet Ethernet Ethernet
LocalTal k LocalTal k

Token Ring

Clients DOS DOS DOS
OS/2 Macintosh
Macintosh OSl2

Windows 3.0
NetWare Coexistence

Table 2 Cl ient-Server Transports

I Client Platforms I
Server Supported DOS Windows OS/2 Macintosh

VMS DECnet DECnet DECnet AppleTalk
TCPII P TCP/I P TCPII P
LAST LAST

ULTRIX DECnet DECnet DECnet
TCP/I P TCP/IP TCP/IP

OSl2 DECnet DECnet DECnet
TCPIIP TCPIIP TCP/I P
NetBEUl NetBEUl NetBEUl

The NIyl' ~ ~ t i l i t y for tr;~nsferring tiles to systems
11i;lt do not Ii:i~.e sel-ver softw;~rc.

A remote tlisli (;IS oplx)scrcl to remote tile) 111ech;l-
nism o \ r r thc I.r\S'I' protocol. *Illis mech;~nism
;~l lows ;~cccss lo 1)igit;ll's InfoServer products
th;~t support nctworkctl <;l)-I<O;Lls, i.e.. r e ;~ t l - on l~~
optic:ll disks.

J>OS ; lncl \Vinclows t r~ -min ;~ l cmul;~tor-s opcr;rting
over the I.X1' o r (:I'E11,LI protocols. ;IS we1 l ;IS ;ls).n-
c h r o n o ~ ~ s lines. 'l'hc 1.x1' protocol III;I!- ;llso I,c
ilsetl to ;~ t t ;~ch ;I local I > (: printel- to ;I VkIS print
clileue.

A l)OS-l~:~sccl X Wintlow S),stcm server tllat nllows
thc I'(: to act ;IS ;I tlispl;~). t I ~ ' \ ~ i ce for ~klotil' o r
I)li(:wintlows ;~l>l>lic:~ tions.

A low-cntl electronic 11i;liI i~tilit!. tll;lt j ~ r~v i c l es ;(

I>(: front cntl to the \'US ;lncl I II:I'l<IS m;~ i l s).stcms.

1)evelopment tools in the form o f progranlming
1ibr;lries for access to peer-to-peer comniunic;~-
tion w i th remote ;tpplic;~tions.

The 'L'(:IYIl' protocol allows the ~ l s c r ;lccess to the
following services in ;~tlclition to those listed ;tbove:

'The FTI' utilit), for file tr;~nsfer

The :~l>il i ty to use the b;lsc tcrmin:~l cmul:~tor to

;I! low ol,er;~tioil over l'LI.NET

'The ;tbilit!, to run the I)oS-b;lsccl >(Wintlow
S},stem server over '13(:1'/11' ;IS \vcll ;IS over the
1)EC:net protocol

Every Mr~cintosh I)(: i ~ l c l ~ ~ t l e s soft\v;~re to ;ICCCSS

br~sic file r111cl pr int services over the AI:l'. ' l 'hr
l'~\'l'li\XiO1IKS klacintosh l,rotluct k11iiil). provides
thosc services o n senZer pl;~tt'oriils, 1 ~ 1 t ;11so pro-
vitles :I set of tn~nspor t protocols ;~ncl i~ t i l i t ies on

PATHWORKS: PC Integration Software

the Macintosh client. In particular, PATHWORKS
products supply a DECnet stack with file transfer
and management utilities, a LA'T implementation
and terminal emulator, and an X Window System
server implementation that operates over the
DECnet or an optional TCP/IP stack. The PATHWORKS
Macintosh client includes a programming tool for
access to remote databases on Digital platforms.

The PATIIWOIXS OS/2 client provides a LAN
Manager redirector and SMB access to basic file
and print services over the DECnet protocol or an
optional TCP/IP stack, and a collection of tools ancl
utilities similar to those for the PA'I'IIWORKS DOS
client. Some features, such as an X Winclow System
server, are lacking.

In addition to the applications included in the
base PATHWORKS product, the following client
applications are available as layered proclucts:

excursion for Windows, a Microsoft Windows/
X Window System server application that allows
x Wi~idow client applications to shi~re thc PC dis-
play device with native Windows applications

x.400 mail, which provides PC: Cront-end access
to Digit;ills X.400 mail servcr products

Conferencing, which provicles a I'C front encl to
ViU(Notes

Videotex, which provides a PC front end to
Digital's Videotex servers

desktop applicatiot~s with host system services
such as those available with the W S , ULTRIX, and
os/2 systems. PATHWORKS network software makes
it possible to develop front-end processors for
today's host-based applications and to design new
distributed applications. Hence, PATHWORKS prod-
ucts allow the existing computing infrastructure to
progressively evolve towards a distributed model.

References

1. B. Baldwin, Local Area Cornmunication Service,
Metric Note LAN 40 (Stamford, CT: Gartner
Group, Inc., December 1991).

2. G. Sidhu et al., Inside AppleTnlk, 2nd ecl.
(Reading, MA: Addison-Wesle): 1990).

3. IBM NetBIOS Aj~pliccltion Development Guide
(Armonl<, NY: IUM Corporation, Document No.
S68X-2270-00, 1987).

4 . Protocol S ~ C L I ~ G ~ L L I ~ for NetBIOS Service on a TCP/
UDP Tra~llrsport: Co~zc-epts and Methods, Internet
Engineering Id)rl< Force RFC 1001 (March 1987).

5 . Protocol Slur ici~/rcl for NetBIOS Seruice on u TCP/
UOI' Trarl.spoi.l: [letailed Specz~catiorz, Internet
Engineering Task Force RFC 1002 (March 1987).

6. Local Area ~Vehoork-Technical Reference
(Armonk, NY: IBM Corporation, Document No.
SC j0-3383-2, November 1988).

DliCquery software, wliicl~ providcs a PC front 7 m p e n Developer's Speczpcation-Protocols for
end to structural query language (SQL) services x/open PC Interworking: SrMB (Reading, U . K . :

Digital also provides development tools for
building distributeel applications on the
PATHKiORKS base system. l'hcse dc\~clopnient tools
include tlatabasc access to a host-bnsecl SQI. server
by mcans of the SQL services and distributeel trans-
action processing through the Dl(:tp for A(:klS
product.

Summary
The PATHWORKS product family provides direct
access to the local and wide area enterprise envi-
ronment from desktop devices. Clients can access
multiple file and print servers, gatewalls, clictabase
servers, transaction processing systems, and elec-
tronic mail systems on n variety of server. platforms
in a consistent manner from multiple desktop
pla~forms.

The scrvices provided by the PATHWORKS proci-
uct s c ~ are the foundation for the integration of

X/Open Company Limited, Document NO.
XO/DEV/Yl/OlO, 1991).

Vo1. 4 1%. 1 Wtnlrr 19.92 Digital Technical Joztri1~11

Edzunrd W Bresfznhnn
Sizi Yin Clwng

PATHWORKS for VMS File Server

The h4Tt/lw'(lRKS t i ~ r l!l/S jfile ser,l1e/. i l l t q ~ ~ t e s i l ld l~~t l : j~-s tn~~dl f l . f l pel:~ollLl/ c0111-
l~uter.s il1itl, K4X 1/.1l,S sj~stei~ls oiler' n co~~zi~z~irlicatioils riet~l~oi'k. It iillplellle~lls
,blilio.osoJi S sei.rler. iriess~igc block (S,IIB) coiep~~olocol, zr~l?icl~pi.oilic/e.s ~esozrr.ce sb~ir.-
iizg ~isillg n clie~it-se~.rler ~i io~le l . The se~~rler~pr~or~i~les trwi~sparer~t 17elu~ork access to
W4X CJ,llS ~ l I , E , F I I j l e s , f r o i ~ ~ n PCS rlcitilre opo.nting s)sten?. The ar~cl~itecllli~e sup-
po1.1~ iriiiltil~le tiur17sl1or.2~ lo ei?sur.c i i~lerol~eiwl~il i t j~ oiiloi~g all PCs cor?izected oir
L I I L 011e1z ilet~l'ork. Diie to file perfofiir?a~~ce const~zliizt.~ of ii~nrzj~ PC ripplicntioiis,
~ 1 ~ 1 1 ~ 1 cficbi1rg clild (1 11nr.ietjr of olhc.1. algor.ithi~zs anrl lneui.istics u'o,e ei~zpl(!jled to
deo.emse i.eqriest i'csl~orzse liiile. The file ,sei.cler also iilip/e~nei?ts fl seclir,it,jl i~zodel to
pr.ot~icle 1:lI.S secrii.itj) n~echailisirls to PC zlsers.

Coupletl with the l-'XI'HLVORKS for D O S or
J'IITHLVOKKS for O S / 2 product, PATI-ILVORKS for V41S

creates ;I tlistributecl compi~ting environment,
based on n client-server motlel. This environment
allows person;rl computer (PC:) users to access KklS

s).steni resoilrces tr;11is11;1re1itl): I'C clients ;ICCCSS

the ~) ~ s t e ~ i i server from their native oper;~ting sjrs-
terns, t)rpic;~lly)IS-l)OS. 21s if i t were [oc;ll to the
I>(;. The v,u(v k l s system resoirrces t o be sli;~red, i.e.,
files or printers. ;rre offeretl ;rs services over the
network to I>(; clients. The computer s).stenis
provitling the s11;lretl resources are relerred to 21s
servers; ant1 the IY:s requesting the resources as
clients. The SlVlB protocol from the Nlicrosoft
Networks/OpenNEI' (&IS-NE'T) Arcliitectirre was
chosen to pro\licle lile sh;uing fronl ;I \'IL~ v>lS sys-
tem to ; \ t - I) O S ;~ncl 0 s / 2 clients.' The SklB protocol
is a comrn;~ntl/response application-I;~)'er protocol
designetl to provicle tile s I i ;~r i~~g i l l ;I I><: network.
Since SkII3 is ;III ;il?l?lic;~tion-I;~yer ~~rotocol , it is
tr;insport intlel~entlent and tlitls can be imple-
mented over licterogeneoi~s networks.

<:entr:~l to this environment is tlie tile server, the
component tIi;~t processes the SMI, requests to pro-
vide file ;inti print s11;lring long with m;in:lgement
functions. The tile server maps SlLlll file requests to
the ;lpl?rol~ri;lte c;llls for the \'AX VlLlS FILES-11 tile
system interhce ;rntl Ihonorh al>plical>le security
n~eclianisms. ;\lb-DOb ;~ntl \/,\S VMS systems have tlif-
ferent lile systems ant1 securitjr motlels. To integrate
these clifferent environments, m;~pl,ing policies,
along with ;un ;u-chi tecture :ippropri;~tc for the \IJVIS

sJrstem, 1i;1cl to be tlevelol~etl ;lntl iml~lemen~etl.

This paper describes the design :~nd implemen-
tation o f ;I nontleclic;~tetl 1person;ll computer file
server (PCFS) o n ;I VLLY VMS computer s),stern. I t

det:~ils the PATHLVORKS for VlLlS file system ancl
tliscusses its transport l;~),er interfirce ancl perfor-
ni;lnce consider;ltions. inclucling d;~t;l c;lcIiing
el'fects ;~nd disk space ;~lIoc;~tion. The paper then
expl;~ins f le sharing ;tmong server processes in ;I

cluster e11viro171iient ;un t l conclutles \vitli ;I disc11s-
sion of the server conhgur;ltion :IIICI m;ln:cgement
interface.

File Server Architecture
The file server is in~plenientetl 21s ;I single, multi-
tlire;~tletl, nunblocking clet;lclietl process with ;In
associ;rted perm:lnent I)E(;net object. 'This user-
mode process is privilegeel ;~ntl 1i;ls ;I high priority
Figure 1 shows the ;~rchitecture of tlie server. Onl).
one file server process exists on ;In), one c o ~ i i l ~ ~ ~ t e r
to li;~ntlle :ill client recpests, An :~ltern;~ti.i~e choice
would be to h;rve mi~ltiple processes service the
clients. 'Ihe use of ;I single process retluces system
resource requirements ancl e1imin;ltes the 1;ltency
t h ~ t is incurretl froni context s~ritches ;Inlong the
rn~~ltiple server processes. lilso elin1in;itetl is tlie
1:~tenc). th;rt results fro111 [)I-ocess cre;ltio~i ;it the
time ;I client connects.

A threads pacl<;ige wi tli mill tiple inclependent
threads of execution \vitliin :I single process sup-
ports multiple clients a n d periotlic opcrations
\\7itliin the lile server. 'l'lie file server cre;ltes a
thre;~cl I-'or ;I client when i t reclilests esr;~I.~lisliment
of a virtu;~l circuit to tlie tile server. The threat1 is

PA'THWOKKS: PC Integration Software

I
- - ~

PERSONAL COMPUTER FILE SERVER

1
I

PCFS SERVK;E

-@ ETHERNET

Hgure I S m e r Arcbftecture

AUTHORIZATION wwyw

deleted when the client terminates its connections.
A client's thread carries out the operation specified
in the request Sh4B without blocking the process.
With thisscheme, processing SMB requests is sychro-
nous with respect to the client, yet asynchronous
with respect to the file server process.

Since a server process may be processing the
requests of hundreds of clients simultaneously, the
server operates In real-time. The threads package
contributes to these goaIs by providing an envi-
ronment in which the process never enters a wait
state and a client thread is safe from CPU starvation.
Preventing the process from blocking is accom-
plished by performing all file VO asynchronously
and by calling operdting system routines asynchra
nously when possible. Starvation is prevented by
scheduling clients using a nonpreemptive first-in,
first-out (mo) scheduling algorithm. With this pol-
icy, a thread executes imtil it voluntarity yields, usu-
al ly clue to an UO operation or an operating system
call. [:sing a nonpreemptive scheduling algorithm
also eliminates the latency that would result from a
thrcncl svitch in a preemptive environment.

PATHWORKS File System
A file server needs to provide transparent file access
to a VMS file system and ensure file accessibility
between DOS and vMS users. Since these operating
systems have different file systems, P A T H W O W for
VMS must store the files in VXX VMS FEES-11 format
and provide a mapping algorithm to bridge the
two operating systems. Because the OSD and DoS
systems use the same file system, the mappings per-

formed to address the difference between the DOS
and VMS systems can be applied to support trans-
parent file access from an OS/2 client.

R& Name Mapping
DOS and VMS FILES11 support different naming syn-
taxes. DOS supports 8.3 naming format; that is, the
file name Is composed of a maximum of eight char-
acters with a maxlrnum of three characters as the
extension. In contrast, the VMS FILES-11 file name
supports 39.39 format and includes a third compo-
nent, the file generation number. In addition, the
legal character set for a file name is larger in DOS
than it is in the VMS system.

The PATHWORKS file server does not include a
mapping algorithm to convert a 39.39 VMS file nam-
ing syntax to be accessible to DOS. Any VMS file that
DoS system users need to share must be created
with a file name that conforms to DOS 8.3 format.
Since the 8.3 naming format maps directly to the
39.39 format, no mapping algorithm is required to
guarantee a VMS system user access to files named
by a DOS system user.

To overcome the difference in character sets, a
comprehensive mapping algorithm was written to
ensure shareability and transparency. Since neither
operating system is case sensitive, the file server
changes the file name to ilppercase before any oper-
a tbn is performed on the tile. The legal character
set for VMS FILES11 file name4 includes uppercase
alphanumerics, dollar sign, hyphen, and untler-
score. The character set in Dos includcs all noncon-
trol characters with the exception of a few special

Vt31. 4 No. 1 Winter 1992 Digilnl Techrrical Journal

signs. l'he I',\'I'II\VORKS server m;tl>s the ch:tr;tcter
sets lxtsecl o n tlir following rules:

All ;ill,h:~numeric cIi;~r;tcters :ire cli:ingcd to
L I I , P U C ; I S ~ letters; :III!, ch:~r;lcter thr~t is valid in
rl \/>IS tile nxmc is 1pr1ssccl tlirol~gli i~nch;~ngetl.

All other ch;~ractcrs :Ire chnngecl to two uncler-
scores. fol lo\\recl by two hes;~clecim:~l cligits t11:tt
rcl'rcxnt the AS(:lJ code of the ch;~r:~cter being
m;tppctl.

\ h I S 1711 1:s-I 1 allo\vs nii~ltil>le \.rl-sions of rt file to
be gener;itrcl ;inel storccl in :I tlirectol-!: These tiles
;ire iclcntiticcl I,!, thc numeric component, which
rc~xcscnts the version numl)cr. of ;I hlc n;unc.
?'here is no ec~~~i\!;~Ic~it co~icept i n tlie 00s system.
'l'hc 1'IYL'lI\VORKS server m:~]>s the highest vcrsion
(or niost recent gener:itioti) to he accessible to l>c)S.
Simil;~rl!.. thc scr\.cr. when cre;~ting ;I file on bch:llf
of :l 1)OS clicnt. gcncr:ltcs t . 1 ~ file with :I version
limit of 1. '1;) preserve ;~ncl 11onor the \,ersio~i limit
inform;~tion for the \'>IS environment. the server
~ ~ c s e r \ ~ c s the \l,\.l$ filc ;tttribiues of previous ver-
sions of the filc. <:onsequc~itly, if tlie file is crc;ltctl
by a V>IS usel; ;~nd is later uptl;~tccl I>y ;I I)()$ user, a
new vcr-sion of the file is gcncr:~tecl, ;inel the version
limit int'orni;i[ion is l,rcscl.\.ccl.

Disecto ry M L L ~) ~ ~ J Z ~
Tlie \/)IS s),stcrn rcqi~ircs ;I tlirector! name to cntl
with "tlir" :IS ;in extension. I,ut the I>OS systcm does
not post ;III!. restriction in this :tre;i. l?XI'H\VORKS
m;~ps clirector!. n;tmcs in I)(>$ by inclucling the
".cstn cIi;~r;~ctc~.s :IS 1);ll.t OF ;I clirectory nitme. Since
the pcriocl is not :I Icg:~l c1n;lr;icter for ;I 1)OS clircc-
tor!: i t is 111;1l>l>ul 11si11g the tloi~ble iuiclerscore Fol-
lo\vccl 13). the hcx;~tlccim;il tligit rule. An! tlirectorp
name in 1)OS th;~t conforms to the VblS clircctor)-
n;~~iiiug synt;~x is p;lsserl through untoucl~ecl.

D0,S File A ttri61 L te ~ W ~ ~ p p i ~ z g
l%oth tile s!.stcms ;lssoci;ltc :I set o f attl.il>~~tes to the
tiles, b i~ t the tilc ;~tt~'il,i~lcs o n ;i 0 0 5 tile clo not have
;I one-to-one corrcspo~iclc~.lcc with those on ;I VMS

filc. 11 I>OS tile II:IS foi~r t!.pcs of filc attribi~tes:
arclii\~c. s).~tc11i, hitlcle~i. ;lnrl re;td-onl!: 'l'hc con-
cepts of :trcliivc. s).stem. :~nd liicltlen ;Ire not recog-
nizctl in the VklS file sjrstcm. L'IYI'HLVORKS softw;u.c
sto~.cs the l)OS file ;~ttril,utcs in ;tn ;~l)plic:ltion
:ICCCSS control cntr!, w11cll cre;~ting :I tile on I.>eh:~lf
of :I I,(: \vorkst:~tion. b'urtlierniorc. the re:lcl-onljr
:lttribute of :I 1)OS tilc is rn;il,l,ecl to the re;ul-only bit

of the recorcl man:rgement scrviccs (K.\.lS) protec-
tion tielrl h)r s).stern, O \ Y I I ~ L ant1 group.

,\ I>OS file is org:inizetl ns ;I b!'tc strc;lln, but :I VklS

file is organizeel ;IS collections of rccorcls. Although
the \!MS system su j>por ts~ h)rm of s1re:tm file, most
VXlS files are stored in rccorcl format. Furthermore.
;I \'>IS filc with a stre;tm recorcl format cloes not
map directly to ;I I>OS stre:tm for11i;tt. This poses
;In interesting problem in intcgrrlting \'lclS : I I I ~ ~ 1)OS
tile s!,ste~i~s.

Since I1~\Tf I\VOIIKS .softw;lrc proviclcs tr;tll.sp;brent
access to the V,\lS host system. ;I T>OS client views :(I I
hlcs on file scrvices ;IS stre:tms of b ~ ~ c s , just as if
these files were storccl loc;tl I!: When the sen-cr ere-
;ltes :I file on hch:tlf of ;I PC, it spccihcs the file org;~-
niz:~tion ;IS scqucnti:~l with stre;\rn record form;tt.
Thus, [lie b!zte strc;um cli:~r;~ctcristic o f the 110s sys-
tem is prcscr\7ecl.

'I'lle more complex part 01' the problc~ii is to
resolve the sli;~rc:tbility issues between \/MS ;lnd
1)OS app1ic;ltions. The I'AI'H\VORRS server is i~iij>Ie-
mentcci to pro\:icle the ncccss;~r)~ conversion
between \?.\1S ;11id I>OS file org;~uizntion on stre:trn
tiles. The tile ser iw views ;I file :IS slre:~m if i t c:ln
re;lcl :lncl write the tile without regrrrcl to ;In). rccorcl
boi~nclrll~ies. 'This ilicluclcs ;in!. tiles with tile org;~ni-
z;ltion 21s sequcnti:tl ;inel recortl for1ii:lt ;IS strc;~m.
strc;~rn-cr. stream-If. ;tntl unrlefinctl. as well :IS

fixeel. If ;I sequenti;~l tile has fixctl rccorcl form;~t. i t
must conform to rccortl size ;~ncl ;~ttributrs :IS fol-
lows: cvcn with no recorel ;~ttribi~tc; 512 \vitll no
block-span; :inel power o f 2 with 110 I,locli-~p;~~?.
'l'hus, ;III K,US o\:crhe:ltl in te:lcling runcl \vriting tlicsc
files is ;~\loiclccl.

Any file tIi:tt docs not meet the criteri;~ of the
strc;trn categor) is s;~itl lo I x noiistre;ilil. 'I'he
I'ATH\VORKS server pro\:icles re;ttl-olz1)- access to :my
VMS nonstre;trn filc. 'l'his is :~chicvctl by irsing ;I Vl\X
(: run-time librag, call thr~t pro.i~icles stl-e;~~ii lilc
~ t ' l ~ l i l l ? t i ~ ~ :11itl ;I conversion r~lgoritliun to ~,rol,erl)'
m:Ip ;in!. c:trri;~ge return ;inel l ine fcccl inforrn;~tion.
The tile scrvcr c;lnnot support writing to these files
bec:luse the ShIB protocol cloes not preserve rccortl
bountl:~ry information. l 'h i~s, the protocol m;~kes
it impossible lor tllc tile server to gu:~r:~ntee d ; ~ t ; ~
integrit). when upcl;~ting :I nonstrcr~~~i file

The klS-NII'I' architecture allows for concurrent
access to server-b;tsecl tiles by mi~ltiple clients. I>(:

PATHWORKS: PC Integration Software

applications acquire this fi~nctionality through the
MS-DOS byte range locking calls. These calls allow
PC applications to lock and unlock ranges of bytes
in a file and to detect conflicts. Conflicts occur
when part or all of a range specified to be locked
has been locked from a previous call. In contrast,
the approach taken by RMS provides locking on a
record basis. RI\$S uses the VMS distributed lock
manager to implement this functionality. Unfortu-
nately, the lock manager is not well suited to imple-
menting byte range locks because the byte range is
represented in a form that allows the lock manager
to arbitrate access. Therefore, the file server imple-
ments its own lock database and arbitrates access
to shared files. Internally, the server process main-
tains a list of locks for each file the server has open
and arbitrates access based on these lock struc-
tures. Files opened by the file server cannot be
shared with other VMS processes because the file
server has an exclusive mode lock on each file it has
open through the vMS lock manager. The exclusive
mode lock guarantees protection from other VMS
processes.

Open Mode Mapping
The DOS file system defines open access modes to
allow applications to synchronize shared access to
a file. The open modes are deny-none, deny-read,
deny-write, deny-reacl-write, and con~patibility.
Each provides a different level of file sharing capa-
bility. Although these modes do not map directly to
the VMS file system, no mapping is needed to han-
dle the differences.

The PATHWORKS server opens a file that is being
accessed by a client with exclusive access on the
VMS system. It assumes the responsibility to arbi-
trate shared access among multiple clients. The
server supports DOS open access modes by imple-
menting the shared access resolution algorithm
described in the SMB protocol specification.

P-ORKS Transport Layer
Interface
The PATHWORKS for W S product supports multiple
transports through a common transport layer inter-
face. These include the local area system transport
(LAST), the transmission control protocol/internet
protocol (TCP/IP), and the DECnet transport proto-
col over Ethernet and token ring networks. This
well-defined, uniform mechanism dynamically
adds support for network transports and protocols.

By conforming to this specification, transports can
be added to a server platform without upgrading or
changing the existing file server.

The performance goals of the file server had
an impact on the development of the transport
layer interface. The file server utilizes an optimized
transport layer interface that reduces buffer copies
and eliminates some of the standard VMS I/O paths.
This optimized interface is used -with the LAST trans-
port and is described in detail in "The Development
of an Optimized PATHWORKS Transport Interface"
paper in this i s s i~e .~

Performunce Considerations
Achieving an acceptable level of performance from
a nondedicated file server layered on a general-
purpose operating system proved to be a challeng-
ing task. One of the performance goals for the file
server was that it perform tasks within 1 0 to 20 per-
cent of the speed of a dedicated PC file server run-
ning on a similarly sized CPU performing the same
tasks. This goal was achieved by employing a variety
of caches, algorithms, and heuristics. Many of these
heuristics were based on the analysis of the SMB
messages passed between the server and the client
for typical PC applications. As discussed in this sec-
tion, the response time of the ser17er is improved if
the memory contains the information necessary to
satisfy a recluest when it arrives.

Data Caching
An obvious approach to implementing the read and
write functions in the file server is to issue these
operations to the FILES-11 file system, wait for their
completion, and then send a response to the client.
This method is simple and persistent, but does not
perform well due to the bottleneck formed at the
FILES-I1 inter t~ce and disk. The file server imple-
ments a software write-behind data cache to
reduce this bottleneck and to eliminate waiting
for disk writes to complete before returning a
response to the client. Caching is a technique used
to decrease access time to information by using a
faster intermediate medium to store the most com-
monly accessed pieces of information. The caching
algorithm implemented by the server is a logical
block cache. The cache is a region of memory that
is segmented into fixed-sized buffers. Each file
openecl by the server has a dynamic set of buffers
that increase and decrease based on a least recently
used (LRU) algorithm.

18 V01 4 No. 1 Wiizler 1992 Digital Techtiical Journal

t@ct.s 0 7 7 Clieizt Rc~rrl I<e~/~rests Althoi~gh this is
an optirn;~l environment for servicing re;ttl
reqLrsts. reserving t l ; ~ t ; ~ in memor)z to satisfy :ill

re;~cl reclllests is not pr;ictic;~l. A number of mecha-
nisms were iml>le~ilcnted to ;cpproach the itleal.
The c l ; ~ t ; ~ caclxc ret;~ins recently accessed d ;~ t r~ in
memory with [lie cxl>ect;~tion th:~t i t will be refer-
enced ;~g;~in soon. Tliis is bnsetl on thc colxcept of
1oc;llity ot refel'cncc, both sprrti;~l :~ntl ternpornl.
Once t l ~ c server receives ;I re;~d request, it tleter-
mines if tlie buffers ;~ssoci;~ted with the reat1
reqi~est t;lrc in the c;rcIic by using a hashing ;~lgo-
ritlim for the looki~p fi~ncl-ion. If tlie tl;~ta to satisfy
the re;~tl rcqucst is in Illemor): it is irnmeeliatcly
rcti~r~xccl to tlie client, ; I I I ~ the file system access is
eliminatetl. If some o f tlie tl:~ta nccdcd to satisfy the
request is not in thc c;~chc, then re;lds ;ire st;~rtetl on
a c h of the caclic buffers neetled to satisfy the
recluest. Once all cl;~t;~ is reat1 into c;~clie memory a
response is formetl ;inti rel.urnccl to the clicnt.

EJpcts or! C l ie~ l t Wr'itc> I?cquest.s Wlien tlie server
rcccivcs a clicnt writc request, tllree processes ;Ire
performeel. 'I'hc cr~clic buffers ~icctled for the
specitiecl \vritc range :ire loc:ltetl, tlie client tl;~ta is
copictl t o the c:~che bi~ffers, ;kncl n response is sent
to the clicnt. 'I'lie c l ; ~ t ; ~ copiecl t o tlie c;~che
is written to the disk ;it ;I 1;lter time. This write-
I~chincl achcme :~llows \vritc rcquests to be ser-
vicetl ~luickl!~ I>cc;~use the response is returnetl to
the client Ijefore the write lo tlisk completes. By not
s!.nchronizing on-disk write completions before
returning a rcslx)nwe, tlie turn;~rountl time of client
write reclucsts is gre:~tly retlucerl. The cache is ;~lso
optimizccl w1xc.11 :I client write request is received
;inel ;I disk re~rcl oper;ition is in progress for tlie
range. 111 this C:ISC, the d ; ~ t ; ~ being written t o the
cachc is copiccl into ;III intermediate buffer and
rnergccl with tlic cl:~ta from disk ;~fter the reatl oper-
ation completes. l'hese intermediate buffers ;ire
known :IS ghost buffers, since they ;ire not visible
from the buffer li:~sli t:~hle.

W i t I to I . Since the file server acknowl-
etlge:, w~.ile reclilests heh)rr l>crh)rming tlie writc
olxr;ltion, ;I mccIi;inism is neetlecl to writc the
c;~cl-lc I ~ ~ ~ f f c r s to disk ;111cl ensure cl;~t:i integrity
'l'hc tilt server inll>lements ; I perrn;incnt threatl,
the t1~1sh thrc:itl, cleclic:~tecl to this t;rsk. 'The fli~sh
thre;~cl st;lrts clisk write oper;itions on buffers t1x;lt

contain nioclifiecl cl;~t;i. Flushing d:~t;i to disk occurs
(1) perioclic;~ll!: b;~sccl on ;I i~ser-configur;il,le

interval; (2) when :I lile is closed: (3) wlien the
ratio of tlirty to free cache buffers re:iches a
user-configur;tble threslioltl; and (4) when c;~che
bl~ffers are not ;~v:iil;~ble t o support tlie current
recli~est.

O n the VMS system, R>lS :tlso eml)loys :I write-
behind ;~lgorithm si~iiilar to tlie one usetl by tlie file
server. II>IS is not i~sed bj8 the file server for tlisk
rc;~cls :~ntl disk writes for pcrform;uice rc;lsons. 'l'he
crossing 01 the VhiS :~rchitcctur;~l I>ountl;~rj. t1i;tt
occurs during RkIS calls ;~cltls ;in un;~cceptable
;iniount of processing timc to tlie rcad ;inel writc
paths. The file server uses the VMS clueuetl I/()

(QtO)/extended Q I O processor (XQI') interface,
which is helow the RMS layer, to rcad and write data
to tlisk.

Disk S p c e Alloc~~tion
Sufficient tlisk space must be av;~il;~ble h)r any
write operation t1x;ct is performed as ;I background
operation. To :~llow sufficjcnt space, ;lny disk :lllo-
cation must he completetl wlien tlie writc request
is receivetl. This restriction slows down writc oper-
;itions which, in turn, results in tile exp;~nsion.
I'erformance testing in this ;lre:i shows that such
exp;~nsion operations cnli retluce tlie server's
response time in the over;~ll operating cnviron-
ment. To alle\li;~te this prol.>lem, tlie I'IYI'MWOI~KS

xerver ~prealloc;~tes a fixetl ;imoilnt of disk s]>;lce,
often much gre;itcr th;ul recluiretl, to complete tlie
current write request, in ;~nticip;~tion of further
file expansion. This nxech;~nism grc;~tl). retluces
the system overhe;ld incurrctl in disk al1oc:ttion:
thus it improves the over;tll response timc to write
olxrations.

Read Ahead
Another nieclia~lism used by tlie tile server to
improve the turn;~roi~nel time of re;~d requests is
reatl alieatl. As with cl:~t:~ c;lching. the goal is to
increase the prob;tbility t1i;lt t l ;~t ;~ referenced in tlie
near future will be in the c;~clie. Re;ltl ahead is tlic
process of prcfetching previously unreferenced
data from tlie disk into the cache. Data is pre-
fetchecl into c;tcIie memory ~lncler scver;il concli-
tions. When ;I tile is openeel, the first two c;lcIie
buffers of tlie datr~ ;ire rcacl from the clisk into tlie
cache. L):IL;I is ;~Iso pre[-ktchecl \vlien the server
tletects that the file is being nccessecl secl~~cnti;ill~:
l'he Shll, protocol ;~lso supports rent1 :rhe:rcl. The
psotou)l provitles :I tieltl in tlie re:~cl reqilest t l i ; ~ t

PATHWORKS: PC Integration Software

spccilies the amount of data that the client intends
to re;id in the firtirre. This atlvisor!. liclcl is usecl
b). thc server to initiate prefetches.

Directory Search-ahead Cache
A IIOS clircctory operation can translate to multiple
exchanges of request and rcsponsc opcr;rtions
between the server and client. 'I'his l>elia\7ior is
inherent to the ShlB protocol definition. 'l'lic file
server initiates ;I sc;~rch-ahead thread when the first
request is receiveel. While the PC is processing tlie
first response, tlie search-ahead thread accumu-
1;ates tlircctory information in a c i r cu l :~~ buffer.
Thus, this information is n\~ailable in memory for
subsequent requests.

Open-jile Cache
Operations, such as create, open, and close, imp;ict
perforniancc in the V41S s).stern. Henchmark tests
show tli;it these operations become blocking kit-
tors for a fast pcrform;ince ser17er. 'l'his problcm is
compoundetl I,y the inherent behavior of many I)<:

aj,plications because they often use the result of
an olxn 0per;ltion ;IS ;I deterministic tool on file
accessibility. Freclilentlj; files arc openecl :11id
closed and reopened in consecutive requests. To
minimize the overheat1 incurred for thesc opera-
tions, the PA'TfNORKS server implements a cache to
store openeel file information. This opcn-file cache
rnaint;iins the tile 11e;acler information after the filc
lias 1,cc.n closccl 13. tlie user for a short dur;ition. If21
user reclirests to open a filc that is al~eacl\~ c;aclled,
no recluest to VMS I:II.ES-1 l system is requireel. 'I'his
greatly reduces the response time of the ser\.cr on
the seconcl open request.

Furthermore, m;iny DOS clatab2ise applications
irse intles liles to synchronize data acccss. Thcsc
files ;Ire frequently accessed by many DOS users
m1lien working in an net\\7orked oflice cnviron-
ment. Open-file caching is beneficial to this envi-
ronment because it incurs a minimal ;urnoirnt of
open retllrests to the V41S tile system.

Byte Range Locking Buck-off Algoorilhm
The file server iniplernents an algorithm to improve
overall performance of the scrvcr ancl netmrork
when I><: applications are sharing files and using
byte rangc locking to ;irbitr;ite access. The an;ilysis
of man)/ networkccl PC: database applic;rtions
reve:aled that ;I client typic;illy entered ;I tight retry
loop when it cletcctcd ;I lock conflict. l'his spinni~ig
procluces ;In excessive ;imount of lock-rclatecl

network tr:~ffic, cspcci;illy for very kist clients. The
ser\:cr also has to spend a signific:int :itnoillit of
time ~x-occssing these numerous lock reqircsts. 'l'hr
server ;ittempts to regulate this lock traflic and
rccluce its lock processing time by deferring the
return o f tlie response when a lock conllict is
clctccted. If a request to lock a range conflicts
with ;i prc\~ioirsIock, the server makes repc;ited
attcmpts to acccss tlic range using a pseudorantloni
exponential back-off algorithm to determine the
retry interval. 1f the lock conflict is not resolved
;after :I user-co~~tigurable time period, the server
returns ;I response intlicati~ig a lock conflict. By
tleferring this response to the client, tlie server
cscrcises flow control over clients spinning on
lockccl regions of the file. The implen1ent;ition o f
the pseuclor;~nclon~ exponential back-of(;tlgorithm
prevents the server from using ;in excessive
amount of (:l'r. time to determine if the lockccl byte
r;ange h;~s been unlocked.

Seczcrity
'l'he VivIS operating system offers a well-definecl
security architecture, but DOS has no con1p;arable
security scheme. Since the PATI-~VORKS file server is
implenientetl as a privileged process, it is necesszlry
to control tile access on the VMS host system from ;I

I)OS client. There is no one-to-one correspontlence
between a DOS user alicl a VMS user. That is, in the
I'A'I'I-I\W()RKS environment, each network client,
much like ;I tcrmin;~l in this respect, can be multi-
ple V,VlS users. The problem is to ensure masinium
s1iare;ibility among I-'C clients and maintirin the
desired level of \%IS securit)r.

The I'ATI-IWORKS file server implements two
types of securities: share and user. It makes use of
the I~C:l:SSSIIRYI(:L-L)i~TMAS1i to control acccss to a
share arc;l; ancl the VJfS user authorization file (1JAF)

clat:ibase to control acccss to directories ;ant1 files
b;ascd on a VMS user account. i\ share, referl-etl to
;as file service, is a ViMS directory th;rt can be
accessed by 13ATHWORKS clients. PATHWORKS soft-
ware clefines three types of file services: system/
application, common, ancl personal. Access to file
services is b;lsed on VMS user account information.
A privileged system manager must explicitly grant
user access to system/application and colnnion ser-
vices. The system manager must also specify the
t). lxsof :access: rcacl, write, or create. This infor-
ni;ation is stored in the PCFS$SERV~CI~_DAT~UASI~.

Acccss to personal service is implicit with the exis-
tence of a irser account.

2 0 Vol. 4 IVO I Wiwter 199.2 Digital Tecbnicnl Jorrrrznl

-ro ~pro\,idc m ; ~ s i m ~ ~ m sli;trcal,ilit!~ alnong I)<:

clienls. T',\l'H\VOI<KS soft\\:;~re incl~rtlcs ;I dckllrlt
user ;~ccoi~nt . Wlico ;~ccessing :I tile service tli;~t 1x1s
heen gr;~ntrcl to the c l c k ~ ~ ~ l l account, e;~ch 1%;

;Issumes tlie iclrntit!. of the tlcklult : ICCOLIII~. T ~ L I S
tlie ; I c c e , tho~~gli i t niigllt be jss~~ecl by clifferent I)(:

users, is \.ic\xretl ;I> the s;tnie user. 'l'his mec1i;uiism
~pro\~iclcs :I "sli;~re Ic\.cl" o f securit):

A more rcstricti\re environment is ;icliie.i.eel Oy
lxo\.icling ;~cccss to :I sh;lre ;irc;t I):~sed o n inclivicl~~;tl
ilser ;iccoLlnt. LVlnen ;I I)(: client est:~blisIies ;tccess
to ;I scr\,ice. i t l~rcscllts ;I user :lccount ;lncl its corre-
sponcling ~~ ;~s su~or t I . 'l'his inforru;~tion is ;~~rtllenti-
c;~tctI 1>;1sccI 011 inform:~tion rcturnetl hy tlie
s!s$get~r:~i s!.stcm scr\,ice c;~ll. 'l'lie 1'~\7'tIW/O11KS

scr\,er then \critics th;~t this user 1i:ts Ixen gr:~ntetl
:~cccss to the serjjice.

ilcccss lo ;I tile scr\.icc clocs ~ i o t necess;~rily imply
;~cccss to ;In!. intli\:itlu;~l tiles In ortler to preserve
the tlesirecl Ic\.cl of \',\IS securitj: I'IY~II\VOKKS

honors ;Icccss colit~-ol entries. .l'llc ser\,cr ensures
;tccess t o :I sh;lrc :Ire;(;IS clelinctl in tlie cl;ttal,;tsc
b!. rn:lpl,ing tlie ;~ccess t!l?es to two iclentihers:
~,cfsSrc;~cl ;inti pcfssSupcl:~tc. These iclentihers ;Ire
;iclelecl to (lie root tlircctor!. o f ;I s1i;rrc ;tre;i. ;u~ ie l to
:In!. files t l i ; ~ t ;ire crc:~tccl. when ;tl~l~rol,ri;~te. As tlie
ser\,er impcrson;~tes tlie ~ ~ s c r , tlie :~pprol,~-i;~te iclcn-
tifier is ;rssoci;~lcd \vlicn ;~ccess pri\,ilege to files :111cl
clirectory is checkccl. 'l'his security irnj7lemenl;1tio1l
is not ;~l,l,lic;~blc when her\-icing ;I person:~l ;Ire;i.
~Zcccxs to tiles storccl in ;I pcrson;~l ;ire;(is Ixlsetl o n
11,LIS protections m;tsl\:

'li) c:tac a),stcm m;un;~gcmcnt t;lsks. I)IYI'HWOI;KS

xoflw;~re i~iil,lcrnents " g r o ~ ~ p " s ~ ~ l ~ l > o r t . A gro1111 is
;I collection o k ilsers. A I'Al'tl\X/OllKS groilp has
no tlclx~itlenc\~ on user grol~p identitic;ttion code.
When ;I sli;~re is gr;tnted to a grolrp, e:~cli member
of tlie g~.oup g;tins ;tcccss. Norc tli:~t ;~irthentic;~tio~i
is still pcrforrnccl I,;~sctl on ;in incli\~iclu;tl usel-
;lccoLlllt.

