
RAID A w a y Controllers
Workflvw Models
PC LAN a n d System Management Tools

Digital Technical Journal
Digital Equipment Corporation

Cover Design
Our cover design is inspired by a system man-
agement topic in this issue. ManageWORKS
software is a system and network manage-
ment tool thatpresents an object-oriented,
graphical view of a heterogeneous LAN envi-
ronment. The multicolor circles on the cover
represent the diverse objects, or entities, on
the networks among which a system adminis-
trator "navigates" using the integrated com-
ponents of the tool.

The cover was designed by Lucinda O'Neill
and Joe Pozerycki, Jr, of Digital's Design
Group.

Editorial
Jane C. Blake, Managing Editor
Kathleen M. Stetson, Editor
Helen L. Patterson, Editor

Advisory Board
Samuel H. Fuller, Chairman
Richard W Beane
Donald 2. Harbert

Circulation William R. Hawe

Catherine M. Phillips, Administrator RichardJ. Hollingsworth

Dorothea B. Cassady, Secretary Richard E Lary
Alan G. Nemeth

Production Jean A. Proulx
Terri Autieri, Production Editor Robert M. Supnik
Anne S. Katzeff, Typographer Gayn B. Winters
Peter R. Woodbury, Illustrator

The Digital Technical Journal is a refereed journal published quarterly by Digital
Equipment Corporation, 30 Porter Road LJ02/D10, Littleton, Massachusetts 01460.
Subscriptions to the Journal are $40.00 (non-U.S. $60) for four issues and $75.00
(non-U.S. $115) for eight issues and must be prepaid in U.S. funds. University and
college professors and Ph.D. students in the electrical engineering and computer
science fields receive complimentary subscriptions upon request. Orders, inquiries,
and address changes should be sent to the Digital Technical Journal at the published-
by address. Inquiries can also be sent electronically to dtj@digital.com. Single copies
and back issues are available for $16.00 each by calling DECdirect at 1-800-DIGITAL
(1-800-344-4825). Recent back issues of the Journal are also available on the Internet
at http://www.digital.com/info/DTJ/home.html. Complete Digital Internet listings can
be obtained by sending an electronic mail message to info@digital.com.

Digital employees may order subscriptions through Readers Choice by entering VTX
PROFILE at the system prompt.

Comments on the content of any paper are welcomed and may be sent to the managing
editor at the published-by or network address.

Copyright O 1995 Digital Equipment Corporation. Copying without fee is permitted
provided that such copies are made for use in educational institutions by faculty mem-
bers and are not distributed for commercial advantage. Abstracting with credit of
Digital Equipment Corporation's authorship is permitted. All rights reserved.

The information in the Journal is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation or by the companies
herein represented. Digital Equipment Corporation assumes no responsibility for any
errors that may appear in the Journal.

ISSN 0898-901X

Documentation Number EY-T118E-TJ

The following are trademarks of Digital Equipment Corporation: AXE CI, DEC, DEC OSF/l,
DECmcc, DECmodel, DECnet, DECwindows, Digital, the DIGITAL logo, HSC, HSCSO,
HSC60, HSC70, HSC90, HSJ, HSZ, Infoserver, KDM, ManageWORKS, ObjectFlow, OpenVMS,
PATHWORKS POLYCENTER, Storageworks, ULTRIX, VAX, VAXcluster, VAXstation, VMS,
and VMScluster.

Apple and Appleshare are registered trademarks of Apple Computer, Inc.

dBase N is a registered trademark of Borland International, Inc.

Hewlett-Packard is a registered trademark of Hewlett-Packard Company

i960 is a trademark of Intel Corporation.

IBM and NetView are registered trademarks of International Business Machines
Corporation.

Knowledge Craft is a registered trademark of Carnegie Group, Inc.

Microsoft and Visual C++ are registered trademarks and Windows and Windows NT
are trademarks of Microsoft Corporation.

NFS is a registered trademark of Sun Microsystems, Inc.

NetWare and Novell are registered trademarks of Novell, Inc.

OSF/l is a registered trademark of the Open Software Foundation, Inc.

Sun Microsystems is a registered trademark of Sun Microsystems, Inc.

UNM is a registered trademark in the United States and other countries, licensed
exclusively by X/Open Company Ltd.

X Window System is a trademark of the Massachusetts Institute of Technology.

Book production was done by Quantic Communications, Inc.

I Contents

RAW Array Controllers

5 The Architecture and Design of HS-series
Storageworks Array Controllers
Stephen J. Sicola

Workflow Models

26 Policy Resolution in Work* Management Sys tem
Christoph J. Bugler

50 The Design of DECmodelfor Windows
Stewart \! Hoover and Gar). L. Kratkiewicz

PC LAN and System Management Tools

63 The Design of ManageWORKS: A User
Interface Framework
Dennis G. Giokas and John C. Rokicki

75 The Structure of the OpenVMS Management Station
James E . Johnson

89 Autotnatic, Network-directed Operatirtg System
SoBware Upgrades: A Platform-independent Approach
John R. Lawson, Jr.

I Editor's Introduction

Jane C. Blake
~V~in~ ig ing Editor

Three computing topics ;Ire presentetl in this issue
of the Journcll: a storage array controller for open
system environments, workflow architectures ;inel
tools, and PC and IAN system management proclucts.

'I'he opening paper, by Steve Sicola. describes
Digital's new HS series of Storageworks array con-
trollers. Designed for open systems, the control-
lers interface to host computers by means of the
industry-standard SCSI-2 interconnect, as well as
Digital's C1 ant1 DSSI host interconnects. Equ;illy
important to designers ;IS openness were controller
availability ant1 performance. Innovative fe:eati~res
were introducetl, i~~clucling clual-retlu~~tlant con-
trollers and Parity RtSII) firmware to ensure high
availability, ant1 a write-back cache that significantly
improves performance. The paper concludes witli
a clescription of the common controller processing
core for the SCSI, CI, ;lncl I>SSI controllervariants.

Workflow is the subject of two papers witli dif-
fering perspectives. <:Iiristopli Bugler opens his
paper with introductory definitions ancl implica-
tions of workflow concepts. He argues that a work-
flow that uses roles for task ;Issignment is limited.
especially in large. international enterprises. He
states that by adding the dimension of organiza-
tional tlependencies for task assignment a comples
workflow is more precisely expressed. Using the
example of a travel expense reimbursement work-
flow, Christoph shows how tlie Policy Resolution
Architecture tlesign principles support enterprise-
level workflow tleployment-reusabilit): security,
generality, dynamics, ant1 distribution. He also dis-
cusses the Policy Definition Language that formally
describes workflow elements.

A second paper about workflow presents a tool,
called DECmodel for Wintiows, for the development
of business process nioclels ;11id their graphical
presentation. Stew Hoover and Gary Kratkiewicz

explain the reasoning behind the creation of a pre-
sentation layer it1 DE<;motlel th;~t provicles a graphi-
cal view of the business process while hitling the
technical cletails of the moclel. The authors also
cover implementation details, including the deci-
sions to move from the original I.1SI' etivironment to
;I <:++ programming environment and to imple-
ment the knowletlge base for I>E<;model in RO<:K,

a frame-basecl knowleclge representation.
We then shift the focus to lManagrWORKS and

['OIS<:ENTER tools thxt h;~ve been clevelopetl to
simplify tlie increasingly complic;itetl job of systeni
management. The first of three papers tlescribes
the tlevelopment of the ManageWORKS IVorkgroup
Administrator software. Dennis <;iokas ancl John
Rokicki tliscuss the tlesign principles adopted for
tliis product that enables system ant1 network man-
agement of heterogeneous IANs from a single PC:
running >licrosoft Wintlows. Key design elements
are plug-in, c~~stomizable moclules for system
navigation ancl maniigement, ant1 the user inter-
kite framework, which controls the flow between
modules. The authors offer sce~larios to illustrate
interactions between components.

Managing OpenVMS systems fro~n a PC running
the Microsoft Windows operating system can be
accomplished with the OpcnViMS Management
Stalion, of which ManageWOKKS is a key compo-
nent. Jim Johnson tlefines tlie need for tliis scalable
;ind secure client-server ~oo1 in OpenVMS envi-
ronments, which can be clusterecl, distributed,
exp;eanded, and networked estetisively. After a dis-
cussion of design alternatives, Jim tlescribes the
firnctions of the Station's client, communication.
;in<\ server components.

The final paper is about ;in initial s)~stem lo;ltl
(ISL) capability for ;l~ito~natic, network-tlirectetl.
operating systeni software upgr;ides. john Lawson
reviews goals for the POLYCENTER Softw'ire Distri-
bution layered product, compares the POLYCENTER
IsL process with the OpenVMS ISl. process. and
steps through the requirements tor expanding the
I)OI.Y(:ENTER Software 1)istribution capability to
other platforms and operating systems.

Our next issue will celebrate the./o~~r~znl 's tenth
;uiniversary of publishing the technical acliieve-
ments of Digital's engineers and partners. The issue
will feature database technologies ant1 new Alpha
workstations and high-end server systems.

Biographies I

Christoph J. BMler Christoph Bufiler is a faculty member at the Technical
University of Darmstatlt, German): where he is pursuing a Ph.D. degree. His
research is ui workflow and organization modeling, with a focus on organizational
embedding of workflow management, and in architectures for enterprise-wide
deployment of workflow management systems. While at Digital from 1991 to 1994,
Christoph developed the Policy Resolution Archi tec t~~re and its prototype imple-
mentation. He holds an M.C.S. (1990) from the Teclulical University of Munich and
has pilblishetl many papers on workflow management and enterprise modeling.

Dennis G. Giokas Dennis Giokas is currently a senior associate with
Syn~metrix, Jnc. While at Digital from 1984 to 1995, he was a consulting engineer
in the PATIWORKS group. He co-led PATHWORKS V i . 0 and architected the user
interface ancl system management tools. He was also architect ancl manager for
the PC DECwindows program. Previously, Dennis worked at Arco Oil S; Gas ancl
The Foxboro Company cleveloping process control software. He holds a Bachelor
of Music from the University of M;~ssachusetts at Lowell, a Master of Music from
the New Englancl Conservatol-): ant1 an M.S.C.S. from Boston University

Stewart V. Hoover Employed at Digital Equipment Corporation between
1984 and 1994, Stew Hoover is currently an independent consultant specializing
in modeling and simulation. Before joining Digital. he was an associate professor
of industrial engineering and information systems at Northeastern University.
Stew contributetl to the clevelopn~ent of the UECalc-PLUS application, Statistical
Process Control Software (S13CS), and the DECwindows version of Symmocl. He
has written many papers ant1 ;irticles on simulation and is coauthor of
.Yi7ncllntio7z, A Probk7n-.Yoli~i~zg Approach, published by Addison-Wesley.

James E. Johnson A consulting software engineer, J i m Johnson has worketl
in the OpenVMS Engineering Group since joining Digital in 1984. He is currently
a member of the OpenVMS Engineering team in Scotland, where he is a technical
consultant for trans;rction processing ancl file services. His work has spannecl
several areas across OpenViLls, including RI\/lS, the DECdtm transaction services,
the port of OpenVMS to the Alpha ;~rchitecture, and OpenVMS system m;ln;ige-
ment. Jim holcls one piltent on commit protocol optiinizations. He is a member
of the t\C>l.

G a r y L. Kratkiewicz Gary Kratkiewicz is c~lrrently a scientist in the Intelli-
gent Systems RSrD Group at Bolt Beranek ancl Newman Inc. As a principal engi-
neer in Digital's DECmodel engineering group from 1991 to 1994, Gary
coordinated the architectlire ancl high-level clesign specifications, ancl dcvel-
oped the knowledge base, script engine, AI'L, anti severill user interface modules.
Earlier at Digital, lie developed an expert system for shipping and was project
leader for ;I knowleclge-based logistics system. (;;~ry liolcls an S.R.M.E. from ,\.LIT

ant1 ; I I ~ kI.S. in rn;lnufacturing systems engineering from Stanford University

John R. Lawson, Jr. John Lawson joinecl Digital in 1984. He has been a mem-
ber of the OpenVMS VAX Development Group and the I'OLYCENTER Software
Dis t r ib~~t ion 1)evelopment Group. His code exists in several layered products
ant1 in the OpenVMS VAX and OpenVMS AXP operating systems. He holds a R . M .

degree from the Eastman School of Music (1984) and a H.S. in software engineer-
ing from the University of Rochester (1986). He is currently pursuing an M.S. in
mathematics ancl computer science from the Color;~clo School of Mines. John has
a 1J.S. patent pending for a unique sorting algorithm.

John C. Rokicki John Rokicki, the project leader for ~M,lnage\VoRKS \Vorkgroup
Administrator. is a principal s o f t w ~ r e engineer within Digit;~l's Network
Operating Systems engineering org;lniz;ition. His prirn;~ry responsibility is the
design ;~ntl implementation of the base services of the Manage\VOlZKS product.
Before joining Digital in 1990, he was employed by I);it;~ General Corp. and
Sytron Inc. John holds a B.S. (1989) in computer science from Worcester
Pol).teclinic Institute.

S t e p h e n J. Sicola Consulting engineer Stephen Sicola is a member of the the
Array Controller Group in the Storage Business Unit. He is working o n the next
generation of controllers and was the technical leader for the current
Storageworks controller product set. In earlier work, Steve developed software
ant1 hardware for such products as the Ids<:, KlIM70, ancl atlvanced tlevelopment
controller projects. Steve joined Digital in 1979 ;~f ter receiving il B.S.E.E. from
Stanford University. He received an M.S.C.E. from the National Technological
University in 1992.

StephenJ Sicola I

The Architecture and Design
of HS-series Storageworks
Array Controllers

The HS series oj'StorageWorks ar.rajl co~ztr.ollers is a neul fami& of Digit~lprodticts
that irrclzides models for both open systems and sjatenzs that use Digital's propri-
etary bzlses. The HS-series controllers conzbine perfomance. ar~ailabilit~~, and relia-
bility in total storqe subsjate~n solutions that use i~zdustq~-standard storage
dezlices. The architecture and design of StorageWorks array cont1.01ler.s represents
GI balance between the rnarket requirements and the available technolog)! The
engineering trade-ofls led to an innovative design that incorporntes product fea-
tzires such cis a cl~i~il-active controller configuration, zi~rite-back cacl~ing~ Pa~ity
RAID technologj,, and SCSl-2 clevice handling

71'lie HS series of StorageWorks array controllers, a
new ;~ddition to Digital's storage subsystem family,
supports a11 open s)atems environment by ;~llowing
the ;rtt;rchment of industry-standard Small Computer
Systems Interface (SCSI-2) devices to the controller.'
Moreover, these controller protlucts yield high avail-
ability ant1 high performance. This paper describes
the architecture ant1 the design of the fISJ30, klS~40,
HSDSO, and HSZ40 StorageWorks array controllers.
These controllers interface to 110st computers by
means of existing Digital interconnects, i.e., the
Computer Interconnect (CI) and the Digital Storage
System Interconnect (DSSI), as well as a S<:S1-2 host
interconnect to VAX, Alpha, and most other com-
puters in the industry The paper documents the
design ant1 tlevelopmelit trade-offs and describes
the resulting controllers and their features.

Storageworks array controllers represent a sig-
nificant change from Digital's originill Hierarchical
Storage Controller (HSC) subsystem, the HS<:50 con-
troller, which was designed in tlie I;ite 1970s. ;~nd
also from other Digital controllers such as the
H S (: ~ O , HSC70, HSC90, ant1 KDM70 controllers. The
StorageWorl<s controllers discussetl in this paper
were tlesignecl to meet the following procluct goals:

I . Open systems capability The goals for open sys-
tems capability were to use industry-stalldard
storage devices attached to the controllers and
to use an industry-standard host interconnect for
one controller model. Using industry-standard

devices would provitle investment protection
for customers because they would not have to
change devices when a new controllerwas intro-
duced or when they changed controller modules
to use a different host interconnect. Industry-
standard devices would also reduce overall sub-
system cost because of the competitive nature of
the storage device industry. The long-term use of
both Digital and non-Digital devices was desired
to provide a wide variety of device choices for
customers. The use of an industry-standard host
interconnect woultl allow StorageWorks con-
trollers to be used with Digital and non-Digital
host computers, further expanding the open sys-
tems capability. The S(:SI-2 interconnect was cho-
sen as the device interface and the host interface
over other intlustry-stantlard interconnects for
cost and strategic reilsons.

2 High ;~vail;tbility. The goals for high av;~ilability
inclutletl both controller fault tolerance and
storage (disk configuration) fault tolerance.

Controller fault tolerance was achieved by tlevel-
oping a dual-redundant controller configuration
in combination with new StorageWorks enclo-
sures that provide reduntlant power supplies
ant1 cooling fans. The goal of the dual-redundant
configuration was to have the surviving con-
troller automatically assume control of the failed
controller's devices and provide I/O service to

Digital Tecbniral Jorirnnl Vil. 6 No. 4 Fall I994

RAID Array Controllers

them. As a side benefit, such a configuration
would provicle loatl balzincing of controller
resources across sharecl tlevice ports.

The storage fault-tolerance goal was to develop
firmware support for controller-based redundant
array of inexpensive clisks (IUll>).2 The initial
Parity M l n implementation incorporated the
best attributes of RAlD levels 3 ant1 5. The design
provided the basis for later implementations of
other forms of TWD technology notably mirror-
ing. Parity RhlD supports the goal of storage fault
tolerance by providing for continued 1/0 service
from an array of several tlisks in the event that
one disk fails. StorageWorks packaging that pro-
vides redundant power supplies ant1 cooling
should be combined with tlie Parity 1W111 tech-
nology to extend storage fault tolerance.

