
w Multimedia
Application Control

.... I...
IX: I... I...

KG:#:
X X : : :

kx: :x : . X X x:::

, . m a m a n m m ~ m
. m a n . . m . L "

8m...m. raa8..m.mm
I ...m......m.m . .
I
I I . . .
I
I m.........
I
I
I..... I . .
Iem
Ime....
I I
I..... . I
I . . n l l . a n . .
II.....
Immm.
;mrnmrn m a r a m
II.....
I m...........
I

C
Volume J Number2

Spring 1993

Editorial
Jane C. Blake, Managing Edltor
Kathleen M Stetson, Ed~tor
Helen L. Patterson, Editor

Circulation
Catherine M. I'hillips, Administrator
Dorothea B. Cassady, Secretary

Production
Terri Auticri, Production Editor
Anne S. Katzeff, vpographer
Peter R . Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
kchard W Beme
Donalcl 2. Harbcrt
RichardJ. Hollingsworth
Nan G. Nemeth
Jeffrey H. Rudy
Stan Smits
Michael C. Thurk
Gayn B. Winters

Cover Design
Dithering and color space conversion are two
of the concepts discussed in "Video Rendering,"
.which opens this issue's set ofpapers on multi-
media technologies. On the covw the band
of blue across the bottom of the cover graphic
shows the rectangularpatterning created
by an ordered ditherprocess using a populccr
recursLue tessellation array The band of bur-
gtrtzdy across the top shows the sziperiorpat-
terning of the same ordered ditherprocess
with a newly designed void-ancl-cluster array,
which produces a higher quality image for dis-
play by eliminating the rectangulc~r patterns
and the textrires of white noise. The line illus-
tration overlayiiag these two arrays presents
two color spaces, one within the other: RGB
and Y W (Itiminance-chrominance space used
by television systems; Y axis not shown). In the
color conversion process, data transmitted
in YWspace is converted lo RGB space. The
cover design shows threefc~ces ofthe RGB
space "lifted o r ancl infused with the colors
noted at each corner oftheparallelepiped,

The cover concept and ill~rstrations are
derived from the paper "Video Rendering"
by Bob Ulichney. The design was imple-
mented by Linda Falvella of Quantic
Communications, Inc.

The Digital Ecbnicc~lJorr~nal is a refereed journal published quarterly by Digital
Equipment Corporation, 30 Porter Road LJ02/D10, Littleton, Massachusetts 01460.
Subscriptions to the Jou,nal are $40.00 (non-U.S. $60) for four issues and $75.00 (non-
U.S. $115) for eight issues and must be prepaid in U.S. finds. University and collcge pro-
fessors and Ph.D. students in the electrical engineering and computer science fields
receive complimentary subscriptions upon request. Orders, inquiries, and address
changes should be sent to the Digital TechnicalJournalat the published-by address.
Inquiries can also be sent electronically to DTJ@CKL.DEC.COM. Single copies and back
issues are available for $16.00 each from Digital Press of Digital Equipment Corporation,
129 Parker Street, Maynard, MA 01754. Recent back issues of the Joufnal are also
available on the Internet at gatekecper.dec.com in the di.rectory /pub/DEC/DECinfo/DTJ.

Digital employees may sencl subscription orders on the ENET to R.DVAX::JOI'IWi\L
Orders should include badge number, site location code, and address.

Comments on the content of any paper are welcomed and may be sent to the managing
editor at the published-by or network address.

Copyright O 1993 Digital Equipment Corporation. Copying without fee is permitted
provided that such copies are made for use in educational institutions by faculty mem-
bers and are not distributed for commercial advantage. Abstracting with credit of
Digital Equipment Corporation's authorship is permitted. All rights reserved.

The information in the Journal is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digival Equipment
Corporation assumes no responsibility for any errors that may appear in the Journal.

ISSN 0898-901X

Documentation Number EY-P963E-DP

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP, CDA,
CDD/Repository, COHESION, CX, DDJF, DEC, DEC 3000 AXP, DEC CkiC;l;rnce, DEC OSWl
AXP, DECaudio, DECchip 21064, DECimage, DECnet, DECNIS, DECpc, DE(:spin,
DECstation, DECvideo, DECwindows, Digital, the Digital logo, GIGAS\VI'I'CN, HSCSO,
Megadoc, OpenVMS, OpenVhlS AXP, Q-bus, RA, RV20, SQL Multimedia, TURUOchannel,
ULTRIX, UNIBUS, VAX, VAXstation, and VMS.

Apple, Macintosh, and QuickDraw are registered trademarks and QuickTime is a trade-
mark of Apple Computer, Inc.

Display PostScript is a registered trademark of Adobe Systems Inc.

DM and INDEO are registered trademarks and Intel is a trademark of Intel Corporation.

HP is a registered traclemark of Hewlett-Packard Company

lOhl is a registered trademark of International Business Machines Corporation.

Kodak is a registered trademark of Eastman Kodak Company.

Lotus and 1-2-3 are registered tradcmarks of Lotus Development Corporation

Microsoft, MS-DOS, and Excel are regisrered trademarks and Video for Windows.
Windows, and Windows NT are tradcmarks of Microsoft Corporation.

MIPS is a trademark of MIPS Computer Systcms.

Motif, OSF, and OSWl are registered tradcmarks and Open Software Foundation is a
trademark of Open Software Foundation, Inc.

Perceptics is a registered trademark and LascrStar is a trademark of Perccptics
Corporation.

SCO is a trademark of Santa Cruz Operations, Inc

Solaris, Sun, and SunOS are registered trademarks and SPARCstation is a trademark of
Sun Microsystems, Inc.

SPARC is a registerecl trademark of SPARC International, Inc.

System V is a trademark of American Telephone and Telegraph Company.

UNM is a registered trademark of UNK System Laboratories, Inc

Xvideo is a trademark of Parallax Graphics, Inc.

X Window System is a trademark of the Massachusetts Institute of Technology.

Book production was clone by Quantic Communications, Inc.

Contents

7 Foreword
John A. Morse

Multimedia

9 Video Rendering
Robert Ulichney

19 SoJtware Motion Pictures
Burkhard K. Neidecker-Lutz and Robert Ulichney

28 Digital Audio Compression
Davis Yen Pan

41 The Megadoc Image Document Management System
Jan B. te Kiefte, Robert Hasenaar, Joop W Mevius, and Theo H. van Hunnik

50 The Design ofMultimedia Object Support in DEC Rdb
Mark F. Rile): James J. Feenan, Jr., John L. Janosik, Jr., and T. K. Rengardjan

65 DECspim A Networked Desktop Videoconferencing Application
Lawrence R. Palmer and Ricky S. Palmer

77 LAN Addressing for Digital Video Data
l'eter C. Haytlen

Application Corltrol

84 CASE Integration Using ACA Services
Paul 0. Patrick, Sr.

100 DEC @aGlance-Integration ofDesktop Tools and
Manufactun'ng Process Information Systems
Ilavid Ascher

I Editor5 Introduction

Jane C. Blake
~Vunqqing Editor

This issue of the Digital TechnicalJotrr~zal features
papers on multimetlia technologies ant1 applica-
tions, and on uses of the Application Control
Architecture (ACA), Digital's implementation of the
Object Management Group's CORHA specification.

The high quality of today's television, film, and
sound recordings have set expectations for com-
puter-based multimedia; we expect high-quality
images, fast response times, good quality audio,
availability-including network transmission, and
all at "reasonable" cost. Bob Ulichney has written
about video image-rendering methotls that are it1

fact fast, simple, and inexpensive to implement. He
reviews a color rendering system and conlpares
techniques that address the problem of insufficient
colors for displaying video images. Dithering is one
of these techniques, and he describes a new algo-
rithm which provides good quality color and high-
speed image rendering.

The dithering algorithm is utilizetl in Software
Motion Pictures. SIMP is a method for generating
digital video o n desktop systems without the need
for expensive decompression hardware. Burkhard
Neidecker-Lutz and Bob Ulichney tliscuss issues
encountered in designing portable vitleo compres-
sion software to display digital video on a range of
display types. SMP has been ported to Alph;~ AXP,
Sun, IBM, Hewlett-Packartl, and Microsoft platforms.

Digitized data-video or audio-must be com-
pressed for efficient storage and transmission.
Davis Pan surveys audio compression techniques,
beginning with analog-to-digital conversion and
data compression. He then discusses the Motion
Picture Experts audio algorithm and the interesting
problem of tleveloping ;I real-time software imple-
mentation of this algorithm.

Even conipressctl, digitizetl data takes up tre-
mendous m mounts of storage space. A relational

database can not only store this data but provide
fast retrieval. Mark Riley, Jay Feenan, John Janosik,
and T.K. Rengarajan describe DEC Rdb enhance-
ments that support multimedia objects, i.e., text,
still frame images, compountl documents, and
binary large objects.

Managing image documents is the subject of a
paper by Jan te Kiefte, Bob Hasenaar, Joop Mevius,
and Theo van Hunnik. Megadoc is a hartlware and
software framework for building custon~ized image
management applications quickly and at low cost.
They describe the UNIX file system interface to
\VOliM tlrives, a storage manager, ant1 ;In image
;~pplication framework.

Distributing multimedia over a network presents
both engineering challenges and opportunities for
applications. DE<:spin is a real-time, desktop video-
conferencing application that operates over LANS or
WANs, using TCP/IP o r DECnet protocols. Larry and
Ricky Palmer present an overview of the DECspin
graphical interface. They then address network
issues of real-time conferencing on non-real-time
networks and a solution to network congestion.

The transmission of full-motion video programs
to multiple users requires adaptations in many
parts of a client-server, IAN environment. Peter
Hayclen's paper focuses on the specific problem of
efficient allocation of network addresses for the
transmission of digital vicleo data on a LAN. He
reviews alternatives and tlescribes a technique for
the tlynarnic allocation of multicast addresses.

The common theme of the two final papers is
ACA Services, Digital's implementation of the OMG's
Common Object Request Broker Architecture. Paul
Patrick has written an instructive paper o n CASE

environment development ~~t i l iz ing ACA. Assuming
a multivendor, distributetl environment, he dis-
cusses modeling of applications, data, and opera-
tions; application interfacing; and environment
m;inagement.

DEC QaGlance software is an implementation of
ACA th;lt supports the integration of manufacturing
process information systems. David Ascher differ-
entiates between generic integration software and
OaGli~nce, and clescribes how ACA is ilsetl to inte-
grate independently cleveloped applications.

The editors thank John Morse, engineering man-
ager, Corpor;ite Research, and Mary Ann Slavin,
engineering manager, ACA, for their help in prepar-
ing this issue.

Biographies I

David Ascher Dave Ascher joined Digital's Industrial Products Software
Engineering Group in 1977 to work on the DECDataway industrial multidrop
network. Since then, he has worked on distributed manufacturing systems as
a developer, group leader, and technical consultant, and as an architect of the
DEC @aGlance product. As a principal software engineer, Dave leads an effort to
develop DEC BaGlance service offerings. He holds a B.S. in psychology from City
College of New York and a Ph.D. in psychology from McMaster University,
Hamilton, Ontario.

James J. Feenan, Jr. Principal engineer Jay Feenan has been implementing
application code on database systems since 1978. Presently a technical leader for
the design and implementation of stored proced~~res in DEC Rdb version 6.0, he
has contributed to various Rdb and DBMS projects. Prior to joining Digital in
1984, he implemented Manufacturing Resource Planning systems and received
American Production and Inventory Control Society certification. Jay holds a B.S.

from Worcester Polytechnic Institute and an M.B.A. from Anna Maria College.
He is a member of the U.S. National Rowing Team.

Robert Hasenaar Bob Hasenaar is an engineering manager for the Megadoc
optical file system team, part of Digital's Workgroup Systems Software
Engineering Group in Apeldoorn, Holland. He has seven years' software engi-
neering experience in operating systems and image document management sys-
tems. Bob was responsible for the implementation of the first Megadoc optical
disk file system in a UNlX context. He has an M.Sc. degree in theoretical physics
from the University of Utrecht, Holland.

Peter C. Hayden Peter Hayden is an engineer in the Windows NT Systems
Group. He joined Digital in 1986 as a member of the FDDI team and led several
efforts contributing to the development of the FDDI technology and product set.
He then led the Personal Computing Systems Group's multimedia projects
before joining the Windows NT Systenls Group in 1992. Before coming to Digital,
Peter worked on PBX development at AT&T Bell Laboratories. He holds a B.S. in
electrical engineering and an M.S. in computer science from Union College in
Schenectady, NY, and has several patent applications pending.

John L. Janosik, Jr. A principal software engineer, John Janosik was the proj-
ect leader for DEC Rdb version 5.0, the Alpha A S P port version. John has been a
member of the Database Systems Group since joining Digital in 1988. Prior to
this, he was a senior software engineer for Wang Laboratories Inc. and worked
on PACE, Wang's relational database engine and application development envi-
ronmcnt. John received a B.S in computer science from Worcester Polytechnic
Institute in 1983.

Joop W. Mevius A systems architect for the Megadoc system, Joop Mevius has
over 25 years' experience in software engineering. He has made contributions
in the areas of database management systems, operating systems, and image
document management systems. Joop has held both engineering management
positions and technical consultancy positions. He has an M.Sc. clegree in mathe-
matics from the Technical University of Delft, Holland.

Burkhard K. Neidecker-Lutz Burkhard Neiclecker-Lutz is a principal
engineer in the Distributed Multimedia Group of Digital's C;~mpus-based
Engineering Center in Karlsriihe. He currently works on distributecl multirneclia
services for broadband networks. Burkhard contributed to the XMedia layered
procluct. Prior to that work he led the design of the NESTOR distributed learning
system. He joined Digital in 1988 after working for PCS computer systems.
Burkhard earned an M.S. in computer science from the University of Karlsriihe
in 1987

Lawrence G. Palmer Larry Palmer is a principal engineer with the Networks
Engineering Architecture Group. He currently leads the DECspin project for the
PC ant1 has been with Digital since 1984. Larry is one of three sof tw~re develop-
ers who initiated the PLMAX software project for the DECstation 3100 product by
porting the ULTRlX operating system to the MIPS architecture. He has a B.S. (high-
est honors, 1982) in chemistry from the University of Oklahoma ancl is a member
of Phi Beti1 Kappa. Hc IS co-inventor for five patents pending on enabling soft-
ware technology for audio-video teleconferencing.

Ricky S. Palmer liicky Palmer is a principal engineer with the Conlputer
Systems Group. He joined Digital in 1984 and currently leads the DECspin proj-
ect. Ricky is one of three software developers who initiated the I'NwX software
project for the DECstation 3100 product by porting the ULTRIX operating system
to the MII'S architecture. He has a B.S. (high honors, 1980) in physics, a B.S. (1980)
in mathematics, and an M.S. (1982) in physics, all from the University of
Oklahoma. He is co-inventor for five patents pending on enabling software tech-

(% ' nology for audio-video teleconferencing.

Davis Yen Pan Davis Pan joined Digital in 1986 after receiving a Ph.D. in elec-
trical engineering from MIT. A principal engineer in the Alpha Personal Systems
Group, he is responsible for the development of audio signal processing algo-
rithms for multimedia products. He was project leader for the Alpha/OSF base
audio driver. He is a participant in the Interactive Multimedia Association Digital
Audio Technical Working Group, the ANSI X3L3.1 Technical Worliing Group on
MPEG standards activities, and the ISO/MPEG standards committee. Davis is also
chair of the ISO/MPEG ad hoc committee of MPEG/audio software verification.

Paul B. Patrick, Sr. Paul Patrick is a principal software engineer in the A<:A

Services Group. He leads Digital's implementation of the Object Management
Group's Common Object Request Broker Architecture. Previously, I-'auI helped
deslgn COHESION, an integrated CASE environment based on the DECset architec-
ture. He also contributed to the development of IPSE, an integrated project sup-
port environment based on the CDD/Repository software, and designed and
implemented the MicroVAX 2000 synchronous controller tliagnostic. Prior to
joining Digital, Paul held positions at GenRad Inc. and Norand Corp.

T. K. Rengarajan T. K. Rengarajan, a member of the Database Systems Group
since 1987, works o n the KODA software kernel of the DEC Rdb sjlstein. He has
contributecl in the areas of buffer management, high availability, OLTP perfor-
mance on Alpha AXP systems, and multimedia databases. Presently he is working
on high-performance logging, recoverable latches, asynchronous batch writes,
and asynchronous prefetch for DEC Rdb version 6.0. Ranga holds M.S. degrees in
computer-aided design and computer science from the University of Kentucky
and the University of Wisconsin, respectively.

n Mark F. Riley Consulting software engineer Mark Riley has been a member of
the Database Systems Group since 1989 and works o n multimedia data type
extensions in Rdb/VMS. Prior to this, he worked for five years in the Image
Systems Group and developecl parts of the DECimage Application Services
toolkit. Mark received a B.S.E.E. from Worcester Polytechnic Institute in 1980 ant1
an M.S. in engineering from Dartmouth College in 1982.

Jan B. te Kiefte Jan te Kiefte is technical director for Digital's Workgroup
Systems Software Engineering Group in Apcldoorn, Holland. He has over 20
years' software engineering experience in compiler development and in the
development of office automation products. Jan has held both engineering man-
agement positions and technical consultancy positions. He has an bl Sc. degree
in mathematics from the Technical University of Eindhoven, Holland.

Biographies

I Rober t Ul ichney Robert Ulichney received his Ph.D. (1986) in electrical engi-
neering and computer science from the Massachusetts Institute of Technology
and his B.S. (1976) in physics and computer science from the University of
Dayton, Ohio. He is a consulting engineer in Alpha Personal Systems, where he
manages the Codecs and Algorithms Group BOO has nine patents pcnding for
his contributions to a variety of Digital products, is the author of Digital
Hnlftoni~zg, published by The MIT Press, ant1 herves as a referee for several tech-
nical societies includingrEEE.

T h e o M. van Hunnik Theo van Hunnik is an engineering project manager for
Digital's Workgroup Systems Software Engineering Group in Apeldoorn. Holland.
He has over 20 years' software engineering experience in compiler development
and the tlevelopment of office automation protlucts. Theo has participated in
several international systems architecture task forces. He managed the develop-
ment team for RetrievAll, the Megadoc image application framework.

I Foreword

John A. Morse
Sr: Engineering Munc~gel;
Corporate Research G
Architecture

In the late '80s, "multimedia" was a magic word.
It seduced us with glimpses of a brave new world
where audio ant1 vitleo technology merged with
computer technology. It promised us everything
from instant high-impact business presentations
to virti~al reality. Words like "paradigm shift" and
"multibillion-dollar intlustry" were enough to snare
both the technophilcs and the eager entrepreneurs
into believing that the world had suddenly
changed, and w e were all going to get rich in the
process.

Somewhere o n the way to the bank, reality set in,
ant1 it wasn't virtual. The reality is that multimedia is
a lot harder than it looks. S ~ ~ c c e s s h ~ l rni~ltimetlia
requires ;I marriage between analog 'W technology
and digital computer technology; it requires recon-
ciliation between a technical/professional market-
place and a consumer marketplace. As in any
marriage, a lot of hard work is required to make it
succeed, and much of that work is yet to be done.

For certain segments of the computer industr):
multimedia was relatively easy to implement ant1 so
caught o n quickly. The first successes have been at
the extremes of the cost spectrum-very low-end
clesktop multimedia o n the one hancl, and very
high-entl virtual reality systems o n the other. This
has left Digital, with its traditional focus on the
mitltlle, temporarily out of the game.

For desktop multimedia, all that is reqi~ired is the
ability to capture and display video and audio. Since
machines like the Commodore Amiga were already
based more o n Tv technology than on computer
technology (for cost reasons), they coultl be quickly
ant1 cheaply adapted to handle audio and motion
video. Thus desktop multimedia was born. The

CD-ROM, adapted from autlio CD technology, was the
perfect storage rnetlii~rn for distribution of multi-
media content; and s o for this market segment,
CD-ROM and multimedia became almost synonymous.
There has emerged a whole industry based around
the production of multimedia titles on CD-ROM.

At the high end, for purposes such as full-realism
aircraft simulation o r virtual reality applications,
the solution was to use the highest performance
hardware available, at whatever expense. Typically,
high-end, three-dimensional graphics systems were
coupled either to supercompilters o r to massively
parallel processor arrays. The result was, and still is,
impressive. But the cost is still so high that such vir-
tual reality systems arc not yet commercially viable
except in specialized low-volume markets.

The vast area in the middle, into which all of
Digital's business falls, has developed very slowly.
The problem is that our business is based o n a
model of enterprise-wide computation. The com-
puter systems w e design ant1 sell not only inclucle
processors and displays but incorporate networks
and servers as well. To introduce multimedia into
such a model, o n e touches every aspect of the sys-
tem, from the desktop, through the network, and
back to the servers. At every turn, w e have found
that the technology that has evolved over 30 to 40
years for handling numbers, text, and (more
recently) two-dimensional and three-dimensional
graphics is not quite right for video and audio.
Every component of the system, both hardware and
software, needs to change in some way. We need to
evolve to a model of networked client-server multi-
media computing. Change of this magnitude is a
slow process.

Two challenges are s o pervasive that alniost
every paper in this issue addresses them, each from
a different perspective. First of all, multimedia
involves the handling of large quantities of data.
Second, for many applications, that data must be
handled under very tight time constraints. The
resulting stress and strain on all components of the
system translates into a set of technical challenges
that has occupied us for the last four years and
prornises to keep us busy through at least the rest of
this decade.

Depending o n the picture quality chosen, it may
require from o n e million to o n e hundred million
bytes of storage to save each second of live video in
digital form. Since many applications of multi-
media, such as archiving television footage for
research o r historic preservation purposes, will
need to save many hozirs of video, it is easy to see

th21t n~ultimedia quickly builds dem;lnd for many
gigabytes (1,000,000,000 bytes) of magnetic or opti-
cal disk storage. But storage is only part of the prob-
lem. Once such enormous amounts of data are
stored, the challenge becomes how to retrieve a
particular item of interest. Standard database tech-
niques are orielited toward retrieval of text and
r~un~bers. Retrieval of autlio ant1 video information
will require new file and database techniclues that
;ire only beginning to be untlers~ood.

An obvious application of multirnedia technol-
ogy, once the networks are in place, is telecon-
ferencing. We can envision a day when we can
connect to anyone any place in the world via the
network ant1 carry on a conversation with them,
while each of us sees the other in full-motion video,
using the a ~ ~ d i o ant1 vitleo capabilities of our clesk-
top workstations and PCs. But realizing this vision

has proved surprisingly hard. People expect the
images they see to be synchronized with. the sounds
they hear, and they expect delays to be no worse
than tliose experienced on a long-distance tele-
phone call. Unfortunately, data networks have been
designed to maximize throughput and reliability.
They do this at the expense of some delay in trans-
mission-delay that is annoying at best, and unac-
ceptable at worst, foi- teleconferencing applications.

Successful infusion of multimedia technology
into enterprise-wide computation is proving to
require change on a scale that almost no one antici-
pated. We at Digital are in the midst of this process
of change, ant1 this issuc of the Digital Technical
Jozirrzcrl is a snapsliot, t;~ken at one point in time, of
that process. Together, the papers describe some of
the toughest technical challenges that we face and
in many cases give glimpses into possible solutions.

Robert Ulicbney I

Video Rendering

Wdeo rendering, the process of generating device-dependent pixel data from
device-independent sampled image data, is key to image quality. System compo-
nents include scaling, color adjustment, quantization, and color space conuersion.
This paper emphasizes methods that yield high image qualit34 are fc~st, and ye1 are
simple and inexpensiue to implement. Particular attention is placed on the dc~iua-
tion and analysis of new multilevel dithering schemes. While permitting smaller
frame bzlffers, dithering also prouides faster transport of the processed image to the
display-a k q ~ benefit for the massive pixel rates associated with full-motion video

Perhaps the most influential characteristic govern-
ing the perceived value of a system that displays
images is the way the pictures look. Image appear-
ance is largely dependent upon the quality of render-
ing, that is, the process of taking device-independent
data and generating device-dependent data tailored
for a particular target display.

The topic of this paper is the processing of sam-
pled image data and not synthetic graphics. For
graphics rendering, primitives such as specifica-
tions of triangles are converted to displayable pic-
ture elements or pixels. The atomic elements
handled by a video rendering system are device-
independent pixels. Whereas a prerendered graph-
ics image can be compactly represented as a
collection of triangle vertices, prerendered video
achieves compaction by means of compression
techniques.

Sampling broadcast video requires a data rate of
more than 9 million color pixels per second; the
need of some relief for storage and networks is
clear. Video compression reduces redundancy in
the source image and thereby reduces the amount
of data to be transmitted. Dramatic reductions in
data rate can be achieved with little degradation in
image quality. The Joint Photographic Experts
Group (JPEG) standard for still frame and the
Motion Picture Experts Group (MPEG) and Px64
standards for motion video are current committee
compression techniques.' Several other non-
standard schemes exist, including a simple com-
pression method conclucive to software-only
implernentati~n.~

Vicleo rendering receives decompressed image
data as input. Since every decompressed pixel must
be processed, speed is essential. This paper focuses

on rendering methods that are fast, simple, and
inexpensive to implement. Performance at video
rates can be achieved with minimal hardware or
even software-only solutions.

The Rendering Architecture section reviews the
components of a rendering system and examines
design trade-offs. The paper then presents details
of new and efficient dithering implementations.
Finally, video color mapping is discussed.

Rendering Architecture
Figure 1 illustrates the major phases of a video ren-
dering system: (1) filter and scale, (2) color atljust,
(3) quantize, and (4) color space convert.

In the first stage, the original image data must be
resampled to match the target window size. A sepa-
rate scaling system should be used for the horizon-
tal and vertical directions to handle the case where
the pixel aspect ratio must be changed. For exam-
ple, such asymmetric scaling is needed when the
target display expects square pixels and the original
pixels are not square.

The best filters to use in combination with scal-
ing have been determined from a perceptual point
of view.? When limiting the bandwidth to reduce
the data rate, a Gaussian filter with a standard devi-
ation u = 0.30 X output period is recommended.
For interpolation, the filter preferred (because the
filtered results looked most like the original) was
a cascade of two: first, sharpen with a Laplacian
filter, and second, follow by convolution with a
Gaussian filter with u = 0.375 X input period.

A typical sharpening scheme can be expressed
by the following equation:

I,,,,,, [x,yI = I[XJJI - P*\II[x,yI * J[x,yI, (1)

Digital Technical Jourrral Vo1.5 No. 2 Sprtng 1993

Multimedia

DECOMPRESSED
IMAGE DATA

I
I FILTER

I AND SCALE

I

ADJUST

QUANTIZE a
SPACE
CONVERT * - - -

RENDERED PIXELS

Figure I Image Rendering System

where I[x, y] is the input image, 9[x, y] is a digital
Laplacian filtcr, and "*" is the convolution ~ p e r a t o r . ~
The nonnegative parameter P controls tlie degree
of sharpness, with p = 0 i~itlicating no change in
sharpness. When enlarging, sharpening should
occur before scaling, and when reducing, sliarpen-
ing should take place after scaling. The filtering dis-
cussed here is assumed to be two-dimensional,
which requires image line buffering. For economy,
horizontal-only filtering is sometimes used.

The simplest means of scaling is known as
nearest-neighbor scaling, and its simplest imple-
mentation is based on the Bresenham scan conver-
sion algorithm for drawing straight l i~ i e s .~ This
algorithm can be applied to image scaling ant1 per-
formed with only three registers and one adder."
Further optimizations make this algorithm espe-
cially suitetl for real-time use.'

The second stage of rendering is color adjust,
most easily achieved with a look-up table (LIJ'T).
Each color component uses a separate adjust 1.liT.
In the case of a luminance-chrominance color, an
adjust 1.m for the luminance component controls
contrast and brightness, and LUTs for the chromi-
nance components control saturation.

For so-called true-color frame buffers with 24-bit
depths, visual artifacts that can result from insuffi-
cient amplitude resolution do not occur. With
smaller frame buffers, restricting the amplitucle of

the color components red, green, and blue (R<;R)

with a simple uniform quantizer causes P~lse con-
tours to iippear in slowly varying regions. This issue
leads to the third stage in the rendering system,
quantization.

The three basic classes of techniques for cir-
cumventing the problem of insufficient colors or
color memory are (1) histogram-based methods,
(2) chrominance-s~1bsani1~1ed frame buffers, and
(3) dithering. All histogram-based methods, some-
times called palette selection, require two passes of
the entire image data: the first to acquire the his-
togram statistics to fabricate a three-dimensional
qi~antizer to N colors and the second to perform
the pixel assignments. Perhaps the fastest method
is the popularity algorithm, where a simple sort
finds the IV colors with the highest frequency, and
all other colors are mapped to those."

A more compute-inte~lsive method, but one that
in general performs much better, is the often-used,
median-cut ;~lgorithm.* In this method, the color
space is repeatedly subdivided into smaller rectan-
gular solitls at the median planes, with the goal that
each o f the selected colors represent an equal num-
ber of colors in the image. The average of the colors
in each of the final regions is the color usetl jn the
quantizer. A later, less compute-intensive variation
is the nie;in-split algorithm. Also, several clustering
techniques have been reported that result in less
quantization error than the above-mentionetl rnetll-
ods. One method, for example, minimizes the sum
of the squares of the errors.Vn all cases, ho\vever,
color problems can occur in other application win-
dows because each franie recli~ires a different color
map; tlie colors in tlie other windows become
scrambled in a different way for each color map.

One ;idv;intage of representing image tlata in a
luminance-chrominance space is that clirominance
requires less spatial resolution than luminance to
achieve excellent image quality. Visual perception
of differences in chrominance is much less than that
for luminance. The television standards have been
exploiting this fact for dec;~tles. The quantizatioti
approach of using chromin:ince-subsampled frame
buffers is built on this fact, deferring conversion to
the I i c B components until just after the data is read
for display. 1°.",'2

Typical implementations of chrominance-
subsampled frame buffers average each of the
two chrominance values in a given lumin;~nce-
chrominance color representation over ;I region
that is either 2 by 2 or 4 by 4 pixels. Assuming 8 bits

10 Ibl. i /\b. 2 Spring 199.5 Digilal Tecbrrical Journal

of amplitude resolution per color component, the
2-by-2-pixel case results in an average of ((2 X 2 X 8
luminance bits) + (8 + 8 chrominance bits))/
(2 X 2 pixels) or 12 bits per pixel; similarly, the
4-by-4-pixel case results in 9 bits per pixel. This
approach requires expensive hardware to up-sam-
ple the chrominance components and convert the
color space at vitleo rates. These nonstandard
frame buffers can also cause severe incompatibility
problems with most applications that expect RGD
frame buffers. While chrominance subsamplecl
frame buffers can accommodate most sampled nat-
ural images, thin-line graphics can be annihilated.

The third alternative for quantization is to use
a dithering method. Several methods exist that are
designed primarily for binary output, but all are
extendable to multilevel color.' li A "level" is a
shacle of gray, from black to white, or a shade of
a color component, from black to the brightest
value. The basic principle of dithering is to use the
available subset of colors to protluce, by judicious
arrangement, the illusion of any color in between.

Although neighborhood operations, most notably
error diffusion, produce good-quality dithering,
they are computationally complex and require
additional storage. For video processing, where
speed is essential, we turnetl our focus to those
dithering methotls that are point operations, that is,
methods that operate on the current pixel only
without considering its lleighhors. Each color coni-
ponent of every pixel in the image has an associatetl
"noise" or tlither amplitude that is added to it before
that component is passed to a uniform quantizer.

Historically, the first dithering method used for
video processing was white noise dithering, where
a pseudorandom number was adtled to each lumi-
nance value before quantization. This method was
practiced soon after the dawn of television.I6
However, the low-frequency energy in white noise
causes undesir;~ble textures and graininess.

A preferred method is the point process of
ordered dithering, where a tleterministic noise
array tiles tlie plane in a periodic manner. Dither
arrays can be tlcsigned to mi~iiniize low-frequency
texture. The most popular are tlie so-called recur-
sive tessellation arrays.l7lVThese arrays yield results
superior to those of white noise dithering but suf-
fer from structured rectangular patterns.

A new ortleretl tlither array design, called the
"void-and-cluster" method, eliminates both the low-
frequency textures of white noise and the rectangu-
lar patterns of recursive tessellation arrays.I9 The

name describes the dither array tlesign process in
which voids and clusters are located and mitigated.

For the high-speed case of motion video, an
ordered dithering scheme has important advan-
tages over chrominance-subsampled frame buffers
and histogram-based approaches. Quantization by
dithering allows the use of conventional franie
buffers, does not require tlie time-consuming pro-
cess of making two passes over each frame (or
eve17 Nth frame), does not cause other applications
to change color maps with every Nth frame, and
allows any number of colors to be selected at ren-
der time. Also, experiments have shown that the
image quality achieved by dithering is very compet-
itive with the other methods, when comparecl over
a range of sample images. Even when 24-bit frame
buffers are available, the increasetl speetl of loading
three or four 8-bit color pointers or index values in
the time required to load a single 24-bit pixel makes
dithering a viable alternative in the design of desk-
top video systems.

By way of comparison, Figure 2 illustrates sonic
of the methocls described in this section. A 240-by-
560-pixel, 8-bit monochrome image was rendered
to only two levels and displayetl at 100 dots per inch
(dpi). Figure 2a depicts an image that was ditherctl
wit11 white noise; in Figure 2b, the same image was
tlitherecl using an 8-by-8 recursive tessellation
dither array; and Figure 2c shows the image
ditherecl with the new 32-by-32 voicl-and-cluster
array. To illustrate the effect of sharpening, Figure
2d shows the image in Figure 2c presharpenetl
using a digital Laplacian filter as in equation (I) ,
with a sharpening factor of = 2.0. The goal of this
coarse example is to ampl@ the different effects.
Tlie same methods apply to multilevel and color
output, where the resulting quality is much higher.

Fast Multilevel Dithering
This section presents the cletails o f simple, yet pow-
erful new designs to perform multilevel ortleretl
dithering. Tlie simplicity of these methods allows
for imp1ement;ltion with minimum hardware or
software only, yet guarantees output that preserves
the mean of the input. The designs are flexible in
that they allow dithering from any number of input
levels 4, to any number of output levels No, pro-
vicled A; 2 IY,. Note that and A;, are not restricted
to be powers of two.

Each color component of a color image is treated
as an indepentlent image. The input image Li c;ln
have values

Digitul Technicnl Jorrrtral I/'(5 /\'o 2 \ / I I . I I I ~ I993 1 1

Multimedia

(a) Dither with a White Noise Breshold (6) Dither with an 864,-8 Recursiiw
Tesselllntion Threshold Arrojl

(c) Dither zuitb a 32-6~,3,-.32 Void-ancl-cl~ister
Tlireshold An-aj~

(61) Smne as (c) zuitl'l L L I ~ I N C I ' U I Z .Y/x?rflenitl~,
p = 2.0

Figure 2 Ex6i1npke.s of Rendering to ~ ~ L Y J Outpttt LezMs

L i € {0,1,2 ,..., (l'y - I)),

and the output image L , can have values

A deterministic dither array of size M X N is used
that is periodic and tiles the entire input image. To
simplify aclclressing of this array M and i\r 5houltl
each be powers of two. A tlither template defines
the order in which dither values are arranged. The
elements of the dither template T have values

T E {0,1,2,.. . , (4 - I)) >

where IV, is the number of template levels, which
rellresent the levels ag:~inst which image input
values are compared to determine their ni;~pping
to the output values. The tlither template is thus
central t o determining the nature of the resulting
dither patterns.

Figure 3 shows a dithering system that comprises
two memories and an atlcler. l 'he system takes an
input level Li at image location lx,.y] and produces
output level Lo at the corresponding location in the
dithered output image. The dither array is addressed
by x'antl y', which represent the low-orcler bits of

Video Rendering

+ ARRAY x'-I
Figt~re 3 Dithering Systern wi th Tujo LUTs

the image address. The selected dither value
d[x: y'] is added to the input level to produce the
sum s. This sum is then quantized by addressing a
quantizer I.UT to produce the output level L,,.

The trick to achieving mean-preserving dithering
is to properly generate the LUT values. The dither
array is a normalized version of the dither template
specifiecl as follows:

d[x:y' l = int (A , (T [x : y '] + i)),
where A,, the step size between normalized dither
values. is defined as

and AV isthe quantizer step size

(N, - 1) A =-
-U cry, - 1)

Note that AQ also defines the range of dither values.
The qi~antizer LUT is a uniform quantizer with A;
equal steps of size Ag.

The precise expressions in equations (2), (3) , and
(4) were ;irrivetl at through extensive al~alysis of the
average o i ~ t p i ~ t resulting from processing input
images of a constant value, over a wide range of y,
y,, and N,.

One-menzory Dithering System
Using the above expressions, i t is possible to sim-
pllfy the system by exchanging one degree of free-
dom for another. A bit shifter can replace the
quantizer LUT at the expense of forcing [he number
of input levels 4, to be set by the system. For hard-
ware implementations, this design affords a consid-
erable cost reduction.

The system and method of Figure 3 assume that
q. is given as a fixed parameter, as is usually the case
with most imaging systems and file formats.
However, for image sources such as hardware that
generates synthetic graphics, arbitrarily setting N;.
often has no effect on the amount of computation
involvetl. If an adjust LUT is used to modify the
image data, including a gain makes a "modified
adjust LUT." Figure 4 depicts such a system, where
L,. is the raw input level. The unadjusted or raw
input image can have the values

L,. € {0,1,2,. . .,(fV. - 111,

where q. is the number of raw input levels, typi-
cally 256. Therefore, the modified adjust LIJT must
impart a gain of

4. - 1
1y. - 1 '

To solve for 4, recall that in the method of Figure
3 the quantizer was defined to have equal steps of
size AQ as definecl in equation (4). The qi~antizer
LUT can be replaced by a simple R-bit shifter, if the
variable Ap can be forced to be an exact binary
number,

A, = 2Y (5)

4 can then be set by the expression

N;. = (1V0 - 1) 2 ~ + 1. (6)

The integer R is the number of bits the R-bit
shifter shifts to the right to achieve quantization.
Speceing R in terms of q,, equation (6) becomes

I d l x ' v' l

MODIFIED
Lr[x.yI - ADJUST

LUT SHIFTER

Figure 4 One-memory Dithering System wi th an Adjcut LUTand Bit ,Bfyter

Digital Technicul Jour?~aI Vol. 5 No. 2 Spring 1993 13

Multimedia

R = log, (q - 1)
(4, - 1)'

To completely specify this problem requires speci-
fying the range for 4,. It is rcason;tble to do this by
specifying the number of bits 6 by which the image
input values are to be represented. Specifying 6
lilliits I\: to tlie range

Parameter 6 will be a key value in specitjling tlie
resultin&. ' s y stem.

Given the two expressions, (7) and (8), and the
two unknowns. R and A:, a unique solution exists
because tlie range of IY. is less than a factor of two.
and R ant1 A$ are integers. To solve for R, substitute
equation (6) for N, in equation (8). The res~~lt ing
equation is

l o g - - 1) < R s l o () (10)
N" - I 4, - 1

Since 2 I 4, 5 A:., the range of the expression in
equation (10) must be less than one. Hence, give11
that K is ;in integer,

R = int [log2 (*)I
4) - 1

in equation (6) is now specified.
As an example, consitler the case where 4,

equals 87 (levels), 6 eqilals 9 (bits), 4 equnls 1,024
(levels, for a 32-by-32 templ;ite). and IY. eqilals 256
(levels). 'T'hus, R equals 2, ant1 the R-bit shifter drops
the least-significant 2 bits. 4. equals 345 (levels);
the tlither ;trrav is norni:~lizetl by equation (2) with
A, = 1/256; and the gain factor to be incluclrd in the
modified adjust LUT is 344/255. This data is loatled
into the system represented by Figure 4 i~ntl uni-
formly ni;~ps input pixels ;tcross tlie 87 true output
levels, giving the illusion of 256 levels.

The output image that results from either of the
dithering systems illustratetl in Figure 3 or Figure 4
appears to contain more effective levels than are
actu:~lly displayed. An effective level is either a per-
ceivetl average level that is tlitheretl between two
true o i ~ t l x ~ t levels or shades or an actual true out-
put level. k small nuniher of tenlplate levels 4 clic-
tates the resulting number of effective levels. \Vhen
4 js I;trge, the number of effective levels is equal
to the number of input levels I\:, because it is not

possible to display more effective outputs than
inputs. [More precisely,

Effective Levels = 1 (12)

Note that Aa/N, in equation (12) is equal to A,/ .
When A , < 1, the normalization of the tlither array,
i.e., equation (2), results in integer truncated values
that are not all unique. At this point, the number of
effective levels saturates to N,.

Data Width Analysis
The design of an efficient dithering system, particu-
larly in hardware, depends on knowing the number
of bits recluired for all data paths in the system. This
section presents an analysis of the one-memory
dithering system shown in Figure 4.

The system input 6, i t . , the bit depth o f the
image input values, limits tlie data path for L,lx;y].
The analysis shows the derivation of the precise bit
depths for the other dat;~ paths. In summary, tlie
tlerivation proves that the dither values in the
dither matrix memory recluire R bits, where Rllll,, =
(I? - I) and s = Li + d (and thus tlie R-bit shifter)
require only 6 bits.

Bits iVee~/e~/ fbr Dither iP1~1Lrin' The amount of
memory needed to store the dither matrix is an
import;~nt C O I I C ~ ~ I I ; d,l,l,,,, denotes the maximum
value. To determine dlll~,,, substitute the maximi~m
value of T [x : y 'I, which is (IV, - l), into equation
(2). '['he resulting equation is

dl,,,,, which depends on iV,, thus has a value in the
range

1;or the case of ;I dither matrix with one value,
namely A, = 1, equals the lower end of this
range. dl,,,, equals the high encl of the range for
large dither nlatrices, where 2R-' 5 N,. An inipor-
tant observation is that for all valiles in the range of
expression (14), the number of bits needetl is
ex:tctly K.

Vi~leo Rendering

From equation (ll) , the value of R increases as No
decreases. The smallest possible value of No is 2,
which is for biton;~l output. In this case, the maxi-
mum value of R is

So, the number of bits needed for the dither values
is R, which can be as large as (b - 1).

Bit Width oj'Aclder Recall that s[x,y] = L,[x,y] +
d[x, y] . The number of bits needed for this sum
determines the size of the adder and the size of
the R-bit shifter. L, can be at most (A:. - I) and, as
determined in the last section, d,,, can be at most
(zK - 1). SO,

From equation (6),

which gives

s , , , ~ ~ = ~ ~ (4 , - 1) + (2'- 1) = 2'% - 1. (18)

\Ve can express R in terms of No by using equa-
tion (11):

R = int(logl(2" - 1) - log, (Nj, - 1)). (19)

Each of the two terms in the equation (19) can be
expressed in terms of :un integer part and a frac-
tional part:

log,(2" - 1) = (6 - 1) + E l ,

where

log,(ly, - 1) = K + E,,

where K is an integer, and

0 1 c 2 < 1.

Now equation (19) can be rewritten as

R = (O - 1) - K + i n t (~ , - E ,) (22)

E, IS largest when 4, (an integer) is a large power of
2 Because iV, cannot be greater than 4,

2" 2 4,.
This fact, combinetl with equations (20) ancl (21),
yields the further contlition

E l 2 E,.

Therefore, i n t (~ , - E,) in equation (22) must be
equal to zero, and the value of R becomes

R = b - 1 -K. (23)

We can express No in equation (18) in terms of the
same integer K of equation (21) by noting that

log, ly, = K + E3. (24)

where

O < E ~ I I . (25)

Observe that E, is equal to 1, where iVo is an exact
power of 2. Substituting

No = 2K+E$

and equation (23) into equation (18) gives
- 26-1-K 2 K + ~ , - = 2 h - I + ~ , -

s,,lO.~ - 1. (26)

Because of the range of ej in equation (23 , the
range of s,,,, must be

2b-1 - 1 < s ,,,,,, 5 2 " - 1, (27)

which requires exactly b bits.
As a check, the size of the shift register should

equal the number of bits required for No plus R. The
number of bits needed for 8, is

int(1 + Iog2(yJ - I)). (28)

Using the expression in equation (21), this value
becomes

int(1 + K + E ~) = K + 1.

So, the size of the shift register must be

(K + 1) + (6 - 1 - K) = 6 bits,

which matches the maximum size of the sums.

Color Space Conversion
Referring once again to Figure 1, consider the final
subsystem of a video rendering system-color
space convert. Assuming a frame buffer that is
expecting RGB data, color space conversion is not
necessary if the source data is already represented
in RGR, as in the case of graphics generation
systems. However, motion video is essentially
always transmitted and stored in a luminance-
chrominance space. Such a representation allows
subsampling of the chrominance, as mentioned ear-
lier, which reduces bandwidth requirements; all
video standards exploit this method of bandwidth
reduction. I t is also more intuitive to color adjust in
a luminance-chrominance space.