Since ;I DO5 client can gain ;Iccess to the \fMS

cn\,ironnlcnt. i t is impcr;~ti\,c tIi:~[11lc tile server
sl~l)l)ort tlie \:)IS s!.ste~~l's O~-c;~k-in ~ \ ~ ; i s i o ~ l nlcc1l;t-
nism. 'l'llc scr\er Iionors the login-related systenl
p:ll.:lmcters. l'liese 1,:lr;lmeters ;ire re;icl a t the tile
scr\,cr st;lrt-111,, ; I I I C I the \r;rJ~~es ;Ire in effect for the
dur:~tion o f the scr\.cr process. 71'lie scrT.er tallies
a n y k~ilecl or unsucccssh~l log~n ;tttemlpts. When the
file server rccci\.cs :I connection (login) recluest to
ser\.ice, tlie lile server cxtr;icts tlie rel;ttecl counter
informkttion from tlie [, \ I ;inel ;rclcls i t to its internal
c o ~ ~ n t c r to cletcrmi~ie whetlier cv;tsi\;c ;iction is to

take place. When :I I~re;tk-in is cletectetl, the ser\.cr
t;tkes the :~l,l,ropri:~te e\.asi\.e ;retion ;inel sign;tls t l ~ e
conelition in tlie sen-er log filc.

The ser\.er process ;tlso iml,lements the printing
function;~lit!~ specificel in the S.\I11 protocol. -Phe tile
ser\:cr implements tlie print-rcl;ttcd comm;~nds
b! using SSNI),lI%<: ;lncl S<;L'1'(2111 s! stem services to
communic;~tc with the \'>!Is jol, controller. Each
prinl service ;t\.:~il;~l,le to clients 1 ~ 1 s ;I \'&IS print
cllleue ;tssoci;~ted wit11 i t .

The VMs s)>stem has ;I much richer printing envi-
ronliie1lt tIi;~n tlie one ~,ro\~icletl to the I)<: clients
tlirougli tlie S,\.11% protocol. The I'tYI'I ILVOIIKS server
provicles \r,\slS printing fe'e;~tures to the clients 1)).
extencling the S,\'l11 protocol to ;~ccornmotl:lte
I)IYI'H\\,'ORKS nceels. These protocol extensions
:Ire clescribetl in tllc section Digit;~l l'rotocol
Exte11sion.s.

File Sharing amolzg Se~wer PI-ocesses
E;~cli node on ;I V,cKcluster s! stem c;ln be ;I Iiost for
the I'ATHLVORKS scr\,er process. One of the more
ch;lllrnging problems in sul,l,orting \:\Scluster
systems is the s!.nchroniz;ttion of file access 13).

nlulliplc scrwr processes. As st:~tecl e;rrlier. the
I~hl 'HLVOl~KS file ser\.er reclttircs csclusive access to
files l11;tt ;Ire openecl b!, I-'(:s in orcler to support b),tc
range locking in I)OS, F~trtlierniore, in ;I c1ustc1-.
e;lcIi server p~-ocess neecls tlie ;~biliry ro l~ro~.itle
identic;~l ;iccess to tlie s;lliie resources

I)cYl'HLVORKS soft\v;lre im],leolcnts its o\\>n lock
1n;In;lgement :tlgoritlim to resol\?e tile ;iccess
conflicts i l l ;I VrC\;cl~~ster s!.sten~. Altlio~~gli m~~ltij?le
ser\~er processes are :tllowctl in tlie en~~ironnlent,
only one Iprocess can li;~ndle the recluests to ;I file
th;rr is :tccessed by I)C clients. H!, using the \')I$ lock
m;tn;lger, the server process t1i;tL scrviccs tlie first
open request ;~cqi~ires ;In escli~si\.e ~iiodc lock o n
the tile. It t11~1s I ~ e c o ~ ~ i e s the m;~ster of the tile ;~nd is
responsible for s)-nclironi/ing ;Iccess reqitests to
tlie file. When :I server process is recluesteel to ser-
vice a file t1i;rt h;ts another I)iYI'lILVOIIKS scr\,cr ;IS its
m;tster, i t m;tkes 21 nctworli connection t o the m;ls-
ter pu)cess ;11icI torw;~rcls the recluests. 'l'liis process
sen-es as tlie rollring agent I t comni~~nic;~tcs 00th
recluestt" ;lnd responses I,ct\\lecn the m;tster ser\:er
process anel tlie I>(: client. The rn;lster rcle;tses o\xln-
ership \vhen no outst:~ncling open file Ii;~nclles ;Ire
o n the file. File m;tstcring is est;tl,lishecl o n ;I per
tile b;tsis.

PATHWORKS: PC Integration Software

The rerouting mechanism uses the DECnet trans-
port because its existence on the remote server
host is guaranteed in a cluster environment. To min-
imize the number of required DECnet sessions, the
routing agent funnels all forwarding SMRs through
an existing session. Tlie forwarding packets include
information that the master process can use to dif-
ferentiate among the clients' access requests.

PATHWORKS Server Configuration
The multithreadecl PATHWORKS file server can be
considered a small operating system in which each
PC is a process (or a thread). In addition to the basic
resource requirement that the server be activated,
the server requires a set of process resources to
support each client thread. These resources can be
mapped to VMS process parameters which, in turn,
translate into system parameters.

The amount of VMS system resources which the
file server consumes is a function of the number of
clients and the workload generated by the inclivid-
ual PC. Mapping the PC resource requirement to the
appropriate VMs process and system parameters
proves to be a complex problem. Since the PC work-
load profile is unknown at the time of server initial-
ization, the amount of required system resources
for the server process can only be estimated.

PATHWORKS system managers include users with
little VMS system management experience. The
level of VMS system expertise required to configure
(or set up) a PATHWORKS server is minimized by
the addition of a "configirrator." This part of the
management functionality is implemented to gen-
erate information on required system and process
resources when the desired configuration is sup-
plied. During the server start-up phase, the
configurator checks for availability of necessary
resources and provides appropriate run-time
parameters for the launching of the server process.

Management Interface
To provide integration between different file sys-
tems, the file server utilizes PATHWORKS specific
databases (such as the service database), standard
VMS databases (such as the U h F and DECnet data-
bases), and VMS security mechanisms. These enti-
ties must work in harn~ony and be consistent with
each other to provide the desired integration. The
PCSA-MANAGER utility was designed to manage
this environment. It allows users to perform all
management tasks related to PATHWORKS software
through one utility from a menu-driven user

interfxe or a command line interface. The
PCSA-MANAGER utility allows system administra-
tors to manage the following objects: users, ser-
vices, print queues, logical user groups, the event
logger, and the server process. The file server uses
interfaces supported by VMS to manipulate VMS
specific databases, private interfaces to access
PATHLVORKS specific databases, and SMB protocol
extensions to interact with a server process.

Digital Protocol Extensions
Management of a running server requires a methocl
to send and receive well-defined messages between
the server and other processes. The PCSA-MANAGER

utility sends a management request to the server;
the server processes it, and sends an appropriate
response back to the PCSA-MANAGER. The commu-
nication channel used for server management is a
DECnet logical link. The PCSA-fVIANAGER issues a
connection request to the DECnet object associated
with the file server process. The file server receives
this request and creates a virtual circuit with a cor-
responding thread to process requests for this man-
agement session. This is similar to a client session.

Since the SMB protocol does not provide com-
mands sufficient to manage a PATHWORKS server, a
Digital proprietary protocol was developed to pro-
vide this functionality This protocol is merely an
extension of the SMB core protocol; that is, the mes-
sages developed for server management have valid
SMB headers with command codes that are mean-
ingful only to a PATI-IWOIUG server. This implemen-
tation allows remote management of the file server.
To manage a server, a management utility only has
to establish a virtual circuit and exchange these
extended SfVlBs. Protocol extensions are also used to
integrate the VMS print system with PATWORKS
clients, along with other PATHWORKS specific
i~tilities.

Event Logging
The PATHWORKS server includes an event logging
mechanism to provide an error and event reporting
facility to assist system management. Events are cat-
egorized based on server operations, including
errors, protocols, security, management, and file-
related functions (open/close, read/write). The
server uses an event code to determine whether a
given event is to be recorded. A Digital extended
SMB command toggles these event codes dynami-
cally. The event messages are logged to the file
server log file. The overhead is minimized by cach-

Vol. 4 i\b. ! Wirzter I992 Digital liicbnical Journal

M7H WOKKS./oi- VNS File ,Ye)-(!el-

ing the event mcas;iges in ;I t l ;~t ;~ buffer, \which is
1,erioclic;1lly written o i ~ t t o [he log file. A thre;ltl is
cre:~tetl ; ~ t server stat-t-up to h;rnclle thc log lile
update function. 'l'he schetluling of this thre;~tl
is b;rsctl 011 ;I time interval, with a tlcfirult v;~lue o f
00 sccontls.

Summ.ary
'J'hc I'I\'I'~IWOIIKS for VhlS tile server integr;~Les the
l>OS, 0 5 / 2 , ;rncl VAlS oj>cr;~ti~ig system environ-
ments on ;I net\vorli. The server ;~rcIiitectirre
;rcliieves tr;lnsp;lrent integration ol' I'<:s connected
on ;ln open network over multiple tr;lnsports. Data
c:~ching. ;ilgorith~i~s, ;rntl heuristics were i~sed to
incre;rse pcrforrn;mcc. The IJ~'I'liWORKS for vMS
lile server provides I)(: users with ;ICCCSS to the VhlS

system's resources ;lncl security environment.

We th;rnk the pu)1~1c, st ;~ntl present, w h o con-
tributetl to the tlcsign ;111d dcvcloprnent o f the

I-'i\THWORKS for VMS file server. We sl,ecific;~lly
;rcl~nowletlge Robert 1'r;letorius h)r his contribu-
tion ill tlie design ancl implement;~tion of tlie c;~chc
component. I'hil Wells for his design and imple-
mentation o f the network interface ;111d t r ~ ~ ~ s p o r t
support, ant1 Jon <:ampbell for his design :t~ltl
impIernent;~tion of the network interkrce. We also
;~ckno\vledge Frank <:;~cc;i\~;~le I'or his \vork on pes-
forni;~nce ;~n;~lysis, i U ; ~ n i \b r ;~ l~ ; t~ i~s for his direction
;is ;rrchitect, ancl Mark Olson for his le;~dershil, of
the l'i\TH\X~OlIKS for VIMS project.

References

1 . X/O[>eiz Dellelo[)e~.k SpeciJit'rrtio~r-Pr.otocols
X/O)en I~CIizlerzc'oi~ii?~. S,UI; (He;ltling. I1.K.:

X/Open (:ornp;rny Limitccl, Document No.
XO/l>EV/91/010. 1991).

2. I? J . LVell5. "The I~e \ l c lopm~i t of ;III Optirnizecl
I-'t\TllWORr<S 'l'ra11~1)ort Interkrce." 1)igitnl
Tccl~~~iccil./ozir~zal, vol. 4, no. 1 (Winter 1992, this
issue): 24-50.

PhilipJ Wells I

The Development of an
Optimized PATH WORKS
Transport Interface

Di~itc~l's Personal Co?nputil~~ Sj~ste~~zs Group c/eveloped arz optinlizccl trc1tzsl)or.t
trzleqace to ilnproue thcpcr~hr/n(rr~ce of the PATWORKS for"flI\ lieision 4.0 serwcl:
The de~leloprnentprocess involzjed selecting a transportprotocol, desi,q~lring ~r/$ro-
priute interface test scenarios, and measuring serverpeflo~~~rw~~ce for euch trurzs-
port interface model. The engineering team then implenzented the opti~nized dt~sign
in the sewer and performed benchmark testing for speciJied server u)o~&loads.
IJsing an optimized transport interface improved serverperformance 4) decreasing
the time required to complete the test while maintaining or decreasing the percent
CPIr utilktion.

The M"H\VORKS f~mily of network integration soft-
ware products includes iile servers that provide
file and print services to personal compiltcrs in
local area networks (IANs). Developed by the
Personal Computing Systems Group (PCSG), the
PATHWORKS for VMS version 4.0 server supports the
Microsoft LAN Manager network operating system.
This server allo\vs PC clients transparent access
to remote VMS fi1c.s. With each new release of
the I?\THWOIIKS for VMS product, the PCSG engineer-
ing team improved server perforrnnlice and thus
accomniotlated an incre:~sing number of time-
critical PC applications. 111 version 2.0, we intro-
ducecl disk services as an alternative to file services
for read-only files. We included data caching it1 ver-
sion 3.0 of our tile server.

For version 4.0, our goal was to incre:lse file
server performance by optimizing the transport
interface ant1 the data buffering algorithm. To
achieve this goal, we evaluatecl several transport
interface designs and rne;lsured server perfor-
mance for various server workloatls. We started
with the premise that using the st;~ndard bufferecl
interface results in incre;~sccl overheatl for cach
trans;~ction ant1 thus decreases overall CPU avail-
ability Figure 1 illustrates this interface design.
The server copies a user data buffer in process con-
text across the kernel scrvicc interface to a system
buffer in system conlcxt, before transferring the
data to the network layer.

KERNEL
SERVICE
INTERFACE

SERVER

TRANSPORT

PROCESS
CONTEXT

SYSTEM
CONTEXT

Prior analysis of PATHWORKS server performance
over the DECnet transport protocol revealed that
when the file server request sizes were large, i.e.,
4 to 8 kilobytes (KB), file server perform;~nce met
or exceeded the performance of other vendors'
transports. However, when the tri~nsfcr sizes were
small, i.e., less than 256 bytes, file server perfor-
mance degraded significantly. Also with small
request sizes, our server clid not ranlp well when
many clients were supported in this environment.
As illustrated in Figure 2, increniental increases in
server workload cause dramatic increases in (:t'U
utilization once a certain workload is reached, i.e.,
at the knees of the curves, denoted by points A and
B. We wanted our server performance to approach
that represented by the curve containing point B.

V d . 4 No. I Winter 1992 Digill11 Tecbrricnl Jorrr-rrrrl

A B
SERVER WORKLOAD

In this \v;I!: \ve co111tI si11>1>ort n1ore clients 41t the
s;lnie or lcss (:I'll utiliz;~tion.

Server PerJor-mance Analysis
We 1~1sccI 0 ~ 1 1 - :in;~l!~sis of I~,\'l'tI\VOlIKS sc~-\~er perfor-
m;incc o n t\vo initi;~l h!~potlieses:

- . Ihe (:IJlr o\,crIie;icl ;~asoci;rtecl wit11 ;I bi~fferecl
intcrfr~cc signitic;tntl!. tlrgr;~tles tlie perform;uice
of the scr\.cl..

'Tlir \3;~ri;~l,le tr;~ns;rction response times inher-
ent i n i~sing the st;uncl;~rcl c[~~euecl l/O (QlO) inter-
f;~ce r e > ~ ~ l t s i n inefficient sert'er ~>erfornn;rncc.

P/.otoco/ Selectiol~
' I t) begin our perforrn;rncc ;~n;il!.sis, \ye neetlecl to
choose ;I tr;unsport protocol \Ve consitlered the
I>E(:nct ;incl the 1oc;ll ;Ire;l s).stcm tr;unsl~ort (l.iiS1')
protocols :~ntl sclcctccl the Li\S1' 1,rotocoJ for the
follo\ving re:lsons'

An ;~~l\ ' ;~ncetI t I c \ ~ ~ l o j > ~ ~ ~ e l l t effort on the 110s
clicnt sot't\v;~re sho\vctl tli:~t tile :lntl print ser-
\:ices over thc I.AS'1' protocol tlecre:~se the client
mcmor!. usage 13) one-tlnirtl.

I'he I'IYI'H\VOIIKS cnginecring team m:~int;lins the
l.l\S'l' 1,rotocol ;~ntl t [ni~s. C:III make ;In!, rcqi~irctl
motlilic;~tions.

7 . Ihc \'\.lS oper;~ting s).stc~n imp1ement;ition of
the l.,\SI' tr;~nsj>ort l~rotocol is c;~llecl L,\STl>I<IVEII.
J.i\S'l'l>ll[\~lill ser\.es our purpose I~ecnuse i t],re-
sents ;I 1,uffcring niotlcl t l i ; ~ t permits tlie p;~ssing
of m~rltiple nonco~ i t i g i~o~~s cl;~t;~ 1,uflkl-s ;IS ;I sin-
gle, logic;~ll!, cont iguo~~s b~~ffer . Figure 3 shows
two pli! sic;~l c l ; ~ t ; ~ buffers, of sizes N ;~ncl > I . I,eing

BUFFER DESCRIPTORS

DATA BUFFERS

p:~ssed to I./\STI)Rl\lEl< ;IS ;I single mess;lge. l'he
second buffer descriptor cont;~ins ;I zero in the
next htrfli.r clescriptor pointer wortl. This \r;~lue
inclic;~tcs the encl of tlie tl;~t;l stre;lnn.

R)st Scc~zm-ios
Mter selecting the LAST tr;uns]>ort protocol, \ye cre-
;rtetl foul- test scen:~rios to nie:lstrre scrITer pel--

fornn;~nce. The first scen;~rio. the kernel moclel,
reqi~irecl tlc\;elol,ing ;I \'MS clevice tlriver that was
1:lyeretl o n top of I.I\STI>IIIVEII. In this motlel, when
tlic tlriver recei1.e~ request cl;~ta, the d ; ~ t ; ~ is inimecli-
ately tr;insmittetl luck to tlie client. 'l'he tlri\~er tloes
not cop!. blrffers ;incl does not sclietl~rle ;I ~~rocess .
'l'liis motlel rel?rcsents the ol>tirnurnn in l~erl'or-
mince. bec;~use ;~bsolutel!~ n o work is performetl in
relation to the rcquest.

The secontl test scen;lrio reqiriretl th; i t \ve
clevelop ;I user-mode test progr;~n~. This motlel per-
forms simil;lrly to tlie kernel motlel in tIi;lt i t loops
receive t l ;~ t ;~ tlirectlj7 b;lcl< to tlic client witlnol~t per-
forming ;unl. cop)7 oper;itions. This motlel cliffers
from the lirst model in t l i ; ~ t the clriver schedi~les a
VMS process to loop the d;~t;i b;iclt to the client. We
then tl~\~elopetl the follonring v;iri;ltions o n this test
scenario to ;rcco~nmotl:lte tliree transport inter-
k~ces to the \lhlS process. The sccontl ;~ntl tlii~vl sce-
narios represent ol,tinii~ecl tr;lnsport intcrk~ces
with reg;~rtls to two ;ispects of ;I recluest: the initial-
iz;~tion ;~ntl the corn1,letion.

A st;ind;~rtl V.\4s (210 interface motlel. This ~inoclel
uses the st;rntlnrtl interklce l,ro.i~itletl with tlie
VlLlS oj?er;rting s).stem.

A nnoclel th:~t incorpor:~tcs the t;~ntl;rrtl V41S () I 0
interk~ce ~vitli II process \v;~lie-t~j> co111pletion
notific;~tion. This ()IO/\YG\KE model uses tlie S~ ; I I I -

cl;~rcl (210 intcrkice to initi;ite ;I tr;1nsport request.

PL4THWORKS: PC Integration Software

However, the transport queues I/O completion
notification dirrctly to the receiving process by
means of a sharecl queue and a process wake-up
request. l'i-re purpose of this optimization was to
avoid the st;~nd;ird postprocessing routines of
the VMS oper;iting system.

A model that includes kernel mode initializa-
tion and wake-up completion notification. This
CMKRNL/WIiiKE model uses the transport com-
pletion technique of the previously described
moclel. However, we created an entry point into
the driver for the test program to call, thereby
initiating transport requests. The test program
uses the change-moclc-to-kernel (CMKRNL) sys-
tem service to call the driver entry point. This
optimization was made to avoid the standard
QIO interfaces.

To support the opti~nized transport interfaces.
the test program allocates a buffer in process con-
text and divides i t into two sections: the first con-
tains shared queues for moving data between
process context and system context; the second
contains the test program's shared data buffers. The
driver issues a call to the system to double map
the shared buffer into system context. Figure 4
shows this double-mapped buffer. Since the buffer
is contiguous, the difference between the start of
the sh~red cl;tt;i rcgion in process context and the
start of the shared rcgion in system context is a con-
stant, ant1 is usect as an offset. The test program
accesses the shared region by using a process vir-
tu;11 acldt'css (I'VA); device drivers access the region
by addlng thc offset to the PVA to compute a system
virtual atldress (SVi\), as shown in Figure 5 . To
accomplish completion notification, the driver
inserts the data into the shared queue and issues a
process wake-up request for the test program.

PROCESS
CONTEXT
BUFFER

SYSTEM
CONTEXT
BUFFER

PROCESS
VIRTUAL
ADDRESS

SYSTEM
VIRTUAL
ADDRESS

OFFSET

Fig~we 5 Virtucll Address Space

Performance Measurements
Our Iurdware platform was a Vastation 3100 work-
station. We measured server performance as the
difference between the request arrival time and
the response departure time, as observed on the
Ethernet. Times were measured in millisecontls
using a Network General Sniffer. Table 1 presents
the test results.

As Table 1 shows, we decreased server response
time by using an optimized transport interface. The
Iternel model yields the best possible performance
results. As we move from the standard VMS Q10

interface to more opti~nized interfaces, there is a
dccrease in transaction response time which repre-
sents improved server performance.

Data collected during initial performance testing
supported our decision to optimize the transport
interface. Occasionally while testing the interfaces,
server throughput dropped dramatically, i.e., 30 to
50 percent, for a short time interval, i.e., one to
two seconds, ant1 then resumed at its prior rate.
Initially, we thought there was a problem with our
code. However, the anomaly persisted throughout
the development period, so we decided to investi-
gate the cause of the dip in performance.

The VrtYstatioti 3100 system that we used to per-
form the testing had a graphics controller card
installed, but did not include the graphics monitor.

Table 1 Server Performance over
Various Interfaces

Server Performance
BUFFERS Interface (milliseconds)

Kernel Model 0.8
Standard VMS QIO Model 2.2

QIONVAKE Model 1.7

CMKRNWAKE Model 1.6

26 &I $,\lo I W,r?ter. 1992 Digital Techrrical Jotr#7rnl

Since the s!.steni included :I gr;lphics c;lrd, the
I>E<:winclows login process frequentl\, tried to
clispl:~!. tlie initial I)I:(;winclo\vs login screen. This
;ittempt krilccl bccra~sc there was n o mollitor.
'Therefore, the process w:is deletecl and rest;~rtcd a
few minutes I;rtcc We concluclecl that the tempo-
rary clrop in scrver ~xxfornir~nce \ye hacl observeel
w:is the effect of the I)E(:\vinclows st;irt-1113 process.

, - I he signitic;uicr of this observr~tion becr~me
;rl?p;wuit "lien we optimizccl the transport inter-
f;tce, anel the etfect of this I3;1cl<groilncl process
;~cti\.ity clccrc;lsecl to less tI1;11i 1 0 percent We con-
clutlccl 1l1;1t the ol,tiniizccl jnterk';ice wrls less suscep-
til~lc to concurrent I/O thr11i WAS the st;uncl;~rcl Q 1 0

Implementation
Once the initial tcsting of pototypes was com-
plete, wc deciclccl to implement the double-mapped
buffering ;~lgorithm with shared queues. The V i U

architecture pro~iclcs inherent queuing instruc-
tions th;~t ;II low tlie sIi;lring of cl:lt;~ ;]cross elissimilar
:~tlclrcss sl>;lccs. I t :~ccomplishes this by storing the
olfsrt to the d;~t:l, r:~tlier than the :rtlclress of che
cl;~t;~, i l l the clileuc hc:~clcr, This tech1iic1~1e pernlits
us to insert ;I s!.stcnl virti1;11 ;1eIcIress into ;I qileue in
s!,ste111 context :11icI I:~ter remove the adclress in pro-
cess context :IS ;I process virtt~:~l :~clclress. A seconcl
function t1i;lt thcsc instructions perfornl is to inter-
lock the queue s t r ~ ~ c t i ~ r e \vliile moclif!zing it. Tliis
lxoceclurc l>rccludcs concurrent ;~cccss by other
code ;Inel thus ;~llouls tlic intcrk~ce to support sym-
metric;~l multiprocessing.

We ~iioclihccl tlie file server t o support this new
oytimizccl tl-;insport interk~ce. Ih case the imple-
mentation, the QlO interk~ce cnlulates the I>E<:net
interface in all aspects exccpt one. Since the client-
server moclel is esscntir~lly :I request/response
model, we clevelopecl ;I tr:lnsn~it/rcceive (trans-
ceive) opcr:~tion th:~t ;II lows the server to isstre
re:~cl bul'fcr :~~icl write boffer requests ; ~ t tlie same
time. 'l'his \,;rri:ltion recluces tlie number of sjrstem
bouncl;~r! crossings. When the server transmits
I?uffcrs. tliese I,i~ft'ers return to tlic server process
by \V;I!~ of ;I 1r;lnsniit complete queue. \When the
scr\.cr rcccivcs ;I nc\v rccluest messilge, the associ-
:iteel buffc~- is tr;~nsferrccl to the server process via a
rccei\,c colnl>lcte c1~1cuc. 70 fr~cilitrlte a tr:lnsceire
o~>e~- :~ t io~i , \VC cletinccl ;I work clerne~lt clr~t;~ struc-
ture. As s h o ~ r ~ in Figure 6, a work element permits
the p;~ssing of two elistinct data stre;lliis: one for
trr~nsmit ;rncl one for receive.

BUFFER
WORK DESCRIPTORS
ELEMENT rryT&L

DATA BUFFERS

As de\~elopnicnt of tlic client r~ncl server soft\vart.
moclules continued, we encountered some inter-
esting problems. The fol.lowing three sections
describe several of these problems ;~nd how we
;~clclressecl them.

Microsofl LAN M~u~ccger Redirector-
I/O Behnr)ior
When the microso oft LAN ~M:rn;lger reelit-ector. i.e..
the 110s client protocol equiv;~.lent oJ- the vl\l$ tile
server. gcneriltes ;I read request, it tirst writes the
request for service to the network. The reclirector
then issues :I re;ld recluest anel uses a short buffer to
receive only the protocol he:~der of the response
n1ess;igc. After verifying t l i :~ t the response \V;IS sue-
cesshl, the reclirector i s s~~es r~ srconcl reacl request
to receive the d;rt;~ ;~ssoci;~tecl with the response
message.

This behavior requires lowel- protocol la)-ers to
buffer the response d ~ t a ilntil the reclirector issues
;I read request to receive the data. In order to buffer
the response d ; ~ t ; ~ h)r the client. the transport layer
11eeds to alloc:~te ;In 8K13 huffel-. An ;tltern;~tive
; ~ p ~ ~ - o a c h to rn;~int;~ini~ig n cledic;~tt.d t1-;insport
bufti-r is to use tlie inherent buffering cap;~city o f
tlie Ethernet d;~ta link softw;tre ;inel the Ethernet
controller c;~rcl, which ~ii;~int;rin ;I c;~che of receive
I~i~ffers. Tliis technique recluircs the tr;lnsport I;~yer
to retain tl;~t;~ link reccivc biiffers while the reclisec-
tor verilies the response mess:cge protocol lie:~der
;rncl posts the :1cti1;11 receive buffer. Once the retli-
rector issues the secoucl re;rd recluest, the reln:lin-
ing dr~t :~ is copiecl :lncl the Ethernet buffers ;ire
rele;~sed.

Digilnl 7~cl~nicnl JOIII-II~II l id . . j ,Yo. I 1 ~ 7 1 1 1 ~ ~ 1 ~ 1992 27

PATHWORKS: PC Integration Software

One problem with this approach is that each ven-
dor's Ethernet card has different buffering capaci-
ties. In some cases, the capacity is less than the
size of the maximum read request. To support
such Inadequate buffering capability, we inserted a
buffer management protocol (BMP) layer between
the file server and the redirector. The resulting pro-
cess is as follows:

The client module communicates its data link
buffering capacity to the server motlule in the ses
sion connect message. When the application gener-
ates data requests, the DOS retlirector pack;igcs a
server message block (SMB) protocol message and
passes it to the BMP layer. This layer adds a small
buffer management header to the message and pass
it to the transport layer to transmit to the server.

To complete the operation, the file server pro-
cesses the request, formats an SMB response mes-
sage, and passes it to the BMP layer. At this interface,
the size of the response message Is indicated by
the transmit buffer descriptors, and a protocol
header that describes the response packet is cre-
ated. If the response message is larger than the
client's data link buffering capacity, the driver soft-
ware segments the response packet into smaller
messages and passes these messages to the server
transport to transmit to the client. The client mod-
ule copies the header to the redirector's short
buffer and completes the redirector's read request
The BMP layer then waits for the second read to
copy the remaining data to the redirector's buffer
and releases the data link buffers. At this point, the
client can request more data from the server.

Response Buffering
The LAST protocol does not acknowledge the
receipt of messages because it relies on the
integrity of the underlying LAN to deliver data-
grams without error. Consequently, the BMP layer
 nus st buffer all response data transmitted to the
clicnt to protect against packets that are lost or
discardccl. In such a case, the BMP layer transmits
the original response message back to the client
without sending the message to the server process.

For instance, consider the two caes shown in
Figures 7 and 8. In Figure 7, a clicnt gencratcs a read
request at time T1. The server processes the request
and generates ;I response a t time TL. 'I'hc response
is lost due to congestion, so the clicnt rctlucsts the
same data again. as inclicatccl ; ~ t time '1'3. 'l'he scrvcr
rereads the file and generates a new response. Since
the read operation is natur;illy idempotent, i.c., it

CLIENT SERVER

READ BLOCK 1 +

SUCCESSFUL READ.

/ UNSUCCESSFULRESPONSE-
PACKET LOST

READ BLOCK 1

SUCCESSFUL READ,
SUCCESSFUL RESPONSE

Figure 7 Idenzpotent Request

CLIENT SERVER

DELETE FILE 1 +

SUCCESSFUL DELETE,

/ UNSUCCESSFUL RESPONSE-
PACKET LOST

DELETE FILE 1 * - UNSUCCESSFUL DELETE,
SUCCESSFUL RESPONSE
(EVEN THOUGH THE FlLE
WAS DELETED)

Figure 8 Nonidempotent Request

can be repeated without changing the result, the
oper:~tion completes successh~lly

I11 the case depicted in Figure 8, we changed the
operation from a disk re;ul to a delete file. Here, the
client makes the delete request at time TI, and
the server successfi~lly cleletcs the file at time T2.
The response message is again lost. When the client
reissues the delete file request at time T3, the server
hils in its attempt to perform the operation
bccause the file no longer exists. The delete opera-
tion is not idempotent; tl~us, repeating the opera-
tion yieltls a different outcome.

Me cannot cletermine in advance the actual idem-
potency of an). given request. Therefore, the BMP
layer must cache all response buffers. If a response
n1ess;lge is lost, the server transmits the original
rcsponsc message instc;~d of retrying the entire
opcrntion. If, as in the second example, the server is
able, ;It time T4, to transmit the actual buffer used
at time T2 to store the response message, the oper-
ation can complete successh~lly.

To facilitate the buffering of response data, the
transport provides a trans;~ction identifier for
request and responx messages. 'l'his identifier is set
by the client BMP layer whenever a new request is
receivetl from the redirector. The serves stores this

' r , I . 4 No. 1 Wir11t.r- 19I)2 Digilal Tecbrrical Journal

itlentiticr ;inel \crifics it :ig;~inst tlie itlcntificr of the
next rccjucst I f ;I recci\.ccl recluest h;~s :I cluplic;ttr
irlentificr, tile request must I,e ;I r e t r ; ~ ~ s n s s o ~ i ;11it1

the scrvcr tr;~nsmits [hc mcss;igc in the c;lcIiccl
rcsponsc bbuffcr. If tlie identifier is ~ ~ n i q i ~ c , the
c;tchetl buffcr is relurnctl to thc- server 11)' rne;lns of
the sli;~rt.tl qt~cues. ;~ncl ;I new reqilcst is cre;ttetl.
'l'lic clie~it's singlc-thrc;~tletl n;tturc cnsi~rcs that
the tt-ans:tction iclcntifier methocl is successful in
clctecting ;I ~retl':~nsmissio~i.

NetEIOLS I:'JIZLL/L~ tio1.1
The I',\TI1WOI<KS tr;tnsport interk~cc iniplcmc11t;t-
tion relics o n the rc-q~~est/rcsponsc beIi;n.ior of the
1 ~) s rctlirector Flo\vcver. the rcclircctor i~scs the
S ~ ; I I I ~ I ; I L - C I 1)OS network Ixtsic I / O system (Nctl3lOS)
intcrk~cc to communic;~te with tr;tns(,orts. :lntl this
interface tlocs not exliil,it reclt~cst/t-cspo~~sc I>el?;~v-
ior. 'l'hcrcforc, o i ~ r iml>lement;~tion is not ;I true
Nctl)lOS c'n1~1l;ltion ;incl can pre.i.ent coninloll
Netl$lOS ;~pplic;~tions from ol>cr:lting corrcctlj:

To resol\?c tllis proOlem, we tle\~clol~ccl n com-
m o n Nctl3lOS intc'rt:~cc between the I)li(:net ;Inti

l . , \Sl ' tr:insports. i\ftcr rccci\-ing ;I rccli~cst, thc clicnt
first tt-ich t o connect o!.el' the I.,\S'I' transport. I f the
connection ;Ittempt k ~ ~ l s , the rcclucst p;lsscs to the
l)II(:net tr;inalIort ' ~ ' I I L I > , st:rncl;~rtl Nctl3IOS ;~pplic:~-
tion reclilests oper;ttc o\?er the I)E(:net tr;lns~>ort;
o111!. retlirc~tor recl~~ests ;ire ~,roccssccl over tlie
l.,\sl' tr;lllhJIOrt

Final Ber~chmarks
i \ t thc completion of tllc project. we [)crl'ormecl
I,enchm;trk tests to mc;rsurc ser\,t.r pcrform;u~icc
for \,ar~ccl \\lorlilo;~tl.\ :tncl for ;I rlircctor)' trcc cop!'.
'li~ldc L shows the results for v;~riecl n / ~ ~ l i l t) ; ~ t l ~ . Tlie
tirsr column o f thc t;tblc describes thc tcst pcr-
fornlctl. ,ILL [/o rcprcsc~lts a raw disk I/() test in
which the mc:~s~~rccl client issues re:tcl ;111tl write

recli~ests of v ; ~ r i o ~ ~ s bi~tfcr s i ~ e s r;inging from
128 b!ztes to l(,K13. 1'1' represents ;I tr;tns;lction pro-
ccssi~lg lest t l i ; ~ t mc:isurrs r;intlom re;lcl ancl \+,rite
~.ecluests of sn~all 1111its ofd;lt:~. 'l'liis tcst c111~1l;ltes ;I

t!'l>ic;~I cIat:~b:~se ;~pplic;ttion. The \vorklo;~d \.:~l~re
indic;~tes the i i~~niber of client s!.stems usetl in the
tcst to proclucc a b;~ckgrouncl worklo;lcl. As one
might exl>cct, ;IS the worklo;~cls incrc:tsc. the per-
form;~ncc o f tlie rne;~surecl client clegr;tcles.

The entries in r ;~ch I-ow of the t;tble :!re the
cl;~psccl time ;~ntf percent <:lYr uti1iz;ttion for the
givcn tcst. \Ye 11le;wuretl server j>erforrn;mcc over
the l.,\Sl' protocol using our ol)tinii%ccI interktce
;u~cl o\.er tlie IlE(:net protocol sing the st;~ntlarcl
VhIS QIo interfxe. For thc ~1.1. I/() tests, the resul-
tant el;ij?sed time is the actu:ll time i t tool< to com-
plctc the test. For the '1'1' tests, the ~,erform;~nce
numbers ;Ire the avecige of ; I I l the 1Y:s testetl.
As Ttblc 2 sho~vs. we were ;tble to tlecre:~se the
eI;~pscd time for e;lch I,enchrn;trk while niaint;~in-
j~ig the s;une or tlecre;lsetl (: I T i~tiliz;~tion.

'l'hc two gr;iphs in 1:igurc.s 9 ;latl J O illustr;~tc
these results. In the /\[.I. 1 / 0 test. (:P(l 11tili~:ltion
i~sing the opti111i~ecI interkkce 1ncre;lscs ste:~tlil!. :IS
the .ivorklo;~cl incrc;~ses. Ilsing the st;lncl;~~'cl (210
intcrklcc. (:I11I ~~ti l iz ;~t ion incrc;~scs ; ~ t ;I k~stcr r;itc
once ;I spccitietl worklo;~tl is ~-e;lcIiecl Altho~~gh the
I'l'gr;~l>l~ in Figure 10 cont;tins o111!, two cl;~t;l points.
i t is cviclcnt th;~t (:I'll ~ltiliz:ttion is prol~ortio~i:~IIy
higher for live \\lorklo;tcls th;~n it is for one. We per-
forrnecl nii~ltil>le tests to vcrif!. th:~t the results
co~~l.cl be rcprotlucctl consistentl!.

'Tl~e finill bcnchmnrli tcst pcrfo~'med W:IS ;I tlirec-
tor) tree cop!. using the 1)OS X(:Ol'Y ut i l i t) . . In this
test, the utilit!, copies the tlircctor!. tree first from
thc scrvcr to tlic client ant1 then from the client to
thc server. The bottlenecl\- in this test is kno\vn to
be tlie tile crc;ttion tirnc o n the ser\.cr. TI1ereh)re.
we expected ;I more cfticicnt tr;l~lsr)ort i~lterk~ce to

Table 2 Final Benchmark Test Results for Varied Workloads

Test Description

A11 110 0 Workloads
A11 1/0 2 Workloads
A11 110 4 Workloads
TP 1 Workload
TP 5 Workloads

r- LAST Protocol --,
Elapsed CPU

Time Utilization
(seconds) (percent)

840 4
943 69

1091 100

59 39

163 83

DECnet Protocol -
Elapsed CPU

Time Utilization
(seconds) (percent)

PATHWORKS: PC Integration Software

NUMBER OF WORKLOADS NUMBER OF WORKLOADS

KEY: KEY: - LAST PROTOCOL WITH OPTIMIZED INTERFACE - LAST PROTOCOL WITH OPTIMIZED INTERFACE

- r DECNET PROTOCOL WITH STANDARD QIO INTERFACE rn - r DECNET PROTOCOL WITH STANDARD QIO INTERFACE

Figure 9 ALL I/O Test Results Figure 10 TP Test Results

Table 3 Final Benchmark Test Results for a Directory Tree Copy - LAST Protocol - DECnet Protocol
Test Elapsed Time I f 0 Flatel Elapsed Time 110 Flat2
Description (seconds) (KBlsec) (seconds) (KBIsec)

XCOPY to Client 115 39 15 39

XCOPY to Server 119 38 121 37

have no effect on server performance. The test Acknowledgments
results in Table 3 support our theory. The 110 rate I wish to thank Jon Campbell for incorporating the
and the elapsed time over both the DECnet protocol interface clesigl lnodifications illto the file server,
(using the stdndard transport interface) and the Alpo Kallio for developing the client software, and
LAST protocol (using the optimized transport inter- Man Abrahams for designing the combined DECnet/
face) are nearly the same. LAST NetBlOS interface and for his encouragement

and support.

30 Vol. 4 iVo. 1 Winter 1992 Digital Tecbrrical Jozrrttnl

Anthony J Rizzolo
Elizabeth A. Brezver
Marl ha A. Chandler

Design of the PATHWORKS
for ULTRIX File Server

The 13TH 1LJOKK.SJ0~. CT1.7KIXprod~~ct illte~y1'~~tespel5~)11~11 c o ~ ~ ~ p i l t e ~ : ~ ~ilith the IILTRIX
ol~e~wtirzg s)slcnl O I I (1 local 111'ea ~rt'tuio~k. The s0 j t~~a1 .c sl/pport.~ boll7 the TClYIP
protocol ~111d the Ill:liC~zet 11-171isp01.t stcrcks. The desigli N I I ~ i l~ i l~le l i le~l t~l l io~i of ' the
I ~ T H \ ~ ' O R K , S ~ ~ I ~ CTI,TRI,Yjile serqr re/, is 6~7serlo11 (1 clic.11 l-ser./ !el. 111ode1. The sen.lel.pro-
c!ides.file, pl.i~rt, lnmil. ~111d tillre scrrliccs to client PCs ~ I I the ~zct l~ 'o~.k , rVelul~~rkJile ser-
/lice I I I N I ~ L L ~ ~ I I ~ P I I ~ is C I C C ~ S S ~ ~ tkl'oilgh a PGstjlle 111olu i~i te~f i /ce . Tl7e.file .ser*rler.'s
pei$)r.ilrr,~rce u~cis o]~tiil~ized to L L ~ / ~ L ~ ~ ~) c I ~ ~ L ~ ~ ~ ~ ~ ~ s I I I to OCCLI I ' I ~ ~ ! ? C I I the c l i ~ l l f isgo11e/-
~Ltillg ~ L I I C I ~ l t t17e ~ ~ 1 1 1 1 ~ tilire the seroer- is uvitillg the ~/~rt(r to disk.