3. High performance. The goals for high perfor-
mance were to specify controller throughput
(the number of I/O oper;~tions per unit of time),
latency (responsiveness), ant1 data transfer rate
(controller bandwidth) for each of the three con-
troller platforms: CI. DSSI, ant1 S<:SI. The through-
put was specified in tlie m;~simurn number of
read and write requests executed per second.
The controllers had to speetl up the response
time for host I/O operations ant1 thus tleliver data
with lower commancl latency than the HSC con-
trollers. StorageWorks controllers h;id to achieve
the highest possible data transfer rate and were
to do so on a common platform.

The platform-specific controller throughput
goals were as follows. The initial goal for tlie C:1-
to-SCSI controller was 1.100 reatl requests per
second; tlie long-term goal was 1,500 to 1,700
read requests per second. The initial goal for the
I>SSI-to-SCSI controller was 800 reatl requests per
second; the long-term goal was 1,300 reacl
requests per second. The initii~l goal for the S<:SI-
to-s<SI controller was 1,400 reatl recpests per
second; tlie long-term goal was 2,000 reatl
requests per second. The controller throughput
for write operations was slightly lower.

?i, reduce latency, the controller h;~rtlw;~re and
firmware implemented controller I/(> request
caching. Designers initially decitletl to include
16 to 32 megabytes (MB) of cache memory on
a separate optional cache rnotlule. Read caching
was the beginning goal for the project; however,
write-back caching was added tluring product

tlevelopment ;IS ;I result of M I D technology
i11vestig;itions.

Another appro;lcIi to reduce latency was to
develop controller-basetl disk striping, i.e.,
implement the L ~ A [I) level 0 teclmolog~~.~ Specific
goals were to nchieve parallel access to all lUll>

level 0 array me~iibers for read and write operzl-
tions ant1 to stre;rmline firmware to incre~~se
RAID level 0 perforrn:ince.

The Parity ILiII> perforniance goal was to oIrer-
come the well-known weaknesses of h\L\rr> level
3 (i.e., poor tr~nsaction throughput) anti
level 5 (poor sni:~ll-write performance) ant1 to
approach Ri\lI> level 0 stripetl array performance
for both small and large read and write reqi~ests.~
A combination of harclware-assisted parity
computations and write-back caching helped
achieve this goal. Parity calcukations in 1iardw;lre
reduced firmware overlieatl to complete 1 ~ 1 1)
level 5 write operations. WI-ite-back caching
minimized the effects of the RAID level 5 sm:~ll-
write penalty? To meet tlie needs of customers
who require high data transfer rates with K~\I I> .

M I D level +style algorithms must be atltletl for
the Parity RAll) design.

A common controller processing core li;~tl to
be arcliitectetl ;~nd designed to meet the perfor-
mance neetls of : i l l tlie pJanned Stor~geWorks
co~itrollers (basetl on host interface capabili-
ties). The pl;itform had to esecute the same hlse
firmware, coilpli~ig new host interface firniw;ire
to tlie specific platforms. A common platform
was believed to ease protluct development :~ntl
to maximize reuse of firmware for tlie same
"look ant1 feel" in all protlucts.

Open Systems Capability
For StorageWorks controllers to enter the open sys-
tems market, protluct clesigners had to consicle~-
the following aspects of open systems in the con-
troller tlefinition: the use of industry-st;~ncl;~rd
device interconnects and industry-standard devicrs
attachecl to the controller, ant1 the use of industry-
standard and Digital host interconnects.

SCSI-2 Device Interconnect
The SCSI-2 interconnect was chosen for the device
interconnect bec;u~se of its wide acceptance in the
computer industry During the controller defini-
tion phase, the Stor;~geWorks packaging group was

The Architecture and Design of HS-series SLorugeWorks Arrc.? Controllers

concurrently designing and building storage device
enclosures called shelves that woultl house up to
seven 3.5-inch tlevices or two 5.25-inch devices.
These shelves, connected to the controller, would
allow a wide variety of SCSI-2 tlevices to be incorpo-
rated ant1 woulcl do so at a low cost because of the
wiclespreacl use of SCSI-2 as a device interconnect.

StorageWorks controllers were designed to sup-
port the following types of SCSI-2 devices:

Disk-rotating spinclle disk drives and solid-
state disks

Tape-individual tape drives, tape loaders, ancl
jukeboxes that contain robotic access to multi-
ple drives from a media library

Optical-individual disks and jukeboxes that
contain robotic access to multiple drives from
a media library

StorageWorks Controllers in System
Environments
Tlie desire to produce a controller with an open
system host interconnect was coupled with a com-
mitment to protect the investments of existing
Digital customers wlio currently use CI and DSSI

host interconnects. The strategy was to produce CI,
DSSI, ant1 SCSl variants of the StorageWorks array
controller, all based on a common platform. As in
the selection of the device interconnect, the SCSI-2
host interconnect variant was chosen because of its
wiclespread use and low cost.

The controllers for the CI, DSSI, and SCSI intercon-
nects were named the H S J ~ ~ / H S J ~ ~ , the HSD30, and
the kis~40, respectively. The designations of "30"
and "40" represent a code for the number of device
ports attached to the controller. The HSJ30 and
HSD30 controllers have three device ports each,
whereas the HSJ40 ant1 H s Z ~ O have six device ports
each. The number of device ports selected for each
controller type was based on (1) the overall capabil-
i ty of the host port interconnect to support the
aggregate capability of a number of device ports
and (2) tlie desire to amortize controller cost
against as many attached devices as possible.

StorageWorks controller configurations depend
on the controller host interface. Marked differ-
ences exist in the configurations supportetl by
C1-based OpenVMS V~~xcluster configurations, DSSI-
based OpetlVMs VAXclllster configurations, and
SCSI-based configurations in OpenVMS, DEC OSF/l,

and other industry system environments The basic
differences are the number of hosts connected
and whether or not other storage devices can be
on tlie same host interconnect as the controller and
the other hosts.

The CI configuration supports up to 32 nodes per
bus. Each node may be either a storage controller
(i.e., an HSJSO, an H s J ~ O , or an HSC device) or a host
computer (i.e., a VAX or an Alpha system).

The DSSI configuration supports up to 8 nodes
per bus. Each node may be either a storage con-
troller (i.e., an HSD30 or an HSDOS), a storage ele-
ment (e.g., an RF73 device), or a VAX or an Alpha
host computer.

The S<;SI colifiguration supports up to 8 targets
per bus. The H s z ~ O controller, with its standard
SCSI-2 Iiost interface, may be connected to Digital
Alpha coniputers (i.e., DEC 3000 and DEC 7000/10000
computers running the DEC OSF/l operating sys-
 ten^), Sun Microsystems computers, Hewlett-
Packard computers, and IsiM computers. Digital
qualifies the HSZ40 controller for operation with
acltlitional vendors' systems according to market
demand.

High Availability
To meet the goals of controller and storage fault tol-
erance, the designers of StorageWorks controllers
developed a number of scenarios from which the
controller can be fault tolerant with respect to fail-
ures in controller or attached storage components.
The first aspect of fault tolerance considered is that
of controller fault tolerance; the second is configu-
ration fault tolerance.

Controller Fault Tolerance
Designers achieved controller fault tolerance by
investigating the common faults that the controller
could tolerate without requiring extreme design
measures ant1 incurring high costs. The results of this
investigation drove the design of what became the
dual-redundant HS-series controller configuration.
This configuration incorporates several patentecl
hardware and firmware features (patent pending).

The following faults can exist within a
StorageWorks array controller and the attached
StorageWorks packaging and do not make host data
unavailable:

Controller failure. In a dual-redundant configu-
ration, if one controller fails, all attached storage
devices continue to be served. This is called

Digital Technical Joul-nal %)I. 6 No. 4 Full 1994

RMD Array Controllers

failover. Failover occurs because the controllers
in :I dual-retlutidant configuration sh;ire SCSI-2

tlevice ports and therefore access to all attached
storage tlevices. If failover is to be achieved, the
surviving controller should not require access to
the failed controller.

Partial memory failure. If portions of the control-
ler buffer and cache memories fail, the controller
continues normal operation Hardware error cor-
rection In controller memory, coupletl w ~ t h
;~tlvancetl tliagnostic firmware, allows the con-
troller to survive dynamic and static memory
hilures. In fact, the controller will continue to
operate even if a cache module ktils.

Power supply or fan failure. StorageWorks pack-
aging supports dual power supplies ; ~ n d dual
fans. HS-series controllers can therefore be con-
figured to survive a failure of either of these
components.

SCSI-2 device port failure. A failure in a single
S<:SI-2 device port does not cause a co~ltroller
to fail. The controller continues to operate on
the remaining device ports.

'The controller must be able to sense the fail-
ures just listed in order to not* the host of a fault-
tolerant failure and then to continue to operate
normally until the fault is repaired. The designers
deemed this feature vital to reducing the time

during which a controller configuration must oper-
ate with ;I failure present.

Another requirement of fault-tolerant systems
is the ability to "hot swap" or "hot plug" compo-
nents, i.e., to replace components while the system
is still operating and thus to not cause the system to
shut down during repairs. The designers made the
controller ant1 its associated cache module hot
swappable. That is, one co~itroller in the dual con-
figuration can be replaced without shutting down
the second controller, and the secontl controller
continues to service the requests of the attached
hosts. This fe~ture, coupled with the hot-swap
capability of StorageWorks devices, creates highly
available systcnis.

Dzlc~l-recln~zdant fintroller Cc)nJiig~lr~ltion Like
all StorageWorks components, HS-series con-
trollers are packaged in StorageWorks shelves. The
StorageWorks controller shelf contains a backplane
that accommodates one or two controllers ant1
their associated cache modules, as well as SCSI-2
device porl connectors. 'I'he packaging is common
to all system environments, HS-series cotitrollers
mounted in a single shelf may be combined in pairs
to form a dual-redundant controller configuration
(shown in Figure 1) in which both controllers can
access the same set of devices.

Figure 2 shows two HS-series controllers
installed in a StorageWorks controller shelf it1

EIA-423 PORT

I HOST INTERFACE I
HS-SERIES
CONTROLLER 1

FAILOVER COMMUNICATION I-
SCSI-2 DEVICE
PORTS (3 OR 6)

I SCSI-2 DEVICE I
PORTS (3 OR 6) I

wuoouo-
SCSl DEVICE PORTS - - - - - - -

SHARED BETWEEN-
CONTROLLERS

Fig~lre I 5tor~lgcWor.k~ Corztrollers: . ~ j ~ . ~ t e ~ n Blot k D ~ C I R ~ L I I) , ~

MAINTENANCE
TERMINAL

8 1/01. 6 No. 4 Fc111 1094 Digital Technical Jourrnl

The Arc%7itecture and Design of HS-series StorzrgeWorks Arr~gl Controllers

PROGRAM CARD CONTROLLER
(PCMCIA) HSJ40

\ I

MAINTENANCE
TERMINAL
CONNECTION

/

PORT
BUTTONS

CONTROLLER B

HOST
INTERFACE
CABLE
CONNECTOR

POWER SUPPLIES RESET
(1 MANDATORY, BUTTON
1 OPTIONAL FOR
FAULT TOLERANCE)

CONTROLLER A

Figure2 Storageworks Colztroller Shelf

a dual-reduticlant configuration. Figure 3 shows
two du;il-redu~lcla~~t controller configurations
mounted in a StorageWorks c;~binet with several
device shelves. The controllers connect to storage
devices with cables that emerge from the controller
shelf and attach to the device shelves.

The designers had to decide how the dual-
retlundant controller configuration could achieve
high ;lvailability through fault tolerance. TO meet
the high-;~vailability goals, the team addressed the
concept of controller failover early in the design
process. One fault-tolerant option considerecl was
to run with a "hot-standby" controller that woultl
become operational only if the m;~in controller
were to fail. A second option was to design a clual-
active controller configi~ration in which two con-
trollers ~voulcl operate simultaneously. They would
share and concurrently use device port buses (not
tlevices), thus balancing the I/() lo;ld from host
computers.

Both options allow for direct failover of devices
without manu;~l intervention. The hot-standby con-
troller option requires either automatic configura-
tion of the attached devices when the hot-stantlby
controller becon~es operational or nonvolatile (i.e.,
impervious to power loss) sharecl niemory to hold

the configuration information. The dual-active con-
troller option requires that each controller have
detailed Itnowletlge about the other controller ant1
the device state; it cloes not require that the con-
trollers share a memory The designers chose the
seconcl option bec;~use it provided loacl balancing
and therefore potentially greater performance.
However, they faced the challe~lge of designing a
backplane and an interface between the controllers
that would achieve the dual-active configuration but
would not require a shared memory The result of the
design effort was the StorageWorks controller shelf.

Sto?ngeWorks Cb7ztt-oller Shev The StorageWorks
controller shelf IS ;In architectetl enclosure thxt
allows a pair of Stor;~geWorks controllers ant1 their
respective cache memory modules to be placetl
into the tlual-redund;~nt configuration, as shown in
Figure 4. A cache motlulc is attached to each con-
troller for performance purposes. The controller
shelf contains a backplane that includes intercon-
troller communication, control lines between the
controllers, and sh:rred SCSI-2 device ports. Since
the two controllers share S<:SI-2 device ports, the
design enables continued device availability if one
controller krils

Digirril Ticbnicnl Jourrrnl Vok 6 Na 4 Fall 1994

RAID Array Controllers

TAPE DRIVE

CONTROLLER
SHELF

HOST INTERFF
CABLES

SCSl DEVICE
PORT CABLES

\
DEVICE SHELF

SLOT 0 SLOT 1

KlLL B v
*

KlLL A
4

/I CDAL BUS

CACHE B LOCK
I 1 I

CONTROLLER A , 4 F:E~E 4 CONTROLLER B

CACHE A CACHE B

CDAL BUS CDAL BUS

CACHE A LOCK

P

FAILO\JER UART COMMUNICATION LINE f Ti'
316 SHARED SCSl DEVICE BUSES

NOTE. Controller and Cache Present signals to each controller are not shown

The Architecture and Design of HS-series StorageWorks Array Controllers

The backplane contains a direct communica-
tion path between the two controllers by means
of a serial communication universal asynchronous
receiver/transtnitter (UART) on each controller. The
controllers use this communication link to inform
one another about

Controller initialization status. In a dual-redun-
d;unt configuration, a controller that is initializ-
ing or reinitializing sends information about the
process to the other controller.

"Keep alive" communication. Controllers send
keep alive messages to each other at timed
intervals. The cessation of communication by
one controller causes a hilover to occur once
the surviving controller has disabled the other
controller.

Configuration information. StorageWorks con-
trollers in a dual-redundant configirration have
the same configuration information at all times.
W ~ e n configuration information is entered
into one controller, that controller sends the
new information to the other controller. Each
controller stores this information in a controller-
resident nonvolatile memory. If one control-
ler fails, the surviving controller continues to
serve the failed controller's devices to 'lost com-
puters, thus obviating shared memory access.
The controller resolves any discrepancies by
using the newest information.

Synchronizetl operations between controllers.
Specific firmware components within a control-
ler can communicate with the other controller
to synchronize special events between the hard-
ware on both controllers. Some examples of
these special events are SCSI bus resets, cache
state changes, ancl diagnostic tests.

The other signals on the backplane pertain to
the current state of the configuration within the
controller shelf and to specific control lines that
determine the operation of the dual-redundant
controller configuration. The backplane state and
control signals inclutle

Status about the presence of a controller's cache
module. Each controller can sense the presence
or absence of its cache to set up for cache diag-
nostics and cache operations.

Status about the presence of a second controller,
which indicates a dual-redundant configura-
tion. Each controller can sense the presence

Digilal Tecbtiicul Jozrrrral Vol 6 No 4 Toll 1994

or absence of the other controller in a dual-
redundant configuration. This assists in control-
ler setup of dual-controller operation as well
as general controller initialization of the dual-
redundant configuration.

Status about the presence of the second con-
troller's cache. Each controller can sense the
presence or absence of the other controller's
cache for dual-contro.ller setup purposes.

The "KILL" signal. In a dual-redundant config-
uration, each controller has the capability to use
the KILL control signal to cause a hardware reset
of the other controller. However, once one con-
troller asserts the KILL signal, the other control-
ler loses the capability. The KILL signal ensures
that a failed or failing controller will not create
the possibility of data corruption to or from
attached storage devices.

The KILL signal denotes that failover to the surviv-
ing controller should occur. A controller asserts
the KILL signal when the other controller sends
a message that it is failing or when normally
scheduled keep alive communication from the
other controller ceases. The KILL signal is also
used when both controllers decide to reset one
another, e.g., when the communication path has
failed.

The designers had to ensure that only one con-
troller could succeed in the KILL operation, i.e.,
that no window existed where both controllers
could use the KILL signal. After firmware on
a controller asserts the KILL signal to its dual-
redundant partner, the KILL recognition cir-
cuitry within the controller that asserted the
signal is disabled. The probability of true simul-
taneous KILL signal assertion was estimated at

based on hardware timing and the possi-
bility of synchronous dual-controller operation.

The cache LOCK signals. The cache LOCK signals
control access to the cache modules. The dual-
controller architecture had to prevent one con-
troller from gaining access to a cache module that
was being used by the other controller and had to
allow the surviving controller to access the Failed
controller's cache. The access control had to be
implemented in either firmware or hardware.