Digilnl Technical Jortrrrnl Vol. 5 iVo. 2 Spri~fg 1333

Multimedia

Prior to proceeding to the quantize subsystem
shown in Figure 1, all color components must be at
the same final spatial resolution for a dithering
method to work correctljr. Chrominance compo-
nents, then, need to be up-sampled to the same rate
as luminance components.

Although the chromaticities of the RGB primaries
of the major television standards vary slightly, all
television systems transmit and store the color data

((Y-axis out)

in YUV space. Y represents the achromatic compo-
nent that is loosely called the luminance corn-
ponent. (The term luminance has a specific
photometric definition that is not what is repre-
sented in a video Y component.) U and V are color
difference components, where U is proportional to
(Blue - Y) and V is proportional to @ed - Y).

Figure 5 is an orthographic projection of ylrv
space. Inside the W rectangular solid is the

FQure 5 Feasible RGB Values in the YW Color Space

Vol 5 No 2 Spring 199.3 Digital Technicof Jourrral

parallelepiped of "feasible" RGB space. Feasible RGB
points are those that are nonnegative and are not
greater than the maximum supported value. For ref-
erence, the corners of the RGB parallelepiped are
labeled black (K), white (W), red (R), green (G),
blue (B), cyan (C), magenta (M), and ~rellow (L). KGB
and W values are related linearly and can be inter-
converted by means of a 3-by-3 matrix multiply.

In the United States video broadcast system, the
chrominance plane (i.e., the U-V plane in Figure 5)
is rotated 33 degrees by introducing a phase in the
quatlrat~lre modulation of the chrominance signal.
The resulting rotated chrominance signals are
renamed I and Q (for inphase and quadrature), but
the unmodulated color space is still W.

Figure 6 shows the back end of a rendering sys-
tem that uses dithering as a quantization step prior
to color space conversion. A serenclipitous conse-
quence of dithering is th21t color space conversion
can be achieved by means of table look-up. The
collective address formed by the dithered Y, U, and
V values is small enough to require a reasonably
sized color mapping LUT. There are two advantages
to this approach. First, a costly dematrixing opera-
tion is not required, ant1 second, infeasible RGB val-
ues can he intelligently mapped back to feasible
space off-line during the generation of the color
mapping LIIT.

This second advantage is an important one,
because 77 percent of the valid W coortlinates
are in invalid RGR space, i.e., the space around the
RGB parallelepiped in Figure 5. Color adjustments
such as increasing the brightness or saturation can
push otherwise valid KGB values into infeasible
space. In alternative systems that perform color
conversion by dematrixing, out-of-bounds RGB val-

DITHER
SYSTEM

RGB
--t COLOR

INDEX

1
SYSTEM

Fig~~re 6 System for Dithering Three-color
Compotzent.~ and Color Mclpping
the Collectiue Result

ues are simply truncated. This operation effectively
maps colors back to feasible RGR space along lines
perpendicular to a parallelepiped surklce illus-
trated in Figure 5, which can change the color in an
undesirable way. The use o f n color mapping LIIT

avoids these problems.

Summary
Video is beconling an increasingly important data
type for desktop systems. This is especially true as
distinctions between cornp~~ting, consumer elec-
tronics, and communications continue to blur.
While many f;~ctors contribute to the impression
one has of the value of a product that tlisplays infor-
mation, the way the images look can 11i;llie the
biggest difference. This paper focuses on rendering
system designs that are k~st , low cost, procl~~ce
gootl-quality video, and are conducive to hardware
or software implementation.

References

1. Special Issue 077 Digitcil M~lltinzedia .(;3~.slenzs,
Com.wi~lnications of the ACfil, vol. 34, no. 1
(April 1991).

2. B. Neiclecker-Lutz and R. Ulichne): "Software
Motion Pictures;' Digitc~l Teclmzicc~l Jo~~nza l ,
vol. 5, no. 2 (Spring 1993, this issue): 19-27

3. W Schreiber ancl D. Troxel, "Transformation
between <:ontinuous ancl Discrete Kepresen-
tation of Images: A Perceptual Approach,"
IEEE Transactions on Puttern Alzafysis and
Machine Intelligence (PAW/), vol. PAMI-7, no. 2
(1985): 178-186.

4. R . L:lichney, Digit611 HrrlJtot~itzg (Cambridge,
PM: The M IT Press, 1987).

5. J. Bresenham, "Algorithm for Computer Con-
trol of a Digital Plotter," IHll,l S~tste~n.s./oztrnal,
vol. 4, no. 1 (1965): 25-30.

6 F. Gl;~zer, "Fast Bitonal to Graysc:~le Image
Scaling," DEC-Tlt-505 (Maynard, MA: Digital
Equipment Corporation,June 1987).

7. R. Ulichney, "Bresenham-style Scaling," Pro-
ceedings of the ISGT Atztzz~al Cot~fet-ence
(Cambritlge, Phi, 1993): 101 - 103.

8. P Heckbert, "Color Image Quantization for
Frame Buffer Display" Conzp~lter- Graphics
ALiC SIG'GR4PH '82 Corzference Yroceedir~gs,
vol. 16, no. 3 (1982): 297-307.

Digital Tecbrrical Journal 1/01. 5 No. 2 Spring 1993

Multimedia

9. S. Wan, K. Wong, and I? Prusinkiewicz, "An
Algorithm for Multidimensional Data Cluster-
ing," ACIW Trnnsuctions on Muthemutic~il
Soflzunre, vol. 14, no. 2 (1988): 153-162.

10. C . Sigei. R. Abruzzi, and J. ,Munson, "Chro-
matic Subsampling for Display of Color
Images," Ol~lical Society of Arneric~~ Topicnl
Meeling on Applied Vision, 1989 Technical
D~gest Series, vol. 16 (1989). 158-161.

11. A. Luther, Digital Video in the PC Enuiromz-
meizt (New York, NY: Intertext Publications,
McGraw-Hill, 1989): 193-194.

12. L. Glass, "Digital Video Interactive," Byte (May
1989): 284.

13. I? Roetling, "Binary Approximation of Contin-
uous-tone Images," Photographic Science
and Engineering, vol. 21 (1977): 60-65.

14. J. Stoffel ant1 J. Moreland, "A Survey of
Electronic 'I'echniques for Pictorial Reproduc-
tion,'' IEEE Transactions on Co~?zmulziccr-
tions, vol. 29 (1981): 1898-1925.

15. J. Jarvis, C . Judice, and W Ninke, "A Survey of
Techniques for the Display of Continuous-
tone Pictures on Bilevel Displays," Comnputer
Crn,!!hics umzd Image Processing, vol. 5
(1976): 13-40.

16. \X! Goodall, "Television by Pulse Code Modu-
l at ion," Bell Systems Teclhlical journal, vol.
30 (1951): 33-49

17 B. Bayer, "An Optimum Method for Two Level
Rendition of Continuous-tone Pictures, Pro-
ceedings of the IEEE Internation~il Confer-
ence O H Co~7znzui~icutior~~, Confere~zce
Kccord (1973): (26-11)-(26.15).

18. R. Ulichney, "Frequency Analysis o f Ordered
Dither," Proceedings of t l x Society of Pboto-
o ~ l t i c ~ ~ l Iizstrzlrrze~?lutiori L3zgil?eers (SPIE),

VOI. 1079 (1989): 361-373.

19 R. Ulichne): "The Void-antl-cluster Method for
I l i t her Array Gener;ition," Tl7c Society for
Irn~~ging Science and Tcchtzolog~~/~S~~~~zpo-
siiiin on Electronic I~rzclgiiig Science ancl
Tecl!izolog)) (ISGT/SPIE) (February 1993).

18 Vol 5 .\lo 2 $ p ~ , ~ n g 199.3 Digitnl Technical Jounrnl

Burkhard K. Neidecker-Lutz
Robert Ulichney

Software Motion Pictures

Softzvcrre nzotion pictures is a method of generating digital video on general-
)Lir/!ose desktop colnl)ulers zvitho~it using special decompression bardivare. The
co~npressio~z algorilhnz is designed for rapid decomnpression in softzuare and gener-
ates deterministic data rates for use fronz CDROIM and netu~ork connections. The
decompression part oflers device indepe~zdence and integrates well with existing
wi~zdo~u sj~stenls and applicatio~z progralnming ilzteflces. Software motion pic-
lures fecrtures n yortable, low-cost solution to digital video playback.

The necessary initial investment is one of the major
obstacles in making video a generic data type, like
graphics and text, in general-purpose computer
systems. The ability to display vicleo usually requires
some combination of specialized frame buffer,
decompression hartlware, and a high-speed network.

A software-only methocl of generating a video
display provides an attractive way of solving the
problems of cost and general access but poses chal-
lenging qi~estions in terms of efficiency. Although
several digital vicleo standards either exist or have
been proposed, their computational complexity
exceeds the power of most current desktop sys-
tems.1 In addition, 21 compression algorithm alone
does not adclress the integration with existing win-
dow system hardware and software.

Software motion picti~res (SMP) is both a vitleo
compression algorithm ancl a complete software
implementation of that algorithm. SMP was specdi-
cally designed to address all the issues concerning
integration with desktop systems. A typical applica-
tion of SMP on ;I low-entl workstation is to play back
color digital vicleo at ;I resolution of 320 by 240
pixels with a cocled data rate of 1.1 megabits per
second. On a DECstation 5000 Model 240 H X work-
station, this task uses less than 25 percent of the
overall rn;tchine resources.

Together with suit;~ble ;~i~clio s ~ ~ p p o r t (audio sup-
port is beyond the scope of this paper), software
motion pictures provides portable, low-cost digital
video playback.

The SMP Product
Digital supplies SMP in several forms. The most
complete version of SMIIP come5 with the XMedia
Toolkit This toolkit is primarily clesigned for devel-
opers of multimeclia applications who include the

SMP functionality inside their own ;~pplications.
Figure 1 shows the user controls as displayed on a
workstation screen. SMP players are also available
on Digital's freeware compact disc (CD) for use
with Alpha AXP worltstations running the DEC.:
OSF/l AXP operating system. In addition, SMP plap-
back is included with several Digital products such
as the video help utility on the SPIN (sound picture
information networks) application, as well as other
vendors' products, such as the MediaImpact multi-
media authoring system.2

In the XMedia Toolkit, access to the SMP functions
is possible through X applications, command line
utilities, and C language libraries. The applications
and utilities support simple editing operations,
frame capture, compression, and other functions.
Most of these features are intenclecl for use by pro-
ducers of simple file formats called SivIP clips.

The decompression fiinctionality is offerecl as an
X toolkit widget that readily integrates into the
Open Software Foundation's (OSF) Motif-based
applications. Multiple SMP coclecs (compressors/
decompressors) on a given screen all share the
same color resources with one another and with
the Display I'ostScript X-server extension, which is
offered by all major workstation vendors. It also
plays well with the standard color allocations used
in die Macintosh QuickDraw rendering system and
Microsoft Windows standard color allocations.

To facilitate flexible but simple access to entire
films of SMP frames, SMP defines SMI-' clips. Rather
than publisl~ing that file format directly all applica-
tions and widgets are accessed through an encap-
sulating library. This method allows future releases
to have application-transparent changes to the
underlying file structure and completely different
ways to store and obtain SMP frames.

Digital Tecbrrical Jorirrrcrl Vol. 5 iVo. 2 , S / > J - ; J I ~ 199.3

Multimedia

--
I

a SMP Player 1

File _Unk F~~ -
, . J
Y.! . .c
,-:-

Figtire I User Controls as Di.~plgyecl on the
Workstc~tion Screen

An esample of the latter is the storage of SMP
clips directly in a relational database system in
which no files exist, such as SQL hlultimedia. The
video data is stored directly in database records,
and the client receives the data through the stan-
dard remote database access protocols. At the
receiving client, the SMP clip library is used to gen-
erate a virtual SiLlP clip for the application program
by substituting a new read function.

The SMP product also contains image converters
that translate to anti from the popular PBMPLUS £am-
ily of image formats, allowing import and export to
about 70 different image formats, including the
Digital Document Interchange Format (DDIF). This
allows the use of almost any image format as input
for creation of SMP clips.

Historical Background and
Reqziirements
In 1989 Digital's Distributed Multimedia Group
experimented briefly with an algorithm called
color cell compression (CCC) that had been

described in 1986 by Campbell et al.5 CCC is a cod-
ing method that is optimized for rapid decom-
pression of color images in software. \Ve built a
demonstrator that rapidly displayed CCC-coded
images in a loop to create a motion video effect.
'The demonstrator then served as our study
vehicle to create a usable product for digital vitleo
playback.

Performing digital video entirely in softwarc
woulcl stress the systems at all levels (I/O, proces-
sor, ancl graphics), so we needetl to establish upper
bounds for what we could hope to achieve with our
desktop systems and workstations.

From the user's perspective, large sizes and high
frame rates are desirable. These features need to be
balanced with the limitations of real hardware. \We
modeled the data path through which digital video
would have to flow in the system and measured the
available resources on the slowest system we
would use, a DECstation 2100. This workstation has
a 12.5-megallertz (MHz) MIPS R2000 processor anti
a simple, 8-bit color frame buffer.

By merging this measurement with user feedback
concerning the smallest acceptable image size and
frame rate, we set our performance goal to play
back movies of size 240 by 320 on the slowest
DECstation processor with an 8-bit display at 15
frames per second. Smaller viewing sizes are almost
invisible on a typical high-resolution workstation
screen.

We settletl for a frame rate of 15 frames per sec-
ond. This rate is reasonably smooth: to the human
eye, it appears as motion rather than separate
images. It can be generated easily from 30-frame
source material, such as standard video used in
North America and Japan, by taking every other
frame. Consequently, on the DECstation 2100 we
would have at most

12.5 X 10%lock cycles/second
(320 X 240 X 15) pixels/second =

cycles
per pixel

Thus, we must average no more than (approxi-
mately) ten machine instructions to decode and
render each pixel to the screen.

In order to set our target for compression
efficiency, we looked at the volume of data and pos-
sible distribution methods. CD-ROM looketl promis-
ing, and this data rate was also chosen by the
Motion Picture Experts Group (MPE(;)-I standard.4
Hence our coded data rate goal was to maintain

a cotletl dat:~ rate for this size and frame rate
that woultl allow playback from a CD-ROM. TO
achieve this goal, we limited tlie cotletl data rate
for the video component to 135 to 142 kilobytes
per seconcl for video, leaving 8 to 15 kilobytes per
second for audio. In adtlition, we had to limit fluc-
tuations of the coded data rate to allow sensible
use of bandwidth reservation protocols for play-
back over a network without coniplex buffering
schemes.

More interesting were the issues that became
apparent when we attempted to use the prototype
for real applications. The digital video material hacl
to be usable on a wide range of display types, and
due to its large volume, keeping specializetl ver-
sions for different displays was prohibitive. \Ye
would li;~ve to adapt the rendition of the coded
m;~terial to the device-tlej>enclent color c;rpabilities
of the target tlisplay at run time.

Our design center used 8-bit color-mapped dis-
plays. These were (antl still are) the most common
color tlisplays, ant1 tlie demonstrator was based
on them. Integration of tlie video into applications
in a multitasking environment necessitated that
computational as well as color resources were
available for use by other i~pplications. The system
woultl have to perform cooperative sharing of
the scarce color resources on tlisplays with limited
color ci~pitbil ities.

From the perspective of portability, we needed
to con€orni to existing X11 interfaces, without any
hidden back tloors into the window system. The
X Window System affords no direct way of writing
into the frame buffer. Rather. the MITSHM extension
is used to write an image into a shared memory seg-
ment, and then the X server must copy it into the
frame buffer. This method woultl impact our
;~lreatly strained CPIJ butlget for the codec opera-
tion. We woultl need to decompress video in our
code and have the X server perform a copy opera-
tion of the deconipressed video to tlie screen, again
using the main CPU. Quick measurements showed
that the copy alone woultl use ;ipproximately 50
percent of the <:PI, budget for an 8-bit frame buffer,
ant1 ;inother 5 to 10 percent would be used by read-
ing the cotled tlatii from I/O tlevices.

Witli approximately five clock cycles per pixel
yet to be rendered, it became clear why none of the
standarcl video algorithms was of any use for such a
task. We went back to the original CCC algorithm
and started the development of software motion
pictures.

Comparison with Other
Video Algorithms
Today (early 1993), a number of digital video coni-
pression algorithms are in use. All of them ;ire
guarded closely as proprietary and t1iereh)re
closed, and only one algorithm predates the devel-
opment of SMP. Although we c o ~ ~ l d not builcl o n
experiences with these for our work, \ye believe
the internal working on most of them is siniil;ir to
SiMP with some adtlitions.

A popular methotl for video compression is
frame differencing. Rather than each frame being
encoded separately, only those parts of tlie images
that have changed relative to a preceding (or
fluture) frame are encoded (together with tlie infor-
mation that the other blocks ditl not change). 'I'his
method works well for some input m;~teri;~l, for
example, in video conferences wliel-e the camera
does not move. The methotl fails, however, on
alniost all other video material.

To enable frame differencing on a wider range of
input scenes, a method known ;a motion estini;~-
tion is used by some algorithms. The encoder ti)r an
image sequence performs a se;~rcli h)r blocks that
have movetl between frames ant1 encodes the
motion. This search step is coliij>~~tation;~Ily very
expensive and usually clefeats re;~l-time encotling,
even for special-purpose Ii;~rdw;~re.

One of the earliest algorithms was digital video
interactive (DVI) from Intel/lHM. It comes in two
variations, real-time video (RTV) ant1 protluction
level video (PL\J). RTV uses an unknown block
encoding scheme and frame difkrencing. I'L\'
aclds motion estimation to this. 1U'I1 is cornp;lr;ible
to SMP in compression efficiency cornpt~t;~tionally
more expensive, and much worse in ini;ige clu;~litj!
PLV cannot be clone in software ;~nd I-equjres
special-purpose supercomputers for compression.
Compression efficiency of Pl,V is about twice as
good as SMP, ancl image quality is somewhat hetter.
The more recent INDEO video boards from Inrel
use 1 W .

In 1992 Apple introtluced QuickTime, which
contains several video cornpression cotlecs. "l'he
initial Roadpizza (1V) video cotlec uses .simple
frame differencing and a block encoding similar to
CCC, but without the color quantization step. (This
is a guess based on the visual appearance and per-
formance characteristics.) Compression efficiency
of IW is three times worse than SM t', ;lntl irn;~ge clual-
ity is comparable on 24-bit displ;~ys nntl much
worse than SIMI-' on 8-bit displays. I'erformance is

Digital Tecbtric~l Jour-nnl VoI. 5 No. 2 Spring I993 2 1

Multimedia

difficult to compare since SMP does not yet run on
Macintosh computers.

The newer Compact Vicleo (Cv) codec intro-
duced in QuickTime version 1.5 is similar to CCC

with frame differencing and has con~pression
efficiency much closer to SMP. Image quality on
8-bit displays is still lower than SIMP, and compres-
sion times are almost unusable (i.e., long).

The newest entry into the market for software
video codecs is the video 1 codec in Microsoft's
Video for Windows procluct. Very little is known
about it, but it seems to be close to CCC with frame
differencing. Finally, Sun Microsystems has inclutled
CCC with frame differencing in their ilpcoming ver-
sion of the x l ~ . imaging library.

Three well-known standards for image and video
compression have been established by the Joint
Photographic Experts Group (JPEG) and the Motion
Pictilre Experts Group (MPEG) committees of
the International Organization for Standardization
([SO) and by the Conlit6 Consultatif Internationale
de T616graphique et Tt l tphoniqi~e (CCITT). These
standards are computationally too expensive to be
performecl in softw;lre in all but the most pon~erful
workstations totlay.

The Algorithm
The SMP algorithm is a pixel-based, lossy compres-
sion algorithm, designed for minimum Cl'u loatling.
I t features acceptable image quality, medium com-
pression ratios, and a totally pretlictable coded data
rate. No entropy-based or computationally expen-
sive transform-based coding techniques are used.
The downsicle of this approach is a limited image
quality and compression ratio; however, for ;I wide
range ofapplications, SMP quality is sufficient.

Block Truncation Coding
In 1978, the method referred to as block truncation
coding (HTC) was independently reported in the
United States by Mitchell, Delp, and Carlton and in
Japan by Kishimoto, Mitsuya, ancl Ho~hida.3.~,6.?

BTC is a gray-scale image compression technique.
The image is first segmented into 4 by 4 blocks. For
each block, the 16-pixel average is found and used
as a threshold. Each pixel is then assigned to a high
or a low group in relation to this threshold. An
example of the first stage in the coding process is
shown in Figure 2a, in which the sample meal1
is 101. Each pixel in the blocl< is thus truncated to
1 bit, based on this threshold (see Figure 2b).

(a) The arlerage of these 16pixels is 101.

(6) The auernge (g 101 i s ~lsecl 61s cf thr~s l~old
to segment the block.

Figure 2 Block Tr~lncution Coding of
n 4 03) 4 Blotk

For each of the two groups, the ;Iver;cge is then
calculated again, giving a low average, a, ant1 a high
average, b. Mathematically, the first ant1 second sta-
tistical moments of the block are preserved.
Therefore, for a block of m pixels, with y pixels
greater than the sample mean x2, and sample vari-
ance Z2, it can be shown that

More intuitively, the bit mask represents the
shape of things in the block, and the avemge lumi-
nance and contrast of the block contents are pre-
served. With this coding method, for blocks of 4 by
4 pivels and 8-bit gray values, ;I 16-bit mask ant1 two
8-bit values encode the 16 pixels in 32 bits for a rate
of 2.0 bits per pixel.

Color Cell Compression
Lema and Mitchell first extended 111'<: to color
by employing a luminance-chrominance space.H
However, the tlirection taken by Campbell et al.
was comput;~tionally faster for decode.+ In this
approach, a luminance value 1s computed for each
pixel. As in the BTC algorithm, he sample mean of
the luminance in each 4 by 4 block is used to seg-
ment pixels into low and high groups based o n
luminance values only. The 24-bit color values
asslgned to the low ;lnd high groups are fo~~ncl by
independently solving for the 8 - b ~ t red, green, . ~ n d

Softtunre Plotion Pictzrres

blue values. This :~llows each block to be repre-
sentetl by a 16-bit mask and two 24-blt color values,
for a cotling rate of 4 bits per pixel.

The 24-bit values are mapped to a set of 256 8-bit
color inclex values by means of a histogram-based
palette selection scheme known as the median cut
algorithm "Thus every block can be represented by
two 8-bit color indiccs and the 16-bit mask, yielding
2 b ~ t s per pixel; however, each image frame must
also send the table of 256 24-bit color values.

Softzuc~re Motion Pictures Compression
With our goal of 320 by 240 image resolution play-
back at 15 frames per second, straight CCC coding
would have resulted in a data stream of more than
292 kilobytes per second, which is well beyond the
capabilities of stanclarcl CD-ROM drives. Thus SMP
neetletl to improve the compression ratio of CCC
approximately twofold.

Given that we could not apply any of the more
expensive compression techniques, we lookecl for
comp~~tationally cheap data-reduction techniques.
Since most of these techniques negatively impact
image quality, we needed a visual test bed to judge
the impact of each change.

We compi~tetl the images off-line for a short
sequence, frame by frame, and then preloaded the
images into the workstation memory. The player
program then moved the images to the frame buffer
in a loop, allowing us to view the results as they
would be seen in the final version. The use of this
technique provided two advantages. First, we
co~llcl discover motion artifacts that were invisible
in any individual frame. Second, n7e could judge the
covering aspects of motion, which tends to brush
over some defects that look objectionable in a still
frame.

At first, interfr21rne or frame difference coding
looked like a reasonable technique for achieving
better compression results without sacrificing
image clirality, but this was highly dependent on the
natilre of the input material. Due to the low CPU
budget, we coulcl not use any of the more elaborate
motion compens;ltion algorithms, so even slight
movements in the input video material largely
defeated frame differencing. Typically, we achieved
only 10 percent better compression with inter-
frame coding, while introducing considerable
complexity to the compression and decoding oper-
ations. As ;I result, we clropped interframe coding
and m;~tle SMP a pure intraframe method, simplfi-
ing editing operations and random access to

digitizecl material. At the same time, this opened up
use of SMP for still image applications.

To reach our final compression ratio goal of
approximately 1 bit per pixel, we settled for a com-
bination of two subsampling techniques. Similar
techniclues have been independently described by
Pins, who conducted an exhaustive search and eval-
uation of compression techniques.I0 His finclings
served as a check on our experiments.

Blocks with a low ratio of foreground-to-back-
ground luminance (a metric that can be interpreted
as contrast) are represented in SMP by a single color
and no mask. This reduces the coded representa-
tion to a single byte compared to 4 bytes in CC<;,
which amounts to a foilrfoltl subsampling of such
blocks. No chrominance information enters into
this decision. It is surprising, but even very marked
chrominance differences in foreground/backgroi~nd
pairs are readily accepted by the human eye.

With the introduction of a second kind of block,
additional encoding information was necessary to
distinguish normal (structured) CCC blocks from
the subsampled (flat) blocks. In the SMP encoding,
this is handled by a bitmap with one bit flagging
each block.

Because the adaptive subsampling alone did not
yield enough data reduction for our compression
goal, we added fixed subsampling for the struc-
tured blocks. The horizontal resolution of the
structured blocks in SMP is halved relative to CCC by
horizontally averaging two neighboring pixels,
which reduces the number of bits in the mask from
16 to 8. This reduction leads to blurred vertical
edges but looks reasonable for natural vicleo
images. Fixed subsampling allowed the encoding of
structured blocks with 3 bytes instead of 4 bytes.

Wfe reapplied these ideas to the original gray-
scale block truncation algoritlun. We added a varia-
tion to the format that does not use a color look-up
table but interprets the foreground and background
colors directly as luminance values. Images com-
pressed in this format code gray-scale input mate-
rial more compactly (there is no need to transmit
the leading color look-up table as in CCC); they also
do not suffer from the quantization band effects
inherent in the color quantization ~lsed in the Ccc
algorithm.

We varied the ratio of flat to structured blocks
to effect a trade-off between image quality and
compression ratio; however, the range of useful set-
tings is relatively small. If too few structured blocks
are allocated, the image essentially is scaled down

Digital Iicchrrical Jorr~~irtl lhl. 5 IVO. 2 5pring 1993 2 3

Multimedia

fourfold, which makes the image look very block\..
If too many structured blocks are allocatetl. regions
of the image that have little clet;~il ;Ire encoded with
unnecessary overhead. Over the wide range of
images we tested, allocating between 30 percent
;inti 50 percent of structured blocks worked best,
yieltljng a bit rate of 0.9 to 1.0 bits per pixel. For
color ini;iges, the overhead of the color t;ible (768
bytes) must be added.

Decompression
l'he most challenging part of the design of the
S&lP system. given the performance requirements,
is the decompression step. Efficient rendering
techniques of block-truncation cotling are well
known for certain classes of oiitpl~t tlevices.5
SMI-' improves on the in1plement;itions described
in the literature by coniple~nenting the r;lw algo-
rithm with efficient, device-independe~it renclering
engi~ies .~.~.H~(~" To maximize code eflicienc): n sepa-
rate decompression routine is used for each clisplay
sitii;ttion, rather than using contlitionals in a more
generic routine. The current implement;ition can
rcnder to 1-, 8.. and 24-bit displ;~ys.

1)ecompression of BT(: involves filling 4 by 4
blocks of pixels with two colors untler a mask.
Recause the size and alignment of thc blocks is
known, ;I very fast, fiill!~ unrol let1 code sequence
c:in be ilsed. Changes of brightness and contrast of
thc image can be rapidly adaptetl to tlifl'erent view-
ing conclitions by manipulating the entries of the
colormap of the SMP encotling. Most of the work
lies in adaptation of the color contcnt of the decom-
pressed tlata to the device cli:~r;~cteristics of the
frame buffer.

For displays wit11 fitll-color c;~pabilities (24-bit
true color). the process is straiglitforwartl. The
main problem is performing the copy of the tlecom-
pressed vicleo to the screen. Sincc 24-bit d n t ; ~ is usu-
all), ;~lloc;ited in 32-bit wortls, the ;rnlount of data to
copy is four times the 8-bit case. "ryypically, SIMP

spentls 90 percent of the c:I-'rl time in the screen
col>y on 24-bit systems.

The Inore common and interesting case is to
clecompress to an 8-bit color representation. Given
tliat SMP is an 8-bit, color-indexed format, it would
seem straightforwarcl to tlownlo:itl the SMP frame
color table to the window system color t;tble and
f i l l the image with the pixel indices directly. This
methotl is impractical for two reasons. First, most
wintlow systems (including X11) tlo not allow
reservation of all 256 colors in the 1i:irdware color

tables. Typically, applications and window man-
agers itse a few of the entries for system colors ant1
cursors. Qu;~ntizing down to a smaller number of
colors (such ;IS 240) could overcome this drawback
to a certain tlegree; however, it would make the
SMP-cotled materi;il depenclent on the device cliar-
acteristics of ;I p;irticitlar window system.

The second and mucli more problematic aspect
is that the SMP frames in a sequence usually have
different color tables. Consequently, each frame
requires a change of color table that causes a kalei-
doscopic effect for the windows of other applica-
tions on the screen. In fact, flashing cannot be
eliminated within the sMp window itself.

Neither XI1 nor other popular window sjlstenis
such as Microsoft Windows allow reload of the
color table and the content of an image at the same
time. "Illerefore, regartlless of whether the color
table or image contents is modified first, a flashing
color effect takes place in the SMP window. It may
seem that the update would have to be done in a
single screen refresh time as opposecl to simultane-
ously. This is true but irrelevant. Most window
systems clo not allow for such fine-grain syncliro-
nization; and for performance reasons, it was unre-
alistic to expect to be able to update the image in a
single, vertical blanking periocl.

Alternative suggestions to avoid this problem
have been proposed in the literature. One sugges-
tion is to use ;I single color table for the entire
sequence of frames.1o," This method is computa-
tionally expensi\.e and fails for long sequences ancl
editing operations. Another proposes quantization
to less than half of the available colors or partial
updates of the color map and use of plane masks."
This alternative is not particularly portable
between different window systems, and the use of
plane masks can have a disastrous impact on perfor-
mance h)r some frame-buffer implementations
such 21s the (:X adapter in the DECstation protluct
line.

Neither of these methods addresses the issue of
monochrome displays or the use of multiple sinlul-
taneous SMP movies on a single display. (This effect
can be witnessed in Sun Microsystems' recent addi-
tion of C<:C coding to their XIL library.) To keep
device influence out of the compressed material
and to enable the use of SMP on a wide range of
tlevices ant1 window systems, a generic tlecoupling
step was :~tlded between the colors in the SMP
frame and the clevice colors used for rentlition on
the screen.

24 k1. 5 iVo. 2 .S/)~. irrg 199.3 Digital Tecbnicnl Journnl

So(trifar-e ~llotio?z Pictures

A well-known technique for matching color
images to devices with a limited color resolution is
dithering. Dithering trades spatial resolution for an
apparent increase in color and luminance resolu-
tion of the display device. The decrease in spatial
resolution is less of an issue for SMP images because
of their inherently limited spatial resolution capa-
bility. Thus the only challenge was the computa-
tional cost of performing dithering in real time.

Fortunately, we found a dithering algorithm that
allowecl both good quality and high speed.I2 It
reduces quantization and mapping to a few table
look-up operations, which have a trivial hardware
implementation (random access memory) and a
reasonable software implementation with a few
adds, shifts, and loatls.

The general software implementation of the
dithering algorithm takes 12 instructions in the
MIPS instruction set to map a single pixel to its out-
put representation. For SMP decoding, two differ-
ent colors at most are in each 4 by 4 block. With this
distribution, the cost of dithering is spread over the
'16 PLYCIS in each block.

Another optimization used heavily in the 8-bit
decoder is to manipulate 4 pixels simultaneously
with a single machine instruction. This technique
increases performance for decompressing and
dithering to 3.2 instructions per pixel in the MIPS
instruction set, including all loop overhead, decod-
ing of the encoded data stream, and acljusting con-
trast ant1 brightness of the image (2.7 instri~ctions
per pixel for gray-scale). This efficiency is achieveel
by carefill merging of tlie decoding, decompres-
sion, ant1 dithering phases into a single block of
code and avoiding intermediate results written to
memory. The cost of the 1-bit and 24-bit decoders is
the same or lower (3.2 and 2.9 instructions per
pixel, respectively).

Compression
The SMP compressor takes an input image, a desired
coded image size, and an output buffer as argu-
ments. It operates in five phases:

Input scaling (optional)

Block truncation (luminance)

Flat block selection

Color quantization (color SMP only)

Encotling and output writing

Although the initial scaling is not strictly part of
the sMp algorithm, it is necessary for different input
sources. Fast scaling is offered as part of both the
library and the command-line SMP compressors.
Instead of simple subsampling, true averaging is
used to ensure maximum input image quality.

The block truncation phase makes two passes
through each 4 by 4 block of the input. The first
pass calci~lates the luminance of each individual
pixel and sums them to fintl the average luminance
of the entire block. The second pass partitions tlie
pixel pairs into the foreground and background
sets and calculates their respective luminance ancl
chrominance averages.

The flat-block-selection phase uses the desired
compression ratio to decicle how many blocks can
be kept as structured blocks and how many need to
be convertecl to flat blocks. The luminance differ-
ence of the blocks is calculated, and blocks in the
low-contrast range are marked for transition to flat
blocks. Because the total average was calculated for
each block in the preceding phase, no additional
calculations are needed for the conversion of
blocks, and the mask is thrown away. Colors are
entered into a search structure during this phase.

The color quantization phase uses a median cut
algorithm, biased to ensure good coverage of the
color contents of the image rather than minimize
the overall quantization error. The bias methotl
ensures that small, colored objects are not lost due
to large, smoothly shaclecl areas getting the lion's
share of the color allocations. These small objects
often are tlie import;uit featilres in motion
sequences and have a high visibility despite their
small size.

The final encotling phase builcls the color table
and matches the foreground/background colors of
the blocks to the best ni;~tclies in the chosen color
table.

The gray-scale compression can be much faster
because neither the quantization nor the matching
step need be performed. Also, only one-thkd of the
uncompressed video data is usually read in, making
gray-scale compression fast enough to enable real-
time compression on faster workstations and video-
conferencing type applications.

This speed is partly due to the %bit restriction in
the mask of each structured block. This restriction
permits the algorithm to store all intermediate
results of the block truncation step in registers on
typical reduced instruction set conlputer (MSC)

machines with 32 registers. The entire gray-scale

Digital Technical Joul7rnl Vol 5 iVo 2 Spring 199.3 2 5

[Multimedia

compression algorithm can be done on a MIPS
R3000 with 8 machine instructions per input pixel
on average, all overlieacl (except input scaling)
included.

Unfortunately, for color processing, SMP com-
pression remains an off-line, non-real-time pro-
cess, albeit a reasonably fast one at 220 instructions
per pixel. A 25-MHz R3000 processor can process
more than 40,000 frames in 24 hours (DECstation
5000 Model 200, 320 by 240 at 15 frames per sec-
ond, TX/PIP as frame grabber), equivalent to 45 min-
utes of compressed video material per day. The
more recent DEC 3000 AXP Model 500 workstation
improves this number threefold, so special-purpose
hardware for compression is unnecessary even for
color SMP.

Portability
A crucial part of the SMP design for portability is the
placement of the original SMP codec on the client
side of the X Window System. This allows porting
and use of SAW on other systems, without being
at the mercy of a particular system vendor for inte-
gration of the codec into their X server or witidow
system.

This placement is enabled by tlie efficiency of the
SiLlP decompression engine, which allows many
spare cycles for performing the copy of tlie decom-
pressed, device-dependent video to the window
system.

Currently, SMP is offered as a product only on the
DECstation family of workstations, but it has been
ported to a variety of platforms, including

DEC AXP workstations running the DEC OSF/l
AXP operating system

Alpha AXP systems running the OpenVMS oper-
ating system

D E C ~ C AXP personal computers running the
Windows NT AXP operating system

VAX systems running the VMS operating system

Sun SPARCstation

IBM ~ ~ / 6 0 0 0 system

HP/PA Precision system

Microsoft Windows version 3.1

Generally, porting the SMP system to another plat-
form supporting tlie X Wintlow System requires the
selection of two parameters (host byte order and
presence of the MITSHM extension) and then a com-
pilation, l'he same codec source is used on all the
above machines; no assembly language or machine-
specific optimizations are used or needed.

The port to Microsoft Windows shows that
the same base technology can be usetl with other
window systems, although parts specific to tlie win-
dow system had to be rewritten. The codec code is
essentially identical, but the extreme shortage of
registers in the 80x86 architecture and the lack of
reasonable handling of 32-bit pointers in C lan-
guage under Winclows warrant a rewrite in assem-
bly language on this platform. We do not expect
this to be an issue on Windows version 3.2, clue to
be released later in 1993.

Conclusion
Software motion pictures offers a cost-effective,
totally portable way of bringing digital video to the
desktop without requiring special investments for
add-on hardware. Combined with audio facilities,
SMP can be used to bring a complete video playback
to most desktop systen~s. The algorithm and irnple-
mentation were designed to be used from (:ll-ROMs
as well as network connections. SMP ~ e i l n i l e ~ ~ l y
integrates with the existing windowing system soft-
ware. Hecause o f its potentially universal i~vailabil-
ity, SiMP can serve an important function as the
lowest common denominator for digital video
across nlultiple platforms.

Acknowledgments
We would like to thank all the people who have
contributed to making software motion pictures a
reality. Particular thanks go to Paul Tallett for writ-
ing the original demonstrator and insisting on the
importance of a color version. He also implemented
the vMS versions. Thanks also to European External
Research for making the initial research ant1 later
product transition possible. Last but not least,
thanks to Susan Angebranndt and her engineering
team for their help and confidence in this work.

Refmences

1 . Special Issue on Digital multimedia Systems,
Com~~z~.~~?icat iolzs of the AGM, vol. 34, no. 4
(April 1991).

W,1 5 iVo 2 ([)r117<y 1993 Digitnl Technical Jo~trtrrrl

2. L. Palnier ancl R. Palmer, "DE<:spin: A Net-
worked Desktop Videoconferencing Applica-
tion," Digital Technical Jozlmal, vol. 5, no. 2
(Spring 1993, this issue): 65-76.

3. G. C;~rnpbcll e t a]., "Two Bit/Pixel Full Color
Encoding," SIGCMPI-1'86 Conference Pro-
ceedings, vol. 20, no. 4 (1986): 215-223.

4. D. LeGall, "MPEG: A Video Compression Stan-
d;lrd for Multimedia Applications," Conlnz~~ni-
cations of the ACM, vol. 34, no. 4 (April 1991):
47-58.

5. 0. ~Mitchell, E. Delp, and S. Carlton, "Block
'rruncntion Coding: A New Approach to
111i;lge Compression," Conference Record,
IFliB International Confererzce Communicn-
tiorzs, vol. 1 (June 1978): 12B.l.l- 12B.1.4.

6. T. Kishimoto, E. Mitsuya, and K. Hosliicla, "A
Method of Still Picture Coding by Using Statis-
tical I'roperties" (in Japanese), Proceedings of
Lloe Mltionnl Conference of the Institute of
Electrorzics and Co~nmunications Engineers
f,SJc~/)a?z, no. 974 (March 1978).

7. E. Delp :inel 0. ~Mitchell, "Image Compression
Using Block Truncation Coding," ILEli Tr~llzs-

actiorzs on Co7rzr7z~rnicatiorzs, vol COM-27
(1979) 1335- 1342

8. M. Lenia and 0. Mitchell, "Absolute Moment
Block Truncation Coding ant1 Its Application
to Color Images," //iB/:' Trunsactions o n Corn-
nzunicntions, vol. <:OM-32, no. 10 (1984):
1148-1157.

9. I? Heckbert, "Color Image Quantization for
Frame Buffer Display," Cornpzlter Graphics
(AVIC S IGCMPH'82 Conference Proceedings),
vol. 16, no. 3 (1982): 297-307.

10. IM. I'ins, "Analyse uncl Auswahl von Algorith-
men zur Datenkonipression utiter besonderer
Beriicksichtigi~ng von Bildern und Bildfol-
gen:' Ph.D. thesis, IJniversity of Karlsrul-le,
1990.

11. B. Lamparter and W Effelsberg, "Digitale
Filrniibertragi~ng und Darstellung im S-

Window-System," Lehrstuhl fur Praktische
Informatik N , University of Mannheim, 1991.

12. R. Ulichne): "Video Rendering," Digital Ech-
nicalJozrrna1, vol. 5, no. 2 (Spring 1993, this
issue): 9-18.

Digital Techtriccrl Jorrrrrnl Vol 5 No 2 T/>r.tn(: /99j 27

Davis Yen Pan I

Digital Audio Compression

Compared to most digital data types, with the exception o f digit611 uideo, the data
rates associated wzth uncompressed digital audio are su6st~~ntial Digital azidio
cor~zpression enables Inore eflicient storage and t~~~in.s~nission of ~ u d z o data The
inany fonns of cl~lclio co~npression tec/?niqz~es offer a range Of encoder and decoder
comnplexitJ,, co~npressed audzo quality, nizd dffer/iig ornotints of d~ilcl ccorrzpression
The p-law transJor~nation and ADPCJI coder are simllple ~rpproaches with lozi1-
complexity, lou8-compression, and medium azidio quality algoritl~nzs The ;UPEG/

audio standard is a high-complexity, high-compression, arzd high audio qziality
algorithm These techniques apply to general audio sigrznls and are not specifically
tuned for speech signals

Digital audio compression allows the efficient stor-
age and transmission of audio data. The various
audio compression techniques offer different levels
of complexity, compressecl audio quality, ant1
:imount of clata compression.

This paper is a survey of techniques itsetl to corn-
press digital audio signals. Its intent is to provide
usefi~l information for readers of all levels of experi-
ence with digital audio processing. The paper
begins with a summary of the basic audio digitiza-
tion process. The next two sections present
detailed descriptions of two relatively simple
approaches to audio compression: p-law ant1 adap-
tive differential pulse code modulation. In the fol-
lowing section, the paper gives a n overview of a
third, much more sophisticated, compression
audio algorithm from the Motion Pictilre Experts
Group. The topics covered in this section are quite
complex and are intended for the reader w h o is
familiar with digital signal processing. The paper

concludes with a discussion of software-only real-
time implementations.

Digital Audio Data
The digital representation of audio data offers
many advantages: high noise irnmunit): stability
and reproclucibil.ity, iludio in digital form ;11so
allows the efficient implementation of many audio
processing fiinctions (e.g., mixing, filtering, ant1
equalization) through the digital computer.

The conversion from the analog to the digital
domain begins by s:~mpling the audio input in regu-
lar, discrete intervals of time ant1 quantizing the
sampled villues into a tliscrete number of evenly
spaced levels. "l'he digital audio data consists o f a
seqilence of binary values representing the number
of quantizer levels h,r each audio sample. The
method of representing each sample with an intle-
pendent code word is called pulse code motlul;~tion
(PCI\l). Figure 1 shows the digital audio process.

ANALOG ANALOG
AUDIO I PCM -m PCM AUDIO

INPUT _ ANALOG-TO-DIGITAL VALUES DIGITAL SIGNAL VALUES DIGITAL-TO-ANALOG OUTPUT
CONVERSION PROCESSING CONVERSION

Figure I Digital Audio Process

28 Val. 5 No. 1 Spri~t,? 199.5 Digital Tecbnicnl Jorrrrzal

Digital Audio Compression

According to the Nyquist theory, a time-sampled
signal can faithfully represent signals up to half the
sampling rate.' Typical sampling rates range from
8 kilohertz (kHz) to 48 kHz. The 8-kHz rate covers
a frequency range up to 4 kHz and so covers most of
the frequencies produced by the human voice. The
48-kHz rate covers a frequency range up to 24 kHz
and more than adequately covers the entire audible
frequency range, which for humans typically
extends to only 20 kHz. In practice, the frequency
range is somewhat less than half the sampling rate
because of the practical system limitations.

'The nilmber of quantizer levels is typically a
power of 2 to make fill1 use of a fixed number of
bits per auclio sample to represent the qi~antized
values. With uniform quantizes step spacing, each
additional bit has the potential of increasing the
signal-to-noise ratio, or equivalently the dynamic
range, of the quantized amplitutle by rouglily
6 tlecibels (dB). The typical number of bits per sarn-
ple usetl for digital audio ranges from 8 to 16. The
dynamic range capability of these representations
thus ranges from 48 to 96 dB, respectively. To put
these ranges into perspective, if 0 dB represents the
weakest audible sound pressure level, then 25 dB
is the minimum noise level in a typical recording
studio, 35 dB is the noise level inside a quiet borne,
ant1 120 clB is the loudest level before tliscomfort
begins.l In terms of audio perception, 1 dB is the
minimum audible change in sound pressure level
under the best conditions, and tloubling the sound
pressure level amounts to one perceptilal step in
louclness.