The I'Al'l-ILVOHKS for 111:l'Rl?(file server connects
intlt~stry-st:u~darcl person;~l computers running
Microsoft's server message block (SNll%) protocol
to I)igiti~l computers running the L:I:rl<lX oper;rt-
ing system. The server provides ;I nctwork operat-
ing system for I>(: integration among ilsers of the
III:J'KIS, IlOS, ;111tl OS/2 o[>er;lti~ig s)rstcnls.

' ~ J I c I't\'l'l-lWOIIKS for Ill:I'IIIS server provitles file,
print, m;~iJ, ;II ICI time ser\,ices to client 1'Cs o n the
network. 'l'hc softw;rrc is I;~)~erecl on Vi\X systems
;~ntl o n rctli~cetl instruction set cornpilter (I<IS(:)
hartlw;~re. It supports both the tr;lnsmission con-
trol l)rotou)l/intcr~ict],rotocol ('l'(:I'/Il') ;lncl the
1>E(;net transport st;~cks. The base procluct illso
~xovicles centr;~lized server-hased m;in;igement
ncccsseil through ;I l'<;-style menu interhce.

In adelition. the I',\T'HWRKS for IJI.TRIX server
implements ;r network basic I/<) system (NctHIOS)
naming scrvice thiit ;rllows clients o n the network
to ol>t;ii~i the I>E<:net node ;~cldress o f the server in
the I)E(.:llet environnicnt o r the 1'(:1'/1I' arltlress of
the server in tlie T(:I'/IP environment. The IIECnet
Netl3lOS naming service co]lti)rn~s to Digitiil's speci-
fic;~tion for ;I I)lX:net NetlllOS interk~cc. 'rhc T(;I?/II1
Nctl3lOS implement:~tio~~ confornls to the requests
I'or conlment sl~ccific;~ tions, Ill:(: 100 1 i111t1 I1FC
1002. I.'

?'his 11;iper ~ I ~ S C I I S S C S the consic1er;itions 1-'or
clcsigning ;mtl implementing ;I I-'(: lociil area network
(IAN) server in ; u n IIl:rI<lX system environment. It
tlescribes the multiple 1,roccss n~oclel ;~ncl its com-
ponent processes that coorc1in:lte m;rnagement
;rctivitics ;lntl server recluests. It then presents our

design ofa n1;tnagement i~iterkrce ;untl our selection
of ;I network interface. Fin;~lly the p;ipcr clcscribcs
the I'API'H\VORKS tile s!.stem. printing, perfornl;~nce
consitle~itions; ;~nd thc scr\.cl- co11figur;ition.

Process Model
The process moclel selectecl for the I'AI'I1WIOIIKS
for 1112T1<1S server tliffered s~ibst;~nti;illj~ from the
]>recess motlel chosen for the I'IYI'~I\VO/OHKS for \hIS
procluct. l'he I'ATIiWOl<KS for VMS scrver ~ ~ s c s ;I sin-
gle process motlel in which ; I I I client requests ;Ire
processetl 11). :I single process. the VMS server. 'l'lie
I'ATH\XlOORKS for lJI.Tl<lX senrer, in contr;ist, uses a
multiple process motlel, in which one client is ser-
viced by one server process.

(:ert;~in cli:~racteristics of the I~l.1'RlS oper;~ting
system environment dcterrninctl tlie choice of ;I
multiple server process model. I:irst. tlie ([LI'RlX
oper;~ting system constr;~ins :I process to 64 sirnul-
tancousl!, open files. Illerefore. \vith nii~ltiplc scrver
processes, e;~ch client conncction is ;~llowetl access
to 64 o p e n files. In :I single process n~otlcl, ri pool o f
64 lile tlescriptors is pro\,icletl \vIiich limits iiccess
to 64 open tiles, regartlless o f lio\v m;iny clients
connect. In ;~tltlition, the rnultil,lc scrver jxocess
motlel h;rs the i~tl\.;i~it;~ge 01' I~eing ;~ble to ri11i in ;I

mi~ltil,rocessos e]i\~ironnlenL.
Within the context oC the multiple process motlell

we required ;I central ntl~ilinistr;~tive entit!,-the
:~clministration proccss-that woulcl coorcli~iate
rn;magement ;ictivities ;und server requests. T'he
aclministr;~tion process cornrnunic:~tes with boch
the server ;inel man;lgerncnt processes through

PATHWORKS: PC Integration Software

message queues. This process model is depicted in
Figure 1 ancl is described in the following sections.

Administration Process
The administration procrss is known as pcsaadmd.
As the central administrative entit): this process is
responsible for initialization and start-up of the
server, and for data managenlent while the server is
running. Starting the PATHWORKS for III:IRIS Server
is accomplished through execution of the adminis-
tration process from within the rc.local file when
the ULTRlX system is booted, or from the manage-
ment menu when the management interface is run.
Initialization of the server environment is neces-
sary before any scrvcr m;inagcment or connections
can be established.

Initialization involves starting the NetBIOS pro-
cess (pcsanbud), parsing the codguration f le
(lanman.ini), creating and initializing a sharecl
memory segment, creating semaphores and a mes-
sage queue, parsing the services database, clearing
statistics, defining objects on the DECnet objects,
and establishing signals. The main task of the
atlministration process is processing requests from
the management interp~ce (pcsamgr) and file server
processes (pcsafs). The initialization procedure
occurs in the following sequence.

To simplify server start-up, the NetBIos process
is startecl from the administration process. At start-
up, the NetRlOS process claims the server name and
responcls to name queries from clients during
establishment of a session connection. It also pro-

vides for sending datapam ancl broadcast messages
on the LAN. These two tasks are initiated by the
user through the management interface by means
of the Send and Broadcast Message functions. All
management requests are processed through the
administration process. Request handling is dis-
cussed in more detail later in this section.

The aclministration process parses the lanman.ini
file to obtain server configuration parameters such
;is maximum number of sessions, connections, and
open files. The aclministration process uses these
parameters to establish the size of the shared mem-
ory segment it creates. The sh:ired memory segment
inclutles a session database, a connection database, a
file tlatabasc, comrnon vari;tbles, and ;i locking data-
base. Once shared memory is created, the aclminis-
tration process initializes it to a known state that
includes clearing ant1 date stamping the server
statistics portion of the segment. The administration
process creates semaphores to attain data integrity
in the shared memory segment, since multiple file
scrvcr processes read and write to memory.

The services database tracks file ancl print ser-
vice creation from one execution of the server to
another. This database is re;~d at initialization, ancl
the directories offered by the file service defined,
as well as printer information, are verified.

The last step required at initialization is the cre-
ation of a message queue to process incoming
requests from the management interface and file
server processes. As said earlier, request process-
ing is the main task of the atlministration process.

MESSAQE
QUEUES

SOCKET
system()

- - -

IMPLEMENT ATION DAEMON

ADMINISTRATKIN
PROCESS

1- DECNET

TCPllP

F i r I PATH WORKSJi,r IJLTRIX Process ikIode1

MESSAGE
QUEUES

SERVER
PROCESS

ONE PROCESS

-- PERCLIENT - - ------- rn SERVER
PROCESS

>Iess;igc c j i~c~ics ;Ire tlsccl ;is the interprocess corn-
mi ln ic ;~t~on mechanism li;irl!. in the lxocc-ss cle\,el-
opment, we in\.cstig;~tccl other options. n;trnecl
pipes, socket,, ;~ncl jx~ckct lxissing tliro~rgli sh>ired
Inemor!: Onl!, 1ness;tge queues offcreel ;iclrninistr:~-
ti\,c control. Initi;ill~., we i~secl one res1)onsc nit-s-

s:tgc clueue lor cacli tile scr\.cr process ;~ncl one

c j t~c~ ic for the m;ln;lgement intcrklce. T'his \\/;is
un;icccpt;il)le I,cc;i~isc the clel:i~~lr n ~ r n i l ~ e r of-' nies-
s;tgc clilcues o n the t I 1'RlS s!.stem is 40 \\rithoiit
r.cconfiguri~lg the]<el-ncl 'l'liercforc, \IT chose to
coml,ine the nicss:igcs on otie response cpleue from
; i l l the tile sc r \ c r proccsscs anel rct;iin ;I sep;lrate
r c s ~ o n s e (I L I C L I ~ tor the n1;in;igcrnent interface.
Since tlic number of rcclilests from tile server pro-
cesses is sm;iJl. this nictllocl \ \ r : ~ ~ ;rccept;il)le. The
:~tlrninistr;rtion process re;itls rcclklcsts on o a c lncs-
s:igc C J ~ I ~ L I C ;incl rcl,lirs to ;I niess;ige cluruc cletinccl
in the mcss:igc. 'l'lic reclcicst q ~ l c u c is cst~iblishccl
\vitll ;in 11) lino\\trl 11). ; i l l ~ ~ r o c e s s e s so the!, can
;itt;icIi to the cllic~rc at st:rrt-l~j). 'I'hc ;~cll~~il i istr ;~tion
p o c e s I1;incl Ics recltrests for session cstal~lisliinent
:incl connection f~.om tile server processes ;is \\)ell 21s
rcclucsts for !,stern ~ii :~n;~gerncnt/ ;~clministr :~t ion
from the iii;~n;igcrncnt interface

File Sci-oei. Pi-ocess
'l'hc l'A'I'H\\T)RKS for 1;IIl-RIS tile ser\.rr is st;trtecl
t l i ro~rgl~ one of. t \ \o ~necli ;~nisms, clcpcncling o n
\\lliich tr;insport is ~ r c c l . 'l'lic elnet-sp:m~ier process
st:rrts tlic file scr\,cr ~ ~ r o c e s s in :I I)ll(,llet enriron-
nient. ;ind tllc inct_sl~:i\vncr st;trts tlic ser\,er i l l ;I

'1'(:1'/11' c n v i r o n m c ~ ~ t . 'l'hc scr\.cr process is initi:il I!,
st;~rtccI ;IS ;I root process, since it ni;t!. ~ieecl to run
on I>eli;~lf o f sc\er;ll users LYillrn ;I client issues ;l
connrction ~-ec~ircst. ;I ser\.cr process is initiateel.
Tlic scr\,cr tlicn scncls ;L mcsszige to t l ~ c ;~cImi~~is t r ;~-
tion [wowss nicss~gc ([u f l ~ c rcc[ucsting ;I session
connection. Attcr tlic scssiou connection is gr:intrcl
b! the ;rclrninistr;~tion process, the tile servcr coni-
1,letcs i t init~;ili/;~tion I?!, conliecting to sh:~recl
mcmor), ;Inel \vaitilig lor incomrng client rcclucsts.

I > l ~ r ~ n g tlic clcsign ph:ise of tlic rn~ i l t~p lc scr\.er
1"-occas moclcl, i t I)ec;irnc c1c;ir [l i ; i t using :I slo\v
intcrprocx." comm~~nic; l t ion mccll;irlism h ; ~ s :I
clelrinicnt;~l 1rnp:ict o n the o~cr ; i l l pcrl'orm;incc of
the scr\.cr. For this rc;lson, we clecidccl to use sli;~retl
mcmor!. h)r :ill ti~iie-critic;il s1i:ireel cl;it;t, l3ec;i~rsc
tlir ; l ~ i i o ~ ~ n t of sli:~recl mcrnor!. is sorne\\,h;it limitetl.
; i l l c I ; t t ; ~ t1i;rt is 1101 time critical is communic;itecI
;icross 111ess:igc c l ~ r c ~ ~ c s . 11s c:in l>e see11 i n Figtire 1,
llie file scr\,el. ;Inel :~clmiliistr;ition processes list

sIi;~recI ~iie~iior) . ;IS miell ;IS 1iicss;ige queues for
c o ~ ~ i ~ i ~ i ~ ~ i ~ c ; ~ t i o ~ i .

Sincc niultij~le processes c;ui sirnirlt;~~ieo~~sI!'
~ ~ p c l a t e anel ;iccess sh;iretl menlor!: ;I methoel \V;IS

nccdetl to gi~:ir;rntee cl;it;l integrit!: The methods
chosen \,;iriecl ;1mong the cl;it;~h;ises. clepentling on
the t!,pc ;ind sprecl of tlie access rccluirccl to the
elat;~b;isc. Ob\,iousl!~, the e;isiesl ;inel :ilso the slo\v-
est \Y;I!, \V;IS single-process 1n;ili;Igcment of ;lcccss
to sh;irecl memory This \vo~.kecl ell in the c ;~sc of
:tlloc;tting connection c1;it;i blocks, sincc the ;~clmin-
istriitioa process li;~cl to be notificcl ofconncctions.
l'lie open nncl re;icl-write p:~tIis for the file ;uicl
loclting tl;~t:th:~se, howe\.er, nlo~~lcl Ije signilic:~ntly
nffcctccl I)!, ;in incorrect clecision. For this re;ison, we
clcciclecl to protect these tl;it:ib;iacs \\lith ;in Irl.71'lllX
sem;tphore. In effect w e single thre;ided ;ill the
p;iths through tlie open 1,;itli ;is \\lell ;IS the loclting
ujxlate 1?;1tl-7. llse of this sem;~pI~ore C : I L I S C ~ I little or
n o clegr:icI;ition in perform:uice With our s!~stem
processes ;lncl mcc1i;inisms est:tblialicel, \vc no\\/ Ii;lcl

to consiclcr the ncecls of the s!,stem ;tclministr;itor.

Manageme~zt Interface
Our [xirn;tr!. go:tl in clcsljining ;I m;lnagement inter-
ktce for the I),YTI-IV;;ORk'S for IllTRTS server \\?;is to
provicle ;In ;ip1?lic;ition tIi ; i t co~ilcl run ~~~i;i l tcrccl
on :in!, t!,pe of tcr11iin;il. 'l'he m:tn;igement inter-
kice also li;~d to Ile consistent in prcscnt;~tion ;inel
m;inil)tilation of screens: ;uicl most i1111?ort;11itl); it
1i;icl to be e ; ~ s j to use when m;ti~;iging file ;inel 121-int
ser\.ices, \vorks~;~t ion registr:it~on. :inel 1II:1'1<IX s!,s-
tern iiscrs ;~ncl groups. Other clesigli consicler;itions
incluclccl performtlnce, [lie ;ibilit!v to cxtencl the
function:ility pro\:iclccl. ;inel tlic ;il,ilit! to port the
:~pplic;~tion to future 111;itforms.

,
1 lie rnan;igement intcrkice nr;is designctl to

incorpor;~te X/open < : ~ ~ r s r s soft\\~;irc, \vhicli is ;I set
of (: lihr;u-). routines. X/Ol)en (;~lrscs is pror7iclecl
by the Ill:l'1US oper;iting s!.sten~ ;inel is ~ ~ s e d to opti-
mize screen m;tn;igement. X/Open (:urses cock
uses tlie tcrminfo cl:~t;tl>ase. ;I collection of termin;iI
clefinitions :rncl ch;ir:rctcristics tli;it en;il?les the
;ipplication \vritcr to l,crform termin;~l-clepenclent
functions in ;I termin;~I-inclcl>cndcnt rn;innel'
Tliro~lgh X/Opcn (:ill.ses soft\v;tre ;r11c1 its use of
the terminfo tl;tt;il,;ise, tlie I'Xl'lH\VO1<KS for IrI.TRIX
m;in;gement intcrf;lce can s~~j,j?ort ;in!. t!'l>e of
termitl;~l.'

'I'lie next step wah to tlesign ;In e;~s!.-to-use :il,l,li-
c;ltion that rec l~~ires niinim;~l kno\\ileclge of I:I:I 'I<IS

system m;in;igement. We cliose ;I I ' (: -~t\~le form;~t

PATHWORKS: PC Irltegration Software

that uses pulldown menus, input forms, scroll
regions for tlisplaying information, and scrcen-
sensitive help. Default input information is d i s
played whenever possible to provide sample data
and to minimize the amount of input required.

The design of the management interface was
structuretl into three layers screen manipulation,
data valiclation ;~nd present~tion, and app1ic;ition
programming interface (MI).

Screen Manipulation
The first layer of the management interface is the
X/Open Curses software. All screen manipula-
tion routines reside at this level. X/Open (:urses
encompasses the implementation of reverse video
attributes for highlighted text, cursor movement,
window updates, and the crcation of menus, forms,
and scrolling regions. Any type of scrccn inter-
action is performed and managed by this laycr of
code. As a result, the screen manipulation laycr is
portable to any environment in which X/Open
Curses is supported.

Data Validation and Presentation
At the data validation and prcsentalion I:lycr, data
obtained from the screen interface is validated. The
clata is then packaged and processed by the API
layer. Information returned by the API layer is
unpacked and formatted for screen presentation.

Appliccrtiotz Progt-amming Interface
The AI'I layer is responsible for all communic;~tion
with the ad~iiinistratio process. The management
interface does not store or manipulate servcr nian-
agement data directly. Instcatl it makes rcqucsts of
the administration process in the form of Mls
through mess;cgc. queues. E;ich request requires a
response and docs not complete until a response is
received.

Network Interface
When designing an application t1i;lt must commu-
nicate on a network, one of the important deci-
sions is how to control access to the network. The
Berkeley Software Development version 4.3 of the
IJNIX kernel, upon which the LJLTRIX operating sys-
tem is based, provider; two nctwork interfaces.

The first network interface Is known ;is the socket
interface. It uses ;I %ockef strrlctilre to iclentLfy the
endpoint of an ULl'KIX network connection. Under
the ULTRIX syswm, the socket interface is the pri-
mary interface to the network.

The second network interface in the I:I:I'HIS sys-
tem is the x/Open transporl intcrhce (X.1'1). 'l'his
transport servicc interface is not restricted to
either the Da:net or the TCWIP transport. A com-
mon interface to the network allows eithcr trans-
port to be accessed transparently. With XTI the
communic;ition endpoint is identified by a local file
descriptor. On the UL'TRIX system, the XI'] interface
is provided through a library that converts the
calls into socket calls. Since performance was one
of our primary concerns, we decitled to use the
socket interface because it connects directly to the
ULTRlX operating system.

Multiple Transport Support
In order to support both the TCWlP and the DECnet
transports, we neeclecl to overcome the differences
between a message-based protocol (1)ECnet) ntid
a stream-based protocol (TcrYll'). With :I message-
based protocol, data receivetl from the nctwork
arrives in compact packets. With ;I stream-based
protocol, message bounclaries ;ire not preserved;
the data flows in a stream. Since Microsoft's SMB
protocol is a message-based protocol, the server
needs to re-create these message boundaries. As a
result, the server must identify the transport
provider. This information is provided by the
socket layer when the server process is started. The
server can re-create the message boundaries by
combining this information with mess;igc size
information provided in the T(:l'/ll' NettHoS header.
With the message boundary inform;~tion, the server
can re-create the message. The C pseudocodc frag-
ment in Figure 2 shows the instructions to re-create
message boundaries.

P m 0 R K . S File System
The PATHWORKS file system provides an application
layer that attempts to emul;~te the 1)OS file system.
Several trade-offs and restr~ctions were required In
order to implement this file system on the IJLTRIX
file system. This section tlescr~bes these tr;icle-offs
and restrictions ant1 explains our design choices.

File Name Mapping
The file name space in the ULTRlX system is not
restricted to the 8.3 naming format supported by
DOS. DOS limits file names to eight characters fol-
lowed by an optional period and an optional three-
character extension. This is referred to ;is 110s 8.3
file name format. DOS file names are uppercase char-
acters and are case insensitive. Under the 111.7'111X

Vol. 4 No. 1 Winter 1992 Digital Tecbrricnl Jotrrtral

IIes&iz r? f t /w PATH WOUh'.S,fol' ~Jl,Tl<IX Klc ,Sei'oei.

I* S M B p t r - P o i n t e r t o SMB n e t b i o s h e a d e r *I
I* r d l e n - N u m b e r b y t e s r e a d f r o m n e t w o r k *I
I* B y t e s R c v d - B y t e s a l r e a d y r e c e i v e d * I
I* B y t e s L e f t - B y t e s L e f t i n c u r r e n t m e s s a g e *I

r d l e n = r e a d (n e t w o r k , S M B p t r) ;
B y t e s R c v d = r d l e n ;
B y t e s L e f t = s i z e o f (n e t b i o s h e a d e r) ;
B y t e s L e f t + = n t o h s (E X T 1 6 (S M B p t r - > n b . L e n g t h) - b y t e s - r c v d ;

I* We w i l l w a i t u n t i l we r e c e i v e a l l t h e d a t a i n t h e msg *I
I* b e f o r e we t e r m i n a t e t h i s l o o p . T h i s L o o p w i l l o n l y b e *I
I* e n t e r e d i f we a r e r u n n i n g T C P I I P . * /

w h i l e (B y t e s L e f t ! = 0) {
r d l e n = r e a d (n e t w o r k , & S M B p t r C B y t e s R c v d l) ;

I* I f we d o n ' t g e t a n y d a t a i t m e a n s t h e c l i e n t m u s t h a v e * /
I* t o r n d o w n t h e s e s s i o n s o a b o r t * /
I* o u r s e s s i o n . N o t e A b o r t S e s s i o n O m u s t e x i t a n d * /
I* n o t r e t u r n h e r e . * /

i f (r d l e n < = O) A b o r t S e s s i o n O ;

I* U p d a t e t h e c o u n t e r s t o a c c o u n t f o r w h a t we j u s t r e a d *I

I* I f t h i s i s a SESSION-REQUEST m e s s a g e , t h e n s e n d t h e ACK*/

i f (S M B p t r - > n b . t y p e = = SESSION-REQUEST) S e n d S e s s i o n A c k O ;

I* I f t h i s i s a SESSION-MESSAGE, t h e n h a n d l e t h e SMB *I

i f (S M B p t r - > n b . t y p e == SESSION-MESSAGE) D i s p a t c h S M B O ;

I 2 l<ec'c.ir~i~~g Stre~~nz Data Code I I - ~ P I ~ I ~ I ~ I ~ ~

system. the tile n:inle is a 32-c1i;lracter string in
\vhich the pcriocl (.) is a leg;~l ch;tr;~cter. The I1l:I'RIX

tile s).stem is c;lsc sel~sitivc ant1 supj>orts both ilpper-
c;ae ;lnd lowerc;lse ch:~r;~cters in tlie file name.

'li) rcsolvr this incomlxitibilit!; betwcen opera t-
i n ~ systcrns, \ye m;ippecl the 110s file n;irne sp;ice into
the I I I : I 'RIX tile I ~ ; I I I ~ C SI);ICC. 1105, hein# case insensi-
t i w , \;iews the worltl of lile n;lmes in ilpperc:lse,
but I1l:l'RlS tilc n:lmcs ;Ire t),[,ic;~ll). lowerc;~se cIi;~r-
;icters. ~ V C cliosc to m;ip all I >OS tile n;imes to the
eclt~i\~;~lcnt I ~ \ Y C ~ C ; I S C n:inic. Any file o n the host
I1I:I'I<IS oper;tting system th;it ~iieets () L I T criteria,
i.e.. lo\verc;~se n:lmes ;ind 8.3 fo~-~i i ;~ t is \/isihle to the
1>OS clicnt.

'l'liis ;il>pro;ich was suit;il>lc in ;i l l environments
except Intcrn;~tion:il St;intlartIs Orga~iiz;~tion (ISO)

9000 (:I>-l<OM tile systems. These tile ti:lmes con-
form to the I >OS ilppercase. S.3 tile n;iming flortn;~t.
When the tile server tletermines th;~t one of the
serlriccs is o n ;In I S 0 9(60 (:I)-KOXI file system, the
file-name m;~l>j)ing ;~lgorithm is ch;rngecl to ;illow

only uppercase tile n;inies t1i;rt fi)llow the 1)OS 8.3
form;~t.

DOLT Attribute Mappi~.z~q
The I)OS file system provicles tile ;~ttributes that
do not necess;lrily M;IP to I IU I ' I < IX file r~ttribi~tes.
'I'he ch;~lJenge W;IS to Ipreser\fe these I > o S :ittril>utes
within the [ll:l'l<l); file system without imp;~cting
tlie Iiost system user who might also be sliaring the
tile. 'l'hc I)Os ;~ttrihutes consist ol're:~cl-only, hitlclen,
;~rchive. ;~nd systcm.

The l)Os re;~cl-onl!. attribute m:lps tlirectlj. to
tlie [JLTRlX directory ;~ttributes m;lsk. If the write
;~ttributc is turnetl off i~nder tlie IIl.I'KIS systcm, the
tiles cIi;it~ge to read-only status.

The 1)OS liitlclen ;rttribute specifies tli;~t a tile
slioulcl not be disp1;lyed on :I norn~al directory
se:~rcli/lookup. We mi~ppetl this bit to the IlLTltls
set user 111 bit.

'Tlie 110s ;~rcliive :~ttsibute sl.)ecities t1i;lt ;I tile
has been ch;lnged since the last time the ;lrchive

PATHWOW PC Integration Sdfware

attribute was set. It is generalIy used by the backup
program to determine which files have changed
since the last backup. Wc mapped the archiw
attribute to the ULTRD(set group ID Mt.

The nos system attribure specifies a special sys
tern file that is normaily not displayed on a direc-
tory Itsting, and in some cases is not txqcked up. We
mapped the DOS system attribute to the Owner
execute bit. Jf this bit Is set, the scrver cannot
include thcsc files on a normal directory search,
unless req~lested.

Byte Range Locking
The most noticeable difference in byte range lock-
ing between the ULTRIX operating system ancl the
DOS operating system is that byte ranges under the
IJI.TRIX s)atern are purely ;~tlvisory. Advisory lock-
ing works as a rnechan~sni to big~ial t l i ;~t a bytc rangc
is currently in ubc: The IlLTIU); system, however,
does not enforce the locks, therefore i t is possible
to read/write a byte rangc that is locked simply by
ignoring the lock.

On the other hand, Dos has mandatory locking.
If a byte range is locked, the user can neither read
nor write a locked byte rangc. We needed to con-
vert the ULTlUX lock manager into a mandatorylock
manager from the DOS clients' point of view. To do
this, the U L W jock manager has to check for a
lock on a byte range on every read or write from the
file server. If any portion of the byte range Is locked,
the client receives a lock failure message.

In the initial release of the server, we believed
that the standard ULTRM lock manager would
provide enough performance and granularity to
allow DOS client software to function correctly and
quickly. We learned that this was not always the
case. For example, in a network file system (WS)
environment, additional time for granting or deny-
ing the lock request was needed to resolve a Iock on
the nctwork. In addition, the ULTRD(lock manager
viewed the byte range as a signed integer, but the
D o S lock manager viewed the byte range to be
locked as an unsigned integer. This disparity led to
problems with applications that used byte range
locks with the sign bit set to provide synchroniza-
tion for database updates. We found that the ULTRIX
lock manager was deficient in the DOS client envi-
ronmcnts. For these reasons, we decided to write a
private lock manager for applications that could
not use the ULTRor lock manager.

To resolve locking problems among these appli-
cations, we designed a private lock manager for the

PATHWORKS for U L m X server. We provided a hlgh-
performance lock m a w e r tlmt co~ild b c k byte
rznges used by DOS applications. In other words,
the server lock ma- would trmt the lock range
as an unsigned number instead of a signed number.
We also provlcled the option of passing the lock
informntion to the t 1 L . K lock manager for those
applications that needed tlzSs hinctionality.

Open File Mode Locking
The DOS client provides a mcclianisni for control-
ling access to opened files. It allows the client who
initially opens a file to control ;tccess to the file
by other clients. The 110s client allows files to be
opuicd in one of four modes:

DIW-NONE modc allows all types of files to be
opened by all users.

DENY-READ mode allonrs other users to open
the file for writing but not reading.

DENY-WRITE mode allows other users to open
the file for reading but not writing.

DENY-READ-WRI'I'E mode does not allow other
users to open the file.

The ULTRIX operating system, on the other hand,
has only two modes for a shareable file lock. The
first is SHARED-ACCESS modc, which allows multi-
ple readers ancl writers ancl is therefore equiva-
lent to the DENY-NONE modc. The other mode is
EX<:LISIVt:-ACCESS mocle, which cloes not allow
multiple accesses to the same file ;~ncl therefore is
equivalent to DENY-REAI-WRITE mode under DOS.

Because of these differences, we attempted to
map the two modes not covered by the ULTRE file
lock manager, the DENY-RE,\D and D1i.W-\WTE

modes. After some investigation, we decided map-
ping was not necessary If a file was opened in
one of these two modes, we specified that the
ULTRIX server should open the file in I.JLTNX
SHARED-ACCESS mode. We reasoned that an ULTRIX
application that was cooperating with a DOS appli-
cation would not use these two modes to open the
file since they are not available under the ULTRIX
system. Obviously these two modes need to be sup-
ported among DOS-based P(:s on the server. Each
time ;t user opens a file, the list of currently opened
files is scanned to enforce the open mode and to be
sure that the ULTIUX operating system conforms to
the DOs interpretations of these modes. Therefore,
only the half deny modes being passed through to
the operating system are not enforced. This design

36 %I. 4 No: I Wtnler 1992 Digital Tihrricrrl Joziivral

'l'lie 110s hle >c;lrcIi ;ilgositlim ;inel the SM13 mes-
s;igcs th;tt prw\.ide s~~l,port for director) scarchcs
wel-c elifticult to implement o n the 0I.TItlX file
server 'I'hc core Sk111 protocol proviclcs 0111\~ two
states for a sc;~rcli context. begin new se;ircli and
continue :I previous se;trch. However. tlic server
~ieecls to be informecl tIi:tt tlie client has coml?lctecl
;I clircctor! sc:~rcli context. Then the server \voulcl
be ;lble to frce loc;ll tl:tt;~ ;issociatetl ~vi th the search
contest. 'l'he im~,lc~iic~it;~tio~i of this SAlll posccl two
cli:~llengcs: ho\v to control thc nmount of memor!.
rctluirccl ;lnd Iiow to 11i;tl) ;I SC;ICCII continu;~tio~i
itle~~titic~-.

To minimize the ;111iount of memory recluirecl to
~ii;~int:~in se;lrch contexts, we desig~~ecl :I t;ll)lc of
se;~rcIi c o ~ ~ t c x t StrLIctures tli;it cont;iins ;I 1oc;ll
timing \:;ilue. I f tlic t;iblr I,econ~es fitll nncl ;I bloclc
(structure ;inel time ~.;ilue) neccls to be reusetl, the
olelest block is cleemccl rcus;~l)le. This itl)pro;~ch efti-
cicntl!. m;ln;iges tlie ~~nl)reclict;iblc memos! require-
ments of an SA'll) sezircli.

'l'lic se;iscIi contini~;itio~i pro\/itles ;I tli~ector!~
inforn1;ition structure which cont:tins ;I h)itr-byte
fielcl th;rt cletermines tlic point ; ~ t which the se;~rch
is to continue. 7'11is four-byte tielcl is well suited to
tlie 1 1:1'Rl?i tile >),stem. The gnotlc fieltl, ;I longwortl,
c;in be l~scd for the follr-l,!.te tielel's se;~rch continu-
;ition 11). <;i\<en this 11) . the ser\lcr h;is the ;il>ility to
Imrsc thc col~tcnts of tlie directory until i t tincls ;I

file witli ;I m;rtching gnoclc: it thcn continues the
search h-om that point.

PAThnVORKS for UZTRIX Printing
In ;tdtlition to tile services for 1>0S and <IS/:! system-
lx~setl clients. I~~Yl'HW~ORKS for IIUI'HIX provides print
services for these 1Y: clients. Our clesign objective
w;ls to ;illo\\i the I-'(: clients ;tccess to all the function-
 lit!- o n the n;~tivc I1l:I'RIS print qucue in ;I transpar-
ent m;ttiner. A seconcl objective was to iml?lenlent
the function;~lit) pro\,idctl by Nli'l' I'RIN'I', the client
utility h)r printing, o n the n;ltitre I1l:I'ItIS line printer
d;icnio~~ (1.1'1)).

Altl~ough the 1.1'1) ~~roviclecl ; ~ l l the b;~sic j?rinting
c:ip;ibilitics, it clicl not p~.o.iiitlc tin~cd schetluling of
print jobs. .It) e11;iblc tiniecl schetl~~ling, we ;~clclecl
the /Al:'I'ER s\vitcli to the server throiigh ;I niech:t-
nisnl within the I;l:l 'l<IX oper;tting system. When :I

/i\F'I'III1 >witch is clctectccl in one of the estenclecl

printing S>ll3s, ;I b;ltch joh is run at the timc speci-
fied in tlie print rccluest.

'I'hc IIL'I'RIX print spooler ~~~-o\-icles spooling for
all types o f printers, e.g , t11ose ;~tt;lchecI 10c;ill!~
;is well :IS netv\losl< printers ;ind revel-se Loc;tl are;^

Tr:lnsport (Li\l ') printers connectecl to 1Y:s. I<everse
1,Xl'printing is \,er). importzrnt in our environment
bec;uise most P(:s Ii;t\re printers ;itt;~checl ;inel most
instnll:~tions h;i\~e :I ncecl to shiire those printers
among sc\ler;il I'(:s.

'The rir:mrx print spooler provictcs print filters
which tt-;lnsl;~te files to various printers. Print filters
conceptually sit between the 1.1'1) :Inel the ;tctu;~l tile
to I x printecl. Ihrring printing, tlie I.T'I) re;lds n
"printcap" file to tletermine if :I [)l-ilit filter is ;issoci-
ntecl with this clileue. l'lie print filter is st:trtetl in a
forked process witli its st;~ndnrtl o ~ ~ t p i ~ t device (sttl-
out) pointi~ig to tlie printer :lncl its st;tntl;irtl input
tlevice (stdin) p o i ~ ~ t i ~ i g to tlie input tile stre;lni. The
print filter is responsible for converting the tile
from the input stre;trlI (sttlin) into ;I tlevicc-specific
o i~ tp~r t tli;it is 11s:tble by the printer (stclout). 'This
fe;~ture ;~llows the I'A'I'H\X/ORKS forII1:I'RIX server to
support printing o n ;I wiclc vnrict! of t.hircl-p;~rt!~
printess.

The design of the Ill:1'I<IS printing si~l.~s)~stem
enableel thc I'IYI'H\VOI~KS for 11:l'llIX server to pro-
vicle ;in interface to many cliffercnt printers :uncl
printer configur;ttions e;tsil!, ;~ncl etl'lcienll!,.

r\s ~ : w t of tlie elesign process. we obscr\:ccl the per-
forrn;ince of the file serves cluring inter;~ctions with
the client. We neecled to comp;lse v;isioi~s contlict-
ing altcrn:~tives ;tnd their elfects on the ovcr;~Jl per-
formance of the server. Some o f the altcrn;~tivcs we
sti~clietl were the atl~mtages of using the IJI.TRJS sys-
tem cache \.e~-sus implementing our o\vn cache. We
;11so stuclictl tlic issue o f persistelit lock requests on
the network and tlie server. These ;tltcrnatives are
discussed in this section.

File I . 0
Since tlie III:I'RIX oper:iting s!,steni proviclrs ;I

kernel-based, disk c:tche mcch:tnisn1, wc clcsig~led
the oper;tting system's c:iche ni;ill;tger to perh)rm
;111 c;rching gloh;~lly The cache m;ln;iger upcl;ttes
the c;iclie b~rffers, per-forms re;ctl :~he;icl o n tlat:~
streams. ;ind Iluslies tlie c;iche birffers 1-.ram d;tta
written to did<.

The tile servcr performs clisk \vrites ;is write
lhehincls. When zi request to write tl :~t;~ is rccci\jctl

PATHWORKS: PC Integration Software

from a client, the server responds by acknowledg-
ing success before the write is attempted (assuming
the client has proper write access to the file). This
optimization allows parallelism to occur between
tlie client ;~nd the server because the client is gener-
ating more data at the same time the server is writ-
ing the data to disk. If the write fails, however, the
server notes that the last write failed and returns
the error on any subsequent access to the file.

Heuristics
We found that certain applications would continu-
ally flood the server with lock requests even
though the lock requests kept failing. These persis-
tent lock requests from applications used valuable
CPU time on the server system as well as network
bandwidth. For this reason, the ULTRlX server needs
to determine if a client is being persistent and
continually requesting locks which are failing.
When the server detects continuous lock requests,
it delays the lock request for a random period of
time and then checks if the lock has becolne avail-
able. The server then either grants access if the lock
is available, or returns the error at that time. This
procedure reduces lock request traffic, since most
locks are of short duration.

Security
Connection requests between client and server
require a security check. Since PATDVORKS for
ULTRIX was designed to be layered on the ULTRIX
operating system, we were able to take advantage
of its security features. When a client attempts to
connect to the server, a username and passwortl
can be passed as part of the connect message. If
these are supplied, the user is validated through
system calls to obtain the password file entry for
that user. If the user is not found in the /etc/passwd
file or if the password is invalid, the user is denied
connection. If the ULTRIX system is running in
enhanced security mode, further checks are made
to ensure the account has not been disabled or the
password expired. In either of these cases, tlie con-
nection would be denied. If a username is not sup-
plied, a default guest account may be used to
establish privileges.

VAX versus RISC Considerations
During the developlilent of the PATHWORKS for
ULTRIX file server, we did not anticipate that our
code would have to differentiate between V i U and

RlSC architectures. We expected that code written
for an ULTRIX system in a RlSC environment would
be recompiled on a vAx system. For the most part,
our assumptions were correct, except in the areas
of memory allocation.

On the VNi system, shared memory maps
directly after the data segment in memory. This
implementation prohibits the allocation of mem-
ory above a shared memory segment. In the RIsc
implementation, shared memory is allocated at the
very top of the memory image; therefore a great
deal more memory can be allocated before the bot-
tom of the shared memory segment is reached. The
difference in shared memory allocation between
the RlSC and VAx systems is shown in Figure 3.

To increase the data segment size in the vhx sys-
tem, we replaced all malloc()calls in the server
modules with the following pseuclocode:

D i s c o n n e c t f r o m s h a r e d memory m a L l o c 0
R e c o n n e c t t o s h a r e d memory

Since this code is req~liretl only in a V t U environ-
ment, it is compiled when the server is built.

P-ORKS Server Configuration
The PATHWORKS for IrLTRIx file server allows the
system manager to configure the server environ-
ment to make tlie most efficient use of shared mem-
ory. The following parameters included in the
lanman.ini file are the determining factors that
enable shared memory to be scaled.

maxsessions: The maximum number of PC work-
stations that can be simultaneously connected
to the PATHWORKS for ULTRIX server.

maxconnections: The maximum number of con-
nections PC workstations can make to the ser-
vices offered.

SHARED MEMORY

STACK

MEMORY

- TOP OF CODE
AND DATA

HARED MEMO

DATA, CODE, I STACK I
(a) VAX System (0) RlSC S'jstem

Fig~n-e 3 I7nage rMemoyy Layoout

38 Vof. 4 No. 1 Winter 1992 Digital Techtrical Journal

masopuis: 'l'he rn;~sirnum number of tiles the
scr\.cr c:in h;i\~e open sirn~~lt:~ncousl!,.

i~nicli~copentilcs: Tlle m;~xirnu~ll ni~mber of
1111iqiie o lxn files the server c;in I? ; I \~c open

m;~xservcrlocks: 'I'hc m;iximum number of b),te
range locks the scr\,cr c:in lock sirnu1t;ineousl):

To help the user ;tpply these p;ir;uneters to :I par-
ticul;ir s!,stcm, thc "pcsii memory" comm;incl acts
;is ;I sh;~recl memory sizing calcul;itor. It ;tllows
lllc user to input the p;lr:ilneters i111tI then either
intlic;~tes t1i;lt the nc\v p;rr;lmeters will _tit in the
current sjstcm. or t11;it the sIrstem sharetl memor),
~xw;i~ncters neecl to bc c1i;mgcti to sikpl?ort the new
configur;ition.

Znforn~ation Loggitzg
I ~ I ~ ' I ' I I L V O I ~ K ~ for IlI:l'IIIS inform;~tion logging w;is
clesignecl for the 111:l'1~15 s!,slem n1iin;lger ;IS well ;IS

writcr/l~sc~.h o f the I A N N1:in;iger ;ipplic;~tion. I t pro-
vicles :ind error logging inform;itiotl in two
distinct form;its. .l'lie first formzit uses the uKl'l<lx
s!.stcm log lile: s),slog. 'This log tile is typic;~ll!. mon-
i torccl I)), l il:I'I<lX s!,stcm lu;ln;igers. All processes
\\7hich comprise I'~\I'H\Y'OIIKS lor 111:l'l<lX submit con-
figuration inforn1:ition :11ic1 error conelitions to this
file. 'l'hc file scr\:cr 1wowss :tlso logs information
reg;u-cling scr\:icc ilsilge. sessions. ;rncl connections.