A firmware solution would involve a software
locking mechanism that the controllers would
recognize and cooperatively use to limit cache
module access to the associated controller. This

RAID Array Controllers

method had an inherent probleni: firniware
;[lone may not prevent in;~tlvertent cache access
by a failing controller. The tlesigners therefore
hacl to implement a hardware lock nieclianism
Lo prevent such inadvertent ;~ccess.

The 1l;lrdware lock mec1i;cnism was iniple-
niented with control signals from each control-
Iec The signals are utilizetl 1 7 , h;lrdw:~re to
prevent inaclvertent access ant1 I,y firmware
to li~uit cache module access to the associ:~ted
controller. From each controllc~; tlie clesigners
implemented two LOCK sign;ils t1i:rt extend intli-
\,iclu;~l ly to each cache module :ind :Ire visible to
both controllers. The cache I.O(:K sign;~ls ;ire
illustratetl in Figure 4.

The LOCK signals allow a controller to ;~cliieve
exclusive access to a specific c;~clie module to
ensure data integrity LO<:K sign;~ls From ;I con-
troller that has been "killetl" 17). its tlu:~l-reclund;~nt
partner are reset so that tlie partner may k~il over
an11 unwritten cache d;~ta in the write-Ix~ck c;lche.

/bi/oi~ei. Controller failover is ;I fe;rture of tlie
dual-I-etlundant configuration h)r Stor;~geWorks
controllers. Failover of ;I controller's clevices ;~ncl
cache to the other controller occurs \vIien

A control ler fails to send the keep live message.
This situation can occur because of a controller
failure in the dual UART (IIIIART) or in ;my other
non-fault-tolerant portion of the controller niod-
ule. In this scenario, the surviving controller uses
the Kll.1. signal to disable the other controller,
comr~iunicates to the hiled controller's cle\lices.
and then serves the failed controller's devices to
I1osts.

The f~ilover of a controller's c;~che occurs onl). if
write-back caching was in use I,efore tlie con-
troller fa i l~~re was detected. In this c;lse, the sul--
viving controller uses the f;~iled controller's
c;~cIie to write any previo~sl)~ unwritlen data to
the failed controller's tlisl<s before serving these
disks to hosts. W ~ e n the surviving controller h;ls
written the data to disks (i.e., flushed thc dat;~),
it releases the cache to ;~w;~i t the k~iletl con-
troller's return to the dual-retluntl;~nt configur:~-
tion through reinitia1iz;ltion or repl;lcernent.

i\ customer desires to cli;~nge the lo;ltl b:ll;lnce of
one or more devices attached LO one controller
to tlie other controller. This speci;~lized use
of failover provides a lo;~tl-O;~l;~~ici~ig f e ; ~ t ~ ~ r e

that the designers considered valuable in ;I

clual-;~ctive controller configcration. Loatl b;il-
ancing is static i n tlie controller, i.e., devices ;Ire
alloc;~tetl to one controller or to the other, not
shared dynamically, To change allocation, the
system ni;lnager must ch;~nge the preferred p:~tli
of tlevice access. This is ;~ccomplished by access-
ing either the n1ainten;tnce port of tlie controller
or the configuration firmware through the host
interk~ce (e.g , the diagnostics and utilities pro-
tocol for (11 ;rntI 1)SSI s!.strnls).

The cache motlule battery is low or h;~s f;~iletl.
This special case of I';~ilover is usetl in conjunc-
tion with Parity fL\II> operations for the reasons
clescribecl in the Parity k i l l > technology portion
of the following section. The main issue is to con-
tinue to provitle as much data protection as possi-
ble for Parity 11t\I1) disk configurations when the
battery o n the write-back cache is low or batl.

The controller is unable to communicate with
the devices to which i t is currentl). alloc;~ted for
host oper;itions. T'liis situ;~tioti can occur ir
a tlevice port on ;I controller fails.

Storage Fa ~ r l t Tolem~zce
Storage fairlt tolerance is achievetl by ensuring that
power or environment:il factors do not cause
devices to be i~n;~v;~il;~l,le for host access and by
using firmware to prevent a tlevice failure from
affecting host ;~ccessibility.

E n i ~ i r o ~ ~ i n c ~ t ~ ~ l F~~ctor:s StorageWorks enclosures
provide for optional redund;lnt power supl,lies and
cooling klns to prevent power or fan failures fro111
making clevices uti;~v:~il;~l,le. The SCSI-2 cables tli;~t
connect device shelves to the controller shelf carn.
extra sign;~ls to ;~lert tlie controller to power ~ul,pl>~
or fan failures so t1i;rt these conditions ma). be
reported to host computers. The enclosures nlust
contain light-emitting tliodes ([.EL%) to allow a con-
troller to identify I:~ilecl t le~~ices. In adtlition, ;I

cache module can k~il, ; ~nd the controller will con-
tinue to opfl:lte.

RAID Tt.cl~iio/o~q~~~ 'li) prevent a device failure
from affecting host access to data, the designers
introtlucetl ;I conibinetl l'irnim~are and 1iardw;rre
implement;~tion of R t \ r I) techno log)^? The designers
had to tlecitle \+:Iiicli Rr\ll) level to choose and what
type of h;irclw:~re (if an>.) n1;ls required for the
implement;~tion.

The Architecture and Design of HS-series Storageworks Array Controllers

The designers considered RAID levels 1 through 5
as options for solving the problem of disk fail-
ures that affect data availability. RAID level 1 (disk
mirroring, which is depicted in Figirre 5a) was
rejected because of its higher cost, i.e., the cost of
parts to implement the mirroring.' Each disk to

be protected implies an inherent cost of one
additional housed, powered, and attached disk.
RAID level 1 was also discounted because software-
based solutions were available for many of the
hosts for which the HS-series controllers were ini-
tially targeted.

(a) Mapping for a RAID Level 1 Array

'. : I
-____I

~ . .
\.__:__-,

(c) Mnpping for a RAID Level 3 Array

DATA DISKS

m ~ c i Dlsws

(b) M~~pping for a RAID Level 2 Arrc~.y

'. : ,' - -___-

(d) Mapping for a RAfD Level 4 Array

(e) A q~pical map pin^ for a RAID Level 5 Array

Figure 5 Makping for RAID Levels 1 through 5

Digitul Technical Journal Vol. G No. 4 Fa11 1994 13

RAID Array Controllers

RAID levels 2 through 4, illustrated in Figures 5b
t lirougli 5d, were rejected because they clo not pro-
vide good performance over the entire range of
I/O workloads for which the controllers were tar-
geted.< In general, these RAID levels provide high,
single-stream data transfer rates but rel;~tively poor
transaction processing performance.

RAID level 5 in its pure form was rejected because
of its poor write performance, especially for small
write operations.' The designers ultimately chose
RAID level 5 data mapping (i.e., data striping with
interleaved parity, as illustratetl in Figure Se) cou-
pled with dynamic update algorithms and write-
b;lck caching to overcome tlie sm;ill-write penalty.
This jniplementation is called P;lrity RAID.

An HS-series Parity RAID array appears to hosts as
an economical, fault-tolerant virt11;il disk unit.
A Parity RAlD virtual disk unit with a storage capac-
ity equivalent to that of n disks requires lz + I phys-
ical disks to implement. Data ant1 parity are
distributed (striped) across all disk members in the
array, primarily to equalize the overheat1 associated
with processing concurrent small write requests."

If a disk in a Parity RtUD array fails, its data can be
recovered by reading the corresponding blocks on
the surviving disk members ant1 performing a par-
ity comparison (~lsing exclusive-011 [XOR] opera-
tions on data from other members). Figure 6
illustrates this regeneration of data.

HS-series controller developers overcame a num-
ber of challenges. Foremost among them was the
elimination of the RAID level 5 write hole. Parity
RAID with its W D level 5 striping is susceptible
to the W D level 5 write hole. A write hole is data
corruption that occurs when all the following
events take place.

A controller failure occurs with a host's write
request outst;~nding.

Either the uptlatetl data or the updated parity for
the host's write request bas been written to disk
but not both.

A failure of a tlifferent disk occurs after the con-
troller failure has been repaired

To eliminate this write hole, designers hat1 to
develop a method of preserving information aboi~t
ongoing MI11 write operations across power fail-
ures such that it coultl be conveyed between part-
ner controllers in a dual-redundant configuration.

Designers tlecided to use nonvolatile caching of
IWlD write operations in pl-ogress.5 Three alterna-
tives were consitlered:

1. An i~nu~terruptil~le power supply (UPS) for the
controllel; c;iche, and all attached disk devices.
This choice was cleemed to be a costly and
unwieltly solution because of the range of possi-
ble requirements. The intleterminate amount o f
data in the cache to be written and the power
consumption of a wide variety of devices woultl
necessitate ;I very large backup power soilrce to
ensure enough time for all cached write data to
be written to att;~clied devices.

2. A battery in the controller ancl device enclosures
(i.e., shelves) to allow enough time for tlie writ-
ing of c;rclicd data in the event of a power fi~ilure.
StorageWorks tlevice enclosures can accommo-
date either redundant power supplies or one
power supply and one backup battery for con-
figurations th;lt do not require redundancy
There is no provision for both redundant power

DATA 0 @ DATA 1 @

APPLICATION

t

DISK 4

PARITY RAlD ARRAY

Figure 6 Regenerntii.2~ Uutu in cr Pc~rity RAID Arr.ct.y ulit17 u Fclllcd 1Welnber Disk

Vol. 6 IVI. 4 FLIII 1994 Digital Tecb~icn~Jotrrrrrfl

Tbe Architecture a rnd Design of HS-series 5torageWorks Array Controllers

supplies and a battery This conflict between
fault-tolerant StorageWorks shelf configurations
with dual power supplies and the desire to add
a battery for write-back caching was unaccept-
able to the designers because of the loss of power
reduntlancy to gain write-back cache integrity.

3. A controller-based nonvolatile cache. The options
for controller-based nonvolatile caching inch~ded
(a) a battery-protected cache for write data, (b) an
additional nonvolatile random-access memory
(NVRA??) on the controller to journal RAID writes,
and (c) a battery-protected cache for both read
and write data.

With a battery-protected write cache, data must
be copied if it is to be cached for subsequent
read requests. Designers deemed the potential
performance penalty unacceptable.

Using controller NVRAM as a RAID write journal
not only closes the RAID level 5 write hole but
also provides a small write cache for data. This
approach also requires data copying and creates
an NVRtll\l access problem for the surviving con-
troller to the failed controller mi to resolve
any outstanding l W D write requests.

The third controller-based nonvolatile cache
option, to battery-backup the entire cache,
solved the copy issue of option 3a and the
failover issue of option 3b.

The tlesigners chose option 3c, the battery-
protected read/write cache moclule. A totally non-
volatile cache lhacl the ad\rantage of not requiring
write-cache flushing, i e . , copying data between
the write cache and the read cache after the write
data has been written to devices. Segregated cache
approaches (part nonvolatile, part volatile) would
have required either copying or discarding data
after write-cache flushing. Such approaches would
have resulted in a loss of part of the value of using
the caching algorithm by allowing only read caching
of read data already read. Another benefit of a non-
volatile read/write cache is failover of the cache
module in the event of a controller failure. This fur-
ther reduces the risk associated with a RAID level 5
write hole because unwritten write operations to
Parity RAlD arrays can be completed by the surviv-
ing controller after failover.

To achieve a total nonvolatile cache, the design-
ers opted for the battery solution, using two 3-by-5-
by-0.125-inch lead-acid batteries that supply up to

100 hours of battery backup for a 32-MB cache
module. The batteries eliminated the need for
a special (and costly) nonvolatile memory write
cache and allowed data hold-up after power failure.
The designers chose lead-acid batteries over NiCAD
batteries because of their steady power retention
and output over time. This option protects against
most major power outages (of five minutes to five
days) and all minor power outages (of less than five
minutes), Most power outages (according to stud-
ies within Digital) last less than five minutes and are
lsandlecl in the same manner as major outages, that
is, by flushing write clata immediately after power
has been restored to the controller configuration,
Battery status is provided to firmware, which uses
this information to make policy decisions about
RAID arrays and other virtual disk units with write-
back caching enabled.

For an HS-series controller to support Parity RAID,
its cache module must have batteries installed. The
batteries make the cache nonvolatile and enable
the algorithms that close the RAID Level 5 write hole
and permit the use of the write-back cache as a per-
formance assist, both vital for proper Parity RAID
operation. If the controller firmware detects a low-
or bad-battery condition, write-back caching is dis-
abled. The controller that detects the contlition
tries to fail over Parity RA[D units to the other con-
troller in the dual-redundant configuration to keep
the units available to hosts. If the other controller
cache motlule has a low- or bad-battery condition,
the Parity RAID unit is made unavailable to hosts to
protect against data loss or data corruption should
a power failure occur. When the batteries are no
longer low, Parity RAlD units are again made avail-
able to hosts. Any Parity FWD units that had been
failed over to the other controller would fail back,
i.e., return, to the controller that originally con-
trolled them. The module hardware ant1 firmware
support read caching regardless of the presence of
a battery.

After solving the RAlD level 5 write-hole problem,
the designers decided to automate the Parity M D

recovely process wherever possible. This goal was
adopted so that customers would not have to under-
stand the technology details in order to use the
technology in the event of a failure. StorageWorks
controller firmware developers, therefore, chose to
add automatic Parity RAID management features
rather than require manual intervention after fail-
ures. Controller-based automatic array management
is superior to manual techniques because the

Digital Technicrrl Jozrriznl Val. 6 Aro. 4 Fall 1994 15

considered i t importzint t I i ;~ t the controller
firmware be able to cletect these data loss concli-
tions ;ind report them to the host computers.

The tiiilure scenarios just described occur infi-e-
qilently, and the StorageWorks Parity IUII> firm-
ware is able to recover after such failures. During
;I typical normal operation, the main ch;illenge for
Rlrity IUII> firmware is to achieve a high level of
performance during write operations and a high
level of controller performance in general.

High Performance
As cliscussetl earlier, the performance goz~ls for the
StorageWorks controllers were in the areas of
throi~ghput ant1 latency. Bandwitith goals were
biised on the ;~rcliitecture and tecl~nology of the
controller platform. The tlesigners niet tlie perfor-
n1;lnce go;lls by producing a controller thxt hacl
:I low co~iin~ancl overl~ead ancl that processecl
requests with ;I high degree of p;lr;~llelism. The
firmware tlesign achieves low overheat1 by lileans
of the ;~lgorithn~s running on the controller, cou-
pled with 1 b i I L > ant1 caching technology. The hard-
ware tlesign th;it allows for low command overhead
;inti high tlata transfer rates (bandwidth) is dis-
cussetl in the section Common Hard\vare Platform.

Comnzand Processing
The StorageWorks tlesigners maximized the num-
ber of requests the controller can process per sec-
ontl by retlucing the commancl processing latency
within the controller firmware. The firmware uti-
lizes controlle~basetl caching and also streamlined
comnuntl processing that allows multiple out-
standing comm;intls to be present in the controller.

'To meet the varying neetls of customer xpplica-
tions, tlie controller supports both 1';irity RAIll ant1
Iir\ll) level 0. l:he designers decitlerl to inclutle I U I U
level 0 ;Is :I controller feature bec;iuse of its inherent
p;lr;11 [elism, even though RAID level 0 is not f i l i~ l t tol-
criint withol~t external reduntl;incj~,

Stor;~geWorl<s controllers service ;ill device
types, but the designers felt that disk device per-
l'orni:~nce was the key metric for cletermining
how well ;I controller supports IUIl> technology.
The control k r firn~ware was designed to efficiently
control individual devices (commonly referred
to as "just a bunch of tleviccs" [JHOI>]) ancl Parity
IUll>, prioritizing requests to each of the S<:~1-2
device ports on the controller. Stor;~geWorks
controllers comply with S<:SI-2]>rotocols and per-
form atlvanced SCSI-2 functions, such ;a tagged

queuing to ;III attached S<:SI-2 storage devices for
greater performance.'

Discussions of the RAID level O technology and
of how the designers ilsetl Parity IWln technology
to overcome some of the performance bottlenecks
follow.

Striping-RAID Level 0
Digital has used RAID level O technolog): that is,
striping, in systems for at le;rst five years, in its host
computers using software as well as in its control-
lers. Striping allows a set of tlisks to be treated as
one virtual unit. 1)evice data blocks are interleaved
in strips, i t . , contiguous sets of blocks, across all
disks, which provides high-speed parallel tl:~ta
access. Figure 7 illustr;~tes the mapping for a IUll>
level O array. I Since ;I striped disk unit inherently
lacks fault toler;ince (i t . , if one device in the set
fails, data is lost), controller-b;lsed striping is typi-
cally usetl in conjunction with host-based mirror-
ing or in cases where data can be easily reproduced.
Stripe sets achieve high performance because of
the potential for parallelism by means of the device
and data organization. 'The key difference between
M D level 0 and RAII) levels 3 ant1 higher is that
striping results in the intertlependence of data writ-
ten to different devices.

Controller Caching
Caching with StorageWorks controllers was origi-
nally read caching only. When the tlesigners
decided to ilse a nonvolatile cache to eliminate the
RAID level 5 write hole, write-back caching on the
controller became a viable option.