Comparetl to most digital data types (digital
video exclutled), the data rates associated with
unconipressecl digital audio are s~~bstantial. For
ex;~niple, the autlio data on a compact disc (2 chan-
nels of auclio sampled at 44.1 kHz with 16 bits per
sample) requires a data rate of about 1.4 megabits
pes xcontl. There is a clear need for some form of
compression to enable the more efficient storage
and transmission of this data.

The Inany forms of audio compression tech-
niques differ in the track-offs between encoder and
decoder complexity, the compressetl audio quality,
;untl the rlmount of data compression. The tech-
niques presented in the following sections of this
paper cover the full range from the p-law, a low-
complexity, low-compression, and medium audio
qu;~lity ;~lgoritlirn, to MPEG/audio, a high-cornplex-
ity, high-compression, and high audio quality algo-
rithm. "These techniques apply to general audio

signals and are not specifically tuned for speech sig-
nals. This paper does not cover audio compression
algorithms designed specifically for speech signals.
These algoritllms are generally based on a model-
ing of the vocal tract and do not work well for non-
speech audio signals."L The federal standards 1015
LPC (linear predictive coding) and 1016 CELP (coded
excited linear prediction) fall into this category of
audio compression.

p-law Audio Compression
The p-law transformation is a basic audio compres-
sion technique specified by the Comite Consultatif
Internationale de Tdegraphique et Telephonique
(CCITT) Recommendation G.711.5 The transfor-
mation is essentially logarithmic in nature and
allows the 8 bits per sample output codes to cover a
dynamic range equivalent to 14 bits of linearly quan-
tized values. This transformation offers a compres-
sion ratio of (number of bits per source sample)/
8 to 1. Unlike linear quantization, the logarithmic
step spacings represent low-amplitude audio sam-
ples with greater accuracy than higher-amplitude
values. Thus the signal-to-noise ratio of the trans-
formed output is more uniform over the range of
amplitudes of the input signal. The p-law transfor-
mation is

where m = 255, and x is the value of the input sig-
nal normalized to have a maxinium value of 1. The
CCITT Recommendation G.711 also specifies a simi-
lar A-law transformation. The p-law transformation
is in common use in North America and Japan for
the Integrated Services Digital Network (ISDN)
8-kHz-sampled, voice-grade, digital telephony ser-
vice, and the A-law transformation is used else-
where for the ISDN telephony.

Adaptive Dt!ferential Pzclse
Code Modulation
Figure 2 shows a simplified block diagram of
an adaptive differential pulse code modulation
(ADPCM) coder.Qor the sake of clarity, the figure
omits details such as bit-stream formatting, the pos-
sible use of side information, and the adaptation
blocks. The ADPCM coder takes advantage of the

Digilul Technical Journal Vo1. 5 IVO. 2 Spring 199.3

Multimedia

x [n l + 0 Dln] (ADAPTIVE) c[nl
QUANTIZER I

Xp[n - 11 H (ADAPTIVE) 17xNnl f A D A P T l V E) 1
PREDICTOR DEQUANTIZER

DEQUANTIZER -
PREDICTOR IJ

(b) ADPCM Decoder

Fi&ure 2 ADPCM ColnI,ressio~t a,zd
Deco~nprcssion

fact that neighboring audio samplcs are generally
simil:tr to each other. Instead of representing each
audio sample independently as in P(:ILI, an ADPCM
encoder computes the difference between each
audio sample and its predicted value ;111tl outputs
the PCM value of the differenti;ll. Note that
the AIIPCM encoder (Figure 2a) uses most of the
components of the ADPCM decoder (Figure 2b) to
compute the predicted values.

The quantizer output is generally only a (signed)
representation of the number of quantizer levels.
'Ihe requantizer reconstructs the value of the quan-
tized sample by multiplying the number of quan-
tizer levels by the quantizer step size ancl possibly
adding an offset of half a step size. Depencling on
the quantizer implementation, this offset may be
necessary to center the requantized value between
the quantization thresholds.

The AuPCM coder can adapt to the characteristics
of the audio signal by changing the step size of
either the quantizer or the pretlicto~; or by chang-
ing both. The method of computing the predicted
value and the way the predictor and the quantizer
;~tlapt to the audio signal vary among different
ADPC~M coding systems.

Some tLDPCM systems recluire tlie encoder to
provide side information with the differential

PCM values. This side information can serve
two purposes. First, in some ADPCM schemes
the decoder needs the additional information to
determine either the predictor or the quantizer
step size, or both. Second, the data can provide
redundant contextual information to the tlecoder
to enable recovery from errors in the bit stream
or to allow random access entry into the coded bit
stream.

The following section describes the ADPCM
algorithm proposecl by tlie Interactive ~Vultirneclia
Association (IMA). This algorithtn offers a compres-
sion factor of (number of bits per source sample)/
4 to 1. Other t\DIJ<:M audio compression schemes
include the CCL'TT Recommendation G.721 (32 kilo-
bits per second compressed data rate) and
Recomrncndation G.723 (24 kilobits per second
compressetl data rate) standards and the con1p;ict
disc interactive audio compression algorithm.?*

The IMA ADPCM Algoril%~m The IIMA is a consor-
tium of computer h~rdware and software vendors
cooperating to tlevelop a de facto standard for com-
puter multimedia data. The I I U ' S goal for its audio
compression proposal was to select a piiblic-
domain auclio co~~ipression algorithm ab.le to pro-
vide good compressetl audio quality with good
data cotnpression performance. In addition, the
algorithm had to be si~ilple enough to enable
software-only, real-time clecompression of stereo,
44.1-kHz-sampled, audio signals on a 20-megahertz
(MtIz) 386-class computer. The selected ADI'CM

algorithm not only meets these goals, but is also
simple enough to enable software-only, real-time
encoding on the same computer.

The simplicity of the I n \ ADPCM proposal lies in
the crutlity of its predictor. The predicted value of
the audio sample is simply the tlecoded value of the
immediately previous audio sample. Thus the pre-
dictor block in Figure 2 is merely a time-delay
element whose output is the inpi~t delayed by one
autlio sample interval. Since this predictor is not
adaptive, side information is not necessary for the
reconstruction of the predictor.

Figure 3 shows a block diagram of the quantiza-
tion process used by the IivIA algorithm. The qu;tn-
tizer outputs four bits representing the signed
magnitude of the number of quantizer levels for
each input sample.

Adapt;~tion to the audio signal takes place only in
the quantizer block. The quantizer adapts the step
size based o n the current step size ant1 the c]u;ln-
tizer output of the immediately previous input.

Ihl. 5 No. 2 .S/)~'i~z~q 1923 Digital Techrlical Jortr?~ctl

Digital Audio Compression

START 5'
SAMPLE = - SAMPLE

STEP SIZE12 SAMPLE =
SAMPLE -STEP SIZE/2

A BIT1 = 0
STEP SIZW4

Figure 3 IMA ADPCM Quantization

This adaptation can be done as a sequence of two
table lookups. The three bits representing the
number of q ~ ~ a n t i z e r levels serve as an index into
the first table lookup whose output is an index
adjustment for the second table lookup. This adjust-
ment is added to a stored index value, and the
range-limited result is used as the index to the sec-
ond table lookup. The summed index value is
stored for use in the next iteration of the step-size
adaptation. The output of the second table lookup
is the new quantizer step size. Note that given a
starting value for the index into the second table

lookup, the data used for adaptation is completely
deducible from the quantizer outputs; side inform;^-

tion is not required for the quantizer adaptation.
Figure 4 illustrates a block diagram of the step-size
adaptation process, and Tables 1 and 2 provide the
table lookup contents.

IMA ADPCM: Error Recoveyy A fortunate side
effect of the design of this ADPCM scheme is
that decoder errors caused by isolated code word
errors or edits, splices, or random access of the
compressed bit stream generally d o not have a

LOWER THREE
BITS OF
QuANTlzER OUTPUT 4 7 P Z S T M ~ ~ ~ I , wYZZLIF

TABLE BETWEEN TABLE
LOOKUP 0 AND 88 LOOKUP

DELAY FOR NEXT
ITERATION OF
STEP-SIZE
ADAPTATION 1

Figure 4 IMA ADPCM Step-size Adaptation

Digital Tecbnicul Joun1c11 Vol. 5 IVO. 2 .Spri~tg 199.3

Multimedia

Table 1 First Table Lookup for the IMA
ADPCM Quantizer Adaptation

Three Bits
Quantized
Magnitude

lndex
Adjustment

disastrous impact on decoder output. This i5 usu-
ally not true for compression schemes that use
prediction. Since prediction relies on the correct
decotling of previous audio samples, errors in
the decoder tend to propagate. The next section
explains why the error propagation is generally

limited and not disastrous for the IMA algorithm.
The decoder reconstructs the audio sample, Xp[n],
by adding the previously decoded audio sample,
X11[n- 11, to the result of a signed magnitude prod-
uct of the code word, C[n], and the quantizer step
size plus an offset of one-half step size:

where C'ln] = one-half plus a suitable numeric
conversion of C[nJ.

An analysis of the second step-size table lookup
reveals that each succcssi\~e entry is about 1.1 times
the previous entry. As long as range limiting of the
second table index does not take place, the value
for step-size[nl is approximately the product of the
previous value, step-size[n-11, and a fi~nction of
the code word, F(C[n - 11) :

The above two equations can be manipulated
to express the decoded audio sample, Xp[n], as a

Table 2 Second Table Lookup for the IMA ADPCM Quantizer Adaptation

Index Step Size Index Step Size Index Step Size Index Step Size

VoL. 5 No. 2 Spri~zg 139.3 Digital TechnicalJournal

Digital Audio Compression

function of the step size and the decoded sample standard addresses the compression of synchro-
value at time, m, and the set of code words nized video and audio at a total bit rate of roughly
between time, m, and n 1.5 megabits per second.

Like p-law and ADPCM, the i\lPEG/audio compres-
Xp[n] = Xp[m] + step-size[m] sion is lossy; however, the MPEG algorithm can

Note that the terms in the summation are only
a function of the code words from time m + l
onward. An error in the code word, C[q], or a ran-
dom access entry into the bit stream at time q can
result in an error in the decoded output, Xp[ql, and
the quantizer step size, step-size[q+ 11. The above
equation shows that an error in Xp[m] amounts to
a constant offset to future values of Xp[n]. This
offset is inaudible unless the decoded output
exceeds its permissible range and is clipped.
Clipping results in a momentary audible distortion
but also serves to correct partially or hllly the offset
term. Furthermore, digital high-pass filtering of the
decoder output can remove this constant offset
term. The above equation also shows that an error
in step-size[m+ 11 amounts to an unwanted gain or
attenuation of future values of the decoded output
Xp[n]. The shape of the output wave form is
unchanged unless the index to the second step-size
table lookup is range limited. Range limiting results
in a partial or full correction to the value of the step
size.

The nature of the step-size adaptation limits the
impact of an error in the step size. Note that an
error in step-size[m+'L] caused by an error in a sin-
gle code word can be at most a change of (l.l)9, or
7.45 dB in the value of the step size. Note also that
any sequence of 88 code words that all have magni-
tude 3 or less (refer to Table 1) completely corrects
the step size to its minimum value. Even at the low-
est audio sampling rate typically used, 8 kHz, 88
samples correspond to 11 milliseconds of audio.
Thus random access entry or edit points exist
whenever 11 milliseconds of low-level signal occur
in the audio stream.

MPEG/Audio Compression

achieve transparent, perceptually lossless com-
pression. The MPEG/audio committee conducted
extensive subjective listening tests during the
development of the standard. The tests showed
that even with a 6-to-1 compression ratio (stereo,
16-bit-per-sample audio sampled at 48 kHz com-
pressed to 256 kilobits per second) and under opti-
mal listening conditions, expert listeners were
unable to distinguish between coded and original
audio clips with statistical significance Further-
more, these clips were specially chosen because
they are difficult to compress. Grewin and Ryden
give the details of the setup, procedures, and
results of these tests.9

The high performance of this compression algo-
rithm is due to the exploitation of auditory mask-
ing. This masking is a perceptual weakness of the
ear that occurs whenever the presence of a strong
audio signal makes a spectral neighborhood of
weaker audio signals imperceptible. This noise-
masking phenomenon has been observed and cor-
roborated through a variety of ps~~cl~oacoustic
experiments.lO

Empirical results also show that the ear has a lim-
ited frequency selectivity that varies in acuity from
less than 100 Hz for the lowest audible frequencies
to more than 4 kHz for the highest. Thus the audible
spectrum can be partitioned into critical bands that
reflect the resolving power of the ear as a function
of frequency. Table 3 gives a listing of critical band-
widths.

Because of the ear's limited frequency resolving
power, the threshold for noise masking at any given
frequency is solely dependent on the signal activity
within a critical band of that frequency. Figure 5
illustrates this property. For audio Compression,
this property can be capitalized by transforming
the audio signal into the frequency domain, then
dividing the resulting spectrum into subbands that
approximate critical bands, and finally quantizing
each subband according to the audibility of quanti- .

The Motion Picture Experts Group (MPEG) audio zation noise within that band. For optimal compres-
compression algorithm is an International Organi- sion, each band should be quantized with no more
zation for Standardization (ISO) standard for high- levels than necessary to make the quantization
fidelity audio compression. It is one part of a noise inaudible. The following sections present
three-part compression standard. With the other a more detailed description of the MPEG/audio
two parts, video and systems, the composite algorithm.

Digital Technical Journal 1.01. 5 No. 2 Spring 1993 3 3

Multimedia

Table 3 Approximate Critical Band
Boundaries

Band Frequency Band Frequency
Number (Hz)* Number (Hz)*

* Frequencies are at the upper end of the band.

MPEG/Audio Encoding and Decoding
Figure 6 shows block diagrams of the MPEG/
audio encoder and d e c ~ d e r . " . ~ In this high-level
representation, encoding closely parallels the pro-
cess described above. The input audio stream
passes through a filter bank that divides the input
into multiple subbands. The input audio stream
simultaneously passes through a psychoacoustic
model that determines the signal-to-mask ratio of
each subband. The bit or noise allocation block
uses the signal-to-mask ratios to decide how to
apportion the total number of code bits available
for the quantization of the subband signals to rnini-
mize the audibility of the quantization noise.

I/ STRONG TONAL SIGNAL

REGION WHERE WEAKER

FREQUENCY

Figure 5 Az~dio Noise Mctiki~zg

Finally, the last block takes the re,presentation of
the quantized audio samples and formats the tlat;~
into a decotlable bit stream. The decotler simply
reverses the formatting, then reconstructs the
quantized subband values, ant1 finally transforms
the set of subband values into a time-tlornain auclio
signal. As specified by the kI13EC; requirenients,
ancillary tlata not necessarily related to the audio
stream can be fitted within the codetl bit stream.

The &IPEC;/audio st;ind;ll-d has t.hree distinct lay-
ers for compression. Layer I forms the most basic
algorithm, and Layers I1 and 111 are enhancements
that use some eleme~lts found in Layer I. Each suc-
cessive layer improves the comprcsaion perfor-
mance but at the cost of greater encoder ant1
decoder complexity.

Layer1 The Layer I algorithm uses the basic filter
bank found in all layers. This filter bank divitles the
audio signal into 9 constant-width frequency
bands. The filters are relatively simple and provitle
goocl time resolution with reason;~ble frequency
resolution relative to the perceptual properties of
the human ear. The design is a compromise with
three notable concessions. First, the 32 constant-
width bands do not accurately reflect the e;~r's criti-
cal bands. Figure 7 illustrates this discrepancy. The
bandwidth is too wide for the lower frequencies s o
the number of quantizer bits cannot be specificalljr
tuned for the noise sensitivity within each criticzll
band. Insteacl, the includetl critical band with the
greatest noise sensitivity tlictates tlie number of
quantization bits reqirirecl for the entire filter band.
Second, the filter bank :~ntl its inverse are not loss-
less transformations. Even w i t l i o ~ ~ t quantization,
the inverse transformation woultl not perfectly
recover the original input signal. Fortunately, the
error introducetl by the filter 1~11ik is small and
inaudible. Finally, adjacent filter bands have :I signif-
icant frequency overlap. A signal at a single fre-
quency can affect two aclj;~cent filter hank outputs.

The filter bank provides 32 freq~lency samples,
o n e sample p e r band, for every 32 input :rilclio sam-
ples. The Layer I algorithm groups together 12 sam-
ples fro111 each of tlie 32 I>;~nds. Each group of 12
samples receives a bit allocation anti, if the bit ~ l l o -
cation is not zero, a scale factor. Coding for stereo
redundancy compression is slightly different and is
discussed later in this paper. 'l'hc bit ;rllocation
determitlcs the number of bits irsetl to represellt
each sample. The scale factor is a multiplier that
sizes the samples to maximize the resolution of
tlie quantizer. The Layer 1 encoder formats the

Digital Audio Compression

TIME-TO-FREQUENCY ALLOCATION, BIT-STREAM
QUANTIZER, AND FORMAnING

A I

PSYCHOACOUSTIC ANCILLARY DATA

MODEL (OPTIONAL)

(a) MPEG/Audio Encoder

FFk+FFI ::=:o.
RECONSTRUCTION

I v
ANCILLARY DATA
(IF ENCODED)

(13) lWEG/Audio Decoder

Figure G MPEG/Audio Compression and Decompression

MPEGIAUDIO FILTER BANK BANDS

CRITICAL BAND BOUNDARIES

Figure 7 MPEC/Audio Filter Bandwidths versus Critical Bandwidths

32 groups of 12 samples (i t . , 384 samples) into a
frame. Besides the audio data, each frame contains
a headel; an optional cyclic redunclancy code (CRC)
check word, and possibly ancillary data.

Layer I/ The Layer 11 algorithm is a simple
enllancemenr of Layer I. I t improves compression
performance by coding data in larger groups. The
Layer I 1 encoder forms frames of 3 by 12 by 32 =

1,152 samples per audio channel. Whereas Layer I
codes data in single groups of 12 samples for each

subband, Layer I1 codes data in 3 groups of 12 sam-
ples for each subband. Again discounting stereo
redundancy coding, there is one bit allocation and
up to three scale factors for each trio of 12 samples.
The encoder encodes with a unique scale factor for
each group of 12 samples only if necessary to avoid
audible distortion. The encoder shares scale factor
values between two or all three groups in two
other cases: (1) when the values of the scale factors
are sufficiently close and (2) when the encoder
anticipates that temporal noise masking by the ear

Digital Technical Jorrmnl Vol. 5 N~J. 2 Spritig 1993 35

Multimedia

will hide the consequent distortion. The Layer 11

algorithm also improves performance over Layer I
by representing the bit allocation, the scale factor
values, ancl the quantized samples with a more effi-
cient code.

Layer- III The Layer 111 algorithm is a much more
refined approach.lA l 1 Although basecl on the same
filter bank found in Layers I and 11. Layer 111 compen-
sates for some filter bank deficiencies by process-
ing the filter outputs with a modified discrete
cosine transform (MDCT). Figure 8 shows a block
diagram of the process.

The IMIICTs further subclivitle the filter bank out-
puts in frequency to provide better spectral resolu-
tion. Because of the inevitable trade-off between
time and frequency resolution, Layer 111 specifies
two different MI,<:T block lengths: a long block of 36
samples or a sllort block of 12. The short block length
improves the time resolution to cope with tran-
sients. Note that the short block lengtl~ is one-third
that of a long block; when used, three short blocks
replace a single long block. The switch between
long ant1 short blocks is not instantaneous. A long
block with a specialized long-to-short or short-to-
long tlata window provides the transition mecha-
nism from a long to a short block. Layer I11 has three
blocking modes: two modes where the outputs of
the 32 filter banks can ;ill pass through MDCTs with
the same block length and a mivetl block mode
where the 2 lower-frequency bands use long blocks
and the 30 upper bancls use short blocks.

Other major enhancements over the Layer 1 and
Layer 11 algorithms include:

Alias reduction - Layer I11 specifies a method of
processing the MDCT values to remove some
redundancy causetl by the overlapping bands of
the Layer I and Layer I1 filter bank.

Nonuniform quantization - The Layer 111 quan-
tizer raises its input to the 3/4 power before
q~lantization to provide a more consistent signal-
to-noise ratio over the range of cluantizer valucs.
The reqiiantizer in the klt)E<;/audio decoder
relinearizes the values by raising its output to
the 4/3 power.

Entropy coding of data values - Layer 111 uses
Huffman cocles to encocle the quantizecl samples
for better data cornpression.li

Use of a bit reservoir - The design of the Layer 111
bit stream better fits the variable length nature of
the compressed data. As with Layer 11, Layer 111
processes the audio data in fri~rnes o f 1,152 sam-
ples. IJnlike Layer 11, the codctl data representing
these samples does not necessarily fit into a
fixed-length frame in the code bit stream. The
encoder can donate bits to or borrow bits from
tlie reservoir when appropriate.

Noise allocation instead of bit ;~llocation - 'I'he
bit allocation process used by Layers I and I1 only
approximates the amount of noise causetl by
quantization to a given number of bits. The Layer
I11 encoder uses a noise allocation iteration
loop In this loop, tlie qilnntizers ;Ire varietl in a n
orderly way, and the resulting quantization nolse
is actually calculated and specifically allocated
to each subband.

PCFA
AUDIO
INPUT - (ONLY FOR

FILTER LONG
BANK BLOCKS)

WINDOW

LONG, LONG-TO-SHORT
SHORT, SHORT-TO-LONG LONG OR SHORT BLOCK
WINDOW SELECT CONTROL (FROM

PSYCHOACOUSTIC MODEL)

Figure 8 1l4PEG/A~lclio L q ~ e l - III Filter Bnrzk Processi7zg, Encoder Side

36 Vol. 5 No. 2 Spring IgY.? Digital Technical Jorrrnnl

The Psychoacoustic Model
The psychoacoustic model is tlie key component of
the MPEG encotler that enables its high perfor-
mance.16~~~"~" The job of the psychoacoustic model
is to analyze the input audio signal and determine
where in the spectrum quantization noise will be
masked and to what extent. The encoder uses this
information to decide how best to represent the
input audio signal with its limited number of code
bits. The 1MPEC;hudio standard provides two exam-
ple implementations of the psychoaco~~stic model.
Below is a general outline of the basic steps
involved in tlie psychoacoustic calculations for
either model.

Time align audio data - The psychoacoustic
model must account for both the clelay of the
autlio data through the filter bank ancl a data
offset so that the relevant data is centered within
its analysis window. For example, when using
psychoacoustic model two for Layer I , the delay
through the filter bank is 256 samples, and the
offset required to center the 384 samples of a
Layer I frame in the 512-point psychoacoustic
analysis wi~itlow is (512 - 384)/2 = 64 points.
The net offset is 320 points to time align the
psychoacoustic model data with the filter bank
outputs.

Convert audio to spectral domain - The psy-
choacoustic moclel uses a time-to-frequency
mapping such as a 512- or 1,024-point Fourier
transform. A standard Hann weighting, applied
to audio data before Fourier transformation,
conditions the data to reduce the edge effects of
the transform winclow. The model uses this sep-
arate and independent mapping instead of the
filter bank outputs because i t needs finer fre-
quency resolution to calculate the masking
thresholds.

Partition spectral v;~lues into critical bands - To
simplify the psychoacoi~stic calculations, the
model groups the frequency values into percep-
tual quanta.

Incorporate thresliold in quiet - The model
includes an empirically determined absolute
masking threshold. This thresholtl IS the lower
bound for noise masking and 1s determined in
the absence of masking signah.

Separate into tonal and nontonal components -
The moclel must iclentify and separate the tonal

and noiselike components of the audio signal
because the noise-masking characteristics of the
two types of signal are different.

Apply spreading function - The model deter-
mines the noise-masking thresholds by applying
an empirically determ~ned masking or spread~ng
function to the signal components.

Find the minimum masking threshold for each
subband - The psychoacoustic model calculates
the masking thresholds with a higher-frequency
resolution than provided by the filter banks.
Where the filter band is wide relative to the criti-
cal band (at the lower end of the spectrum), the
model selects the minimum of the masking
thresholds covered by the filter band. Where the
filter band is narrow relative to the critical band,
the model uses the average of the masking
thresholds covered by the filter band.

Calculate signal-to-mask ratio - The psycho-
acoustic model takes the minimum masking
threshold and computes the signal-to-mask
ratio; it then passes this value to the bit (or
noise) allocation section of the encoder.

Stereo Redundancy Coding
The MPEG/audio compression algorithm supports
two types of stereo redundancy coding: intensity
stereo coding and middle/side (MS) stereo coding.
Both forms of redundancy coding exploit another
perceptual weakness of the ear. Psychoacoustic
results show that, within the critical l ~ n d s cover-
ing frequencies above approximately 2 kHz, the
ear bases its perception of stereo imaging more
on the temporal envelope of the auclio signal than
its temporal fine structure. All layers support inten-
sity stereo coding. Layer I [[also supports MS stereo
coding.

In intensity stereo mode, the encoder codes
some upper-frequency filter bank outputs with a
single summed signal rather than send independent
codes for left and right channels for each of the 32
filter bank outputs. The intensity stereo clecoder
reconstructs the left and right channels based only
on independent left- and right-channel scale hc-
tors. With intensity stereo coding, the spectr;~l
shape of the left and right channels is the same
within each intensity-codecl filter bank signal, but
tlie magnitude is different.

The MS stereo mode encocles the signals for left
and right channels in certain frequency ranges as
middle (sum of left and right) and side (difference

Digital Technical Journc~l I)/. 5 iVo. 2 Slwing 1993

Multimedia

of left and right) channels. In this mode, the
encoder uses specially tuned techniques to further
compress side-channel signal.

Real-time Sofiware Implementations
The software-only implementations of the p-law
and ADPCM algorithms can easily run in real time. A
single table lookup can d o p-law compression o r
decompression. A software-only implementation
of the IbM ADPCM algorithm can process stereo,
44.1-kHz-sampled audio in real time on a 20-MHz
386-class computer. The challenge lies in develop-
ing a real-time software implementation of the
ivIPEG/audio algorithm. The MPEG standards clocu-
ment does not offer many clues in this respect.
There are much more efficient ways to compute
the calculations required by the encoding and
decoding processes than the procedures outlined
by the standard. As an example, the following sec-
tion details how the number of multiplies and addi-
tions used in a certain calculation can be reduced
by a factor of 12.

Figure 9 shows a flow chart for the analysis sub-
band filter used by the MPEG/audio encoder. Most
of the computational load is clue to the second-
from-last block. This block contains the following
matrix multiply:

63
s(i) = x v(k) x cos [(2 X i+l) X (k-16) X ll

k=o 64 1
Using the above equation, each of the f values of

S(i) requires 6 3 adds and 64 multiplies. To optimize
this calculation, note that the iM(i,k) coefficients
are similar to the coefficients used by a ?&point,
un-normalized inverse discrete cosine transform
(DCT) given by

31 (2 x i + l) x k x I I
/(i) = 2 F(k) X cos [64 k=O I

for i = 0 ... 31.

Indeed, S(z] is identical tof(z] if F(k) is computed
as follows

F(k) = Y(1G) fo rk = 0;

= Y(k + 16) + ~ (1 6 - k) for k = 1 . . . 16;

= Y(kS16) - Y(80-k)fork = 17 ... 31.

SHIFT IN 32 NEW SAMPLES
INTO 512-POINT FIFO BUFFER. Xi

WINDOW SAMPLES:
F O R I = O T O ~ ~ ~ , D O Z ~ = C ~ X Xi

PARTIAL CALCULATION:

F O R i = O T 0 6 3 . D O Y I = ~ Z , + 6 4 j

CALCULATE 32 SAMPLES BY
63

MATRlXlNG Si =x y i x M i,k
k=O

OUTPUT 32 SUBBAND SAMPLES

Fig~lre 9 Row Diagram of the MPEG/Audio
Encoder Filter Bank

Thus with the almost negligible overhead of com-
puting the F(k) values, a twofolcl reduction in mul-
tiplies and additions comes from halving the range
that k varies. Another reduction in multiplies ancl
additions of more than sixfold comes from using
one of many possible fast algorithms for the compu-
tation of the inverse DCT.2021.LZ There is a similar
optimization applicable to the 64 by 32 matrix nii~l-
tiply founcl within the tlecoder's subbancl filter
bank.

Many other optimizations are possible for both
MPEG/audio encoder ancl decoder. Such optimiza-
tions enable a software-only version of the MPE<;/
audio Layer I o r Layer 11 decoder (written in the C
programming language) to obtain real-time per-
formance for the decoding of high-fidelity mono-
phonic auclio data on a DBCstation 5000 Model 200.
This workstation uses a 25-MHz R3000 MII-'S CPU
and has 128 kilobytes of external instruction
and data cache. With this optimizecl software, the
MPEG/audio Layer 11 algorithm requires an average
of 13.7 seconds of CPlJ time (12.8 seconds of user
time and 0.9 seconds of system time) to decode 7.47

38 Vol. 5 /\To. 2 Spriirg 199.5 Digital Technicnl Jorrmnl

Digital Audio Compression

seconds of a stereo audio signal sampled at 48 kHz
with 16 bits per sample.

Although real-time MPEG/auclio tiecoding of
stereo audio is not possible on the DECstation 5000,
such decoding is possible on Digital's workstations
equipped with the 150-MHz DECchip 21064 CPU

(Alpha AXP architecture) and 512 kilobytes of exter-
nal instruction and data cache. Indeed, when this
same code (i.e., without CPU-specific optimization)
is compiled ant1 run on a DEC 3000 AXP Model 500
workstation, the MPEG/audio Layer 11 algorithm
requires an average of 4.2 seconds (3.9 seconds of
user time and 0.3 seconds of system time) to
decode the same 7.47-seconcl audio sequence.

Summary
Techniques to compress general digital audio sig-
nals include p-law and adaptive differential pulse
code modulation. These simple approaches apply
low-complexity, low-compression, and medium
audio quality algorithms to audio signals. A third
technique, the MPEG/dutlio compression algorithm,
is an I S 0 standard for high-fidelity audio compres-
sion. The MPEG/audio standard has three layers of
successive complexity for improved compression
performance.

1. A. Oppenheim and R. Schafer, Discrete Time
Signal Processing (Englewood Cliffs, NJ:

Prentice-Hal I, 1989): 80-87.

2. K. Pohlman, Principles of Digital Audio
(Indianapolis, I N : Howard W Sams and Co.,
1989).

3. J. Flanagan, Speech Aizalysis Synthesis and
Perception (New York: Springer-Verlag, 1972).

4. B. Atal, "Predictive Coding of Speech at Low
Rates," IEEE Transactions on Communica-
tions, vol. COM-30, no. 4 (April 1982).

5. CCITr Recommendation G. 711: Pulse Code
Modulc~tio7z (PCil.) of Voice Frequencies
(Geneva: International Telecommunications
I Jnion, 1972).

6. L. Rabiner and R. Schafer, Digital Processing
of Speech Signals (Englewood Cliffs, NJ:

Prentice-Hall, 1978).

M. Nishiguchi, K. Akagiri, and T. Suzuki,
"A New Audio Bit Rate Reduction System
for the CD-I Format," Preprint 2375, 8Ist
Audio Engineering Society Convention, Los
Angeles (1986).

Y. Takahashi, H. Yazawa, K. Yamamoto, and
T. Anazawa, "Study and Evaluation of a New
Method of ADPCM Encoding," Preprint 2813,
86th Audio Engineering Society Convention,
Hamburg (1989).

C. Grewin and T. Ryden, "Subjective Assess-
ments on Low Bit-rate Audio Codecs," Pro-
ceedings of the Tenth Inter~zational Audio
Engineering Society Cofzference, London
(1991): 91 -102.

J. Tobias, Foundations of Modern Auditory
Theory (New York and London: Academic
Press, 1970): 159-202.

K. Brandenburg and G. Stoll, "The ISO/MPEG
Audio Codec: A Generic Standard for Coding
of High Quality Digital Audio," Preprint 3336,
92nd Audio Engineering Society Conven-
tion, Vienna (1992).

K. Brandenburg and J. Herre, "Digital Audio
Compression for Professional Applications,"
Preprint 3330, 92nd Audio Engineering
Society Convention, Vienna (1992).

K. Brandenburg and J. D. Johnston, "Second
Generation Perceptual Audio Coding: The
Hybrid Coder," Preprint 2937, 88th Audio
Elzgineering Society Corrvention, Montreaux
(1990).

K. Brandenburg, J. Herre, J. D. Johnston,
Y. Mahieux, and E. Schroeder, "ASPEC: Adap-
tive Spectral Perceptual Entropy Coding of
High Quality Music Signals," Preprint 3011,
90th Audio Engineering Society Convention,
Paris (1991).

D. Huffman, "A Method for the Construction
of Minimum Redundancy Codes," Proceed
ings of the IKE, vol. 40 (1962): 1098-1101.

J. D. Johnston, "Estimation of Perceptual
Entropy Using Noise Masking Criteria," Pro-
ceedings of the 1988 IEEE International Con-
ference on Acoustics, Speech, and Signal
Processing (1988): 2524-2527

Digital Technical Journal Vo1. 5 No. 2 Spring 19.93

Multimedia

17. J. D. Johnston, "Transform Coding of Audio
Signals Using Perceptual Noise Criteria," IEEE

Journal on Selected Areas in Cornmunica-
tions, vol. 6 (February 1988): 314 -323.

18. K. Brandenburg, "OCF-A New Coding Algo-
rithm for High Quality Sound Signals," Proceed-
ings of the 1987 1EEE lCASSP (1987): 141-144.

19. D. Wiese and G. Stoll, "Bitrate Reduction of
High Quality Audio Signals by Modeling the
Ear's Masking Thresholds," Preprint 2970,
89th A~ldio Engineering Society Conuenlion,
Los Angeles (1990).

20. J. Ward and B. Stanier, "Fast Discrete Cosine
Transform Algorithm for Systolic Arrays," Elec-
tronics Letters, vol. 19, no. 2 (January 1983).

21. J. Makhoul, "A Fast Cosine Transform in One
and Two Dimensions," IEEE Transactions on
Acoustics, Speech, and Signal Processing, vo1.
ASSP-28, no. 1 (February 1980).

22. W-H. Chen, C. H. Smith, and S. Fralick, "A Fast
Computational Algorithm for the Discrete
Cosine Transform," IEEE Trunsuctions on
Comnztlnications, vol. COM-25 no. 9 (Septem-
ber 1977).

40 Vo1.5 No. 2 Spring 1993 Digital Techtrical Journal

Jan B. te Kief te
Robert Hasenaar

Joop W Meuius
Tbeo H. van Hunnik

The Megadoc Image Document
Management System

iVIegadoc image doczifnent management solutions are the result of a systems
engineering eflort that combined several disciplines, ranging from optical disk
hardware to an image application framework. Although each of the component
tech~zologies may be fairly mature, combining them into easy-to-customize solu-
tions presented a significant systems engineering challenge. The resulting applica-
tion framework allows the configuration of customized solutions with low systems
integration cost and short time to deployment.

Electronic Document Management
In most organizations, paper is the main medium
for information sharing. Paper is not only a comrnu-
nication medium but in many cases also the carrier
of an organization's vital information assets. Whereas
the recording of information in document format is
done largely with help of electronic equipment,
sharing and distribution of that information is in
many cases still done on paper. Large-scale, paper-
based operations have limited options for tracking
the progress of work.

The computer industry thus has two opportunities:

1. Capture paper documents in electronic image
format (if using paper is a requirement)

2. Provide better tools for sharing and distribution
among work groups (if the use of paper can be
avoided)

Organizations that use electronic imaging, as
compared to handling paper, can better track work
in progress. Productivity increases (no time is
wasted in searching) and the quality of service
improves (response times are shorter and no infor-
mation is lost) when vital information is repre-
sented and tracked electronically.

Imaging is not a new technology (see Table 1).
Moreover, this paper does not document new base
technology Instead, we describe the key compo-
nents of an image document management system in
the context of a systems engineering effort. This
effort resulted in a product set that allows the con-
figuration of customized solutions.

Those who first adopted the use of image tech-
nology have had to go through a long learning

curve-a computer with a scanner and an optical
disk does not fully address the issues of a large-
scale, paper-based operation. Early atlopters of
electronic imaging experienced a challenge in
defining the right electronic document indexing
scheme for their applications. Even though the
technology is now mature, the introduction of a
document imaging system frequently leads to some
form of business process reengineering to exploit
the new options of electronic document manage-
ment. The Megadoc image document management
system allows the configuration of customer-
specific solutions through its building-block archi-
tecture and its built-in customization options.

The Megadoc system presented in this paper is
based on approxin~ately 10 years of experience
with base technology, customer projects, and
everything in between. In those years, Megadoc
image document management has matured from
the technology delight of optical recording to an
application framework for image document mall-
agement. This framework consists of hardware and
software components arranged in various architec-
tural layers: the base system, the optical file server,
the storage manager, and the image application
framework.

The base system consists of PC-based work-
stations, running the Microsoft Windows operating
system, connected to servers for storage manage-
ment and to database services for document index-
ing. Specific peripherals include image scanners,
image printers, optional full-screen displays, and
optional write once, read many (WORM) disks.

The optical file server abstracts from the differ-
ences between optical WORM disks and provides

Digital Techtticril Journal Vol. 5 No. 2 Spring 1993 4 1

Multimedia

Table 1 History of lmage Document Management

1975 Philips Research combines a 12-inch (30.48-centimeter) videodisk for analog storage of facsimile
documents and high-resolution video monitors with a minicomputer for indexing in an experimental
image management system.
Philips' image management system switches to digital technology through the availability of
WORM disks and random-access memory (RAM) chips (for refreshing a full-page video monitor).

1983 At the Hannover Fair (Hannover, Germany), Philips shows Megadoc, an image document
management system with WORM disks containing compressed document images. Dedicated
image document management solutions are introduced.

1988 lmage document management transitions from dedicated image display technology as part of a
proprietary computer architecture to an open systems platform with PC-based image workstations.

1993 The image becomes just another document format that is used next to text-coded electronic
documents.

the many hundreds of gigabytes (GB) of storage
required in large-scale image document manage-
ment systems.

The storage manager provides storage and
retrieval functions for the contents of documents.
Document contents are stored in "containers," i.e.,
large, one-dimensional storage areas that can span
multiple optical disk volumes.

The Megadoc image application framework con-
tains three sublayers:

1. Image-related software libraries for scanning,
viewing, and printing

2. Application templates

3. A standard folder management application that
provides, with some tailoring by the end-user
organization, an "out-of-the-box" image docu-
ment management solution

The optical file server and the storage manager
store images in any type of document format.
However, to meet customer requirements with
respect to longevity of the documents, images
should be stored in compressed format according
to the ComitC Consultatif Internationale de TCIC-
graphique et Telephonique (CCITT) Group 4
standard.

In addition to image docurnent management
solutions, Megadoc components are used to "image
enable" existing data processing applications. In
many cases, a data processing application uses
some means of identification for an application
object (e.g., an order or an invoice). This identifica-
tion relates to a paper document. Megadoc reuses
the application's identification as the key to the
image version of that document. Application pro-
gramming interfaces (APIs) for terminal emulation

packages that are running the original application
in a window on the Megadoc image PC work-
stations allow integration with the ilnchanged
application.

The following sections describe the optical file
ser17er, the storage manager, and the image applica-
tion framework.

Megadoc Optical File Server
The Megadoc optical file server (OFS) software pro-
vides a UNIX file system interface for W O W disks.
The OFS automatically loads and unloads these
W O W volumes by jukebox robotics in a completely
transparent way. Thus, from an API perspective, OFS
implements a UNIX file system with a large on-line
file system storage capacity. Currently, up to 800 GI3

can be reached with a single jukebox.
We implemented the OFS in three layers, as

shown Figure 1:

I. The optical disk filer (ODF) layer, which enables
storing data on write-once devices and provid-
ing a UNlX fiLe system interface.

2. The volume manager (VM), which loads ant1
unloads volumes to and from drives in the juke-
boxes and communicates with the system opera-
tor for handling off-line volumes.

3. The device layer, which provides device-level
access to the WORM drives ant1 to the jukebox
hardware. This layer is not discussed further in
this paper,

Optical Disk Filer
When we started to design the ODF, the chief
prerecluisite was that it should adhere to the UNIX

file system interface for applications. The obvious

42 Vo1.5 No. 2 Spring 19% Digital Technical Jozrmnl

The Megadoc Image Document Mci~zagement S'istem

Fi<qure I The Three Software Lclyers of the
Optical File Server

STORAGE
MANAGER OR
OTHER UNlX
APPLICATION

- - - - - - - - - - - - - - -

benefit was that the designers would not have to
write their own utilities to, for example, copy data,
create new files, and make new tlirectories. All
UNM utilities would work as well on WORM devices
as on any other file system.

Current UNlX implementations provide two ker-
nel interfaces for integrating a new file system type
into the kernel: the file system switch (FSS), in UNIX

versions based on the System V Release 3; and the
virtual file system (VFS), in UNJX implementations
like the System V Release 4, SunOS, and OSF/l oper-
ating systems. We introduced the optical clisk filer
in the FSS and later ported it to the VFS.

The key challenge for the design of a file system
for write-once devices is to allow updates without
causing an "avalanche" of updates. Note that any
update to a sector on a woki device forces a
rewrite of the full sector at another location. If
pointers to an updated sector exist on the WoRiiI

device, sectors that contain those pointers have to
be rewritten, also. For example, if a file system
implementation is chosen where the list of data
blocks for a file, or just the sector location of such a
list, is part of the file's directory information, any
update to that file would cause a rewrite of the
directory sector and the sectors for the parent
directories, all the way up to the root directory

A second issue to be addressed for removable
optical disks is performance. Access time for on-line
disks is at least eight times slower than for current

OPTICAL
DISK FILER

VOLUME
MANAGER

DEVICE
DRIVER

magnetic disks. (The average seek time for a \VOki
device is 100 milliseconds; rotational delay is about
35 milliseconds.) Fetching a disk from a jukebox
storage slot, loading it, and waiting for spin-up
takes between 8 and 15 seconds, depending on the
type of jukebox.

Caching solves both issues. We decided that the
usual in-memory cache would not be sufficient for
the huge amounts of \VOW data, and therefore, we
use partitions of magnetic disks for caching. OPTICAL

FILE SERVER

ODF WORM Layoz~t To avoid duplicating previ-
ous efforts, we used classical UNlX file systems as
a guideline for the definition of ODF's \VOki layout.
However, we had to add some indirect pointer
mechanisms to avoid update avalanches. Each file
system is mapped onto a single WOkil partition.
These partitions are written sequentially, reducing
the free block administration to maintaining a cur-
rent write point.

The ODF reuses many notions from UNIX file sys-
tems, such as i-nodes, superblock, ancl the func-
tional contents of directory entries.' Applying
these UNIX notions to the optical file system
resulted in the following ODF characteristics:

The superblock contains all global data for a file
system.

- - - - --

Each i-node contains the block list and all the
attributes of a file except the file's name.

- - - - - - - - -

An i-node number identifies each i-node.

A directory is a special type of file.

JUKEBOX

Entries in a directory map names to i-node
numbers.

HARDWARE

A new notion in the ODF, as compared to UNlX

file systems, is the atlministration file (admin file).
One such file exists for each file system. The file is
sequential, and its contents are similar to the first
disk blocks in classical UNrX file systems: the first
extent contains the superblock, and all other
extents form a constantly growing array of i-nodes;
the i-node's number is the index of the i-node in the
file's i-node array. An important difference between
UNIX file systems and the ODF is that the 2-kilobyte
(kB), fixed-size extents of the ODF admin file are
scattered over the WOhVl device, instead of being
stored as a sequential array of disk blocks, as in
UNIX systems. As a result, any update to an i-node,
as a consequence of a file update, causes the invali-
dation of at most one admin file extent. Since
the logical index in the admin file of this i-node, i.e.,

Digital Technicul Journnl Vol. 5 iVo 2 Spring I993

Multimedia

the i-node number, does not change, the parent
directories do not have to be updated.

However, this scheme needs an additional indi-
rect pointer mechanism: a list of block numbers
representing the location of the admin file extents.
The ODF stores this list in the admin file's i-node
(aino). The aino is a sequential file that contains
slightly more than block numbers and is a sequence
of contiguous blocks on the W o h i disk that con-
tain the same information. Hence, an update to an
admin file extent always invalidates the entire aino
on the WOkV device, which makes the aino a more
desirable candidate for caching than the admin file
extents.

The following example, sliown in Figure 2, illus-
trates the steps involved in reading logical block N
from the file with i-node number I:

1. Read the aino to obtain the block number of 1's
admin file extent.

2. Read the admin file extent to get file I, which is
used to translate the logical block number Minto
the physical block number I(N).

3. Read physical block IW).

If the file system is in a consolidated state, i.e., all
data on the WOhL disk is current, the aino and the
superblock are the last pieces of information writ-
ten to the \VOhi device, directly before the current
write point. Blocks written prior to the aino and
the superblock contain mainly user data but also
an occasional adrnin file extent, fully interleaved.
Figure 3 shows the WOKM layout. Since ODF
requires the first admin file extent and the com-
plete aino to be in the cache, introducing a disk
with consolidated file systems to another system
requires searching the current write point, reading
the superblock, determining the aino length from
the superblock, and finally reading the aino itself.