71ie secontl form of event logging is performecl
entirely 1,). the scrvcr process. The server p ~) -
ccss logs error ;111tl ;iuclit events to IAN M:inager-
corn~:itiI>I~ log files: error log ;11itI ;iiltlit log. These
log tiles are :~cccssiblc thro~~gli tlie m:inagement
i~~tcrkice ;IS well its through the I A N ~M;in;iger i\l'l
intcrk~ce proviclctl with I)OS :und OS/Z J A N Man;iger
iruplernenti~tio~~s. 'l'hesc files contitin i~~forniation
on sessio11 Iogo~i/logoff, 1xiss\vord errors, eo1111ec-
tions st;~~.tetl/rcjcctcd resource ;~cccss gr;~ntetl/
tlcnietl. and scr\,cr st;it(~s cIi;inges.

Summary
'l'he IZYI'IJ\X~OIIKS [or 111:l'IIlX tile srrvcr, together
with the I?~I ' l ILVOIIKS f'or 1)OS :incl I'AY~'H\VOJIKS for
0S/2 1"-oclt~cts. pro\,icles ;I tlistributecl compi~ting
cnviron~nent. 'I'l~c file scrvcr is based on ;I client-
ser\.er I ~ I O C I C I tl1;lt offers tr;lllS~);Irellt ;iccess to
[Il,'I'RIS s)~stcm resources from I)<: clients. It pro-
vitles the necessary tools to i11tcgr;tte these two
cliverse comp~~t ing rnvironments in ;I manner that
is both efficient ;inti eas). to manage.

Acknozuledgments
1M;in) people were i~lvolvrcl in the clesign ilntl build-
ing o f the PAI'H.WORKS for UI:I'KIS tile server t'rom its
inception to its shipme~lt. We wish to thank ;r l l
those people: 1-'iii11 Illessier ;incl Jim Flilliert!: who
guided our efforts; Ikin Smith, who clesignetl ;111tl

implementecl the NetllIOs I;~yer; Ken (:;~rtlinnle,
\v110 WI-otc tlie 1)rocIi1ct (Ioc l~~ne~~t ; i t io~l ; M;~rlene
Steger, who ensurctl th;~t the procluct shjpl)etl o n
time; ;tnd the many intlividuals who succcssfi~lly
I>roi~ght this j>roduct to 111:trliet.

References

I . I ' rotocol . S t c ~ i ~ c I ~ i i d , t i ~ ~ . iVc.t/jlOS S o ~ c ~ i c c or7 ci K/CI'/

(iUP fi wrz.spor~t; Co/rce/)ts c i ~ i d lll~lcthocls, In ternet
Engineeri~lg liisli Force (IIiTF) ItFC 1001 (M;irch
1987).

2 . Pro toco l S ~ L I I I ~ I L L I ~ J ~) I ~ ,\'ctlilOS So'r'ice orr n 7C;IY
lfDI' f i a 1 ~ s p o r 6 1 k t ~ 1 i l c . d Sj,cc'~i ic ' r l l io i~, Internet
Engineering Task Forcr (IETI;) IIFC 1002 (~Marcli
1987).

3. l!l.Tl~lX-.i2 CII icle t o C ~ i r s e s .Sc'~~ecrr-fl~~r~cI~ir~g,
liUI'I<IS 1)ocument Set. Softw:ire I)eveloprnent,
\;ol. 2 (Mi~!~n;ird: I>igil;tl Equipment (:orporntion,
Orcler No. I\I\-~CIF~)7h~I'E 1988).

Mitchell I? Lictjtenberg
Jeffrey R. Curless I

DECnet Transport Architecture

The PATHWORKS family of software products inclz~des an implementation of tlge
rlECnet trw~?sportprotocol to allozo Ii~lel-based pperso~ral computers access to net-
unvk resources. This irnplemcnt~~tion, the DECnet Network Process (DNP) trans-
port component, providc~s br~sic fik and print services, terminal emulation, and
application services. The new DNP compone~zt for the version 4.1 release of the
PATHWORKS for DOS client software is written in assembly lar?guape to improve
performance and reduce ~~zelnory usage. The DOS and OS/2 versions of the compo-
nent contain the same base source code, thus decrcclsing the development and
muitlte~zc~rzce costs.

Digital's PATIWORKS family of software products
provides the means to integrate personal coni-
puters into the Digital network environment.
The PATHWORKS for DOS client software includes
device drivers, network transports, utility pro-
grams, and applications that allow PCs fill1 access
to the resources available in local and wide area net-
works (LANs and WANs). Transparent file sharing,
electronic mail, and terminal enlulation are exam-
ples of services supported by PATHWORKS client
software.

The DECnet protocol suite is imple~nelltecl in
Iligital's standarcl set of software for interconnect-
ing VN(and reduced instruction set computer
(RISC) systems. DECnet software, which is inclurled
in the PATHWORKS client software, enables PC inte-
gration. The DECnet protocols allow PATHWORKS
products to use the infrastructure of existing
Digital networks and to provide common utility
programs and network management capabilities.

However, integrating PCs into a network sys-
tem presents manj7 design challenges to software
developers. They must provide network access
without limiting the fi~nctionality of the pCs and
without compromising the compatibility of the
existing PC software and peripherals. Since the PC
architecture has limited memory resources ant1 few
built-in features for networking, PC network soft-
ware architectures must be as transparent as pos-
sible, reducing memory usage and emulating local
peripherals and software interfaces.

To implement this transparent architecture, the
PATHWORKS products comply with PC-related
industry standards. Most such standards result from

popular vendor software applications or hardware.
For example, Microsoft's LAN Manager software
product influenced tlie acceptance of tlie intlustry-
standard server message block (SMH) protocol. This
session layer protocol, implemented over a variety
of transports, is used in the IAN Manager redirector
for transparent file sharing and peripheral emula-
tion. Digital licenscs the LAN Manager software in
order to provide these scrvices as features of the
IJATH\VORKS product family. Digital extended the
LAW Manager across a WN or a W%N system by using
the DECnet transport protocol as the transport layer
in its PATHWORKS products.

In this paper we first present our rationale
behind the design of the DECnet transport compo-
nent in PATHV(IORKS for DOS version 4.1, as well as in
PArHwOIZKS for OS/2 version 2.0. We then describe
the new component's internal structure, follow a
typical network operation through the compo-
nent, and compare this version of the software
component with previous versions.

P-ORKS Client Soflware and the
DNP Component
Since its initial release, the PATHWORKS product
family has implemented the DECnet transport pro-
tocol to provide access to basic file services and
printer sharing, terminal emulation, and applica-
tion services. This network software implenienta-
tion is called the DECnet Network I'rocess (DNP)
transport component. Figure 1 illustrates the rela-
tionship between the DNIJ transport coliiponent
and the other memory-resident I'ATHWORKS client
software components.

i 1 PATH WORKS Client Conrl,oner?ts

DOS APPLICATIONS

Goals for PATHWORKS Client S O ~ ~ L L W T ~

APPLICATION
PROGRAMS

SYSTEM

t'(: ~ictcvork soft w;u.c protlilcts ;Ire jutlgctl prim;u-iIy
on two critcri;~: pcrl.o~.~n;ince, LISLI;III!. mc;isurecl
\vitIi 17o1x11:ir I ~ C I I C I I I I I ~ I I ~ I ~ l)rogr;lnis, ;11icI residelit
memory i1s:lge. ;1 limitetl resource th;~t m;i)? restrict
other ;~p~ l i c ;~ t io~ i s . Incre;~sing performance ;~ntl
clecrc;~sing nicmor). us:ige ;Ire ni;~jor goals for ;i l l

nc\v relc;~scs o f the I',Yl'llN/OlZKS client software. 111
t h r I'l\l'lIWOI<KS version 4.1 client soft\v:ire. 1)igit;il
soi~glit to cloul,le the pcrSorm;~ncr of the IINP
tr:lnslx)rt component 1-'or sm;~ll d ; ~ t ; ~ tr;unsl-krs,
wliilc tlecrc;~sing the size of tlic cotlc I?!. 50 percent.
Anothcr goal \ V ; I ~ to signitic;~ntlj~ rctluce m;~inte-
n;~ncc costs in order t o free engineering resources
for futi~re project clevelopn~c~it.

Ilet'orc tlescribing how we went ;tboi~t ;ichieving
tlicsc pcrl'ol-m;uice. mcmorj: ;mcl tlcvclopment cost
go;~ls in I'A'I'I ILVOIIKS ~vrsion . $. I , we re\.iew the ft~nc-
tio1i;llit) of the l)ll(:~ict 1)NI' inlplement;~tio~i, We
;11so cliscuss the component in rel;~tion t o other
J1,\'I'I-IWOI<Ks client components t o give the coritcxt
in whicl~ our clcsign clecisions were ni;~eIc.

t\])plic;ition progr;trns can ilse I)NI' transport ser-
vices tliroilgh one of two S O ~ ~ W ; I ~ C ' inlerk~ces: the
~ict\vorli Ix~sic I/() s!.steni (Netl%l(')S) interk~ce ;incl
the I / () colitrol block (1O(:I1) intcrk~ce. The \vitlel!z
:~cccptcd NctlclOS intcrkicc is ilsetl 13). ;~pplic;~tions

NETBIOS
APPLICAT1ONs

;ind tlrivers that comply with industry-stanclml
spccik;~tions to provicle peer-topeer triulisport
services 011 ;I I A N . Thc 10<:13 interface is specific to
Digit;~l's DE(:net transport irnple~nent;~tion 01-' the
l)E<:net protocols. IO(:ll pro~~itles ;I socket interface
sitnilar to the one ilsetl hy the II1:I'KIS oper;lting
system. This 10<:11 intcrk~ce is usetl by L)E(:net-
specific application proglxms.

To communicate with the network, the IINI'
transport component calls the data link I;ryer (IILL)
softw;rre interf:tcc. Tlie 1)r.I. cornponcnt is i~setl
by all I'ATHWOKKS clicnt components to sclltl ;rntl
receive p:lckets on the l.,\N. This component
demultipleses incoming p;ick-ets based 011 tlieir
protocol type (e.g., loc;il ;lrc;i transport 1I.ATj. loc;il
area system tr;insport II..AST], o r I>E<:net transport)
a1it1 tlelivers these packets to the correspomling
I'I$I'H\WORKS client component. The 1)I.I. compo-
nenL also transmits p;~ckets on the L,\N, either
directly or inclirectl)~ by c;~lling st;uid;utls-lxised
network tlrivers. To recli~cc memory consutnption,
the 1)I.I. component provides ;I glob;~l bul-'fer pool
that thc J)N1' and other transport colilponents can
use for building network packets or fo r storing

DECNET
APPLICATIONS
(IOCB INTERFACE)

unack~io.cvIetlgetl tlat;~.
To provide timing ;u~id b:ickgl-ountl process ser-

vices, the 1)NI' coml,onerit c;ills the l'A'I'II\VORKS
re;rl-time Schetluler (,S(:H) component. The S<;H
communic;~tes directl)' \vitli the DOS operating

MICROSOFT LAN
MANAGER

PROGRAMS
DOS OPERATING
SYSTEM

-

DECNET
NETWORK
PROCESS (D N P)

DATA LINK
LAYER (DLL)

LAN HARDWARE

P

PC TIMER A N D
INTERRUPT
HARDWARE

- SCHEDULER
(SCH)

PATHWORKS: PC Integration Software

system and the PC's timer kind interrupt hardware to
create a simple cooperative process environment.
This environment includes sleep and w&e calls,
and periodic interval timers. The functions of thc
SCH component are sirnikr to those performed by
true multitasking operating systems, such as the
OS/2 system, which m e preemptive scheduling.

Considerations for a New DNP
Component Design
In previous PATHWORKS client software, separate
teams implemented and rni~intained tlic DOS and
OS/2 versions of the DNP tr;insport coml,onent. Wc
clecidccl to use the same base source cocle for both
versions ant1 thus reducc developrncnt ancl rnaintc-
nance costs. We then proceedecl to consiclcr our
design options.

Originally, the DNP component was written in
the C programming language. The internal architec-
ture remained basically unchanged during the five
years following its release. This stable code should
have been easy to port between operating systems.
Howevcl; the internal architecture of the OS/2 sys-
tem was ncvcr considered in the original design
bccausc this spstcnl was not av;~il;il~lc until 1988.
Retrofitting the DOS version of the DNP component
for the Os/2 operating system was difficult, and we
were not able to maintain a common source code
base.

SCHEDULER
TIMER TICKS

To achieve the performance, memory, and devel-
o p m n t cost goills described earlier in this section,
we considered the following three approaches:

1. Rewrite the current DNP transport component

2. Write a new DNP transport component in C

3. Write a new DNP transport component in assem-
bly language

Rewriting the current DNP component woultl
not have produced a desirable amount of code coni-
lnon to the DOS ;~nd OS/2 versions. In addition, this
approach woultl have resulted in only mininial1~-
improving the m:iintainability of the code. Writing
a new transport component in C would have
yielded a more portable code, but the performance
and memory usage would not have compared favor-
ably with other vendors' transports. We decided to
write the new transport component in assembly
language to make optimal use of the limited mem-
ory available on today's personal computers.

PATHWORKS Version 4.1 DNP
Transport Colnponent Design
Internally, the IINI-' transport component com-
prises barlous modulcs that correspond approxi-
mately to the Layers of the DECnet protocol suite,
as shown in Figure 2. Later in this section, we
describe the major DNP modules and how they
cooperate.

I APPLICATIONS
USER REQUESTS I

I H NETBIOS I I lOCB H
INTERFACE INTERFACE I I

DATA LINK LAYER
RECEIVED DATA
PACKETS

+ EXECUTIVE NETWORK SERVICES PROTOCOL
DISPATCHER I I ' '7

Figure 2 InternalArchilec1r1r.e ofthe DE~,'rzet I lb t~~~ork Process Covzf?o~zel~tji~r PATHWORKS krsion 4.1

NETWORK
MANAGEMENT I

4 2 W)I. 4 No. I Winter 1992 Digital Tecbnicnl Journal

'l'lircc t!,l,cs ol'cvents c;in c;ti~sc the l>NI1 co~lipo-
nent to rcspontl or to "w;tkc 111)": user I-ecluests.
rcceivctl p;tckcts, :tncl timer ticks. All of tliesc e\,ents
;ire ;~s!~nclirouo~~x, since tllejr arc gcner;~tecl b). 1z;trtl-
\v:tre i~ltcrr~lpts 01- 11scr :~ctioiis tli;l l 211-c not m;ti1-
aged b). tllc opcr;tting s!.stcni. E;tcli time the I)Nl'

co~~i l~oi icn t ~>roeesses ;III cvcllt. \,;tri:tbles ancl ektta
structures intcni;~l to the component change. In
clesigning the component, we 1i:ttl to ensure that
the events woulcl not i ~ i t c r r ~ ~ p t one :~llotIicr.

To protect the d;rt:t s t ruct~~res i l l a g c~~e r i c \\';I).,

; i l l versions of rhc I'Al'lI\VOIIKS I)NI j component ilse
;I qilci~ing s!,stem callccl the exccirtivc. As),nchro-
11011s cwnts ;ire qucuccl to the executive nioclule,
where ;I scm;~phorc gi~:trtls the tlispatchillg ;tncl pro-
cessing routines. l 'he qilcue ;tntl tht. sem:tphore
gu;tl.;tntee the follo\ving: tlie receipt of ;I nenr event
tlocs not intcrrul>t ongoing processing, ;inel cwnts
are ~,~'occssccl in the orcler in ~v11ich the!. ; lr~-i\~r.

I.lncler the 1)OS oper;tling s!.stcrn, the mxin loop
of the executive motlulc uses thr I'ATH\VORKS

S(:l I com],oncnt to "sleep," process pencling events,
:tncl slccp ;tg:tin. livcnts tIi;tt :trrive while the main
loo17 is esccuting ;Ire simply pl:lcctl on the queue.
0pcr;tting i~ritler the I>OS systeni, 011 \vhicI~ no
b;tckg~~ouncl processing ser\.iccs exist, the 1>1\I1'

co~i1j)oncnt u s e the ~'I\'I'II\VOI<KS S(:I l component.
Since t l ~ c OS/3 oper;cting s).stcm cloes pro\.itle :I
h;tckgroi~ntl processing cntfironment. tlic corrc-
sl~o~icling version of the I > N P component uscs the
1i;ttivc b:tckgroi~ncl ~~rocessing ;inel sclzccluli~~g func-
tions of the OS/Z oper;~ting s!'stcm to perform the
same t:~sks.

'I'hc 1)NI) tr;tnsport component uscs three prim;tr),
d;11;1 stritcti~~.cs to I I I ; ~ I I ; I ~ C ' 11etu~ork links and to
tr;tnsfcr tl:lt:t: the request (I1I:Q) c l ; t t ;~ structure, tlzc

REQUESTQUEUE

link st;ttus I>Iocli (1.SU) d ; ~ t ; ~ st~-itcticre. ;tncl the l;trge
d;tt:t l,ufft-r (1.1)I)) clat;~ structure.

To cl uerrc events for processi~~g. the RIK) ci;tt;t
structi~re is ;~llocntecl I'rom 21 ~ l o b ; i l pool. I'ointcrs
to ;I LISCT recluest or to netnlorh cl;~ta arc sto~ecl i n
the RE<) structure and then pl;~cecl o n tlle esccuti\~e
clispatchcr queue. 'fhc l iEQ strtlcturt' is also i~sccl to
describe unacknowledgecl cl;tta :ullcl to store events
in the event log. Ilsing the same pool for tlifkrclit
purposes s;n;cd nlcmory ancl rlccre;~scd the over;tll
com111exit)- of the componcnt. Figure 3 iIIustr:~tes ;I

t!rpic;il rcclilest queuc to [he cxrcutivc tlisp:~ tchec
The executi\~e module rcatls c:ich cvc'~lt, i .c., col-

lection of messages or user requests. from the
request queuc ; t l~cl clisp:~tches t l ~ c c \c~s t to tlie
a~lx-opri ;~tr h;uicllcr routinc. ;~ccording to event
t!,pe. The routinc then fi1rtI1t.r clisl,atchcs the c i rn l
to specitic subroutines to h;~r~clle tlic incli\.ielu:tl
1ness:tgt.s or rcclucsts. The Ion-est-lcvcl routines
I<ccp net\\;orl< links active :u11cl t r ;~nskr cl:tt;t to and
from the remote s!,stelii.

I11 previous versions of the OXI' conlponelit, the
RE(> d:tta structure consumetl 4% b!,tes of mcmor)l.
We reclucctl its sizc to 27 b!.tes by cre;tti~ig \,;tri:~nt
records that containetl onl), thosc tl:tt:t fields ncces-
s;wy to iclc.~ti~i'y the type of request.

'I'hc i 51% cl;tt;~ s t r i ~ e t ~ ~ r c rn:tint;lins the current stit-
t i~ s of ;I logic:~l l ink. In ;~dtlition to the network ser-
vices protocol (NSI') \s;~ri;~hles. the 1 , ~ strilctilrc
stores other cl:ttn, inclucling the clucue o f un;ic-
knowleclgecl d;tt;t ancl the queuc of outst;tncling
tr:tnsruit :tntl receive reclucsts. 1;igurc 4 il lustr;~tes
the contcnis of t11c ISli ;mcl associated tlat;~ struc-
tures fix ;III ;tctivc logic;tl link.

The user reqt~ests are ;tttachcel to elitcues on
the 1ogrc:ul linli. For stor;lge of unscnt or iln;~cknowl-
edged dxt:~, the 0NI1 compone~it uses :t I < I ' : (~ tl;lt:l

struelure to point to ;ln 1.1>13 cl:uta str~lctilrc. The l.l)13

EVENT-HANDLER ROUTINES

PROCESS IOCB REQUESTS

PROCESS NETBIOS REQUESTS

PROCESS RECEIVED DATA PACKETS

PROCESS TIMER TICKS

PROCESS CONTROL MESSAGES

PA'L'HWORKS: PC Integration Software

APPLICATION
MEMORY --------------
SYSTEM
MEMORY LINK STATUS BLOCK (LSB) -
-

TRANSMIT QUEUE TRANSMIT TRANSMIT
REQUEST (REQ) REQUEST (REQ)

RFCFIVE QUEUE rK b T k T
RECEIVED DATA

NETWORX SERVICES
PROTOCOL STATE
VARIABLES

Figure 4 Link Stallrs Block and Associated Data Structures

structures belong to the Ethernet or toke11 ring data
link component and are shared by other protocols.
Before transmitting data, the DNP component alle
cates first an LDB data structure and then a REQ data
structure that points to the LDB. The REQ structure
is placed on the outgoing message queue of the DB
structure, and the NSP layer eventually transmits
the REQ data.

Internal DNPModu&s
The DNP transport component consists of various
modules. We now describe the data Link control
(DLC) module, the NSP module, and the NetBlOS
and IO<:I% modules.

The DLC module is responsible for communica-
tion with the Ethernet or token ring data link com-
ponent. Oniy the DLC module calls the data link,
and the differences between the DOS and osL2 ver-
sions are hidden in the DLC module to present a
consistent software interface to the rest of the DNP
component.

To make the NSP and DECnet Phase IV routing
modules as operating-system independent as possi-
ble, we developed a simplified software interface to
communicate with the Ethernet or token ring DLC
motlule. The DLC module calls the data link that is
specific to the operating system. Providing the soft-

ware interface allowed us to use common code for
all of the modules that do not directly access the
data link.

The NSP module manages the transport protocol,
including the buffering, flow control, ant1 error
recovery mechanisms. In PATHWORKS version 4.1,
we changed the buffering and flow control algo-
rithms to match more closely the types of traffic
that PC network applications are likely to generate.

Most users of the NctBIos interface post receive
rcqucsts bcfore transnlitting a request for data from
a server. Some iniplemcnt;~tions of the Nct810s
intcrfi~ce do not buffer rcccivetl or tr;u~ismitted data
insitlc the transport component, so applications
must prepare to receive before requesting data
from the server. To best manage the incoming data,
the DNP component of PATHWORKS vcrsion 4.1 uses
XON/XOFF flow control for NetBIOS 1ogic;ll links
and segment flow control for logical links that use
the IOCB interface. The previous version used seg-
ment flow control for both the Netnros ancl IOCI%
interfaces. XON/XOFF flow control causes fewer
messages to be transmitted on the wire, especially
in request/response session Layer protocols, and is
most successful when the receiving node has a
buffer ready to accommodate the incoming data.
Segment flow control is more robust ant1 allows

W. 4 Nu, I Winter 1992 Digilal Tichrricnl Jotrr~ird

the I>N1-' component to better rcgul;lte the r;lte of
incoming t l ; r t ; ~ . 'l'his nlcthod of tlo\v control c;ln
he rslxcj;rll)~ ~ ~ s e f ~ ~ l for non-recll~est/respo~ise
protocols such ;is those usccl in the I)li(:windows
soft\v;lre.

l 'he NetlllOS xncl IO(:I1 m o ~ l ~ ~ l e s for111 tlie session
I:~),crs tor llle I)NI' coml,oncnt. 111 I) S C \ ' ~ O L I ~ \,ersions
of the 1)SI' coml>o~ient, the NetlllOs motlule \V;IS

I;~\~esecl o n top of the lO(:I< intcrklcc. Ho\vcver, ;IS

\ve rnentionrtl e;~rlier in the paper, moat l x) l ~ i ~ l ; ~ r
network :11>1>Iic;1tions use [lie Nctlrlos interk~ce. 1Ve
tlecicletl to incrc;rse the prrh)rm;tnce o f those appli-
c ; ~ t i o ~ i s I,!, clcigning the new 1)NI' component in
sucli ;I \v;I!. t l ~ ~ t the Netl1lOs moclule directl!. c;tlls
the Nsl' moclulc

We rccogni~ecl ;t~iothcr clement of tlie ONI' tlesign
t l i ; ~ t co~~ lc l be irnpro\,t.tl 1';irl icr I>r\ll-' versions copietl
tlie user's Netl<lOS recluest into ;I loc;rl t l ;~ t ;~ struc-
ture for c:~s!. ;~cccss. 'l'lic c s t r :~ rcsocrrces recjl~iretl
to store ;11itI cop). the user rcclllests climinisliecl
the o\scr;~Il [,erfo~-m;rncc of the 1)NP component. 'li)
irnlxx)ve pe r fo r~n ;~ncc , the IjN1' component now
stores :I po~l i tcr to the origin;ll user's request ;111d
rn;rnilx~l;~tcs tile I-equest clirectl!..

Netl<lOs coml,;tt~hilit! is one prohlenl t1i;lt nianls
ventloss k ~ c c when \vriting ~letworlc tr ;~~isl>ort coni-
ponents 'l'he Nctl<lOS softw;~rc interfi~cc is tletinecl
in sc\,cr;~l tlifferent specific;~tions, :11it1 Iii:in!, ;~ppli-
c;ltions tlcpc~icl on quirks :~ncl bergs in the clcsign.
'I'he I'~i'l~H\WOllh'~ Nctl1lOS interkrce 11111st eniul;~te
these l)e~gs conil~letel! for cer t ;~ in ;~pplic:~tions to
\vo~.lc properl),. We p;iitl c;~~.efuI attention to [he bug
reports from cc~stomers in ~) rc \ , i o l~s \.ersions o f tlie
L'IVI'I I\VOItKS sottw:lrc \vhcn rewriting tlie Netl1LOS
I;r!,er to pro\,itlc comj~lctc colnp;rtibilit!,

To il li~str;rte the s e t ~ i ~ c ~ ~ e e o f e\,cnts throc~gli tlie
1)NI' conil>onclit lor ;I t!.~ic;rl 11et~'ork oper;~tion,
consicler the tr;uis~nission oi 0 4 kilobytes (KI1) of
tl;11;1 t h r o ~ ~ g l i the NctltTOS interfitce. 71'lie ;~pplic:rtion
tI1;lt \vislics to senti tlie t l ; ~ t ; ~ constructs ;I Netl<lOs
control 1,lock (N(:l<) c l ; ~ t ; ~ s tructu~-e ; ~ ~ i c l submits it
to tlic Netl1lOS sot tw;~rc interkrce 'Tlie I>N1' corn-
poncnt reccivcs control. crc;lres ;I c]c~eue entr). for
tlie N(:ll s t r l~cture , ;~ncl tllcn w;~lics the S(:II compo-
nent. \Xkrking the s(:Il cornpollent c;ruscs the ni;~in
loop o f the I)N1' com1,onent to begin execution.
'l'lie e x e c ~ ~ t i v e moc l~~ le checks the recluest t!pe ;111d
clisp;ltcIies tile ents!. to tllc Netl1lOS moclule w1ic1-e
tlie 11-zrnsmit reclclcst is j,l;~cecl o n the logic;tl link's
tr;tnsmit recluest c l ~ ~ c u c . T'he [r;rnsmit request ini-

ti;llljr points to the ~ ~ s e r ' s N(:l) ;~ncl the I~eginning of
the ~rser's tl;~t;r buffer.

Tlie M I - ' moclule copies cl:rt:~ into the I.TjIl c l ; ~ t ; ~
s t r ~ ~ c t i ~ r e s ;lntl queues these I.l>lls onto the un:ic-
knowledged cl;rt;r queue. Tlie mount of cl;~t;i
copiecl tlepentls on the size o f tlie transmit pipe-
line, \vIiich is ;I network ~i i ; rn :~ge~nrnt p:lr;rmeter.
E;~cli time cl;~t;~ is copiecl into ;In 1.I)Il c l ; ~ t ; ~ strilcture.
tlie pointer :rd\r;lnces in tlie tr;~nsmi t request q ~ ~ c u c .
When :ill of tlie d a t ; ~ is copied into the Ll)l3s, the
user's tr;rnsmit request is completetl. ;rllowing the
;rpplic;~tion to continue execution while the I>NI'

component tr;rnsmits tlie cllreuecl cl;lt;r

If the flow control mech;rnism 11errnit.s sentling
tl;~t;r, tlic NSI'motlule c;~lls tlie routing I;~!,er to ;rclcl
rolrting lie;~tlers. The tl;~t;i link cont~.oI module then
tr;~nsrnits the p;~ckcts o n the 1.,\N. The remole net-
~ o r k s).ste~ii res1>onds with : ~ c k ~ ~ o \ v I e c I g ~ ~ ~ e ~ i t mes-
s;rges, which ;Ire pl;~cetl on the request cj~reue :~ntl
processed when the 1)Nl' component retilrns to the
mxin loop. An :~cknowleclg~iicnt mess;igc c:~llses the
Ll)l%s to be returned to tlie tl:tta link control niotltrle
;inti 1n;rkes sp:ree ;~\.;~il;tble on the tr:rns~iii t pipeline.
Tlie NSI' 1iiocIu1c c:111 t l le~i retill the tr:~nsmit pipe-
line b!, cop),ing more user c l ;~ t ;~ into the 1.1)ll t l ; ~ t ; ~

slructures ;rntl rest;lrt the tr;rnsrnit process.

Reszr lls
We ;~chievetl our project go;~ls for the IjNI' tr;11is1)ort
co~i iponent in I'STHLVORKS \.ersion ,<.I. c l ie~i t soft-
ware. The new design ;~llo\ved 11s to retluce mem-
ory 11s;1ge, improve perfi)rm;~nce, ancl reduce
m:linten;cnce cost.

f ~ l l ' l 0 7 ~ ' USLZSC.
We reducetl the resiclent size of the I>NI' co~i ipo-
nellt from 55KH to 33K11. The reclirclion in the size
o f [lie intern;rl d;~t;i stri1ctures freccl 1117 enough
rnemor!. resources lo ; r l lo~l tlie DNl-' component
to li;~ntlle o\,cr 200 concurrent net\vorl< links.
l'reviolrsl!,, the 1)NI' component wits limitetl to
64 links.

PC ' I f O1"IlZGII?CC

U) . coding in :~sseml)l!~ I;lngu;~ge. :inti optimizing
tlie 1 ~ 1 t h for sentling cl;~t;r mess;lges to the networl<,
perform;ince MGIS ne;lrl!, clo~rbleel for sm;~l l ~I : IL : I
tr;l~isfers. Sni;lll tl;rt;r tr;wsfers ;Iccounc for tlie
nl:~jority of tr;unsfers in cl ;~t;~b;~sc applications.

Tlie graj'h sllo\v~i in Figure 5 represents l>E(:net
pert'orm;rnce, me;lsuretl in mess;rgcs tr;~nsferrecl

PATHWORKS: PC Integration Software

per seconcl, as a function of message size, ranging
from 64 to 65,500 bytes. We include clata for ver-
sions 4.0 and 4.1 of the DNP component. As the mes-
sage size increases, the curves converge because
the Ethernet adapter's performance becomes the
limiting factor for throughput. Smaller message
sizes are typical in many industry-standard PC

benchmark programs and applications.
The benchmark program usecl to calculate

DECrlet performance transfers clata from one PC

to another as fast as possible, using fixed message
sizes. The hardware used in these tests consisted
of 20-megahertz Intel 80386 microprocessors with
16-bit DEC EtherWOKKS Turbo (DE200) adapters
running on a private Ethernet segment.

Maintenance Costs
Debugging the common source code base for the
DOS atlcl OS/2 versions is much simpler than for the
previous version of the DNP component. Since the
OS/2 version uses the memory protection features
of the PC's Intel microprocessor, invalid memory
references under the OS/2 version cause system
traps that would not have been detected under the
DOS version. Nearly 90 percent of the code is com-
mon to the DOS and OS/2 versions of the DNP com-
ponent. The number of source lilies m7as recluced
from 73,000 (the DOS version only) in PATHWORKS

version 4.0 to 53,000 (the DOS and OS/2 versions
combined) in PATHWORKS version 4.1. Rewriting
the component also improved its compatibility
with third-party NetBIOS applications.

Debugging features were acicled to the DNP corn-
ponent in I-'I\THWOIIKS version 4.1 that allow cus-
tomers to adjust their DECnet configuration easily
and precisely. The DNP component now collects
statistics on the maximum number of REQ, LSB, and
LDB structures allocated, and on the size of each
pool. Using this feature, we found that the ver-
sion 4.0 DNP component allocated nearly twice as
many REQ data structures as i t needed under
normal client workloads. As a result, we lowered
the default allocations to further reduce memory
consulnption

Conclusion
The DECnet transport component project for the
version 4.1 release of the PAT~VORKS client soft-
ware was a success; we came veqr close to our orig-
inal goals for memory, performance, ancl software
development costs. In addition, many of the tech-
niques, algorithms, and data structures used for this
effort can be applied to future network transport
development.

General References

IB&l ATetBIOS Application Development Guide
(Armonk, hy: International Business Machines Cor-
poration, 1987).

iMicrosoft/.3Com Network Driver Interface Specz9-
cation, version 2.0.1 (Redrnond, \VL4: Microsoft Cor-
poration, 1990).

PATHWORKS Programmer's Reference, version 4.1
(Maynard, MA: Digital Equipment Corporation,
1991).

DECnet Phase IV Ge~zercil Description (Maynard,
kW: Digital Equipn~ent Corporation, Orcler No.
A A - N ~ ~ ~ I I - T C , 1983).

Microsoft MS-DOS Progmmmer's Reference (Red-
mond, WA: Microsoft Corporation, 1990).

Microsoft OS/2 Device Driver Reference (Redmond,
WA: Microsoft Corporation, 1989).

MESSAGE SIZE (BYTES)
KEY:

DNP COMPONENT IN PATHWORKS VERSION 4.1

ir! DNP COMPONENT IN PATHWORKS VERSION 4.0

Figure 5 DECnet Network Process Comnpoaent
Throughput

46 I/ol 4 iVo 1 Wt~lrrler 1992 Digital Technical Jozir~tnl

Microsof t Windows Network
Virtual Device Drivers in
PATH WORKS for DOS

Jlicrosoft \VintIo\\.s \-irt11;11 tlc\.icc tlrj\-crs re lo;~tl-
;tl>lc sol'tn.;~rc nlotlulcs t l i ; ~ t c~tcncl the \Vinclon.s
oj)cr:~ting s\.srcm :tntl cn;~l>lc i t t o sul,],ort [)cripli-
cr;tl clcviccs. n>cli>or!. resources. :~ntl soft\\.arc
apl>lic;~tio~is. Son~c 01 ' tlicsc moclulcs ; ~ l low :~pplic;l-
tions t l) ; ~ t opc~.;~tc In tlift'crcnl processor niotlcs
\\iitli corrcsl)ontli~lg dit'fcrcriccs in menlory ;lccess
to co~~ l~nun ic ;~ t c \\'it11 one :knotIicr in ;I 1ict\vor1\ 51.5-
[c ,n i . 1)igi t;rl's I ? \ ' I ' I I\\oI<Kh p~.oclucts 111;lkc i t possible
to i11legr:ltc ~>c~-sori;~l co~l l l ,~~tc~ ' s illto loc.;ll or \vitIe
;IrC:I l l ~ l \ \ . O ~ ' I i 5) S tCI l i> , I'IIc l',\'l'l l\\.ORkS for 110s > O f [-

\ \ - ; I I - ~ inclutlc5 I\\-o net\\-ork \ . irtl~;~l cIc\ ice clri\.ers.
\vhich m;ln;lgc I)li(:nct :lntl ncr\\.orl; b:~sic I/() s y -
tern (Ncrl%!(%) olxr;t[ions in thc ;Llicrosof.t Winclo\\rs
environment l'or I'<;s.

'I'liis p;ll>rr I>cgins will1 ;I tliscussion of the
hlicrosolt IViticlo\vs en\-ironmc~it for wliicli the
L',\'l t l \U)Ilks I'or l)oi ~>rot luc~ pro\'iclcs llet\~Ol-k
\.irt~~;ll clc\.icc tlri\crs. 'l'lic 1,nsic processor opcr;it-
ins 111otlcs :~ocl the 4\licrosoFt lVinclo\\.s oper;iting
rnotlcs ; ~ r c clcscriI>ccl. 17rcp;1r;1tor\ to ; i n C S P ~ ; I I ~ ; I -

tion of ,Vlic~.o,sol'l Wi~~tlo\\ls cnh;~ncctl ~iioclc. 'l'his
cx l~ l ;~~i ;~[ion i4 cssenti;~l I) C C . ; I ~ I S ~ \ i r t ~ ~ ; ~ l (Ic\.icc
tlri\.crs ol>c~-:~tc only in cnl~:~nc'ccl niotlc.

Nest, the 1,;111er clet;~jls the c;~p;~l,iliticx ol\,il.ti~;~l
rlc\-ice clri\.crs. s ~ ~ c h ;IS gro\.irling the mc;lns for
\\'intlo\\.s :lntl 1)OS ;11>pl ic:~tions to corn nlullic;~ tc.
' 1 ' 1 1 ~ l'ocus (lien turns to the cn\-ironmcnt for clc\-el-
opitlg Ylicroso~t \X'intlo\\-s \-irtu;~l tlc\.ice tlri\-crs ;tntl
conclutlcs \\.it11 :I clescription of the htructurc ;tntl
f~~nction;~lil!. of' the two net\\-ork clc\-ice clrivcrs
inclutlecl in rhc I'iYl'lJ\\'OltKS for OOS soft\v;lrc.

'I'lic. >licrosol't Wintlo\\i cn\.il.onlnent js ;I g~.;~phic:~l.
multi;~l,l~lic;~tion s!.stcnl fol l)crso~'l;rl compilrcrs
t l i ; ~ t use the Intel XOZX(> o r liiglic~ miel-oproces~or,
For 80186-b;tsctl s\.s[rms, tlic \Vintlo\\.s s\-srcm
ojxr;ttcs in its st;\ntl;~rtl ~uotle. r~sing thr rc;rl ;111tl

protcctetl processor niotlcs. 011 thc SO380 or higher
~nicrol?rocessol: the \Villclo\vs s!-stcln c;111 ;~lso opcr-
; ~ t c in its cnl~;~ncccl rnotlc, using l>otli protcctctl ;~ntl
virtiral ~ w o ~ c s s o r niotlcs. Enh;~ncctl nlotle ;~llo\vs
the Wintlows s!.stcnl to full!. i~tilizc pl-occssor tc;~-
1u1.e~ h~~e l i ;IS virt11;11 ~~ ic~ i~or ! . ;I IKI ~ i i~~lt i l>lc \.irtcl;ll
m;~cliincs. Vi l . t~ l ;~ l tle\.ice clri\crb ;lrc ;~\;~il;tblc onl!,
in tliis cni1;111e~tI nlotlc.

All ~ncml~ers of tlic 80x86 kcniil!.. incl~~tling the
HO.380 ~nicrol,rocessor. c;~lcul:~tc ;~tltlrcsscs i n nlcln-
or). b!. using ;I segment rcgistcr ;untl ;In offset.
Ilo\ve\.et the mcthotl for c;llci~l;lting the ph\-sic;ll
;~dtlress v;~rics, tlcpcntling on the processor motlc.
'l'hr lx~sic proccshor ol)cr;~ti~lg motlcs ;lrc rc;~l motle.
protectetl luoclc. ;tntl \.irtu:~l motlc.

/?CYI/ ,Iloclc 'I'liis 111otlc is usctl I,!' the I)Oh ol,er:lt-
ing system cscli~sivel!~ ; ~ n c l I)!, nlo5t 110s ;ll,l,lic;l-
tions. 'l'hc processor c ; ~ l c ~ ~ l : ~ t c s ~,h!,sic;~l ;~tltlrcsscs
1,)- sliifting tllc contents of ;I 10-bit segment rcgistcr
left by -4 hits ;lntl ;ttlcling ;I 10-bit ol'f4ct. l'hercl'orc.
o111!. tlic first I rneg;ll,!.re (llli) 1,lus 05.519 h1'tc.s of;^

I'<:'s ph!-sicnl ~ncrnol-y ;Ire clircctl!. ;tcccssil,le in this
motle.

PA'I'HWORKS: PC Integration Software

The basic layout of PC memory is shown in
Figure 1. The first megabyte of physical memory is
known as convcntional memory. This area may
include the PA'I'H\VOKKS implcmcntation of the
DECnet transport protocol, namely the DECnet
Network Process component, as well as other mem-
ory-rcsident software. In addition, conventional
rnemory may cont:~in the D o s operating system and
DOS applications. The next 65,519 bytes are called
the high memory area. Bank-switched memory,
known as expanded memory, may also be available.
In real mode, memory protection and virtual mem-
ory are not available, illegal instructions are gener-
ally ignored, and I/O instructions are always
allowed.

Protected Mode In this mode, a segment register
contains a selector. Part of the selector is an index
into a descriptor table maintained by the hardware.
A flag in the selector indicates which of two
descriptor tables to use, the local descriptor table
or the global descriptor table. The processor adds

HIGH MEMORY AREA

VIDEO MEMORY
EXPANDED MEMORY PAGE

ADAPTER MEMORY

I DOS APPLICATION I I CONVENTIONAL
MEMORY

640KB

DECNET NETWORK PROCESS

I DOS OPERATING SYSTEM I I

AVAILABLE

Figure I Basic PC Men?oty Lq~out

I

the offset to the linear address obtained from the
appropriate descriptor table. The 80386 implemen-
tation differs from that of the 80280 because the
80386 processor offers both 16- and 32-bit general
registers and offsets, whereas the 80286 processor
has 16-bit general registers and offsets.

in protected mode, if paging is disabled, the lin-
ear address is the physical address. If paging is
enabled, the lincar address is decoded into a page
directory entry, a page table entry, and an offset.
The page directory cntry identifies a page table, antl
the page table entry provides a physical address.