Co~ztr.oller Rerrd C~rckir?g Iie;~d caching was
intended to retluce 1;itency in the controller by min-
imizing the need to access tlevices continuously for
repeated host re;ltl requests to the same locations 011

attached devices. Reacl caching must also address
the issue of how to handle write data for later use.
The design could have incorporated on-board con-
troller memory to hold write data. However, this
would reqi~ire copying the write data to the read
cache after the write data had been written to the
devices and would result in inefficient use of the
read cache. Therefore, tlie tlesigners decided to
have the read cache serve as a write-through cache
as well. Read caching would be disabled/etiabled
per logical unit presented to the host instead of hav-
ing global read c;~ching, where ;I logical unit is one
or more devices configured ;is one virtual tlevice.

Digital Z~c/~rricnl Jorrrnal Ihl. 6 No. 4 Fir11 1994 17

RAID Array Controllers

Figure 7 ~ ~ ~ L ~ ~ ~ I ~ I I ~ O I R R I D L ~ ~ J ~ ~ O A ~ ~ ~ ! J ~

Thus, customers can specify for which virtual
devices they want caching en;lhled.

Tlie read and write-througli c;~cliing firmware
receives requests from other p:irts of the controller
firmware (e.g.. a host port, a device port, and the
Parity IWL> firmware) and proceetls as follows.

For reads requests, the caching firn1w;u.e provides

1 . The data pointers to the c;lcIied reqilest, i.e., the
cache hit

2. The data pointers for part of the request, i.e..
;I p;irti;~l cache hit, which nleans that the remain-
ing data must be retrieved from the device or
devices being recluested

3. A status response of cache miss, which means
that storage management must retrieve the clata
from the clevice or devices being requestccl

For write requests, the caching firmw;ire offers
the cache manager data from the request. Tlie cache
manager places the previous data pointers into the
read cache tables after the data is written through
the cache to tlie devices. Firmwxre tells the tleirice
port liartlware where to find write tl:rt;l, ;ind the
port hardware transfers the <I;it;i.

Read caching in the first version of the controller
firmware allowed the controller to achieve the ini-
tial throughput goals across the three controller
platforms. The current softwiire version, version
2.0, was shipped in October 1994 anel exhibits even
greater throughput perform;lnce. Table 1 shows the
I/() performance for the three StorageWorks con-
troller platforms with read caching enablecl.

Table 1 StorageWorks Controller I10
Performance with Read Caching

Read Requests Write Requests
Controller per Second per Second

Write-back (;irc~hir.~g-Pe~for~~za~zce Aspects As
noted earlier, when the cache module contains
batteries, the memory is nonvolatile for up to 100
hours. 7'1w StorageWorks controller can use the
nonvolatile cache to increase controller perfor-
mance by retlucing latency for write request Parity
M I D performance to a level similar to that of RAII)
level 0 (simple clisk striping). The controller c;m
also utilize the write-back cache to reduce tlie
latency of 11301) ;~ncl IliiIL) level O disk confgur;~-
tions. As with read caching, write-back caching is
disabled/en;tbled per 1ogic;il unit.

The write-back caching firmware controls the
usage of both a surviving control.ler's cache motlule
and ;I faileel controllrr'a c;~chc niotlule. When it

receives a write request, the controller places the
data in the cache, marks the request as complete,
and writes the claca based on interwal controller
firmware policies (write-back caching). To provicle
greater perform;ince cli~ring Parity RXlD operations
than simple write-b:~cli c;~ching coulcl proviclc, the
write-bxck c;~clic firmware is also tied to the Parity
RAID firmware.

18 161. 6 rVo. 4 1~~111 I994 Digital Technical Jorrr.irn1

The Architecture and Design of H\Y-series StorageW/orks Array Controllers

In addition to dealing with the continual prob-
lem of controller latency on write commands,
designers had to overcome the RAlD level 5 small-
write penalty with parity updates to M D set mem-
bers. Write-back caching was chosen over W
level 3 hardware assists as a Parity M I D strategy
because RAID level 3 does not provide a wide range
of benefits for all customer workloads. Write-back
caching provides latency reductions for RAID and
non-IWD configurations. Write-back caching also
increases write-request throughput. For example,
the published performance numbers for write
throughput with write-back caching enabled in ver-
sion 2.0 firmware appear in Table 2.

The use of write-back caching resulted in a 20 to
30 percent increase in write throughput for all plat-
forms as compared to write-through caching. Before
cliscussing the effect of write-back caching on
latency for individual devices and for Parity RAID
arrays, the paper describes how the write-back
cache firmware was designed ant1 tied directly to
Parity M I D firmware.

The features chosen for write-back caching were
extensively benchmarkecl against data integrity
issues. The addition of settable timers allows cus-
tomers to flush write data destined for devices that
are idle for a specific length of time. To reduce the
number of read/modify/writes required to update
parity on small write operations, designers tied
flush algorithms to RAID. Flus11 algorithms for write-
back caching are vital to customer data integrity
and to latency reduction. The flush algorithms actu-
ally allow Parity I M D to simulate RAlD level 3 oper-
ations because of the nonvolatile write-back cache.

As mentioned earlier, Parity RAlD configurations
suffer a penalty on small write operations that
includes a series of read and write operations and
)(OR operations on blocks of data to update RAID
parity. The write-back cache firmware was
designed with specific attributes to enhance Parity
RAID write operations in general, and not just to

Table 2 Storageworks Controller
Write Request Throughput
with Write-back Caching

Write Requests
Controller per Second

HSJ30lHSJ40 1,350
HSD30 900

HSZ40 1,850

enhance small write operations. The designers
intentionally chose to overcome both the small-
write penalty and the inherent lack of high band-
width that Parity RAID delivers.

The nonvolatile write-back cache motlule
afforded the firmware designers more choices for
Parity RAlD write request processing and data flush
algorithms. The designers pursued techniques
to speed up all write operations by performing
write aggregations (i.e., combining data from mul-
tiple write requests and read cache clam) in three
dimensions:

1. Contiguous aggregation, in which the firmware
looks for consecutive block requests and ties
them together into one device request, thus
eliminating separate device requests.

2. Vertical aggregation, in which the firmware can
detect two write operations to the same block,
thus eliminating one write operation.

3. Horizontal aggregation (for Parity RAID opera-
tions only). This type of aggregation occurs
when all data blocks within a Parity M I D strip
are present in the write-back cache. In such
cases, the firmware can write to all RAID set
members at once, in combination with the FX
chip (discussed later in this section) on-the-fly
hardware XOR operations during the M I D set
member writes. The original request can cause
horizontal aggregation to take place if all blocks
within a strip are part of the first write request.
The firmware can also perform horizontal aggre-
gation after processing several write requests. In
this way, the parity write operation directly fol-
lows the data write operations. Horizontal write
aggregation potentially cuts physical device
access in half when compared to normal RAlD
write operations that require data members to
be read.*-RThe result is pseudo-RAID level 3 oper-
ation, because the write-back cache is combined
with the horizontal aggregation cache policy.

The performance gain for individual disks and for
Parity RAID arrays from using write-back caching is
dramatic, resulting in higher write throughput and
low latency. The write-back cache actually smoothes
out differences in performance that are typical of
workloads that have different read/write ratios,
whether or not Parity KAID is utilized.

Figure 8 shows the relative latency for a controller
with and without write-back caching enabled. The
configurations tested comprised individual devices

Digital Tecbnicul Journal Vol. G No. 4 Fa11 1994

RAlD Array Controllers

WORKLOAD 1 WORKLOAD 2 WORKLOAD 3

KEY

JBOD ARRAY MODEL PARITY RAID ARRAY MODEL
READCACHE READCACHE

WRITE-BACK CACHE WRITE-BACK CACHE

ancl Parity RAID iltiits (in :I five-plus-one configur;~-
tion). The performance measurements miere t;ll<en
fro111 ;I version 2.0 I-JSJ4O ;trr;ly controller.

\Vorkloatl 1 lias a read/write ratio of 70/30. i.e..
70 percent of the requests were read requests ant1
30 percent were write recluests. Worl<load 2 h ;~s
;r re;rd/write ratio of 84/10. \Vorkloatl 3 has a ratio o t
20/80. In all workloatls, the latency for intlivitlu;ll
clevices ;rntl for I';~rit!, I<r\Il> units is lower when
write-back caching is enabletl t11;rn when only re;rtl
cachi~ig is enahletl. In f ;~ct , when write oper;rtions
dominate the I/() mix, latency for I'arity h U D units
is the same as for tlie worklo;rds in which read oper-
ations are predomiri;rnt!

RAIL?/Co,mpare HLL ~6111:~1 TC,

Stor;lgeWorks controllers contirin :i hardware Parity
IWIl> and data compzire acceler;rtor called F S , ;I g;rte
:rrr;ly t1i;rt ~,erfornis on-the-fly S 0 1 < operations o n
cl;4t:1 hirffers. P;lrity RAll) ant1 clata compare firm-
ware use this pate array lo ;lcceler:rte Parity Rr\ll>

parity calcul;rtions ;lntl host d;rt;r compare requests.
The F S chip is progr;rmrned to (1) observe tlie bus,
(2) "snoop" the bus for specif c ;rdtlresses, (3) per-
form the ,YOR operation to compare the associ;rtetl
cl;~ta on-the-fly with cl;it;r in a private memory calletl
XI3IIF memory, and (4) write the tl;rta back into
the X R I F memor):

SC)R operations can t;tke pl;rce :IS data is moving
from buffer or cache rne~nol-y to tle\7ice ports or
vice .ilers;l. The F S can also perform clirect memory
access (DkLA) oper;~lions to move tlie contents of
buffer or cache memory to or from S U U F memory.

'fhe designers cleterniined th;rt 11;lrclware acceler-
ation of);OR operations h)r 1';rrity RAID firmware
would speed LIP TWln parity calculations and thus
further improve Parity IUII> latency and through-
I X I ~ . T l ~ e firmware also supports FX compare operzl-
tions, which eliminates tlie neetl for SCSI-2 devices
th ;~t have implemented comp;ire commands ancl for
speeding up compare reqilests from hosts.

To produce a l~igli-l,erh)rni;rnce controller in all
three performance clime~~sio~is-l;ltenc): through-
p t ~ t , and data tr;rnsfer rate-the designers of
Stor;rgeWorks controllers I';~ced the challenge ol'
creating a new conlroller architectirre ant1 using
new technology. In c~ddition, they hat1 to clo so at
a reasonable cost.

Although each 1i;ls its own specific host interface
hardware, the <;I, DSSI, :rntl SCSI controller variants
sh;rre a common li;~rtlw;rre core. Commonality
W;IS clesirecl to control the clevelopment costs ancl
schedules for such I;rrge engineering projects. To
cleliver high performance ;mtl comnionalit): tlie
tlesigners investig;ttetl sever;rl controller architec-
ture alternatives. The first ;~rchitecture consideretl
was similar to Digital's H S C 5 0 - 9 5 controller, incor-
por:~ti~ig similar bus structiir-es, processing ele-
ments, and niemories, htrt newer technology.
Figure 9 shows the HS<: :rrchitcct~ire.')

The 13SC architecture is a true multiprocessor sys-
tem. It contains a priv;~te niemor). for its policy pro-
cessor, which manages the work th ;~t is coming
fl-on1 the host port interface ;rntl qiieues this work
to the device interface motlules. 1)at;l then flows
between the host port ;ind cle\~ice mod~rles .to atltl
from hosts. The motlules 11;rve two interfaces
(buses) for access to conimantl processitig and darn
nlo\renlent. These buses are c:~l let1 the control menl-
or). interfiice ;mcl tlie tlat;~ memory interface. The
~x)lic!' processor queues work to the host port ancl
device modules thro~lgh the control memory inter-
f ;~ce, and then the motlules Iprocess the data over
the dat;r memory interface.

IJsing this architecture woi~lcl have been too
expensive. The control ler cost h;lcl to he competi-
tive with other proclucts in the industry most
of which currently cost consicler;rl,l~~ less than tlie
HS<: controller. The HS<: bus ;~rchitecture r eq~~i re t l
three tlifferent memory interf;rces, which woultl
reqiiire three clifferent, potentially large n~en~or ie s .
. . I lie designers had to pursue other options that
 net tlie cost goals hut tlitl not significantly reduce

I/ol 6 Vo. 4 Ihll 1997 Digitrrl iTi.cbrricril Jor4rrrtrl

The Architect~ire uncl Design of HS-series Stol-ageworks Art-UJ! Controllers

CONTROL BUS (6.6 MBIS)

MEMORY 4

Figure 9 Block Diagram of the HSC Architecture

performance. They considered single internal bus
architectures, but cluring simulation, these options
were unable to meet either the initial or the long-
term cost goals.

Figure 10 shows the controller architecture
option that became the common hardware base for
Storageworks controllers. This architecture con-
tains three buses and two memories. A third small
memory is used for Parity RAID and data compare
operations but does not drastically increase con-
troller cost. The architectural design allows the pol-

>
>
>

icy processor to access one memory while a device
or host port processor accesses the other memory.

The architecture achieves a Lower over;ill cost
than the HSC architecture yet achieves similar
performance. The new architecture, with fewer
memories, does not significantly reduce the perfor-
mance, while the newer technology chosen to
implement the controller enhances performance.
The bus bandwidth of the new controller is much
higher than that of the HSC controller. Conse-
quently, a more cost-effective solution that uses

Cl BUS

C
IBUS BUS

/

r G q

DISK INTERFACE < OR
TAPE INTERFACE
(UP TO 8 TOTAL)

HOST INTERFACE -

I U

C
NBUSBUS -!,)

I I I I I I I >

POLICY
PROCESSOR

LOAD
DEVICE

BUFFER
MEMORY
(8 MB)

Figure 10 HSx40 Controller Architecture

- >
SDI OR ST1
(4 PER

-

-

Digital Techrrical Jr,rrrrzul Vol. 6 No. 4 Fall 1994 21

TERMINAL

INTERFACE)

DRAB

DATA I MEMORY
\

DATA BUS (1 3.3 MBIS)

MDAL BUS CDAL BUS < >DRAB

16- OR 32-MB
READ OR
BATTERY
BACKED UP
WRITE-BACK
CACHE

CACHE

IWD Array Controllers

;I less-costly architecture can attain similar to better
j>erformance.

The extreme integration of hardware to the very
large-scale integration (VLSI) level allowed for a
much smaller enclosure than that of the HS<: control-
ler, even with a dual-redundant controller co~dgura-
tion (see Figure 3). A StorageWorks dual-co~~troller
configi~ration measures 56.5 by 20.0 by 43.2 centi-
meters (22 by 8 by 17 inches), which is approxi-
mately one-tenth the size of the Hs<; controller.

Conzmol? Colztroller Platjorln The common con-
troller platform consists of the controller without
the ;~ssociated host port. 'rlie coliimon core of liard-
ware consists of the policy processor li;irdware, the
SCSI-2 tlevice port hardw;lre, and the c;~che module.
'l'lie controller-specific host port interb~ce 11;1rdwx-e
jncludes either the CI, the DSSI, or the S<:sI interbce.

Policy Processor Hardzua~~e The StorageWorks
controller policy processor is Intel's 25-MHz i960C~
microprocessor, wliich contains ;in internal instruc-
tion cache and is augmented by a secondary cache
extertral to the processor. The second;iry cache
relieves the potential bottleneck createtl by shared
memory between the policy processor ant1 host/
tlevice port processors.

Tlie designers hat1 to make trade-offs in two
;Ireas: the memory speed/cost and the number of
buses. After simulation, the external instruction
ant1 data cache showed a significant performance
improvement, given the chosen shared-memory
architecture. The cache covers the first 2 MI3 of
buffer memory, where policy processor instri~c-
tions and local processor tlat;~ structures resitle and
where most of the performance gain for the policy
processor woultl be acliievetl.

The polic)~ processor uses the 113r~s exclusively to
fetch instrilctions and to access tlie program stol--
age card, the M \ 1 , the DlJARl', ant1 the timers.

P r o g m ~ n Stor~lge StorageWorks firmware is con-
tained on a removable program card for quick code
upgrades and to eliminate the need for :L boot reatl-
only memory (ROM) on the controller. The program
card is a PCMCIA, 2-MB flash electrically er;isable,
programmable, read-only memory (EEI'J<OM) card
t h ~ t contains the firmware image. Ilesignel-s chose
the P<:M<:IA card to facilitate code uptlates in the
field, where host-based downline loading of
firmware was not supportetl. Although the P<:M<:W

card cost more than EEPROM chips ;itt;~cIietl to the

module, the tlesigners felt that the benefits of such
a design outweighed tlie additional cost.

On each initialization, the controller reacls the
firmware image on the program card and copies tlie
image to the shared memory. The firmware exe-
cutes from the sharetl buffer memory.

Dual UART (L)I/ART) Tlie IIIIART is used for two
reasons:

1. Maintenance termi~ial connection. The main-
tenance terminill is a means of entering con-
troller system ni;in:~gement commands (with the
comnii~nd line interpreter, wliich is the user
interface for controller configuratjon tiianage-
ment) ant1 is ;11so a statns and error reporting
interface. Designers made extensive use of this
interface for debugging controller hartlware and
firmware. Use of the maintenance terminal con-
nection is optional. The interface remains on the
controller so that users can direct controller
management ant1 status reporting, if desired.

2. Failover communication between two control-
lers in a dual-redundant configuration. The com-
munication path is usetl to share configuration
and status information between the controllers.