ADMlN FlLE EXTENTS

SUPERBLOCK

i-NODE BLOCK 1

/

I-NODE BLOCK K 11

Searching the current write point is a fairly fast
operation implemented through binary search and
hardware support, which allow the ODF to distin-
guish between used and unused data blocks of 1 K
bytes.

ODF Cc~ching Caching in the ODF is file oriented.
We suggest a magnetic cache size of approximately
5 percent of the optical disk space. If data from a
file on a WORM disk is read, the ODF creates a cache
file and copies a contiguous segment of file data
from the \VOW4 clisk (64 kB in size, or less in the
case of a small file) to the correct offset in the cache
file. The cache file is the basis for all I/O operations
until removed by the ODF, after having rewritten all
dirty segments (i.e., updated or changed segmcnts)
back to the WORM clevice. The ODF provides special
system calls (through the UNIX fcntl(2) interface)
to flush asynchronously dirty file segments to the
WORM device and to remove a file's cache file. The
flusher daemon monitors high and low watermarks
for dirty cache contents. The daemon flushes dirty
data to the optical disks. The flusher daemon
flushes data in a sequence that minimizes the num-
ber of WO&\$ volume movements in a jukebox. The
ODF deletes clean data (i.e., data already present on
the optical disk) on a least-recently-used basis.

The admin file has its own cache file. The mini-
mum amount of aclmin file data to be cached is the
superblock. The ODF gradually caches the other
admin file extents, which contain the i-nodes, while
the file system is in use. The ODF writes i-node
updates to the WOkil device as soon as all i-nodes in
the same admin file extent have their dirty file data
written to the WORM device. The aillo has its own
cache file, also, and is always completely cached.
If all file clata and i-nodes have been written to the
WORM device, the file system can be consolidated
by a special i~tility that writes aino and superblock

EXTENTS OF FlLE I

n r-I EXTENT 0

EXTENT 1 I

+-I
EXTENT N

Figure 2 Steps Involved in Getting from the Aino to Extent I\' of File I

44 Vol. 5 No.2 S/!rir~g 199.3 Digital Techrrical Joztrnal

The Megndoc Image Document Management System

PREVIOUS AINO I
AND SUPERBLOCK

/
PREVIOUS CONSOLIDATION POINT

CURRENT CONSOLIDATION POINT
WORM PARTITION: \

\ CURRENT i-NODE / CURRENT AlNO ' I
BLOCKS J AND K AND SUPERBLOCK

Figure 3 WORM Layout for a Consolidated ODF File System

EMPTY SECTORS
I

to the WORM device, hence creating a consolida-
tion point.

For reasons of modularity and ease of implemen-
tation, we chose the UNlX standard magnetic disk
file system implementation to perform the caching.
An alternative would have been to use a magnetic
disk cache with an optimized, ODF-specific struc-
ture. We opted for a small amount of overhead,
which would allow us to add a faster file system,
should one become available. Our performance
measurements showed a loss of less than 10 percent
in performance as compared to that of an ODF-
specific solution. The cache file systems on mag-
netic disk can be accessed only through the ODF
kernel component. Thus, in an active OFS system,
no application can access and, therefore, possibly
corrupt the cached data.

Volume Manager
In addition to hiding the WOki nature of the under-
lying physical devices, the OFs transparently moves
volumes between drives and storage slots in juke-
boxes that contain many volumes ("platters"). The
V>1 performs this function.

The essential characteristic of the volume man-
agement layer is its simple fiunctionalit): which
is best described as a "volume faulting device."
The interface to the vM consists of volume device
entries, each of which gives access to a specific
WOkI\I volume in the system. For example, the vol-

AlNO

ume device ently /dev/WORRI-A gives access to the
WORM volume WORii-A. This volume device entry
has exactly the same interface as the usual device
entry such as /dev/worm, which gives access to
a specific WORM drive in the system, or rather
to any volume that happens to be on that drive at
that moment. Any access to a volume device, e.g.,
/dev/WORM-A, either passes directly to the drive on
which the volume (\VOw-A) is loaded, or results in
a volume fault. This last situation occurs when the

S FILE DATA .-.

volume is in a jukebox slot and not in a directly
accessible drive. Note that since /dev/WOkkl-A has
the same interface as /dev/worn~, the OFS could
function without the VM layer in any system that
contains only one worm drive and one volume that
is never removed from that drive. However, since
this configuration is not a realistic option, the OFS
includes the VM layer.

The internal architecture of the VM is more com-
plicated than its functionality might indicate. The
vM consists of a relatively small kernel component
and several server processes, as illustrated in Figure
4. The kernel component is a pseudo-device driver
layer that receives requests for the volume devices,
e.g., /dev/WOkV-A, and translates these requests
into physical device driver (/dev/worm) requests
using a table that contains the locations of loaded
volumes. If the location of a volume can be found in

S' AINO'

the table, the I/O request is directly passed on to the
physical device. Otherwise, a message is prepared
for the central VM server process, and the volume
server and the requesting application are put in a
waiting state.

The volume server uses a file to translate volume
device numbers into volume names and locations.
It communicates with two other types of viM server
processes: jukebox servers and drive servers. The
jukebox servers take care of all movements in
their jukebox. Drive servers spin u p and spin down
their drive only on request from the volume server.

IB [K]

Storage Manager
The storage manager implements containers, as
mentioned in the Electronic Document Manage-
ment section. Large-scale document management
uses indexing of multiple storage and retrieval
attributes, typically with the help of a relational
database. Once the contents of a document are
identified through a database query on its attri-
butes, a single pointer to the contents is sufficient.

"' FILE DATA

Digital Technical Jorrrnal Vul 5 ilio. 2 Spring 1993 4 5

IB [J]

Multimedia

VOLUME MANAGEMENT I

APPLICATION SERVERS
1 UNlX USER SPACE

1 UNlX KERNEL SPACE

DISK FILER JUKEBOX
COMPONENT GRIPPER

DRIVER

DRIVER I

Figure 4 Global Architecture Sho~uing the VIM Component

Also, there is little need for a hierarchically struc- first generation was based 011 delivery of source of
ti~red file system. Containers provide large, flat example applications. However, tracking source
structures where the contents of a document are changes appeared to be too big of an issue and ham-
uniquely defined by the container identification pered the introduction of new base functionality.
and a unique identification within the container. In cooperation with European sales organi-
The document's contents identification is translated zations, we formulated a list of requirements for a
by the storage manager in a path to a directory nrllere second-generation LAF. The framework must
one or more contents files can be written. For multi- 1. Allow for standard applications. Standard appli-
page image documents, the Megadoc system stores cations, i.e., scan, index, store, and retrieve, cover
each page as a separate image file in a directory a wide range of customer recluiremellts in folder
reserved for the docutnent. This schcme guarantees management. Tailoring standard applications
locality of reference, avoiding unnatural delays can be acconiplished in one day, without pro-
while browsing a multipage image document. gramming effort.

A container consists of a secruence of file sys-
tems, typically spanning multiplc volumes. Due to
the nature of the OFS, no distinction has to be made
between WOkh~l disk file systems and magnetic disk
file systems. The storage manager fills containers
sequentially, up to a configurable threshold for
each file system, allowing some degree of local
updates (e.g., aclding an image page to an existing
document). As soon as a container becomes fill I, a
new file system can be added.

Containers in a system are network-level
resources. A name server holds container locatiotls
Relocation of the volume set of a container to
another jukebox, e.g., for load balancing, is possible
through system management utility programs and
can be achievecl without changing any application's
indexing database.

RetrievAll-The Megadoc Image
Application Framework
Early Megadoc configurations required extensive
system integration work. RetrievAll is the second-
generation image application framework (IAF). The

2. Be usable in system integration projects. The
IAF must provide APls for folder management,
allowing the field to build applications with
fi~nctionality beyond the standard applications
by reusing parts of the standard applications.

3. Allow image enabling of existing applications.
RetrievAll should allow the linkage of electronic
image documents and folders with entities, such
as order number or invoice number, in existing
applications. Existing applications need not
be changed and run on the image workstation
using a terminal emulator running at the image
workstation.

4. Accommodate internationalization. All text pre-
sented by the application to the end user should
be in the native language of the user. RetrievAIl
should support more than one language simulta-
neously for multilingual countries.

5. Allow upgrading. A new filnctional release of
RetrievAll should have no effect on the customer-
specific part of the application.

Vo1. 5 Ab.2 5]n-irg 1993 Digital Tecbrrical Journal

The Megadoc Image Document Management System

6. Provitle document routing. Mter scanning the
documents, RetrievAll shoulcl route references
to new image tlocuments to the in-trays of users
who need to take action on the new documents.

Image Documents in
Their Production Cycle
Image documents start as harcl-copy pages that
arrive in a mailroom, where tlie pages are prepared
for scanning. Paper clips and staples are removed,
and the pages are sortecl, for example, per depart-
ment. An image batch contains the sorted stacks of
pages. 'l'he scanning application identifies batches
by a set of attributes. The scanning process offers
a wide variety of options, inclucling scanning one
page or multiple pages, accepting or rejecting the
scanned image for image quality control, batch
importing from a scanning subsystem, browsing
through scanned pages, ant1 controlling scanner
settings.

The indexing process regroups image pages of an
image batch into multipage image documents. Each
tlocument is identified with a set of configurable
attributes and optionally stored in one or more
folders. Folders also carry a configurable set of
attributes. On the basis of the attribute values, the
doci~ment contents are stored in the document's
storage location (container).

Many users of RetrievAll applications use the
retrieve tilnctions of the application only to
retrieve storecl folders and documents. Folders and
documents can be retrieved by specifying some of
the attributes. RetrievAll allows the configuration
of query forms that represent different views on the
indexing elatabase. The result of a query is a list of
documents or folders. For tlocuments, the opera-
tions are view, edit, delete, print, show fol:oltler, and
put in folder. The Megadoc editor is used to view
and to m;inipul;ite the pages of the document
including adding new pages by scanning or import-
ing. For folders, the operations are list documents,
delete, ;lnd ch;~nge ;ittributes.

Doczlnzent Routing Applications
A RetrievAJl. routing application is an extension to a
folder management application. A route defines
how a reference to a folcler travels along in-trays of
users or work groups.

Systems Management
The following systems management functions sup-
port the RetrievAl l package:

Digilnl Technical Journal KII. 5 No. 1 Sprir~g 1993

Container management

Security, i t . , user and group permissions

Logging and auditing

Installation, customization, tailoring, ancl local-
ization

Architecture and Overview
As illustrated in Figure 5, the RetrievAIl image appli-
cation framework consists of a number of motlules.
Each module is a separate program that performs a
specific function, e.g., scanning or document index-
ing. Each module has an MI to control its function-
ality, and some modules have an end-user interfxe.
Modules can act as building bricks under a control
module. For example, an image document capture
application uses

1. Scan handling, to let an end user scan pages into
a batch.

2. Scanner settings, to allow the user to set and
select the settings for a scanner. The user can
save specific settings for later reference.

3. Batch handling, to allow the end user to create,
change, and delete batches.

These three modules can operate together under
the control of the scan control module and in this
way form a document capture application. The
scan control module can, under control of a main
module, perform the clocument capture function
in a folder management application.

Modules communicate by means of tlynamic data
exchange (DDE) interfaces provided in the
Microsoft Windows environment. Each module,
except the main module, can act as a server, and all
modules can act as clients in a DDE communication.

Main Module Any RetrievAll application has a
main rnodule that controls tlie activation of major
functions of the application. These functions
include scanning pages into batches, identifying
pages from batches into multipage image docu-
ments and assigning documents to folders, and
retrieving docun~ents and folders. The main mod-
ule presents a menu to select a major function. The
main module activates the control modules of the
major functions in an asynchronous way. For exam-
ple, the main module can activate a second major
function, e.g., retrieve, when the first major func-
tion, e.g., identification, is still active.

Multimedia

1 zFRoL 1 1 INDE: 1 1 STORAGE 1 1 RETR,IEvAL 1
CONTROL CONTROL CONTROL

HANDLING HANDLING

MEGADOC
EDITOR

ROUTING
CONTROL

WORK ITEM
HANDLING

ROUTING n
Figure 5 RetrievALl Module Overviezu

Control Modules Each major RetrievAll function The existing application is controlled by a termi-
has a control moclule that can run 3s a separate nal emulator program running in the Microsoft
application. For example, when a PC acts as a scan Windows environment. This terminal emulator
workstation, it is not necessary to offer all the func- program must have programming facilities with
tionality by means of the main module. Control DDE functions.
modules can be activated as a server through the
DDE API with the main module as client or as a pro-

= While entering a new order into the system, the

pram item from a Microsoft Windows program image document representing the order is on

group. the screen. The function to include the image
can be mapped on a function key of the emula-

Server modules All modules, with the exception
of the main module, act as DDE server moclules.

Configuration files hold environment data for
each module. An application configuration file
describes which lnodules are in the configuration.
The layout of the configuration files is the same as
the WIN.INI file used by the microso oft Windows
software, allowing the reuse of standarcl access
functions.

Making an Application
An application can be made by selecting certain
modules. Figure 5 gives an overview of the modules
used for the standard folder management applica-
tion. The installation program, which is part of the
standard applications, copies the appropriate mod-
ules to the target system and creates the configura-
tion files.

Modules can also be used with applications other
than the standard ones. Image enabling an existing
(i.e., legacy) application (see Figure 6), such as an
order entry application where the scamed images of
the orders should be inclutled, entails the following:

tor. Pressing the function key results in a DDE
request to the identification function of the
RetrievAll components. This DDE request passes
the identification of the document (as known in
the order entry application) to the identification
function.

Summary
This paper has provided an overview of the many
components and disciplines needed to build an
effective image document management system. We
discussed the details of the \VOW file system, the
storage manager technology, and the image applica-
tion framework. Other aspects such as WORM
peripheral technology, software compression and
decompression of images, and the integration of
facsimile and optical character recognition tech-
nologies were not covered.

From experience, we know that different cus-
tomers have different requirements for image docu-
ment management systems. The same experience,
however, taught us to discover certain patterns
in customer applications; we captured these pat-
terns in the application framework. The resulting

48 1/01, 5 No. 2 Spring 133.3 Digital Technical Joztmal

The iMeg61doc hnuge Docunzent Manugernent System

LEGACY
APPLICATION

CONTROL v
HANDLING v
SCANNER

INDEX
CONTROL

INDEX
HANDLING

RETRIEVAL
CONTROL

HANDLING

Figure 6 Image Enabling a Legacy Application

framework allows 11s to bui.ltl highly customized Reference
applicatio~ls with low system integration cost and
short time to cleployment. Future directions are in 1. M . Bach, The Design of the Unix Operating Sys-
the area of enhanced folder management and inte- tern, ISBN 0-13-201757-1 (Englewood Cliffs, NJ:

grated distributed work flows. Prentice-Hal I , 1986).

Digital Techtrical Jorrrnal Vol. 5 No. 2 Spring 199.5 4 9

Mark E Riley
JumesJ Feenan, J2:
Johtz L . Janosik, J1:

3: K. Rengal-ajan

The Design of Multimedia
Object Support in DEC Rdb

Storing nzulti~~zedia objecb in a relational database ojfers ad~1a/zt~1ge.$ ozler file
s~lstenz storage. DigitalS relational database soft~ilareproduct DEC Rdb silpports tbe
storing and indexing of ~nciltirrzedia objects-text, stillfr.nnze irn~l~yl~les, conzpourz~i
documents, audio, uideo, and cinjl binarjl large object Alter erlal~rating the e.visri17g
DEC Rd6 uersion 3.1 for its ability to insert,fc,tch, a-lzdprocess nzidti~~~ediu ll~rln, stft-
ware desi~ners decided to ?nodif)) ~~zanypcirts of Rdb and to crse urite-once oj~ticcii
disks config~i~ed in stc~~~dntnloize driue or jukebox configurations. fiihrincernents
were nzade to the 6~fle.r manager andpage allocntion algot.itl~tr~s, thus redncin~
wasted disk space. Performance and copncilj~field tests indiliwte thrt DIiC Kd6 carz
sustain a 200-kilolyte-per-second SQL fetch throzighput and a 57.7-kilobyte-per-
second .TQI,LTeruice.$fetch througlgput, insert andfetcb a 2-gigabyte object, and bcril~l
a 50-gigabyte d~~tabase.

To acconlmodate the increasing demand for com-
puter storage ant1 intlexing of multimedia objects,
Digital supports rnultimeclia objects in its DEC Rdb
relational database software product. This paper
discusses the improvements over version 3.1 and
presents details of the new features ant1 algorithms
that were developetl for version 4.1 and are used in
version 5.1. This advancetl tecl~nology makes the
DEC Rdb comnlercial database product a precursor
of sophisticated database management systems.

Multimedia objects, s i ~ c h as large anlounts of
text, still frame images, compound documents. and
digitized audio and video, are becoming standard
data types in computer applications. Devices that
scan paper, i.e., facsimile machines, are inexpensive
and ubitluitous. Ilevices tJi;~t capture and play back
fi~ll-motion video and audio are just beginning to
reach, tlie mass market. Capturing these objects for
use within a computer results in many large data
files. For example, one minute of tligitizetl and com-
pressed stantlard TV-quality video requires approxi-
mately 50 megabytes (MB) of storage!

To date, relational databases have been used
successhilly in storing, indexing, and retrieving
codetl riumbers and characters. Relational algebra
is an effective tool for reorganizing queries to
reduce the number of records, e.g., from 1 million
to 70 records, that an application program must
search to obtain the desired information. Other

database features, such as transaction processing,
locking, recover!: ancl concurrent ant1 consistent
access, are essential to tlie successfill operation of
numerous businesses. Electronic banking, credit
card, airline reservation, and 1iospit;il information
systems all rely on these fe;~tures t o qilei-y, main-
tain, atid sustain business records.

However, nlthough n business niight have its
numbers ant1 characters organized, controlled, and
managed in a computer database, maintaining the
paper ant1 film storage media associatecl with
clatabase records can be costly, both in dollars and
in human resources. Some estimates place the
worlclwide data storage business at $40 billion. ant1
as much ;IS 95 percent of the information is stored
on either paper or film. <:urrentl~: businesses such
as insurance, banking, engineering, ;~ncl medicine
depend o n human beings to manage the filing and
retrieval of these extensive paper and film archives.
Human error can result in the loss of paper and
film. Clearly, scanning the paper, storing the infix-
mation in a computer, and making this information
available over computer networks is a better way
to manage paper records. This scheme allows
(I) multiple copies to be distributed at once; (2) a
customer f'ile to be e l ec t~ .o~~ic ;~ l ly located ;~ntl
retrieved in seconds, whereas to materialize a
paper folder can take clays; and (3) properly
programmecl computers to m;~int:~jn these types

The Design of Multimedia Object Support in DEC Rd6

of information more efficiently and accurately than
humans can.

The idea of eliminating paper-based storage of
business records in favor of computer storage is
long-standing. However, only recently have techni-
cal developments made it practical to consicler cap-
turing, storing, and indexing large quantities of
multimedia objects. Storage robots based on mag-
netic tape or optical disk can be configured in
the range of multiple terabytes (TB) at the low cost
of 45 cents per MB. Central processors based on
reduced instruction sets are getting fast enough to
process multimedia objects without having to rely
on digital signal coprocessors. Processor main
memory can be configured in gigabytes (GB).
Document management systems, which have
thrived over the past few years, deliver computer
scanning, indexing, storage, and retrieval across
local area networks.

Until now, most multimedia objects have been
stored in files. Docunlent management systems
generally use commercial relational database tech-
nology to store the documents' index and attribute
information, where one attribute is the physical
location of the file. 'This approach has several disad-
vantages: considerable custom software must be
written and maintained to make the system appear
logically as one database; application programs
must be written against these proprietary software
interfaces; a system based on both files and a rela-
tional database is difficult to manage; two backup-
and-restore procedures must be learned and
applied; and complications in the recovery process
can occur, if the database and file system backups
are executed independently.

Notwithstanding these disadvantages, storing
multimedia objects in a relational database offers
several advantages over file system storage.

Coding an application against one standard
interface structured query language (SQL) to
store object attribute data as well as multimedia
objects is easier than coding against both SQL to
manage attribute data and a file system to store
the multimedia object.

The database requires only one tool to back up
and monitor data storage rather than two to
maintain the database and the file system.

The database guarantees that concurrent users
see a consistent view of stored information. In
contrast to a file system, a database provides a

locking mechanism to prevent writers and read-
ers from interfering wit11 one another in a gen-
eral transaction scheme. However, a file system
does offer locks to prevent readers and writers
from simultaneous file access.

The database guarantees, assuming that proper
backup and maintenance procedures are fol-
lowed, that no information is lost as a result of
media or machine failure. All transactions com-
mitted by the database are guaranteed. A file sys-
tem can be restored only up to the last backup,
and any files created between the last backup
and the system failure are lost.

In the sections that follow, we present (1) the
results of an evaluation of DEC Rdb version 3.1 for
its ability to insert, fetch, and process multimedia
objects; (2) a discussion of the impact of optical
storage technology on multimedia object storage;
ant1 (3) design considerations for optical disk sup-
port, transaction recovery, journaling, the physical
database, language, and large object data storage
and transfer. The paper concludes with the results
of DEC Rdb performance tests.

Evaluation of DECRdb as a
Multimedia Object Storage System
Given the premise that production systems need to
store multimedia objects, as well as numbers and
characters, in databases, the SQL Multimedia engi-
neering team members evaluated the following DEC
Rdb features to determine if the product could s u p
port the storage and retrieval of multimedia
objects:

Large object read and write performance

Maximum large object size

Maximum physical capacity available for storing
large multimedia objects

The DEC Rdb product has always supported a
large object data type called segmented strings,
also known as binary large objects (BLOBS). The evo-
lution from support for BLOBS to a multimedia
database capability was logical and straightfor-
ward. In fact, the DEc Rdb version 1.0 developers
envisioned the use of the segmented string data
type for storing text and images in the database.

In evaluating DEC Rdb versio~i 3.1, we came to a
variety of conclusions about the existing support
for storing and retrieving multimedia objects.
Descriptions of the major findings follow.

Digital Technical Joui-ttal Vd. 5 flo. 2 Spring 1993

Mu1 tirnedia

The DEC Rdb SQL, which is compliant with the
standards of the American National Standards
Institute (ANSI) and the International Organization
for Standardization (lSO), and SQL/Services, which
is client-server software that enables desktop com-
puters to access DEC Rdb databases across the net-
work, did not support the segmented string data
type. Note that the most recent sQL92 standard
does not support any standard large object mecha-
nisms.' Object-oriented relational database exten-
sions are expected to be part of the emerging SQL3
standard.'

The total physical capacity for storing large
objects and for mapping tabular data to physical
storage devices is insufficient. A11 segmented string
objects have to be stored in only one storage area in
the database. This specification severely restricts
the maximum size of a multimedia database and
thus impacts performance. One cannot store a large
number of X-rays or one-hour videos on a 2- to 3-GB
disk or storage area. Contention for the disk would
come from any attempt to access multimeclia
objects, regardless of the table in which they are
stored. Although multiple discrete disks can be
bound into one OpenVMS volume set, thereby
increasing the maximum capacity, data integrity
would be uncertain. Losing any disk of the volume
would result in the loss of the entire volume set.

The maximum size of the database that DE<: Rdb
can support is 65,535 storage areas, where each area
can span 2" - 1 pages. That translates to 256 tera-
pages (i.e., 256 X 10" pages) or 128 petabytes (PB)
(i t . , 128 X 10" bytes). At a penny per megabyte, a
128-petabyte storage system would cost 1.28 billion
do1 lars!

The largest BLOB that DEC Rdb can maintain is 275
TB (i.e., 275 X 1012 bytes). A data storage rate of
1 megabyte per second (i\.1B/s) for motion video and

DATABASE KEY LOCATES
FIRST PAGE OF BLOB

J. -
PAGE 1 ;:g:B m

audio translates into 8.7 years of video. However, as
mentioned previously, the maximum size and the
total number of objects that can be stored are lim-
ited. As part of system testing, we successfully
stored and retrieved a 2-GB object in a DEC Rdb data
field.

DEC Rdb uses a database key to reference individ-
ual segments stored in database pages. A BLOB
belongs to only one column of one row of a rela-
tion. The database key value that locates the first
segment is stored in the column of a table defined
to represent the BLOB data type. DEC Rdb imple-
ments segmented strings as singly linked lists of
segments. Therefore, version 3.1 must read a seg-
ment in order to find the next segment. This pro-
cess has two disadvantages: (1) random positioning
with a BLOB data stream is extremely slow, and (2)
BLOB pages cannot be prefetched asynchronously.
Figure 1 illustrates a DEC Rdb version 3.1 singly
Linked list segmented string implementation.

BLOB data transfer performance of DEC Rdb ver-
sion 3.1 was promising. We were able to code a load
test that sustained 65 kilobytes per second (kB/s); a
fetch test sustained 125 kB/s. To put these measure-
ments in perspective, DEC Rdb is capable of insert-
ing more than one A4-size (210 millimeters [mm]
by 297 mm, i.e., approximately 8.25 by 11.75 inches)
scanned piece of paper per second and capable of
fetching more than two Ad-size pieces of paper per
second. The test was conducted by writing and
reading 50-kB memory data buffers to and from
magnetic storage areas defined by the DEC Rdb soft-
ware. This experiment ignores the overhead of net-
work delays ancl compression.

DEC Rdb version 3.1 can write multiple copies
of BLOBS, one to the target database storage area
and one to each of the database journal files. The
journal files provide for transaction recovery and

POINTER

PAGE N m
Figure 1 RdD Version 3.1 Singly Linked List Segmented String Irnplementario?~

VoL. 5 No. 2 .Spring 1993 Digital Technical Joumnl

The Design of Multimedia Object Support in DEC Rd6

system failures, such as disk drive failures. Database
journal files tend to be bottlenecks, because every
data transaction is recorded in the journal.
Therefore, writing large objects to journal files dra-
matically impacts both the size of the journal file
and the l/O to the journal file.

The volume of storage required for most modest
multimedia applications call be measured in tera-
bytes. A magnetic disk storage system 1 TB in size
is expensive to purchase and maintain. An alterna-
tive storage device that provided the capacity at a
much lower cost was required. We investigated the
possibility of using Digital's RV20 write-once opti-
cal disk drive and the ~ ~ 6 4 optical library ("juke-
box") system based on the RV20 drives. We quickly
rejected this solution because the optical disk
drives were interfaced to the Q-bus and UNIBUS
hardware as tape devices. Since relational databases
use tape devices for backup purposes only and not
for direct storage of user data, these devices were
not suitable. Note that physically realizing and
maintaining a large data store is a problem for both
file systems and relational databases.

DEC Rdb version 3.1 does not support large
capacity write once, read many (WORM) devices,
which are suitable for storing large multimedia
objects. Version 3.1 has no optical jukebox support
either.

Storage Technology Impact
When we evaluated DEC Rdb version 3.1, a I-TB mag-
netic disk farm was orders of magnitude more
expensive than optical storage. Large format 12- or
14-inch (i.e., 30.5- or 35.6-centimeter) WOW opti-
cal disks have a capacity of 6 to 10 GB. The WOM$
drives support removable media. These drives can
be configured in a jukebox, where a robot transfers
platters between storage slots and drives. A fully
loaded optical jukebox, which includes optical disk
drives and a full set of optical disk platters, of
approximately I-TB capacity costs about $400,000,
i.e., $0.40 per MB. By comparison, Digital's RA81
magnetic disk drive, for example, has a capacity
of 500 MB and costs $20,000. Thus, to store 1 TB of
data would require 2,000 RA81 disk drives at a total
cost of $40 million, i.e., $40.00 per MB!

How big is one terabyte? Assume, conservatively,
that a standard business letter scanned and com-
pressed results in an object that is 50 kB in size.
Therefore, 1 TB can store 20 million business let-
ters, i.e., 40,000 reams of paper at 500 sheets per
ream. A ream is approximately 2 inches (51 mm)

high, so 1 TB is equivalent to a stack of paper 80,000
inches or 6,667 feet or 1.25 miles (2 kilometers)
high! The total volume of paper is 160 cubic yarcls
(122 cubic meters). i\ 1-TB optical disk jukebox is
about 3 to 4 cubic yards (2.3 to 3 cubic meters).
Assuming TV-quality video, 1 TB can store 308
hours or approximately 12 days of video. Full-
motion video archives suitable for use in the broad-
cast industry require petabytes of mass storage.

The gap between affordable and practical config-
urations of optical disk jukeboxes and magnetic
disk farms has closed consitlerably since late 1992.
Juxtaposing equal amounts (700 GB) of magnetic
and optical storage, including storage device inter-
connects, installation, and interface software,
reveals that magnetic disk storage is about five
times more expensive than optical storage. The
major disadvantage of optical jukebox storage is
data retrieval latency related to platter exchanges.
This latency, which is approximately 15 seconds,
varies with the jukebox load and how data is
mapped to different platters.

Mass storage technology, including device inter-
connects, combines different classes of storage
devices into storage hierarchies. Storage rnanage-
ment software continues to be a challenging aspect
of large multimedia databases.

To provide 1 TB of mass storage capacity for rela-
tional database multimedia objects at reasonable
cost, we conducted a review of third-party optical
disk subsystems, hardware, and device drivers for
VAX computers running the OpenVhfS operating
system. A characterization of the available optical
disk subsystems revealed three basic technical alter-
natives.

1. Low-level device drivers provided by the drive
and jukebox manufacturers.

2. Hardware and software that model the entire
capacity of an optical disk jukebox as one large
virtual address space.

3. Write-once optical disk drives interfaced as stan-
dard updatable magnetic disks. The overwrite
capability is provided at either the driver or the
file-system level, where overwritten blocks are
revectored to new blocks on the disk. For exam-
ple, consider a file of 100 blocks created as a sin-
gle extent on a WOkM device. When requested to
rewrite blocks 50 and 51, the W O W file system
writes the new blocks onto the end of all blocks
written. The system also writes a new file header
that contains three file extents: blocks 0 to 49

Digital Technical Jourtral 1/01. 5 No. 2 Spring 1993 53

Multimedia

stored in the original extent; blocks 50 to 51
stored in the new extent; arid blocks 52 to 100
stored as the third extent. Obviously, files that
are updated frequently are not candidates for
WORM storage. However, immut;tble objects,
such as digitized X-rays, bank checks, and health-
benefit authorization forms, are ideal candidates
for WORM storage devices.

As a result of this investigation, we tlecided that
using write-once optical clevices, interf~cetl as stan-
dard disk devices, was the best solution to provide
optical storage for niultimedia object storage. This
functionality is being met with commercially avail-
able optical disk file and device drivers.

In the firture, WORM devices may be superseded
by erasable optical or magnetic disks. However,
experts expect that WORM devices, like microfilm,
will continue to be useful for legal purposes.

Design Considerations
The tamperproof nature of WORM devices is an
asset but causes special problems in database sys-
tem design. The evaluation of IIEC Rtlb version 3.1
indicated that several features neetletl to be added
to the DEC Rdb product to make it a viable nlultirne-
dia repository. This section clescribes tlie design of
the new multimedia features inclutletl in DEC Rdb
versions 4.1 through 5.1.

Mass Storage
DEC Rdb version 4.1 supports WORM optical disks
configured in standalone drive or jukebox configu-
rations. DEC Rdb permits d;~tabase columns that
contain multimedia objects to be storetl or mapped
to either erasable (magnetic or optical disk) or
write-once (optical disk) areas. The write-once
characteristic can be set and reset to permit the
migration of the data to erasable tlevices. No
changes to application programs are recluired to
use write-once optical tlisks, including jukeboxes.

The main design goals for WOlW area support
were to

Reduce wasted optical disk space by taking into
account the write-once nature of WOki devices

Not introduce DEC Rdb application program-
ming changes for WORM areas

Maintain the atomicity, consistency isolation,
and durability (ACID) properties of transactions
for WORM devices

Maintain comparable performance. allowing for
hartlware differences between optical and mag-
netic devices

DEC Rtlb uses the optical disk file system to cre-
ate, extend, delete, ancl close database storage files
on WOliM devices. Although this approach uses the
block revectoring logic in the optical disk file sys-
tem, minimal sp;rce is wasted. When writing blocks
to WORM tlevices, I)EC Iitlb explicitly knows tli;~t
blocks can be written only once and bypasses the
revectoring logic in the optical disk file system.

Nonetheless, I)E<: Rtlb software could waste
space in two m;~jor w:~ys. First, when DEC: Ilclb cre-
ates a storage area on an erasable medium (e.g.,
a magnetic or eras;~ble optical disk), the databilse
pages are initialized to contain a standard page for-
mat, with page ni~mbers, area Ins, checksums, etc.
Preinitializetl database pages help to determine cor-
rupted cl;~tabase pages. However, preuiitializing
database pages on write-once media makes little
sense. 'The second way in which DEC Kdb could
waste write-once optical disk pages is to use stor-
age allocation bit maps for space management
(SI'M). SPtiILI p;lges are used to keep track of free
and usetl pages. As records are adclecl to ant1 tleletetl
from tlie database, the SPtbii bit maps are constantly
uptlatetl. SPAM p;rges are maintained within e;~ch
database file. With write-once devices, a page can
be used only once. Again, it makes no sense to
update SPAM ~xlges for write-once media.

To eliminate needlessly wasting space on write-
once media, I)E<; Kdb does not preinitialize W O k i
pages. As a general rule, WORM areas should not
contain any updatable data structures. DEC Rtlb
maintains WORM storage space allocation in the
database root file. The database root file should
always reside on a magnetic disk, because the root
file is frequently uptlatetl and magnetic tlisks yield
higher perform;~nce. The clusterwide object man-
ager niechanism ensures that the pointer to the end
of the written ;ire;r is consistent across ;I cluster.

SPhM pilges, ;iltl~ougb disabled for write-once
areas, are in fitct allocated anyway. The reason
for allocating SP.AM p;iges in a write-once area is to
provide the ability to migrate the contents of the
storage area to an erasable device. The SPAivl pages
simply need to be rebuilt to reflect the space uti-
lization at the point of conversion.

This write-once char~cteristic was the basis for
several enhancements to the buffer manager ant1
page allocation ;~lgorithn~s. Given that a free WORM
page has never been written to, the buffer manager

54 Val. 5 No. 1 .S/)rirtg 1391 Digital Techricnl Jounznl

The Design of illultitnedrcr Object Support in DEC Rdb

simply materializes an initialized buffer in main
memory for write operations without having to
first read the page from disk. In the case of page
allocation h)r magnetic disks, DE<: Rtlb must scan
SIJA'AIM pages in search of enough free storage space
to satisfy a write operation. The scanning ;~lgorithrn
is much simpler for write-once areas; to store new
records, I>EC Rclb allocates one more page at the
entl of the written portion of the area to a process.
oE<: Rtlb maintains such allocated p;lges in ;I queue
c;~lletl tlie marked W0kM page queue o n a per-
process basis. Wlienever a WILi page is written
to disk, that page is taken off the marked WOI1M
page qileue. An attempt to store a recortl checks
the t l i ~ a ~ e before allocating new WOKILI pages to
storage. 17acilities exist to allocate many WORM

p21ges in one operation, thus minimizing the num-
ber of writes to tlie root file.

By explicitly taking into account the write-once
c1i;iracteristic of the device, DBC litlb greatly
retluces wasted space, keeping optical tlisk reatl
ant1 write performance high.

Trnnsaction Recovery
To understand the discussion of transaction recow
er): tlie concepts of first- ancl second-class records
must be i~ntlerstoocl. Both alphanumeric records
and I3L011 segments are stored in tlatabase pages.
Alphanumeric records are first-class recortls and
thus have identities in tables; these records are the
I-ows. First-cl;iss records are requiretl to be on a
metliuni tlut permits update (either magnetic disk
or erasable optical disk). All relation tuples are first-
cl;rss records. Second-class recorcls, such as BLOBs,
have 110 identities of their own. BLOBs call exist only
within tlie clomain of an alphanumeric recortl and
;Ire pointed to by first-class recorcls. Second-class
records may be loc;ited in U/OI~M areas.

Multimedi;~ objects can be stored as second-class
records in either write-once or erasable areas.
However, due to transaction recovery constraints,
the rows of relations must be stored in magnetic
disks 21s first-class records.

If ;in upd;~te tr;~nsaction against the d;~tab;~se is
aborted, then the database must restore the state of
all tlatabase areas to pretransaction state. Regard-
less o f the transaction recovery scheme employed,
e.g., hybricl unclo-retlo, the effects of ;ui uncom-
mitted transaction to write-once media may have to
be undone.

By definition, a write transaction on write-once
metli;~, once complete, can never be undone. In

cases where a transaction fails and the transaction
has written data to a write-once area, DEC Rdb
employs a logical unclo operation. This operation
de-references the database key that points to the
BLOB data written as part of the failed transaction.
An example helps to illustrate how the logical undo
operation works.

1. Colisider row 1% of t a l k T, which contains a col-
umn defined as tlata type ULOB.

2. The BLOB storage map indicates that the large
objects are stored in a write-once area.

3. A process starts a transaction and updates the
row storing a BLOB in the write-once area.

4. For some reason the transaction aborts

5. Recovery nullifies the value of tlie database key
that locates the first page of the BLOB.

The write-once pages can never be reused and
will never again be allocatetl. Nothing points to or
references data written as part of an aborted
transaction.

This transaction recovely scheme introtluces the
interesting phenomenon of W/ORM holes. Consider
the following scenario:

A write-once area has the first 106 pages written
and allocated.

Process X starts a transaction that writes a BLOB

segment to the write-once area.

Page 107 is allocated for process S.

Later in time, process Y starts a transaction to
store a BLOB in the same write-once area.

Process Y causes pages 108 to 120 to be allo-
cated, data is written, the transaction conimits,
and process Y disconnects from the database.

At this point, process X tlecitles to roll back its
transaction.

Page 107 remains in a preinitializecl state.

Page 107 can never be allocated to store ULOB data.
Recall that DEC Rdb manages space on write-once
devices by maintaining an end-of-area pointer to
keep track of pages that have been written. Zero-
filled pages that will never be allocated are called
WORM holes. WOk\l holes are interesting because
DEC Rdb utilities, such as verify, expect to find all
allocated pages in a standard format. The utilities
have been modified to ignore empty pages on
write-once areas.

Digital Techrricnl Jorrr~rnl Wll 5 No 2 J/ ,I-IIW 1995

Multimedia

Journaling Design Co~zsideratio~zs
An effective database management system guar-
antees the recovery of a dat;tb;tse to ;I consistent
state in the event of a major system failure, such
as media failure. Hence, fill1 ant1 incremental back-
ups must be performed ; ~ t regi11:tr interv;~la, anct
the database must recorcl or keep :I journ;~l file of
tr;~nsactions tli;~t occur between back~~ph. In LIE(;
I<tlb, the after image journ;~l (AIJ) file records all
transactions against the database since the last
backup. Also, to recover from a system f;~ilurc. the
database must keep track of all outstancling or
pending transactions. The recovery unit journal
(IUU) file records the state ancl clat;~ ;tssoci;tted with
; I I I pending transactions.

journal files are heavily ~~tilizetl in a tlatabase
management system. Contention h)r the journal.
files comes from every process that is updating
the database. To be completely recovefitble, the
tlatabase management system must record 13I.OI3
data, as well. as alphanumeric data, to both the AU
and the RIJJ files. Because multimedia objects ;Ire
large, eliminating the neecl to write tlicsc objects to
the journnl files is desirable. The double-write trans-
action negatively impacts the pcrform:lnce of the
;tpplication storing the object ant1 t;ixcs the journitl
file, one of the most burdenetl resources in the
d;lt;~base.

As tliscussed in the Transaction Recovery sec-
tion, DEC Rdb uses logical undo operations t o undo
aborted transactions. In acldition to the minimal
processing required to de-reference ;I tlatabase key
pointing to the wok\l area pages, I>H: Rclb automat-
ically clisables RUJ log writes for WOllM :Ires records.
This is another advant;~ge of using WORM tlevices
fix ~i~ultirnedia objects.

Recorcling multimetlia objects in the AIJ file is
not so straightforwartl. I)E<: Rtlb uses the AIJ file
for media recovery, as well as l'or transaction
recovery. By definition. keeping a metlia recovery
journal forces twice the numbcr of I / () operations,
each to a separate device. 1)E<: Rdh must write
the milltimedia object to the storage area tlesig-
nated for the multimedi;~ object 21ncl write ;I copy of
the object to the i\ tJ file. If the primary stor;tge
clevicc that contains the objcct f;tils, the clat;lbase
;~dministrator can apply the last fill[backup of
the storage area, followed by any subsequent incre-
mental backups, and roll forwarcl through the
AIJ journal file to recover the data. If a multi-
medi;~ database is to be completely recoverable
ancl consistent, then rnultirnccli;~ objects must be

recorded in the A l j file. Since they can never be
erasecl, WORM optical tlisks might be the best
devices to n-ritc an objcct (or- a journal filc) to. F.;fen
tl-rough ;I jukc.box c;tn misfecd and pernlanently
damage the media. disks in a jukcbox c:tn bc disk
shatlowecl. The trittle-off is rloubling the I/o versus
risking c l ; ~ t ; ~ integrity, Rather than legislate a policy,
DEC Rclb permits applications to disable A1.I logging
for RI.ODs, thuh transferring the risk to individu;ll
applications.

The orignal design of segmented strings specified
a singly linked list, where the segments were
writtcn one at a time, as shown in Figure 1. When
writing a new segment, the previous segment
hacl to be uptlxtecf with ;I pointer value that identi-
l'iccl the loc:~tion of the new segment. For example,
to store a l$I,Oll with two segments R1 anel R2,
the old algorithm storeti R1, stored K 2 , and then
modified l i l to point to R2. Although this algorithm
docs not \vastc. sp;~ce on :I magnetic disk, it does
waste sp;tcc. on write-once optical disk. Segment
R1 must be rewritten to disk with a pointer to
segment RI!

I f wc irnposc thc depe~~clenc!~ between the two
stores th;tt R2 must l x stored before R l , the store
dependency for D1,OBs becomes a reverse orcler
of segments. Storing segtnents in reverse order
requires bi~ffcring ;t I I segments of a niultirnetli;~
object. U herc:~s buffcring the entire objcct in ni;tin
memory m;ly be feasible for small multirneclia
objects, main memory is not large enough to buffer
auclio and vidco data objects. The singly linked
list method that DEC: Rdb used prior to version 4.1
is not well suited for WORM devices. l'hereforc, wc
redesigned the format of BWBs in \/oR\il ;Ireas to
eliminate the need to buffer large amounts of data.

The nenr design replaces the singly linked list
with rir.ol% segment pointer arrays and BLOn data
segments. The segment pointer array maintains
a list o f tl;ttabase keys that locate each segment, in
order, for ;I BLOB, ;IS illustrated in Figure 2. Btrause
segment pointer arrays are stored as a singly linkcd
list, the pointer arrays can become large.
Application clata is stored in BLOB data segments.
The new method buffers and writes the BLOB seg-
ment pointers to disk after assigning the segmented
string to a record.

Besides eliminating the waste problem for write-
once devices, the segment pointer array has other
advantages. r>E<: Rdb reads the pointer array into

The Design of Multiinedia Object Supporl in DEC Rdb

DATABASEKEYLOCATES
FIRST PAGE OF BLOB
THAT CONTAINS POINTER
ARRAY LOCATING THE
OTHER BLOB PAGES

I; iq~~re 2 Kdb Versio~~ 4.2 Pointer' A r r q ~ Segmented String Jrn~lement~~tion

POINTER TO SEGMENT 1

POINTER TO SEGMENT 2 -
POINTER TO SEGMENT 3

POINTER TO SEGMENT N

ARRAY TERMINATOR

menlory when an application accesses a BLOB. DEC
Rdb can, therefore, tluickly ant1 randomly atldress
any segment in the BLOB. Also, DEC Rclb can begin
to load segments into main memory before the
application requests them. This Feature benefits
applications that sequenti;tlly access an object,
such ;a playing a video game.

Storage M a j Enbnncementsjbr BLOBs

DATABASEKEY

DATABASE KEY -

Designers acldressetl several issues related to stor-
age mapping. The major problems solvecl involved
capacity ant1 system m;magernent, jukebox perfor-
mance, ant1 the fi~ilover o f full volunles.

,

DATABASE KEY -
BLOB

Cupucity a i ~ d .Sj~slern ~W~inugemer~f U EC: Rd b can
map user data, represented logically as tables, rows,
ant1 columns, into multiple files or storage areas.
Besides increasing the amount of data that can
be stored in the database, spreading data across
multiple devices reduces contention for disks and
improves performance. However, as mentioned in
the section Evalu;ltion of l>E(: Rtlb ;IS ;I Multjmedia
Data Storage System, prior to LIE(: Rdb version 4.1,
only one stor;ige area coulcl be used for storitig
BLOR data. A1 1 DLOH colunlns in the database were
implicitly mapped into the single area, which
severely lilnitetl the rn;~xirnum mount of multi-
media d;~ta that co i~ ld be stored in IIEC Rtlb.