Protected mode is used by applications that use
DoS extenders to access memory beyond t l~a t
which is accessible from real mode. 80386 proces-
sors operating in protected mode may use virtual
memory. In this mode, an illegal instri~ction causes
a processor tray, and I/o instructions may be selec-
tively allowed or trapped.

Virtual [Mode This mode implements a virtual
machine that emulatcs the behavior of an 8086
microprocessor. Address calculation in this mode
is similar to that in real mode, except that in vir-
tual mode the result of the shift-and-add opera-
tion is a linear address. Thc proccssor converts
this address to a pliysic:~l address, as in protected
mode. I-'rocessors opcrnting in virtu;~l mode 11l;iy

use virtual memory. Also, each virtual machine can
have a separate page :clirectory, an illegal instruc-
tion cause5 ;i proccssor trap, ;~ntl I /O instr~rctions
may be allowcd or trapped.

Microsoft Windows Operating Modes
The Microsoft Winclows environment supports scv-
era1 operating modes.

Il."irrrlo~us Rcrd Mode Similar to previous versions
of thc Windows system, Windows 3.0 can oper;lte in
real modc, i.e., use convcntional memory, expanded
mcmory, ancl the high memory area. This modc is
not supportcci to Windom.s 3.1.

Windows Stu7zd~t-d Mode Windows 3.0 and 3.1 can
operate in st;~ntlartl mode on the 80286 or higher
microprocessor. This mode uses the protected
processor mode, but does not take advantage of
the .?&bit features of the 80386 processor. The
Windows system ancl Windows applications are
located outside conventional memory, except for
code necessitry to provide the communication
links with DOS ant1 other resident software.

48
Vol. 4 NO. I Winter I992 Digital Tecbrricrrl Jorr#rnl

Microsoft Windou~s 1Ve twork Virtual Device Drivers in PATHWORKS for DOS

Standard DOS applications run in real mode and
occupy the full screen, as if the Windows system
were not present. Switching between Windows
and non-Windows applications is accomplished by
performing a sequence of keystrokes in exactly the
same manner as under the MS-DOS version 5.0 task
switcher. Virtual device drivers are not used in stan-
dard mode.

Windorus Enhu~zcedMode In enhanced mode, the
Microsoft Windows system provides each non-
Winclows appliciition a virtual machine in which to
operate. Thesc machines are preemptively multi-
tasked, so even compute-bound, non-Windows
;~pplications can run in tlie background. The
Winclows system ancl all Windows applications
s11;lre a single virtual machine so they can commu-
nicate with each other.

The Microsoft Windows system uses the pro-
tected and virtual modes of the 80386 processor.
Paging is always enabled. The first 1MH plus 65,519
bytes of the linear address space is mapped to the
first 1 M B plus 65,519 bytes of memory belonging to
the virtual machine currently executing. This map-
ping allows each DOS application its own block of
memory in which to run.

Some data must be shared among the virtual
machines. Whenever all or most of tlie data in a
page is shared, ;I global page is used. Most resident
software that was loaclecl before the Winclows sys-
tem start-up is stored in global pages. Selected data
within these global pages may be maintained sepa-
r:~tcly for each virtual machine. This practice is
called instancing and may be requested by the resi-
dent software.

To support operations requestetl by virtual
machines, virtual device drivers extend the
Microsoft Windows kernel. The drivers are loaded
at Windows initialization and effectively become
part of the kernel.

The Microsoft Windows enhanced mode kernel
irses 32-bit registers and offsets. The segment regis-
ters are loaded with selectors that allow access to
all of memory when the kernel is operating and
eliminate the neecl to break code ant1 data into
&-kilobyte (Kb) segments of memory. This mem-
ory model is known as the flat moclel.

Although the Windows enhancecl mode kernel is
written to use 32-bit registers ancl oflbets, most of
the remaining libraries supplied with the Windows
system and nearly all applications are written to
use 16-bit registers and offsets. The Windows appli-

cations run in protected mode, whereas virtual
mode provides support for the DOS applications,
which need not even be aware that the Windows
environment exists.

W-tual Device Driver Capabilities
Virtual device drivers provide tlie means for
Windows and DOS applications to communicate,

support as)rnchronous operations, virtualize hard-
ware ports and interrupts, ant1 directly handle hard-
ware and software interrupts. These capabilities
are described in the following section.

Communication between Protected-mode
and Real-mode Software Applications
A virtual device driver provides a bridge between
Windows applications running in protected mode
and DOS terminate and stay resident (TSR) applica-
tions written to run in real mode with no knowl-
edge of protected mode. A Windows application
that calls an application prograniming interface
(AH) passes it a valid protected-mode address.
Without virtual device drivers, the real-mode soft-
ware would interpret this address as a real-mode
acldress, usually pointing to a location w ~ t h ~ n the
DO5 operating system. A virtual device drlver can
map the menlory into conventional memory and
change the addresses so that the real-mode soft-
ware correctly accesses the caller's data The vir-
tual device driver should enter a critical section to
avoid task switching while calling real-mode soft-
ware that is not reentrant.

Communication between Transient DOS
Application Software and Global Resident
DOS Software
Most DOS application software ant1 DOS TSR soft-
ware is not designed to run in the Microsoft
Windows environment. While executing, a D o S
application is mapped into conventional memory.
If the application calls resident software, ant1 a task
switch occurs while an operation is in progress,
data would be delivered to the wrong application.

There ;ire two ways to handle this situation. The
virtual clevice clriver can enter a critical section to
disable task switching until the operation is com-
plete. This approach works well for synchronous
operations that never take a perceptibly long time
to complete.

However, the system does not responcl to most
user input while the virtual device driver is in a

Digital Technical Jountnl Vd. 4 No. 1 Winter 1992 49

PATHWORKS: PC Integration Software

critical section. Consequently, for long synchro-
nous olxr:itions, the end user of the application
may believe that the system is hung. If the real-
mode software supports asynchronous operations,
the virtual clevice driver call convert the operation
to an asynchronous call. Handling the situation in
this manner requires that a critical section bc
entered only for the time i t takes to queue the
call, and then only if the real-mode software is not
reentrant.

Support for Asynchronous Operations
Asynchronous operations, whether in real o r pro-
tected mode, require that the virtual device driver
be able to buffer data in a memory pool that is
mapped into every virtual machine. In addition, the
driver must set up a completion callback routine to
wake u p the virtual machine that made the recluest,
deliver the data to tliat virtual machine, and trans-
fer control to a caller-specified callback routine, if
ncccssary.

Virttlnliz~ltion of Hardzu~ire Ports
and Interrupts
Another function of virtual device drivers is to vir-
tualize 1i;~rdw;ire ports ancl interrupts so tliat the
Windows system can successfully emulate several
8086-based machines at once. Each virtual machine
runs ;I DOS application that assumes it has sole use
of a machitie. DOS is a rni~iimal operating system
and does not provicle much of the functionality
required by applications. Therefore, most DOS appli-
cations bypass the operating system except to
access the file system. It is common for an applica-
tion to set u p its own interrupt handlers and to rcad
ancl write hardware ports. If several app1ic;itions
in separate virtual machines were to attempt these
operations at the same time, the applications woulcl
interfere with one other. A virtual device driver can
trap access to hardware I/O ports and regulate
access to the actual hardware.

Direct Handling of Hardware or Soflware
Interrupts
The virtual device driver can provide the f i~nction-
ality of real-mode software. If the user has n o need
to run this software outsicle the Windows environ-
ment, the software can be removed from memory.
Remov~ng the real-mode softw;ire reduces the need
for context ant1 mode switchi~ig, mapping, ancl copy-
ing, and thus offers a considerable performance

advantage. I f the resident software 15 removed,
more memory is then available to DOS applications
running in tlie Windows environment.

Development Environment
The Microsoft Windows system inclucles virtual
device tlrivers. Microsoft also has a device driver
development kit specifically for developing virtual
device drivers.' This section describes thc envi-
ronment for developing ant1 debugging this driver
software.

Development Tools
Currently, virtual clevice drivers are written in
assembly language because higher-level language
compilers generally lack the ability to generate
code with 32-bit offsets and registers. A special
32-bit assembler and linker are providecl with the
Microsoft Windows device driver development kit.

Debzigging Tools
Virturil device tlrivers are debugged using the
W D E B ~ ~ ~ software rnotlule. This debug tool
requires that a terminal or equivalent be connected
to one of the cornmunic;~tion ports o n the I-'<;; the
debugger performs its V o to tliat communications
port . Symbols ;ire available in the debugger, but
source-level debugging is not provicled.

To t ;~ke fill l aclvantage of tlie W D E B ~ ~ (; capabili-
ties, the clebug version o f the Microsoft Windows
WIN386.EXE module shol~ld be used. This version
contains many features essenti;il for investigiiting
the behavior of the Wintlows system and, in par-
ticular, for debugging virtual device drivers. 'rhe
features include commancls to display the registers,
the stack, mid the control blocks for each virtual
machine. Many of the virtual device elrivers
included with the Windows system, and the two
inclucled in the PATHWORKS for DOS product, have a
debug entry point that may be invoked by entering
the period keyboard character, followecl by the
name of the virtual device driver. Two particul;~rly
useful debug entry points are .VMM and . V ~ ~ M M < ; R ,
which provide cletailed information about memory
usage for each virtual machine, including the use of
expanded memory anel the high memory area.
W D E R ~ ~ ~ can be ~ ~ s e d successfully in the Windows
environment to debug virtilal device drivers and to
diagnose bugs in the reacl-only memory basic I/O

system (ROM RIOS) ancl other resident real-mode
software.

50 Val. 4 i\'o. / LV'ftlf~r I992 Digital Techtticnl Jorrrt~nl

'l'lic (:oclcViccv I'or \Vinrlours tlcl,t~g tool is
i~ltc~~clc*cl for tlcl~ugging ;tj,plic;ttions : ~ n r l tl!.n:~mic
link libraries. not for tlchugging \-istu;tl cle\icr
cIri\.c~.s. I lo\\fc\ cr, ~ l i c (:oclc\'ic.\\- ;111c! \Y'l)l\l<,380 tool5
c;rn I>c i~scel s i r~ l~~l t ; rneot~~l !~ to cli:rgnosc ~,soble~l~s
~ I i : t t occur when ;tpplic;~tions c:titse tlic \Vintlo\\!s
s! stern to Llil .

The Net~vork Virtual Deoice Drir)ers
'l'lic l) ,Yl ' l l\V() l tKS lor 1105 sol t \\.;rrc l?ro\.icles two
. \ I>IS for t;tsl;-to-~;~sk ~ict\\.osk co~i i~ i i~~~i ic ; t t io~is .
One is :I I)l:(:ncl socket-b;~sccl intesklcc. \\71iich uses
;rn ;~sgiimcnt I,lock c;~llccl ;In I/O co~itrol blocli
(lO(.l3), 'I'l,]c 01,Iics is the i~ ic l i~s t r !~ -~ t ; t~~c l ; t~~c l I ,) (; net-
\\ o~ . l< i~~g i~itcrkrcc. Sctl\lO5, \\ it11 so~lic cxtc~isio~is
~wo\ ielccl I,!. I>igir;~l to S I I ~ ~ X) I - ~ \\.idc : I S ~ ; I net\\-orl<.s.
l'llc Nctl%lOS intesl':~cc use3 ;in :trgumcnt block
c;~llccl ~ h t . Nctl\lOS control I,lock (N<:11). I%oth inter-
I ' I c ~ . ; ;Ire FLIII! sul,l,ortcrl in \\i'inclo\\.s c1i1i:tncccI
1110cIc.

I)~git;il's I),irlf\\:OllKS JOr 1)05 vcrsioli .).I incluclcs
I wo \.irtu;rl tlc\'icc clrivcrs to support nctwol-king:
vos1.:1'.jHO. \\.liicli li;~ntllcs I)l:(:nct socket c;tlls.
:111cl \ \ [: ' l ' l{ l ()s,;80, \\.lliell ll:lllcll~s h ' ~ t I ~ l 0 S c:iLlh,
\ I l o ~ g i t i 11[)1)ort tlil'l'c~scnt ~\l'ls, thcsc t\vo \ ir-
t i i ; i l tlc\'icc clri\.c.ss :tsc si,nil;~r in S ~ I - L I C ~ I I S ~ . 'l'lie tlis-
cussion in tllis hcction ;~pplies to I>otIi d~-ivcss
unless otlicr\\.isc notetl. 'l'licsc tlri\.crs :ire inclirdecl
\ \ . i t 11 t lie current 1';Yl'l I\\'()ltKS \-c'~-sio!i I . I L?I-OC!-
L I C (:111cl \ \ l i t 11 \Yl~~iclo\\~s \ , c ~ . h i o ~ ~ . $. I . '1;) iclc~itil>,
1)igit;rl I:cli~ipn~cn[(;orpos;~tion :is the tlcvclopcr
ol thc. tlri\,crs. ,\licrosoft rcclucstetl tli:~t tlic 11iod~1Ic
n;inlcs \'l>Slll.,3SO ;tncl \'Xli'l'lllOS.~Xo I,c ch;~ngccl
to l)l~:(:St'1'..38(~ :111tl l)l(;Sl$.~8(~. ~-es]~ccti\,cIy, i l l

Wi~itloc\is \.crhion 3.1. 113 I l ~ i h 1p;rpcr. the nomencl;r-
t111.e \ ' l)Nli ' l ' ;lntl \ ' N I ' I ' I ~ I O S is i~sccl to sclks lo thehe
I \\.o lilocllllcs,

'l'llc tlrivcrs in\-olie tlic rc;rl-moclc net\\-ork soft-
\v:trc in the \.istu;rl m:tchinc th;rt recli~cstccl thc
opc~';~tion. (;sc;~(i~ig ;I "ncl\\lorli \.i~'t~r;il ni;rchinc"
1 0 \\ I l i C I l tl1c cll-i\cl- \\~ollIcl l.olltc ; 1 l 1 llct\\.orl; :lcti\-
it!- \\.auld Ii;t\c ;iIlo\vccl most o l the nct\vork solt-
w;rrc to be Io;rclctl into ;I single virtu;rl m;rcliinc
;11itl thus I'rc-eel up co~i\.c~ition;~l rncnlos! I'or non-
\\ i~~tlo\\ ,s ;~~>~?I i c ;~ t io~ i s . I lo\\,c\ es. irsi11g 1111s tIes1~11
\ \ <) (I It1 I i ; t \ ~ ilici~rrccl tlic o\~crl~c;icl ot 'si\ . i tcl~i~~g on
\ istu;~l 111;1chincs tor c\.er!' net\\-ork ;~cccss. tinier
ticli. ;tntl networl; Ii:~rdw;r~-c intcrruljt. In ;~tlclition,
crc.;iting ;I nc~\ \ .o~-k virtu:~l m:~chine \\loi~lcl Ii;t\.c
I-ccluirccl tli:tt tlic t l a t ; ~ link I;r!,cr :Inel [lie 1)I:Cnc.t
cllcelulcr I>c c.;rl);rl,lc 01' ~?csl.orrning tlic \.irti~:rl
~il:rclii~ic s\vitt.l~. I ~ i ~ ~ i t l I ! ~ ~ 1111s clcsig~~ \~!o~~lcl l>c PI-;tc-

tic;tl onl!. for those users who ;rcccss lhc nct-
\\;orli cxclusi\-el? \\ hilc opcr;tting i i n :I klicrosoft
Wlntlo\\.s cn\.irotimcnt.

Virt11;ll clc\'ice tlri\,e~-s itre c;illecl he\-cr;rl timcs clur-
i~lg \X7intlo\vs initi;~liz;rtion. While tllc \Vinclo\\.s s!-s-
te~ii is still oper:tting in sc;~l motlc. the \'I)SI<'l' :tncl
VNE'I 'I \IOS nlodiilcs C~ICC]< to scc. il tile rc'sitlcnt
~ict\\~ork soft\\~;tsc is Io;rtlccl. I I ' i t is 11ot. tlicrc ih no
re;lson to lo;tcl these tlsivers. A \.;rluc is rcturnctl th:tt
:tl>or~s the loacling 01- the dril-crs Out tlirccts thc
\Vintlows s\stem t o contini~e lo:~cling.

Alter tlic Wiliclo\\'s s!'stc~il c11te1's ~>~'otcctccl
~iiotlc. tlic clsivc~.h :i~'c c;tllccl ;tg;rin clusi~lg e;rcli hue-
ccssi\.c ~>li;rsc of initi;tlization. I<;tcli \-irtu;il elc\icc
tlrivc~- t;tkcs control ol tlic sol't\\-;~~-c. interrupts usccl
for its I-csl,cctivc j\ l ' I , rcscrvcs sl,;tcc in the control

' I ;llllctcrs I,loch 0 1 c;tcl~ \.itt~l:tl n~;~cliinc, ol)l;~ins I Y I '

from tllc. S ~ ~ S ' I ' E \ I . I Y I lilc. ;illoc;~tc.s a 1>oo1 of
glob;rl mcmor!. for co~iimunic:rtio~l with 111c rc;rI-
mocle rcsiclcnt 1ict~:oski1ig s~~I ' lu~;r~-e. I:ig~~re 2 illus-
tl.:itcs ;I s!~stelli \.irtu:tl ni;~cliinc ;rncl ;I \.istt~:rl
rn;~chinc r ~ ~ l i r i i ~ ~ g ; I I)OS ;tl)]>lic;it~on. 'l'hc ligurc
slio\\.s tllc pool of co~i\~c~itio~i:tI ~ i i c ~ ~ i o s ~ ~ t11;1t tlic
virt11;1l tlcvicc tlrivcs ;rlloc;rtcs ;IS glolj;rl mcmor!:

'l'lic clri\,crs ~,cr lor~u ;I "s;rnit! check" to verify
t l i ; ~ t the \.irtual dc\.icc clri\,er c:111 tlistinguisli glol>;tl
mcmor! f'roni nicnlor! t l i ; t t is 1oc:rl to :I single \.ir-
tu;~l ni;rcliinc. IIo\vc\,cr. the W/i~~tlo\vs hrnction to
per-torn1 this check c;rn I';til \vl~cn running on somc
common i~~lsul>pos~ccl soft\ctsc contigt~r;rtio~ls.
At this joint, if the s:~nity chcck Iitils. lhc clri\-el-
clispl:t\-s ;I mcss;tgc 11) ;icl\-isc t l i c . i~ser to exit t l ~ r
\Vinclo\\.h s!,stem.

Wihcn ; u n ;t~>plication issues ;I sol't\v;trc interrupt for
:I D E (; I I ~ ~ 01- Netl%lOS c;rlI~ the ;rpprol)ri;r~c \ , i r [~ ~ ; r I
ele\rict. elri\,cs g;~ins co~~ t ro l . I f t lie :rppl~c:ition n i ; ~ k -
ing the c:tll is in psotcctctl motlc. tllc 1-irtu:~l clc\.icc
clrir-el- ;tl\\-;~!.s m;~ps tllc c;tll in ~ncmor!.. Otlic'r\\-isc.
the cl~-i\,cr softw;r~-t. checks the c o ~ ~ t r o l I,locl; (i.c..
the IO<:I$ or the N(;ll) i~nd tlic I>uf'lkr ;irltlrcsscs to
cletcrm~~lc i.f tllc!' ;ire sroreel in gIo0;rI melJior!', i.c..
t~~;ipj>ccl iclc~itic;rll~~ in c\.cry \~isti~;rI ~ii;rclii~ic. Jl'so.
the .r.irti~;tl clevicc elri\-er docs not map tlic c;ill.
bcc;ri~sc i t will cxccutc propcrl!, withol~t ni;t[>(,ing.

I / / I I f tllc c'ont~'ol I>locl; ; ~ n c l tlic I,~rt'fcs
: t c I t I r ~ . s ~ :trc not stosccl in g l o l ~ ~ l nlemor!.. rn;~jj-
ping is ~~cccssar-!~. 'I'lic \,irl~~;rI clcvicc elriver

PA4THWORKS: PC Integration Software

SYSTEM VIRTUAL MACHINE

7 VIRTUAL MACHINE
RUNNING A
DOS APPLICATION

VDNET 386 VIRTUAL DEVICE DRIVER

HlGH MEMORY AREA I HlGH MEMORY AREA
1024KB

VIDEO MEMORY
EXPANDED MEMORY PAGE

FRAME
ADAPTER MEMORY

640KB
AVAILABLE

VIDEO MEMORY
EXPANDED MEMORY PAGE

FRAME
ADAPTER MEMORY

AVAILABLE

I DOS APPLICATION I I WSAPPLICATION

TOP OF I I
GLOBAL
MEMORY

MAPPING AREA

OTHER RESIDENT SOFTWARE

DECNET NETWORK PROCESS

DOS OPERATING SYSTEM

Figure 2 Microsoft Windows fnitiulizution

allocates a hook control block to the operation.
This control block resides in global memory and
includes ;in IOCB o r NCB, which the virtual dcvice
driver passcs to the resident networking software.
The driver globally maps the caller's buffers in
the mapping-space pool allocated a t initi;~Iiz;ition.
Thc IO<:R or N(:B embedded in the hook control
block contains addresses changed to point to the
remapped address in the mapping-space pool. The
calIb;~ck (post) address is sct to the callback routine
in the virtual dcvice driver, so the drivcr is called
when the operation is complete.

Optionally, if the operation is a blocking call that
takcs a long time to complete, the vir~i1;11 device
clriver may convert the operation to an asynchro-
nous call. In this case, the driver sets an internal
Rag, HI:-Suspend-Until-POST. and does not return
control to the calling application until the opera-

tion is complete. All other virtual machines con-
tinue to run while the network I/O is in progress.
This design prevents the operation from monopo-
lizing the entire system.

A~ynchronozis Calls If the call is asynchronous o r
has been converted to an asynchronous call, the vir-
tual device drivcr must establish a callback in orcler
to be notified when thc call completes. Because the
virtual devicc driver runs in protected mode and
the resiclent network runs in virtual mode, a spe-
cial type of callback is required. The virtual device
driver uses the Windows Allocate-~86-Callback
service to obtain a real-mode pointer to an instruc-
tion in global memory that causes a trap when exxe-
cuted in virtual mode. The Windows system
handles this trap and tranhfers control to the virtual
device driver in protected mode.

5 2 Vo1. 4 No. 1 Wi~rler 1992 Digital Technical Journal

,\.Iicr~osr!/7 Wirrcloiil.$ Neliivo~iC. Virlrrnl I)crvicc. I)i.irlcr.s irr 137 71 lL 'OKK.S./or. I)().$

I i r r~okir r~ 1110 .\ic,trr-ork Pr-oc.tlss 7'11~ \.irtu;~l tlc\.icc
tlrivcr is no\\ prel,;~rctl to j>;bs the c;tll to lllc real-
motlc nct\vorliing sol'tw;~rc. 'l'lie tlriver enters ;I

criric;il section to ;l\.oicl rrcnrr:uicc problcn~s ;~ntl
c;~l ls I lie Simul;1teJ~c:1l-.\.lotIc~1titcrrit scr\.ice to
invoke tlic ncrwork process 21s i f i t wcrc bcil~g
in\-ol;ctl in rc';~I motlc. l'lic \.irtt~;~l cle\.icc tlrivcr
le;~\,cs rhe c'riric;il ';ccrion \vlic'~i the simul;~lctl inter-
1-11111 rcti~r~is. Il' the opcr:~tio~i is not ;~s!,nch~.onous.
the c;~llcr's IO(:II or S(:U ib ~~l,tl;~tctl. I~11ffc1.s arc
i~nm;~l,petl. ;lntl the Ilook controJ I)lo~Ii is I'rcccl.
1:igurc 5 slio\vs ;I >licrosot't \Vi~itIo\\~s c;111 to tlic
ncr\\.o~'li. in~cl.cel,tctl I,\ tlic \ - i r t i~ ; i I tlc\.icc tlri\.cr
;~nrl ~x~sserl 10 rlic ncl\\iork j x ' o w ~ .

C(il/l)rrc~k K o i i l i ~ ~ e 'l'lic clc\.icc tlr~\cl- c1iccI;s the
I l l ~ - S i ~ s l ~ e n t l ~ l I ~ ~ t i l _ l) o Y I ' I1;1g to tlc'lcrminc i f the
C:II l \\.;IS ;I I>locking c;~ll t l i ; ~ [tlic \ irtu;~l tlc\.icc

ARGUMEN?
BLOCK
PASSED

TOP OF
GLOBAL
MEMORY

SYSTEM VIRTUAL MACHINE

tlri\.cr con\.crtetl to ;III ; I S ! ~ I ~ C ~ I - O I ~ O L I ~ c;11I. If so.
colitrol 11111sr not ret111.11 to [lie c;~lling ;~pl,lic;~tion
until the opcl.;~tion is comldete. Norm;~l I!,, rlic c;~ll-
1~1ck routine in rlic dri\-cr is c;~llcd :I[t l l i 5 tinic.
Ho\\~cvcl: certain Xctl$lOh error contlitions causc
the oper;~tiuti to ~ C I L I T I I in~mcdi;~rcl!. witlioi~t c;11I-
ins ~ l i c ci~l ll>;~ck r o ~ ~ [i ~ i e . 'l'licrcforc, rlic 8crl$lOS \.ir-
t u ; ~ l tlc\.icc' tlri\.cr cllccks tlic st;~tu> o f tlic c;~ll

I f ' the c;~ll is still in progress. the rcquc>ting \ , i ~ . -

t11;11 ~ n ; ~ c h i ~ ~ c r~ l in t l i~ i s l i~ . its ;~lloc;~tetl rime ;~ntl
rctric's \ \ , I I ~ I I the process \\!;~kes 1111 'I'his clcsign],I-o-
tccts the process I'ronl being ;~\v;tkenctl prem;i-
turcl! l)!' ;111otl1er \,jrtu;~l tlc\.icc tlri\-el-. r\lsO. some
Nc(l3lOS recluest crrors causc tlic NctlIlOS softw;~~-c
i~~tc'rrul,t to return immctli;~tcl!- ;tntl tlo nor tr:~nsScr
control to lhc ~ ; i I I l > ; i ~ l i routine. O~-clin;~ril!-. ~I1c pro-
crss is onl!, ;~\v;tkcnctl by the c;~llh;~ck roi~tinc in the
\.irtu;ll tlc\.icc dr.i\.c~. on completion olrhc c:111.

VIRTUAL MACHINE
RUNNING A
DOS APPLICATION

DOS APPLICATION

I I
I

BUFF1 I I

MAPPING AREA L - - - * - - -

OTHER RESIDENT SOFTWAREI

DOS OPERATING SYSTEM

PATHWORKS: PC Integration Software

The Suspend-VM service can be used to block a
virtual niachine dbrring s11ch a cakl. However, su s
pending a virtllal machine requires that the system
call every Windtrws virtual device driver to n o t 0
it of the saspension. The notification process con-
stitutes a high-overhead oprration and is thcrrfore
unsuitable for this use.

If the operation is asynchronous, the system
transfers control to the virtual device clrivcr cnll-
b;~cl< routine when the opcration is complete, as
shown in Figure 4. This routine calls the Windom7s
scheduler to wake up the virtual niachine that
reqi1cst~"I the operation. The \Vintlows cvrnt ser-
vices are also called to invoke the event-h;undlcr
routine in the virtual tlevice driver whcn the
requesting virt~1:rl machinlc- is schedulccl. In this
way, the virtu;~l device driver regains contn)l. 7'his

TOP OF
GLOBAL
MEMORY

SYSTEM VIRTUAL MACHINE

I WINDOWS APPLICATION I
CONTROL -,:
BLOCK W

VIRTUAL MACHINE
RUNNING A
DOS APPLICATION

psoccss restores the c;lller3s context before updat-
ing the caller's data.

As sliom~n in Figure 4, the event routine i~pdates
the user's argument block ;untl calls the user's call-
back routine. Finally, the virtual device driver
uiunaps the buffers, frees LIP the hook control blocl<,
and returns control to the calling application.

Virtual Machine Emninntion
When a virtual machine terminates, a11 virtual
tlevice dri\,crs ;Ire called to perform c1e;lnup. The
network virtual tlevice drivers check for outstand-
ing network operations to the virtual machine that
is being terminated. All such operations are can-
celed, ant1 a warning mess;lge is displayed to the
user. Windows applications execute in the system
virtual miichine, so their outstantling network

A

-7 VDNET 386 VIRTUAL DEVICE DRIVER

HlGH MEMORY AREA

EXPANDED MEMORY PAGE
FRAME

HlGH MEMORY AREA

VIDEO MEMORY
EXPANDED MEMORY PAGE

FRAME
ADAPTER MEMORY

I AVAILABLE I

1 DOS APPLICATION I
ALLOCATED HOOK 1 -'I it---* Eml 1

MAPPING AREA I
OTHER RESIDENT SOFTWARE

DEC'NET NETWORK PROCESS

DOS OPERATING SYSTEM

F i g ~ ~ r e 4 Callback Rozltirle

54 tbl 4 No. I Winter 199.2 Digirnl Tecbniccrl Jouwznl

/ I c ~ / ~ L I ~ ~ ~ I I $ /!I 111- j 1 Poi1 7t.s

' l ' l ic \ll)Nl:-l' ;111cl \ ' \ I 'l'l$lOS ~ i c t \ vo rk \.irlk1;11 c[c\ ice
elri\ el.\ pro\ iclc clcl)t~gglng cntr! l ~ o i n t s 1-01 ' L I ~ C I>\
tile \\ ~nclo\ \ s I i c l -~ lc l cIcI>~~gger. '1'11~s~ c.n(l.! ~) o i n t \
g ~ \ c a fo rn l ;~r~cc l r l i \p l ;~\ 01 ' the l iool i c o ~ l t ~ . o l I ~ l o c J ~

101. c;~ch lioolicel nc.l\\ orl; c ;~ l l i n I~I.O~I.C.~. I ' l i c
el~spl;~! rnclt~clcs r l ~ c rccluctecl f ~ ~ n c t ~ o n . I>~ l l l ? r

;~clclrcss. the J i ;~~ic l lc . 01 t l ic \ i r l u ;~ l m ; ~ c l l i l ~ c t1'0111
\ \ , l i i c l~ the c ; ~ l l \\,;IS ~ - c c l ~ ~ c \ ~ c t l , t l ic \ ~ i r t ~ ~ ; ~ l - n ~ ; ~ c I) i n c -
1>cci l ic :~ilclrc\s 0 1 r l ~ c c' ;~l I c l - i ;I~'gtrnicnt 1,locli. :lncl
Il;~gs. 'l ' l ic 11;1& ~~ lc l i ~c l ce l in ~ l l c clc1)ugging tlihj>1;1!'

i~xclic;~tc 1I1c s1;1Ic ot I l lc opc1.;1tio11~ ;I> \ l lo \ \ ,~ i 111
l':ll)lc I

<Y/)C)C/L// 11'1 /: /I/ / . / ~ o ; l l l

' l ' l ~ e \ l)Sl:~l i l c l \ \ 01.1, \ II.~LI:I~ clc\.~cc clri! CL- pro\ lcIc\

I I i I t i I l o ~ i c t i o ~ i oil\\ ;IIY

to clctcr~lxi~?c \\,l1;11 \ .c l .s io~~ of' 1he \'l)NlYl' clri\,c~. is
lo;~clccl 'I'liis I ' t11ic~~io11 i s :I\ ;~i l ;~l>lc to l>otll p ~ ~ o t c c ~ c c l -
11iocIc ;inel rc;rl-nloclc ; ~ l ~ l > l ~ c ; ~ t i o n s .

~ Y ~ ~ I I I I ~ I ~ I ~ ~
I) , \ I I l \ \ O R K ~ 11cl \\ orl, ir1~1;1l clc\.icc t lr i \ c r \ cx(e~icI
1l1c. \ l ~c roso l l \\ 111cIo\\\ c~ ih ;~ncrc l niotlc c ~ i \ ~ ~ . o n -

111c11t to \ ~ l ~ > ~ > o l - [111051 ll;lrcl\\~:lrc tI1:11 c:111 l)c
ir~st;~l lccl In a pcl ' \on;~l conl1,lrtcr ~ l ' l i c \ c cll.i\crs

:11so sLl~,[,Ol-l ;Ill sol'l\\:~ll-c tJ1:1t c.>l l l l - L l L l L l~lclcl~ tl>c
I)OS opc r ;~ t lng s\.slc1)1~ i ~ ~ c l t ~ c l ~ t ~ g hof t \ \ ' :~~-c t l i : ~ t

I)! 0:15xs the opcl.;lting s\stcm to acccs ~ h c 11;11.cI-
\ \ ; ~ rc clirccll! \ 'cl\\o~-I, \ i l - r i ~ ; l l cle\ icc elri\crs rn:ll,c

Table 1 Flags Included in the Debugging Display

net\\-ork sc1.1 ices :I\ ;~ i l :~hle to the \\'111cIo\\-s ILcrncl.
to \\' i i~clo\\s :111el ~ ~ o ~ i - \ \ ~ i ~ ~ c l o \ ~ s ;1~~j)Iic;1lio115. :111cl
to ot l icr \ ir1(1:11 clc\ jcc clri\ e1.s ' l ' l lc i1.1~1;il clc\-ice

cIri\-c~-s i ~ i c l ~ ~ c l c c l 111 l l i c l'J\TIl\\Ol<KS 1.01. J)OS soft-

\v;Ire ~ x ' o c l ~ i c ~ 1>er11111 tu l l i ~ h c o l l l l c I)l.(:nct ;~ncl
Netlll0,s ,\l)ls, inclucling I>igit:~l-sl)ccilic extensions

to the NctlllOS 111lc~.l;1cc, i n thc I\/licl.oxolt Winelo\\ls
enh:tncctl nioclc cl l \ , lrol lnlcnt.

Flag

HF Walt-For IRET

HF Walt-For POST

Indication
- -

Cleared when the DECnet Network Process component returns to the virtual
devlce driver.

Set if the virtual device driver callback IS required; cleared when the virtual
device driver callback is called.

Set if the caller requested callback; cleared when the caller's callback returns.

Set while In a critlcal section.

Set if the caller was in protected mode.

Set if the operation was canceled.

Set if the operation is being canceled.

Set if the operation is a blocking call that is belng simulated using an
asynchronous call. Do not return to caller until the operation is complete.

Dennis G. Giokas
Andrew 1: Leskowitz I

excursion for Windows:
Integrating Two Windowing Systems

Digital's excursio~z for l\/indous clisplqjl serurr is crrr ~rp1)liartiorz for Microsoft
Windows. Tbe eXcursionJi)r Windo~is prodzrct is 6a.vc~d on the .Y Windoul S ~ ~ s t e ~ n
and allows X client applicrttions to displc!~l oirtp~~t, receirie i l ~ l ~ i ~ l , a~zd e.~~ha?zge
data in the ,Ilicrosoft U'rlltlouls clrr~ir~u~ilnerrl. Ihe eX'cursion softuwre vistrall)l
integrates thr S and ~Mici~osc!fS W'indozus erii~iro~znze~zts-~rpplicntiotzs fronz 60th
erzuiro~zments displcy on a sirrgle screetz and h(rr3e the srrlile apl)arrnrzcc A key co~~z -
ponetzt of Nrlu~ork Applicrrliora Slrl$ort (.\;IS) and Digiilal PC integration pro-
gram, the eXczirsion for LYininrIozus displa~~ serrlcr- ena6les information excha~zge
among PC users and non-l'c; users linked throrrghout a ~relwork.

The excursion for Windows so1tw;lre is a display
server lx~sed on the X Window System version 11,
release 4 protocol and implemented as an appli-
cation for Microsoft Windows software. excursion
allows X11 client applications basecl on any S11
toolkit to display output and receive input in the
Microsoft Windows environment. The two window
environments are seamlessly integrated. Microsoft
Wintlows software provides the window manage-
ment for x Window System applicatio~w. The
excursion display server smoothly h;undLes the dis
play and user input for the X applications along
with data exchange between the applications.

This paper first establishes the relationship of the
excursion display server to the X Window System
and Microsoft Windows environments. It then pre-
sents the personal computing integration philoso-
phy behind the development of the excursion
procluct. This paper then relates the design philoso-
phy ant1 implenlentation arcliitcct~~re o f thc scrver.
I t conclucles with a discussion o f resource usage.

Overview
The DECwindows architecture integrates the user
and graphical interfaces of the VMS, ULTRIX, and
DOS operating system and desktop environments.
The X Window System client-server architecture,
on which the DECwindows system Is based,
provitles the means to achieve this integration.
The X architecture, as implemented by Digital's
DECwindon;~ ,Motif program, is shown ul Figures 1

and 2. This architecture is hartlware ancl software
system independent. I t allows X applications, or
clients, to execute on any processor and display on
any device in a distributed network.

X applications are linkecl with toolkits and
libraries that include windowing controls, user inter-
face objects, and graphics c:ipabilities. The X tool-
kits also inclutlr itlterproccss communications
capabilities that provicle data interchange between
the app1ic;~tion clicnts. Figure 2 presents some of
the libraries in the i>l:Cwindows environment.

These applications communicate with an X Win-
dow System display server over a network through
the X protocol. The X protocol is independent of

ULTRIX

NETWORK I
Figure I X Applications Running on Reinote

Nodes aizd Dis~lrrjvd on cr PC

56 1.W 4 No. I Wf'inter. IVY2 Digilnl Tecbnical Jorrrrrnl

APPLICATION

I I

I

TRANSPORT MECHANISM

XI1 PROTOCOL

OTHER
GRAPHICS AND
TOOLKIT L!BRARIES

MOTIF TOOLKIT

XT (INTRINSICS)

XLlB

TRANSPORT MECHANISM I

EXTENSION
LIBRARIES - PEX . POSTSCRIPT . IMAGING

EXTENSIONS

X SERVER KERNEL

- IMAGING

I

eXc~~1~io17 / r ~ ? /) I c ~ ~ ~ c ~ z t ~ l l i o ~ ?
-1'Iic cScursion ;~t)l)lic;~tion i~iiplcmcnts the X Win-
clo\v S\.stcm tlisl)l;t!. scs'iw on ,Llicrosoft Windo\vs.
I'hc cxcu~-aio~i soft\v;lrc :illo.tvs tlic \vinclo\vs of the
S ;ippIic.;ttions. sunning o n ;I remote host, to tlis-
pla!. on :I 13crso11;ll computer. 'l'hc two environ-
ments ;ire visu;~ll!. intcgr;~ tctl-:tpt,lic;l tions from
both cn\,ironments tlispl;~!. o n ;I single sc1.et.n :HICI
h;lve the s;unc \-isu;~l ;Ippe;rr;mce. l'hc t\vo cnviron-
mcnts use the s;lmc rncc.h;u~~isrns to m;tn;ige win-
clo\vs ;inel thrls pl-cscnt :I consistent user i~iterk~ce.
In ;~cltlition. cSc~rrsion uses mct;il,hors ;lncl meclia-
nis~iis k~~'nili;~r to the user of Wintlows. A control
1xtnc1 is cmplo!~ctl to li;~ntllc configur;~tio ;lnd
ct~sto~iliz;tt io~~ of the cScul-sion ;~pplic;~tion. The
Winelows I'rogr;~~n ;\ll;~n;~gcr is cmplo).ccl to tr;uns-
p:u-cnt 1). in\,okc ;~pl~lic:~tio~ls o n remote hosts.

Figure .5 sliows the eXcursion control 1>;1ncl. the
Winclows c;ilcntl;tr. :~ncl the I>E(;winclows Motif cal-
e11d:11- ;IS vieweel on :I desktop de\'ice. Tlie Winclows
I'rogr;~m k1;ln:lgcr is illso clispl;~!.etl to show the
cXcursion progr:Irn g~-oup \vitIi icons inst;~lletl.
I!se~-s can siml>l!. cloublc clicli the icons in the pro-
gr;tm g r o ~ ~ p to start :ll>plic;~tions on :t remote host.

One of t l ~ c go;ils o f I>igital's I>(; integration progr;un
is to integrate I'(:s throughout a network so they
may sh;lre resources. In ;I local ;~rc;i network (1.hN)

or a wide are21 network (WAN). I'(:s share files ancl
printers throi~gh :I file server. 'T'rndition;llly* 1)igit;rl
has providetl terminal e m ~ ~ l ; ~ t i o n software for
interaction with ;I time-sh;~ring s).stem on the net-
work. The X Winclow System distributes nothe her
resource 1o;rtl throiighout the netn~ork, n;lnlcly
;ipplic;~tion services. X :lpplic;~tions c;u~ bc run on a
speci;~l-purpose host. such ;IS ;I (:HAY s)'stem, or on
;I gener;rl-purpose host such :a a VAX s).steln. The
applications share thc. Cl'Li, memory disk. ;md print
resources o f that host. Thus, tlie optin1;ll or ; i~p ro -
priatc clcvicc c;ln proviclc the ;ipl,lic;ltion services.
The excursion product is :III S clispl;ly server
througl~ \vhich tlic J'(; user can access the X Win-
dow System cl;~ss of ;lp,plic;ition.