Slgared RctJfer urid C a d w ~ W e ~ n o r j ~ The dynamic
random-access memory (1)RhM) buffer (or shilred
memory) h;rs at its heart the tlynamic R A I ~ ~ and xbi-
tration (1)lUH) chip. This chip supports tlie buffer
and cache memory accesses from the policy pro-
cessor ;lnd from the host ;inti device ports. The tlata
transfer rate supported by the sharecl memory is
approxim:~tel)~ 35 rneg;lb).tes per second (MB/s).

The DIUH chip contains error-correcting code
(ECC) hardw;~re to correct single-bit memory, to
detect niultibit errors, and to check and generate
bus parity. This fe;lture allows the controller to
survive partial memory failures, wliich was a fault-
tolerant goal for the controller.

The decision to use I) U M chips in the memory
design rather than static rantlom-access memory
(SRAM) chips led to the use of ECC. DRAiMs were
chosen because of their cost ant1 power savings
over equivalent SRAM. However. because the
designers expected large amounts of DRAM (;IS
much as 40 ,MI$) to be present on a controller 2nd its
associatetl cache moclule, the statistical error prob-
abilities were high enough to warrant tlie use o f
EC<; on the menlor): The combination of D U h I and
ECC was less costly tli;in ;In equivalent amount of

22 Vrd. 0 /Vo. J l i ~ l l 1994 Digital Techtrical Jour~ral

The Architecture and Design of HS-series StorageWorks Array Controllers

more reliable S U M . The use of parity on the buses
is a standard feature in all StorageWorks controllers.
'The bus parity feature provitles further error detec-
tion capability outside the bounds of the memory
because it covers the path from memory to or from
external host or device interfaces.

The D l u B chip also controls access to the cache
module in conjunction with slave DRAB chips on
the cache module associated with the controller.
These D M chips provitle refresh s~gnals for the
DRAM buffer or cache memory that they control;
whereas, the master DRAB on the controller motlule
provides arbitration for cache accesses that origi-
nate from the various sources on the controller
module. Slave DRAB chips can also be accessed by
the dual-reduntlant partner controller, depending
on the two controller LOCK signal states.

The controller firmware uses 8 &lB of shared
buffer memory to execute the program image, to
hold the firmware data structures, ant1 to read and
write-through cache data (if no cache motlule is
present). The i 9 6 0 ~ ~ policy processor and the host
and device data processing elements on the NBUS
can all access buffer memory.

Cache Mernoyy Each cache memory module
contains one slave DRAB chip and 16 or 32 MB of
DRAM, and also two ports into the module (one
from each controller) for use in failover. Each cache
moclule optionally contains batteries to supply
power to the chips in the event of power
failure for write-back caching and Parity RAID use.
The cache modules are interchangeable between
controller types.

P~lrity RAID XOR and Compare Hardware The
Parity RAID SOR ancl compare hardware consists of
the FX gate array and 256 kilobytes (KB) of fast
SRAM. The FX allows concurrent access by SCSI-2
device port hartlware and the policy processor. The
FX compares the XOR of a tlata buffer (512 bytes of
data) that is entering or exiting an attached device
with the SOR buffers in the fast S a w . The policy
processor uses the FX to perform compare opera-
tions at the request of a host and perform DhW
operations to move data to and from memories.
This hartlware is common across all the controller
platforms for Parity RAID and compare firmware.

SCSI-2 Device Port Hardzuare The device ports
(three or six, depending on the controller model)
are controlled by Symbios Logic (the former NCR

Microelectronic Protlucts Division of AT&T Global
Information Solutions Company) 53C710 SCSI-2
processor chips. The SCSI-2 processor chips reside
on the NBUS and access the shared-memory cache
for data structure and data buffer access. These pro-
cessors receive their work from data structures in
buffer memory and perform commands on their
specific SCSI-2 bus for read or write operations.

The Symbios Logic chip provicled the most pro-
cessing power, when compared to the other chips
available when the controllers were designed. The
designers felt that direct control of SCSI-2 interfaces
by the policy processor or a separate processor
was too costly in terms of processor utilization
and capital expense. The Symbios Logic chips do
require some policy processor utilization, but the
designers consiclered this acceptable because high-
performance architectural features in the policy
processor hardware compensated for the extra pro-
cessor utilization.

The SCSI-2 device port supports the SCSl fast,
single-ended, 8-bit interface.(The data transfer
rate supported by this interface is 10 MB/s.

Host Port Hardzuare The host port hardware
is either a CI, a DSSI, or a SCSI interface imple-
mented with gate arrays or Symbios Logic 53C720
SCSI-2 processors. The host port hardware, the only
noncommon hardware on a StorageWorks con-
troller, requires a separate platform to support each
host interface.

The CI interface is made up of a gate array ant1
CI interface hardware that performs D I M write
or read operations from shared memory or cache
memory over the NuUS. The maximum data transfer
rate supported by the <;I hardware is approxi~nately
8 MB/s.

The DSSI interface i~tilizes a Syrnbios Logic
53C720 chip coupled with a gate array and DssI
drivers to receive and transmit data to or from the
DSSl bus. The DSSI interface is 8 bits wide, and the
maximum data transfer rate supported by the DSsI
hardware is 4.5 MB/s.

The SCSI interface also uses a Symbios Logic
53C720 chip coupletl with differential drivers to
provitle a scSI-2, fast-wide (i.e., 16-bit) tlifferential
interface to hosts. The maximum data transfer rate
supported by the SCSI-2 interface is 2 0 MB/s for
fast-wide operations.

Table 3 shows the current (version 2.0) maxi-
mum measured (at the host) data transfer rate per-
formance numbers for StorageWorks controllers.

Digilal Technical Journnl W)/. 6 No. 4 Fa11 1994 23

RAlD Array Controllers

Table 3 SCSI-2 Host Interface Performance

Read Data Transfer Rate Write Data Transfer Rate
Controller (Megabytes per Second) (Megabytes per Second)

HSJ30/HSJ40* 6.7 4.4

HSD30 3.2 2.8

HSZ40** 14 8.0

" In a multihost environment

"' Measured for t h e HSZ4O-6 controller

Summary
Tlie Storage\Vorks HS-series array cont~.ollers were
tlesigned to meet tlie storage subsj7stem neecls of
both Digital and non-Iligital systems, thereby enter-
ing tlie world of open systems. Tlie architectilre for
the HSJ30, HSJ40, HSI130, and HSZ40 controllers has
achieved the initial project goals and provitles

1. Open systems capability A SCSI-2 device interklce
allows many types of disk, tape. and optical
devices to be attached to the HSJ30, HsJ~O. and
FISD30 controllers. Ille HSZ40 control lcc which is
currently a disk-only controller, provides ;I S(:sI-3
host interface th;tt ;~llows the controller to bc
attacllrd to 1)igit;ll ;uul non-Digital computcss

2. High availability. Controller fault toler;llice and
MID firmw;tre yieltled a highly ;~v;~il;lble
Storageworks storage subsystem.

The tlual-I-edi~ntlant controller configuration
allows e;tcIi of ;I pair of active controllers to
operate intlepenclently with Ihost systems. while
sharing device ports, configuration information.
;\rid status. This tlesign allows both controllers
to achieve m;~ximurn perform;~nce. The dual-
retl~~ntlant configur;ition also provitles ktult
tolerance if one controller fails, bec;r ~ ~ s r the
surviving controller serves the fhiletl control-
ler's devices to the host computers. Tlie tlu;tl-
controller configuration, conlbilletl with
Storage\Vorks controller packaging, results in
a highly ;~v;til;tble controller config11r:ttion with
built-in Fault tolerance, error recover): ancl bat-
tery backup fe;ttures.

Parity MII) controller firmware, conil,incd wit11
StorageWorks clevice p;~ckaging, ;~llows for liiglil\~
available disk configurations that are less costl!.
than mirroretl configi~r;~tions. Furthcrmorc,
I'nrity IWl) firni\vare performs auton1;itic P;u-ity
RAID man;tgement ;tnd error recovery functions

in the event of a failure ant1 utilizes sp:lre device
pools in conjunction with ~~scr-definetl Parit!!
IL\11) configur;~tion management policies. Tlie
Stor;igcWrks Parit) RAII) iml)len~ent;ltioti
exceeds the requirements of the RAll) i\dvisory
Ro;lrcl for RAID availability fe:ttures.

3. High performance. The HSJ3O/HSJ40, HSI>SO, allcl
HSZ.iO controllers achieved the respective initial
performance goals of 1,100, 800, ancl 1,400 I/Os
per seconcl. Tlie controllers met the low recluest
I:itenc). go;tls I>!- streamlining firm\v;~re where
1x)ssible ;tncl bjz introclucing write-b;lck caching.
Write-b:~ck c:tching firmw;tre clrr~maticallj.
rcduces I:~tency on all write requests, ;~ntl write-
I>nck cache hartlware provitles b;ittery Ixtckup for
cl:it;i integrity across power Etilures. Further-
more. tlie write-back cache overcomes the M I D
level 5 sn~;~ll-write penalty and high data transfer
rate inefficirncies and thus provides high perfor-
mance with Parity RrUI) disk cot~figi~r;ttio~~s.
Storageworks Parity firmware implements
nlany oftlic IMII) Advisory Bo:~rcl optiot~il perfor-
mance f e ;~ t~~rcs to protluce ;I higli-perh)rmance
RAll) solution.

A common controller processing core was
successfi~ l I) , clevelopetl for 1 lie l l~Jj0/JiS,I40,
HSI>.)O. ;ind IISZ40 controllers. Aflore than 85 per-
cent of the firniw~re is common to all three con-
troller pl;~tforms, which ;rllows h)r ease of
M ; I ~ I I ~ ~ I I ; L I I C ~ ;tnd for tlie same Look and feel for
customers. 'The ;~rchitecture ;t11cl thc tcch1io~ogy
used resultetl in a core controller clesign that
s u p l x) r t ~ ! high clat;t tsi~nsfer r;tte for all
StoragcWorks controller plath)r~ns.

Thcsc ;~chicvcrnents represent thc I;trge engi-
neering in\~cstnicnt t l i ; ~ t Digit;~l h:~s ni;ltle to move
illto thc o1)cti s!.stems market with new technology
for its storitgr solutions. These controller platforms
are the basis for future controller ;trchitectures and

The Architectzlre and Design of HS-series StorageWorks Array Controllers

platforms that utilize the knowledge and experi-
ence acqi~irecl tluring the development of the
StorageWorks HS-series array controllers.

Ackrtowledgments
The StorageWorks array controller project was the
cooperative effort of a large number of engineers
w h o sacrificed considerable personal time to
achieve the project goals. The following people and
groups contributed to the success of the product:
Hob Blackleclge, Diana Shen, Don Antlers, Richard
Woerner, Ellen Lary, Jim Pherson, Kichard Brarne,
Jim Jackson, Ron ~McLean, Bob Ellis, Clark Lubbers,
Susan Elkington, Wayne Urnland, Bruce Sardeson,
Rantly Marks, Randy Roberson, Diane Edmonds,
Roger Oake): Rod Lilak, Rancly Fuller, Joe Keith,
Mary Ruclen, Alike Richard, Tom Lawlor, Jim
Pulsipher, Jim Vagais, Ray Massie, Dan Watt, Jesse
Yandell, Jim Zahrobsky, Mike Walker, Tom Fava,
Jerry Vanderwaall, Dave Mozey, Brian Schow, Mark
Lyon, Bob Pernberton, Mike Leavitt, Brenda Lieber,
Mark Lewis, Reuben Martinez,John Panneton, Jerly
Lucas, Richie Lary, Dave Clark, Brad ~Morgan, Ken
Bates, Paul Massiglia, Tom Adams, Jill Gramlicli,
Leslie Rivera, Dave Dyer, Joe Krantz, Kelly Tappan,
Charlie Zullo, Keith Woestehoff, Rachel Zhou,
Kathy Meinzer, and Laiira Hagar. Thanks to the CAD
team, the StorageWorks packaging and manufactur-
ing tcarn, the software verification team, and the
problem management team. A final thanks to our
OpenVMS and DEc: OSWl operating system partners
and to the corporate test groups, all of whom
worked with our engineering team to ensure inter-
operability between the operating systems and the
controllers.

References and Notes

1. Irlfonnation Sjatems-Small Computer Slatems
Intetjiuce-2 (.SC.Sl-21, iLYS1 X1.131-1994 (New York:
American National Standards Institute, 1994).

2. D. Patterson, G. Gibson, and R. Katz, "A Case for
Redundant Arrays of Inexpensive Disks (RAID),"
Report iVo. IJCB/CSD 87/391 (Berkeley: University
of California, December 1987).

3. The l U I D level 5 small-write penalty results
when a small write operation does not write all
the blocks associatecl with a parity block. Tliis
situation requires disk reacls to recalculate parity
that must then be written back to the W I D level
5 unit to achieve clata reduntlancy.

4. I? Massiglia, ed., The RslDbook: A Source Book
for Disk Array Technolog.y, 4th eed. (St. Peter,
Minnesota: The RAlD Advisory Board, September
1994).

5. I? Biswas, K. Ramakrishnan, D. Towsley, and
C. Krishna, "Performance Analysis of Dis-
tributed File Systems with Non-Volatile Caches,"
ACM Signzetrics (1993).

6. Parity RAlD unit reconstruction of data and parity
from a failed array member means regenerating
the data block-by-block from the remaining array
members (see Figure 6) and writing the regen-
erated data onto a spare disk. Reconstruction
restores data redundancy in a Parity RAlD unit.

7 Metadata is information written in a reserved
area of a disk. The information, which takes up
approximately 0.01 percent of the total disk
capacity, describes the disk's configuration and
state with respect to its use in a Parity I W D unit.

8. l? Biswas and K. Ramakrishnan, "Trace Driven
Analysis of Write Caching Policies for Disks,"
ACM Sigrnetrics (1993).

9. R. Lary and R. Bean, "The Hierarchical Storage
Controller, A Tightly Coupled Multiprocessor
as Storage Server," Digital Technical Joztrnal,
vol. 1, no. 8 (February 1989): 8-24.

Digital Techrrical Journal W)l . 6 4 Fctll 1934

Policy Resolution in Workflow
Management Systems

One crunal fi117ction (fa ~oo~.k.f lo~o Inunngelrlellt s)lste/lz (Iclnl,\) is to nssig~i t~r.sl:s
to users zl'ho ar-e elifiible to carr:jl thcln out Exce~ t in s ~ / ~ l l ~ l c ~ilo~$?jlo~i~ .scenn~.los,
roles such ns se~.retcrr:]l rind ~~lcrr~rrger are 170t n st~jricier~t b~lsisjor 11eter1)iini1ig eligr-
bilitj! Additionnlo: 1VLlISs are cleplqj~ed not orzl)' ill g) . o ~ ~ p settings 6)' si?znll conzpa-
nies but also z i~or l~ l z i~ i~ l~ 6 1 1 large enteqrises. Since local 1~1ur uric1 b~rsiriess policies
have to be follou~ed, task assign~~rentpolicies for t l ~ e sanie task gerre1wl1)l dqfer fi.01)~
CoLultry to C O L L I I ~ ~ ! und, tN~erejore, ~ I L I S ~ be specqiud loc~11l)l The Poliq) Resol~ltio~z
Arcbitect~~re (PRA) 11io~le1p1'ooldes no re yei?er.nlltj~ and e.Tpr~cssrllelzess lbar~ /.ole
~nodels do and at Ibe salize tilne sllpports the i1z6lepende11t sf,ecficntio)~ of task
nssignmelztpolicies in disferent parts of a n ente~prise. PRA can be used to ~noclel
arbitrary orgc/~zi.z~ition strzictures aizd to define re~~list ic tusk assigti~~~eizt (eligibil-
it3-') rules 6y nzeulzs of precis ell^ dqi'ned orgcmizationa1policit.s Tl~us, PRA yr-o~lides
real-u~orld orga~ziz~ltions with a precise, sinzple Inearzs of expr-essing tl~eir. coniple.~
task msig~zr?ze~ztpolicies

A workflow managenlent system (WFMS) is ;I soft-
w;lre system that tnanages the flow of work
between participants or users accostling to h)rmal
specifications of business processes c;~lletl work-
flows. A workflow specifies t;uks to be performed
and their execution order. Additionally, ;I workflow
specification defines tlie inter11;il flow of data
between tasks as well as all applic;~tions reql~ired to
carry out tlie tasks. For example, ;I travel expense
reimbursement workflow specifies tlie t:wks of fill-
ing, checking and signing a form. :md reimbursing
;in amount. This workflow specifies that the form
must be signed before an amount is reimbursecl.
The workflow specific;rtion r~lso defines the flow of
the expense form between t;lsks ;~ncl tlie requirecl
spre;~tlslieet r~pplication. Finally. for each task of a
workflow, some rule bas to be in place t l i ; ~ t speci-
fies the users wllo are eligible to carry out the t;~sk.
This set of eligible ilsers is tleterniinetl at run time,
ant1 the task is subsequently assignecl to them.

One of the key issues in successfi~lly deploying
WFMSs in ;In enterprise is the correct assignment
of a given task to eligible users. A n eligible ilscr is
one who is capable of and responsil7le h)r c;lrrjring
out a n assigned task. This distinction is impor-
tant bec;ruse not ever). user who is cirpirble of per-
forming a task is necessarily responsible for it. The

successfi~l completion o f 21 task. however, often
recluires that crucir~l, irreversible decisions be made
by a person who is responsible for the task. Waking
the right decisions and then carefirl ly and responsi-
bly carrying out the task is essential to conducting
business successful I)!