Prior to new multimetlia support for BLOBs, DEC
Rdb restricted the direct storage of a particular
table column to one I X < ; Rdb storage area (i t . , file).
This partitioning control is accomplishetl by means
of the DT:c Rtlb storage map mechanism, as shown
in the following code example:

BLOB
PAGE 2

C r e a t e s t o r a g e m a p BLOB-MAP
S t o r e L i s t s

i n RESUME-AREA
f o r (P L A C E M E N T - H I S T O R Y ,

C A N D I D A T E S - R E S U M E)
i n PHOTO-AREA

f o r (C A N D I D A T E S - P I C T U R E)
i n R D B S S Y S T E M ;

PAGE 3

DATABASE KEY

This code directs the BLOB data from the table
PLACEMENT-HISTORY and the column RESUME of
the table CANDIDATES to be stored in the area
RESUME-AREA and the BLOB column I'I(:TIIRE of
the table CAYDIDAT'ES to be stored in the are;l
PHOTO-AREA. The remaining BLOR data in the
database is stored in the default RDBSSYSTEM area.

Restricting the storage of all BLOBS :tcross the
entire database schema to a single file or database
area was clearly undesirable. The size of the area
would be limitecl t o the largest file that could be
created by the OpenVMS operating system and the
mass storage devices available. The Iimitecl map-
ping of one BLOB area mappecl to one disk
can be circumvented by using the OpenViMs sys-
tem's Bound Volume Set mechanism. This mecha-
nism allows n discrete disks to be bound into one
logical disk. DEC Rdb can then create a single stor-
age area on the logical disk that spans the bountl
set of disks.

However, although the volume set mechanism
solves the problem of limited area mapping, serious
limitations exist in the database system administra-
tion ancl recovery processes. All tlatabase-related
facilities operate at the granularity of a tlat;ll>;tse
storage area. Thus, if one disk in a 10-disk volume
set is defective, DEC Rdb would have to restore all

Digilul Tecb~ricrrl J o r r n r n I Val. i No. 2 .Sj~riirg 1393 57

Multimedia

10 disks. Not only does restoring data on function-
ing disks waste processing time, but during the
restore operation, applications are stalled for access
at the area level. This situation introduces concur-
rency problems for on-line system operations.

DEC Rdb version 4.1 and successive versions
solve the capacity problem by (1) permitting the
definition of multiple BLOB storage areas, (2) bind-
ing discrete storage areas into storage area sets, and
(3) providing the ability to map or to vertically
partition individual BLOB columns to areas or area
sets. Applications can set asicle a disk or a set of
disks for storing employee photographs, X-rays,
video, etc. The alphanumeric data and inclexes
can be stored in separate areas as well. Figure 3
depicts the employee photograph column being
mapped to the EMP-PHOTO-1, EMP-PHOTO-2, and
EMP-Pf-IOTO-3 storage area set. All alphanumeric
data in the table EMPLOYEES is assumed to be
mapped to storage area A.

Coding this example results in

C r e a t e s t o r a g e m a p B L O B - N A P
S t o r e L i s t s

i n (E N P ~ P H O T O ~ 1 , E M P ~ P H O T 0 ~ 2 ,
EMP-PHOTO-3)

f o r (E M P L O Y E E S . P H O T 0 G R A P H)
i n R D B S S Y S T E M ;

This code directs the BLOB data, i t . , the column
PHOTOGKAPH from the table EMPLOYEES, to be

TABLE: EMPLOYEES

NAME

DICK

FRED

Figure 3 DEC Rdb BLOB Storage Area Sets

MARY

stored in the three specified areas ENP-PHOTO-I,
EMP-PHOTO-2, ant1 EMP-PHOTO-3.

The ability to define multiple BLOB storage areas
ancl to bind discrete areas into a storage set elirni-
nates the BLOB storage capacity limitation in DE(:
Rdb. Consider the storage problem of storing 1 k113
of medical X-rays :IS part of a patient record. Prior to
DEC Rdb version 4.1, the limited one-BLOB storage
area could store approximately 2,000 X-rays on a
2-GB disk device. The features included in version
4.1 allow the creation of a t>EC Rdb storage area set
that spans mirltiple disk devices. Also, adding stor-
age areas or disks to a storage area set can expanti
the capacity initially tlefinetl for the colunin.

123

J ~ t k e b a ~ Pelfor~nance Problenzs When a storage
area set is defined using the S(ZL storage map state-
ment, DEC Rtlb implements a random algorithm
to select ;I discrete :ires or disk from the set to store
the next object. Since multiple processes access
multimedia objects ;(cross the entire set, a random
algorithm that evenly distributes data across the
disks in the area set retluces contention for ;my
one disk.

Using a random algorithm to select from a set
of platters in :I jukebox is extremely inefficient.
A jukebox comprises one to five disk drives with 50
to 150 shelf slots where optical disk media is stored.
A storage robot exchanges optical disk platters
between drives ant1 storage slots. As described ear-
lier, a h111 platter exchange-spin down the platter
currently in the tlrive, eject the platter, insert a new
platter, spin up the new platter-takes approxi-
mately 15 seconds. Each optical disk surface, i.c.,
sicle ofa plattrl; is modelecl as a discrete disk to the
OpenVMS operating system. Consider, for exaniple,
ten storage areas clefinecl on optical disks in the
jukebox and mapped into a storage area set. All
patient X-rays from a single table in the database are
to be stored in this area set. Each new X-ray inserted
in the tlat:~bnse causes DE(: Rtlb to randomly select a
disk sur f~ce in the jukebox, which probably results
in a platter exchatlge. Consequently, each X-ray
insertion takes 15 seconcls!

The solution to the jukebox performance prob-
lem was not to eliminate random storage area selec-
tion, which works successfully with fixed-spindle
devices. Rather, the solution was to ;~ccommodate
an alternate :~lgorithm that sequentially filled the
disks in an :ue;i set. Using DEC Rdb, applications can
specify random or sequential loading of storage
area sets as part of the storage map statement.

PHOTOGRAPH

IMAGE OBJECT

ADDRESS

456

IMAGE OBJECT

\\\ALPHANUMERIC DATA I , / \ \ BLOBS /

\ MAPPEDTO I ', MAPPED ,/

\ SEPARATE I \,TO AREA
\ \ STORAGE /' \ SET I'

\ \ AREA , / \ I I

\ / \ I

RDB STORAGE
EMP-PHOTO-1

RDB STORAGE RDB STORAGE

RDB STORAGE
EMP-PHOTO-3

789

58 16/. 5 AVO. 2 .Sl,rirrg 199.3 Digital Tecbnicrrl Jorrnrnl

. .

IMAGE OBJECT

7he Design oJiM~11tiniedia O6lect S~~)por t 111 DLC Rd6

Contention for a single optical disk in a jukebox is
a far more tlesirable situation, with respect to
Ii~tencj: than causing one platter exchange per
object storecl.

When multiple users simultaneously issue
requests to read multimedia objects stored in a
jukebox, long delays occur, whether the storage
area is lo;~decl secli~entially or rantlomly. Using a
transaction monitor to serialize access to the
database helps eliminate jukebox thrashing and
improve the aggregate performance of the database
engine

Fuilouer of Full Volumes The introduction of
storage ;Ires sets gave rise to another problem:
What happens when one area in tlie set becomes
ful I ? Normally, within the DEC Rdb environment,
disk errors that result from trying to exceed the
allocated disk space are signaled to the ;~pplication
so that the transaction can be rolled back (dis-
c;~rdetl). When relatecl to storage area sets, how-
ever, the error is just an indication that a portion of
the disk space allocated to the column has been
exhausted and that processing should continue.
Also, since multimedia objects tend to be esceed-
ingly large, great amounts of data may have already
exhausted cache memoq7 and been written back to
the WoRbl meclia, even though the d;~tabase trans-
action has not committecl. Handling such an error
by signaling to the application and expecting the
application to roll back ancl retry the transaction
would result in the waste of a large number of
clevice blocks that have already been burned. Thus,
I)EC Rtlb had to implement a new scheme.

DEC; Rdb now implements fill1 failover of an area
within the area set. Thus, when an area becomes
full. DEC Rdb traps the error, selects a new area in
tlie set, ant1 writes the remaining portion o f the
B1.00 being written to the new area. This area
failover works whether the storage allocation is
random or sequential. In addition, the area that
is now ful l is marked with the attribute of full, ant1
the clusterwide object manager of [>EC Rtlb rn;~in-
tains this attribute co~isistently throughout the
cluster. <:onsequently, writers to the database will
consitler the area unavailable for future HLOH store
operations. Further, the DEC Rclb database n1;lnage-
ment utilities can remove tlie attribute if additional
space is made available to the database area (e.g., if
DEC Rdb moves BLOBS from area A to another copy
of area A that resides on a device with twice the
capacity).

Language Design Considerations
SQL, tlie ISO/ANSI standard relational database
structured query langn;rge, is well suited to
expressing queries against alphanumeric data
yet harclly begins to address the needs of multi-
media objects. Putting aside the fact that sanlpled
data (i t . , a scanned image) is more difficult to
query than coded clata (e.g., text coded in ASCII),
SQL cannot provide data compression and ren-
dition capabilities for niultimetlia objects.
Multimedia object processing is better suited to
a language like C or C+ +. Ideally, sQL woultl sup-
port the ability to define objects and to associate
methods with those objects. SQL3 is a new version
of the SQL standarcl that tlie standards organizatio~~s
are just beginning to work on. SQJ.3 contains the
mechanism to define abstract clata types ant1 to exe-
cute external procedures as part of SQL statements.
However, SQ1.3 will not become a standard for four
to five years.

As discussed previously, I)E(: Rclb SQL lacks
support for the segluented string or RLOB dat;~
type that was available in the Rdb relational engine.
A new DEC Rtlb SQL clata type, LIST OF BYTE
VARYING, was designed basecl on the native Rdb
segmented string data type. The clata access mecha-
nism for the LIST OF HYTE VARYING data type is
a list cursor, wliicli operates like a table cursor-
open the cursor, fetch segments of a BLOB, and
close the cursor. 'This new data type with asso-
ciated access mechanism was also added to
SQL/Services. SQWServices software enables remote
clients on a network, such as personal com-
puters, to attach t o remote DEC Rdb databases.
The ability to scroll or to randomly position the
list cursor allows positioning at a particular data
segment within the multimedia object stream with-
out having to physically re;~cl through the entire
data stream.

Although applications can program directly to
list cursors, this interface W;IS cumbersome and did
not offer any object typing or processing. The list
cursor mechanism does not present the straightfor-
ward byte-stream interface that is common in most
file systems. Applications want to store objects,
such as images and compound clocuments, not
BLOBS. Data compression was another important
consicleration. Multimetlia objects should be com-
pressed on the client side of the network; then,
conipressecl bits are transferrec.1 through the net-
work, servers, and clisks. The objects should be
decompressed when they are to be rendered for

Digital Teck~rical Jozrnznl Vol. 5 Aro 2 ,T /) I ' I~ IR l99 i 59

Multimedia

display. Finally, the enormous size of multimedia
objects saturates main memory resources on pel--
sonal computers, so application developers must
use disk storage to buffer as well as persistently
store multimedia objects.

The limitations of the LIST OF BYTE VARYIN<; data
type and the list cursor data access mechanism led
to the development of multimetlia object exten-
sions. SQL i~lultimedia is an object library that oper-
ates against SQL and SQL/Services. SQL Multimedia
allows application developers to classify or type
multirnetlia data types (e.g., Il\wGE, TEXT, and
<:OMPOUND-DOCIJMENT) and to specify the data
format within a type or class. Because no widely
agreed upon multimedia object encodings or for-
mats exist, we decided not to limit the types of data
encoding or formats th;~t coultl be stored in the
database. For example. the database can store :In
image in Digital Document Interchange Format
(DDIF) or Tagged Image File Format (TIFF). The
option of defining a c;inonicaI encoding ant1 form;~t
for each object class WAS too restrictive.

In both the SQL and the SQL/Services versions,
the SQL Multimedia insert ant1 fetch calls operate
within the bountls of a transaction. All multimedia
objects enjoy the same rights and privileges as
alphanumeric data types in the database, with
respect to concurrent access, recover): etc.

A process that ;lttacIies to a DEC Rdb database
can specify that an iluthorization identifier or a
default identifier be created iind referenced by the
"RDB$HANDLE" symbolic label. A transaction can
be started explicitly or ;I deh i~ l t transaction begins.
To operate within the bounds of the default trans-
action, the SQL Multimetlia roiltines reqi~irecl
access to the default authorization identifier
RDB$HANDLE. A new SQL compile time switch, for
the SQL module language ant1 precompilers, causes
this identifier to be tlefjned in a global address
sl>;~ce. The SQL Multimetli;~ routines can thus access
the value of the identifier. 1fa clistributed transac-
tion identifier is not passetl to the SQL Multimedia
routines, the SQL multimedia operation is executed
using the default trnnsaction.

SQL. Multimedia improves the cumberson~e list
cursor interface by supporting the followiilg object
sources and destinations:

The entire object soilrced from or depositetl to
main memory

The object buffered through main memory

A file

SQI. Multimedia handles file I/<> operations
across many different software environments,
inclutling the MS-DOS, Windows, ~Macintosh,
III:I'IIIS, ant1 OpenVMS olxrating systems. SQL

Multimedia preserves file ;~ttributes on insert oper-
ations. For example, the Macintosh file system's
resource fork, which contains the name and ver-
sion of tlie applic:~tion to be launched when the
object is ;~ccesscd by ;i user, is preservetl. If another
Macintosh user fetches the object to a local file,
then SQL Multimedia restores the file including
the resource fork. Assuming the second user has
the same application, the user can now access
and manipulate the multimedia object, e.g., a com-
poi11id tlocument or a QuickTime video file. Rules
and default file organizations exist for the case
where a user inserted :I file from an OpenVMS
system a t~d another user c:iuses the object to I,e
fetched to a different client file system, say on a
PC. Application programmers can tlirect SQL
Multimedia to override the tlefault file attributes.

Although SQL Multimedia handles disparate file
system 110, at present, it does not convert multime-
tlia object formats or encodings. Images captured
ant1 stored in DEC I<db in 1)I)IF are deliveretl to each
client in DDIF.

SQL Multitnedia makes it eiisy for application
programmers to insert ant1 fetch compound docu-
ments to and from the database. The buffered
I / () d:itn stream conforms to 1)igitnl's Compound
Document Aschitecture ((:[)A) stream management
interface. Fetching a compound document using
the buffered I/O interface, SQI. Multimedia returns
the itddress of a procedure entry mask, a data buffer
pointer, ;ind the buffer length. These returned argil-
ments can be passed to the (:[)A viewer in the
1)EC;windows environment. The viewer then repeat-
etlly calls tlie SQL Multimecli;~ buffer-fill procedure
i ~ r l t i l the object has been transferred to the viewer
and displayed.

In addition, SQL ~Vlultimetli;~ provitles object-
specific processing for inxlge ancl text objects. Disk
image objects formatted ;iccorcling to DDlF and
mxin memory objects forrn;ittetl according to
I)igit;~l's image toolkit l>E<:i~nage i\pplication
Services (DAS) can be processed 011 either fetch
or insert operations. SQI. Multimedia leverages
the cajx~bilities of DAS software to provide image
processing, e.g., compression, tlecompression,
scaling, and dithering. When ;in image is inserted
or fetchetl, S(2L Alultimedia object processing
arguments permit the specification of image

60 1'01. 5 No. 2 S [I I . ~ I I ~ l99.l Digilul Technical Jourrrnl

The Design of ~Vfultiwzedia Object S~ipport in DEC Kd6

process steps ant1 parameters. 'r'lie DAS toolkit
supports ComitG Consultatif Internationale de
Telkgraphique et Telephonique (<:<:ITT) compres-
sion (a ubiquitous compression standard for fac-
simile machines) for bitonal images and Joint
Photographic Experts Group (JPEG) compression
(an ISO/ANSI standard) for multispectural images.

To improve application perforniance, SQL
Multimedia can generate niultiple rendered ver-
sions of an image that are stored in a single database
field. Therefore, a user can store the original image,
retaining its fidelity, ancl also store a miniature
version of the image for fast access or browsing pur-
poses. For example, consider a personnel applica-
tion where 90 percent of the fetches for employee
photographs are to he tlisplayecl in a passport-size
format on ;in eniployee information form. If
the capture portion of the application stored the
original employee photograph ancl directed SQL
Multimedia to generate and store a passport-size
renclered version in addition to the original, at fetch
time, the I/() operations required to transmit the
image to the eniployee form would be reducetl.
Storing mi~ltiple renclered versions would also elim-
inate using <:Pli time to scale the Iktched image.

System Testing and Evaluation
After the multinietlia engineering of the DEC Rclb
product was com]>lete, we conducted several test-
ing activities to determine the perforniance and
capacity bound;lries. The performance work pre-
sented is not complete but is offered as an inclica-
tion of the multimeclia object access capabilities of
the DEC Rdb software.

In the tlebit cretlit domain, the Transaction
Processing l'erform;u~ice Council (1'PC:) tests pro-
vide a stantlard procedure to measure the perfor-
mance of one d;~tabase as coniparecl to another.
However, no sti~ntlartl rnultin~ecli;~ database per-
formance tests exist. The performance of a DEC
Rdb multimedia database is influenced by many
variables, including the processor, mass storage
medium, tlatab;~se design, object sizes, and work-
load. The perform;uice data presented in this paper
should be used only as ;I guide.

Performance Testing
For perforniance testing we used a VAX 6360 pro-
cessor (relatively slow by today's standards) config-
ured with 128 M1i of main mernor)r, an HSC50
storage interconnect processor with 16 M70

magnetic disks, 6 It292 magnetic clisks, and 2 ESE20
solid-state disks. The total mass storage available
for building databases was 10 <in. We evaluated
the SQL performance of DEC Rdb version 4.2 Fieltl
Test 1 (FT1) and SQL Multimedia version 1.0 Field
Test 2 (FT2), and generated the SQL/Services remote
client data fetch ancl insert performance clata for
I>EC Rclb version 4.1 Field Test 4 and SQI. Multimetlia
version 1.0 FT2.

This performance data should be used as a guide-
line, because the field-test software contained
implementation errors that al'fectecl performance
but were corrected in the released products. As pre-
sented in Table 1, using the released version of DE<:
Rdb, we are able to sustain a .)00-kl.3/s througliput
from a magnetic disk DEC Rdb storage area, across
an Ethernet network, to a DECstation 5240 work-
station. This test demonstrates fetching a software
motion pictures (Sj41P) video clip out of the data-
base for display on an ULTRlX-basetl workstation..$
Although the vicleo was sampled at 15 frames per
second, we can play back the video clip at 20
frames per seconcl! The performance measured for
an SQL/Services fetch was 57.7 kH/s, as shown in
Table 2. We expect to conduct similar performance
tests on a DEC 7000 A X P processor.

The performance test inserted ant1 fetched 50-kB
records. Fifty kilobytes is a conservative estimate of
a compressed A4-size piece of paper, probably the
most prevalent object to be stored in multirneclia
databases. For both the distribi~ted SQL/Services
client and the local SQL interface, 50-kB main mem-
ory buffers were the sources anel destinations for
the inserts and fetches.

We built several 5 0 - M B databases, va~ying data-
base design parameters such as page and buffer
sizes, to determine the fastest set of parameters
for the large object performance test. Using the
largest page and buffer sizes yielded the best perfor-
mance. The database table was organized into three
columns: two key columns and a 13L013 colunin. The
BLOB column was mapped to a storage area set con-
sisting of multiple magnetic storage disks.

After we establisheel the best database organiza-
tion, we built many 3- to 10-GB databases by

Varying the number of processes executing
insert and fetch operations

Varying the number of tables in the database

Varying the number of inserts and fetches per
transaction

Digilnl Tecbnicul Jourr,nl Vol. 5 No. 2 Sprlrzg 199.3

Multimedia

Table 1 SQL Performance

SQL lnsert Performance

Number of Processes
Performing Insert Number of Number of Inserts
Operations Tables per Transaction

Throughput
AIJ (kB/s)

N o 83.0

No 103.4

Yes 48.0
Yes 55.9

No 295.3
N 0 533.7

No 601.5

SQL Fetch Performance

Number of Processes
Performing Fetch Number of Number of Fetches Throughput
Operations Tables per Transaction AIJ (kB/s)

N o 194.0

No 184.0
Yes 181.0

Yes 192.5

Table 2 SQLIServices Performance
-- - -

SQLIServices lnsert Performance

Number of Processes
Performing lnsert
Operations

Number of
Tables

Number of Inserts
per Transaction AIJ

Throughput
(kB1s)

SQLIServices Fetch Performance

Number of Processes
Performing Fetch
Operations

Number of
Tables

Number of Fetches
per Transaction

Throughput
AI J (k B/s)

Enabling and disabling A [j journaling objects from a single table, and :i more complicated
update test, where multiple writers are simultatie-

Inserting ant1 fetching from an SQL/Services
ously updating one table, have yet to be fabricated

client or using SQL for local database access
and run.

When we concluctetl the performance tests, the To put some of the performance results pre-
computer was dedicated to o u r task; no other 21ctiv- sented in Table 1 into perspective: the tested conf g-
ity was taking place. A simple contention test, i~ration can sustain approximately 600 kB of insert
where multiple reatlers simultaneously fetch bantlwidth, wliich translates into twelve SO-kH

Vol. 5 No. -7 .S/)r)).it7g 199.1 Digilc61 Technical Journal

The Design of Multimedia Object Szipport in DEC Rd6

A4-size pieces of paper per second. Even a single
process scanning paper at 103.4 kB/s can keep up
with some of the fastest paper scanners available.

Also, scanning both sides of a compressed bank
check (scanned at 200 dots per square inch) results
in an object size of about 20 kB. Therefore, the par-
ticul;~r configuration we tested could store 30
checks per second with multiple processes, and
6 checks per second with a single process.

Capacity Testing
We condi~ctetl two capacity tests. Tlie first stored
ant1 fetchetl a 2-<;B object in a DEC Rdb field, and the
second built a 50-GB database. A 2-GR known pat-
tern was generated in virtual memory. DE<: Rdb
wrote this object, with no AU, to a field in an empty
clatabasc. The HI.OB column was mapped to three
tlisl<s, toL;~ling 2.5 (;B of storage. 'lb avoid having to
sustain storage area or file extensions, the storage
area set was defined to be 2.3 GB. DEC Rtlb was able
to succrssfiully insert and fetch the 2-GI3 object.

To demonstrate the capacity that could be
acliicvetl with SQL Multimedia, DEC Rdb, and opti-
cal storage, we built a 50-GB database. The hard-
ware configilration co~isisted of the following:

A VAX 4000 Model 500, with 6 <;R of magnetic
disk ;uitl 128 MB of main memory

A Koclak Automated Disk Library Model 6800,
with 100 (;I3 of storage (with a rnaxirni~m capac-
ity o f 1.2 "I'B)

IX<: Rdb version 4.2 Field Test 0

SQL Multimedia version 1.0 F'T2

Perceptics 1.aserStar optical disk software

Starting with a backup of a 2-GR manufacturing
d;~tabnsc that was usetl by Digital's Mass Storage
Ciroup, I>E(: Rdb added an SQL multimedia column
to a table that containecl over 550,000 rows. IIEC
Rtll7 then rnnppetl the column to five platters, mod-
eletl ;is ten 9.5-million-block (5.1-<a) magnetic
tlisl<s to the OpenVMS operating system, l~sing the
sequential lo;~d algorithm. An update table cursor
was devisetl t1i;lt returned between 2,000 to 3,000
rows. Using SOL Multi~nedia, DEC Iklb inserted
images representing the disk assembly process
until the storage was h ~ l l .

Conclusion
The multimctlia katures that have been added to
Rdb are in direct support of the increasing demand
for computer data storage and intlexing of multi-

- -

D i g i l ~ I Tichnical Jorirrrrrl Vol. 5 No. 2 .\])rirrg l 9 Y j

media object types (i.e., text, still images, com-
pound documents, audio, and video). Relational
database systems must expand mass storage device
support, database physical database design, lan-
guage functionality, and performance to manage
the variety of today's information. The development
of this advanced technology in Digital's DEC Rdb
product provides desktop computer-to-optical
disk jukebox integration by means of a commercial
database. As multimedia technology matures, data-
bases must address the need to store and index
information beyond numbers and characters.

The work accomplished to support multimedia
objects in DEC Rdb is just "the tip of the iceberg."
Current multimedia capabilities are able to success-
fully manage the majority of document and still
frame applications. However, improvement in
capacity and performance are required before the
database can serve m ~ ~ l t i p l e channels of video and
audio data. As the SQL standard evolves to incorpo-
rate a more object-oriented mechanism, much of
the SQL Multimedia hlnctionality will migrate to
using standard interfaces to define, operate on, and
query abstract data types.

Acknowledgments
A large number of people from various disciplines
contributed to the success of this multimedia
database project, including Becky Jacobs, Michael
Sawyer, John Lace): CheriJones, Bruce Mills, Steve
Hagan, Ian Smith, Susan Hillson, Peter Spiro, J. M.
Smith, Jim Gray, Dave Lomet, Rudy Downs, Ken
Cross (Perceptics), Chris Eastland, Mase Merchant,
Scott Matsumoto, Paul Carmen (Eastman Kodak),
Jim Lewis (Eastman Kodak), and Marilyn Gulliksen.

Referenes

1. American National Standard for Informa-
tion Systems-Database Langcrage-SQL, ANSI

X3.135-1992 (New York, NY: American National
Standards Institute, 1992) and

Information Tecl~nology-Database Language-
SQL, ISO/IEC 9075: 1992 (Geneva: International
Organization for Standardization, 1992).

2. J. Melton, ed., Database Language SQL (SQL3),
ISO/ANSI Working Draft, ANSI X3112-93-091 and
lSO/IEC JTCl/SC21/WC,3/DBL YOK-003 (February
1993).

3. B. Neidecker-Lutz and R. Ulichney, "Software
Motion Pictures," Digital Technical Journal,
vol. 5, no. 2 (Spring 1993, this issue): 19-27.

Multimedia

General References

SQL Extensions
K . Meyer-Wegener, V: Lum, and C Wu, "Image
Management in a Multimedia Database System,"
Proceedings of the IFIP TC 2/WG 2.6 Working Corz-
ferelzce on Viszlcrl Dntcrbase Sj~stelns, Tokyo, Japan
(1989): 497- 523.

M. Stonebreaker, "The Design of the POSI'GRESS

Storage System," Proceedings of the 13th Ilzterrzn-
tiotzal Conference on W ~ J J Large Dutcrbnses,
Brighton, U.K. (1987): 289-300.

M Stonebreaker and L Ilowe, The POSTGRE.S,Y
Papers, Memorandum N o . lJCB/ERL ~ 8 6 / 8 5 (Berke-
le): CA: University of C;~lifornia, 1986)

OZy'ect Storage rMnnngemen t
M . Stonebreaker. "Pers~stent Objects in a Multi-
Level Store," Proceedings of the ACM SIGAlOD Inter-
rt atronnl Confere~zce on ~Vlcrrzc~gerne~zt oJ Dcr t~r,
Ilenver, CO (1991): 2-11

WORM Devices
D Maier, "LJsing Write-Once A4emo1-)i for Database
Storage," Proceedings oJ the ACIV SIGIMOD/SIGACT
Conference or? Princil~les r$ Da tabuse Systenzs
(POD33 (1982).

S. Christodoulakis et il l . , "Optical]Mass Storage
Systems and Their Perforniance;' IEEE Dut~~base
Elz~irzeer.i?zg (March 1988).

S. Christodoulakis and D. Ford, "Retrieval Perfor-
mance Versus Disk Spacc IJtilization on WORhl

Optical Disks," Proceedirzgs :s.f the ACIM SIGIMOU
/n/erfzntionnl Co~zference on Management of
Dutcl, Portland. OR (1989): 306-314.

Storage Managementfijr Large Objects
A. Riliris, "Tile Performance of Three Databasc
Storage Structiires for M;ln;~ging Liirge Objects,"
Proceedings of the ACIrl .VGIWOII lnterr7ntio1znl
Co~~erelzce on ~Vc~rzcrgr~~.rr~erzl of Dntcr, San Diego,
<:A (1992): 276-285.

Vo1. 5 No. 2 .'i/,riilg I99.j Digital Tecbrrical Jourt~al

Lawrence G. Pabner
Ricky S. Palmer I

DECspin: A Networked
Desktop Vieoconferencing
Application

The S o u d Picture Infmzation Networks (SPIN) technology that is part of the
DECspin version 1.0product takes digitized audio and video from desktop comput-
ers and distributes this duta over a network to form real-time conferences. SPIN uses
standard local and wide area data networks, adjusting to the various latency and
bandwidth differences, and cloes not require GL dedicated bandwidth allocation.
A high-level SPIN protocol was developed to synchronize audio and video data
and thus alleviate netzuork congestion. SPIN performance on DigitalS hardware
and softwc~re platforms results in sound and pictures suitable for carrying
on personal communications over a data nehuork. The Society of Technical
Communication chose the DECspin version 1.0 application as a first-pkice recipient
of the Distinguished Technical Communication Award in 1992.

In late 1990, w e began to design a software product
that would allow people to see and hear o n e
another from their desktop computers. The result-
ing DECspin version 1.0 application takes digitized
audio and video data from two to eight desktops
and distributes this data over a network to form
real-time conferences. The procluct name rep-
resents the four major communication elements
that unite into one cohesive desktop applica-
tion, namely, sound, picture, information, and
networks. The overall technology is referred to as
SPIN. This paper first presents an introduction to
conferencing and gives a brief overview of the
framework o n which SPIN was developed The
paper then details SPIN'S graphical user interface.
Although the high-level protocol (which is the
application layer of the International Organization
for Stanclardization/Open Systems Interconnection
[ISO/OSI] model) that SPIN uses to synchronize
distributed audio and video is proprietary, a gen-
eral discussion of how SPIN uses standard data
networks for conferencing is presented. Perfor-
mance data for DECspin version 1 0 running o n
a DEcstation 5000 Model 200 workstation with
DECvideo and DECaudio hardware follows the dis-
cussion of network considerations. Finally, the
paper summarizes the future direction of desktop
conferencing.

Introduction to Confeencing
When the SPIN project started, standalone telecon-
ferencing protlucts were available but not for desk-
top computers. Typically, the products offered
cost as much as $150,000, required scheduled con-
ference rooms and operators, and needed leased
telephone lines. These systems did not operate as
part of a corporate computer data network but
instead required dedicated, switched 56-kilobit-
per-second (kb/s), T1 (1.5-megabit-per-second
[Mb/sl), and T3 (45-Mb/s) public telephone compo-
nents in order to operate. Originally designed
as two-way conference units, these teleconferenc-
ing products later included hardware to multiplex
several equally equipped systems. In addition,
the enhanced systems included custom logic to
implement a hardware compressor/decompressor
(codec) that reduced digital video data rates suffi-
ciently to use leased telephone lines.

During the last several years, other conferencing
systems have been demonstrated. The Pandora
research project by Olivetti Research resulted in
an excellent clesk-to-desk conferencing system.
Although the Pandora system was expensive p e r
user and did not use existing network protocols, it
did prove the viability of using a digital conferenc-
ing system from one's office and demonstrated the
natural progression from room conferencing to

Digital Technical JournnC Vo1. 5 No. 2 @ring 199.3 65

Multimedia

office conferencing. This system served as a good
example for our own emerging desktop model,
DECspin version 1 .O.

Throughout this same period, several conipres-
sion standards suitable for video capture and
playback have evolved and been implemented. The
Joint Photographic Experts Group (JPEG) industry-
standard algorithm results in intrafranie compres-
sion of frames of high-quality video (on the order of
25 to 1).1-2 This algorithm is well suited for either
single-frame capture o r motion-frame capture of
video information. This form of compression is
most appropriate for real-time video capture ant1
playback where low (i.e., frame-by-frame) latency
is required.

The Motion Picture Experts Group (MPEG) stan-
dartl results in interframe compression of motion
video.5 This algorithm is well suited for motion-
frame capture of video because only the differences
between successive frames are stored. Interframe
compression is appropriate for video capture and
playback where real-time low latency is not
required.

The H.261 standard results in interframe com-
pression of motion video that is most responsive to
the demands placed on capturing live video for d i s
semination over low-bandwidth public telephone
 network^.^ This compression is suitable for video
capture and playback with reasonable latency but is
not quite real-time in nature. H.261 is the standard
used most in the teleconferencing systems on tlie
market today.

Finally, the last few years have also witnessed
the emergence of dramatic new base computer and
network techtlologies. Reduced instruction set
computer (RISC)-based workstations supply the
needed processing power and I/O bandwidth to
process large and continuous amounts of data, and
fiber distributed data interface (FDDI) technology
results in 100-megabit-per-second local area net-
works for the desktop. Consequently, the SPIN
development project got under way to provide a
novel and innovative software applic;~tion that
could take advantage of the powerful new systems
and networks.

Overview of Underlying
Hardware and Sofitware
We came up with the SPlN project in response to
the question: How can we communicate easily
with graphics, video, and audio on the desktop
as well as over both local and wide geographical

area networks? Video help documentation, textual
help, and audio help are used on the desktop to
con~municate how the application works. Sound,
picture, graphics, and network elements are all
woven together to provide better communication
among conference participants.

Early in 1991, we received our first prototype of
the I>ECvideo TUKBOchannel frame buffer, which
includetl the necessary hardware to i n p ~ ~ t and cap-
ture ;in analog video signal, to digitize the signal,
ant1 to display the pixel information on the screen.
The frame buffer was special in that it displayed
8-bit pseutlocolor, 8-bit gray-scale, and 24-bit true-
color graphical data simultaneously. This feature
allowed captured video data to be displayed with-
out data dithering.

Dithering is the process of converting each pixel
of vitleo data to a form that matches a limited
number of available colormap entries. Most work-
station frame buffers are S-bit pseudocolor. Hence,
digitizecl, 24-bit true-color video data for display
would need pixel-by-pixel conversion. Algorithms
exist that could be used to accomplish this conver-
sion. However, a better SPIN conference, in terms
of frame rate ancl picture quality, was achieved by
performing 110 software dithering, thus relying
on the ability of the DECvideo hardware to display
24-bit true-color video or 8-bit gray-scale video.i In
addition, the DECvideo hardware could scale down
the inconling video image in real time so that fewer
pivels (i.e., less data) represented the original
image.

Concurrently, SPIN used a DECaudio TuRBOcha~el
card that could sample an input analog audio signal
from a microphone and deliver an 8-kilohertz digi-
tized audio bit stream. The DECaudio hardware
could also convert a digital auclio stream for ou tp i~ t
to ;In analog speaker or external amplifier. A
11ECst;ltion 5000 Model 200 with 1)ECaudio and
DE<:video components provided the core hardware
capability used in SPIN development work.

In addition to these new hardware capabilities,
the SPIN effort needed new underlying base soft-
witrc capabilities. The DECvideo hardware required
the Xv vitleo extension to the X Window System to
allow for the display and capture of video data. (The
Xv extension was jointly developed by base system
graphics ;ind MIT Project Athena teams.) The
I>E<:audio component used the AudioFile audio
server, developed by Digital's Cambridge Research
L;~borator): to capture and play back digital ailclio
tlata.

66 ifof. 5 Aro. 2 Spring 1993 Digital Technical Journal

DECspin: A Networked Desktop Videoconferencing Application

A prototype software base was created to make
fundamental measurements of video and audio data
manipulation within the workstation and over a
network. Testing the prototype over a 100-Mb/s
FDDI network and a 10-Mb/s Ethernet network
demonstrated that a conferencing product running
over existing network protocols was possible.

The SPIN Application
SPlN is a graphical multimedia communications
tool that allows two to eight people to sit at their
desktop computers and communicate both visually
and audibly over a standard computer data net-
work. The user interface employs a telephone-like
"push" model that allows a user to place an audio-
only, video-only, or audio-video call to another
desktop computer user. Here, the term "push"
means that SPIN conference participants control all
aspects of the digitized data they send onto a net-
work. Thus, users can feel confident about the secu-
rity of their audio and video information. A caller
initiates all calls to other users, and a call recipient
must agree to accept an incoming SPlN call. Because
all data is in the digital domain, this model makes it
almost impossible to use SPlN to eavesdrop on
another person. Placing a wiretap on a person's call
would involve intercepting network packets, sepa-
rating data from protocol layers, and then reassem-
bling data into meaningful information. If the
network data were encrypted, interception would
be impossible. SPIN also provides other communi-
cation services, such as an audio-video answering
machine, messaging, audio-video file creation,
audio help, and audio-video documentation.
Figure 1 shows a screen capture of a SPIN session in
progress, using the DECspin version 1.0 application.

The product is easy to learn and to use. The
graphical user interface is implemented on top of
Motif software. Motif provides the framework for
the SPlN international user interface. A model was
chosen in which all actions taken by a user are
implemented by push buttons that activate pop-up
menus. The SPIN application does not use pull-
down menus, because they require language-
specific text strings to ident~fy the purpose of an
entry and thus require translation for different
countries. Also, pull-down menus are intended for
short-term interaction, and SPIN menus usually
require more long-term interaction. All push-
button icons are pictorial representations of the
intended function. For example, the main window
has a row of five push buttons, each of which

activates a specific function of the application and
is shown in Figure 1.

In the main window, the first button from the left
contains a green circle with a vertical white bar, the
international symbol for exit. This button appears
in the same location in each of the pop-up win-
dows. It is used to exit the window or, in the main
window, to exit the application.

The second button from the left is labeled with
the communication icon. This button is used to
select the call list shown in Figure 2. The call list
contains the various buttons and widgets used to
place a call to another user, to create and play back
SPIN files, and to display a list of received SPIN mes-
sages, if any exist. The list provides a way to play
and manage audio-video answering machine mes-
sages. For example, to place a call to another user
on the network requires just three steps.

1. Enter the computer network name of the
machine and user into SPIN'S phone database as
"user@desktop." A string representing some-
thing more understandable to a novice is also
allowed, e.g., uuser@desktopl.dec.com" becomes
"user@desktopl.dec.com Firstname Lastname at
Digital Equipment Corporation."

2. Select whether the call is to be sound only,
picture only, or both. The toggle push buttons
under the large note icon control audio select;
those under the large eye icon control video
select. Once the call is established, these but-
tons can be set or unset by clicking a mouse or
using a touch-screen monitor and are useful
for muting the audio portion or freezing frames
of the video portion.

3. To establish a two-way network connection,
press the call push button under the connection
icon (which is labeled with two arrows going in
opposite directions) that appears next to the
desired call recipient. If the person called is
logged on, a ring dialog box appears on the
call recipient's screen and a bell rings. If the call
recipient is not available, a dialog box appears on
the caller's screen asking whether the caller
wishes to leave a message. The caller can then
choose to leave a message or not.

Depending on the individual settings, users can
see and hear one another in multiple windows
on the screen. To connect all conference partici-
pants in a mesh, press the "join" push button,
which has a triangular icon.

Digital Tecbrrical Journal 1/01, 5 No. 2 Spring 1993

Multimedia

- ~ - --- DECsnm: Cali Ust

Figure 1 Sample SPIN Session

6a 1/01, 5 Aro. 2 S/)ring 199.3 Digilnl Technical Journal

UECspin: A Networked Desktop Videoconferencing Application

EXIT -

PLACE -
A CALL

RECORD -
A FlLE

PLAY -
BACK
A FlLE

Figure 2 SPIN Cull List Pop-u& Window

, JOIN

. SELECT AUDIO . SELECT VIDEO

--- LOOK AT
MESSAGES

Returning to the main window, the rnjtltl.le push
button is the Sl'IN control button. As shown in
Figure 3, the SPIN control pop-up window contains
slide bars that, from top to bottom, allow the caller
to set maximum capture frame mte, hue, color sat-
uration, brightness, contrast, speaker output vol-
ume, and microphone pickup gain. At the bottom
of the control window are buttons for selecting
compression and rendering.

To the right of the control button in the main
window is the st;r~us icon button. Pressing this but-
ton causes the status pop-up window shown in
Figure 4 to appear. The status window displ;rys,
below the c;lmcra icon, the active size of the cap-
tured video area in pixels. Beneath these dimen-
sions is a vertical slide bar that indic;itcs the average
frames-per-second (frames/s) capture rate sampled
over a five-second interval. To the right of the
camera icon is the connection icon, under which
appears the number of active connections. Below
this number arc the sound and picture icons, under

which appear the number of active audio connec-
tions and the number of active video connections,
respectively. The second slide bar indicates the
result of sampli~ig the average outgoing bandwidth
consumption (measured in Mb/s) of the application
on the network. This measurement is also updated
every five seconds.

Finally, the fifth push button (on the far right) in
the main window is the information button. By
pressing this button and selecting the type of on-
line information desired, the user can access the
documentation pop-up windows, as illustrated in
Figure 5. Within each tlocumentation window are
several topics and two columns of toggle push but-
tons that can be used to obtain either textual docu-
mentation or video documentation. The video
documentation comprises short videos that
contain expert help about the operation of the
application.

As a final level of help, all push buttons and wid-
gets within the application have associated audio

Digital Technicnl Jourtrnl It)[. 5 I\'(>. 2 Sprirrg 199.5 69

Multimedia

DECspin: Control

RENDERING

COLOR
AND-WHITE

!--- RED HUE

HIGH
1 SATURATION
t

L- BRIGHT

--- HIGH
CONTRAST

HIGH
---- SPEAKER

VOLUME

- HIGH
MICROPHONE
GAIN

Figure 3 SPIN Control Pop-up Window

tracks that tell the user what the buttons and
widgets do within their context in the application.
To activate the audio tracks, the user must first
select the button or widget and then press the Help
key on the keyboard.

Network Considerations
SPIN uses standard data networks to transport the
information that composes a conference. Data net-
works are usually private networks that a user com-
munity maintains. Such networks often include a
number of individual networks joined together by
bridges and routers. Unlike public telephone net-
works, which are most frequently used for phone
calls, private networks are used for a variety of
computer data needs, including file transfers,
remote logins, and remote file systems. However,

telephone networks often provide the long-
distance lines used to make up private wide area
data networks.

The use of data networks allows conferencing
data to be treated as woulcl any other type of data.
SPlN requires no special low-level networking pro-
tocols to transmit its data and uses the transmission
control protocol/internet protocol (TCIJ/IP) or the
DECnet protocol. Also, SPIN requires no changes to
existing operating systems. When performing the
prototype work for the SPIN application, we were
not certain whether the real-time nature of confer-
encing could be accomplishecl on inherently
non-real-time networks and operating systems.
Consequently, we developed a special high-layer
synchronization conferencing protocol, called the
SPIN protocol, that uses existing data networks.

70 Vo6. 5 /Vo. 2 S/~ring 199.3 Digital Technical Journal

DECspin: A Networked Desktop Irideoconferencing Application

EXIT

PICTURE -,
SIZE IN
PIXELS

AVERAGE -
FRAME RATE
IN FRAMES
PERSECOND I

--- TOTAL NUMBER
OF CALLS

/ TOTAL NUMBER
OF ACTIVE AUDIO
CHANNELS

' TOTAL NUMBER
OF ACTIVE VIDEO
CHANNELS

- AVERAGE NETWORK
BANDWIDTH USAGE
IN MEGABITS PER
SECOND

Figure 4 SPIN Status Pop-up Windozu

This protocol is responsible for the synchronization
of audio and video information. The SPIN protocol
monitors the flow of data to the network in order
to alleviate network congestion when detected. As
the network becomes congested, the protocol
makes the decision to withhold further video data,
since video is the largest consumer of network
bandwidth. This withholding of video data is a key
feature of the SPIN protocol, because it allows a
conference to vary the video frame rate on a user-
by-user basis. Thus, video bandwidth can scale to
the lesser of either the bandwidth available or the
number of frames/s of video bandwidth that a given
platform can sustain.

If the withholding of video corrects the network
congestion, video data is once again allowed in the
conference. If not, the SPIN protocol delays audio
data and stores it in a buffer until the network is
able to handle this data. If the network outage lasts
approximately 10 seconds, audio data is lost.
Periods of audio silence are used as a means of
recovery from periods of network congestion.

Thus, variable video frame rates along with this
treatment of audio data allow for the graceful degra-
dation of a conference as the network becomes
busy.

SPIN has been demonstrated over a variety of
public and private data networks including
Ethernet (10 Mb/s), FDDI (100 Mb/s), T1 (1.5 Mb/s),
T3 (45 Mb/s), cable television (10 Mb/s, more cor-
rectly, Ethernet running over two 6-megahertz
cable television channels), switched multimegabit
data service (SMDS) (1.5 or 45 Mb/s), asynchronous
transfer mode (ATM) (150 Mb/s), and frame relay
(1.5 or 45 Mb/s). Some of these networks are local
or metropolitan area technologies, i.e., local area
networks (LANs), whereas others are wide area
technologies, i.e., wide area networks (WANs), as
illustrated in Figure 6.