Rec;~use it en;ibles information esch;l~ige among
I>(: users ;~ncl non-I>(: users throilghoi~t ;I network.
the eXcursion softwiire is ;I key component of
I>igit;~l's Nct\vorlc Apj,lic;itions Suplx)~-t (NAS) and
I>igitr~l's I>(: integr;~tion progr;lm in the l'ersonal
<;ornputing S).stems (;roiq,.

Desigtz Pl~ilosopl~y
As in ;III). softw;ire clevelol,ment [)soject, a n~~rnher
of verj. import;int clcsig~l go;tls and tlecisions were
est;~blislietI for tllc cscursion for \Vintlo.ivs product
wl~ich ;iffectetl the i171plernent;1tio11. The excursion
;tpplic;~tion hat1 to be extremel! comlxltihle with
the Microsoft \Vintlo\vs e~~\,ironnienr. There Miere
import;111t rcnso~~s for this clecision.

First, i t wris critic:~l tlirlt excursion run o n :in), I)<:,
wit11 any combin;~tion of clcviccs tI1:tt the st;tnd;~rcl
Microsoft Wintlows cn\,ironrncnt supports. T i p i -
c;llly. the m;u~~i~f;ictt~rcr that huilcls the h;~rclw;~re is
reslx)~isible for writing the Winclows-comp;ttihle
elrivers. 'l'he devices t l i ;~ t most affect er;cursion ;we
keyboarel, pointing clc\~icc, ;inti clispl;~!:

Second. ;I tremendous mount of der.elol,ment
effort h;is been invested in tlie fiinctionality ;cntl
pcrform;~nce o f the Windows protluct. We w;lntetl
to ;ippIy th;it functionality ;inel not clup1ic:ite it in
the S server. For ex;lrnple. Wintlo\\~s software has ;I
bit block tr;~nsti.r (Iitflt) routine tli:~t cxn Inore
effecti\?ely h;lndle th;tt operation th;ui c,\;cursion.
It is one of the opt.^-ations th;~t ~Vlicrosoft h;~s opti-
mized. In atldition, it is one of the oper;ltions th;it

PATHWORKS: PC Integration Software

Mcssage Log Fonts Access

b a a

evzunmn Sebp W S Pamr ULTRI. Cak

I'iIJ
-6sorlm W n d o m ~ l m u o n c Msln

P- Almul

224 PM Wednesday. February 12.1992

IMH) AM
1O:OO Meem wlm Joe
11:oo
1200 PM
1:OO
2:oo
300
4:OO
5:DO
6.W

can be customized and optimized for the PC'S grapli-
ics adapter. If the graphics adapter can handle
BitBlt operations with built-in hardware, it is more
likely that the operation can be performed faster
with that hardware than with the CPU. Therefore.
excursion is completely insulatecl from thc hard-
ware and benefits from functions that have beell
optimized for specializetl hardware.

The third reason for developing ~Xcursion as a
well-behaved Windows application is indepcn-
dence from the internals of tlie undcrlyiiig window-
ing system. We might have been able to tlo a sliglltly
better job of integration of tllc. 3licrosoSt W'inclows
:~nd X Window System ciivironnients if MW had
obtained a source code license from Microsoft and
truly blencled tlie two environments into one. How-
evel; tlie cost, development resources, and time
needed to implement this type o f integration were
~m)hibitive.

Fourth, the eXcursion app1ic:ition hacl to share
tlie PC: system resources of clispl:~): pointing device
(mouse), keybo;~rd, sound suI>s!~stcm, memor): and

network with another windowing system and its
applications. The first five resources were all owned
and rnanaged by Microsoft Windows. We had to usc.
its application programming interfaces (APIs) to
corrcctly share those resources. The network
resource was s1i;lred among many networked appli-
cations through its APts as well.

Use of Windows Resources
A substa~iti:~l portion of tlie tiesign debate centered
on the way excursion would use tlie Microsoft
Windows resources. We needed to determine how
to map the winclows, graphics contexts, fonts, and
color maps of tlie X environiiient to the wilidows,
device contexts, fonts, ant1 color maps of the
Microsoft Windows ciiviron~iient.

The ~i i ;~jor clilcmn~;~ was: Sliould each X window
be created ;IS a Microsoft Windows window and
thus be known to hot11 environments? Or should
only the top-level X windows-those which were
parented by tlie Wintlows desktop or root wiii-
dow-be createti as windows in the Microsoft

58 WI!. 4 No. I U'i?ltef 1992 Digital Technicnl Jortrrrrrl

Winclo\\,s cnx,ironnlenr, \\lith :ill other \vinelows
crc;itccl stricll~. :IS S \vi~~cIo\vs :II~CI lkno\vn onl). to
cScursion!

.l'Iie 1i1-st 1,rolx)s;il \\:;IS cert;~inly (.:IS). to implc-
Iiient :tnd i t lccl t o consistcnc!. throt~gho~tt tllc
S scr\er_ l 'hc \Vilirlox\~s en\.ironn~cnt h:tcl ;in AT'I

rich cnougli to ni;llic this]?1;111 fc;isible. 111 :~ctclition,
Wiinclo\\\ \\~oi~l.rl I.~;~ncllc :III the \vintlow stacking
:~ncl el illping Sor cSct~rsion fairl:. tr:insp;~rentl!:
1)c.spilc 11lcsc ri.:~sons. the ;iItc~-~i:~tive plan w;~s
~>roven rl~orc \\.ork:~l>lc rluring our protot!-ping
1>11:1sc.

The S Winclow S!.sIcrii \\.:is clcsignccl to cn~l~lo!'
rn;In\, winclo~ls sincc the! xrt. cotlsjtlcrcd t o he
incrpc~isi\,t. rcsoitrccs. Scl'\crs ilse 1 ittle menlor!,
for. c;icIi uinclowv, 1 willdo\\ 5 :trc f';ist t o cl-c:~tc,
m;tp. unm:ip. ;inel clcstro!.: ;111d the!. c;ui n:~vigate
cpickl!. tlirot~gli the \vintlow trcc. 7'11~1s~ S-lxtseel
toolkits, such ;is ,\,lotif, ernploj~ I ~ ~ : I I ~ J ' n'iiiclo\\~s.
Wl~cn \vc tcs[ctf o i ~ r inill:ll ~,ropos;~.l. \vc clisco\.erccl
t l ~ t both ~ \ ~ ~ ~ i (I o ~ o i t l g s!.stcnls ~li;~int;~i~iccl \vindo.c\7
trees. ~vhicli resulted 111 :I pc~.forn~;~nce prol,lem.
1:ol- es;i~~iplc. \\;lien cert;iin opcr:~tio~is such ;IS

gr;il,hics wcrc pcrfot-meel, some of tlie clipping
\\l;lis clone ttvicc, o~ icc I)!. eSc11rsio11 :11ic1 once
I>!- Ylicrosoft \Vintlonis In :tclclition. hllcrosoft
\Yiindo\\,s limitccl tllc number of winclox\rs th;it
coulcl bc cre;ltccl. I,:, tlle 64 kiloh!.tc (KII) memory i t
resc~.\.c.cl for tllcsc :mtl other s\stcm resources.

I:iinctio~i:iJl!: tlic X \Vinclow S>.stcm gr:tphics con-
rests (<;(:s) m;tppcd f:iirl!- well t o the Microsoft
Wintlo\\ s tlc\,icc contc\t\ (I)(:). TIowrver, the \v:t!.
S :~pl,lic;~tions cml)lo!. (;(:\ I signific;intl! clifler-
cnt From t l ~ c \\':I!. Microsoft \X;~~itlo\\.s cmploj s I><:s.
S :~j,]?lic:~lions store nl;iny <;(:s; c;~cIi is set trp
u~iiqttel! \\,it11 clillircnt v:ilucs for the dr:~rving st:ttc
~~;iri~~hlc.; . Somclinics Iii:in!- (;(:s ;ire i~sccl for one
alinilo\\~ ;~iid oL'tc.11 ; I clif'li.re111 (;(I is i~sccl for- c;tch
\\.ir~tlo\c. 'l'lic ktsc of m;ln! (;(:s c ;~n sigl~~~~::;lntl!,
recl~~cc rhc coolnliinic~ttion bctwcc~i the S serl'er
;ind :~pplic:~tion. siuce gr;~pllics st;itc is comniutii-
c:ttctl onl! once. Alicrosoft Winclows :ipplic;~tions
use o ~ i c I)(: lor :tll winelo\\, painting, niotlif!-ilig i t :is
n~.c.clccl Somc inno\.ati\ e c;tchir?g ;~lgorithnls in the
c.Sci~rslo~l ~x'ocluct \ve~.c t~sccl to :icltlrc.ss this mis-
m:ttch In LIs;Igr st!,lr-^.

I:or~t rt.sot~rces \t.crc. ;1150 c ~ l ~ i c i c 1 ~ ~ 1 ~ rn:~l,j>ctl
I,ct\vecn rlie two wintlowing een\:ironmcnts. A
subst;unti:~l portion of the graphics clone 1,). :III

;il)l,lic;ttion in :I winclowing cn\~ironmer~t is text.
illicrosoft rccogliizcs this ;~ncl o[,ti~nized the text
olltjwr roLl1tries in \Y/inclo\vs Thi~s, tlie optim;il

w;~!, of elr-;i\\~ing test IS through \Vinclo\vs. 'There-
fore, thC X scr\,er's €on[resources were conll)iletl
into Windows-conip;itil,le font tile resources so
Winclo\vs coitld tlo ;ill the rest clr;~wing. For c;ich
X font resource, \ve includetl ;I second tile for the
font :ilicl glyph nletrics th;it tlitl not m;l]) to the
\Windows font tile resource. Sonic of the cSc111-sion
font file resources were nloclilicd to rcsol\e incon-
sistencies l)c.t\\~c.r.~i rhc [\\,o cnvironmc~~ts ;tncl
11i:tke cXeursion cornp:ttible \\iitli \Villclonls. For
ex;tmple, unlike S, Wi~iclows docs not :111o\v ~ C X L

elr;iwing outsicle tlie c1l;tractcrs' bounclitlg 1~0s.
<:olor rn;ips ;Ire :~nothcr rcsoilrcc \Vinclo\\ls

shares \villi cSci~rsion. hlicrosoft \Vi~~clonrs version
3.0 Lvi th st:ltld:~rcl \,icleo grapl~ics ;irr:i). (Ir(;,\) 11;ircl-
\\urc (:I 0 i 0 bjr4X0 rcsoli~[ion tlc\.icc with 16 colors
supported) pre-:~lloc;itcs :111 I 0 colors in the color
t:tble for the Winelows en\.ironmcnt. 1:or excut-sion,
this is cffcctivel!. the S Window S!.stcnl st;ttic color
\fisu;~l, where [lie color mil) is re;~tl-onl!.. With
cnh;u~~cecl \I(;,\ c:~rcls th;~t s~117po1.t 250 simult;~neoi~s
colors. W/inclo\vs pre-:II loca tcs 20 entries in tlic

color t:tble. For. cXcursion. tlic S \Vinelow S!.stcm's
pseuclocolor visii;~l c:ln bc supl>ortecl with onl).
236 entries for ;~lloc:~tion in tlic color t:~ble. Again,
i t \\/:I\ ~mportallt tll;~t cSct~ssion \\[as rvell heh:~\~etl
with respect to color-mi117 ;illocritio~l ;ind use
within the Wintlo\vs cn\.ironment.

I-'erforni;incc of t l~e cXcursion ~,rc')tliict is :I continu-
ing ;ires of concern. investig:~ tion ;uncl tle\vlop-
rncnt. M;ln!. perform;uice conccr~is wcrc rernetlietl
L,J efficient coclc l,:~tlls ;uicl inno~~;i t i~.c ;~lgorithms:
othel-s neecl to 1,c :~clclressccl b!' the user in the form
of tr;itle-olls. In this section we cliscuss some m:tjor
;~rcJiitecti~r;~l tliffi-renccs bet\\lccn Microsoft Win-
(lows :111d the S Wi~icIo\v Systcm tl1:lt Icavc S pcrfor-
mance ; ~ t :I clis:icl\.;rntagc. x\~Iic~i i t i:, I;l!,erecl o n
;inother \xlincio\\~ing s! s~cnl

Fir-st ;tncl fore~i~osr. cSc~~rsion has to tr;tnslate
S rcqucsts into Windows ,\PIS as n ~ l l :IS tr;~nsl;lte
Winelows events, /\I'I r e t i t r~~ \~:ilites, and API errors
into S events: X rcqucst rcl,lics, ;inel S request error
eiSents. r~spccti\~cl!~. The clis:tcl.i.:~nt:igc. of course, is
the incrc;~seci processing time cScursion needs to
comj,letc these tt;~nsl:~tion t:isks. Sincc our tlcsig~i
go;~l \v:ts to I:~!~er. :I foreign \\~intlow s!.stem o ~ i the
clcslitop clc\,ice's tlati\-c w i~ ldo~~ i l l g systenl. we 11;1tl
to ;~cccl)t this j,crfo'orm;uicc pcnnlt):

Scconcl, S cmplo).h a client-scr'i7cr motlcl. Al l
S p r ~ t o u) l requests o f the S client (S app1ic:ition')

PATHWORKS: PC Integration Software

to the s displ;~). scrvcr have to be c~icodctl into the
S protocol antl tratis~nitted to thc server through an
intcrprocess communication mechanism. For the
excursion product, this mechanism is a network
bccausc thc client and scrver are a1waj.s on differ-
ent systeliis. Operations in X, e.g., mcnu s\\.ccping
and resizing of objects, always involve both the
client and the server. These operations in particu-
lar have to be fast because they affect the user's per-
ception of the windowing system's performance.
Thus these code paths had to be efficient.

Third, X has strict pixelization rules. These rules
determine which pixels must be included in the
rendering of a graphics object. In general, all the
interior points of an object are rendered, but only
certain points on the outer boundary of the object
are renclerccl. If the area of the pixel below and to
the right of the center point is touched, then the
pixel is included; otherwise it is not.2 Thus, a rect-
mgle has its top and left ctlgcs includccl, but not its
right and bottom edges. The pisclization rules for
the x protocol were strictly spccilicd to s;~tisfy the
technical market's graphics requirements. such as
CAD/CAM. If one were to tessellate polygons in the
x environment, one would bc g~l;ir;intccd thxt each
pixel is inclilded once ancl only once.

The Microsoft Windows environment was
designed with a business graphics presentation
model. The pixelization rules are not widely known
ant1 may cliatige.

Based on these facts, we chose to adhere to the
x protocol and its pixelization rules. We believed
most users would run office productivity applica-
tions. For these applications, pixelization rules do
not affect the operation or fi~nctionality of tlie
application. In a majority of cases, the user is never
able to see the subtle differences in the rendering
of a graphics object. As part of excursion's cus-
tomization, we allow the user to select the way
graphics are rentleretl-optimized for performance
or opti~iiizecl for correctness. This choice is analo-
gous to printing draft (fast) mode for proof copies
or letter-qualit): high-resolution mode (high qual-
ity but slow speed) for final copy. The user can
change this parameter at any time in excursion
and force a redraw by the X application, e.g.,
through an iconify/deiconify procedure, to render
the graphics in the other mode.

Seamless Integration
One of our clesign goals was the seamless integra-
tion of eXcursion into the micro sol'^ Windows

environment to the greatest extent possible. Two
important areas to integrate wcre window manage-
ment and data exchange.

Wi~zdozu iM6lnagement We believed that Micro-
soft Windows should provide window management.
Top-level windows in the two environments are
peers and should be visually and firnction;~lly iden-
tical. With this cap;tbility the user does not 1i;lve to
run a remotc window manager or learn and remem-
ber a second user interface.

We wanted the outer frame of the windows in
X to look like the windows in Microsoft Windows.
Furthermore, we wanted Windows to provicle all
of the end-user window management functional-
ity-move, resize, iconify, deiconify, stacking, and
focus. The windows for these operations had to con-
tain the same user interface objects found in the
Microsoft Winclows environment. We did violate
this design principle in one case. 111 place of tht: stan-
dard Microsoft Windows system menu icon in the
upper left corner of the window frame, wc placed
an "X" (see Figure 3). This object visually cued the
user that tlie wi~idow reprcscnted a n X Window
System application running remotely but display-
ing within the Microsoft Windows environment.

On the othcr hand, X servers are not aware if the
graphics object being rendcretl is a component of
a scroll bar, comtiiantl button, radio button, chcck
box, text entry field, etc. For this reason, excursion
cannot make grdphlcs objects look like and h~nc -
tion as the equivalent objects in the Microsoft
Windows environment. Unfortunately, tlie user has
to deal with these inconsistencies between the two
windowing environments.

The excursion product had to conform to
the X Consortium's Inter-Client Communications
Conventions Manual (I<:<:<:M) specification for win-
dow management within the Wintlows environ-
ment. Window properties such as name, icon
name, sizc. and position on ;I top-level window
must be recognized by excursion and must be set
using tlie appropriate Microsoft Windows APIs..+

Dcltu Exchclnge We believed users should be able
to seamlessly exchange text ancl bit-map tlata
between the Microsoft Windows and X Window
System environments. For example, the user should
be able to use the standard application rnechan-
isms to sclcct data and cut or copy i t from one
env~ronment, move to an application in the other
environment, and use the standard application

60 1'01. 4 No. I Winter 1992 Digital Tech#ricrrl Jourrrrrl

mech;lnisms to p;\ste (lie c l ; ~ t ; ~ . N o speci:il user inter-
vention between thcsc two ol>er:itions \vould be
;~cccl>t;lble.

I t) enh;lncc tlie cl;lt;l integri~tion c;~lxil,ilities of
eScursion, we clitl implement ;I specin! fe;ltilre to
c;~l>turc ;in!, p:lrt o f :in S \vindo\v :IS bi t -~i i ;~p d :~ t ;~
;lncl s;l\.c i t In tlie Nlicrosoft \Y/intlows c1ipbo:ucl.
Ylicrosoft \Vilit/o\~s ;~pplic;ltio~~s coi~ltl tllc11 p;lste
th;lt tlat;~.

cXcc~rsion fi~nctions ;IS ;rn!, other Microsoft Win-
clows ;iplAic;~tion ;~ntl conforms to its stjrle guitlc in
thrcc ;trc;~s-insl;~ll;~tio~i. configur:ttion. ;lncl help.

'J'hc inst:tllation clcsign princi1,les ;Ire quite sini-
pic. Inst:tll;~tion h;~s to bc pcrformetl through n
klicrosoft Wintlows ;~pplic;~tion ;~ncl h;~s to :~llow
the user to run tllc initial :~l,l,lic:~tion without fur-
ther configur;~tion. Onl! two contigur;ttion p;~r;tn~-
eters. fonts :111cl kc.~.bo;~rtl, unust be spccitietl by
the user In ;~tlclition, :I user in the VMS. Ill:l'lUS, or
Sun Opc~i\Vi~tlovs cn\,iroliment h;~s u s) . :lcccss
to the t:uicl;~rtl ;~j>plic:~t~ons of the oper;lring s1.s-
tc111. I'hc inst;lll;ltion 1>1.occtli1rc installs icons th:~t
tcl>rcxc'"t ; ~ l l of tlic xt;~nd:ircl I)li(:winclows applic:~-
tions for thc \/,\IS ; I J I C ~ Il.'1'IIlX s!~stcli~s ;uici st;~nd:~rci
Sun Ol>en\Vintlovs ;~pplic:~tions i~i the Microsoft
Wintlows I'rog~-;~n~ M;ln;lger. A user can invoke tlie
;tp1,lic;ltion o n (lie remote Iiost using tlie st;rn-
cl;lrcl l'rogr:111i N1:ln;lgcr mcch:inisms. S L I C ~ :IS ;I tIo11-
ble click of the 1>rog1.:1ni icon wit11 the pointing
clevice.

Wc tlc\,otcd 5ignific;lnt cnginccring rcsourccs
to the config11r;ltion for eScursion. Since tlie con-
tig11r;ltion \v:~s for ;I \\~inclov;ing c~i\~ironrnctlt, wc
dccitlccl to i ~ s c the control p;uicl n~ct:~plior th;tt
is c'onirnon to other \\~intlowing environments,
such ;IS the rll;~cintosh ;~ntl microso oft \Vindows.
'l'he cXcursion control p;tncl (pnrti;llly shown in

X SERVER
APPLICATION

Figure 3), pro\,icles :tcccss to :II I tlie user preference
fe:~tures allcl configilr;~tion j>;lr;imeters. Another
i~ulx)~-t;~nt tlesign ~>riaciple nl;is the imnietli;~te :~cti-
v;~tion of conligc~ration p;Ir;tmeters or user prefer-
cnce fealilres w!irne\.cr i t \v;ls technic;~lIj~ ferlsiblc.
Wc did not want the clser to esil ;i l l tlie S ;lpl,lic;~-
tions or restart the X server to activ:ltc configi1r:l-
tion p;lr;tmcters.

'The excursion control ~ ; I I I C ! ;11so :II lon:~ i~sers
to customize their X ;~pplic;ttion en\;iro~lmcnts, l 'hc
cXcursio11 control p;mcl pro\.itles ;I mech;~nis~n to
built1 an ;~pplications nienu within tlic co~itrol
17:tnel ;ulltl inst;~ll ;tl)~lic:ttion st;~rt-ill? comm:intls in
the &licrosoft Wintlows I-'rogr:~m 3ktn;lgcr ;IS icons
fol- e:isy in\;oc;~tion of remote :~pplic;~tions.

On-line help ;~lso conforms to the Winclows style
g ~ ~ i d c . 0i1r tlesign go:d W:IS t o sill>ply :I concise
Quick Start c;~rcl with ;ill the infor~u;itio~l ;I ilser
neecletl to tletern~inc the prcrcquisitcs for install,
install the product. ;mtl invoke the tirst applic;ltio~i.
1\11 of tlie I-eni:~ining ~ I ~ ~ - L I S ~ I - cIoc~1~1~1it;1tio11 is
;~\f;~il;lble on li~ie The only otliel- 111-intetl tlocumen-
t;ltion is the rclcrence ~ ~ ; I I I L I ; I ~ .

For i~ist;~II. co~itig~~r:ltion, ;inti help, hu1n;ln k~c-
tors engineers provitlecl t~s;~l,ilit!. e\~;~lil;~tions. ;uid ;I

g~-;lphics clcsigncr :~ssistccl in tlie tinill tlcsign of the
user interk~ce.

XSerrwr, 117ter"11~11 Ar-~l~ilect~ir*e
The X l l rele;lsc i .\417' s:~m]?lc scr\.cs implcment;~-
tion pro\ricletl the h:~seline for our cIe\relop~i~cnt
effort. This :~rchitectl~rc is tlepictecl in Figure 4. The
s;tmplc ser\.cr ;rrchitcctt~re h:ts tliree tlisti~ict l;~!~ers:
clevice-inclepe~iclerit S (1>1S), oper;lting S J ' S ~ ~ I ~ I (OS) ,

;mcl clevice-tlepencle~lt S (1)I)X). The I)IS Ir~j~er is pri-
m:u-ily concernetl with high-lc\.cl clecisioli m;tking.
The OS I:tyer connects the X scrvcr to its unclcrlyi~ig
net\vork tr;ulsport. 'I'he 1>11X I;tycr tr;lnsl;~tes ;I
client's recluest into ;I j,ixel clispl;~): To conform t o

I WINDOWS MESSAGE PROCESSING

C DEVICE-INDEPENDENT X ! OPERATING SYSTEM
I - - - - - - - - - - - - - - - - - - -
I I I

DEVICE-DEPENDENT X
DECNET

WINDOWS U S E R . GRAPHICS MS-DOS (TO X
CLIENT)

I MS-WINDOWS DEVICE D R I V E R S I

PATHWORKS: PC Integration Software

the Windows application moclel, our implemen-
tation adds a fourth layer, the Windows message
processing layer.

Device-independent X
The DIX layer consists of moclules that provide
high-level server data structure manipulation,
X request vectoring, and server task scheduling.
Every attempt was made during the development
process to change as little as possible in this layer,
and to maintain the firewall between the DIX layer
and the underlying DDX layer. The DIX layer's most
important task is the dispatch loop, the scheduler
for excursion processing of all asynchronous client
requests. Requests fall into three categories:

1. Edits to internal data structures such as the cur-
rent procedure vector for drawing wide, dashed
lines

2. Queries on internal resources s~ lch as available
fonts and their metrics

3. Drawing requests such as rendering of text and
lines

The Dm layer maintains the current state of the
window tree and all its coml:anents, as well as the
graphics contexts and all of their associated data.
DIX code tlynatnically alters the processing paths
chosen for X request completion based on the
current states of these data structures. For exam-
ple, suppose that a GC is being used to draw a series
of single-width, solid lines in a winclow. Now the
x client wishes to begin drawing with 10-pixel-
wide, tile-filled lines. DIX then reads the client
requests dealing with the GC state changes, and
updates its data to reflect the new drawing condi-
tions for lines. DIX changes the drawing vector and
updates the GC data structure. (Device-specific
drawing operations are performed in the DDX layer.)

Windows Message Processing
The Windows message processing layer is the inter-
face to the user's input devices, the mouse and key-
board. Actions taken by a user result in Windows
messages containing information on the message
type, conditions, and parameters being sent to the
application's Windows message procedure. Here
the data must be modified ancl translated into sorne-
t111ng that an X client can unclerstancl, an X event.
Event processing is clone by the DIX layer, and the
event clata 1s then shippecl to the client by the O S

layer

Operating System
Data transferred on the X wire is arbitrated in
the OS layer. When an X client application makes a
server request, the underlying network code
receives it, packages it, and makes it available to the
0s layer. The eXcursion product runs layered above
one of two entirely distinct network transports
(either the DECnet or the TCP/IP protocol) and must
provide some mechanism for passing data back and
forth between the real mode of the network inter-
face and the protected mode of a Windows applica-
tion. For this reason, we chose to interface the
server to the network by means of a generic 0 s
module. Since all server-generated calls are now
network-independent, the server is freed from any
network-specific decisions.

Data conversions from real mode to protected
mode are provieled by a group of Windows dynamic
link libraries (DLLs). Functions in DLLs are called
directly from a Windows application (in this
case, excursion). The DLLs in turn use Windows'
extended memory manager to make DOS protected
mode interface (DPMI) calls to pass the data to the
network stack which runs in real mode. For exam-
ple, assume e)tcursion is rtlnning the TCP/IP proto-
col, ancl the user presses a mouse button in an
excursion winclow. The data comprising the
x event is assembled, packaged, and presented to
the 0 s layer for shipment to the remote X client.
The server makes its "send data" call into the
generic OS module. This module makes a call into
a common, shared DLL, and passes the data
unchanged. The generic DLL acts as the network
arbitrator. It knows about the underlying net-
work transport and vendor since it performed
a network installation check at start-up. There-
fore, the generic DLL calls into the vendor-specific
excursion DLL to modify the data, pack it into the
format required by the network stack, and ship it
to the real mode stack.

This implementation strategy requires several
DLLs, but it completely shields the server, and more
importantly the user, from the underlying network.
The DLLs are simply copied once into the excursion
execution path and forgotten. There is no need to
reconfigure excursion if the underlying network
changes.

MI the visrially recognizable work takes place in the
DDX layer. DDX translates a client's X request into
pixel manipulation on the screen. The sample

62 Vol. 4 A1u. 1 WIntc~ 1992 Digital Tecbrrical Jorrrtral

server implcmcntatjo~~ t1i;lt pro\iitletl o i ~ r stirring
[x)jnt c;lmc \ v ~ t l i ;I LIDS I;i!,cr clesignctl for molio-
chrome frame I~i~ffcr (l,ll:I1) clevices. We replacetl
the ,\lFl$ tlcvice-specific cotlc in tlie 1)I)X: 1;iyer with
implemc~~t;~tion-s[>ecific cotlc for Wintlows.

OLIT 0:tscl inc s;tmple server imp le1 ie i1 : to ;~lso
17ro\~iclctl ;I m;~cliinc-inclel>e~icIe~~t I)DS rnccli;wism
(MI). 'l'he \ I1 n ~ o t l ~ ~ l c s m;ir~ipi~l;itc t l ~ c \riclco termi-
n:ll :IS a \:~rtu;~l tlcvicc: video menlor\' is emul;itecl
;uld ; I I I tlr:t\vitig opcrntions t;thc pl;~cc into this vir-
tu;il sp:tce until the tinal output renclers the bits
onto the screen. The .\.I1 l l l ; lIli~)~l~;1t~~ bits n ~ i c l per-
forms 1ogic;tl operations until it nchicves ;I ti n:11 rcp-
rescnt;~tion of' the rccliiestccl opcr:ttion. Tliis find
clr;twing rcc/~~ircs two distinct fiunctions: fill sp;ins
:tncl l?i~sli pixels. 'l'lic till sl>;uns function rentlers
drawing outl>ut in single sc;tn lincs, m;~liing
rcpc.;~tecl c;tl Is to Winclows I5itl5lt. 'l'ht. push pixels
function tlocs much the s;irne thing. but a t :I more
complex Ic~~el.-it puslies [,its tliroi~gl~ ;I m;~slc or
filter 1,elorc the), ; I ~ J ~ > ~ ; I I - o n thc scrcell. 'T'hese
~i~cchanisrns ;ire rctliiirccl for proper tcxt rentlition
\vhcn tile or stippleel filletl tcxt ch;ir;~cters arc
rcqi~cstetl with i~n;~lLerctl cIl:tr;~~ter oi~tlines ;inti

bnckgrountl>. 'l'hcsc mcch;~nisnis ;ire. 1,). definition.
clunis!. ; i ~ l c f inefficient, I,ut the! provicle pixel per-
fect renclitions. cXcursion uses these MI funct io~~s
wl~cn ;in! olllie follo\ving conclitions must be met.

2. 'File ;ind stil>plcs usccl ;ire not 8 1,). 8 pixels in
sizc. (Wintlows is optimizctl Co h;~ntlle this one
C ; I S ~ . ;111cl I)re;~l<s clown c:~sil!. for :111 other aizcs.)

3. All opcr:ltions rccltiirc pixel perfection, such ;ls
clispl;iy of ;I (:Al) ;~pl>lic:ition.

Using Windows APZs
We clcsigncd ;I set of Winclo\\ls-specific moclulcs
tli;~t filled thc h;crcIw:tre-tlc~~c~~clrnt spiicc pro\-iclecl
by .\.lFK. These firnctions are cal let1 b). tlie 1)IX I:iycr's
rcqilest clisp;ttcher through the request vectors set
"1) in the server's main clnta structures (screen, win-
tlou/, (;(:; see Figurc 5 for cxamplcs). All S relative
clr:lwing requests ;Ire ~r;~nsl:~tccl here into Wintlows
olxr;"ions. ; ~ ~ i t l Wintlows ,\llls :u.c c;~llccl to s;utisIjr
theni.

As tlcscribecl prcvioi~sl!.~ we tlecitlctl to m;ttcli
wintlo\v trees by crc;tting :I Wintlows cvinclow for
e;lch top-level S \vinrlo\v o~il!: S cliiltl wintlows ;ire
I~ancllecl ;14 if the). arc rcct;~ng~rl:cr arc;ls of their
piirents. thereby s;lving room in thc finite (64KI)
toti11 sizc) pool o f Wintlo\va resoiirccs ;rv;iil:ible for
other objects. This clecision lccl to ;I clil'ticult proh-
lem that nectlecl ;I solution: How tlo we h;tncllc win-
tlow clipping?

Wi~ldozi' LPzpFilzg
(:lip[,ing is ;iccomplisliecl i r i S 1)). m;iint;lining :I list.
for each winclow in the sj-stem, o f the rect;u~~gles
into \vhicli tlrawing is ;~llowctl. Clipping in lVi~itlows
is :~ccornl~lishctI csscntiall!. the same way but
it r-cc~uires ;illoc;~tion of :~nothc.r resource. ;I region.
\Y/e implemcntccl clipping 1~1' ;~tllicring to the
S rnoclel. letting the scr\:cr cocle clo ;IS much of tlie
work :IS possible.

. . I he l>IX coclc m:~nipi~l;~tes 2nd ni:~intains ;I "clip
list" for exch X window. 1WIicn a Windows wintlow
is cre;~tecl ;~ntl usccl. WincIo\v:, expects this clipping
inform:ltion to reside in the windo\v's I)(: i f sonie-
thing is to bc tlr;l\vn ill the ~vinclow. 'To get the S clip
list into tlic Willtlows JX;. \vc ;~lloc;~tccl ;i srn;ill pool

i f (gc.LineWidth == 0) E
s w i t c h (gc.LineStyle) C
C

c a s e S o l i d :

c a s e O n O f f D a s h :

g c . L i n e = G P X Z e r o L i n e S o l i d ;
b r e a k ;
g c . l i n e = GPXZeroLineDashed;
b r e a k ;

1
3
e l s e

s w i t c h (gc.LineStyle) C

c a s e S o l i d :

c a s e O n O f f D a s h :

1

g c . l i n e = G P X W i d e L i n e S o l i d ;
b r e a k ;
g c . l i n e = GPXWideLiricDashed;
b r e a k ;

PATHWORKS: PC Integration Software

of cached Windows rcgions. A DC (and X parallel (;C)

used for a drawing operation must be validated to
ensure that all components are up-to-date. If the
DC does not have: a copy of the clip list, a Windows
region is built from the rectangles in the X clip list
and installed as the clipping region of the DC. When
the drawing takes place, the clip list is installed.
As long as tlic window is not moved, resized, or
obscured, thc region remains unchanged and fur-
ther region valitlation is unnecessary. When the
number of visible windows exceeds the cache lim-
its, the least reccntly uscd DC is "thrown out" of the
cache, and must be revalidated if it is used agah.
'I'liis mechanism allows smooth, efficient output
to multiple windows without extensive use of
Winclows precious re&,' 'lon rcsources.

Windows places ;I further restriction on resource
usagc. In addition to being created, a resource must
be selected into ;I DC before it can be used.
Deselected, old resources are deleted to save space.
If a request asks for one of the deletecl resources, it
must be re-created and selected again. The caching
and updating of DCs in Windows is handled by the
same function that validates and refreshes GCs in X.
When an X request results in a GC change, it may
also result in a DC change. For example, if the line
drawing mode changes from single-pixel-wide,
solid fill to multiptc-pixel-wide, tile 611, tl-rc (;(: is
updated with new prnctxlure vectors ;rnd data
fields. At the same tlnle, the D c must be ~ ~ p d a t c d so
the next Iinc drawing rcqucst results in a wide, tile-
filled line. A Windows bit map is created for the
X tile, .md it is selected into the D c as the pattern.
Any line then drawn using the DC results in a wide,
tijc fill. This method Is used to update the D c when-
ever any (;C objcc? with a parallel Windows object
is changed. Tlie cache ensures that Windows
objects can be allocatetl.

Drn w ing APIs
The Windows environment contains a rich collec-
tion of APls desigticd to accomplish many typesof
drawing. The excursion application takes full
advantage of these drawing APls. Wherever X ant1
Windows share drawing rules and conditions, the
appropriate Windows API is called quickly to maxi-
mize perform;~nce. This mechanism is iltilizecl
when the user selects the "optimized for perfor-
mance" drawing mode. When the rulc.4 between
X and Wintlows differ, excursion calls tlie most
appropriate API for the more common v;iriants,
again, to maxilnize perforniancc. For cxiirnple,

since a wide, solid, horizont;il line is rect;~ngular,
eScursion c;ills the Windows FillRect AI'I to clraw it
Only rarely is tlie MI coclc path required.

The X pixmap presented us with a major challenge.
Since it is a bitwise representation of a visual
object, its bit values must be maintained regardless
of its use. Pixmaps can be used in ;I variety of ways
by complcx S client applications. Pixmnps can hold
off-screen copies of window contents, or they
can hold a pattern for a window background. They
can provitle a mask through which a color or pat-
tern can be squeezed to give a stencil-like filling
effect. They can also contain text characters prior
to output.

The real cliallengc, howevel; lics in how pixmaps
are manipulated. There are nionochrome pixmaps,
color pixmaps, pixmaps presented as an array of
bits one color plane at a time, or packed to present
each color plane for one pixel in succession. For
these myriad forms and prescntations we created a
set of pixmap manipulation routines that translate
back and forth betwcen X and Windows. Since
Wintlows provides a set of APIs for manipulating
device-intlependent bit maps (l>lBs), we storetl the
bit map intern;~Jly in one, generic form regartlless
of its x representation, excursion extracts the bits,
modifies them, ancl sends them to tlie client when it
requests them in another format. One of the biggest
performance bottlenecks in excursion lies in the
pixmap format conversions which are constantly
taking place under the surface. Since we have
storetl ;ill pixmaps in device-independent format,
tlie performance penalty is low.

Font Compiler
Tlie X ancl Wintlows environments include a sec-
tion dcdicatecl to information about the font met-
r i c ~ ancl a section for tlie character bit maps.
However, their font storage n~ethotls ;Ire different.
Furtlierniore, since excursion is a compatible
Windows applic;ition, it uses Windows fonts to
draw text.

We designed a font compiler to create Windows-
usable fonts from an X font file input. The font com-
piler takes a bit-map distribution format (.RDF)
(x Window System font files are supplied in this
ASCII reatl:lble format) and produces two output
files. One, called the X font file (.SFN), contains the
s metrics readable by the server without having to
load the ch;ir;icter bit maps themselves. The other,

64 Vol. 4 Ntr 1 Wtntor. 1992 Digital Tecbniccrl Jorrr'nnl

;I Winelows font file ([:ON), cont;~ins the ch;iracter
gl!,plis i~sctl 1))- tlic \4/intlows ,\I'Is, cScursion's
X-s1)ccific cotlc ilses the .XI:\ file to 111;itch ;i\ . ; l i l-

;~l>lc fonts witli t l lox rcc~~~estcel, ;inel to c;llc~rl;lte
string sizcs. positio~is. ch:~r;lcter offsets, ascents.
tlcsccnts. ;~ncl ;tn!~thing else rcl;itctl to the loc;~tion
:11id 1)osition 01 tlic cI1;11-;1ctcrs. 'l'he .I:ON tile is
lo;~clctl ;IS :I \Vinelows resource. sclcctecl into ;I I><:
21s dcscribccl ;il>o\.c. ;~ncl i~secl for ;in). elr;lwing oper-
:itions since it cont;~ins tlie ;~cti~;tl cl1;ir;ictcr rcprc-
scnt;itions. 'l'lic font comp~lcr c;~li gcncr;ltc custom
fonts: ;In!, f o n t compilctl \\fit11 i t]>rotluces a
Winclo\vs font filc suit:iblc for use in ;in!. other. non-
S, \Vinelows ;~pl)Iic;ition. [:or cx;irnplr. :in!, o f the
sul,l,liecl ~Xctrr~ion fo~lrs co~~lcl be ~ ~ s c t l with \Vord
for Winclo\\~s.

In tlic section Sc;~niIess Integ~.:~tio~i, \ve tlcscrihetl
our clcsign str;lteg!. for eSc~~rsioli to Il;iutllc clr;iw-
ing I-ecluests from X clic~its. JII this scctio~i wc elis-
CLISS I . C ' ~ I I I C S I S fro111 tlic user.

When ;I user clicl;s ;I mouse I ~ i ~ t t o ~ i . or 111o\,cs the
mouse. or t!.pch 011 the I\e)~bo;lrd. Wi~icIo\\~s gcner-
;ilcs mcss;tgcs rvliicli ;ire sliil)l)cd to ~Xci~rsion's
\Vinclo.~\/ mcss:~gc j~rocc>sillg f i~~~c t io l l . I~ l t c~ . r~~ j) t
processing ia not nceclccl sin1.c Winclows shielcls
eXcursion from tlie i~~icIe~-l!.i~lg h;lrcl\\r:~re. In E~ct.
c>(cursion h;~s generic input h;~ncllcrs that work
\\lit11 ;t~i!. Ii;tt-tI~;~re contigt~r;~tio~i sul,l,ortecl by
Winclows.

'l'hc mcss;lgc processor tra~~sl;itcs tllc cl;it:t into
;I form;^ t unclcrstootl 1)). S , the11 p;lck;igcs ancl trims-
mits i t oircr tllc S ~virc ;15 ;III S event. Since these
user-ini1i;ilrcl iictionx ilrc ;is!~iiclironous e\.ents,
excursion c;ills the Winclows I'cck~\~lcss:tge() func-
tion wlicn it 1i;i.s tinislied ~~roccssitlg ;ui S rcqucst,
or when i t is i l l the icllc loop.