The criteria used to determine an eligible user for
a task are manifold. A user must have a specific set
of capril)ilities to be ;rble to carry out the t:isk.
Additionally* the position of a user in the organiza-
tion hiel-archy antl/or the reporting structure of the
organization can tletermine if the user is responsi-
ble for the t ~ s k . Furthermore, limits placetl on
a user's decision-making ;~i~tliorit!~ can affect eligi-
bilitj: For es;~mple, not every salesperson is autho-
rized to ;lccept ;In ortler tIi;it le;itls to a significant
incre;rse in manirfacturing output. Such an orclcr
requires special ;ittent ion and internal coorrli-
nation by ;r senior sales representative. When
cost-optimized task iwsignments are made, the
experience o f the user as well as the user's skill set
has to be taken into consideration. Highly experi-
encetl users are in 111ost c:ises ex]>ensive resources,
but i~sually they can complete tasks faster 1b;111
users with averirge experience. Although users
with either level o f experience may have sufficient
experience to carry out a specific task. if deatllines

Policy Resolution in W o r k ~ o u ~ Management Systems

are involved or extreme caution with respect to
quality is necessary, a highly experiencecl user
might be appropriate. In such cases, the additional
cost would be justified.

The previous discussion demonstrates the neces
sity of a precise definition of eligible users for a
given task. Such a definition, i.e., set of task assign-
ment rules, should contain all the criteria used to
determine eligible users for the task. Early in the
development of Digital's ObjectFlow WFMS prod-
uct, the concept of roles was considered sufficient
to model the assignment of tasks to users.' How-
ever, an analysis of distributed enterprise-wide pro-
duction workflows clearly showed that using roles
as the only assignment mechanism has limited
value in deternlining eligibilitj~.~ The need for a far
more expressive, general, and flexible approach
became obvious. The analysis also revealed that
workflows are often reused in different parts of
an enterprise. A prominent example is the travel
expense reimbursement workflow, which is dis-
cussed throughout this paper. Although a work-
flow is reused, however, the task assignment
policies may differ greatly in the various parts of an
enterprise. This difference is due to the need to
adhere to local laws and/or to business-related devi-
ations from the general rules.

Based on the requirements derived from several
case studies of complex workflows, the Policy
Resolution Architecture (PRA) was developed to
provide a comprehensive way of specfling task
assignment ru1es.l To support the fact that different
parts of an organization may require different
assignment rules, P ~ I and its implementation were
designed as separate components. P lw incorpo-
rates three major elements and thus provides

Concepts that enable the modeling of any orga-
nization structure (not just roles and groups)
without prescribing structures that are applica-
tion dependent.

Tdsk assignment rules as entities in themselves,
separate from a workflow specification. This
makes it possible for each of the different parts
of an enterprise to have its own set of task assign-
ment rules for the same workflow.

A language that enables the explicit specification
of organization schernas and task assignment
rules. Specifications are processed by a compo-
nent called the policy resolution engine during
workflow execution.

Before explaining PRA in detail and providing the
rationale for its development, the paper introduces
the key concepts of workflow management. This
introduction presents a seemingly simple workflow
that specifies travel expense reimbursement, which
is later used to introduce the design objectives of
PM. Note that a real travel expense reimbursement
workflow for production is by far more complex
than the example used in this paper. A large d i s
tributed enterprise endeavors to reuse the same
workflow in all of its parts because reuse facilitates
administration and leverages the development
investment. At the same time, such an enterprise
probably sponsors numerous business trips, which
makes the travel expense reimbursement workflow
an excellent candidate to use as an example.

Workf lour Management
This section introduces a model of workflow man-
agement. The discussion begins with a survey of
preliminary work. The survey suggests the motiva-
tion for workflow management and enumerates
some areas in which workflow management is
deployed. The key concepts of the workflow model
are then used to model a workflow example, i.e.,
the travel expense reimbursement workflow. The
section concludes with a definition of workflow
management systems.

Historical Survey
Looking back in history reveals that workflow man-
agement has many roots. The most important are
office automation, software process management,
manufacturing, and transaction processing. The fol-
lowing short survey of achieved results is given
to help the reader understand the motivation
for workflow management. The discussion also
explains the choice of workflow management con-
cepts. The list of previous and related works indi-
cates the range of literature that exists.

Office Automation One of the primary roots of
workflow management is undoiibtedly office
automation. Early research led to the development
of moclels and tools to support office workers. 3-9

What emerged were not only desktop applications
that imitate concepts such as in basket, out basket,
forms, and documents but also models of the pro-
cedures that the office workers follow while doing
their jobs.QH Furthermore, systems were devel-
oped that execute the office procedures to actively
manage the flow of work within offices.".(+

Digitul Technical Joun~nl Vol 6 iVo. 4 Full 1994 27

Workflow Models

.SofI.~iwre Process n.lo~lelii~g A second major root
of workflow management is softw;ire process mod-
eling ;~nd exec~~tio~i.N-~~l:lie focus of research i l l this
area is the ;iutomated support of soft\v;lre tlevelop-
nient processes. Colicepts comprise process mocl-
els like the waterfall motlel or the spiral motlel,
deliverable code, installation and operation manu-
als, requirements documents, ant1 test c;ises.?('.~-

~ V J ~ ~ r z z ~ h c t u r i ~ z Tra~litionally~ forni;~lized proce-
tlures that are executetl repeated Iy ;Ire inherent to
nir~nufiicturing, another root of workflow manage-
ment. Manufacturing involves not only protluction
processes but also preproduction procetlures start-
ing from, for example, the release o f computer-
aided design (CAD) drawings to tlie prep;tration of
shop floor ~chedules.?~-?l

Tr~tlzsactiolz Process i~~g Another important area
that influenced the tlevelopment of workflow
management is transaction processing. After the
concept of atomicit): consistency, isolation, and
durability (ACID) transactions was developetl.
researchers proposetl more ;id~.;lncetl transaction
motlels for processing several interclej,endent tasks
that must be transactional and recover;tI~le..~~-.~')

Coordii~crtiolr TI3eor){ Enterj)r.ise iWo~lcli~lg, arid
Sj)eech Act TL9eoi-y Another area of research tliat
contributecl to the idea of workflow n1an;igement is
coordin;~tion t11eol-j: l o . l l This ;ire21 loolts :it pro-
cesses as one form of coortlination :ilicl tries to
apply interdisciplinary research results to it. "Ihe
research area of enterprise mocleling h)cuses on
the motleling of tlie wliolc n~i~ltifacetecl enter-
,,'is'., '2 '9 Enterprise activities are one part of an

enterprise that drives the enterprise processes. Tlie
speech act theor?. is an attempt to motlel tlie con-
vers;ltion between Some rese;~rch fol-
lows the direction that a workrflow is ;In interwoven
chain of speech acts.5'

.kklrljJ Applic~~tio~?-i~z~lej)eizdeiz1 Af)j)r.oacl?cls In
addition to the application-specific roots o f worli-
flow management, early appro;~clies th;~t motleled
processes intlependent of applic;rtion ;Ire;ls pro-
vided tnotivatio~i for worldlow r n a n a g e ~ n e n t . ~ ~ - ~ ~

The term process ;ippears in :ill tlie areas of work
mentioned above. Also, all tliesc research ;weas tlcal
with tlnta, e.g., tlocutnents, < : ~ l > tlr:iwjngs, rind
ortlers. Most approaches l i a \ ~ some notion of sub-
ject or ;1gent. The question arose rlmong rcse;~rchers,
Does e;~cli ;~rea need its own clefinilion of tertiis,

modeling I;tnguage. atid execution mechanism, or
is it ;x)ssil>le to ~,rovitle general concepts tliat neetl
to be customized only for a specific area of applica-
tion? This cluestion triggered tlie development of
the concept of workflow, whose goal it is to serve
as tlie general ancl customiz;tble concept.

After the specific ;~pplic;~tion sernantics (e.g., tlocu-
ments, office workers, release procedures, ant1
clrawings) hiwe been abstractetl, the basic concepts
of workflow management can be distilled from the
various appro;~clics mentioned above. liltliougli
workflow management is indepentlent of specific
application sem;~ntics, it tloes support all the ;ippli-
cation are;is citetl. I t provides an integrated set
of unclerlying concepts tliat can be custoniizetl
to model the semantics of each application area.
Workflow m;lnagemelit is an;ilogous to relational
database systems. Such systems know how to
model ant1 implement t;~bles atid horn. to process
queries; however, they do not know about the
specific concepts of ;in ;~pj,Jjcation area that are
implernelitetl I y user-tlefinetl tables, e.g., atltlresses
ant1 orclers.

The h)llowing list introduces the basic concepts
of workflow ni;m;igement by enumerating the major
aspects t11;lt make up a workflow specification:'-'

Functional ;ispect. The functional aspect
describes w11;it h:is to be done, without s;iy-
ing Iiow, by whom, ;~nd with which tlat:~. Tlie
filnctional ;~spect provitles two concepts: ele-
mentary workflows ;ind composite workflows.
Element;~ry workflows are tasks that can be car-
ried out by one person, program, or maclline.
For brevit): element;~ry \vorkflows are c;tllccl
steps. Composite \vorkflows bundle either
elerne11t;lry workflows o r other composite
workflows to IligJlei--level tasks. In this w:p;
a reuse liicl-;trchy is built. since the buntlletl
workflows m;ly very well stand by the~nselves.
Gener;~IJy tllese higher-level tasks can no longer
he acliievetl by a single person, ~>rogr;in'l,
or m;ichine Imt req~~il-e sever;~l s~lcli entities.
A workflow that buliclles other workflows refer-
ences them. As a n:iming convention, a work-
flow tliat is referenced by some other workflow
is callecl ;I subworkflow. Thc referencing work-
flow is callccl the super~vorkflow, l'lie topmost
workflow of ;I reuse hier;~rchy is called the top-
level workflo\v.

Behavior~l aspect. The behavioral aspect
describes the execution order of the subwork-
flows of a workflow. Constructs that describe
the ostler include sequence, contlitional branch-
ing, parallel branching, ancl the looping and/or
joining of parallel or contlitional execution paths.

Informational aspect. The informatioi~al aspect
is twofold: first, it tiescribes the local variables of
a workflow and the external tlata referenced;
second, it describes the flow of data from s u b
workflow to s~~bworkflo~v.

Organizational aspect. The organizational aspect
describes who is eligible to carry out a step. The
"who" can be a human (e.g., an office worker),
a program (e.g., a compiler in a software pro-
cess), or a machine (e.g., a cell in a shop floor).
The term user was chosen to represent all three.
Most available WFMSs offer the concept of roles to
model the organizational aspect. A role usually
groups a set of users. At run time, tasks are
assigned to roles and all irsers grouped by these
roles are assignecl tlie task. Although this method
of task assignment is adequate for certain work-
flows such as tlepartmental workflows, as shown
later in the section Task Assignment in a Travel
Expense Ileimbursement Workflow, roles are not
sufficient to handle workflows that are deployed
in an enterprise-wide or international setting.

The literature discusses additional aspects, e.g.,
a historical aspect and a technological aspect."
The historical aspect is used to specify the kind of
information to be stored in a historical database
during the execution of a workflow, e.g., starting
times or values of variables. Insteacl of having the
default strategy of saving all data, the workflow
specifies in the historical aspect only the important
data that must be stored. The technological aspect
allows the definition of which application program
or programs are available to carry out a step. At run
time, these application programs are made avail-
able to the user In principle, it is not possible to
enumerate all necessary aspects completely in
advance. Depending on the application area to be
modeled, additional aspects might appear and
require support.

The paper now shows how tlie key concepts
of workflow managetilent can be applied, i.e., cus-
tomized, to motlel a specific workflow type. The
example usetl is a sample travel expense reimburse-
ment workflow.

Travel Expense Reimbursement Workflow
Figure 1 shows the graphical representation of
a simplified workflow for the reimbursement
of travel expenses. (Examples of workflow lan-
guage can be fount1 in the literat~rre.~~.~(') The work-
flow consists of four steps: (1) f i l l , (2) check,
(3) sign, and (4) reimburse. The graphical represen-
tation shows the fi~nctional aspect (task structure)
as ovals and the behavioral aspect (control flow) as
solid arrows. The informational aspect (data flow)
is displayed as forms; dotted arrows indicate the
direction of the flow of tlata. The organizational
aspect is oniittetl since the paper will focus later on
this topic. The technological aspect is represented
by icons of the software a,p,plications that are avail-
able to carry out the steps. The historical aspect is
represented by icons that symbolize logs in which
information must be recorded.

Step 1 of the travel expense reimbursement
workflow, the fill step, enables a user to enter the
relevant expenses incurred during a business trip
into an electronic travel expense form. After a user
has finished entering the data, validation must take
place. The check step enables a user to look at the
contents of the travel expense form. This user is
prompted to validate the contents but cannot
change entries. If the user who checks the form
detects an error, the form is sent back to tlie user
who initially filled i t out, with a note that explains
the reason for rejection. Otherwise, the form is for-
warded to the next user who has to sign the forrn to
approve the amount. After the sign step is com-
plete, the amoirnt can be reimbursed. The last step,
reimburse, enables a user to add the amount spent
to the next paycheck of the user who requested
reimbursement.

This sample workflow is intentionally kept sim-
ple because beginning with the next section, the
paper focuses solely on task assignment rules. In
a real organizational setting, the workflow would
involve more steps and adclitional execution paths.
For example, a user who has to sign the form might
detect an error. In this case, as in the check step, the
form would be sent back to the user who initially
filled it out.

Workflow Management Systems
Managing the flow of work among users is done by
a software system called a workflow management
system (WFMS). A WFMS contains all the specifica-
tions of the workflow types (e.g., a travel expense

Workflow LModels

KEY

TASK

- CONTROL FLOW
...... DATA FLOW

ELECTRONIC FORM

\ 4 /
m a i n 0

SPREADSHEET
APPLICATION

m a i n 0

MONEY TRANSFER
APPLICATION

0 INFORMATION LOG

Figzlre 1 Tmiiel Expense Reitnb~lrse~nerzt Workjlozu

reimbursement or a capital equipment order) that
are moclelecl ant1 released for production. If a user
issues 21 request to start a workflow (e.g., if, after
a business trip, ;I traveler starts a travel expense
reimbursement workflow), the WFMS creates an
instance of the requested workflomr type. Of course,
more th;ln one instance of the sanie workflow type
can exist simultaneously. A \VFhqS assigns the steps
of 21 workflow to users accorcling to the specifietl
order of tlie behavioral, functional, ant1 organiza-
tional aspects.

In general, a WFMS performs the following
actions to execute a workflow instance:

Determine the next steps to be executed.

Determine the eligible users for these steps.

Assign steps to eligible users.

W ~ i t h)r the result of each step.

Transfer the result back to the step's superwork-
flow ;lntl record tlie step as coniplete.

The WFMS repeats these actions until all steps of
a workflow are executecl.jii7-5') This list of ;ictions
has to he slightly modified if, in addition to steps,
;I workflow cont;~ins composite workflows in its
list of subworkflows. In this case, the subworkflow

is not assigned to users and the list of actions is
;~ppliecl to each of the subworkflows.

Each user who can potentially be involved in
a workflow is connected to a WFMS by ;I private
worklist, which is a graphical representation of
:I list of steps assigned to the user. Each entry in ;I

ilser's worklist represents a task the user is eligible
to carry out. A user can participate in more than
one workflow at the same time. Normally, the user
is free to choose from the worklist any item on
which to start. In well-designed systems, tlie \Y/FhlS

autom;~tic;~lly st;~rts the application progr;ims that
the user will require to accomplish tlie work. In
this way, the user can begin work irnrnediately

Almost all prototype implementations or prod-
uct developments allow the modeling of the four
m:~in :~spects clescribed previously. The list of work-
flow m;lnagenient systenis is growing r;~pitllj: ;~nd
references to relevant literature are readily avail-
;~ble.~ '~--(~l Ikferences to literature that descriljes
the tleployment of m~orld1o.r~ nianagement systems
in ;In :~pplication are21 are rare, h o ~ e v e r . ~ ~ . (~ ~ . ~ ~ - ~ ~ -

The reminder of the paper focuses on the org;l-
nizational aspect of workflow m;inagenient. 'l'lie
paper cliscusses the tlerivation of the requirements
that concepts of this aspect must rneec ;11id then
introcluces I'ILi as the model whose concepts

Policy Resolution in Workflow Management Systenzs

address the requirements. An analysis of the travel
expense reimbursement workflow illustrates some
of these requirements. Additional requirements are
also described to provicle a more complete set.

Task Assignment in a Travel Expense
Reimbursement Workflow
The reqiliretnents that must be fulfilled by the con-
cepts of the organizational aspect were derived
from the travel expense reimbursement workflow
example, the author's project work experiences,
ant1 Marshak's "Characteristics of a Workflow
System-Mind Your P's and R's."" The following
list describes task assignment rules for each step of
the travel expense reimbursement workflow:

Fill. The fill step can be executed by anyone in
an organization who has the potential to travel.
This assignment rule enables an employee to fill
in a travel expense reimbursement form after
a business trip. (h i employee who did not travel
can also fill in a form and claim expenses; how-
ever, the check ant1 sign steps are intended to
detect such misbehavior and to reject the form.)
The user who fills in the form is referred to as
the applicant and is lmown a t run time.