Each type of network provides SPIN with differ-
ent latency and bandwidth characteristics. SPIN
makes corresponding adjustments to a conference
to account for these differences and does not
require a dedicated bandwidth allocation to carry

Digital Technical Journal 1/01, 5 No. 2 Spring 1993 7 1

r SELECT OVERVIEW POP-UP WINDOW

DECspin: Overview

- -- -\- I DECspin: lnfonnation I
-

Ci)ierrenstm€h

I-

Selve a h b b m

- -

Inwrs!

SELECT VIDEO
DOCUMENTATION

SELECT TEXT
DOCUMENTATION

F i ' q ~ i t . ~ 5 SPIN 1trfl)n~zution PO/)-LI/I Wi~z~/ouls

on a conference. If a given network supports 1)antl-
width. allocation, this feature only cnh;~nccs S1'1N's
ability to deliver video and audio i1iform;ition.

WANs may use a routzr to i~itercon~lect two or
more LANs. SI'IN has been tested on a number of
routers with mixed results, i.e., somc routers cor-
rectly handle SPIN'S biclirection;rl traffic pattern
w11t.rcas others do not. Si~ice sollie routers tlo not
correctly handle bidirectional data traffic without
~xlcket loss, wide area routers ~ i i i r > t be i~~cljvitlually
tested with SPIN to veritj pruprr opcr;trion. Son~e
router problems wcre traced to the use of old
firn1w;tre or software. C O I I S ~ ~ ~ L I C I ~ ~ J ~ , SPIN acted
like a diagnostic tool in pointit~g out these prob-
lems. For example, running the SI'IN application
with audio only, across Digit;tl's private 11' network,
yields varied results. Digital's IP network is ;ui exam-
ple of an open network, with routers from no st
router vendors. We tracecl nlost instances of poor
SPIN pcrform;unce to old or obsolete routers (some
in service for the last six years without ul)gri~des).
These routers usually tlroppecl ~xtckets whcn rout-
ing between adj;lcent Ethernet ne~works tli;ct were
only 10 percent busy. After these routers were

i1,pgradetl to the I)E(;NlS hlmily of routers, the SI'IN

;~pplication fi~nctionetl correctly, even on con-
gested networks.

To tle~nonstl-;tte clajly use of SPIN, we cre;~tetl a
metropolit;cn area networl< (k w) . Figure 7 shows
the network topology, which spanned the states of
New t1aml)shire and Mass;tchusetts. The test bet1
;~llowetl 11s to tlrmonstrate our FDDI products,
inclutling end-station FDIII adapter cards, multi-
~uode b'L)I.)I wiring concentrators, and single-mock
k'l)L)1 wiring concentrators. SPIN was used in SO
workstations, two of which were attachecl to large-
screen projection units in col~erence rooms.

The conference tlll;~lity achieved when running the
SPIN ;ipplic;ition tlepends on many factors. The
avail;tble network bandwidth, the processor speed,
the tlcsirecl fl-;~me-rate specification, the compres-
sion setting, the picture size, and how the pictures
are rendcred all itffect the quality of the collferencc.
Tdble 1 contiiins perh,rmnnce data for DECspin ver-
sion 1.0 at various conlbinations of settings for
these factors.

- - - - - - - -
72 L'ol. 5 /Vo. 2 .S/)rirt.y l99.j Digital Techrricul Jour~rzul

IlECspin: A Networked Desktop Videoconferencing Application

DECCONCENTRATOR 500 DECCONCENTRATOR 500

(a) LAN Usage of SPIN

DECBRIDGE 100 I

(6) WA IV Uscige of SPIN

Fig~ireG LANclnd WRNUsageofSPIN

ETHERNET LAN

DECNIS 600

NASHUA, NH

ETHERNET LAN

Figure 7 Digitcd's MAAT Test Bed for SPIN

ETHERNET LAN

Digital Techriicnl Journal Vol 5 A'o 2 J/~rtrig 1993 7 3

Multimedia

Table 1 SPIN Performance on a DECstation 5000 Model 200 with
DECvideo and DECaudio Hardware

Width x Height
(Pixels) Network

Framesls (Bit
rate in Mbls)

Black and White1 No
Black and White1 Yes
Colorl No
Colorl Yes
Black and White1 No
Black and White1 Yes
Colorl No
Colorl Yes
Black and White1 No
Black and White1 Yes
Colorl No
Colorl Yes
Black and White1 No
Black and White1 Yes
Colorl No
Colorl Yes

FDDl
FDDl
FDDl
FDDl

FDDl
FDDl
FDDl
FDDl
Ethernet
Ethernet
Ethernet
Ethernet

Ethernet
Ethernet
Ethernet
Ethernet

Using a DECNIS Router (Ethernet-to-Router-to-TI-to-Router-to-Ethernet)

256 x 192 Black and White1 No TI
256 X 192 Black and White1 Yes T1
256 x 192 Color1 No TI
256 x 192 Color1 Yes TI
160 x 120 Black and White1 No TI
160 x 120 Black and White1 Yes TI
160 x 120 Color1 No TI
160 x 120 Color1 Yes TI

As shown in Table 1, we tested SPIN performance
using two basic picture sizes: 256 by 192 pixels and
160 by 120 pixels. The tests were performed over
both Ethernet and FDDI networks for black-and-
white and color cases. Also noted in the table is
whether or not software compression was enabled
for a specific test case. The far right column shows
the frame rate achieved for the different combina-
tions and also summarizes the network bandwidth
consumed in each test. The table is presented pri-
marily to give a sampling of the frame rate and,
hence, the level of visual quality achieved for a spe-
cific combination of parameters. Frame rates affect
an observer's ability to detect change within a
sequence of frames. With a slow frame rate, the
resulting video sequence may appear choppy and
incomplete, whereas a normal frame rate (24 to 30
frames/s) leads to a smoothly varying video
sequence with even continuity from one sequence
to another. The frame rates in Table 1 below about 6
to 7 frames/s are considered low quality. Those in
the 8-to-19-frames/s range are considered good
quality, and those in the 20-to-30-frames/s range

are high-quality video. The best cases in Table 1 are
those that used software compression to deliver a
pleasing frame rate with the least amount of net-
work bandwidth consumed together with some
degradation of individual frame quality. The soft-
ware compression was tuned to provide nearly the
same frame quality as the uncompressed case.

Table 1 also shows performance data measured
using a DECNIS router. As noted earlier, wide area
usage of SPIN depends on ;I router with correct algo
rithms for handling of bidirectional continuous
stream traffic. The DECNIS family of routers can
supply the full T1 bandwidth when presented with
bidirectional SPIN traffic. Other routers on which
SPIN was tested typically delivered only 25 to 50
percent of the TI bandwidth. Note that this was
only true on the particular routers we tested and
that routers other than DECNrS routers may also be
able to deliver fill1 TI bandwidth for this particular
traffic pattern.

Hardware compression technology mentioned in
the section Overview of Underlying Hardware and
Software reduces the bandwidth requirements for

Vo1 5 1Vo. 2 Spring 1993 Digital Technical Journal

DECspin: A Aktzuorked Desktop VideoconJL.retzci~?g Application

conferencing. Experimentation with motion JPEG
compression (using the Xv extension with com-
pression functions o n an Xvideo frame buffer
board) has shown that at a resolution of 320 by 240
pixels, true-color frames can be used at 15 to 20
frames/s at a bit rate of just under 1.0 Mb/s. This bit
rate produces a good- to hig11-quality conference
with very low latency. H.261 ant1 MPEG technology
result in similar frame rates and picture size at
about one-half the bandwidth but higher overall
latency. Using motion JPEG as the example, high-
quality conferences require about 1 Mb/s per
connection. If all conferences are to be high qual-
ity, this bit rate allows 1 two-party conference
on a T1 connection, 5 two-party conferences on an
Ethernet segment, and 50 two-party conferences
o n an FDDI network. Using GIGASWI'TCH FDDI
switches, more than 500 two-party conferences
can take place simultaneously on a network. More
users coultl be supported on T1, Ethernet, or
~ ; l < ; ~ s w ~ : t I networks, if lower-quality confer-
ences are acceptable.

Conclusion
It became clear during the development and
deployment of SPIN that high cost per user limits
the widespread use of the application. The cost of
vicleo for 1)EC:spin version 1.0 adds about $8,000 to
the price of a workstation. Audio for version 1.0
adds about $2,000 per workstation. These costs,
which are prohibitive to most potential users of
the technology, d o not include the network cost
impact.

Digital's Alpha AXP family of computers come
with audio input and output hardware as part of the
base workstation. In spring 1993, Digital released to
the Internet community a version of DECspin that
uses this hardware to carry on audio-only confer-
ences and shows the user a voice waveform instead
of ;I vicleo image. This version eliminates the add-on
hardware cost for audioconferencing. A new low-
cost vicleo option would go far to reduce the add-on
cost for vicleo and facilitate a wider use of the SPIN
application.

The SPIN application and its associated protocol
have been demonstrated on Digital and non-Digital
computers, operating systems, and networks. In
particular, SPIN has been shown on SPARC worksta-
tions running Solaris software. Additionally, SPIN
has been demonstrated on a personal computer
using the Microsoft Multimedia Extensions (MME)
to Windows software. This platform provides a

very large user community of potential SPIN users
and dramatically drops the price per user compared
with the original product. Interoperability among
platforms and a common user interface give Digital
a leadership position in this fast-forming market.

Today, high-quality confcrencing can sca d e l to
liunclreds of seats on ;I LAN wit11 lower-quality con-
ferencing scaling to larger, more geographically dis-
persed networks. Several factors will l a c 1 to the
widespread use of this technology: better and less-
expensive hardware, programmable codecs, and
higher-speed and less-costly cross-country net-
works. Less-expensive video hardware allows many
users to upgrade their systems to include video,
while programmable compression technology
allows users to ; d ~ i e v e improvements in picture
quality, compression transcoding, and lower net-
work needs. Higher-capacity and less-costly cross-
country networks allow more users to access
conferencing services. Ultimately, even homes will
have better computer connectivity and bandwidth.
As these changes occur, and we believe they will,
desktop conferencing can become the interactive
telephone of the twenty-first centur)l.

The authors wish to acknowledge and thank all tlie
members of the close team that worked on the SPIN
project and made the I)E(:spin version 1.0 product a
success. Key individuals in this effort were Diane
LaPointe, Beverly Oliphant, Jonathan George,
Garrett Van Siclen, and Jack Toto. We would also
like to thank early supporters of the product
efforts, including Jim Miller, Karl Pieper, and Jim
Cocks. In addition, we extend our thanks to Walt
Ronsicki, Videhi Mallela, Nathal~e liounds, ancl tlie
rest of the team who established the FDDI test bed;
to Dick Bergersen, who handled the quality assur-
ance for DECspin version 1.0 and gave the team
excellent feedback on the product; ancl to Tom
Levergood and the other members of Digital's
Cambridge Research Laboratory who gave us sup-
port and assistance in regard to the AudioFile audio
server. Finally, we woultl also like to offer thanks to
our management, particularly Bill IHa\ve and John
Morse, who are strong advocates ancl supporters of
our product efforts.

References

1. Digital Compression and Coding of Continuous-
Tone Still Images, Purt I , Requirements and

DigiLal Technical Journal Vol. 5 1Vo. 2 Spring 1993

Multimedia

Guidelines, ISO/IEC JTCl Committee Draft 10918-1
(Geneva: International Organization for Stan-
dardization/lnternationaI Electrochemical Com-
mission, February 1991).

2. Digitul Compression and Coding of Continu-
ous-Tone Still Images, Part 2, Comj~liance Test-
ing, ISO/IEC JTCl Committee Draft 10918-2
(Geneva: International Organization for Stan-
dardization/International Electrochemical Com-
mission, Summer 1991).

3. Coding of Moving Pictures and Associuted
Audio, Committee Draft Standard 1SO 11 172,
ISO/MPEG 90/176 (Geneva: International Organi-
zation for Standardization, December 1990).

4. Video Codec for Audiovisual Services at Px64
Kb/s, CCITT Recommendation ~ . 2 6 1 , CDM XV-R
37-E (Geneva: International Telecommunica-
tions Union, Cornite Consultatif Internationale

de TeKgraphique et Telephonique [<:<:In],
August 1990).

5. R. Ulichney, "Video Rendering," Digital Tecbni-
ccll.Journul, vol. 5, no. 2 (Spring 1993, this issue):
9-18.

General References

L. Palmer and R. Palmer, "Desktop Meeting," LAN

Magazine, vol. 6, no. 11 (November 1991).

'I'IJKLIOcbaiznel Hardware Specificcttion (Rllo Alto,
<:A: Digital Equipment Corporation, 'I'IiI/Al>l)
I'rogram, 1990).

Open Software Foundation, Inc., OSt.;/Motz! Pro-
grammer's Reference, Release 1. I (Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1991).

R. Scheifler, J. Gettys, and R. Newman, X Window
Syslem C Library and Protocol Reference (Hrd ford,
MA: Digital Press, 1988).

76 Vol 5 No. 2 Spring IY9.5 Digitul Technical Journrrl

Peter C. Hayden I

LANAddressing for
Digital Video Data

Multicast uddressing was chosen over the broadcast aaclress and unicasr address
mechanisms for the transmission of video data over the LAN. Dynumic allocation of
mztlticast addresses enables such features m the continuozls playback of full
motion video over a network with multiyle viezuers. Design of this video data trans-
mission system permits interested nodes on a L t W to dynamically allocate a single
multicast address from a pool of multicast &dresses. When the allocated address is
no longer needed, it is returned to the pool. This mechanism permits nodes to use
fmer multicast addresses than are required in a traditional scheme where a
unique address is allocated for each possible function.

The transmission of digital video clata over a local
area data network (LAN) poses some particular
challenges when multiple stations are viewing the
material simultaneously. This paper describes the
available addressing mechanisms in popular LANs
ancl how they alleviate problems associated with
multiple viewing. It also describes a general mecha-
nism by which nodes on a LAN can dynamically allo-
a t e a single multicast address from a pool of
multicast addresses, and subseq~~ent ly use that
address for transmitting a digital video program to a
set of interested viewers.

Project Goals
The objective of this project was to design a mecha-
nism suitable for providing the equivalent of broad-
cast television using computers and a local area
data network in place of broadcast stations, air-
waves, ancl televisions. The resulting system had to
provide access to broadcast, closed circuit, and on-
demand video programs throughout an enterprise

using its computers and data network. The use of
computer equipment installed for data transmis-
sion would eliminate the need to invest in cable Tv
wiring throughout a building.

The basic system would consist of two primary
components. One computer, o r set of computers,
would act as a video server by transmitting video
program material, in digital form, onto the data net-
work. Other computers, acting as clients, would
receive the transmitted video program and present
it on the computer's display. Figure 1 depicts such a
configuration.

The variety of video source material suggests that
servers may be equipped in several ways. For exam-
ple, accessory hardware can receive broadcast
video programs; hardware and software can con-
vert analog video into digital format; and hardware
and software can compress the digital video for effi-
cient use on a personal computer and data net-
w0rk.'.~.3 Figure 2 shows a server equipped to
handle different types of video program sources.

C) LOCAL AREA

t .t- t .t- NETWORK

SERVER 0
* TRANSMllTED

TRANSMlnlNG
DIGITAL VIDEO

4

CLIENT 0 CLIENT 0
I I

RECEIVING NOT RECEIVING
DIGITAL VIDEO DATA

I DATA STREAM

CLIENT u
RECEIVING
DIGITAL VIDEO

Figure I Client-server System for Video Data Transmission

Digital Tecbnical J w r n a l Vo1. 5 No. 2 Spring 199.3 77

Multimedia

ANALOG
VIDEO
SOURCES

LOCAL AREA NETWORK
t 4

NETWORK
INTERFACE

PROCESSOR
STORAGE

PERSONAL COMPUTER
CABLE
TUNER

Figure 2 Types of Video Progmnz Sotirces

STORED
DIGITAL
VIDEO

Vitleo program material is categorized as live,
e.g., the current program broadcasting o n a televi-
sion network, o r stored and played o n demand,
e .g . , ;I recorded training session. In both cases, it is
desirable for more than o n e client to be able to
monitor o r view the transmitted video program.

To implement the client-server system described
above, many technical hurdles hat1 to be overcome.
This paper, however, focuses o n one narrow but
critical aspect, the addressing method used on the
] .AN for tlelivery of the digital video data. 'The char-
acteristics of digital video and the need for multiple
stations to receive programs from a wide range of
possible sources combined to create some interest-
ing challenges in devising a suitable addressing
m e ~ h o d .

Choosing an Addressing Method
To transmit digital video over a data network, an
effective addressing mech:lnism Iind to be chosen
that would satisfy the project's goals. Most Lms
support three basic data addressing mechanisms:
broadcast, unicast, and multicast. Each method
of transmitting digital video over a LAN has charac-
teristics that are both attractive and undesirable.

Broadcast addressing ilses a special reserved d e s
tination address. By convention, tlata sent to this
address is received by all nodes on the LAN.

Transmitting digital video darn to the broadcast
atlrlress serves the purpose of permitting multiple
clients to receive the same transmitted video pro-
gram while permitting the server to transmit the
data once to a single adtlress. Viewed another way,
this convention is a significant disadvantage

because all stations receive the data whether they
are interested o r not. Compressed digital video r e p
resents from 1 to 2 megabits p e r second of data;
therefore nodes not expecting to receive the video
data are impacted by its unsolicited arrival.',' As a
further complication, when two o r more video pro-
grams are playing simultaneously, stations receive 1
to 2 megabits pe r second o r more of data for each
video program. This renders many systems inoper-
ative. Furthermore, LAN bridges pass broadcast
messages between LAN segments and cannot con-
fine digital video data to a LAN segment.* As a result
of these drawbacks, use of the broadcast adtlress is
unsuitable for transmission of digital video data.

Utlicast addressing sends data to o n e unique
node. The use of unicast addressing eliminates the
problems encountered with broadcast addressing
by confining receipt of the digital video data to a
single node. This approach works quite well as long
as only one node wishes to view the video program.
If mi~lt iple clients wish to view the same program,
then the server has to retransmit the data for each
participating client. As the number of viewing
clients increi~scs, this approach quickly exhausts
the server's capacity and congests the LAN. Because
unicast adtlressing cannot practically support o n e
server in conjunction with multiple clients, it too is
unsuitable for transmission of digital video data.

Multicast addressing uses addresses designated
to simultaneously adtlress a group of nodes on a
LAN. Nodes wishing to be part of the addressed
group enable receipt of data atldressed to the multi-
cast address. 'This characteristic makes multicast
addressing the itleal match for the sin~ultaneous

78 Vol. 5 No. Y .S/,t'iri,q 1993 Digital Techirical J o z i r n c ~ l

LANAddressing for Digital Video Data

transmission of digital video data to multiple client
nodes without sending it to uninterested nodes.
Furthermore, many network adapters provide
hardware-based filtering of multicast addresses,
which permits high-performance rejection/
selection of data based on the destination multicast
address.9 Because of these advantages, multicast
addressing was selected as the mechanism for trans-
mission of digital video data.

Multicast Addressing Considerations
Together with its advantages, multicast addressing
brought significant problems to be overcome. The
problems were in the assignment of multicast
addresses to groups of nodes, all of which are inter-
ested in the same video program. If a single multi-
cast address were assigned for all stations
interested in receiving any video program, then
only interested stations would receive data. All par-
ticipating stations, however, would receive all pro-
grams playing at any given time. If multiple
programs were playing, each station would receive
data for all programs even though it is interested in
the data for only one of the programs. The obvious
solution is to allocate a unique multicast address for
each possible program. The following sections
examine various allocation methods.

Traditional Address Allocation
Traditionally, a standards committee allocates mul-
ticast addresses, each of which serves a specific
purpose or function. For example, a specific multi-
cast address is allocated for Ethernet end-station
hello messages, and another is allocated for fiber
distributed data interface (FDDI) status reporting
frames.L0,11s12 Each address serves one explicit func-
tion. This static allocation breaks down when a
large number of uses for multicast addresses fall
into one category.

It clearly is not possible to allocate a unique
multicast address for all possible video programs
for several reasons. At any given time, hundreds
of broadcast programs are playing throughout
the world, and thousands of video programs
and clips are stored in video libraries. Countless
more are being created every minute. Assigning a
unique address to each possible video program
would exhaust the number of available addresses
and be impossible to administer. Furthermore,
it would waste multicast addresses since only
those programs currently playing on a given
LAN (or extended LAN) need an assigned address.

A technique, therefore, is needed by which a block
of multicast addresses is permanently allocated for
the purpose of transmitting video programs on a
computer network, and individual addresses are
dynamically allocated from that block for the dura-
tion of a particular video program.

Dynamic Allocation Method
A dynamic allocation method should have several
characteristics to transmit video programs on a
LAN. These desired characteristics

1. Must be consistent with current allocation pro-
cedures used by standards bodies like the IEEE

2. Should be fully distributed and not require a
central database (improves reliability)

3. Must support multiple clients and multiple
servers

4. Must operate correctly in the face of LAN per-
turbations like segmentation, merging, server
failure, and client failure

It is clearly desirable to use a dynamic allocation
mechanism that does not require changes to the
way addresses are allocated by standards commit-
tees. Changes to protocols only create another level
of administrative complexity. Instead, a single set of
addresses should be allocated on a permanent basis
for use in the desired application. Drawn from a
pool of addresses, these allocated addresses could
be dynamically assigned to video programs as they
are requested for playback. When playback was
complete, the address would be returned to the
pool.

Regardless of which allocation mechanism is
adopted, it needs to support multiple servers and
multiple clients. This implies that some form of
cooperation exists between the servers to prevent
multiple servers from allocating the same address
for two different video programs. One node could
act as a central clearinghouse for the allocation of
addresses from the pool, but the overall operation
of the system would then be susceptible to failure
of that node. The preferred approach is a fully dis-
tributed mechanism that does not require a central-
ized database or clearinghouse.

LANs tend to be constantly changing their config-
urations, and nodes can enter and leave a network
at any time. As a result, an allocation mechanism
must be able to withstand common and uncommon
perturbations in the LAN. It must accommodate

Digitcrl Technical Journal Vo1. 5 No. 2 Sl~ring 1993

Multimedia

events such as the segmentation of a LAN into two
LANs when a bridge becomes inactive o r discon-
nectecl, joining of two LANs into one when a bridge
is installeel or becomes reactivated, and failure or
disconnection from the LAN at any time by both
server and client nodes.

Other Multicast Allocation Methods
A variety of different group resource allocation
mechanisms exist, and the one most nearly applica-
ble to transmitting digital video over a LAN is used
in the internet protocol (IP) suite. Deering dis-
cusses extensions to the internet protocols to sup-
port multicast delivery of internet data grams.15
In his proposal, multicast address selection is algo-
rithmic;~lly derived from the multicast IP address
and yields a many-to-one mapping of multicast
11' addresses to JAN multicast address. As a conse-
quence, there is no assurance that any given multi-
cast acltlress will be allocated solely for the use of
a single digital video transmission. This unclermines
the goal of using multicast addressing to direct the
he;ivy flow of clata to only those stations wishing to
receive the data. Deering discusses the need for
;~llocation of transient group address ant1 alludes to
the concepts presented in this paper.

Model for Dynamically Allocating
Multicast Addresses
Given the overall goals of the project and the
desired characteristics of the application, thc fol-
lowing model was developed. It transmits digital
vicleo on a data network using dynamically allo-
cated multicast addresses. First, simple operational
cases on the LAN are described. Then complicated
scenarios dealing with network misoperations are
addressed.

I t should be noted that the protocols described
address the location of video program material as
well as the allocation of multicast addresses for
delivery of that material. Because of the one-to-one
correspondence between video material and
address allocation, it is convenient to combine
these two functions into a single protocol; how-
ever, the focus of this paper remains on the address
allocation aspects of the protocol.

Multicast Address Pool
This model assumes a set of n multicast addresses
permanently allocated ancl devoted to it. The
addresses are obtained through the normal process

for allocation of multicast addresses through the
IEEE. All clients and servers participating in this
protocol use the same set of addresses. For the sake
of this discussion, these addresses are denoted as
A l , A2,. . .An. Address A1 is always used by the par-
ticipating stations for exchange of information nec-
essary to control the allocation of the remaining
addresses for use by the participating stations. The
remaining addresses A2 through An form the pool
of available multicast addresses.

Server Announcements
All servers capable of transmitting digital video
data continuously announce their presence and
capabilities by transmitting a message at a predeter-
mined interval; for example, a message is addressed
to A1 every second. In these announcements, the
servers include information identifying their gen-
eral capabilities, clata streams they are currently
transmitting, and data streams they are capable of
transmitting.

A server's general capabilities include its name
ant1 network adtlress(es). Other usel111 information
can also be announced, but it is not relevant to
this cliscussion. To identlfy the data streams cur-
rently being transmitted, the server describes
the data ancl the multicast address to which each
data stream is being transmitted. In this way, it
announces those multicast aclclresses that the sta-
tion is currently using, along with a description of
the associated video program. The data streams the
server is capable of transmitting are identified by
some form of a description of the data stream.

Identifying Servers and
Available Programs
With each server continuously announcing the p r o
gram matcrial available for playback, clients wish-
ing to receive a particular data stream can monitor
the server announcements being sent to address
A l . By receiving these announcements, a client can
ascertain the address of each server active on the
LAN, the data streams currently being transmitted
by each server and the multicast address to which
each is being transmitted, and the data strcams
available for transmission.

With a large repository of program material,
it could easily become impractical to announce
all available material. In this case, the announce-
ments could be used only to locate available
servers, and an inquiry protocol o r database search

80 Vol. 5 ,\lo 2 Sprrrtg 89.1 Digilal Techtrical Journal

LAN address in^ for Digital Video Data

mechanism could be used to locate available mate-
rial more efficiently.

Once a client identifies a server that is offering
the desired data stream, it can request that the
server begin transmission. The client sends a mes-
sage i d e n t ~ i n g the desired playback program
material. In response, the server allocates a unique
multicast address, includes the new material and
multicast address in its announcement messages,
and begins transmitting the program material.

Add~ess Allocation and Dacking
Each server maintains a table containing the usage
of each of the A2 to An addresses. Each address is
tagged as either currently used or available for use.
When a server receives a client's request for trans-
mission of a new data stream, the server selects a
currently unused multicast address and includes
the address and data stream description in its
announcements of data streams currently being
transmitted. After sending two announcements,
the server begins transmitting the data to the cho-
sen multicast address. Sending two announcements
before beginning transmission provides client
nodes with ample time to ascertain the address to
which the data will be sent and to enable reception
of the video program.

In addition to sending announcement messages,
the servers also listen to the announcements from
other servers to keep track of all multicast
addresses currently in use on the LAN. Each time a
server receives an announcement message from
another server, it notes the addresses being used
and marks them all as used in its table. This pre-
vents a server from allocating an address already
used by another server and eliminates the need for
a central database or clearinghouse.

If a server observes that it is using the same
address as another server, then the server moves
its data transmission to another address if and only
if its node address is numerically lower than the
other server's node address. The new address is
allocated exactly as it would be if the server were
beginning to transmit the data stream for the first
time. This algorithm resolves conflicts where two
or more servers choose the same available rnulti-
cast address at the same time. In addition, it
resolves a similar conflict that occurs when two
separate LNU segments become joined and two
servers suddenly find they are using the same multi-
cast address.

Clashing allocations of multicast addresses can be
held to a minimum if servers allocate an address at
random from the remaining pool of addresses rather
than all servers allocating in the same fixed order.

Identifying and Stopping Playback
After a client requests playback of new material, it
can then examine the server's announcements, and
when the desired data stream appears as being
transmitted by the server, the client can begin
receiving data from the advertised multicast
address. At this point, any other client stations on
the LAN can also receive the same video program by
enabling receipt of the same address.

When no more clients wish to view a partic-
ular program, a mechanism is needed to inform
a server to stop transmission and return the asso-
ciated address to the free pool. Two alternative
approaches were considered to stop playback; one
was chosen for several reasons.

In the first approach, each server tracks the num-
ber of clients that have requested a particular pro-
gram by simply counting the number of requests
for that program. In addition, clients are required to
not@ the server when they are finished viewing.
The server then continues to transmit the material
until all interested clients have indicated they are
no longer interested in viewing. This approach has
two problems. If a viewing client node is reset or
disconnected, or if its message to end viewing is
lost, the server could lose track of the number of
viewing clients and never stop playing a particular
program. The second problem, which is more of a
nuisance, is that clients have to request playback of
a program even if it is already playing to enable the
servers to track the number of viewers.

In the preferred approach, interested clients
periodically remind the server that they wish to
continue viewing the program. Servers then simply
keep playing the material until no client expresses
interest for some period of time. For example,
clients could reiterate their interest in a program
every second, and a server could continue transmit-
ting a requested program until it did not receive a
reminder for 3 seconds. This time lapse would
accomn~odate lost reminder messages from clients,
and client failure would result in transmission ter-
mination within 3 seconds. In addition, when all
clients had finished viewing the material, the
server, multicast address, and consumed network
bandwidth would be released within 3 seconds,

Digital Techrrical Joumtal 1/01. 5 No. 2 Spring 199.S 81

Multimedia

making them available for other uses. Selection of
the actual timer value depends on the desired bal-
ance between ongoing consumption of network
resources (bandwidth ancl multic;~st addresses)
after all receiving parties have stopped viewing tlie
data, and network, entl system, and server resource
consumption caused by more frequent reminder
messages.

Changing Mu1 ticnst Addresses
Aside from receiving and processing the dat* <I f o r a
video program, client stations must also continue
to examine the server announcement messages and
remain alert t o possible changes in the multicast
address to which the receiveel program is being
transmitted. As noted above, address al1oc:ition can
change at any time due to merging of WN segments
o r cluplicate allocation by two servers. Anytime a
client notes a change in atldress, it must stop receiv-
ing data on the previous address and resume receiv-
ing with the new acltlress. A momentary tlisruption
in playback is likely to occur, but such disturbances
are infrequent because only merging LANs c;luse
duplicate allocations of addresses in the middle of
playback.

Under the circumstances described earlier, a
client can fincl itself receiving two data stre;lrns o n
the same multicast atlclress for some finite time
period until the servers resolve the allocation of
that address. Clients can gain immunity to this situ-
ation by noting the source address of the server th:~t
originally providetl the dat:~ stream, and clisc;lrding
all data received o n the multicast atldress that is not
from the source address. With this improvement,
clients can easily distinguish tlie data strexm of
interest from another which might momentarily
appear addressed to the same multicast address.

The allocation and resolution of multicast
address use can be improved if servers send their
announcements at an increased rate for some time
period after a new data stream begins transmitting
o r when a data stream changes address. Such accel-
erated announcements permit client stntions to
more quickly identify the address of ;I recluestetl
data stream, and more quickly identify when ;I data
stream has moved from o n e address to another.
They also permit servers to more cluickly itlentitji
instances of clashjng multicast atltlresses ant1
resolve them. For example, the announcement
interval could be increased from 1 second to one-
quarter second for a 2-secontl tlur;~tion ancl
resumed at 1-second intervals.

Extension to 112 terconnected LANs
The described protocols and allocation methods
fi~nction correctly across multiple LANs intercon-
nected by bridges since bridges nominally forward
multicast traffic. Man)? bridge implenientations per-
mit m;lnagetnent control over the forwarding of
multicast data. This can unintentionally interfere
with the tlesired operation of this protocol, but
it can also as serve as ;I u s e f ~ ~ l tool to confine clata
traffic to particular LAN segments. Another prac-
tical consider;~tion in the particular application
tlesct-ibecl here is the ability of a bridge to forward
the large :~moullts of data traffic involvecl in digital
video without detrimentally impacting the time-
dependent n;lture of the data.

Extending the pt-otocols to a wide area network
is ;r more difficult procedure. Routers do not for-
ward multicast traffic, but they could if used as
proxy notles between LhNs. Router forwarding
perform:~nce teritls to bc even lower than bridge
for\varding rates, which cliscourages the operation
of this system over a router.

Conclusions
Dynamic allocation o f multicast adtlresses is criti-
cal to er~able features such as the continuous play of
full motion video over a network with multiple
viewers. I t is not fe;lsible (or at least is very difficult)
for a server to transmit a data stream indivitlually
to all clients wishing to receive it. If. o n the other
hand, the desiretl data stream is transmitted to the
broadcast acltlress, ;ill stations o n the Lf\N have to
receive an enormous volume of data whether they
;Ire interested o r not. It is highly desirable not
to inuntlatc i~ninterested clients with vicleo data
streams, but to send them to clierits that want to
receive specific video data streams in which they
are interested.

MuJtic;~st ;~tltlresses are well suited (in fact
designed) for transmission to some arbitrary group
of stations. To prevent a client that is receiving one
video stream from being inundated by other video
streams, a unique multicast address is required
for each uniclue data stream. Since there are infi-
nite individual tlata streams to choose from, it is
impossible to allocate a unique multicast address
for every tlat;~ stream. A mechanism to allocate
a unique multic;~st ;~tldress from a finite set of
;~dclresses for the duration of the tlata stream is the
itleal choice. The tlescribetl mechanism also has the
attractive c1iar;lcteristic that it is completely dis-
tributed; there is no central agent for allocatiotl of

I-bl. 5 No. 2 S/)ritri(1993 Digital Tecbrricnl Joriivral

LAN Addressing for Digital Video Data

multic;~st addresses; therefore it is more reliable as
servers join ancl leave the Wi.

Although transmission of digital video data has
prompted this system design, the basic mechanism
for dyn;~niically allocating multicast addresses can
be applied to any application with similar needs.

Acknowledgments
I mloulcl like to acknowledge the assistance of
John Forecast of Digital's Networks and Commu-
nications Group in enumerating the necessary
pathological conditions in this work and for acting
as a so~~ncli~ig board for proposed solutions.

References

I . K. Harney, M. Keith, G. Lavelle, L. Ryan, anti
D. Stark, "The i750 Video Processor: A Total
Multimedia Solution," Cornmunications of
the ACjVI, vol. 34, no. 4 (April 1991).

2. G. Wallace, "The JPEG Still Picture Compres-
sion Stantlartl," ~ o r n m u n i c ~ ~ t i o n s of tlnle ACIM,

vol. 34, no. 4 (April 1991).

3. 1). Le Gall, "MPEG: A Video Compression Stan-
dard for multimedia Applications," Cominurzi-
cations of the ACIW, vol. 34. no. 4 (April 1991).

4. Car.rier- Sense illultiple Access zvith Collision
Detection (CSiMA/CU) Access Metbod and
Pt3ysical Lryer Specificatiorz (New York:
TIie Institute of Electrical and Electronics
Engineers, Inc., 1986).

5. Fiber Distrib~~ted Data Interfc~ce-Token
Ring il.ledi61 Access Control (New York:
I-Irnerican National Standards Institute, 1987).

Token Ring Access Method and Physical
Luyer. Specifications (New York: The Institute
of Electrical and Electronics Engineers, Inc.,
1986).

Token-Passing Bus Access Metlnlod and Plnlysi-
cal Lclyer Speczyications (New York: The Insti-
tute of Electrical and Electronics Engineers,
Inc., 1986).

Local Area Network [MAC (Media Access
Control) Bridges, IEEE Standard 802.l(d)
(New York: The Institute of Electrical and
Electronics Engineers, Inc., 1990).

111C688.38 iMedia Access Controller User's
Manual (Phoenix, Arizona: Motorola, Inc.,
1992).

Logical Link Control, ANSI/IEEE Standard
802.2-1985, ISO/DIS 8802/2 (New York:
The Institute of Electrical and Electronics
Engineers, Inc., 1985).

A Primer to FDDI: Fiber Distributed Data
Interface (Maynard, MA: Digital Equipment
Corporation, Order No. EC-H0750-42 LKC;,

1991).

FDDl Stcltion il4anagemerzt-Draft Proposed
Anzerican National Standard (New York:
American National Standards Institute,
June 25, 1992).

S. Deering, "Host Extensions for IP Multicast-
ing," Internet Engineering Task Force, RFC
1112 (August 1989).

D i g i l ~ I Technictrl Jorrrnal Vol 5 1Vo 2 Tprl~rg 199.1 83

Paul B. Patrick, S1: I

CASE Integration Using
ACA Services

Digital uses the object-oriented software Application Control Architecture (ACA)
Services to address the problems associated with data access, interapplication com-
munication, and workflow in a distributed, rnultivendor CASE environment. The
modeli~zg of applications, data, 61nd operations in ACA Services provides the foz~n-
dntion on which to build n CASE environment. ACA Services enables the senmless
integration of CASE applications mnging from compilers to analysis and design
tools. ACA Services is DigitalS irnplenzentatio~z of the Object Manageme~zt Group's
(OMG) Comrno~z Object Request Broker Architecture (CORBA) spec~icatio~z.

Based on work accomplished in many computer-
aided software engineering (CASE) projects, this
paper describes how Digital's object-oriented
Application Control Architecture (ACA) Services
can be used to construct a CASE environment. The
paper begins with an overview of the types of CASE
environments currently available. It describes the
object-oriented technique of modeling apl>lica-
tions, data, and operations and then proceeds to
discuss design and implementation problems that
might be encountered during the integration pro-
cess. The paper concludes with a discussion o f
environment management.

CASE Environment Description
Today's CASE environments are required to operate
in network envuonments that consist of geographi-
cally distributed hardware manufactured by multi-
ple vendors. In such environments, access to clata,
metadata, and the functions that operate on this
data must be as seamless as possible. This can be
accon~plislied only when well-architected proto-
cols exist for the exchange of information and con-
trol. These protocols need not be defined at the
level of network packets, but rather as operations
that have well-defined, platform-independent inter-
faces to predictable behaviors.

In adtlition to utilizing the various applications,
environments deal with how applications are orga-
nized or grouped within a project and how work
flows between applications and within the environ-
ment as a whole. These concepts :ire discussed
later in the paper as are the different styles of inte-
gration that an application can employ.

Data integration, i.e., information sharing, is vital
to any CASE environment because it reduces tllc
amount of information users must enter. Howevel;
data integration must be accompanietl by a mecha-
nism that allows control to pass from one applica-
tion to another. This mechanism, commonly called
control integration, provides a means by which
the appropriate application can be startetl and
requested to perform an operation on a piece of
information. Control integration is also irsed to
exchange information between cooperating appli-
cations, regardless of their geographic locations.
These two integration mechanisms used in tandem
can solve many of the problems presented by a dis-
tributed, multivendor CASE environment.

ACA Services is Digital's implementation of the
Object Management Group's (OMC) Common Object
Request Broker Architecture (CORBA) specification.
ACA Services is designed to solve problems asso-
ciated with application interaction ancl remote d;it;i
access in distributed, multivendor environments
such as the CASE environments just describetl. This
support includes the remote invocation of applica-
tions and components without the need for multi-
ple logins or the use of terminal emulators. The
encapsulation features of ACA Services allow the
use of applications not designetl for distributed
environments. ACA Services call also be configlll.ecl,
in a way transparent to the application, for use on ;i
local host.

The central focus of a CASE environment is on
how easily functions such as compiling. building,
ant1 tliagamming can be performed. The fi~nctions
available form the foundation on which the

Vol. 5 No. 2 Spring 199.3 Digital Technicnl Journal

CASE Integrc~tion Using ACA Serziices

environment is constructed. Therefore, the first
step in the design of a CASE environment is to deter-
mine wli;~t ti~nctions to offer. The applications cur-
rently available to support these functions may be
integrated using one of two paradigms: application-
oriented or data-oriented.

Application-oriented Paradigm
CASE environments that follow the application-
oriented paradigm focus on standalone ;~pplica-
tions used to develop software such as editors,
compilers, and version managers. Application-
oriented environments normally comprise a col-
lection of applications that support the necessary
functions. In application-oriented environments,
integration tends to be focused on direct communi-
cation between two different applications. In this
paradigm, the requesting application knows which
cl;lss of ;lpplication can be used to satisFy a par-
ticul;lr request. Environments that present an
application-oriented paradigm to the user require
the user to b;ive knowledge of the applications that
can be ~lsetl to perform specific tasks.

As the level of task complexity increases, it
becomes increasingly important to build environ-
ments that utilize a paradigm focused on the data
associated with the task being done and not on the
applications i~sed to perform the task. The re a I ' I L ~ -

tion of this problem has brought about the exis-
tence of data-centered environments.

Data-oriented Paradigm
CASE environments that use a data-oriented para-
digm are centered around the data associated with
the task the user is performing. To accomplish
a task in such environments, operations are per-
formed on a data object. Using the object being
;~dtlressetl, the operation, and preferences supplied
by the user. the environment determines which
application will be ilsed to perform the requested
operation. Thus, the requesting ;~pplic;rtion rrcluires
no knowledge about which application implements
an operation. This paradigm is extremely irseful in
CASE environments because of the diversity of
objects ;111d range of applications available to per-
form certain operations.

The ;~pplication and the data paracligms can
coexist in a single CASE environment, and in fact,
tightly integrated CASE environments exploit the
strengths of each paradigm. A text editor can be
used to illustr;rte this point. Typically, when the
contents of a source file need to be modified, an

edit operation is sent to the object representing the
file. However, a debugger may also use the same
editor to display source code. The operation to
position the cursor on a particular line is sent
directly to the text editor application, rather than
to a data object such as the line. ,411 environment
with such a split focus avoids the expense and com-
plexity of presenting 2 complete object-oriented
interface to the environment and results in the
existence of both appiication- and data-oriented
paradigms.

Regardless of which paradigms and applications
a CASE environment uses, the primary focus of the
environment is on the objects and on the opera-
tions that are defined on those objects. Therefore,
after determining what functions to offer, the sec-
ond step in designing a CASE environment is to
understand how applications, data, and operations
are modeled using an object-oriented approach, in
particular the one providecl by ACA Services.

CASE Integration in
Object-oriented Terms
Describing environments using object-orientecl
techniques can simplify the design of an environ-
ment. Techniques such as abstraction and poly-
morphism can be used to describe the objects
that comprise the environment, the operations that
can be performed on those objects, and any rela-
tionships that exist between objects. Further-
more, using these techniques makes it possible to
describe an environment as a set of classes and ser-
vices for each class. ACA Services performs the role
of the method dispatcher, matching an object and
an operation with the firnction in an application
that can implement that operation. To realize the
benefits of this approach requires constructing
models for the applications, data, and operations
that will be present in the environment.

Modeling Applications and
Application Relationships
Applications that are integrated into an environ-
ment can provide various functions or services to
other members of the environment. The number of
services an application provides depends not only
on the capabilities of the application but also on
the way it is modeled. These services are stand-
alone pieces that can be plugged into a system to
perform specific functions. An application can
define a single operation whose sole function is to
start the application; an application can export the

Digitrrl Techtricul Jorrrtrul Vol 5 iVo 2 Spring 199%

Application Control

entry points of its callable interface; o r an applica-
tion can define sets of operations for each type of
object it manipulates. In support of application
modeling, ACA Services provides the concepts of
application classes, methods, and method servers.
Figure 1 illustrates the relationships among the var-
ious pieces of information used to model an appli-
cation in ACA Services.'

In ACA Services, the definition of an application is
divided into two pieces: interface and implernenta-
tion. The interface definition is concerned with the
publicly visible aspects of the application. These
include class definitions for the objects that the
application manipulates, a class definition for the
application itself, and definitions of operations that
the application supports. The operations, which
represent the functions provided by the applica-
tion, are modeled as messages on the application
class definition. These messages define a consistent
interface to various implementations of the opera-
tions. Placement of the application class definition
affects the behaviors this definition inherits. This is
sometimes called classification. The classification

O,N
APPLICATION

O,N

MODELED AS

METHOD 1 I SERVER I
APPLICATION
CLASS /

METHOD n
METHOD

1 0,N fi MESSAGE 0,. 1
Figure 1 AG4 Services ~Metadatct Mode/

of each coniponellt of an application depends on
whether a coniponent contains a superset or a sub-
set of the functions contained in tlie components
of other applications in the environment.

Once the application's components li;~ve been
classifietl, the integrator must determine how the
application will make its capabilities available to
the environment: as an operating system script, as a
callable interface, or as an executable image. The
implementation definition represents the actual
implementation of the application. An application
may comprise a number of executable files ant1
sharecl libraries. Typically, only the executable file
used to start the application is modeled as a method
server. If the functions of the application are pro-
vided through a shared library or image, only the
sharecl library is modeled as a method server.

The implementation of the functions or services
exported to the environment are motleled as meth-
otls. Methods describe the callable interfaces or
operating system scripts that implement a particu-
lar operation and are associated with only one
method server.? During the method selection pro-
cess, tlie messages defined for the application ant1
the objects it manipulates are mapped onto one or
more methods.