Wintlo\\ls ;tntl S sh;trc the s;lme coorclin;~tr
m;ipping conventions. \Vhe~i eXcursio~i rccci~:cs
;I mouse mo\-c mess;tge. i t clocs not perform tl-:tns-
lalions o n the .v ;uitl -1% coortlin;ttes; i t mercl!.
rclx)rls in n~hicli wintlow tllc pointer resicles.
I:urtlicr~iio~~c, when cXcursion crc;itcs ;I ~/incIo\v in
Wlinclows, it storcs ~ I i c ~or rcs [)~~icI ing S win-
clo\\l's 1i;intllr in the c s t~ . :~ cl;it:i : ~ r c ; ~ of the Wintlo\vs
rvintlow strilctl~re It C ; I I ~ rctric\.c tlie li;~ntlle o f :I
1il;itcliing X winclow ;it :In! time wi t l i tlic Windo\\ls
ill'I (;ctW/inclo\\~I.ong() . Since cxcursio~i ;II'L\';I).S
1l1;itclics ;I \Y'incIows wintlow to ;I top-lcvcl S win-
dow, the coml>in;~tion of the top-level wintlow
1i;indlc ;lncl the .v ;~ncl.j. coorclin;ites of' the pointer

:~llows eScursion to sc;in tlic S winelow tree nncl
dcterlninr which chilcl \vilido\\~ Iiolcls the pointer.

Wl~en ;I user prcsses ;I mouse button, tlie s;trne
kind oC:ictivit!. is i~sccl t o cleterminc which window
cont;~ins the pointer. 'l'hc S event cl;tt;~ structilre is
fillccl in ;l~ieI sliipl?etl to tlie client for fiuther z~ction.

When a user presses ;I kc! on the kcybo;irtl:
much the s~1-11~ [)roccssing t;tkcs ~,l;ice. Winclows
scnds eScursion all tlie inh)rni;ition nccclccf to
build ;ui c\lcnt cl;~t;l structure col?t:~i~ling thc kt.).
st:lte, tlie sc:tn coclc o f the kc!.. iuncl the ke!, ~noclifier
st;~tc (whether A l t . (;trI, or SliiFL. is clcprcssccl).
eXcursion then p:~cl<:tgcs and sli~ps the cl ;~ t ; ~ struc-
turc to the client ;~ppl ication.

excursion lo;icls ;I I\e!,s!.m file :it st:trt-LIP. Tlie tile
cont;~ins the ke!,l,o;~rcl rn;ipping of Iinrcl\v;trc sc;m
codes to kcys!.rn detinitions for tlie user's kcybo;~rd.
It permits c11sto111 configi~~-;ttion for :I I ISC~ 'S kcy-
board. The keysyrn compiler in eScursion t;tkes ;u1
,\$<:IT test. I<c!.boartl ni;tpping file ;is its inpilt, ;~ncl
protlilces :I bin;trjf lcej.s!~m tile as i ts outl,t~t. As long
;IS the user fol.Io\vs the I;l!.ont of tllc ill[)ut i\S(:II file,
an!- ke! c:ln be rrrn;il,pecl i l l an!- W:I! tlesiretl.

t i A)plicc/fio~~ Wi7zdoz11s
As st;itccI ~pre\:io~~sl!: e?;cirrsion i~scs tlie Microsoft
Windows winclow ni;tn;tgcr to rn;m:lge vicl 1i1;inipii-
1;ttc \vinclows. Wliene\rr tlie user rnoirs, rcsizcs,
iconities, maximizes. or closes :I winclowv* either 1,).
tlie \Xfit~clows systc~ii 1iic11~1 or tlic mouse. Windows
scncls the eScursiou winclow proccclurc ;I nicssage
with specific p;trametcrs. For example, :I message
sent when n \vinelow is rcsizecl cont:iins the olcl ;tncl
new sizes :tncl origins of the \vinclo\\l, excursion
tr;insl;ttes ever! Wintlo\vs input message into ;ill

X ~ \ ~ c n t ;lncl scncls i t to tlie X client.
Incli\.itlu:~l messilgcs from LVinclo~vs gctlcr;~LI!.

corres[,onrl to S c\.cnt t!.pcs t1i;tt ~>ro\:iclc cl;it;t

to clients. Ho\vever. complications ;lrise when
Windows gcncr;~tcs multiple mess:~ges for ;L single
action. For ex:tmple, when ;I user 17rcsscs :I I)i~tton
to select :in iten1 from ;I nicliu. ;r ~lc\v wintIo\v is cre-
:ttctl. m:~lyxcl. sized. pl:ic-cd on the screen. ;~cti-
v;~tccl, :lncl given tlie inl,ut focus-;ill :IS ;I ~ 'esi~lt o f
t l ~ e single user :tctio11. Winclowx messages ;ire gcn-
cr;ttcd for c:lch of thcse ol,rr;itions, !.et the user h:is
pro\,iclccl 1 1 0 furtlier :letion

'ti) h:~nclle this cstrcmcl!. co~ul,les wcb, wt.
bc-nefitcd from our initial clcsign tlccision to cre;~te
only top-level \Vintlo\\s. We climin;itctl litcr;ill!.
Iii~nclrccls of Winclows rncss;lges for e:icIi chilcl win-
dow, sini1,ly by not cre;~tilig them. %lcss;~gcs ;ire

PATHWORKS: PC Integration Software

sent only to the top-level window, and eXcursion
can cluicl<ly determine which child (if any) needs
attention. On the other hand, we had to observe
and study window stacking, configuration, repal=
enting, activation, and window focus before we
arrived at the final iniplementatioli. Only through
extensive prototyping and empirical testing were
we able to eliminate poor design choices and arrive
at the best ones. As a result, every possible window
manipulation action, whether initiated by the user
or directed by a client, requires a translation from
Windows to X and a careful selection of Wi~itlows
function calls to keep the delicate balance between
X anel Windows.

Cutting and Pasting Data
To cut and paste data between X and Windows
applications, we merged the Windows clipboard
mechanism with the X selection mechanism by
incorporating the cut/paste "pseudo-client" into
eXcursion. This module watches for data cut-
and-paste requests from X clients, as well as those
from any Windows applications running on the PC.
When it notices an X client gaining control of a
selection, it asks tlie controlling client for the
selected data, which it then puts into the Windows
clipboard. The data thus becomes available to any
Windows application with access to the clipboard.
When a Windows application cuts or copies clata
into the Windows clipboard, the pseudo-client is
notified, at which point it informs all X clients that
it now owns tlie clipboard selection. X clients can
then request the data from the pseudo-client by
selecting paste from their eclit menus.

Accessing Remote Applications
The user initiates remote X client applications
through an application launching mechanism that
provides several starting options.

1. Selection of an application from tlie excursion
control panel's application pull-down menu

2. Selection from a clialog box of defined appli-
cations

3. Selection of the "Start x Application" dialog box

4. Double clicking on an icon installed for the appli-
cation in the Windows Program Manager

Tlie most interesting option, double clicking on
an installed icon in the Windows I-'rogram Manager,
allows the user to start up an x application without
any knowledge of the current state of excursion.
The double click activates XREMOTE.EXE, the

remote application launcher. XREMOTE seticls
out a Windows message, with an identification
known only to excursion. If eXcursion responds,
XREMOTE passes it the comrnand line for appli-
cation start-up. If eXcursion does not respond
within a short tinieout period, XREMOTE issues
a WinExec call, requesting start-up of eXcursion
itself. Windows starts up excursion, passing it the
cornniand line string for the selected application
start-up sequence. XREMOTE then terminates until
the next start-up request.

Obviously, security is a major concern for any
system that requires and handles account pass-
words; eXcirrsion application activation is no
exception. Users log into their accounts by activat-
ing an X application such as DECterm. Two distinct
passwords are required: (1) tlie excursion global,
session password and (2) individual, application
account password.

The excursion session password is optionally
selectetl and set by the user from a control panel
dialog box. It is stored as an encrypted string in the
initialization file, and is used as the decryption key
for the individual application account passwords,
also stored in the initialization file. This tlesig~i pre-
vents an unauthorizecl person from using some-
one's . INI file to obtain access to an account. The
user is prompted for the session password when
excursion starts up. If an incorrect value is entered,
the server terminates and application activation is
impossible. A further level of security is provided
by the "Prompt for Password" option, which the
user can select for any application start-up.

Summary
Tlie excursion for Windows display server seam-
lessly integrates the Microsoft Windows and
X Window System environments. It provides a
desktop integration tool that allows the user to dis-
play and interact with applications designed for
both windowing systems at the same time. Data
can be exchanged between them and desktop
resources sliarecl. A user is no longer requiretl to
work with two incompatible desktop devices in
order to complete work assignments.

Acknowledgments
Tlie authors would like to thank everyone who
worked on the product during its tlevelopment. In
particular we would like to thank the other full- or
part-time rnenibers of the software development
team: Ray Shapiro, John Freitas, Mike Pfeffer, Lee
Karge, Nice Chen, Mary \TanLeeuwen, ant1 Andy

khl 4 No I W~i? le r 1992 Digital Tecbtrical Jotrt-nal

Nourse. Tivo otllcr members o f the I>(: l)E<:windows
C;roll[, who ~vorli OII tlie I)Ob-b:~secl S serve[; John
1Rlsse1 ; ~ n c l .Jim I'cterson, pro\riclecl home V ; I I L I ; I I > I C
;~ssist;ulcc. 1Vc ;Ire :~lso inclel)ted to the following for
their sul,l,ort :~ntl contributions: Emilie Schmitlt,
(:;~rnel Hoo\.er, K;~rh!~ I\/l;~sh;~m, Antlre Fontaine,
hlicc <:lien, :~ntl 'Tr:~ce!, LWmett. This great group
of 1xo1>Ic m:~tle this j,roject ;I jo). to ~ ~ o r k on ; ~ t i c l :I
SIIcceSs.

References

2. I < . Schcitlcr, X Wiirdoll l ,\:l1sle11i 1'1-olocol ((;;lm-
l>l-idgc. ~ \ ~ l I ' l ' I.:~l,or;~tor! for (:ornp~~ter Science,
1989): 37

3. 11. Rosentli;~l, Iiztci-Clierll ~~oi)7117ri17ic'atioi1 Coil-
oeiltioiz.~ , I l ~ ~ i ~ i ~ c i l ((;:~nil>ritlge: Mil' I2;il>or:~to~.y
for (:omput"' Science, 1989): 18-30,

General References

Di'yil(11 T C c ~ l l i ~ i c e ~ l ~ ~ o ~ i i ~ r ~ c i l , voI. 2. n o . 3 (IlE(:windows
l'rogr;~n?, Summer 1C)')O).

/blici.o.sc?/t Wl izeloz~~~ . S O ~ / L L ~ C I ~ . ~ / l e i ~ e l o /) ~ ~ ~ e i r l Kil
/i<fC;1.ei7ce, vols. I ;~ncl 2 (Keclmoncl, IN\: Nlicrosoft
<lorl>or;ction, 1990).

/Mici.o.sc!tt Wir7clolr1.s S'c$t~~~ai-c> I)eoelo/>111ei7l K i t
Gl,~ide to P ~ . O ~ I ~ I J I L I I ~ ~ I ~ S (Iledmond. IN\: Microsoft
Corporation, 1990).

Christopher E. Methot I

Capacity Modeling of
PATH WORKS Client-Server
Workloads

PATHWORKS network operating system software runs on the remote server corn-
puter thcrt crc~essesJiles on 6eh~rlj-of clients connected to a ~zetzilork. The PATHWORKS
JSICJ ssl-uerprovides clients with cenkalized butlrrp, l?r.it~t~rr,y, and searrity. Popzllar
desktop npplications can be used in a ?nanner that conszlnzes large or srnnll
arnounts of sewer resources. Capacity planning seeks to deternzi~ze zvhich network
filing sjatem is appropriate to current workloads urid lo prrdicl capacity rzee~ls 61s
the PATHWORKS client-server ern)iron~~zent changes. The desktop industrj, lacks
stundardiized performance tests. Digital has developed a general process that
can be applied to any workload, including those in which the number of users caus-
irlg the server process's resource consumption are unknown to a data collector
DECper$onnalzce Solzltion softzuare was the prinzary tool used in the modeling
process. Its unulytical queuing nzodel u~as used to predictpet$orrnaizce and help
deJine co~@guration altel-natii~es.

The PATHWORKS network operating system soft-
ware provides rcniotc file service to desktop com-
puting devices across a local area network (LAN).
Integration of personal computers (PCs) on a net-
work allows users to share applications, files, and
printers. .Most applications available on the desktop
can be uscd in a manner that consumes widely vary-
ing amounts of that single-point resource known as
the file server.

Some of this v;lriation is due to the intentional
part-time nature of the server's resource utiliza-
tion, and some is caused by innocent c1iangc.s in
the user community's work techniques. Sincc dcsk-
top applications are ilsed by novices ancl experts
alike, small changes in the levels of skill, experi-
ence, and thus technique can significantly affect the
performance of the server.

Capacity planning is a method of estimating
the changing hardware needs for a compilter sys-
tem due to changes in workload. It can also be
i~sed to explore "what-if alternatives for existing
workloads.

Changes in ilser work habits such as running
macros can illcrease ;I server computer's response
time by as much as an order of magnitude. In addi-

tion, sinlplistic rules of estimating the consump-
tion of server resources, such as number of users
per VlJI-' (Ira-11/780 unit of performance), can be
very misle;lding. The use of applications in ways
that increase individual productivity can slomi
server response time for the user community.
These issues should be consideretl when selecting
a file server system. Because the number of active
users is often unknown in client-server environ-
ments and the user application technique may vary,
capacity planning uses a moclel of the actual work-
[oad to pretlict server performance and help define
configuri~tion alternatives.

This paper describes a clueuing ;~nalytical model
that w;ls used to gain knowledge ;tbout resource
consumption on the PATHWORKS server con~puter.
The paper discusses the special modeling process
required for the client-server environment. It
describes data capture and worklo;ld classification
using IlECperforrnance Solution software. Finally,
the paper presents the results of a performance
analysis of a PATWORKS server with response-time
constraints.

Some of the terms found in this paper have spe-
cific definitions. Many of the "correct" terms for

net\\ o1.k file >el.\ ing ;Ire nor tlic t e r ~ n s ~ s c t l I)!. i~scl-a
ol tliesc s!,stenix. Network lilc scr\ring 1i;ls ;~cclujrccl
tlic 1i;Illlc ~~l~ct \ \~ol~l<ccl ," scr\c1. colll~,Lllcrs ;ire ofre11
rclc~.rccl t o ;IS ',tlic nct\\.ol.h:' ;111tl gcttlng ;Iccess to
one\ lilcs o n tllc scr\.cr i \ 115~1;11l!. C ; I I I C C I logging
into "lhc nct\vor.l\." In tliis 1>;1j7er. \\'c r e k r lo
AlS-l)OS-b;lsctl 1Y.h ;lntl ,\'l:lcintosh computers gene!.-
ic;~ll!- ;IS clcsktol, conll,utilig tlc\.iccs 111 ;~tltlition.
tlic \\.orcl "\\-ol~l\lo;ltl" rc l i r \ to the c;lLlsc of 1lic
r e s o ~ ~ ~ . c e c o ~ i s ~ ~ ~ i i l) t i o n , \ \ ~ l i ~ c I ~ is tlie conil,in;~tion
ot'clicrit :~ l>l , l ic ;~t io~~ ;inti rlscr rcclinicl~~c within th ;~t
; l ~ ~ ~ > ~ ~ ~ ; l t i O ! i . 'l'lic lcS111 " \ \ 'O~~i~O; l t~ ~1;lss" 11;ls 21 SpV-
cilic tlctinilioli i l l l>lI(.~)c~.l~orm;~ncc S o l ~ ~ t i o n soft-
\\;11.e, It rcIi1.s to ;I groL11) o f \'\IS ~,!~occs\cs tI1;1t
tlic niotlclcr \v;lnls to rn;~llil,[~l:~tc cliflcl.cntl!, from
O l l l ~ l . ~>I~occsscs.

LInt~l O'ollectio~ I

I > ; I ~ ; I c;ln I,c collcctctl \\.it11 tlic \,\I Perlorlll:lncc
,\tl\,iso~. (\'I>,\) vcrsio~i 2 I or [lie 1)l~.(;~>erl'or1i~;11icc

Solution \,crsion 1.0 or 1;ltcr. I)l:(:[)erfo~.ni:~~icc
Sol~rtion \oft\\-;rrc i > ; III intcgr;rrctl ~,rotlirct set tIi;it
pro\ ides I) ~ ~ ~ O ~ I I I ; I I I C C ;~ncl c;~l , ;~cil \ n1;Ln:lgcnicnt
c;rl);~hilitics fix conil,uting s!,stc~iis. 'Tliis l;~!e~.ctl
soft\v;~rc ~>rotluct runs o n tlic \i,\X \'NS oj)cr;ltillg
s!.stcm ;~nt l L I S C ~ ; I cl~leuing :rn;ll\ tic;~l niotlcl to
;lns\\.cr (111cstio11\. 'l'liis process ~.ccluil.es col lcc t~on
o l tn.o I;ilitls of inlorni;~lion

1. A tlct;~ilctl rcco~xl 01 tlie C ; I L I S ~ 0 1 resource ~ 0 1 1 -

sunil>lioll. incl~lt l i~ig \\,l~icli ~ ,~ 'occss is c:lu\ing
e;rcli clisk or (:I'l ; rc t~\ it! 1'1.occsscs sllo~11tl Oc
coml>il)ccl into like groLll>a, c;~llccl \\,o~.l\lo;~cl

1>1;11i lor cxl,;~ntlctl ~icctls in rlic fut~lrc I ;\el.\ of cle\k-
top co1ii1>~1t11ig tic\ ices. \\ liicli ;[re 1101 ~ic~\\ .orkctl .
c;in I,cnetit f1.011i ;I series of ; I I I C ' C ~ I O [; I I 111ot161 C;ISC

s t ~ ~ t l i c s \vl~icli tlcscril~c ollic~. \ \~)rklo;~t ls ; I O ~ tlic lile
\e~.\.crs \vl)icIi \\.ere r c c o ~ i i ~ ~ i c ~ i ~ l c ~ l . 'l'liis 1>;11>er
g i \c \ tlic r c \ ~ ~ l t h of o ~ ~ r cfl'o~.lb to g;ii~i ilis~glit illto
tlic l~c;lso!ls 1.01. ;111tI s ~ ~ l l 1 ~ ~ t o l l ~ s of scr\ cr rcsoLll-cc
cs l~;~ust ion (I,ottlcnccks) on I ' i \ ' T I I W / o l (K ~ tile ser \~cr
s \ stc111s.

Arrnlytical Models
l) ~ \ ' l ' l l W () l < K ~ soI.t\\~;ire t;ikcs : i t l \ (;~~ i~ ;~gc of tile
csl,;~nclccl cornl,ul;~tion;II I)o\ver 0 1 tlic client-
s ~ ! . \ el. ;~rcliitccl ~11.e. \\.liicli rc(1~1ires sl)cci;~l ~iiotlcl-
111g ~ c c l i ~ i i t ~ ~ ~ c s . .I,\ \ o of I)igit;~l's ;11i;il! t ic;~l ~iiotleli~ig
Lools can be ~1st.t1 in 0111' c ; I I) ; I c~~ \ motlcling I,roccss.
l io\~~c\.cr . I) l :(. l~crform;~~icc Soliltion \ \ ~ s tlie 1,l.i-

ni;ll.! tool. '-flic nioclcl \ \ ; I > ~14etI to ; I I ~ s \ \ CI. (~ ~ ~ c s t i o ~ i s
 lo^ t i I 0 e l i ~ ~ i c c I s c r \ c ~ - co11il)~rtcr
rcso~lrce i.c(l~~irc~iic'nts ; I> ;I rcstrlt o l cl i ;~ngrs in
l i : ~ ~ ~ t l \ i ~ ; ~ r c 01. \\ro~.klo;~tl

l'c~.lorrn;~ncc niotlcls c;ln ;IJIS\\.CI. :I[Ic;~st t\\,o
I ~ I O I S . ~ I o i c ~ f o r ~ ~ i ~ ~ i c c :~ffcctctI
if \\.c cIi;111gc citlicr tlic ~ i ~ ~ ~ i i l > e r 0 1 ' ~1sc1.s or tlic
;1111011111 of JI;II.~I\V;I~C"" SCCOIICI, "HOW c;ln we m:~in-
t;iin ~ ,er for ln ;~ncc i t ' ;~ t l t l users tloing tlic s;lnic
kincls of 1;1s1\\5 ' Of the I\\-o. [lie scco~ieI ([~~es t io l l

1.e4o~11.e~ c o ~ l \ ~ ~ ~ i i p t i o n . 111clucling the cllict o n
rn~~ l t ip l c remote clients (:Ii;~~igcs i n pcrl'or-
m;lncc ;ire t!,l>~c';~ll! n~e ;~s l~ rc t l 11) the cl;~psctl
timc It.0111 tllc c;~l.l.i;~ge I-eturn lo the rctu!.n ol thc
j,rornpt I n the c;lsc of ;I t i ~ ~) c s l i ; ~ r c user, tliis is ;I

closctl loop since ;ilmost tlic elitire proccs\ is
\,isil,lc lo tlic c l ; ~ t ; ~ col lector

In :I I ' , \ ' I ' I I\VORKS cn\. i~.o~imcnl. such cl;it;l c;ll,tLlre
is not po\\il,le h c l ; ~ t ; ~ collection tic\ ice r ~ ~ n l i i n g o n
tlie scr\-cr compLlLcI- c;lnnot t l c ~ c ~ . ~ n ~ n c tlic n ~ ~ l i i b c r
o f u c r 4 lor \\.liom the l~.\'I'tl\\OI<I; scr\.er ~,rocc.s is
consulnlng rcsollrccs. l :~~rthcr~iiorc. . the collector
c ; i~ i~lot tlctcct tlic rc\ponsc timc hcen I,\ the Llscr.5
of the clc\ktop clc\ icc..

\Ve li;r\c tlc\.elol~ctl ;I gcncr:~l proces.4 t11:1t C;III

I>e ;~pj,l iccl lo ; I I I cl icnt -se~-r el' \\,orklo;~tls 'l'licse
inclc~tlc ;!l,l,lic;~tions s ~ ~ c l i ; I > \ I'S 01. \'AX Notes. in
\\.liicli tlic 11~1ni0c1. 0 1 ~ 1 s c r 5 i~ i i t i ;~ t i~ ig tlic s c ~ . \ e r
proccs>' I . ~ S O L I ~ C ~ c o ~ i s ~ ~ r n p t i o ~ i ;ire ~ 1 1 i l i 1 1 0 \ \ 11 lo ;I

tI;1t21 collcctor.
1:ig~llx. I ~l lustr ;~tt .h ;I ~iriip1111t.~I cIosetI c111eL1i~ig

111otIcl 01. :I l),\'rll\\ Ol<hS t r ; ~ ~ ~ s : i c l ~ o ~ i . ' 1 ' 11~ L I ~ ~ I . i l i i t i -
:ires the tr;~ns:iction rlil.ougI1 ;I kc\ I,o;ircl o r ~,oiliting
tler ice The ; ipl>l~c;~lion runnllig o n tlir tlcshtop
co rn lx~ tc~ . ~ x r f o r n i s the ir1iti;ll Ioc:~l ~ r o c c s s i ~ i g ancl
iss~lcs ;I c;1Il 1 0 t11c her\ cr rcc[llcsti1lg l/O. 'l%e sc1.vcr
p e r l o ~ ~ ~ i i s so111c rc%1i1otc c o ~ l i p u l i ~ ~ g , ; i ~ i c I llic 110

PATHWORKS: PC Integration Software

request is satisfied when the server transmits
either the data or acknowledgment that the data
has bccn written. This travels back to the user's
desktop clevice and some further computing lends
to a gr;~pllic indication to the user to procectl to thc
next step.

If these three sequential queues-client, network,
and server computer-were equal in response time,
the server would have only a one in t h e e influence
on the responsiveness the tlcsktop user sccs. Of
coursc in rc;llity the three queues are never equal,
and the two local queues are highly dependent on
the local dcsktop compi~ter's capabilities. Each
queue can have a request backlog if the service time
is not faster than the arriv:ll rate. The response time
of any clueue is the queue wait time plus the actual
time to be serviced. The total response time of the
workload clrass, as modeled on thc server, is the ana-
lytic sum of all its queues' response times.

I11 reality, the analytical model of the PATHWORKS
environment is more complex than the one
shown in Figure 1 and involves disk, memory, and
CPU queues. The response time calculated for a
PATHWORKS server computer workload class is the
calculated sum of the response times of all server
process queues for that workload class. As statecl
earlier, this is only an indicator of a desktop irser
response time.

Cause and Eflect
A data collector, running on the server computer is
not aware of the response time perceived by the
user at the desktop device, nor can the server's data
collector process know how many users are gener-
ating the current workload. Server response time is
a subset of the response time ns seen at the desktop;

CLIENT NETWORK SERVER

Figure I Simple PATH WORKS Queuing Model

and if the server's response time improvch, the
irser's will improve as well, as shown in Figure 1.

A moclel that is built from a data collector which
has only a part~al definition of the whole loop (I e . ,
the server computer portion ;IS shown in Figure 1)
is called ;In open model.2 The models described in
this paper are open models. Since the most likely
bottleneck is the shared resource known as the
server, this is a useful \yay to n~odel client-server
workloatls.

Uniform Service Level
Model analysis of a PATHWORKS client-server com-
puter workload cannot predict the increase or
decrease in response time seen by the user. A
model can determine tlie effect of any changc in
hardware configuration or arrival rate (number of
users). Capacity planners can use this method to
add more users by incremelltitlg arrival rates. Then
hardware can be upgracled until an eqiral or klster
server response time is reached. This methocl can
be used to increase the number of users at the same
performance or split users into smaller groups
with the same or better performance.'

Not all desktop transactions require server inter-
vention. In f x t , the success of the client-server
architecture depends on infrequent access to
servers. Obviously, file servers are required when
a file is saved. However, many applications per-
form disk I / O without any obvious or explicit i l s ~ ~
action. For cxnn~ple, Wordperfect software pro-
vides a temporary file that is a type of journal file.
Periodically, the application irpdates this file with
data storecl in memory. When a user's input reaches
a predefinetl buffer limit, tlie next keystroke causes
the file to be written. The capabilities of this appli-
cation, and many others, must be considered when
planning the capacity of a PATHWORKS file server
installation. In this example, the load per clicnt on
the server can be significantly reduced by placing
the ten1lx)rxy file on a local hartl disk.

Performance of a f le server computer can also
be affected when expert users employ macro tech-
niques or when users generate automated output.
Macros read each instruction from the macro file
one record at a time, thereby continuously doing
I/O. Most expert users provide a save as tlie last
instruction in the macro, which allows them to be
absent when the work is being accomplished and
then saved. This increases server I/O as well. Most
desktop applications permit automated output.
For example, some allow form letter generation;

Vof. 4 No. I Winter 1992 Digital Tecbrricnl Jorrrtrnl

some co1~1)~1tcr-;1idCC(dcsigli ((: . \ I)) ;~l)l~lic;~tio~is
p~-o\-itlc l$ills 01- JI;~tcri;lls. 3'11is c;~p;~l)ilit!- ;iIso
incrc;~hcs s en cr- I/O.

I'hc ~ l s c olcitllcr nl;lcro tccliniclucs or. ;lillorn;~tctl
o ~ ~ t p ~ ~ l c:111 11111):1ct scr\,cl. c o ~ i ~ j > ~ ~ l c r i ~ t i l i ~ ; ~ I i o ~ i .
,\ scr\.cr th;~t \\;IS intc~ltlctl to I)c ;I p;~rt-time tile
scr\.er c;111 l>cco~i~c ; I I ' L I I I - [~ I I I ~ I / () tlc\.icc \\-liicli C;III

I . ; I J) J C I 1) . c~ceecl ~ t s C ; I I) ; I C ~ I \ .

'1;) i I l~~s t~ . ;~ rc IIO\\. ;I s ~ i ~ : ~ l l cll:i~igc in e~i\-iro1iti1~111
c:In ;~ll'cct lilc scl-\.cr pcrlol-li~;~ncc, we e~iil)lo!ctl
:I ,VI;l~-lio\. [ilotlcl. usi~ig ;I Sl IAl< l ' l i c l~~euing morlcl o f
:I s ~ I - \ - c I ' c ~ i \ ir-onmc:nl. I:ig~lrcs 2 ;111cl j sI~o\\! tl1e
r.cs~llls, \vc ;l\l\ccl tl1c c~~lc\Iioll -ll'\vc 11;1tI I20 LIse1.s
c:icll ~.anclolnl! tiling once ; I J ~ I1oi1r ; I I ~ C I c;~cIi lilc
;letion tool\ 7 scco11~Is. hO\\ 0I'~cll \\-OIIICI ;I 11Scr
\\.:lit for ;~no t l~c r user to coml)lclc ;I tile 1r;lnx-
;~ction?" Wc tlisco\~crccl 1l1;1t o11I! I4 percent 01' I l~c
timc ;~no(llcl. t1.:111s;1ction \\ .o~~ltl I>c ri~nliilig in tllc
scl-\cr process. 'l'l~cn l i \ c ;islictl. "\Vh;tt \\-oultl h;~l)-
1x11 i l ' 5 o l the I20 ilscrs st;~rtctl running ;I m;lcro
;mcl this ~ii;~cr-o clicl f/O for 5 tiiil~l~tes ; ~ t r ;~~i iIo~i i
~nter\ , :~ls \ \ . i lhin [lie ho~tr'!" 'l'lic rc~ii;~iliing I15 ~ ~ s c s s
coutln[lctl \\,orl\ing ;IS I)cti)rc. In Iliis c;lse the possi-
bilit! it~c~.c;~sctl to 28 ~)crccnI tl1;11 ;I job I-c-quest
\~ -o~~ lc l I)c on tlic c l~~cuc. 2 I percent that t\\.o joh
~ ~ c ~ l i ~ c s l s \\ c1.c \\.:ii titlg. ; i ~ i c l 20 l)e~.ce~i t t l i ; ~ t llircc
lo12 ~ 'ccl~les~s \\ cr'c present

111 ~ h c s ;~mc s111c1): Ies5 t11;111 5 pcrccllt oI' (I I C
ilscrs '1i;lligccl tlic \\-;I!. the! \\-ere \\.orking. None ol'
thr ;l[)l)lie;t[ions \v;ts cIi;ln~ecl. /\lmost ;In)- I>(: or
kl;~cintosli ;~pl>l~c:~tiorl can ~.c;~hon;~l,l!. bc- i~sctl in
rlii\ ;I!. (1s 11ic \~ii;~llcr g r o ~ ~ p of' ~ ~ s c r s l~ec:111ic 11io1.c
protl~~c[i\ .c. tllc ot l~cr 05 Ipcrccnt cspericncccl ;I sig-
nihc;~nr tlcl:~\- in rcsponlrc lime. 'l'lie s!-stem c;~l);~c-
it!. mtlsl f)c si~ccl lo ;iIIo\\ 1.01- ;I sitli:~tion i l l \\,liicll
ilscr ac't i \ , i t ! les\cns o\,cr.;~l l I.csponsc time.

~l'lie rnotlclin:;: process \\-c tlcscribc i l l this ~);~l,cr
\\-;r clc\'cloj>ccl o \ r r ;I I \ \ o-!c;i~. ~)crioel. I$ctorc tlis-

TIiSEE JOB
REQUESTS

TWO JOB
REQUESTS

ONE JOR
REQUESl

ONE JOB
REOUEST

(>
IDLE

TWO JOR THREE JOR
REQUESTS REQUESTS

cussing rlic niotlcling pl-occtl~~rch. \\.c list the I>cllc-
fits ant1 I~lll~t;~tions o t tlic j~ roccs~ .

Oelcl.minatio~~s can I,c ni;~tlc ;I:, to ~ l i c nun1l)crs
of ll;Yl I l \ \Ol iKS ;111tl ~ i c \ \ ~ \\io~.l~lo:~tl cl;~ss ~lscrs
rctluirccl to lll;~int:~in tlic s;lmc pcrlorni;~ncc.

Single-l.unclion scr\-cr coniputrr motlcls. \\ i t11

0111) l ' , \ ' l ' l l\YOl<KS \\.orklo;~tl cl;~ssc\. c:111 Ii;i\ c 11011-

I',V1'11\\~01~1\~ \\,orklo;~cl cl;lsscs ;~tltlccl for ;I more
complex cn\rironmcnt.

'l'hc scr\.cr- can be L I ~ ~ ~ ~ : I c I ~ c I 10 lii;~int;~in t l ~ c per-
florm:i~lcc Ic\.cl ofgro\\ ing ~tscl- conim u n i t ics

L;irgcr t15c1. conimnnitics c;111 hc tli\-itlctl bet\\-ccn
two st;~ntl;~lonc scr\.cl-s to ~ i i ; l i ~ i t ; ~ i l i :III ;~eee[)t;~I~Ie
Ic\,cl of OCI-J~I-mnncc.

SIal)lc ~1sc.r coliimunitics c;111 I,c reclucctl t o pro-
\.idc cclt~:~l It,\.cls of pc~.l'ol.nl;~nce with t\\,o

s111;1I Icr sC.r\.crs.

Loc;rl site ni;Ilx1gcnlcnt c;in I>c nl;lclc ;lw;irc ol 'r l~c
nl;lgnitutlc o f tl;~il\- \vorl;lo;~tl \-;~ri;ttion; unclcr-
st:~ntli~ig this \.:~ri;~tion is ;~lso ~ > ; ~ r t of tlic ~notlcl
~>rocchs.

Lil)/ i t~/t iorr.s
The ~notlcl c;lnnot ~)rcclicl response lime ch;~ngcs
i ~ t Ihc client, tl~lc to cli;~ngcs ill her'\-er 1o;ltling.

rn l~it 'or~ii:~tio~i ;~ l>oi~ t tlic 1ii11iihc1. of ~1hc1.s gelie~.;~r-
ilig the ;~pl)liccl n.orklo:~tl nllrsr be collcc~ctl
b!. mctliotls other than using ~>k<:pcrti)r~ii;~ncc
Solution sof'l\o;lse T'1ic.s~ nictllocls :~rc tlct:~ilctl in
Llic svctlon (:;~pti~ring \Vorl;lo:ttls.

PATHWOHKS: PC Integration Software

read or record management services (RMS) cache
requirements. When adding users to a
PATHWORKS server computer, adequate spare
memory must be allowed to provide the 3amc or
better cache hit rates. The RMS cache hit rates
can be determined, without software tools, by
executing a program at the DigitaI command
language (DCL) prompt: @SYS$UPDATE:AUTOGEN
S A W W S 'ITSTFILES FEEDBACK, and then reatl-
ing SYS$SYSTEM:AGEN$PARAMS.REPCIRT.

Available modeling tools only allow PATHWORKS
workloads to be modeled onto VAX VMS servers.

Prior to data collection, the .server must bc
checkccl to see if it is tuneel for use today ancl for
the h~ture , or the recommended server s).stem
may he incorrectly sized.'

Captzrt-ing Workloads
DECperformance Solution software requires VAX
Performance .\tlvisor version 2.1 or later collector
files n:~mcd nodcname-date.CPD. In addition, either
a VI~ASS<:tl lil)l LI:..D,YI' or a PSDC$SCHEDULE.DAT file
is requirccl to define the cluster configuration and
collection scliedulc. Either a VAX Performance
Advisor version 2.1 or DECperformance Solution
version 1.0 Data Collector, or the DECperformance
Solution Service Delivery Software kit may be used
to collect clata. Al I tluee require a license and prod-
uct authorization kit.

Enough data must be collected to represent the
range of a typical workload. The sum of the suhjec-
tive user opinion of performance must be collected
as well as the tasks the users were perforrnlng.
If this clata is not collected, the planner may mis-
takenly model equal levels of user dissatisfaction
rather than equal levels of user satisfaction. Sub-
jective performance evaluation is always gathered
by interviewing or monitoring users.

Collections should be macle over a series of nor-
mal workclays to avoicl gathering misleading data.
We have observed two normal workdays with only
a 5 percent cliffcrence in the number of clesktop
users logged into the server, yet five times more
server resources were usecl.

Atlditionid data on user activity that is con-
suming r ex>~rccs must be col lrcted by nietliotls
other t l a l thc nECpcrforrn;lnce Solution collector.
Both the Macintosh ant1 .\IS-L)OS scrvcr protlucts
have interactive DCL sohwarc utilities that provitle
some information about tlie condition of the cur-
rent server process. Co~nmantl procedures can call

tlxsc lrtilitits with a brief M:L command string.
For example, ADMIN/PC SHO\V F1I.E CO1:S'J'EKS dis-
plays the current cache misses and request rates,
and A D M I N K SHOW F 1 U SESSIONS shows the
client device ID, client connections, anti open files.
The size of the server proccss cache configuration
call be gatherecl using the t\I)MIN/PC SHOW F1L.E
CtI.W~R1STICS comm;~nd. If analysis is per-
forrnccl offsitc, ;I DCI. procetlure can gather infor-
n1;ction about volumes and system logical names,
which allows user disk assigii~ncnts to be clclilied.
ITinally, user authorization resource limits o n the
server proccss can be extractctl from the system.
The Macintosh server software has similar com-
mands using the ADMIN/.MSA SHOW (:ONNE(,TION
command.

When the size of the user community is
unknown, the above data must be used to charac-
terize the number of uscrs being modeled. Specific
customers with large installations or many remote
sitcs need quantitative user characterization. In all
cases the cause of the obscrvcd performance char-
acteristics must be determined at some quantita-
tive level.

The data gathered by using the ADMIN/PC SHOW
FILE COIJ'NTERS and ADMIN/PC SHOW FILE SESSIONS
comrn;~ncls can be invalidated if desktop devices
iiiclutle automated proccclurcs to attach to file ser-
vices when the desktop clevice is booted. 'The sim-
ple act of activating tlie client power switch slioulcl
not count that user as es]>licitly intentling to use
the server computer. On tlie otlicr hand, explicitly
connecting to file services and being interru1,tetl
for an uncspectcd event shoulcl not exclutle that
user from the total active user count. Ultimately, a
combination of tlie total possible and the total
active connections is needed.

De$ning Workload Classes
With the I>E<:performance Solution data collector,
workload classes are definecl prior to starting the
modeling process. They are defined either by speci-
fying the anticipated logic;~l divisions or by deter-
mining them from the obscrved performance data.
DECperforrnance Solution software provitles many
ways to group processes, e.g.. user identification
codr (Ill(:), rcbource L I S ; I ~ ~ . image name.3

'The ~)liCwit~clows interface to the performance
tool DCOperformance Solution provicles ;In excel-
lent way to review tlic data. ' The graphic display of
the server process by clay along with the subjective
user characterization can help select the d;~)! or

72 W)/. 4 IVO. 1 IVinter 1992 Digital Tecbnicnl J O I I ~ I I ~ ~

cl;lys to be motlelctl. 'I'he s;lme method c;ln be itseel
to determine 1,c;lk us:~gc hours. Finally, this tech-
niclue c;ln hell> c;ltcgor'ize worlilofitl c1;tsses by
;rppIic;ll.~lc processes. 'l'iil~le 1 lists tlie \vorklo;itl
class groupings wc L I S ~ C I .

\Vorlilo;~cl k1n1ilit.s ;we groups of workloacl cl;isses
th;~t the c l ; ~ t ; ~ collector c;rn expect to see. l 'he
I)\V_I>OS work1o;rcl hmily ch;u:~cterizcs ;I stem 21s
;I I',\'I'IILVOI~KS tile service environment. It includes
IJ,YI'kIW01IKS server Ixoccsses. re<[uirecl systcnl
overhc;ltl functions. ;rncl processes neecled to col-
lect cl ; r t ;~ t l l ; ~ t ;Ire not norm;~lly p;irt of the systcrn.
, \ I 1 othcr IJrocexses ;ire ;~utorn;rtically ~)l;icetl in ;I

c;ltegor) c;~llecl "other." This suits the neecls of our
gener;~l-c;~se, single-hrnction I'Al'llLVOKKS server
conilxltcl; I>ut :in! server can be irsetl for tasks
irnrel;~tecl to the I)/\ 'I 'l ILVOl<KS print ;incl file service.
If tlie tasks in thc clck~irlt (other) c;ltegor!. need to
be sul~cli\~iclctl for sep;~r;~tc sc;~ling, tlie worltloatl
class definitions II;I\T to be ;~clcletl to ;I family which
c;~lls eiich ~o~- l i lo ;~c l cl:lss cxplicitlj: as inclic;~ted for
the I'WI-L\I> worklo;~cl cl;~ss k~mily in Ikhle 1.

For ex;~ml~lc, consiclcr thc question "As groirps o f
AI.IrlN-I sf~stcm users ch:lnge to PCs, how many

Table 1 Workload Class Groupings

Workload
Name Image Name Selection Criteria

users C;III the I'ATH\VOKKS server computer sirp-
port?" This cletermination reqi~ires detining another
worl<lo;itl cl;~ss 13). Ill(: for the AI.1.-IN-I system users.
The worliload clnss coirlcl be moved b), [J l (: to the
FILESVS worlilo;~cl clnss. This methoel ;lssumes the
current collection of rlI.ESvs worklo;~cl cl:isscs
reflects the mix of the reni:~ining I\l.I.-lN-l system
irsers.