Check. The check step must be executed by
a user who is able to play the role of secretary
To be able to validate the contents of the form, a
user in this role is expected to know how a travel
expense reimbursement form is structured and
how to correctly fill in the form. This user is also
expected to know the destination and the travel
dates, and if the travel actual lv took place. Not all
secretaries in an enterprise have this knowledge,
but the secretary of the applicant's manager can
be expected to know the information. This sec-
retary usually plans the trip and often the meet-
ings of the traveler. If the user who is able to play
the role of secretary determines that the con-
tents of the travel expense reimbursement form
are sound, the form is forwarded to the next
step; otherwise it is sent back to the applicant.

The overall task assignment rule is therefore:
Everyone who is able to play the role of secretary
and reports to the same manager as the applicant
is eligible to execute the check step. (Note that
the term manager means a user who is able to
play the role of manager.)

Sign. The sign step has to be executed by a man-
ager of the applicant because the manager

normally has to approve spending by subordi-
nates. IJsually, there is only one user to whom
the applicant reports and who is able to play the
role of manager. If there are two such users,
either can be responsible for signing the form
and only one has to sign it.

The overall task assignment rule is: Everyone
who is able to play the role of manager and
to whom the applicant reports is eligible to exe-
cute the sign step.

Reimburse. The reimburse step must be exe-
cuted by a financial clerk who is responsible for
the group to which the applicant belongs.

The overall task assignment rule is: Everyone
who is able to play the role of financial clerk and
who is responsible for the applicant's group is
eligible to execute the reimburse step.

The requirements thus far derived from the
example are

Organization structure clependencies. To select
one user relative to another (e.g., a user playing
the role of secretary reporting to a user playing
the role of manager) requires describing the
users, the roles, and the dependencies (relation-
ships) This description is called an organization
structure. An organization structure contains all
organizational object types like use^;" "group,"
or "role," and the relationships among them like
"reports to" or "supervises." Given such a struc-
ture, users can be selected based on their rela-
tionships to others Users can also be selected
based on attributes such as their absence status
(i.e., whether they are on vacation or on a busi-
ness trip) or their workload.

Historical access. In some cases, the eligible user
for a step cannot be determined locally, and his-
torical information is required. For example,
determining the user who can play the role of
manager in one step might require knowing
which user started the workflow. Therefore, it
must be possible to query a log of the history of
a workflow to derive the information necessary
to make task assignments.

The following are additional requirements:

Data dependency. In the travel expense reirn-
bursement example used in this paper, the man-
ager to whom the sign step is assigned can sign
for any amount. In other cases, however, this

Digital Technical Journal Vol. 6 Ab. 4 Fa11 1994 3 1

Workflow Models

sign;~tory power may 11;tve lirnit;itions. For
inst;lnce, if the an~ount exceetls ;I cert;lin v;llue, a
vice president ;inel not the manager of the ;~ppli-
cant must sign the travel expense reimbursement
f'orm. As this last example shows, task assignment
may depentl on data in the workflow.

Ilelegation. A manager who is O L I ~ of tlie office
may want to tlelegate his/her t;isks to keep husi-
ness operations running smoothly. The ;Ippro-
[xiate task assignment rule \voi~ld then h;~ve to
be extended to incorpor:ite the clcleg;~tion of
t:~sks. Depending on the status of tlie manager
(e.g., on a business trip or o n v;~c;~tion), the work
\\~ould I>e assigned to someone else (i.e., tlele-
gated). I-lowever, task 21ssignment rules that
incorporate tlelegation can be con~l>lex. Con-
sitler the situation in which a manager leaves
on 21 business trip after work h;~s ;rlreatly been
assigned. In this situation (ant1 also in the case
where a manager has an excessive amount of
work to accomplish), the m;In;lger must be able
to tlyna~~~ically clelegate some or all of the already
;issignet1 tasks. Further consitler t1i;it ;I m;inager
ma!, want to delegate tlifkrent t).j,es of tasks not
to the same user but to tlifferent users, tlepentl-
ing on the type of t;~sk. To avoid 1e;lking infor111;t-
tion or ~nakjng an inexpeclient assignment, the
t;~sk ;lssignment rule must make sure th;lt the tar-
get users are eligible to receive tlie delegated
t;~sl< ;~ssignment.

Sep;iration of tluty. Some scen;~rios recluire ;I sep-
aration of tluty, i.e., two t;isl<s must be per-
formecl by different users. For ex;lrnj,le, in the
tr;~nsfer of a large amorint of mone): two man-
:igers must sign tlie tr;insfer form to do~ible-
check the transaction. Reg:rrtling the tr:i\lel
expense reimbi~rsement workfloiv~ y.;r user n ~ h o
fills out the claim form shoultl not ;~lso sign i t .

Task :rssjgnment rules must ensure thxt there is
;I sep;~r;~tion of duty

Responsibility As previously st;~trtl, ;I sub\vork-
flow c;un be either ;I step or ;I groi111 of steps tI1;it

m;ly be ;I reuse of builtling blocks h)r larger
worl<flows. A secontl use o f ;I composite work-
flow is to explicitly express resp~nsibili t)~ for
workflows. Sometirues an applic:ition dom;iin
requires a user to take responsibility f o r ;I set of
t;wks even though the user tloes not :~ctll:~lly 42xe-
cute tlie tasks. For example, consitler ;I work-
flow that implements the start of a neni protluct
tlevelopment. The investment pl;~n clepentls on

tlie tlevelopment pl;rn, which is based on a mar-
ket aniilysis. h m;in:lger or a vice president is iisu-
ally res],onsihle for these three complex t;lsl<s
(market ;~n;~lysis, clevelopment pl;in, investment
p1;111) b ~ i t not inirolvecl in the cletailed work. In
21 WFMS, tliis situ;~tjon woulcl be modelecl ;IS ;I

world'low c;~lletl Product Development Start,
which cont;~ins tlic three complex tasks as sul,-
worldlows. 'I'lie I'roduct Development Start
workflow co~ilcl then be ;~ssignecl to a 1ii;ln;iger
or ;I vice president to model responsibilit)., l'he
assignment to this user means o111>~ th;it the user
must ackno\vleclge the start of the ;issigneel
mrorkflow ant1 therefore accept responsibilit).
for it. The assignment tloes not imply th;~t tlie
user li;~s to perform tlie cletailecl work. Tlii~s.
a \X/F.'$IS most be able to assign not only steps to
users 0i1t also con~posite WOI-kflows.

Early/l;ite ;llloc;~tion. Often, the application
sem;intics cle;~rly inclic;~tes the single user who
shoulcl execute ;I t:isk. In such cases, the rel;~tetl
task ;issigntnent rule (e.g., the role of ni;m;tger-
of applicant) I,;tases to this user at run time. In
otller scen;lrios, huwei:er, successh~l execution
of ;I t;isk req~~ires some capabilit!. that nlore than
one user possesses. This c;~pahilit). is often
exlxessetl throligh a role (e.g., financial clerk,
which is ;I role ~ ~ s ~ i a l l ! ~ pl;~yed by more t11;ln one
user in 1;lrge enterprises). 111 the single-user case,
the task is assigned t o th;it user regartlless of the
user's wol-klo;~cl; tliis process is called early allo-
cation. The user must c:ir~-y oilt the task i~oless it
is fe;~sible to tlelegate i t . In the multjj~le-uscr
case, tlie t;tsk ;lppears o n tlie worklist of ;) I I users
able to play the role. One user starts the task; in
most cases, this user. would not have tlie highest
worldoacl. Therefore, the final n1loc;ition o f the
task is m;itle not 1,). tlie \WMS hut b>. the set o f
eligible users themselves. This process is c;illecl
late alloc:;~tion. In tliis c:4se. if one user starts
work o n ;I step, the other users are no longer
allowed to bcgin the iL) Subseqiiently, their
assignment must be revoked. "Implementing
Agent <;oorclination for Workflow M:~n;~gement
Systems Using Active Database Systems" describes
a general mechanism for hanclling the revoca-
tion of;~ssignme~~ts.('"

?I'lie tr:i\iel expense reimb~~rsernent workflo\v is
usetl in the follonring eliscussion :ibout the 1jmit;i-
tions of roles as ;I I,:isis for task ;issignment rules.
These 1iniit;itions influencecl tlie major tlesign
objectives of I%\, which are then discussecl.

Policy Resolzltion in Morkflow imnagelnent Syste~lzs

Roles As Task Assignment Rules
As stated earlier, roles have limitetl use as task
assignment rules. Applying the role concept to the
task assignment rules introduced above illustrates
the 1imit;ltions. Certainly, the term role has many
definitions. In this paper, a role is an abstraction of
a set of users. The abstraction criteria are the set
of capabilities of a user. Whether or not a particular
user belongs to the set of users abstracted by a role
is defined by an explicit relationship between
a user and a role called the "plays" relationship. A
user who has a plays relationship with a role has the
capabilities definecl by that role, i.e., the user is able
to play the role. For example, if both Ann and Joe
are users who are able to play the role of clerk, then
each one has the capabilities defined by this role
and each is capable of executing the task. A user
might have a wide range of capabilities and be able
to play several roles at the same time. For example,
a user might be able to play the role of employee
and the role of manager simultaneously. Although
this definition of role is not the only one, it is very
common ancl often applie~l."*~l 52,62(>3-'0.'1

For each task assignment rule that was intro-
ducetl in the travel expense reimbursement exani-
ple, a discussion follows about the extent to which
roles support the requlrenients.

Fill. The t;lsl< assignment rule for the fill step is
the only rule of the example that can be motleletl
completely with a role. Assume that every user is
able to play the role of employee. If the fill step
is assigned to the role of employee, every user
can execute the step, thus modeling exactly the
task assignment rule of the f i l l step.

Check. Assigning tlie check step to the role of
secretary does not moclel tlie full semantics
of the desired task assignment rule. Such an
assignment models only the requirement that
:I user has to be able to play the role of secretary
to carry out the step. The assignmelit does not
moclel the ;~dditional recluirenient that only
those users who report to the same manager as
the applicant are eligible.

Sign. Analogous to the situation in the check
step, assigning the sign step to the role of man-
ager tloes not model that only a user to whom
tlie applicant reports is eligible but that any man-
ager is eligible.

Reimburse. Assigning tlie reimburse step to the
role of financial clerk ensures only that the step

is assigned to a capable user. The assignment
cloes not fulfill tlie additional requirement that
this user must also be responsible for the group
to which the applicant belongs.

The discussion of the last three task assignnient
rules demonstrates two tightly coupled limitations
of using roles to model requirements.

1. The concept of roles cannot express organiza-
tional dependencies, such 21s relationships
between users (e.g., "reports to" ;~nd "responsi-
ble for"). It only relates users to roles by a plays
relationship. Furthermore, roles tlo not provide
a means of introducing additional objects of
organization structures like "group" ;itid "depart-
ment." The only two objects the concept of
rolcs provides are "role" and "user."

2. The concept of roles, therefore, does not pt-o-
vide a sufficiently sophisticated language to
express, for instance, that a user not only has
to play a certain role but also has to relate to
some other user in a particular way (e.g.,
"reports to" a particular user).

In atltlition, the other requirements like historical
access, delegation, and separation of duty cannot
be modeled at all using roles.

To overcome these limitations, pRi\ introcluces
tlie concepts of organization schema ant1 organiza-
tional policy and the Policy Definition Language.
A brief introduction follows. Details are presented
in the section Policy Resolution Architecture.

Organiz~~tion Schema
One of the fundamental concepts of pR.4 is a freely
tlefinable organization schema. An organization
schema contains all types of organizational objects
ant1 relationships that are available for mocleling
a particular organization. Figure 22 gives an exam-
ple of an organization schema. If a defined schema
is instantiated, it contains an organization struc-
ture. Since other objects besides roles are required
to motlel an organization, relationships other than
"plays" must be available. Some necessary atltli-
tional relationships are "reports to," which relates
two users, and "is responsible for" and "belongs to,"
which relate a user and a group. A freely definable
organization schema, such as the one provided by
IlR.4, allows designers to define roles as required
by the workflow application.

Such a freely clefinable organization schema may
seem to be a Luxury, ancl a fixed organization

Digilnl Tecbnicrrl Journal b l 6 iVo 4 PLIII 1994 3 3

Workflow Models

PLAYS ? ROLE

REPORTS- - - RESPONSIBLE
.............. [7 GROUP

,,
I , ,

USER

I SALES I MANUFACTURING D ENGINEERING I ADMINISTRATION D

NINA KEN SUSAN MATT CHARLES MIKE

(6) SalnpIe Organization Structure

Figz~re 2 SnmJle Organization Scbenra lind Organization Strztct~~re
for the Travel E,xpeiz.se Kci~rzbursc~tze~~t Excunple

schema that provides the most relevant objects and
relationships may seem sufficient. An analysis of
various organization structures 111 different enter-
prises clearly shows, however, that a single organi-
zation schema is not adequate for all situations
in which WFiMSs can be deployed. An enterprihr
that tleploys a schema in which the semantics of
the motleled objects are fixed has to follow the

semantics conipleteljl. Consequently, S L I C ~ ;I

schema does not meet enterprise-specific needs.
Figure 2a shows a graphical representation of a

sample schema for the travel expense reirnburse-
rnent example. Although this schema may appear
general and an adequate alternative to ;in all-
embracing schema, it tloes not contain req~~iretl
organizational objects such as task forces with

34 Vol. 6 IVO. 4 Fa11 I994 Digital Technical Journal

Policy Resolz~tion in Workflow Management Systems

a limited life span, committees, and clepartments.
Also, this sample schema does not consider objects
or relationships necessary for modeling delegation
and relocation of employees. Figure 2b displays a
superficial organization structure, i.e., an instantia-
tion of the schema. Objects like user and role are
depicted as icons, and relationships are depicted as
arcs and solitl, dashed, and dotted lines between
the icons.

Approaches that go beyond using roles as a basis
for task assignment commonly provide organiza-
tional objects in addition to roles and users, usually
group and/or department 0bjects.~~Y597~ 'The litera-
ture contains evidence that the schemas and the
t'uk assignment rules are fixed and have to be used
as they are. Additionally, these approaches do not
separate the workflow from the workflow specifi-
cation, which makes the reuse of a workflow in a
different organizational setting very difficult.

Orgunizal-ional Policies As Task
Assignment Rules
A second fundamental PRA concept is that of an
organizational policy, which up to this point has
been called a task assignment rule. An organiza-
tional policy specifies all the eligible users for a
task by stating the criteria a user must meet. These
criteria can include a role or roles that a user has
to be able to play and relationships that a user has to
have with other users or groups.

Figure 3a shows an example of an informal orga-
nizational policy for the sign step. This organiza-
tional policy specifies that if the WFMS is to assign
the sign step, it will assign the step to the manager
of the applicant if the amount is less than $1,000.
Otherwise, it will assign the step to the vice presi-
dent responsible for the applicant's group. A more
advanced rule would not fix the amount at $1,000
but would make this amount dependent on the
authorization level of the manager, as illustrated in
Figure 3b.

The Policy Definition Language is PRA's formal
language for specrEying organizational policies.
Policies written in this language are precise and
executable by an execution engine called the pol-
icy resolution engine. Each time the WFMS is about
to assign a step, the system evaluates the corre-
sponding organizational policy to determine the
set of users who can execute the task.

Policy Resolution Architecture
\WMSs operate in global, open, and distributed
environments and in group, department, enter-
prise, and multiple-enterprise settings. The
enterprise-level deployment of workflows is pos-
sible only if the underlying concepts and sys-
tems are developetl appropriately. PRA is therefore
based on several design principles that ensure a
general approach that supports enterprise-level
deployment.

WORKFLOW TravelExpenseReimbursement
STEP sign
CRITERIA IF amount < 1000

THEN manager of applicant
ELSE VP responsible for applicant's group
ENDIF

WOl?KFIBW TravelEkpenseRe~sement
STEP sign
CRITERIA IF amount < authorization level of applicant's manager

THEN manager of applicant
ELSE VP responsible for applicant's group
ENDIF

Figure 3 Informal Organizational Policies for the Sign Step of the
Travel Expense Reimbursement Workflow

Digital Tech~rical Journal Val. 6 No. 4 Full 1994 3 5

Workflow iModels

Design Pritzciples
'l'he I'RA clesign principles are reusability securit!:
gener;~lit): clynaniics, anel clistribution.

1~errscrDifitj~ In the travel expense reimbursement
example, the sign step was tnodeletl to approve
travel expenses. Other workflows, like c;ipit;il
eq~~ipment orders, can reuse the sign step for sitiii-
I;lr t;~sl<s, e.g., to approve an order. If ;in org;iniz;~-
tional policy were attached to the step type itself,
this ;~ssignrnent rille m~ould serve to determine eligi-
ble i~sers independent of the workflow in which
tlie step is reused. Viewetl from an organiz;~tion;rl
~xrslxct ive, however, the reuse of steps in cliffer-
ent \i~orktlows I-ecl~~ires several policies. For ex:ini-
ple, the signing of a travel expelise reimbursement
form is carriecl out by a manager of tlie ;ipplic;int.
wl ie re ;~~ the signing of a capital equipment order
for an ;Imouut that exceetls a certain value is c;~rriecl
out I,), ;in ;~ppropriate vice president. T1ierefo1-e.
the sign step in the context of a travel expense reitn-
bursetnent worl<flow has an organiz;itional polic).
tIi;it defines the m;ln;lger of the applicant to I>e eligi-
ble, whereas tlie sign step in the context ol'the cap-
ital equipment orcler worldlow has a different
~x)'lc): one that defines an appropriate vice presi-
dent 21s eligible for the task.