Modeling Data and Data Relationships
Data modeling is another significant aspect of creat-
ing CASE environments, especially environments
that utilize a data-oriented paradigm. Identifying
the data objects that the application uses is a key
element in the process of integrating that applica-
tion. The list of data objects should include those
objects for which the application provides a ser-
vice, as well as those objects on which the applica-
tion makes requests. The variety ant1 quantity o f
data objects c;m vary frorn application to applica-
tion ancl depend on an application's cap;tbilities
and the paradigm utilized. To support the modeling
of data objects, ACA Services uses the concept of
data classes. Note that, rather than provide instance
management for data objects, ACA Services pro-
vides a means to represent the data cl;~sses used by
an application as metadata.

Because environments that utilize a data-
oriented paradigm may contain many data classes,
ACA Services organizes the data classes into an inher-
tance hierarchy. This hierarchy allows responsi-
bilities, such as operations and attributes, to be
inherited by other data classes. Data classes found
in an ACA Services inheritance hierarchy are related

Vol. 5 No. 2 Spring 199.5 Digital Technicnl Journal

CASE Irztegrwtiorz Using ACA Services

to one another through an "is-kind-of relationship.
A class that has an "is-kind-of" relationship with
one or more superclasses must support all opera-
tions defined on the superclasses from which it
inherits..$ A subclass is not limited to those opera-
tions and attributes defined by a superclass but may
have other operations, as well as refinements to
inherited operations and attributes.

Modeling Operations
As mentioned previously. operations are modeled
as messages in the CASE environment. The name of
the message describes the type of operation. Some
messages are data oriented, i.e., Edit, Reserve, and
Copy, whereas other messages are application ori-
ented, i t . , ExecuteCommand and Terminateserver.
Messages provide a consiscent abstraction of the
fiinctions provided by applications. This abstrac-
tion allows the details of how a function is
implementecl to be hidden from the requesting
application. Since A<:A Services supports more than
one implementation for a single message, it also
provides ;I means to hide various irnp1ement;rtions.

The tleveloper should anticipate different imple-
mentations o f a message within the elivironment
ancl be aware that a message may apply to a variety
of classes. The cleveloper must consider how the
operation on an object might be usetl by various
applications and in fi~tiire environments.' In this
way, adding new types of objects to an environment
requires only minor changes, if any, to applications
that are alr~acly integrated.

tl,emtio~z Interactions The semantics of a rnes-
sage dict;ites which particular interaction model is
to be used. A<:,\ Services can be used to construct
a number of different interaction moclels: syn-
chronous recluest, asynchronous request, and
request/reply, as shown in F ig~~re 2. 'The sy11-
chronol~s request interaction model, shown in
Figurc 2;1, is usefi~l when serial operations originate
from a single source. This model blocks the execu-
tion of the clicnt application during a request.
Control is returned to the client application only
after the server application receives ant1 executes
tlie recluest anel outputs data, if any.

?'he asynchronous request interaction model,
shown in Figure 2b, is usefi~l in situations where
the client can process other work until the server
application completes the recluest. This rnoclel is
especially beneficial when the requested operation
takes ;I considerable amount of time to complete or
if the server is busy with other requests. Execution

of the client application is blocked only for the
amount of time required to deliver the request.
Client execution resumes once the request has
been deliveretl. Upon completing the processing of
the request, the server application notifies the
client application of the completion and returns
any output data.

The request/reply interaction model, shown in
Figire 2c, is most appropriate for requests whose
implementations cannot perform the operations
required to obtain the necessary output data.
Gateway and message-forwarding applications are
examples of applications for which this type of
interaction model is best suitecl. In this model, the
message that represents the request cannot have
any output arguments and must pass an application
handle to itself. The server application uses the
application handle to return any output informa-
tion to the requester by sending a message that rep-
resents the reply. In a request/reply model, a single
reply message shoulcl be defined for returning infor-
mation, thus reducing the number of messages an
application must support.

~Messctge Arguments A message argument for
passing the object being manipulated need not be
defined. ACA Services automatically passes the
object to which the message was sent to the
method. Each method routine can access the object
through a structure containing context informa-
tion for the current invocation.

The arguments of a message should not be
designed around a specific instance of an applica-
tion, nor should they imply how an object is physi-
cally stored. To help meet these design criteria, all
references to an object should be passed as instance
handles. In this way, the application that receives
tlie instance reference can use it directly for sub-
sequent operations on that object. In addition,
when defining the message arguments, developers
should consider other applications that could be
instances of a particular class and possibly used as
replacements.

Howevel; all instances of an application do not
have the same set of capabilities. To support the var-
ious capabilities, the developer may have to define
additional arguments to represent bit masks and
flags. An argument list or an item list can be used
to pass infornlation about different clata types or
cji~antities. The message design should not require
implementation-specific information for proper
application operation; this design implies that rea-
sonable defaults accommodate any unspecified

A p p l i c a t i o n C o n t r o l

(a) Sy~zcbronous Request

CLIENT APPLICATION SERVER APPLICATION

ACAS-lnvokeMethod() ,

if (status != SUCCESS)

Reserve() + f0o.c

+- - - - - return(SUCCESS);

CLIENT APPLICATION SERVER APPLICATION

Figure 2 Operation Interaction r~oclels

ACAS-lnvokeMethod();

return() ;
)

Cornplet~onCallback()
(

1

CLIENT APPLICATION SERVER APPLICATION

information. In cases where proper operation of an
application requires implementation-specific infor-
mation, the most suitable design is to use the con-
text object as a place to store the clefault values.
With such a design, the application no longer needs
to use hard-coded dehult values and can be cus-
tomized for the environment.

Browse() -, f0o.c

+ - - - - - - - - - - - - - - - - return(SUCCESS);

ACAS-lnvokeMethod() ,

return();
)

ReplyMthd()
(

return();
1

Integration Frameworks
A number of issues must be resolvecl in the con-
struction of a CASE environment before the first line
of code can be written. Many of these issues center

arountl the modeling of objects in the environment.
As discussed in the previous section, abstraction is
used to hide much of the actual implementation of
the operations o n objects from the requesting
application. Howevel; additional context may be
required for further operations. If the application is
using an application-oriented paradigm, most oper-
ations are clirectecl to an application class that pro-
vides the service. In cases where a data-oriented
paradigm is used, the application typically directs
operations to the data class of which the object is
an instance.

Connect() + Gateway
t

Reply() --, Client +

88 I 5 1 2 Sprrrrg 1993 Digital Techttical Jounrrrl

MVS-ConnectMthd()
(.

return(SUCCESS);
1

LU62-ConnectAck()
(.

return();
1

at11 jo s1uaurn2~e aAeq saYessaw yloq ley] uaa!8
'ssels Irralajj!p e uo aSessaw -1aqloua 01 paddew
aq 01 a2essaw [au!S!~o arp s~ollc a3uaJaJaJ poqlaur
lsaqpu! ue 'auop i(luowwo2 IOU q3noq1~ .aSassaur
at11 puas 01 y~!q~ uo ssel2 aq] jo ameu aql 'puosas
pue fluas aq 01 a8essaw aq] jo ameu aq] 'ISJ!~ :,@,

JalxJeq3 aLp Lq paln.ledas s~lrcd OM^ seq asuaJaja.1
poqlaw na.r!pu! LIV 'a2na.rya.r porpaw lsanp e sasn
rls!q~ 'a3r:ssaw asMoJg ayl puc 'ssuaJajaJ poqjaw
13aJ!pu! ue sasn L~!L]M '9323cssa~u 4p3 aq~ :saSassaru
IuaJajflp OM) 'du!~orls Lq 1da~uo3 s!y~ sa1aJl
+nil! P a~r.tZ!.~ ;ssals uo!~exldde ~~e~~sqe ua 01 aDua
-Jaja.r lsaJ!pu! ua u!c~uor, sassel3 elep uo sa8essaw
~oj sdew poqlaw leq1 pa~!nba~ y3eo~dde palua!Jo
-slep e jo uo!~e~uawaldw~ ,uo!~eAa~u! uo!~es!ldde
01 r~~ao~dde pajua!.ro-e~ep awes S!L~ Su!z!~!ln Lc1
pa~a!~[se seM uo!~a.rSa~rr! jo la~ial ~e!l!u! xasn aql
01 aa!lsads~ad pa1~1a!.lo-alap e masa~d 01 pauS!sap
se~ 'NOIS~HOD '~uawuoJ!aua 3sm s,~~l!%!a

.sscp ayl uo paur~o~~ad aq uas
1erll suo!le.rado aq~ 1uasa~da.I 1eql sa2essaw 30 IS!^
s su!e~uos 'a3c~ols pu~! 'uo!le~!ldde 'erep 'sssls
qDeg .luawuoJ!i\ua aql u! pa2ua.raja.I aJc slDa!qo
MOL~ puc aS~:.ro~s jo suo!les!~ssel3 aql luasa~da~
sasssp a8a.ro1s ,luawuoJ!Aus ue u! punoj osa!qo
uo!lv,~!ldde pue c~ep JO suo~~e~!~sse~:, lua~ajflp
aql luasa~dal 01 sassels uo!~es![dde pue elep sasn
sas!AJaS v3V 'Jaded aLl1 U! Ja!lJea paq!JDSal> Sv 'UO!l

-!u!jap JaaJas poylaw r: lClq!ssocl pue 'uo!~es!ldde
aq~ JOJ suo!l!u!jap poylaw 'SIJO~~IIS uo!les!1dda
Mau aL[1 ley] sassap slcp 'sassel2 uo!~es!1ddc Mau
3~1!ppa apnlsu! ,iew lnamuo.r!nua ayl 01 sa~apdn

-MOI~OJ ay~ sa.~!nba~ sydo~ asaql jo ysea pue~s
-.rapun Jallaq o~ .luauruoJ!aua aq~ U!L~!M slua~a
jo ~uawaSauaw ayl pue 'suo~~ew~ojsue~~ elep
ap!aoJd 01 SuEaw a se sassals a8e~ols JO asn ayl
'sa1pul:q uo!~ss!~Jde pue asua~su! jo luawa51:uew
aql sacl!.r~sap rro~~sas s!q~ ~luawuo.~!~ua arp
U!~I!M y.10~30 ~o1j ay~ afieuew 01 MOLI sassa.lppe
IU~LLI~~~UI!~ ~uaruuo~!nu~ uo!,sas aql 'Alleutd

%~!3aj~alu1 uo!le~!lddv
jo sali(ls uo!pas ayl u! I!alap u! paq!msap
a.le s~dax~o:, asayl fsuo!]e~ado Yu!lapow uo!~
-39s ayl u! passnmp aJaM sax.~~a~u! uo!1e3!ldde
JOJ ada~uor, le.1aua3 alow ayl jo smog ,parls!lcT
-LUOD>I: s! UO!IEJ~~I~! y~!y~ dq saa!l!w!.rd ay~
w.10~ 'suo!lex1dcle sno!Jei\ at11 8u!12auuos smo.l.le
ss C a.rns!j u! pa~wisnlp 'saDq.lalu! uo!~e~!~ddv
.sa!ly!lDe laq~o Suowa pue U!~I!M suo!~a~!ldde jo
~U!J~LIS aql jo uo!ssnDs!p e sapnpu! pue i(l!a!me ue
jo sa[d!Du!~d ayl saqil~sap uo!1w8alu1 uo!1e3!1ddv
uo!l3as aqL 'SaDCJJalU! uo!~exldde aq1 y~ll0Jql
a~e.rado AI!A!IJE uc U!~I!M suo!~es!lddv .13a!qo
a~!sodwos a18tr!s 1: 8u!w~oj 's~sa!qo elel, JO .~aq
-wnu a put suo!1ex[dde alrow .lo auo sas!~duo~ ,CJ!
-~!lsc rpag .~rrawuo~!aua ua U!LII!M yse] .leln~!l~ed
e JOJ ~.I~I~~JJS ?JON 3!seq aql ap!no.rd sa!l!,\!lsv

.pales!pu! se '.Jaded aq1
u! aJaqMasla palap u! paqpssap pua uo!IDas s!q~
u! pasnpoJlu! ale sluauodwo~ aqL .luawuo.r!nua
IleJalzo aq~ jo ~sadse .1el112!1.1ed e s~uasa.rda.r luauod
-war, q2cg ~1uarua8eueur a[puey put? 'luawaYeueur
~olj >I.I~M 'saDq.ra~rr! elep pue uo!les!lclcle 'suo!~
-exlddc 'sa!l!a!~x :luawuoJ!nua 3s~:) I: jo s~uauod
-uros ~o!eur aq~ s~oys $ a~nS!g 'jlasl! ~uawuo~!nua
3Sv:) aq1 30 s~uauodwo~ Jay10 aql UO!lEJap!SUO3
OIU! aye] osle lsnw ~auZ!sap at11 ']uaruuoJ!aua arll
u! punoj s~sa!qo slap pue uo11e2!ldde arp sap!sag

Appl icat ion Control

DATA-OBJECT Q

Text-File 1 ~ 1

m, APPLICATION

,----J--- I
METHODMA?;

,\-. Vi-Browse- , , - - -__ - -
* - - - - - - - -

,# METHOD MAP.' '. Edil 8 Editor,#
Browse b-

----_-- -*-View-

Context Object

I Table User-Preferences
Edit 8 Editor = View O Vi

End Table

_- - - - - -__
r' METHOD MAP.;
'% Vi-Create- ,r - - - - - _ - -

0 - - - - - - -

.I' METHOD M$\ '. Vi-Browse- _ r' ------- -------- - -
r0 METHOD MAP.' \. Vi View; -
---;--

Fig~we 4 Direct and Indirect iI4etl7od Re f e~v~~ces

same type, direction, ancl order. Both messages
must also return the same type of object.

On encountering an indirect method reference,
ACA Services first looks at tables in the context
object for an attribute that matches the reference. If
such an attribute is found, ACA Services uses tlie
attribute value to determine the class and message
that should be checked next. Thus, users can pro-
vide a mapping to their preferred application for the
operation. If no matching attribute is found, ACA
Services uses the message and class specified in the
indirect method reference as the next place to
check.

The approach used in COHESION has many advan-
tages over specifying either ;I direct reference to a
method or an indirect reference to a specific appli-
cation class. This approach does not limit the user's
ability to speclfy application preferences associ-
ated with using direct references to methods, nor
does it burden the installation of the ;~pplication
with determining all the data classes that will need
to be updated (as required with indirect references
to a specific application class). 111 addition, the
approach allows the application developer to tlo the
least amount of work and still provitle tlie maximum
level of support for user preferences in applications.

Using ACA Services, the application developer
must create an application class definition for each

CASE apl~liciition to be added. Consequently, the
class hierarchy contains both abstract and instance
classes. The application class is required to contain
all the messages defined on its superclass, plus any
adclitional messages that the application supports.
The method map of each message on an application
class should contain a direct reference to the
method that iniplements the operation. Althougli
better than the other alternatives, the COHESION

approach has no default implementation unless one
is explicitly specifiecl in a contest object. To over-
come this problem, an entry for each message
clefined 011 the abstri~ct application class must be
created in one of the context objects. The values
for these entries point to the corresponding mes-
sage on the cl;lss of application ilsed as the tlefault
implemetitation.

Common Classes
Common clr~sses for a CASE environment provide
CASE appliciltion developers with a clescription
about how an application fits into the environ-
ment, tlie behaviors the application must support,
and the Iiiessages that result in those behaviors.
The notion of plug-and-play in the environment
is acbievetl throi~gh the use of cornmon classes.
An implemcntation that adheres to the descrip-
tion of a particular class of applications can be

90 M)/ 5 i\'o 2 \/)I i r t ~ 199,' Digital Technical Jolottrirtil

CASE 11, teg ~wtion Usirig ACA Serl~ices

easily switched with another implementation that
adheres to the same application class semantics.

Programs like COHESION are working toward
a set of common classes for CASE environments.
The set currently defined contains classes for many
types of data and applications found in CASE envi-
ronments focused on the coding and tcsting phases
of the software development process. A graphical
view of the data portion of the hierarchy is shown
in Figure 5. The hierarchy is partially based on the
hierarchy found in ATIS, a standard for tool integra-
tion, and utilizes the strength of the ATIS data
r n ~ t l e l . ~ (Shatletl boxes indicate the classes that are
specific to ATIS.) Encompassing the ATlS model, the
hierarchy presents a uniform data model for the

integration of data throi~ghout the CASE environ-
ment. The set of classes, although not exhaustive,
serves as a basis on which a CASE environment can
be built. Extensions o f the hierarchy will occur as
new classes of applications and their associatecl
clata objects are integrated into the environment by
independent software vendors, customers, and
other CASE vendors.

Most data classes are subclasses of the data class
SOURCE-FILE, because the initial data class imple-
mentation was targeted at a CASE environment
consisting of editors, con~pilers, builclers, and ana-
lyzers. Additional data classes for both file ant1
nonfile objects will be added when applications
that provide and manipulate these objects are

I DATA OBJECT I

NAMED
ELEMENT

DIRECTORY

I 1-7,
RELATION

INARY FlLE a
I

I 1 1 I
OBJECT FILE TEXT FILE DIAGNOSTIC EXECUTABLE

FILE)I FILE

(LISTING FlLE I (SCRIPT FlLE I

Note: Shaded boxes indicate ATIS-wif ic classes

Digital Techt~ical Jourrral Vol. 5 cVo.2 .Spring 1995 91

Application Control

integratetl into the environment. A nuniber of data
c1;lsses represent composite objects such ;IS tests
and ;ictivities. These data classes are used to !~ide
how the object is physically stored in the environ-
ment. Classes that represent composite objects
h;lvt. attributes with values that are actually other
objects. For example, the test data class typically
has attributes that represent the result ofa test run,
an operating system script or program used to per-
form the test, ancl a benchmark against which a test
run is compared. Each of these ;~ttributes may have
as a value a reference to the file object th;it contains
the actu;~l data.

The portion of the hierarchy that is used to spec-
if$ application classes contains only abstract appli-
c;~tion cl;isses, as shown in Figure 6. These classes
provide structure, but more important, they define
the operations that are inherited by any application
that is an instance of a class. Abstri~ct cJ:tsses are
provided for a number of tlie ;cpplications found in
CASE environments that deal with the coding and
testing functions. The hierarchy does not contain
ally classes that represent particular instances of an
applicntion. Such application dasses exist only
whcn ;ipplications are installed in tlie rnvironnient.

Consistent Integration Interface
&1;1ny CASE vendors are building products for a
number of different environnients, including elec-
tronic publishing, office auton~ation, computer-
aided design, and computer-aided rn;~nuk~cturing,
in i~ddition to CASE. Therefore, vendors must decide
how to integrate these applications into the various

environments. Until now. most integration was
accomplishetl 1)). linking one application with
another, which resiiltctl in tightly coupled applica-
tions. However, such ;ipplications tend to be unable
to operate intlepe~identlj: without the other mem-
ber. Also, e;~cli coupled member tends to have
its own applic:~tion programming interface (Al'I).
Integration perforrnerl in this manner results in an
application tliat must maintain code to support
multiple AI'Is, if tlie application is to work in a num-
ber ofe~~\/ i ro~~li ients . Si~ch support can incrcase tlie
maintenance cost and the time and effort reqiiirecl
to integrate with other implementations of applica-
tions ant1 environments. Other bjr-protlucts of this
approach are an increased image size and a neeti to
rerelease sofrw:lre when a clependent application
changes. 'The clegree to whicl~ rerelease occurs
varies with the platform and operating system.

ACA Services can be used to minimize the nunl-
ber of interfaces that an :~pplication must maintain
without removing filnctionality; a common AI'I

provides the interk~ce to all potential filnctionality.
'The A<:A Scrvices AI'1, along with a set of coni-
mon cl;wses, allows the same level of interaction
between applica[-ions tliat can be accomplishecl
through a priviltc r\IIL, without the negative side
effects previously dcscribed. Through the use of
common cl;lsses, an ;ipplication can integrate with
multiple implernentatiot~s of another application
without requiring a sep;irate effort for each. On
platforms wlicre dyn;~mic loatling of libraries or
shareable im;~ges are supportetl, applications c:ln
use ACA Services t o locate the appropriate library,

MANAGER MANAGER

BITMAP VERSION CONFIGURATION
MANAGER MANAGER

I PERFORMANCE
ANALYZER I

SOURCE FlLE OBJECT FlLE CONVERTER I--

Figure 6 Hioa~.ci?j~ of CASE Coirrlnol~ iipI1lic~ttio12 Classes

92 W)I. 5 iVrr 2 .';l,r.itrg 199.; Digital Technicrrl Jorrrnal

CASE Integration Usirz~ ACA .Sclri~ices

find the proper entry point, and transfer control to
the appropriate routine. /\(\(:A Services also provides
a transpitrent mecli;~nism for enc;ipsuIating applica-
tions that have no callable interhlces. Use of this
mechanism extentls tile number of applications
that can be integrnted and removes the need to
develop operating system-specific code to start
applications.

Styles of Application Interfncing
Creating an interhce to ;ln application that is to be
integrated is different from integrating ;in applica-
tion into an environment. Application interfacing
deals with the puhlic interface or interfaces that
the application provides to another application. In
tur~l , these interh~ces provide the primitives that
can be used in the integration of applications.

Application interfaces can be created in various
ways, with differing levels of effort. Software devel-
opers can design new applications to utilize all the
capabilities of A(:A Services. Esisting applications
can also take :Idvantage of the fill1 capal>ility of
A<;A Services, if the source code to the application
is ;ivailable aricl i f the application can be easily
adapted to use ;In event-driven model. However,
even if the source code to an ;~pplication is not
available. applic;~tions can still bc integrated into
the environment using M:A Services. If the applica-
tion has a cal1;tble interface, ;I server can be written
that receives messages and calls the appropriate API
routines. If the application does not have ;I callable
interface, the app1ic;ition can be integrated by
encapsulation through the use of an operating sys-
tem script. The remainder of this section describes
how to use eiich of these techniques to create an
interface through which the application can be
integrated into a CASE environment.

Application M o d z ' i c a t i o
An existing applic;~tion can easily be atlapted to use
ACA Services, if the source code to the application
is available. With minimal changes, :In application
that utilizes a11 event-driven clesign, like that used
by most window-based applications, can operate as
an application server. 'T'lic ;lctual moclific;~tions
required to provide t\(:iZ Services support differ
across applications, b i ~ t for most window-based
applic;~tions the chiinges ;ire sinlil;ir. As an illustra-
tion of this style of integration, consider an editor,

Most editors are implernentetl ;IS event-driven
applications, whicll allows easy integration

because the structure of the cocle requires no major
cli;~nges. To register the current executing inst;lnce
of the application with ACA Services, a call t o the
ACAS-Registerserver routine must be added to the
application's initialization routine. During tlic pro-
cess of run-time registration, ACA Services registers
various information about the ayplici~tion, includ-
ing the identifier of the process in which the appli-
cation is executing, the owner of the process, and
the class- and inst;~nce-i~nique identifiers for the
application. As part of the registration, an applica-
tion can spec@ an abstract name by which it can
be located ant1 the routines to be called when an
ACA Services event arrives, e.g., when the server
is instructed to shut down or when a session ends.

Once registered with ACA Services, the applica-
tion must enter its event dispatching loop. Bec;~use
many applications have existing event tlisp;itching
mechanisms, ACA Services has been dcsigned for
easy integration with most mechanisms. ACA

Services provides this support by ;illowing the
application to clefine a routine called the event
notifier, which is called at signal level each time an
ACA Services event occurs. T'he event notifier roll-
tine places an event on the applications work
queue for the ACA Services event. Upon encounter-
ing the event, the application's event clispatcher
routine calls the ACAS-Dispatch routine Lo allow
ACA Services to dispatch the appropri;ite rnethotl or
management routine for the event. ii description of
how ACA Services dispatches operation requests
follows.

Application Servers
When the application to be integrated does not
have a user interface but provitles :I callahle inter-
face, integration is best accon~plishetl by creating
an application server. Consitlerecl a form of encap-
sulation, an application server provides ;I consis-
tent programming interface to the applic;~tion. An
application server provides jacket routines that use
the application's callable interface, Iiiding the
actual details of this interface. This technique is ;~lso
used to create applications that li;~ve a cle:t~i separ;l-
tion of presentation and h~nctions.

Applications that implement persistent data
stores, such as databases, code managers, ;inti

repositories, are prime cantlidates for this style of
integration. By using an application server to
access persistent data stores, 21 requesting appli-
cation need not know how the dat;~ store is

Digilal Terhrriccrl Jorrrtrrrl Ud. 5 No. 2 .Swing 19% 9.3

AppLication Control

implemented and which implement;ition is to be
used. l'his technique promotes the reuse of existing,
filnctions contained in the environment regirdless
of the actual implementation of the fi~nction.
1)igital's Cocle Managenlent System (I)E<:/CMS) and
<:DIl/Repository software are examples of applica-
tions that have been integrated i~sing the appli-
cation server technique. Figure 7 illustrates the
typical structure of the various components
involvetl in this style of integration.

As shown in Figure 7, the integration process
involves the following steps. (1) An invoke from the
client application of the message "lieserve" on the
object "foo.cn goes through the resolution cotle and
(2) out the transport to the server ;il?l>lic;ition. l'his
m;Iy result in starting the scrver ;~pplication, if no
server was available to service the request. (3) The
server application's main routine c;~lls the event
dispatcher and waits for work to arrive, whcri the
server is started. (4) When the "Kcserve" message
;~rrives on the transport, the tr:lnsport notifies the
server application, (5) causing the event tlispatcher
to dispatch the "Reserve" message by calling the
method dispatcher routine. (6) The method dis-
patcher routine calls the appropriate metllod inter-
face routine. (7) The method interface routine cloes
;my work required to call the appropri;~te callable
interface routine. (8) When the c;illable interface
routine returns control to the method interface
routine, the routine can perform any worI< neces-
sary before (9) returning control to the method
tlispatcher routine. (10) The method dispatcher
routine then puts any arguments to he returned in

the proper format and sends this information to the
transport, which acti~ally sends the information
back to the client application.

Using the I)E<:/(:MS ;ipplication server as an esam-
ple, the software developer must create a main rou-
tine to (1) perform any setup required to use the
call;~ble intcrf;rce ant1 (2) register the existence of
the server with)\(:A Services. Registration includcs
specifying the method dispatcher routine, which is
generateti by)\<:A Services, so that the appropriate
method routine will be dispatchetl for the message
received.

A mcthod routjne exists for each operation that
the server is capable of performing. The set of
method routines is analogous to the operating sys-
tem script for compilation ilsed to explain applica-
tion encapsulation later in this section. Because the
DEC/<:MS application server is not an operating sys-
tem script, mess:lge arguments are passecl into the
method routine directly. As mentioned earlier in
the section <:RISE Integration in Object-oriented
Terms, the object on which the current operation is
to be performed is available to the method routine
through the use of the invocation context struc-
ture. 11lforrn;ition about the object, such as its cl:lss,
name, ancl generation, can be obtained by calling
the R-\CAS-ParseInstanceHa~~~lle routine. The class
of the object can thcn be used to determine if the
object is an element ilntler version control, a collec-
tion, or a group.

The name of the object ancl its generation ;we
contained in the reference data field of the instance
handle that represents the object. Because each

APPLICATION PROCESS

CLIENT APPLICATION

DATA TYPEILIST CALLS ACAS~lnvokeMethod(Rese~e,foo.c)

RESOLUTION CODE
DATA TYPEILIST CODE

TRANSPORT

APPLICATION SERVER

MAIN ROUTING
INITIALIZATION CODE

EVENT DISPATCHER
I 4 (4)

+ (5) TRANSPORT I
4 (10)

t I

I (6)
METHOD DISPATCHER f (9)

I I

METHOD INTERFACE

CALLABLE INTERFACE

Fig~tre 7 nlock L) ~ L I ~ I Z I I ~ o f0 Code iLl~~izciget??el?t .S]lsle~~r AJ~~~liccrt ion Server

\#?I/ 5 No 2 .S/)ritrg 199.j Digital Tecbnic~il Jotirnal

CASE Integration Using ACA Services

different cocle management system has its own
representation of generation, it was necessary to
create a canonical form;~t to represent all imple-
mentations. Therefore, the method must convert
the canonical generation representation to a format
that is native to the implementation, i.e., DEC/CMS
specific. 111 adclition, ;lny method that returns a ref-
erence to a versioned object must convert the
native generation representation to its canonical
format. Table 1 shows how an object reference can
be mapped between its c;lnonical and DEC/CMS-
specific formats.

Once the necessary information aboitt the object
has been retrieved and converted to a format native
to the implementation, the method can call to the
appropriate callable interface routine, possibly
based on the object's data class. Once the call com-
pletes, the method milst convert any objects to be
returnetl into a canonical format, at which point
the nlethod can return the statils of the operation
and output arguments.

Application Encapsulation
Encapsulation, the simplest integration technique,
is appropriate for applic:ltions that do not have a
call;~ble interface or in cases where no source code
is available. Compilers are ;In itleal cantlidate for
this style of integration, because they perform syn-
chronoiis operations. Encapsulation of compilers
providcs a consistent programming interface to any
compiler that is integrated into the environment,
regartllcss of the qualifiers ilsecl to specify particu-
lar compilation options. This technique can also be
used to provide a generic compile command that is
platform independent. Encapsulation of a compiler
is best accomplished through the use of an operat-
ing system script. Figure 8 illustrates an example of
an encapsulated compiler.

Table 1 Converting Generation
Representations

Native Representation
Canonical Object Object
Format Name Generation

/DEBUG -
/NOOPT

SERVER

IF DBG = "TRUE"

DBG-QUAL = "/DEBUGN
ENDlF

CC 'PI 'DBG-QUAL

Figure 8 Example of an Encapsulated Compiler

The purpose of an operating system script for
compilation is to convert the generic compilation
qualifiers, which are passed as message arguments,
into the compiler-specific options. The /DEBUG
and /NOOPT qualifiers shown in Figure 8 are exam-
ples of generic compilation qualifiers. Many operat-
ing system scripting languages limit the number of
parameters that can be passed on the commantl
line. The compilation scripts avoid these limita-
tions by passing the name of the file to be com-
piled as the only command line parameter, as
shown in the command @SYS$LIBRARY:COILIPILE.CO~L~
%INSTANCE() in Figure 8. ACA convenience com-
mands, such as APPWCONT GET ARGUMENT, are used
to retrieve and set the values of the message argu-
ments in the operating system script. When all the
switch values are gathered, the operating system
script converts the generic values into specific
qualifiers. Finally, the actual command line is con-
structed and executed. This same technique can
also be used to encapsulate linkers and any other
types of applications where no source code or
callable interface is available. When applications
provide a callable interface, even tighter integration
can be achieved by creating an application server.

Application Integration
Integration of applications goes beyond the inter-
faces that applications present to the environment;
it concerns how applications interact with one
another. Integration also takes into account the
policies used in an environment to allow a collec-
tion of applications to be grouped into a single
composite object. This section discusses concepts
such as an activity, locating an application within
an activity, context sharing, and the sharing of
applications across multiple activities.

Digitrrl Technicnl Jorrrrrnl Vol, 5 iVo. 2 .S/)ri~lg 139.j

Application Control

Activity Participation
Since more than one activity may be active at
any given time, an activity must be able to locate
the other applications participi~ting in the activ-
ity. Data-oriented environments provicle a means
to loosely couple the various data and applica-
tion objects into a single composite object. The
<:OHESION integrated environment refers to this
composite object as an activity The implementa-
tion of an activity differs depending upon the envi-
ronment: ATIS uses a persistent process; file
system-based environments generally use il direc-
tory hierarchy; and environments built on a private
data store can use a data file. In the COHESION envi-
ronment, an activity is represented as an ACA

Services context object that contains attributes that
reference a directory hierarchy. The context object
is used to set u p the execution environment in
which a set of applications will operate and to
locate other applications that are executing within
the activity.

Locating Activity Applications
The ability to locate an application that is executing
in an activity allows for reuse of the application by
other ;ipplications executing ill that sarne activity.
Such locating provides for better utilization of
applications and reduces the amount of context
that must be propagated from o n e application to
another. To locate an application within an activity,
an application must have registered its presence in
the activity. When registering with ACA Services,
the application must specify the activity name as
the value of the attribute A<:AS-SEItVEK-RE<;ISTRY.
The application must also register itself with the
event manager to allow centralized management of
the activity and to participate in the flow of work
within the activity

GISE applications determine if they are execut-
ing within an activity by checking for the existence
of the environment variable A C ? ' l V l n - N t ~ b l E . I f this
environment variable exists, its value is the activity
identifier. To allow an activity to extend beyond a
single host and to support different activities with
the sarne name, the activity is identified by a unique
identifier.

Sharing within Activities
Applications executing within an activity operate
in a conlmon context. ACA Services provitles a set
of mechanisms that can be used to provide
this common context. The environment variable

M\<:?'MT1'-N&\lE is defined each time a method
server is started in the C O H E S I O N environment. The
method server definition specifies as the value of
the start-up environment attribute, the names of
the context tables and attributes that are to be
defined as environment variables upon start-up.

Another m7ay of providing a common context
across an activity is to propagate context object
tables and attributes as implicit arguments to
method servers. Specifying this information ;IS

implicit argllments instructs ACA Services to propa-
gate these attributes to the context object of the
method server servicing the request.

The context object can also be used directly to
create a common context across an activity i.e., by
holtling information that needs to be shared. This
information can include references to directories,
preferences of applications, and default values.

Sburing between Activities
Reusing applications that are active within an activ-
ity reduces the overall system resources requiretl to
perform the activity. However, a problem occurs
when two or more activities are active at the same
time and require the same application. With the
addition of windowed interfaces and the need to
utilize other services, application sizes have greatly
increased. Consequently, it is often impractical to
expect a separate instance of an application to be
associated with each activity that is active.

In order for an application to be shared between
multiple activities, the application needs a means
by which to determine if a request is part of an
ongoing dialog with another application o r is the
beginning of a new clialog. These dialogs, called
"sessions:' represent a conversation between a pair
of al>plications. E;icli time a client application
makes a request to a new application server, a ses-
sion is established and an identifier is associated
with the session. ACA Services passes the session
identifier to the server application.

The management of sessions can be accom-
plished by using the session ID as a lookup key into
a list of structures that represent the active ses-
sions. When the server application locates the
structure associated with the session identifier, the
application can establish the appropriate context
for that session. In the example of DEC/CMS applica-
tion server, the structure would contain the handle
to the library associated with the session.

AC:A Services also notifies an application server
when a session is to be terminated between a client

WI. 5 /Vo. P SprYirg 199.3 Digital Technical Journal

CASE Inlegralion Using ACA Services

and a server application. Wl~en notified, the appli-
cation server determines the appropriate course of
action. Using the CMS example, the server releases
any cached information it has kept about the ses-
sion, closes the specific CiLlS library, and then frees
the library data block.

Environment Management
After defining application interfaces and integrat-
ing applications into an activit): CASE environment
tlevelol~ers must focus on the management of the
environment as a whole. This includes the manage-
ment of references to applications and data, the
transformation of object references into platform-
specific formats, and the flow of work within the
environment.

Handle Management
In the CASE environment, objects are the targets of
all operations. Sending a message to an object
recluires untlerstanding how to create and manage
references to the object. Since ACA Services does
not manage instances of objects, it uses references
to instances of objects. These references take the
form of instance and application handles, which
reference data and application objects, respec-
tively. Proper management of these handles leads to
more efficient use of application objects, thus
reducing the amount of network resources and
memory consumed by the application. Appropriate
handle management can also enhance performance
and guarantee predictable behavior.

Instalace Handles
The creation of an object reference is performed by
calling the i\Ct\S-CreateInstanceHatldle routine.
ACA Services (1) creates an instance handle from
the information passed as arguments to the routine,
(2) allocates memory to the handle and manages
this memor): and (3) sends a message to ;I storage
class, if one was specified.

To avoid creating numerous copies of a11 instance
handlc, each with its own memory, a cache
of objects should be used. This is especially
true in CASE environments that use the data-
oriented paradigm. Each object structure con-
tains pointers to both the previous and the next
object structure in the queue. The structure also
contains values for the location and reference
data fields that were passed as arguments to the
ACAS-Cre;~telnstanceHandle routine and, thus,

allows for the unique identification of an object in
the cache across multiple hosts. In addition to the
location and reference data, the structure contains
a pointer to the instance handle returned from the
call to the ACAS-CreateInstanceHandle routine.
Reuse of the instance handle saves the time
required to create the handle, including any over-
head associated with using storage classes. Reuse
also reduces the total amount of memory required.
However, instance handles are not the only handles
that require management; application handles need
to be managed as we1 I.

Application Handles
Application handles are references to appli-
cation objects. Each application handle can
represent one or more method servers. A method
server can generate a handle by calling the
ACAS-CreateApplicationHandle routine, or the
ACAS-InvokeMethod routine can return an applica-
tion handle as an output argument. As with
instance handles, application handles can be
passed as arguments to a message. Management of
application handles is similar to the management
of instance handles. Each entry in the cache of
application handles contains the location of the
application ancl the name of the class of appli-
cation. The entry also contains a pointer to the
application handle ant1 a count of the number of
outstanding references to the handle. Freeing an
application handle results in the termination of all
sessions between the client and any method
servers referenced by the handle; it also releases all
memory associated with the handle.

Each instance handle should be associated with a
corresponding application handle. This association
allows the application handle to be reused when
sending additional requests to the application con-
cerning the data object. An application handle asso-
ciated with a cache entry can be used to make the
request. Failure to find the application in the cache
could indicate that the appropriate invocation flag
should be used to obtain an application when call-
ing the KAS-InvokeMethod routine.

As described, proper handle management can
result in better performance, better resource uti-
lization, and predictable behavior within the envi-
ronment. However, handle management does not
deal with how to create an object reference that,
when presented to an application on a remote host,
is in a format native to that platform. For this capa-
bility, we must turn to storage classes.

Digital Trchriicrrl Jorrrrial Vol. 5 No. 2 Spring 133.5

Application Control

Data Transformations Using
Storage Classes
Distributed CASE environments, whether homoge-
neoils or heterogeneous, must concern themselves
with the representation of object references that
are shared among different app1ic;itions. File speci-
fications exempl~fy this problem. <;ivc.n multiple
hosts, it is unlikely that two hosts have tlie same
pat11 to a specified file, even if both hosts arc of
the same platform type. Consitler the scenario in
which Application A sencls the Edit message to tlie
file object $PR0]4: [I~RWECT,SR(:]SOl<7~(:. resulting
in a request ofApplication B to edit the contents of
tlie file. The problem becomes complicated if
Applici~tion B is executing on :I cli~ferent j7latform
type than Application A.

To solve the problem, the environment can uti-
lize the functionality provided I>y 1\<:i\ Services stor-
age classes. Storage classes provicle a nlechanism
for translating an object's reference clat;~ from one
file system representation to another. A solution
to the scenario described involves implementing a
set of methods that would be executed when the
object reference uses a storage class.

The SC-COHESION storage class is a CASE-specific
storage class, which is a refinement of the SC-FILE
storage cl;lss provided by ACI\ Services. As a refine-
ment, SC-COHESION inherits all the niess;lges definecl
on its parent storage class, including the messages
SetInstance and Getlnstance. 'I'lie methods for these
two messages provide an iniplementatioll for niap-
ping file system specifications from platform-
specific formats to platforrii-indepe~~tle~~t Pormats
and back again. The storage class methods do this by
utilizing device and directory information, called
tlirectory mappings, found in tlie context object.

The directory mappings stored in the context
object provide a means to associate a physically
sh;ired directory path with ;I net\vorl< j3ath name.
The network path name is ;I pl;~tform-indel~endetit
name that, when presented to a remote platform,
can be mapped into a format native to tlie platform
receiving the request. A network path name and its
mapping are stored as an attribute-value pair in the
134TFlNAME-IEGISTRY table of a context object.

The directory mapping fu~~ctionality allows ref-
erences to file objects to be passed between appli-
cations on different hosts in ;I way independent of
the platform. This same scheme can also be ilsed to
convert object references in object identifiers, such
ah ATIS element IDS for use with the <:I>L)/Repository
software. In the implementation for the file system,

the method ;~ssoci;itetl with the Setlllstancc mcs-
sage must determine the data class of the object ref-
erence, ;IS well as tr;~nsform the reference tlata into
its network format. The rletermination can be made
in a number of ways, the most common of which
is to base the cl;lss on the extension of the file.
Al.tbough not the most ilccurate method of deter-
mining the class, this approach does meet the needs
of many files.

Work. Flou~ Malzqerne~zt
ACA Services rn;!nagcs the v;lriol~s instances o f exe-
cuting applications Imt does not i~nclerst;lnd the
concept of an activity Therefore, managing the
applications within the activity requires the use of
an application th;it ~rnclerstnnds this concept. l ' h r
event manager, which acts as a central registry of
active applications ancl their associatetl activities,
can provide a s i~ i~p le form of work flow manage-
ment within the environment. However, the event
manager js used only in n limited capacity in the
COHESION integr;cted environment. In COI+ESION,
the event manager is notifietl each time an applica-
tion is st;lrtetl 0 1 - stopped in an acti~it)~. Thc applica-
tion provides ;in ;cpplication handle to itself, which
is used by the event manager to notify the applica-
tion of events of interest. The use of the event man-
ager removes the neetl h)r An application to forwarrl
certain messages, as a result of an event in the envi-
ronment, to ;1l1 applications with which it Ilas been
communicating. Removing the need to i-brward
messages redi~ces both the chances of loops form-
ing in a set of applications and any communication
deadlocks between ;ipplic;itions,

On registration, an application can express interest
in being notified ;ibout particular events. Events
;ire categorized into two c1;tsses: system events
and applic;ition events. System events affect the
overall oper;~tion of the erivironment. These events
inclucle shutdow~i and changcs in activities. All
applications in the (:OHESION environment are
notified of the system events for activity shuttlown,
iconifjcation, ;~nd deiconification. Application
events occur when the state of an ol3ject in the envi-
ronment changes. File modification or con~pletion
of a build step :Ire typic;il examples of application
events. Other applications in an activity c;ln use
these events for synchronization or as notifications
that cause a ch;inge in behaviot: Such notifications
have tradition;~lly been callecl triggers.

CASE I~~zte,~rw tior? IJsiizg ACA Serrtices

For example, in a simple build system such as the
make utility, events can create a work flow that
woultl ar~toniatically compile and link an applica-
tion when one rnoclule changes. If the build process
completes successfi~llp, the work flow i~utomati-
cally starts the clebugger to debug the newly built
executable file. If the build fails, the work flow
loatls the faulty module into a progsam editor and
positions the cursor to the line where the error
occurred.

Summary
ACA Services can be ilsed to resolve many problems
encounteretl in a distributetl, multiventlor environ-
ment. The object-oriented approach provitlecl by
ACA Services can aid in the construction of a CASE
environment that promotes the plug-and-play con-
cept across ;I number of different platforms and
network transports. ACA Services pro\iitles ;I means
of developing client-server applications and of
itbstracting the network dependencies away from
the developer. This feature, together with the use of
stor;lge c1;isses and data marshaling, can help to
exchange information in a heterogeneous environ-
ment. At the s;rme time, ACA Services can provide ;I

consistent programming interface to all compo-
nents in the system. The dynamic nature of ACA
Services allows new components to bc added to the
environment without the neetl to rebuild the entire
environment. The flexibility of ACA Services allows
its use to construct a CASE environment regartlless
of the integration paradigm used ancl while sup-
porting ;I number of interaction nlodels. ACA

Services provides the infrastructure necessary to
integrate the Large number of existing applications
into distributetl, heterogeneous environments.

Acknowledgments
The author wishes to thank Jackie Kasputy, Chip
Nylander, and Gayn Winters for their invaluable
insights and contributions on distributed, multi-
vendor CASE environments.

References

1. E. Yourdon, Mode7.n Strncttired Analysis (Engle-
wood Cliffs, Nj : Yourdon Press, 1989).

2. DEC ACA Serz>ices System Integrator and
Programmer's Guide (Maynard, IU: Digital
Equipment Corporation, Order No. AA-PQKMA-
'rE, 1992).

3. G. Booch, Object Oriented Design with Applica-
tions (Redwood City, CA: Benjamin/Cummings
Publishing Company, 1991).

4. R. Wirfs-Brock, B. Wilkerson, and L. Wiener,
Designing Object-Oriented Softzuare (Engle-
wood Cliffs, NI: Prentice-Hall, Inc., 1990).

5. DEC ACA Services Reference Manual (Maynard,
MA: Digital Equipment Corporaticn, Order No.
AA-PQKLA-TE, 1992).

6. J. Liu, "Future Direction for Evolution of lRDs
Services Interface,")<3~4/92-161, Proposed spec-
ification submitted to ANSI X3H4 and I S 0 IRDS,
1992.