Even bcfore the ~noclel bililcling step takes pl:~ce.
the I'sI)C$DA'~,\IMSI-; 1ogic;rl must be pointing to
the location o f the VI'A$SCH~~~)~JI.E.~)A~' and tlie
\ ~ I ~ I \ $ I ~ ~ ~ I M ~ ~ I S . ~) I ~ T files. The motlcl builtling step
generates ;I moclel with the workloatl clnss group-
ings given in T~ble I . The worklo;icl cl;las ;~ntl hniil~.
definitions are ~ n i ~ d e using the 1>~:1. comm;~nd
I\I)VJSE 1'I.AN EDIT in the WA/ITME (VM Perforrn;lnce
AcIvi~or/\'~LYcIustrr modeling Environment) ~rtility
21ntl are written to ;I tile n;rrned VI- 'XSP~\R~~MS.I)I\T.
(If the DE(:l~erforn.i:~~~cc- Solution tool is usetl,
the files are ~iametl I'Sl)C$S<:tIEl>rIl.E.l)fil' ant1
I'sI)(;$PAJ~~Ms.I)I\T.)

If this logiciil is definetl while irsiug the
DE(:l>crforniance Solution I>E(:c\~inclows i11terf;lce
invokeel from the session m;lnager, tlie logic;tl may
not titkc effect in the IX;L session in which the
model is to he huilt. The con1rn;lntl to gener;lre ;I

motlel can i~icli~tle tlie time xlected to be rcprcsen-
lative ;11id the worklo;ld ~ I ; I S S f;imily clefinition
n;lme. A report can be gcneriltecl which tlescribes
the newly built motlel. The cornm;incl ilsed is:

FILESVS NETBIOS, PCFS-*, PCSA$* AI)\'ISE I'LIIN Ill:II.l)/(:I./\SS=(I ISEI1=I'LV-I>OS)/HE(;IN=
OVERHEAD AUDIT-SERVER, NETACP, EVL,

ERRFMT, OPCOM, JOBCTL,
9-l)E(;-1991: 10:riO-/ENI>=c)-OE(:-l9')1: 1 1 :3O/REI'ORT/

REMACP. CONFIGURE. IPCACP. o r , r r l ' r r l ~ = ~ l \ r > ~ o o ~ L . l t l ~ ~ l ~ ~ ~ ~ ~ o i) ~ ~ , , ~ ~ ~) ~ . . ~

SMISERVER
ABNORMAL PSDC*, VPA$DC-V5, DECC*, SPM,

MONITOR
MAC-FlLESVS ATK*, MSAP*, MSAD*, MSAF*
LAD LAD$KERNEL
OTHER (All Else)

Workload
Family Workload Mernber(s)

PW-DOS FILESVS, OVERHEAD, ABNORMAL
PW-MAC MAC-FILESVS, OVERHEAD,

ABNORMAL
PW-BOTH FILESVS, MAC-FILESVS,

OVERHEAD, ABNORMAL
PW-LAD LAD, FILESVS, OVERHEAD,

ABNORMAL
PW-THREE LAD, FILESVS, MAC-FILESVS,

OVERHEAD, ABNORMAL

At this point the rnotlel milst be validated by typ-
ing ADVISE PLAN IIEPOIZ'I' Ml'MOI)EL.>lI)L \lAl,ll)rSTION/
Oll'l'l~l~l'=~lY~l~~l~EL~V~\I.II~.RIYI' 3t the O(:L prompt.
All predicted \r;~lues should be within 10 percent
of the calcu1;ited v;ilues.' ' A <:I'll valitl;~lioll report
for a collecteel worklo;~d includes cl;~ta on through-
prlt, qirei~e lengtl~, ;i\rernge servicc time, ;lver:lge
response t i~ne, ~ I I ~ C I percent of utili~:~tion. For the
FlLESVS worklo;ltl, tlie mc;isurcd ~rtiliz:~tion w;~s
07.7 percent ;IS co~npared to 64.7 percent for tlie
rnotlel. This 3 percent clifferencc is 4.4 percent of
the nieasurcd v;~lue ;end thus well within tlie 10 per-
cent r;Ingc.

Nol-nzalisi~zg the E~?z~iro~i~?zent
The next step is to return the s).stem to the normal
environment. E\7e11 though tl:~t;~ collectors ;.Ire [),pi-
c;llly tlesignetl to utilize ;I snliill ;rrno~rnt of sys-
tem resources. they are not normally part of tlie

PATHWORKS: PC Integration Software

server workload. Grouping abnormal processes
into a workload makes it easier to remove them dur-
ing the DECperforriiance Solution niodel process.
ilccess to the DECperformance Solution nioclel
interface is achieved through the comrnand A D \ ~ S I I

PLAN MODEL >~Y~VIODEL.MDL.~

Recording Response Times
The next step is to solve the ~iiodel ancl view the cal-
culated response times for the remaining virorkload
classes. These are FILESVS, OVERHEAD, OTHER, and
any custorn-definetl classes. The OTI-IER workload
class can be used as a defined workloacl class pro-
vided it contains no unexpected processes that
are using significant resources. The calculated
response times for thc remaining workload classes
should be considered maximum times, and model
nianipul;~tions should always seek to attain these
numbers or less.

If the intention is to capture the PATNWOIIKS

workload class for use elsewhere and if the same
system had significant OTHER workload classes,
these classes should be removed (turning the
server computer into a single-function I3A1'HLV0RKS

server).? This reduces the response times of the
remaining workloacl classes ancl requires increasing
the PATHWORKS workload class until the response
time returns to the observed value. Tlie increase in
throughput is proportional to the incre:~se in
P A T W O R K S users acco~nmodatecl at the same per-
formance, without the competition of the OTI31:R

workload class.

Model iManipulation
Basically, the response time can be manipulated
(1) by decreasing the usage of a significant resource
(model resource utilization percentages help
locate the bottlenecks) or (2) by increasing tlie
capacity of that resource.

There are two ways of decreasing the resource uti-
lization. If the resource is single-threaded on the crit-
ical path, as a CPU would be in a non-symmetrical
multiprocessor (SMP) machine, the method is to
retluce tlie number of users by decrernenting their
arrival rate (called throughput or transactions per
second [TPS] in various menus) or by increasing tlie
speed of the bottlenecked device.

The model allows for workload class manipula-
tion to remove arrival rates of the workloacl class.
As this is being done, tlie original arrival rate must
be noted so the same changes can be applied to the
number of users that causetl tlie nwrkload.

If the bottleneck is not on a single path, its capac-
ity can be increased by spreading the load across
another similar device. This can be achieved with
multiple disks.

In the ALL-IN-1 system case tliscussed earlier,
100 percent of the workload class from the first
LJIC group of ALL-IN-1 system users can be removed
from the model.' If the rnoclel is solved at this point,
all the workload class's response ti~iies should
cli~iiinish. If the FILESVS workload class throughput
is increniented in proportion to the additional
P A T W O R K S users and tlie model is solvetl again,
the response times of all workload classes increase.

Tlie question is: "Has the removal of tlie ALL-IN-1

system users decreased critical resource usage
sufficiently that their addition to the PATHW/OIIKS

FILESVS workload class does not increase any of the
remaining workload class's response times beyond
their target?" The answer depends on the per capita
usage of tlie critical resource of each workload
class. The nature of each workload class may be
different. For example, PATHWORKS m7orkloads do
not scale well over SMP processors. The workload
class being removecl may use more C P U time per
user than the PATIWORKS FILESVS m7orkload class.

Findings
We analyzeel a large PATHWORKS mrorkload cl;~ss
from a \7kY 6000 model 510 system whose CP1J uti-
lization averagetl 72 percent. The subjective user
evaluation was that this system was very near
performance capacity limits, and a fair amount of
dissatisfaction was associated with the level of per-
formance. The question was asked "Could this com-
munity be split in half across two \'&Y 4000 model
300 systems with the same or better performance?"
We i~nmecliately agreed this woulcl work, but went
about proving it with a model. After the mrorkload
class was norlnalized and the response times were
noted, the workloacl class arrival rate mias retluced
by 50 percent and tlie CPU and disk systems miere
changed to the VAX 4000 model 300. The liemi model
was solved, ancl the response times were signifi-
cantly worse than mritli the VhY 6000 model 510 sys-
tem. Tlie workload class was halved again. and the
resulting response time was still slightly over the
target.

This finding was d~fficult to understand since the
VAX' 4000 model 300 system CI-'U was now clown to
36 percent utilized, and only one quarter of the
users remaineel. The reason for the inadequate
response time was founcl by studying the queuing

~ i ioc lc l , l : i g ~ ~ r c .I I \ ;I s i ~ i ~ ~ ? l i l i c c l riloclcl s l io\ \ 111g L \ \ o

(. I) (s :111cl tl ici l. C I L I ~ L I ~ \ tlis1>1;1!ccI 011 ;I I111ie sc:~Jc.
'J' l le I i r \ r i s ;I \ lo\ \ .c~. (;l)l :ilitI t l i r \ rc.o~icl ;I I . : I \ ~ ~ I - o I ~ ~ .

Srncc \ \ c clitl 1 1 o ~ ;i l lo\\- the I -c \ l>on\c l1111c (1ot;iI
(I L I ~ L I ~ ~ I L I S \ c r \ ice t111ic) Lo \ :II-!. t l i c C ~ L I ~ L I ~ l c ~ i g ~ l i
(~ u c ; i \ ~ ~ ~ . c t l I n n i ~ m l > c r o f \\ : l i t ins job\) o n the >lo\\-cr

(,1)1 \\.;I\ \ l io~. [cr . ' l ' l ie \c.r\ ice ~ i n ~ e o J ~ r I i c \ lo\ \ .c~. (.I>(

\\.;rs I ; I I -~~I . , 111 p ~ - o l > o r t i o ~ l t o i t \ ~ I (I ~ L I ~ L~ l i i c , :tncI
r l l c ~ - c l o ~ - c ;ill i ~ ~ t c l . r ~ i p t i o r ~ I>). : I I ~ o \ ~ c ~ - l ~ c ; i c I 131-occss
c ; i~~scc I < ~ g ~ i ~ l i c ~ ~ r ~ t loss O L p r o c r s i i ~ i g [i ~ i i c (~ . c s p o ~ i s c

[i ~ l i c) l o l>c ;i\,;~il:~I>lc fo r the e ~ . i L ~ e ; ~ l \vorl,lo:~cl cl;ihs
'I'licl-c.1ol.c. rhc gcncr;rl r ~ ~ l c I>cc:irnc: Slo\vcr (. I l l s

\\.III l>c less ~ ~ r i l l ~ c c l :I[the s;r~i ie \ \~o~~l i Io : ic l cI:rss

r c s p o ~ i \ c [i l i i c ' r ' l ~ i s r e s ~ i l r Il;r\ l > c c ~ i \ ce l l or1 [\ \ o elif-
ICI.CIIL CLIS[OI~IVI-\' \ \ ~ O ~ l i l ~ ~ i i t I CI ; I \ \C~ (OIIC \ \ . ~ L l i l) O S

.r~icI o ~ i c \I i t l i \ I : r c i ~ i t o s l ~ c l i e ~ ~ r s) \\ l i i c l i \ \ e re ~ i ioc l -
clccl I>\ c l ~ l l c r c n t cnglnccrs Ll\rng t l ~ l ' l k ~ . c ~ i r moelcl-
i n g t o o \ \

; \no l l ic r \~ i l . l>~- i s ing rc \u l r I>cc;inic c \ iclclit in the

cl:i\-Io-cl;~!. !.:II.J;I[IOI~ ;I(;I c ~ ~ s ~ o l ~ ~ c ~ ~ ' s i l i s [; i I l ; ~ [i o ~ i .
I ' I ic s;111ie r\\.o \\ orl;lo:rcl c l ;~ \scs \\ ere a l~: i l \ ~ r c l

~ICI.O>S ,\c\ ~ r i i l < l i t > \ t o CX;IIIIII~C L! I>IC~II \I <)I.I<cI;I! \ ;I~I-

:1(1o1is 111 \ \ .orI~Io;~cI c1;iss r e s o ~ ~ r c c ~ ~ t i l i / ; r (i o l i l ' \vo

I l0l~l l l ; l~ \ ~ O l ~ ~ i t ~ ~ l) ' S \\/ere sclcctccl I>! the c'Llst0lllcr.
' l ' l i c . 111o\t i ~ i ~ c . ~ i \ c 110~11-s 01. t l icsc [\ \ ,o cl:~! \ \\ ere t11J-

lbl-clir I>! :I slgll lf ic;l l l t f:lcLor. o r 1 011c \\orl,cl:i!, 1111-cc
to l i \ c [i ~ i i c s ;I> 1ii;111> LISCI-\ :~p l) I i~ ,c l t l i c \;r~i?e \\.ol-I<-
lo:icl c l ; ~ \ \ :I\ o n t l lc o t l ic l . el>!. \ c t ; i l l c\ l>cr-~cncccl

t l ic s ; i~ i ic ~-c,\l?olise t imc . I ' l i is \\ ~ t l c I ,1rr;rtio11 is t! 13-

l~ ' ; l l O f ~ ~ l ~ l l t - \ ~ r \ ('I' 'il O ~ ~ < ~ O ~ I C ~ \

Libr-crry of Workload CICISSPS
, \ I te~- \\ c 11:icI e : ip t~~~.ecI :I sc~. ic \ 01 t l ;~t: i , \ \ c c~.c:~tccl ;I

s1ii:iIl III>~~II.!. of rc:il \\-o~-klo;icl\ ~ 1 i ; r t ~ - c ~ > ~ - c \ c r i ~ c c l 1 ;I].-

i o t ~ c.o~icl i (ions ' l ' l lc ; ict~i ;r l \\orl,lo;~cls corisist o l ;I

SERVICE TIME * 4

El-

rnoclcl f i lc t I i : ~ l I clc\oicl o l ~1ic.r-bpcci l ic i l l l o r -

~ ~ i : ~ t i o ~ i O[II~I. ~ior i- I) , \ ' l I I \ \ () l < h S I\ or!iIo;rc\s c ; i ~ i b e

;~clcletl t o t l i c \ c ~noc lc l s .\lrc~.n;~tr\.cl!. t l i c n l l m c r i c
\\-orlilo;itl c l i ; i r ; r c re~ .~ / ;~ r io~ i c.;i~i I>c :~clcled t o cs is t ing

111oclcls. [' \ l l l g rI1c ;11>o\.c l l l c l l l o t l o l o g ~ . t11c ll loclcl
e;i11 1~ I~I:II~II>LII:I~~CI t o c l c r c ~ ~ ~ i i i ~ ~ c \\ 1i;it s j \re111 is

; ~ p p ~ ~ o p r i ; i t c 1'01. t111\ 1iio1.c c o ~ i i p l c x e l l \ iro1i11ic1it.
A5 ; icltI iLio~~;rl i ~ i s t : r I l ; ~ L ~ o ~ i \ ;IIY ;r~i:iI\ LCCI. [l i c i r ~ i i oc lc l

files \vIII h c ;iclclccl r o r l ic Iil>1.:1l-!
\\;1tI1 c ~ r l i c r l l i c l) J ~ (. ~ > c ~ ~ l ' o r ~ i i ; ~ ~ i c c o r Dl:((;:ip;ic~I\

1'l;innc.l. ~ i i o c l c l i ~ i g too l . the process is thc s;imc.
(;h;injic t l ic Ii;ircl\\ ; ~ r c :11ic1 ~ i io i l i l ! . t l ic t l i r - o ~ ~ g l i j > ~ ~ t t o

l i i ; ~ i r i t ; i ~ ~ i o r lo\ \ el. r l ic ~ . c s p o ~ ~ \ c t i t i ~ c \ ol t l i c riioclcl

c l ~ i r i ~ ~ g i r c r ; i t ~ o ~ i s . ' l ' l ic c . l i :~~ igc\ ro r l i r o ~ ~ g l ~ p ~ ~ r ;II.C

'171ic l J41 ' I l \ \ O l < h S 1 i c ~ \ \ ~ o 1 ~ 1 < o p c ~ . ~ ~ t i i ~ ~ c h\ \ t c r i ~ \of[-

\\,;{re ~ w o \ . i t l c \ I.clnotc l i l c xc.r-\ tcc r o clc\l,rop co l l i -

p u t i n & c lc \ i cc \ :~c,~-os\ :I loc :~ l ;LI-C,L nct \ \ .orh
(;:i11:tcir! 1>l.rii1111ig 0 1 c l i c l i r - ~ c r \ cr' err\ i r - o ~ l l i i c n l \
r c c - l ~ ~ i r c \ LIIV L I ~ C 01 \pcc,i,11 ~ i i o c l t , l ~ ~ t ~ t t ~ c ~ I i ~ i i c ~ ~ r c \ .

I l ~ c , ~ J ~ 1 - f ~ o r l l l ; l ~ l i - c ~ o l l l ~ t o l l \ o l r ~ \ . i l - c ~7l~o\ ;c lc \ i>cr-
form,rncc .inti c . . ~ p . i c . i l ! Iil,ili:ryc.luc,rir c ; ~ l ~ . i I ~ t l i r i c s

f o r ~OIIII)LI! ill:< \! \ tc111~. 1 1 ~ I \ c \ L! C I L I C - L I I ~ ~ :11i:i1\ I i c :iI

m o d e l 10 ;Ins\\ 4.1- r-t.\oLlr'c.c. .c.t) n > ~ ~ r l i p r i o l i clrlr5t ions.

strmcs scr ' \cr r c s o ~ l ~ . c c s n i u \ l : ~ l s o b e co l l cc~ tc t l .
r\ll;rl! sis ol \\.orl,lo;~cl ~ ~ i o t l c l s I-c\-c;~ls t l i c r e a s o n 1.01-

;inel s! n ip lon is o l I ~ o ~ ~ l c ~ i c ~ c I i s . (:;111:1cit! p l ; ~ ~ i ~ i i ~ ~ g
c l r~>er~c ls OII (lie, I-c\LIIL\ 01. [l i csc :r~i;~I>.scs t o l?rcclict
hcr\.cr ~ - c \ l > o ~ i \ c [i ~ l i c \ ,

I ~ \ - o ~ ~ l c l I iLc to ~ l i ; i ~ i l , I>I.:I>~~:IJ~~ l ~ l i : ~ l ~ I i ; r l i ; ~ . \\lie
l i c l l~ec l n ic c~ isu l .c r l l i r r t l i c ~ i i o c l c l i n g j1roccs5 js

correct . :ilicl I>icl, I) r~nr i i ng ton . \ ~ h o clicclicel III!

c ~ ~ l c ~ l i l i g thcOr) ;\l\O, 1 \ \O(l Id 1 l l i ~ 1 0 L ~ l ~ l l l ~ i

F r m k (;;~c.e:~\,:ilc~ \\:I10 l ic lpccl 111c i ~ t i t I c ~ - ~ t : ~ ~ i c l
the I \ \ sc.r\,c~- : ~ ~ - c l i i t c ~ c t ~ ~ r c ~ . ~ \ ~ l c l ~ ~ r
K;ighn~-:~nl:in hclpccl n l c grol>e ro\varcl the I l n i l o ~ - n l

Scr\ ice I.c\ e l ~ l ioc lc l clcscril)ctl 11rl.c K;II-I 1:rictlricli.

PATHWORKS: PC Integration Software

Ann Bousquet, and Lindsey Stephens helped me
transition to DECperformance Solution software.
Finally, I would like to thank Pete Stodtlard for
applying his technical reviewer skills to this paper.

References

1. Guide to DECcp Methodology (Maynard: Digital
Equipment Corporation, Order No. A A - N A ~ ~ A - T E ,
1989).

2. R. Jain, The Art of Computer Systems Perfor-
mance Analysis (New York: John Wiley & Sons,
1991).

3. LIECperformance Solution Capacity Phnner
User's Guide (Maynard: Digital Equipment Cor-
poration, Order No. AA-PH~LA-TK, August 1991).

4. DECperformance Solution Performance Advisor
User's Guide (Maynard: Digital Equipment Cor-
poration, Order No. AA-PH6SA-TK, August 1991).

5. E Hiller and G. Lieberman, Operations Research
(San Francisco: Holden Day, 1967).

76 Vol 4 i\'o 1 Wtizter 1992 Digital Technical Journrcl

I Further Readings

Image Processing, Video 'I'erminals,
;I nd Printer Technologies
I ?)I. . j, ,VO, 1, F(/ll 1091

Availability in VAXcluster Systems/
Network Perform;~nce and Adapters
Lt)l. .3. ,\lo, .$, , s / / l l r l l / ~ ~ l ~ 1991

Fiber Distributed Data Interface
I ?)I. -3. .\,?), 2. .S/)r.ir/g 19.91

'I'ransaction Processing, Databases, and
Fault-tolerant Systenls
Lo1 .j. '\lo I . Lt / i ~ / c) ~ . 1991

\'AX 9000 Series
I i l l . 2, .\'o. I . / :(I / / 1990

DECwindows Program
\ t) / . 2. ,Yo. .;. . S I I I I I I I I ~ ~ ~ ~ 1990

VAX 6000 Model 400 System
I t) / . 2, No. 2, ,S/II*~II,~ 1990

Compound Documcut Architecture
I ?)I, 2, ,\i), I , \LIII/(>I. 1990

Distributed Syste~ns
\?)I. I. <LO. 9. . / l / l / (~ 19CS9

Storage Technology
\?)I, I . ,\'o, 8, l ~ ~ / ~ l ~ / / ~ / l ~] ~ /9<s'9

Software t'rocluctivity Tools
I id, I , ,Vo, 0, / : o /) I , I I ~ I I ; J ~ 19(s'8

VAXcluster Systellls
I id. I , ,Vo. 5. S~ple~~tDer . 198-

VAX 8800 Family
I?)/. 1. ,\i). I . Fc>I>r.ri~i~:]* 198-

Networking Products
I t) / . 1. ,\lo. 3, L \ e ~ ~ ~ c ~ l l l /) r / ~ 19~5'6

VAX 8600 Processor
i t) / . 1. ,Vo. I . A I I ~ I I S / 19CSi

Subscript ions to the I l ig i lo l I i ~ i % ~ ~ ~ i c - (r / ~ / o r r ~ ~ ~ ~ (~ l ;ire
; I \ ;~il:~l>lc 011 :I >-C:II.I!,. prej):~itl l>;~sis. ' 1 ' 1 1 ~ si~l>scril>-
[ioli ralc ix $40.00 per ycxr (l'oi~r ibxocx). l<ctl~~cxtx
should I)e sent to (:;~tl~y I'liillil>s. 1)igit;tl Etluil)mc.nt
(:orpor;~tio~i. > ! I . <) I-.3/1%6S. 1.46 YI:~ili Street. hI;1\.11:1rtl.

Ol7j.i. (1 S 14. Si~bscriptio~ls 11111bt be p;licI i l l 1 I S

tloll;~rs. ;lntl ~ I i r c l i ~ sho~~lcl I>c m;~tlc 1>;1!,:11>lc to
1)igit:ll I:cluipmcnr (:orl>or;~rion.

Single col)ics ;~ntl 1>;1s1 iss~lcs of the 1) i ~ i t ~ i l
T ~ ~ T / ~ I I ~ C ~ I / , / ~ I I I ~ I I / c:111 be ol.tlcrctl fcom 1)igit;ll
1'1-css ;I1 :I cos1 of s10.00 pel. COI>!..

Technic:rl Papcrs by Digital Authors

I < . AI-J;II.I.. "l 'crfo~.~ii;~~ice Ylotlcling oJ'(;ompi~tcr
Sjstems: 'l'he Petri Net Xppro;lch," (, i)rrr/)~~lci.
, I l c . n s ~ i ~ ~ ~ ~ ~ r r c ~ ~ ~ t G'r'oc//) (;i)r!/>r'or?c.r (l)cccnil>cr
I991) ,

5. A~gcbr:lnntlt. It. 1)rccvl-1. ;~ntl 1: Ncwni;:~n.
"Writing 'liiilol-;thlc Softw;~rc.: 'l'he 1 I I S;~mplc
Scr\.cr." .Sc!/i[r~c~~.c) (0ctobc.r 1991).

I? A~licli. "[.exicon /\ssistctl 1nforrn;lrion Iktricv:ll
for the I.{cl1,-Dcbk ." 1: i~yI~l l) //:'I:'/:' (;i)r!/i,~.c,~lc.c~ or/
..I 1.1 iJi(.i~11111 l ~ ~ / l i , y o ~ ~ ~ ~ c ~ ,4/)/)/i(~/Iio11.i (,\,I ;~rcli 1992).

N. Aror;~ ;~ntl ,M. Sli;~rm;~. 3"otleling tlir Anorn;~lol~s
'T'hreslioltl \~olt;~gc I%cIi;l\ ior oFS~~bmicro~iietcr
.\lOSFI:'l's;' //:'Eli I:kc'lr~orr Iler .ic.e I.c,ltc~~:\. (I:ebru;~r)
1992),

1). Sh;~vs;~l: "An Archirect~~rc for Esrcntling the
IEEE St;~ntl;u-tl I 1-19.1 'rest Acccxs I'orr lo System
L$;Ic~[)~;II~cs. '~ I / . ~ l ~ / ; I ~ ~ / c ~ ~ ~ r ~ r r l i o r ~ ~ ~ l E.i/ ~ , i) t t f i ~ ~ (~ r r (~ c ~
(Octol)c~. l991),

E. Braginsky, "The X/Open IITI' Effort," Fozlrth
/ntt.r~rationnl 1Vorksho/j on Hi<?/) Performn~rcc
Tratzsaction Syste~ns (September 1991).

S. Cao, "An Introcluction to Ensemble-Average
Importance Sampling of Markov Chains,"
Proceedirrgs of the Tl)ir.lictl~ 111:71 ChrIfi~t'et?ce
(111 Decision and Contt.ol (Deccmbcr 1991).

R . Cetnbrola, "Analj-tical <:hemistry in Support
of Microelectronics Technology," Boston Section
iVleetirzg of the A~nerican Chonical Society
(November 1991).

% Cvetanovic ancl E Freedman, "Effic~ent
Decomposition ant1 Performance of Parallel
PIIE, FFT, Monte Carlo Simulations, Simplex, ancl
Sparse Solvers:' The Jourllul of .Stlf~erconzputilz~,zg,
vol 5 (1991)

S. Denker, "A Common Scnsc ,\pproach to Improv-
ing the Design and Zl;~n;~gerncnt of Electronics
Manufacturing Proccsscs," I~zternational Cb~@r.-
ence on Autotnclted ill~~terinls fl~~rtclling (1990).

B. Doyle, R. O'Connor, K . Mistq! and G. Grula,
"Comparison of Trench and LO<:oS Isolation for
Hot-Carrier Resistance," I11/?1~Electro17 Device
Letlers (December 1991).

B. Fishbein, D. Krakauer, ;~ncl U. Doyle, "Measure-
ment of Very Low Tunneling Currcnt Densit!. in
SiO2 I sing the Floating-Gatc 'Tcchniclue." IL/:'/:'

Electron Device Letler-s (December 1991).

W Hs~rris, H. Smith, and A. Pelillo, "SI\IS Tcst
Struct~~rcs for Analj.ses of Semiconductor Procluct
Wafers," '1 mel-iccm V G I C U L I I ? ~ Society Thirty-eighth
National Synzposi~lm (Noveniber 1991).

C). Heimann ancl W CI;lrk, "Process-Related
Reliability-Growth Motleling-Horn. Sr W/hy,"
[LEE Reliability arzdilf~li7rtcrinability .\j9~lzposiurtl
(Janui11-y 1992).

S. Heng, H. Pei, anclJ. \Vatson, "Closed-Loop Cool
ing for Computers-Opport~~nities for the 90s)''
National Electronic P~rck~~ging u17cl Prod~lctiolz
Cbnfer.e~zce (June 1991).

S. Knecht, "Integratetl Matrix Creep: Application
to Lil-ktinie Prediction of Eutectic PbSn Solder
Joints," iVIcllcrial.~ Resc~rt rcln .Socictj~ S J ? I ? Z ~ ~ S ~ L I ~ ? Z
Procccclirzgs (No\.cniber 1990).

I>. Lee and B. Mirmati. "Bonding Quality ancl
Bentling Stiffl~ess," Itzterrzatiolzal Electronics
Pclck~lging Society Ci)11j5rence (September 1991)

1M Lefebvre, 'Test Generation A llounclary Scan
lniplement'~t~on for hlocli~le Interconnect Testing,"
1L1 I Into.rzatio~znl Tcst Confiretz~e (Deccrnber
1991)

R Jain, "The Art of Computer Systems Performance
Anal) sis," Co~npzlter. iWecisure~17e1~t Groi~p Confer-
ence (December 1991)

J. McGrath and J. Derosa, "3-1) Solid i\ilodeling for I<:

~iasenibl y," IEW Aduanced Setnicond~lctor Manu-
fi~cturing Conference Proceecli~zgs (October 1991).

J. McPliee, T. O'Toole, and M. Yedv;llsn?: "Cooling
the VAX 9000," Electro/YO Conj5relzce Record
(May 1990).

J. McW/ha and I? Kouklam;~nis, "A Procluct 1nfor~n;l-
tion Access System for Verification, Test, Diagnosis
;ind Repair of Electronic Assemblies," /FEE Jrztet-
~zalional Test Co1zfere7zce (October 1991).

B. Mirman, "A\Y/ay to Avoid Stress Singularities
in ~Multitnaterial I:l:~stic Botlics." Trcins~lctio~zs
ofA~z17~lc1IiVIeeti~zg of tL7e A I H ~ ~ ~ ~ C C I I I Society of
ilfech~~nical Engineers (Dccernber 1991).

T. iMoore, "A Workstation Environment for Bound-
ary Scan Interconnect Testing," IliEE /nternntional
Est Conference (October 1991).

C. Pietras, "Cognitive Motlcls of Planning in the
Design of Project Management Systenis," Proceed
ilzgs of tJ7e Ji~l tna~z F L I C ~ ~ I : ~ .Sociel.y T13it-tyjifLh
Ar z~z~~a l !Meeting (Septenil~er 1991).

K . Kamakrishnan, "Dynamics of Congestion Con-
trol and Avoidance of Two-Way Tr;~ffic in an OS1

'kstbed ," ACiP1 Conzj~uter Co7nl)zzinicatio1zs Reviezu
(April 1991).

S. Rcgc. R. Kalkunte, R. Edgal; ant1 A. Russo,
"A High Performance Fl>l)I Adapter for \'AX
Systems," TI?irty-sevetztl9 1Ll:'l:' Co~?z/)~it~r. .Societj,
I11ler17ational Confclt.cltlce (Febru;~ry 1992).

M. Register, A. Rewari, and M. Swartwout,
"I'he <;I\NASTA Experience: Key Management ant1
Technical Decisions in a Hybrid Expert System
I'roject," IEEE ACM Itller.iznlional Cotzjkrence
on Deoeloping and Marz~gin~' Ex/!erl S~~stenz
Pr-ogr~~nzs (September-October 1991).

K. Symonds, M. Bahrilmi, ;lncl I? Skerry, "Functional
Failure Analysis Using Photoemission Microscopy,"
Proceedings of the Sez)erz/eelzlh /?zter;zationnl
Sj~7nposiunz for Testing ancl F~~ilur-e Analysis
(November 1991).

Digital I'ress

l)ig1[;11 1'1,css 1s tllc l>ool, p~~l)Ijslli~lg ~ I . O L I [> o f
I)igi[;~I l:cjt~i]>n~cnt (:orl)or;~t ion. ' I lie Press 15 ;m
intcrn:ition;tI pi~l>lislicr o f co~~ i l> t~ t c r I>ool\s :mrl
jot11.11;1ls on nc\v technologies ;mcl pr.oclucts for
i~scl->. s!'slcm ;~ncl net\\ osli 1u;ln;Igcrs. ~>rogr-;~m-
mel-s. ;inel otlic~- profcssion;~ls. l'ropos;~l.s ;~ncl irlc:~s
l'or I>oolis it1 tllcsc ;~ntl I-cln~ccl ;ITC:IS ; I I Y u.clconlctl.

HITNET FOR VMS USERS
\lic11;1el I\. >loorc ;111tl I~oll;ll~l 11. %;I\\ c!,. 1992.
soJ~tI~oi111tl. 1-0 p;~gcs~ Orclcr N o , l ~ ~ ~ - 1 , - 1 O ~ ~ l ~ - l ~ l ' - l ~ l ~ l 3

(S L 5 05).

I)csigncrl to Iiclj, ~>col)lc n ' l~o h;l\ c nc\ c-r usccl
;I n;~[ion;~l com[~tltcl.ncl\\:o~.li. this hooli ;~lso
pro\ iclcs ;In i n \ ;~li~:~l>l.c ~.cfc~-c~ic.c 1'0s tliosc :~lrc;~cl!.
Ii~~ilili;~r \\,it11 ;~cx 'c~\~i~ig l$l'l'Sl ' I i1.0111 llic \ .\IS
opc~- ;~ t i~ ig h>.s[cln 01 I >igil;~I l i c ~ ~ ~ i p ~ i i c ~ ~ t (;orpor;~-
tion. 1'111s lirsr c~c.lilsi\.c co\.cr:!gc of I 3 I ' I ' \ I : 1 clct;iils
ni;11i! asl)cct.\ I'ror~i clce~troriic lu;~il to sc:~~.c,l~ing
reliiotc t~;11;1~>;1scs to c;~~.l-!-ilig 011 1<1;1.,\). c o ~ ~ \ - e ~ - s : ~ -
tiolis \vitll pcopJc l~;~lf\\ . ;~!. ;11.oi111cl the t\x~rltl. \lore
csl)ci-icncccl coml>Lllci- ~ ~ s c r s \ \ . i l l al)j)rt'ei;~te tllc
;~l>l)cncliscs \\.liic,li co11t;iin Illore clc[:~ilccl infol'-
m;~tioll. Sl>ccilic ~>rogr;~lns :~ntl listings ol'niorc
l)opt11;11. ~ i ? ; ~ i l i ~ ~ g lists. cligrs[s, ~11d clt.clronic
~ i~ ; ig ;~ / i~ ics ;1\;111;1l>lc \ \ , i l l licll> pco11Ic get t l~c ~ i ~ o s t
out o f 1~I'1~Sl~~1

FD1)I: I:i I,er Distributed I h t : ~ liltcrface
for I.oc;~l Arca Networks
\V.c~ltl!. I I . hlic~li:~cl. \V.illi;1111,j. (;ro~ii~l.Jr..
;111cl K ; ~ r l 1; l'icpc~., 1002, iol'tl>o~~~icl, IS0 1>;1gc\,
Ot-i\cr No. li\~lS~Ol,~l~l~-l.l..l\ (S I 7 . O i) .

DIGITAL AT WORK:
Snapshots from the First Thirty-five Years
EtIi[ccl I>?.,];\~iiic I ' ; I I . ~ ~ I . I .) ~ ; I I . \ o I ~ , 199.2. ~o~'tI>oi~r~cl
,225 [>ages, 0rtIc1- NO. l ~ ~ ' ~ l S ~ O l ~ - l ~ l ' - I ~ l ~ ~ ~ (S 19.95).

'~lloi~gli liot ;I 1'01-1il;tl liistor!.. f) i<qi/(~/ (I [L l ' i ~ i i ?
tells tlic. \[or!, o f I I I C li~.st tI~r~-t!-li\.c ! rars 01'

I)igi t;11 Lcliiil,rnen[(:orpol-;lt ion ;~nrl i l lunii[x~rcs
the origins ol'its I I I ~ ~ C ~ L I C ci11t~11~. I:i~-sl-pcrso~i
;IccoIIIII\ L'1.0111 1I;Ihl ;111c1 1>1-<.\c.111 lllcll1I>c1~s oI'tl1c
L>igit;~l c o ~ ~ i ~ i l ~ ~ n i t ! , inclus[r! ahsoci;~tcb. I>o:tril
~ncnibcrs. :~nrl fi-icncls tr;tc.c ~ l i c coliilxln! 's c\-olil-
tion l't-o~i~ the 1950s to [lie 1090s. l)csig~iccl fo1-
17rowsing ;inel sclt~r.ii\~c I-c;~cling. [liis I>ool; IVO\ 1clc5
re;~I stories in the tvortls oI.l-c;~l j>col)lc. I'l~oto-
gr;~l>hs from I)jgit;~l's ;~rclii\.cs nl;~h-c. rllc stories
nio1.c \. i \ . icl .

ALL-IN-I: A Technical Odyssey
'lijny Kctlmontl. Ic)02. \oftf>o~rntl. 550 (>:~gcs.
0 1 . c l ~ ~ No. I;\ -C1952E-I>I' (d 1 1 95)

'I'l~is estcl~si\,c trc.;~t~lcnt 01- 1)igit;ll licli1il)nlcnt
(:orlx)~-;~tion's olfict ;~uloln;~riol~ tool ;~clclrcs~cs tllc
~~cccls oJ ~ l . s [c ~ ~ i 111;111;igcss. ; tppl ic;~t io~~ p~.ogr;~~il-
~iicrs. ;incl ~cclinic:~ll! oricn[ccl ~lscrs \vI~o work
\\.ill1 A1.I.-11-1. Ik~sccl on the ;~~~ t l i o r ' s [en !.c;~rs oC

r spc r i c~~cc ill clc.\.clo[>i~~g ;\I I.-IS-I s~~l)s!.slcnls :~ricl
in c~lstomizjlig its ;~pl,l ica[io~~ to sl>ccilic cusromcr
sites, the prt.bcnl;~tion cstcntls I)c\.o~icl the procluct
clocumcnt;~lio~i to csl>lorc tl?c clcep :irltl tlist;~nt
corner5 o f lhc proclue[. 'l'llc \\.c:~ltl~ o l ' cs ;~mplc 01 '

;iclu;~l inst:~ll;~tion ;~nrl ci~stomiz;~tio~i esl>cricnccs
11e.Ip co rnmi~~~ ic ;~ rc ho\\. lo I)esf use .\[.I.-lY-1 o n
\' '\\, [)OS I) (' . ;111cl ,\[>l>lc ~l~lcll1rosll colll~>Ll~cl~s.

The Third Edition of X WINDOW SYSTEM:
The Complete Reference t o Xlib, X PI-otocol.
ICCCM, XLFD X Version 11, Kclease 5
Roi~ctt W: Schci1lc.r mil ,[;~mc.s (;rtt!.s. 1902.
sof[I>otl~id. I (M l 0 p;lgc>. Or~ lc~ ' No. l ~ ~ ~ l S O ~ I ~ - l ~ l ~ - ~ l ; l ~
(5 10.95

\'l.iI tc11 I>!, [lie elcsi&nc~.s o l rlic S \V'inclo\\- S!.slcm.
this m:tjor rc\,ision I>rings c.l;lrit!. to I3otl1 nu\\. ;~ncl
~'cl;~inccl rn;~tcrj;~l ;111cl intc'gi.~tr's or \ \ , tlcscril>lionh
ol'tl~c li:~turcs oS\.crsion I I. I<clc;~sc 5. illlo olic
co~~\ .cnicnt- lo-~~si . volu111c. 'l'liis single \~o l i~~ i i c
is in essence ;I full!- intcgr;~~ccl ;inel inclc\;cd four-
book rc.lcrence ihr:~r! 01' t he 51 1'1' S (;onhol'litlm's
st;tncl;ircl sl>c,cif c;ttions fol- the S Wintlow S!'slcm.
liclc-;isc 5 ;~tltls four m;~jor. coml>ollclits: tIc\.ice-
inclcpt~icle~~t colo~- s~lpport. i n t c r n ; ~ t i o n : ~ l i z ; ~ I i o ~ l
s~lpport. lie\\ rcsoi~~-ce ~ i i ; ~ ~ i ; ~ g c r I'i~~lc.tio~is% ; I I ~ C I

Further Readings

sca1;tble fonts. Two appendixes o n Bitmap Distri-
bution 1;ormat and Compound Text Encoding
extend thc usefulness of this volume.

MOTIF PROGRAMMING:
The Essentials ... and More
Marshall Brain, 1992, softbound, 632 pages,
Order No. EY-JSI~E-DP-EEB ($29.05).

A straightforward and easy-tounderstand intrv
duction to Motif application development, this
book will case).ou into Motif progralnnllng as
smoothly and quickly as po.ssible. It sturts with
an introtluction to event-driven programming
and procccds to discuss three concepts essential
to Motif programming: resources, callbacks, and
containers Advanced topics will expose the reader
to a11 of the Motifwitlgets, the cayabilities of the
X and Xt layers, the X tlrawing model, and the
process of application design in f i t i f .

To receive a copy of our latest catalog or further
information o n these or other publications from
Digital Press, please write:

Digital I'ress
Dcp;~rtmcnt E1:B

1 Burlington Woods Drive
Burlington, MA 01803-4597

Or, you can order a Digital Prcss book by calling
DECdirect at 800-DIGITAL (800-344-4825). When
ordering be sure to refer to Catalog Cotlc EEB.

80 Vo1. 4 No. 1 Winter 19% Digital Tich~icnlJun,nal

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	An Overview of the PATHWORKS Product Family
	PATHWORKS for VMS File Server
	The Development of an Optimized PATHWORKS Transport Interface
	Design of the PATHWORKS for ULTRIX File Server
	DECnet Transport Architecture
	Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS
	eXcursion for Windows: Integrating Two Windowing Systems
	Capacity Modeling of PATHWORKS Client-Server Workloads
	Further Readings
	Back cover