Digilnl Techrricnl Jorrrtrrrl Val. 5 No 2 .(/,rtrtg 139.j 99

David Ascber I

DEC @aGlance-Integration of
Desktop Tools and Manufacturing
Process Information Systems

The DEC @aGlance architectt~re szlpports the intep-ation of mcr~zz@cttiringprocess
itzjorrnation systems with the analysis, scheduling, desgn, and ?lza~zage,nent tools
that are used to itnprove and manage prodz~ctiotz DEC @aGlatice softz~lare corn-
prises a set of run-time libraries, an application development tool kit, and exten-
sions to popular spreadsheet applicatzons, all ~nzplet?zentecl zuith Digital's
object-oriented Apl~l~cat io~~ Control Architecture (ACA) Services The tool kit helps
developers produce DEC @aGlance client and server applications that toill interop-
erate with other independently developed DEC @aGlance applications. Spreadsheet
extelazom (add-211s) to Lotus 1-2-3 for Wilzdolus and to ikf~crosoft Excel for Windozus
allow users to access real-tinze and historzcal datapo~n DbC @crGlance servers Wztlg
DEC @aGlance softulare, control engineers and other manuj~~cturingprocesspT.ofes-
sionals can ~~sefa!niliar desktop tools on a variety ofpla@rms and have simple,
interactiue, and transparent access to current andpast process datcr 211 theirplc~tzts

At a chemical plant that has been producing nylon
using the same process for over 35 years, the lead
control engineer told an interviewer that what he
likes about his job is that "it is totally different every
da)l."l To an outside observer, the operation of a
process plant, such as a refinery or paper plant,
appears to be an unchanging flow of materials
into a tightly controlled and repetitive process
that produces a continuous flow of unvarying
product-24 hours a da): 365 days ;I year. In reality,
the operation of these plants is kir more complex
and challenging, involving constant adjustment to
changing conditions, aging equipment, and varia-
tions in raw materials, as well 3s constant monitor-
ing for equipment malfunctions.

The operation of a large process plant involves
the functioning of numerous valves, switches,
pumps, other actuators, and sensors measuring and
control ling the levels, pressures, temperatures, and
flows of various materials through a complex series
of pipes, tubes, tanks, and vessels. Jn addition to
detecting and managing failures in these compo-
nents, a large proportion of the personnel in the
plant is involved in process ant1 product improve-
ment. The personal computer o r workstation
ant1 an array of sophisticated desktop tools allow

data to be analyzetl, visualizetl, manipulated, and
explored In ways that support creative problem
solving Getting timely information about the pro-
cess into the appropriate problem-solving tools is,
however, difficult. This paper begins with some
bacl<ground about manufacturing process infor-
mation systems and the need for access to system
data. The paper then describes the development of
DEC @aGlance software and the choice and use of
Application Control Architecture (ACA) Services to
solve the probleni of integrating independently
developetl applications in the manufacturing
space.'

Background
In large manufacturing facilities, the productioli
process is controlled through the use of advanced
automation systems. These systems may track thou-
sancls of temperatures, flows, pressures, and levels
and can drive hundreds of pumps, valves, ancl other
actuators. To implement control strategies, such
systems may compute large numbers of complex,
dynamic control algorithms. Usuall-): additional sys-
tems measure various physical properties of the
product, such ;IS color, weight, viscosity thickness,
and moisti~re content. Supervisory control systems

100 W>l. 5 I V ~ . -7 .S/>i-iizg /91)? Digital Technical Jourtral

DEC @aClance-Integralion oJDesktop Tools c~nd Manufc~cturing Process l~zforrricltion Systems

often coordinate parts of a complex process, ;IS
well as implement higher-level control and produc-
tion strategies and keep historical records of key
process variables.

The control of a large plant is i~sually imple-
mented through strategies that allon7 the control
problem to be divided into smaller parts, as illus-
trated in Figure 1. Each piece of the system is
responsible for the control of a subsystem (e.g.,
steam generation and distribution, or cooling flu-
ids), a part of the process (e.g., premixing, material
storage, or reaction), or an area of the plant (e.g.,
packaging line, product stream, or finished goods
management). Within each subsystem, there is typi-
cally a hierarchy of control. The lowest-level com-
ponents control activities that require responses
within less than a second to as much as one minute
(direct control). The next level of systems control
activities that require responses within less than
a few minutes (distributed control). Above this
level of response are systems that control activities
that may not change for long periods or that imple-
ment control algorithms that involve measurements
from more than one lower-level system (super-
visory control). At the plant level, additional

control systems may exist to implement control
algorithms that reflect changes in the markets for
products, market opportunities, and fluctuations in
raw material availability and composition, along
with the information about the process that is sup-
plied by the lower-level systems (high-level con-
trol). Scattered among these levels may be various
additional systems that schedule preventive main-
tenance, identLFy equipment failures, and advise on
process improvements-all based on information
about process from the other systems in the plant.

Distributed control systems include an operator
console that consists of multicolor displays, push
buttons, warning lights and buzzers, a touch screen
or trackball, and industrialized keyboards with as
many as a 36 special fi~nction keys. The displays
allow an operator to oversee all parts of the process
for which the operator is responsible. Typical dis-
plays show recent trends of key variables and mimic
diagrams showing the current state of the manufac-
turing equipment (e.g., valve positions and tank lev-
els) and of the material flowing through the
process. The keyboard and other input devices
allow the operator to select displays, request
reports, and moditj, control settings. Response to

I AnVAhlCFn I I INTELLIGENCE I HIGH-LEVEL
CONTROL

1 SYSTEMS
PROCESS I I

I I - - - - - - - - - - - - - - - - -

SUPERVISORY
CONTROL

HISTORICAL
PROCESS
DATABASE

DISTRIBUTED
CONTROL
SYSTEM

DISTRIBUTED
CONTROL
SYSTEM

I DIRECT
CONTROL

CONTROLLER CONTROLLER CONTROLLER

SENSORS AND
ACTUATORS

PUMP GAUGE VALVE

Figure 1 Typicul Levels of Control in a Process Plant

Digitnl Techtrical Jottnrnl M/ol .i iVo 2 Sprtiig 199.3 101

Application Control

problem or alarm conclitions ant1 modification of
the process to change the product are effectecl
through the console.

Process operators are responsible for maintain-
ing the routine operation of a plant. Operators use
the control system to change process parameters in
orcler to produce different mixes or variants of the
product, or to respond to an equipment failure by
rerouting material around nonoperational process
equipment.

'To perform their functions, manufacturing plant
production and engineering support personnel
(e.g., control engineers, process engineers, produc-
tion supervisors, product~on planners, mainte-
nance supervisors, and manufacti~ring engineers)
also need access to information in the control and
supervisory systems. These professionals regularly
access information containeel in multiple manufac-
turing systems and have an occasional interest in
particular measurements or parameters within
other parts of the process. The functions of these
manufacturing plant personnel include

Complex problem analysis ;inti solution.
Locating sources of product- 01- process variation
involves analyzing information from different
parts of the process that may be uncles the con-
trol of different automation systenis. Comparing
the flow that exits one part of the process
with the flow that then enters the subsequent
part, for example, could disclose a faulty flow
meter, a previously unknown temperature con-
trol problem, or a leak.

Product improvement. Improving product qual-
ity and consistency involves investigating how
the product is affected by existing variations
in the production process For ex;~mple, investi-
gation may involve the study of a process vari-
able that cannot be measurecl directly but can be
calculated from the values of other process vari-
ables. Examining sets of v;~ri;~bles over time and
exploring possible relationships may result in
discovering combinations of process variables
that y ielcl unexpected effects on product
attributes.

Process improvement. Improvements in process
yield and process reliability ancl reduction of
waste and hazardous by-proclucts may involve
the study of historical data values from the pro-
cess. Studying n~easurements obtained from
multiple control systems may also result in pro-
cess improvements.

Resource optimization. Usually, process plants
are capable of protlucing different grades of
procluct, as well as mixtures of end protlucts.
An oil refinery, for example, produces various
grades of fuel oil and also home heating and
lubricating oils, all from a single process. While
the operators adjust the equipment to control
the product mix, a process planner or produc-
tion manager determines the best production
schedule based on customer orders and the effi-
cient use of the process equipment.

Process information is available to operators
and engineers who are trained to work with the
various control and management systems in the
plant. Using proprietary tools for each system
allows reports to be generated and specific types
of analyses to be performed on the data contained
within each of these systems. However, extracting
the data from these systems to an engineer's desk-
top for analysis by generic tools, such as spread-
sheets and statistical analysis packages, is difficult
or even in~possible. Lack of console- ancl tool-
specific training is another obstacle to accessing
process infol-rn;~tion.

Manz@~cturi~zg Process I~zformation
Systems and Desktop Sj~stems:
Goals and Barriers
Production anel engineering support personnel
want to be able to use the desktop tools of their
choice to explore and analyze data from nunufi~c-
turing systems. Spreadsheets, simulation tools,
report generators, visualization tools, statistical
analysis tools, pl;~nning tools, charting tools, and
grapliic-generation tools have all become accepted
parts of the array of computer-aided techniques and
tools available to the contemporary knowledge
worker. The interactive, easy-to-use graphical user
interface, which ciin run on relatively inespensive
platforms under the complete control of the end
user, has not only encoilraged the wide use o f these
desktop tools but also enhanced their effectiveness.
These tools stimulate professionals to creatively
explore the character of large amounts of data and
thus support the tliscovery of previously unex-
pected patterns and relationships.

Tlie further an encl user's primary ti~nction is
froni production, the more likely it is that such a
user will want access to multiple systems. System
interfaces, which may differ widely and are gener-
ally oriented toward production use, discourage
users h-om making ad hoc inquiries into the system.

Vol. 5 JVO. 1 .Sj,t~itrg /9%j Digital Tech~ricnl Jorrr-rrnl

Ill!C' @crC;Lcr17ce-I17tegr~1tiotz oJDesklop Tools crtld I V ~ L I I ~ L @ ~ C ~ L L I ' ~ ~ ~ Pracess Infor7)zntion Sj~ste~rrs

Consequently, manufacturing system data may not
be easily ;iccessible to users of the many desktop
tools ;~v;iil;ible for such purposes as decision sup-
port, research, analysis, and simulation.

Totlay, the use of data from the manufacturing
process in pl:~nning, reporting, and managing the
operation of a plant is hampered by the difficulty in
accessing the data froni plant control and process
information systems. It is typical for a procluction
supervisor wlio ~ieetls tlata from a control system
to request the tlata from a process operator. Once
in hand, the tlat;~ is then manually entered into a
spreaclsheet or other clesktop tool for analysis. The
results of the analysis often require entering new
parameter values into the control system. This task
is typically performed by another person, trained
to use tlic control system, who transcribes the val-
ues froni a hzirtl copy o f the tool's output. The pro-
cess is time-consuming, costly, and error prone.
l'roblem-solving ;~ctivities are limited to those that
can justib the trouble and expense involved in siln-
ply accessing the data.

Existing Integmtion Efforts
The desire to use data froni the control systems
to analyze and improve the understanding ant1 con-
trol of the ni;inufacturing process has spawned
a variety of efili)rts since the late 1980s. This work
has attempted to ease the transfer of information
between computing systems ant1 control systems.
However, tlie resulting products and standards are
not oriented toward supporting ad hoc inquiries
antl, therefore, are not witlely usecl.

Many currently available manufacturing systems
may be co~inected to tlie plant network, but with-
out stand;~rtl higher-level interfaces, access to these
systems remains limitetl.5-- Through such network
connections, some manufiicturing systems pro-
vide limited ;iccess r o OpenVMS and/or DOS system

simplifies transcription but still requires that ;I

specialist extract the data using proprietary inter-
faces. In adtlition, the data may need to be con-
verted from string to numeric format to be usable
within a particular spreadsheet.

The International Organization for Standard-
ization standard Munz~fucturing Messaging Speci-
.ficcirioi1 (1~9506 o r MMS) addresses tlie problem
of data exchange between applications a ~ i d dedi-
cated manufacturing systems (referred to in the
stantlard as manufacturing devices) .Vl though
some manufacturers of programmable colltrollers
(that is, cleclicated control systems that are pri-
marily iised in discrete manufacturing industries)
offer klMS capabilities, the process industry manu-
facturers and their control system suppliers have
not witlely accepted MMS. Use of the standard
has been perceived as expensive, inefficient, ant1
oriented primarily toward the needs of discrete
manufactilring. A committee of the Instrument
Society of America (1s~) is developing a companion
standard (ISA 72.02) to use with MMS in communi-
cating with distributed co~i t ro l systems in process
manuhcturing.') An important aspect of this pro-
posed standard is a data moclel that describes the
organization and types of tlata in a distributed con-
trol system.

Requirements for Integration
1)igit;il designed the DE<: GaGlance architecture not
to be a generic application integration mechanism
but rather to support the integration of popular
desktop tools with manufacturing process informa-
tion systems An application that complies with the
architecti~re can be installed on any system within
a network, run, and immediately exchange data
with other compliant applications. Some key char-
acteristics of the environment that helped to tlrive
the architecture are

users. However, the access is typically restricted to
Multiple vendors. Although, MS-DOS person;~l

the use of unique, proprietary programming inter-
computers are the most popular desktop envi-

faces or to proprietary tools targeted at performing
ronnlent, VAXstation, Macintosh, ancl UNlX work-

a malii~facti~~-ing-reliited function, such as statistical
stations have a clear presence in particular

quality control. Usually, interfaces are supplied
tlepartments and in certain large customer sites.

only o n a specific operating system o r o n limited
versions o f a specifjc operating system. Multi],le software developers. The applications

In some systems, it is possible to extract a table of to be integrated are products of many compa-
data values into a file using a common representa- nies that build manufacturing systems and deslc-
tion and file format (such as Lotus Development top tools. The software development groups in
Corporation's WK 1) that can then be imported into these companies focus on core application and
a spreadsheet o n an IRM-compatible PC. This tecli- human interface issues rather than o n integra-
nicli~e obviates the neetl for hartl-copy output and tion issues.

Application Control

A large variety of desktop applications ancl user
interfaces. Each class of desktop application
has a different way of interacting with users.
Spreadsheets, for example, have very different
user interfaces from statistic;ll packages and data
vis~~alization packages. Some ;~pplications have
elaborate macro languages, whereas others are
almost entirely graphically driven.

Multiple types of large networks. In the typical
process manufacturing facility, large networks
are already in place. While many plants use
DECnet for their network, an increasing number
of plants are choosing to use the transmission
control protocol/internet protocol ('TCP/IP),
and some plan to migrate to Open Systems
Interconnection (OSI) networks (including
Digital's DECnet Phase V) from multiple vendors.
PC LANs are also becoming popular.

Conservative computing strategies. Large
manufacturing facilities cannot afford to halt
operation to make major changes in their
production-related computing systems ancl net-
works. Such facilities look to standards-based
products as a way of achieving stability and of
ensuring confidence in the longevity of a partic-
ular technology.

Architectural Issues
Simply stated, the problem that the DE<: @aGlance
architecture attempts to address is, how can a
set of existing applications running on heteroge-
neous platforms, distributed across a varicty of
networks, ;tnd developed by different vendors
(with only peripheral interest in integration) be
easily integrated? A good understanding of both
the nature of the applications involved and how entl
users would use them if they were integrated is
important for evaluating potential :inswcrs to the
question.

The applications that we considered integrating
can be divided into two groups: those that "own"
manufacturing data, i.e., the manuf~cturing control
systems, and those that are consumers of that clata,
i.e., the desktop tools. From the viewpoint of an
end user, some aspects of the relationship between
a desktop tool and a manufacturing control applica-
tion must be considered in order to accomplish
work goals. End users in this environment are
primarily concerned about the manufacturing
process, the equipment controlling the process,

and the state of materials within the process. These
users have little or no interest in such aspects
as network topologies and protocols, operating
systems, and byte ordering on different hardware
platforms.

Some major concerns of the end user that the
architecti~re shoulcl acltlress are

The identity of the manufacturing control sys-
tem. Generally, a large plant is controlled
through the use of several control systems, each
of which might control a part of the process,
such as refining or packaging, or an aspect of the
plant operation, such as steam distribution or
waste reprocessing. A particular data point
resides in a single manufacturing control system.
The user should be able to specdy precisely
which manufacturing system is to supply the
data values. The architect~lre should be capable
of establishing a relationship with the specific
application th:it owns the data of interest to the
user. The end user shoultl not have to specify
either the network node, the operating system,
or the hardw;~re platform on which the applica-
tion is running. Neither sllould the end user have
to specify the network con~rnunication proto-
cols requiretl.

The length of the relationship between the desk-
top tool and the rnani~facturing control applica-
tion. The relationsl~ip should be able to remain
active for multiple transactions to allow end
users to work interactively with desktop tools
to explore possibilities. For example, end users
may want to examine different data points or the
same data point over various time intervals.
Thus, usage of a desktop tool. could involve mul-
tiple requests for data from a manufacturing
control application. Establishing a relationship
between applications over a ~lrtm~ork is timr-
consuming, and therefore establishing long-
lived relationships would be advantageous. The
ability to continuously monitor a set of points
and have their values reported on a time or
change basis is another desirable feature that
would require the establishment of long-lived
relationships.

Multiple access to the applications. Applica-
tion re1;itionships should not be exclusive.
Each application should be able to have concur-
rent relationships with several partner applica-
tions. Each desktop tool may require data from

104 Vi. 5 N~J, 2 .S/)rirrg 1995 Digilal Techrrical Journal

DEC @aGlance-Integration oJDesktop R~ols and &Innufnct~irit.lgr Process Information Syslerns

several manufacturing systems, and conversely,
several users of desktop tools may need to
access the same control system simultaneously.
The relationships between desktop tools and
manufacturing control systems is illustrated in
Figure 2.

The data model. Applications should agree about
how to reference data and about data types.
Within the context of this environment, a rela-
tively simplc data model exists in the draft stan-
dard ISA 72.02. Data should always be converted
to types appropriate to the local system and to
the application. A spreadsheet user should not
have to manually convert strlngs into numeric
values.

The user interface. Application integration
should not require the use of any particular
desktop user interface, such as the X Window
System or DECwindows software, or even the
existence of a windowing system. Also, the user
interface of the manufacturing data application
should be of no concern to the desktop user.

Single Client-sewer Conneclion

- - - - - - - -
CLIENT I-:
ifi I-* SERVER $+

Multisewer Connection

i- j-+
Multiclient Connection

Figcu-e 2 Relationships betureen Desktop Tools
and Manzlfacturing Control Sj~sterns

Usage Model
To help us understand how a user might go about
employing the capabilities that we were consider-
ing, we developed a simple usage model. We based
the model on the scenario that an end user makes a
series of ad hoc inquiries into the state of a process.
We assumed that the user was familiar with the
manufacturing process but not necessarily expert
in all the details of the process. The user woultl
know, for example, what the major areas of the
plant were called ancl what h~nctioris they per-
formed but might not know the internal reference
identifier of every flow meter in each control sys-
tem. We focused on how the user of a spreadsheet
tool might reasonably expect to proceed to get data
into a spreadsheet and how services that we might
provide could aid in exploring the data.

The information within a manufacturing system
consists of the many parameters and measurements
that the system uses to monitor and control the pro-
cess. Generally, this data is organized into blocks,
each one related to a particular part of the process,
such as flow, level, temperature, or pressure. As the
typical data block in Figure 3 illustrates, every
block has a unique name or tag that can be used for
reference purposes.

In control systems, tag names are assigned as part
of the configuration. Large plants use a naming con-
vention to ensure the assignment of unique tag
names to the thousands of blocks spread through-
out the plant and over several control systems. In
addition to the tag, the block contains attributes
such as the parameters of the control algorithm,
measured input values, unit conversion algorithni
identifiers. The data model proposed by the ISA
72.02 committee describes seven types of blocks,
each with a standard set of attributes with associ-
ated names and data types.

BLOCK TYPE
TAG NAME
DESCRIPTOR
ANALOG PROCESS VALUE
ANALOG CURRENT VALUE
HI ALARM LIMIT
LO ALARM LIMIT
PROPORTIONAL
INTEGRAL
DERIVATIVE

I ENGINEERING UNIT

Figtire 3 A Tyl~ical Dcrtn Block in GI

M~rnrifc~ct iring Corztrol Systenz

Digital Techtrical Jorrrtral Vol. 5 A'o 2 S/>r,rrrcq I99.j 105

Application Control

This usage model allows a user to easily deter-
mine the tag names recognized by a piirticular
manufacturing system. To examine the data values
associated with a specific tag, the user needs to
know the valid attributes. (All blocks d o not have
the same attributes, e.g., an analog loop control
block has more attributes than a simple digital mon-
itoring block.) Once the tag names and their valid
attributes are known, the user can inquire about
current values as well as historical values.

The use of operating prototypes, inclutling simu-
lated servers and a simple spreadsheet, advanced
the development of the usage model. The proto-
types were shared with potential end users and
application developers at customer visits and inclus-
try trade shows. Feedback obtained from demon-
strations and discussions of the usage model helped
expand and refine the services.

Architecture
The DEC @aGlance architecture defines two kinds
of applications, a set of services for accessing data
in the control systems, ;I data specification model,
2nd some basic types of data. The ;ipplic;ition
classes are (1) manufacturing data servers and
(2) clients. Typical manufacturing data servers are
the manufacturing control system appliciitions.
Typical clients include desktop tools such as
spreadsheets and statistical analysis tools, as well as
production planning, procluction scheduling, and
other production management applications. An
application may be a client in relation to o n e appli-
cation and a server in relation to another.

A data point is specified to DE<: @aGlance appli-
cations by the name of a server, a tag name, and an
attribute name. A data point has a current value and
may also have historical values (if the nianufactur-
ing system has a historian capability). A current
value is the no st recent available value of a p;irame-
ter or measurement within the system. A historical
value is ;I value that the data point hxcl at some time
in the past. A historical value is specified by thc
name of a server, a tag name, an attribute name, and
the time associated with the value.

The services defined by the DE<: @aGl;lnce archi-
tecture fall into o n e of four function;~l categories:
configuration information, data value exchange,
monitoring, o r management. Each service defines
an operation that may be recluestecl by one applica-
tion of a partner application. The services defined
are not necessarily the same functions that an end
user requests.

Configurution I~zfornzation
One service is tlefinetl for requesting the tag names
that the serves finds in the control s)rstem's
database. An ;~dditional service returns a list of
attribute names that are defined for a specified t:lg
name o r a list of tag names.

Data Valz~e Exchange
Services are defined for reading and for writing
current and historical data point values. For current
values, services support reading o r writing either
a list or ;i table of data point values. A read o r write
list request specifies pairs of tag names ant1
attributes. A reatl or write request fol- a table of tlata
point values specifies a list of names and a list
of attributes. The t;ible of data points consists of
all tag names paired with their correspondi~lg
attributes. Both the list and the table reqi~ests can
be used to read o r write ;I single data point, collaps-
ing to either a list o r a table of o n e data point.

By using the IIEC GaCrlance services to get lists of
tag names, attribute names, and data point values.
and the name o f a server, an end user can generate
a wide range of acl Iioc queries without knowing
much about the control system in advance. A com-
nion data point attribute is the descriptor, which
characterizes the function of the data point, e .g . ,
south tank level. Tlii~s, it is a Fairly straiglitforwarcl
task to use DL:(: lance services to build ;I list of
tag names and tlescriptors that provide a basis for
further inquiries.

The services for historical data values are defined
to deal with tables of historical values for a list of
data points. Historical data service requests specify
a list of tag name ancl attribute pairs and a time
specification that is applied to all the clata points.
The time specificiition consists of a start time, a
time interv:~l, and the nillnber of intervals for which
values al-e to be returnecl.

iMonitoring
Monitoring is usefi~l for reacling the values o f ;I

set of data points at intervals in time o r when ;I sig-
nificant change in value occurs for any of the data
points. A graphical display program can run on
a desktop system ancl make minimal use of the net-
work and computing resources while maintaining
an accurate representation of what is occurring in
the manufacturing process. &lonitoring could also
be used to i~pclate ;I spreadsheet at regul;il- time
intervals or whenever a particular process variable
changes.

106 I . 5 I . 2 Spr-irr~ 199.3 Digilrrl Technical Jort rurrl

LIEC @~rGlc~~~ce- ln te ,~r~c~t ion of'l)esktop 7bols cl1zcl1Man~~fi~ctur*in.q Process Information S)~stems

No st;~ndnrd definitions exist f'or what consti-
tutes a significant change in value. Definitions s i~p-
ported for various systems include (a) detectiotl of
change outside of a specified range or "tle;td band,"
0)) c1i;lnge by more than some percentage of the
previously reported value, and (c) change by more
than some percenti~ge of a fived value. Therefore,
the service is defined to support monitoring and
reporting of changes on a time basis or on some
other basis that is specific to the data server appli-
cation. Whenever the requested monitor conclition
is fulfilled, the data server application uses a moni-
tor l~ptlate service to send the new d;tt;~ point val-
ues to the original client application. Since the
server initiates monitor update requests, the usual
relationship between the client and the server is
temporarily reversed.

Connection management services are provided to
establish a connection, to terminate a connection,
and to test a connection.

Implementation Considerations
Ilsing existing networking and application integra-
tion technologies to implement the DEC @aGlance
;trchitecture was important both in terms of
reclucing development efforts and improving com-
1x1tibility with existing environments. Technol-
ogy used in the implementation had to provide
as many as possible of the capabilities described
in the architecture while imposing minimal restric-
tions o n the encl-user operating ant1 network
erlvirot~ments ancl on the developers of thc 21ppli-
cations. In atldition, it was desirable that the i~ntler-
lying technologies offer capabilities that coulcl

support future enhancements to the DE<: @%Glance
architecture.

The DEC OaGlance architecture allows an existing
desktop tool to be integrated with existing manu-
facturing control systems, as shown in Figure 4 . The
architecture effectively combines the fi~nctional
capabilities of the desktop tool for analysis, visual-
ization, computation, etc., with the capabilities of
the manufacturing control systetii for monitoring
and controlling a manuf;~cti~ring process. The incli-
vidual applications were, of course, originally
designed and written without any knowledge of
each other's existence. Therefore, to facilitate inte-
gration efforts, implementation of DEC @aGlance
software should loc;~lize ant1 minimize reqi~iretl
changes to the app1ic;ltions.

A network protocol such as DECnet, the transmis-
sion control protocol/internet protocol ('I'CP/IP), or
one of the local area network (LAN) protocols could
have provided the network services required
for DEC QaGlance's interapplication communica-
tions. However, this appro;~ch lacks a mechanism
for locating servers oti the network, requires
DEC QaGlance to support the multiple network
protocols that exist in the manufacturing environ-
ment, requires DEC @aGlance to include data type
conversion between applic;~tion platforms, and
necessitates the development of monitoring and
management tools unique to i>E(: QaGlance. A bet-
ter approach is to use an existing product that is
available on an appropriate set of platforms, sup-
ports an appropriate set o f networks, and already
solves these problems.

A remote procedure call (RI'<:) mechanism
appears to have many of the capabilities that
the DEC @aClance architecture requires. RPC

STATISTICAL OTHER
SPREADSHEETS ANALYSIS GRAPHICS (Al. AVS)

ULTRIWOSF
MS-DOS

ULTRINOSF
SUN OS

SUPERVISORY
SYSTEM

, ' "::".,
SYSTEM HISTORIAN SYSTEM

PROCESS DATA SERVERS

Figure 4 Intcgmtirzg Desktop Tools and Mrrn~ifacturing Systems

Digital Tecbrlical Jorlr?trr/ Cbl 5 I\'(> 2 . \ /)r i tr~ 199 i 107

Application Control

mechanisms provide for location of a partner or
server application, and they provide data type con-
version and reliable network services. The WC
model of application integration, however, is actu-
ally more appropriate for the distribution of a single
application across nlultiple systems in a network.
This use implies a simple, static rel;~tionship
between the parts of an application: one part is
always a client that requests the execution of a pro-
cedure, and the other part is always an RPC server
that executes the proceclure and returns the results.
In such a relationship, each request generates a sin-
gle response. This model woultl be poorly suited
for supporting the DEC QaGlance monitoring ser-
vice. When DEC @aGlance was being tlevelopetl, no
commercially available RPC implementation ran on
the key platforms, the OpenVMS and Microsoft
Wintlows environments. Furthern~ore, no one had
announced their intention to procllrce a portable
implementation that would be available on the
wide range of platforms that we considered impor-
tant for future versions of DEC @Glance software.

Digital's ACA Services was chosen as the basis
for implementing DEC @aGlance software beciluse
it implements an application integration model
that closely matches the requirements of the
DEC QaGlance environment. ACA Services supplies
many capabilities required of the integration mech-
anism including

Abstraction of functions from in~plementations

l'he ability to encapsulate existing applications

Location of partner applications on a variety of
networks

Est;~blishrnent and management of reliable, long-
lived communication links

l'he ability to easily add new applications to the
system

The ability to easily install new versions of exist-
ing applications in the system

The correct handling of data type conversions
between heterogeneous systems

Commercial availability of portable interfaces
on OpenVMS, Microsoft Windows, Macintosh,
and a wide variety of UNIX platforms from multi-
plc vendors

The class hierarchy capabilities of ACA Services
allow the creation of new combinations of appli-
cations integrated to provide new capabilities
without additional coding. Thus, a new class of

server cat1 be defined to offer the capabilities of
a DEC QaGlance data server as well as additional
capabilities. The older DEC @Glance servers would
actually provide the DEC @aGlance services while,
transparent to the client applications, the new
server woi~ltl m;~ke the new capabilities available.

ACA Services has been selected as a major com-
ponent of the Object Management Group's (OMG)

Object Request Broker, which in tun1 has been
selected as a part of the Open Software Founda-
tion's (OSF) Distributed Computing Environment
(DCE). ACA Services is designed to be inclependent
of the type of network that provides the interappli-
cation comniunications services and currently
works over both DECnet and TCP/IP networks, the
networks most commonly found in manufacturing
environments. Therefore, applications using ACA

Services need not be concerned about network
communications.

ACA Services is supportetl on the OpenVMs,
Microsoft Windows, Maciotosh, and SunOS operat-
ing systems, the most often used platforms in this
application space. In fact, ACA Services is the only
application integration mechanism currently avail-
able on all these platforms. Moreover, A(;A Services
supports the kind of asynchronous services
required by DE<: Wa<;l;~nce.

Although it provides many important compo-
nents of the required integration service, ACA

Services does not completely solve the integration
problem. ACA Services is a tool intended to be used
to integrate applications; it does not define the clat;~
model nor does it define the set of services that
applications are to provide. Application integrators
are expected to define (1) the classes of applica-
tions that provide sets of services, (2) the services,
ant1 (3) the meaning and type of data to be
exchanged by ;~pplications using the services.

DEC @aGlance SoJtwat-e:
The Tool Kit and Add-ins
As shown in the JIEC OaGlance component diagram
in Figure 5 , DEC: @iGlance software Llses ACA

Services as a b:~sic application integration facility.
Above ACA Services, 1)E<; @aGlance adds definitions
of a class of manul'acturing data server applications
(servers), a set of definitions of the services pro-
videel by the servers, ant1 definitions of the data ref-
erence motlel.

ACA Services provides a general capability to
integrate sets of: applications. DEC QaGlance soft-
ware provicles a set o f routines that are specifically

It)/. 5 No. 2 .S[wlrt.y 1993 Digilnl Technical Jo~irirnl

DEC @aGlance-Integration of Desktop Tools and Manufacturing Process Information Systems

I DESKTOP APPLICATION I - -----------------
CALLABLE INTERFACE

I
(SLOTS FOR DATA ACCESS ROUTINES)

nnun - IMPLEMENTATION

DEC QAGLANCE
CLIENT

CLIENT LINK TEMPLATE DEVELOPER'S KIT

ACA SERVICES

NETWORK TRANSPORT (DECNET, TCPIIP. ETC.)

1

NAS

ACA SERVICES

C CALLABLE INTERFACE - - - - - - - - - - - - - - - - - - -I
PROCESS DATA SOURCE

Figure 5 DEC @aGlu?zce Conz~!on.ents

designed to simplify the implementation of the set
of services that DE<: @aGlance supports. For server
applications, 1>T:(: QaGlance software supplies a set
of callback points, as well as callable routines for
declaring callb;rcks, filtering strings, and support-
ing monitoring activities. For client applications,
DEC @aGlance software supplies a set of cal.lable
routines for requesting each of the defined ser-
vices, as well as calIb;lck points in support of moni-
tor updates.

The DEC @aGlance server library also supports
a test connectivity capability usecl to verify that an
interapplication relationship can be established to
the server application. This capability simplifies
the diagnosis of problems encoi~nteretl during both
server development and client-server installation.

To reduce dependence irpon properly written
server code, the test connectivity capability oper-
ates entirely within the library. Thi~s, once a server
calls the DEC @a(;lance initialization routine, ancl
if the server is still running, this service should
function properly in response to requests from

DEC @aGlance clients. Proper functioning includes
verifying the installation and configuration of the
network and of the ACA Services ancl DEC @aGlance
run-time components of the systems on w-hich the
client and server applications reside.

Software add-ins, i.e., extensions, for two pop-
ular spreadsheet applications, Lotus 1-2-3 for
Windows ancl Microsoft Excel for Windows, are
also DEC @aGlance products. These add-ins allow
users of the spreadsheets to request data from man-
ufacturing data servers by means of the spread-
sheets' macro facilities. The add-ins provide a
dialog box to guide untrained users through the
process of constructing a DEC @aGlance macro.
Once built, a macro can be executed one or more
times, moclified if necessary, and saved in a work-
sheet for reuse at some other time.

Tool Kit
The tool kit was developed to encourage the rapid
and successfi~l development of DEC @Glance appli-
cations by third parties. Successful applications are

Digital Technical Jorcrnal Vo1. 5 No. 2 Spring 1993 109

Application Control

those that interoperate with other DE<: @aGlance
applici~tions upon delivery to a customel- site with
no adclitional coding, no application recompila-
tion, ant1 no application rebuilding.

The key components of the tool kit are

A I) E (: @aGlance client or server library

Example code

A<:A Services definition files for the DE<: @a<;lance
class ;ind methods

Simple test facilities

The I X < ; @aGlance Programmer's GuitleIo

The A(:A Services clefinition files contain the
information required to tlefine the manukicturing
data server class and the services that members of
the class support. Supplying the definitions in this
form ensures strict cotisisteilcy among all server
and client developers with regard to these tlefi-
nitions. The routines in the DEC @aGl;ince client
and server libraries use these definitions. 'I'lie
DEC @:~Gl;~nce libraries contain all the code required
to est;tblish and maintain ;In A<:A Services session.

Server Applic~itions
A server application built with the tool kit has three
major components: an initi;~lization section, the con-
trol system-specific section. and the DEC QaGlnnce
section. 'Ihe initialization section simply declares
the server's name to the DEC @aGlance application,
declares a set of callback points, and enters a dis-
patch loop. The server name is the name that client
applicittions can use to interact with this server.
The callback points are thc cotle entry points to
which OEC @aGlance clislxitches in response to tlle
receipt of service requests from the client applica-
tions. For a server, callback points exist for the fol-
lowing services:

Get a list of tag names

Get a list of attribute nalnes

Get a list of data point values

Get a titble of data point values

Put a list of data point values

Put a table of clata point values

Get ;I table of historic;~l values

Put a list of historical values

Register a monitor request

Cancel a monitor request

Initiate a session

Terminate a session

Execute a server-specific request

Terminate the server

The control system-specific section consists of
code motlules that execute calls to the control sys-
tem application programming interface (MI). These
modules have to convert piuameters to ancl from
the 1,E<: @aGlance format :~nd the control system-
specific format. The entry point of each module is
declared as a callback point during initialization.

In addition, callable routines are provided for
sencling monitor updates ;u~cl for session manage-
ment. The DEC @aGlance section of the server is
containecl entirely within a library of callable
server routines. This section handles all i n t e r ~ c -
tions with A(:A Services, inclutling server rcgistra-
tion ant1 session man;igcnient. It also liantlles the
dispatch of incoming rcquests to the callback rou-
tines and ;I number of housekeeping tasks for
which each server developer would otherwise
have to tlevelop ant1 implement solutions. The
DL(: Oa(;lance section also resl?onds to test con-
nectivity requests.

Almost all vendors of m:inufacturing systems
have applications that execute calls to the control
system ~1'1, but such ;ipl?lications are typic;~lly
clriven off a command 1angu;tge or menu interface.
Conversion of these applications to a DEC QaGlance
server is relatively edsy; some vendors have created
a simple I>EC QaGlance server in as little time as
one day

Client Applications
The typical DEC @aGlance client application is built
on an cxisting desktop tool. Desktop tools provide
a user interface for perforining some clilss of
generic function such as decision support , statisti-
cal ;tnalysis, quality control. o r production schetlul-
ing. Other types of applications that could make
use of process data, such as report generators,
batch schetlulers, and ni;tintenance tracking sys-
tems, can also provide the basis of DE<: @aGlance
client applications. Adding DE(: @aGlance s i ~ p p o r t
to an existing tool allows the user to treat tlata from
DEC: OaGlance n~ ; inuf i~c t~~r ing data servers like data
entered manually or from other data sources.

A I)E<: QaGlance client application incorporates
the I)E<: glance client routine library, which

IIEC his glance-I~ztegmtion of Desktop Tools and Manufacturing Process Information Systems

provides call;~ble routines for initialization and for
each of the following DEC Q1:a<;l;unce services:

Get a list of tag names

Get a list of xttribute names

Get a list of data point values

Get a table of data point values

Put a List of tl;~ta point values

Put a table o f data point values

Get a table of historical values

Put a list of historicalvalues

Initiate a monitor request

Cancel a monitor request

Initiate a session

Terminate a session

Execute a server-specific request

Terminate the server

Terminate the client

In addition, support routines help monitor uptlates.
To support the IIEC OaGlance monitoring capa-

bility, a client ;~pplication milst have some server
characteristics. Once a monitoring request has
been initiated, the server issues monitor update
requests when the monitoring condition is satis-
fied. The monitor update requests are received by
the client application using the same callback
mechanism that the server uses when servicing
client requests.

A typical client calls the DEC OaGlance initializa-
tion routine and then continues to perform its nor-
mal functions. When a DEC OaCilance service is
requested through the user interface or other

mechanism, the application simply formats the
request and calls the appropriate DEC @aGlance
service request routine. Upon completion of the
routine, status (and if requested, data) is returned
from the server application. If data is returned that
is to be fi~rtller processed by the client application,
the application moves the data to its workspace in
preparation for additional processing.

DEC @aGlunce Lotus 1-2-3 for
Windows and Mimosoft Excel Add-ins
Whereas most manufacturing control systems pro-
vide a callable library that allows the tlevelopment
of applications that access the data in the system,
some desktop tool applications have mechanisms
that allow for extension of their capabilities in the
field. Spreadsheet applications such as Lotus 1-2-3
and Microsoft Excel support the use of add-in motl-
ules to add external fi~nctions and external macro
capabilities. Add-ins for these two spreadsheets are
available as DEC OaGlance software products.

With the add-ins, spreadsheet users can access
most DEC @aGlance services and thus can

Fill a range of cells with a list of tag names from
a server

Fill a range of cells with a list of attribute names
associated with a range of tag names in a server

Fill a range of cells with a list of data point values

Fill a range of cells with a table of data point
values, as shown in Figure 6

Write a list of data point values to a server

Write a table of data point values to a server

Fill a range of cells with a table of historical
values for a specific time interval

Write a list of historical values

Figure 6 A Table of D~ilzl Point Values in a Spreadsheet

1

2

3

4

5

6

Digital Technical Jour~zal Vol. 5 IVO. 2 Spring 1993

A

UNIT41

TIC001

LlCOOl

FlOOl

FRC005

TRC085

B

APV

134.7

65.3

185.8

65.6

145.4

C

ASP

140.0

50.0

-

50 0

145.0

D

ALMST

-

HIGH

RATE +

HlGH HlGH

NONE

E

DESC

FEED TEMP

FEED LEVEL

FEED RATE

REFLUX RATE

REFLUX TEMP

Application Control

Tlie interface for the add-ins was designed to sup-
port acl hoc inquiries A di;rlog box guides the end
user through the process of supplying the approp-
riate parameters for a selected function. Where
appropriate, defaults are suggested based upon the
previous inquiry.

Summary
DEC @aGlance software has been specifically
designed to make it easy for users of desktop tools
to access, explore, anel analyze clata from dis-
tributed control systems, supervisory control sys-
tems, anel other common systems uscd to run
manufacturing processes. An analysis of tlie infor-
mation environment and the ways in which end
users want to access the data led to tlie refinement
of the architectural requirements. Tlie analysis also
lee1 to the clecision to use ACA Services as the appro-
priate mechanism for integrating desktop and man-
ufacturing control applications. The creation of a
usage model and rapid deployment of prototypes
were instrumental in the analysis. To promote
widespre;id availability of plug-compatible appli-
cations that use DE(: @aGl;ince, a developer's tool
kit was created. Tlie tool kit contains 1ibr:lries of
DEC @a<;I;lnce routines that both simplify ant1
encolrrage proper ant! consistent usage of A(:A

Services to integrate DE<; @Glance applications.
I)E<: @aGlance add-ins for the popular spread-

sheet programs Lotus 1-2-3 for Winclows and
Microsoft Excel for Windows were developed also.
With tlie adcl-in, ilsers can interactively explore
data in plant manufacturing control systems from
within a familiar spreaclsheet, as well as write
reusable worksheet macros for performing
repeated tasks like report generation.

The author gratefi~lly acknowledges the contribu-
tions of the members of the DEC @aGlance clevelop-
metit team: Judie Dow, Bob Harrison, Nick miller,
Ramcsh Stvaminathan, Patrick Taber, and the leatl
developer, Charlie l'rageser. I would also like to
thank Steve Dawson, for introducing our group to
the problem and gener:rlly eclucating m e about the
process ni:inirfacturing environnient; Chuck Kukla,
for introducing me to his research o n how people
work in m;~nuf;lcturing and for his work with CLIS-

tomcrs ;lnd control vendors that helpeel lead to
the design of the product; J i m Thompson, for
pushing and pulling all the strings that it took at
e w r y stage of tlie effort to bring the concept to

a marketable product; ancl Mike Renzullo and Alan
Ewald of the ACA Services Development Group, for
their sirpport.

References

I. This q i~ota t ion was taken from the transcript
of an interview conducted by C Kukla et a].,
who have published the results of t l ie~r stirdy
in "Usability Turning Technology into Tools,"
Designirzg Effectiue Systems: A Tool Approach,
P Atller ancl T Winograd, eds (New York, NY

Oxford University Press, 1992).

2. L)EC ACA Seruices Sj~stem Integrator and
Prr)gmnzmer's Guide (Maynard, MA: Digital
Equipment Corpor;ltion, Order No. AA-l 'Fn lA-

'TE, 1992).

3. (;iW50N (her Mc~nual, Ortler No. <:&Ill-320
(Phoenix, AZ: Honeywell Industrial Controls
ancl Automation, 1991).

4. Corrzp~~ter/Hig/~z~~~!y Interface l'ackcrge
(CIYIP) User Guide, Part No. D001093X012
(Marshalltown, LA: Fisher Controls Interna-
t~onal , Inc., 1987).

5. AIiM Connectiz~ity Softr.i,nre User's Manual
(Houston, TX: W K. Biles and Associates, Inc.,
1992).

6. S/2 SCADA Sjlsten? Description, Document
No. SD2.0001 (Dallas, TX: Texas Instruments,
lnclustrial Systems Division, 1988).

7. PI 5j)stenz Plant In for~~zat ion System Ticloni-
cal Overviezi~ (San Leantlro, CA: Oil Systems,
Inc., 1930).

8. Manufacturing messaging Specification,
ISO/IEC 9506 (Gencv;~: 1nternation;il Organiza-
tion for Stantlarclization/Internation:~l Elec-
trochemical Commission, 1990).

9. hfcttz~~ f~lcturing Messcrgi~.zg Specification:
C o ~ n p n i o n Standurd fir Process Control,
ISA 72.02 (Research Triangle Park, N<:: Instru-
ment Society of America, 1993).

10. DfiC @nGLct~zce Prqq~c17nmer's G r ~ i ~ l e (May-
narcl, IMA: Digital Equipment Corporation,
Order No. AA-PQB8A-TK, 1992).

1 5 0 2 S ~ I ' I I I , ~ /9%I Digital Tecblcicnl Jorrrtrnl

ISSN 0898-901X

I I
I ..
l l

I I .

. a .

I I .

m a .

I m .

m . .

I ..
m a .

m I .

. . a . . m

. . a . . a

. . m

Prrnted In U S A EY-P')(;+E-DP/YI 08 02 17 O Copyrighr 8 D~yltdi Equ~p~nenr Corporar~on A l l Rlghts Rescrved

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Video Rendering
	Software Motion Pictures
	Digital Audio Compression
	The Megadoc Image Document Management System
	The Design of Multimedia Object Support in DEC Rdb
	DECspin: A Networked Desktop Videoconferencing Application
	LAN Addressing for Digital Video Data
	CASE Integration Using ACA Services
	DEC @aGlance - Integration of Desktop Tools and Manufacturing Process Information Systems
	Back cover