'T'he observ;~tion that ;I policy for a step tlel>encls
not only on the step itself but also on the workflow
in which the step is retrsecl led to the decision

to niake organizational policies objects in them-
selves. independent of a workflow specific;~tion.
Organizational policies nanie not only the step in
which they are usecl but also the surrounding work-
flow. The design of organization;ll policies for a
step tlepencls on the context in which the step is to
be reusecl.

As mentioned earlier, making organizational poli-
cies intlepentlent objects allom~s different org;~ni-
zation strl'ctures to reuse a workflow. To achieve
such reuse, each organizational setting h:~s its own
set of organizational policies for the workflow to I,e
reusecl. 'l'liese organization;~l policies are t;~ilorecl
to the specific needs and circumstances ol the org;l-
nizz~tional setting.

0rg;iniz;itional policies can theniselves be reusecl.
1)ifferent steps may require the s;lme set oleligihle
users, and , tlierefore, one policy would I,e suffi-
cient for more than one kind of step (e g., sign ancl
fill) or for more t1i;ln one use of the same liincl of'
step. For example, a manager signs not onljr travel
expense forms but also capital ec~~iiprnent orclers.
In I>otli workflows, the organization;~l policy t h ; ~ t

defines the manager of the applicant del,e~ltls o n
the au tliorization level. Both workl'lows can reuse
tlie sign step, as can be seen in the policy shown
in Figure 4;i. If the authorization level clepends o n
the workflow, the policy changes to txke into con-
sicler;~lion tlie specific kintl of workflow, as shown
in Figure 4b.

(a)

WORKFLOW TravelExpenseReimbursement I CapitalEquipmentOrder
STEP sign
CRITERIA IF amount < authorization level of applicant's mnager

THEN manager of applicant
ELSE VP responsible for applicant's group
ENDIF

(b)

WORKFLOW TravelExpenseReimbursement I CapitalEquipmentOrder
STEP sign
CRITERIA IF amount < authorization level of applicant's

manager depending on workflow type
THEN mnager of applicant
ELSE VP responsible for applicant's group
ENDIF

Policy Resolution in Workflow Munage?nen t Systems

Security Because changing an organizational pol-
icy may affect daily business operations, all users
should not be able to make changes at will. For
example, a user (applicant) should not be able to
approve his/her own travel request. Organizational
policies are therefore objects that must be properly
secured to prevent users from performing unau-
thorized tasks. The decision to design organiza-
tional policies as objects makes it easier to secure
the policies, because security mechanisms such as
access control lists (ACLS) can be applied directly
to objects.'5

Designers considered and rejected the alter-
native approach of securing the workflow specifi-
cation and, consequently, the organizational
policies included in the specification. Workflow
types do have to be secured to prevent unautho-
rized changes; however, securing the workflow
specification would allow those who are eligible
to change the workflow type to also change the
associated organizational policies. Such an all-
encompassing security design inhibits the separa-
tion of duty between workflow designers who care
about how a business process is implemented by
a workflow and organization designers who care
about the organization structure and the user capa-
bilities ancl responsibilities. Protecting worldlows
independently of organizational policies allows
users to modify a workflow without allowing them
to modify organizational policies ant1 thus gain or
grant unauthorized eligibility. Similarly, organiza-
tion schernas and organization structures must be
securecl independently to prevent users from
changing roles or relationships to gain or grant
unauthorizetl authority.

Ge~zernlity Although several standard organiza-
tion structures prevail-strong hierarchical, matrix-
shaped, function-oriented, ant1 networked-hybrid
organization structures exist, which contain a myr-
iad of anomalies and exceptions. Independent of
their organization structure, most enterprises have
business processes that are potential candidates for
a WFMS implementation. A WFMS that claims to be
able to implement business processes in all kinds of
enterprises must therefore be able to support all
possible organization structures. A fixed organiza-
tion schema is inadequate for such a universal
implementation capability. Consequently, Pw
supports the modeling of arbitrary organization
schemas and allows WFMSs to implement any orga-
nization that might cxist.

Following this general approach, it is apparent
that a fixed set of assignment rules is also inatle-
quate. The PRA design hence provides a language
that enables users to define task assignment rules
(organizational policies) as required by the work-
flows of an enterprise.

Dynamics Organizations change for many rea-
sons, e.g., employee numbers fluctuate, restructur-
ing takes place, groups join or split because of new
product strategies, etc. Business operations and
therefore 'ix~orkflows, however, must continue unin-
terrupted. To do so, the organization structure and
the organizational policies of a \WMS must change
to reflect the changes in the real organization. The
decision to separate workflows from organization
structures and organizational policies enables users
to change versions independently. For example, an
organizational policy can change while a workflow
that uses it is running. If the change takes place
before the WFMS assigns the step to a user, the
WFMS will use the new version of the organiza-
tional policy instead of the old version. Policy
changes result in neither the shutting down of the
WFMS nor the stopping and restarting (from the
beginning) of the workflow. This independence
allows WFMSs to deal with the dynamics of an orga-
nization and make correct task assignments while
changes are taking place.

Distributiorz Not only are enterprises becom-
ing more tlistributed, but they are also increasing
their worldwicle operation. Nations have different
local laws and policies because they clecide
autonomously on these issues. A local subsitliary
has to adhere to local law, even though it belongs
to a company that operates worldwide. For exam-
ple, U.S. companies have a position called vice
president. A U.S. company may have the rule
that contracts with external suppliers of manu-
facturing parts must be signed by the vice presi-
dent of manufacturing. If the U.S. company has a
German subsidiary, by German law, this subsidiary
is a company in itself and must have a person called
Ceschaftsfuhrer who is responsible for the opera-
tions of the company. If the subsidiary wants to
enter into a contract with a supplier, German law
requires the GeschLiftsfiiihrer to sign the contract
even though the U.S. corporate organizational pol-
icy requires the vice president of manufacturing
to sign. Although the same type of workflow is
running in both countries, e.g., the contract with

Digital Tecbrricul Journal Vol. 6 No. 4 Fa11 1994 37

Workflow Models

external supplier workflow, tlie organizational
policies for the approval step differ. The U.S.
version of the organizational policy specifies the
vice president of manufacturing is the only eligible
user, and the German version specifies that the
Gescbaftsfubrer is the only eligible user.

Domains were introduced to deal with the issue
of autonomous policies. A tlomain is an abstract
entity of management. Organizational policies as
well as workflows are relilted to tlornains. The pre-
vious example might involve two clomains: "USl\"

and "GERIMANY." (The tlornains coi~ld be further
sitbdivided.)

The principles just discussed guided the I'lW
design. As mentionetl in the previous section,

defines tlie concepts of organization schema,
organizational policy, ant1 a formal language to
model policies. In addition, I'M defines interfaces
for an execution engine ant1 their use by a WFMS. A
detailecl discussion of tlie PRA components follon~s.

Organization Schema and
Organization Structure
The PRA organization schem;~ is a set of objects ancl
relationships that can be freely defined, thus
enabling users to model arbitrary organizations.
Each member of the set can be instantiated to popu-
late an organization schema, tl~at is. to produce ;In
organization strilcture. PRA ;illows users to cleflne
constraints on the organiz;ltion structure to avoicl
erroneous structilres. For example, if an enter]>r~se
has the policy that an employee must not report
to more than two people, I'RA enables the user to
define a constraint that specifies that one person
can be related to only two others through a "reports
to" relationship. If a motleler adds a third reporting
line, the system detects the violated constraint.

Organizational Policy
An organizational policy specifies a set of eligible
users for a given workflow, which can be either ele-
mentary (a step) or coml>osite. A set of irsers is not
stable ancl therefore fixed but specified through an
expression called an organizational expression. An
organizational expression specifies the selection of
users with particular properties from an organiza-
tion structure For example, an expression might
enumerate users, select all users able to play a par-
ticular role, or select a user related to some other in
;I specific way. Additionally, organizational expres-
sions can refer to the history of a workflow or to its

internal data, such as local variables, and thus be
dependent on the workflow state. Consequently,
the set of users for the same step in two different
instances of the same workflow might be differ-
ent. Consider, for example, the travel expense reim-
bursement workflow, with the user selection for
the sign step dependent on tlie authorization level.
In two instances of the workflow, the amounts to
be reimbursed might differ such that different peo-
ple, e.g., the manager ant1 tlie vice president, must
execute the two sign steps.

To provide a general meclialiism for determining
;I set of eligible users for a workflow, Prw organizx
tional policies accornmoclate operations in addi-
tion to executing a step or taking responsibility for
;I composite workflow. l>eJeg;~ting a workflow and
undoing a workflow are two examples. To delegate
a workflow, an organiz;~tional policy has to ensure
that both the person who tlelegates tlie workflow
;111tl the person to whom the worldlow is assigned
are eligible users. The operation of undoing a work-
flow (i.e., to undo the results acliievetl thus far) and
starting again can result in wasted effort and unre-
coverable work. Therefore, a WFMS must carefully
choose eligible users for this operation.

To (leal with various workflow operations, a P M

organizational policy rclates a workflo\v type and
one of its operations in a given tlomain to an organi-
z;~tion;~l expression. An organizational policy is
tlefinecl as the tuple <workflow type, operation,
clomain, organizational expression>. For example,
tlie organizational pol icy for the f i l l step in
the tr;~vel expense rei~iibursement example is
<Tr;iveIExpenseRein~bursement.Fill, execute, IJSA,
'every user who plays the role of employee'>. Since
an :~pplicant should be able to undo the step ;mcl
start again, the WFMS must also specify the organi-
zational policy <TravelExpenseReimbursement.FilI.
i~ndo, IJSA, 'the user who started fill'>. (The next
section describes PRA's formal language for specih-
ing organizational policies.)

When a WFMS determines that a workflow in
;r particular domain is to be executed, it calls
the policy resolutio~l engine, which looks for the
;ippmpriate organization;~l policy ;inti evaluates
its organizational expression. 'l"lie engine returns
tlie results of the evaluation, i.e., tlie set of eligible
users, to the W M S , which sul~sequently assigns the
workflow to those users. One org;~nizational policy
can be reused for several wor!<flow types, clomains,
etc., by entering a set in the appropriate element
of the tuple. For example, if tlie organizational

38 W1. 6 No. 4 Fc111 1994 Digital Techtrical Journal

Policy Resolution in Workflow Management Systems

policy for the fill step of the travel expense reim-
bursement workflow is the same in the U.S.
as it is in Europe, the policy could be modeled as
<TravelExpenseReimb~~rsement.Fill, execute, {USA,

EUROPE), 'every user who plays the role of
employee'>.

Policy Definition Language
From the organizational viewpoint, the following
elements are necessary to run a workflow: an organi-
zation schema together with its instantiation, the
organizational policies for this workflow, and the rel-
evant organizational expressions. To describe these
elements in a formal way, PRA defines a language
callecl the Policy Definition Language (PDL), which
consists of several parts. The first part enables the
definition of an organization schema and its popula-
tion. The second part is concerned with organiza-

tional expressions. Finally, the third part supports
the definition of organizational policies.

The following figures illustrate the PDL for a sam-
ple organization schema and organization struc-
ture, some organizational expressions, and some
organizational policies for the travel expense reim-
bursement workflow. Figure 5 shows the PDL for
the organization schema displayed in Figure 2a. The
POL for the instantiation displayecl in Figure 2b
appears in Figure 6.

The organization schema definition part of the
PDL lool<s like a data definition language (DDL) in a
relational database. Two differences exist, though:
(1) PDL distinguishes organizational object types
from organizational relationship types, and (2) PDL
allows complex data types (e.g., sets as attributes).
If a policy resolution engine is built on top of a rela-
tional database, a compiler or a translator within

ORGANIZATION-TYPE Role
ATTRIBUTES name: String

authorization-level: set(task, amount);
Keys name;

ORGANIZATIOE-TYPE Group
ATTRIBUTES name: String
KEYS name;

ORGANIZATION-TYPE user
ATmLIBUTES -: String

office-tel-#: String
e-mail: String
absence: {vacation, ill, business, available)

Keys name;

RELATIONSHIP-TYPE Regorts-to
FROM User
TO User
ATTRIBUTES kind: {line, functional, none)

RELATIONSHIP-TYPE Plays
FROM User
TO Role
ATTRIBUTES duration-fran: date

duration-to: date

RELATIONSHIP-TYPE Responsible-for
FROM User
TO Group

RELATIONSHIP-TYPE Belongs-to
FROM User
TO Group

Note that, for sinplicity, we assume user names to be unique. In reality,
this is not the case and the modeling m s t deal with nonunique names. I

Figure 5 Policy Definition Language for the Sample Organization Schema Shown in Figure 2a

Digital Tecbnicnl Journal Vo1. 6 /\lo. 4 Fa11 1994 39

\Vorkflow Models

Role "Employee", {)

"Manager", { (TravelExpenseReimbursement .Sign, 1000).
(CapitalEqui~anentOrder.Sign, 5000))

'FinancialClerkf' , { 1
"Secretary", { 1
'Engineer'' , (1
..vp~ ((TravelExpenseReimbursement.Sign, *),

(CapitalEquipmentOrder-Sign, *) I

Group "Sales"
"Manufacturing"
"Engineering"
"Administration"

User "Al", ' 111 125-5589", "al@center.com", available
..~i~~,, , " [I] 125-5590", "nind@center. com", available
-Ken,, "[I] 125-5601", "ken@center.ccan", available

'Susan", "[I] 125-5609", "susan@center.comcan', business
'Matt", "[I] 125-4499", "n!dtt@center.com", available
"Charles", '' [l] 125-4580", "charles@center .corn1', available
"Mike", "[I 125-0101", "mike@center.com", available

Reports-to "Al" , n~ina,, , line
"Ken", ,,Nina,, , line
tt~i~,, , "Mike", line

"Susan", "watt", line
"Charles", "Matt", line
,,Matt,,, ,\Mike,, , line
"Mike", ,, ,, none

Plays "Al", "Employee", 01-02-88, 0-0-0 (* open ended *)
"~1" "FinancialClerkU, 01-02-88, 0-0-0
yqina,, , "Emgdoyee,', 01-02-90, 0-0-0
,,Nina,, , "Manager", 01-02-90, 0-0-0
,,K~~,, 'Bnployee", 01-02-91, 0-0-0

"Ken", "Secretary", 01-02-91, 0-0-0
"Susan", "Bngloyee", 01-02-92, 0-0-0
"Susan", "Secretary", 01-02-92, 0-0-0
"Matt", "hrployee", 01-02-88, 0-0-0
"Matt", "Manager", 01-02-88, 0-0-0
"Charlesff, "mloyee", 01-02-88, 0-0-0
"Charle~~~, "Engineer", 01-02-88, 0-0-0
"Mike", "Employee", 01-02-90, 0-0-0
"Mike", ,,VP,, 01-02-93, 12-31-97

Responsible-for "Al", "Sales"
"Al", "Manufacturing"
"Al" , "Engineering"
"Mike", "Sales"
"Mike", T4anufacturing"
"Mike", "Engineering"

Belongs-to "Al", "Administration"
yqinan "Fngineering"
\,Ken" "Administration"
"Susan", "Administration"
"Matt", "Engineering"
"Charles", "Engineering"
"Mike", ,, ,,

Fig~ise 6 Policj! Defirlitio,? Lrri7,y1,1~igc~J)i~ Ilnc S L I /) I ~ / ~ O~~g~l1zizc6ltioiz
t c t (s t i ~ i o ~) 0 1 I F i e 6

40 W)I. 6 :Vo. 4 Fall 1994 Digital Tecb~ricnl Jorrr~rrd

Policy Resolzltion in Workjlozu Management Systems

the engine translates the organization schema defi-
nition part of PDL into a set of DDL st:ltements.

Figure 7 lists the organizational expressions
required to formulate the organizational policies
for the travel expense reimbursement workflow.
Note that the organizational expression for ernploy-
ees selects all users who pliiy the role of employee.
The RETURNS statement indicates the search for
users. The definition of the plays relationship type
in Figure 5 indicates that the employee is of the
type role. This information is sufficient to formu-
late a query to the underlying database system in an
implementation of a policy resolution engine.

The PDL for the organizational policies for the
travel expense reimbursement example appears in
Figure 8. The WFMS applies the first organizational
policy when assigning the fill step in a travel expense
reimbursement world'low. The policy is valid in
three tlomains, USA, EUROPE. and ASL4, for the exe-
cute operation, which has no parameters. The pol-
icy engine returns a set of all users who are able to
play the role of employee. The second policy listed
in Figure 8 retilrns a set of all users who play the

role of secretary and who report to the same user
as the applicant.

Independent from the travel expense reimburse-
ment example are the sample separation of duty
and delegation policies shown in Figures 9 and 10.
The organizational policy that specifies separation
of duty ensures that the user who signs the expense
form is different from the user who fills out the
form. The policy that models the delegation opera-
tion contains a parameter that specifies to which
person the sign step is to be delegated. Only the
manager of the applicant can call this operation
and then only if the parameter specifies either the
next higher manager or the responsible vice presi-
dent. The step can be delegated only to one of these
two users.

Since the PDL is well defined, it can be useti not
only by designers to model organizations and poli-
cies but also by developers of graphics-oriented
tools. Such tools could present graphical symbols to
users to be manipulated. When a user decides to
commit the changes, the tool generates a PDL script,
which is fed into the policy resolution engine.

ORGANIZATIONALNALEXPRESSION amgloyees()
RETURNS User: user

user plays employee

ORGANIZATIONALNALEXPRESSION secretaries0
RETURNS User: user

user plays secretary

ORGANIZATIONAL-EXPRESSION manager-of(User: a-user)
RETURNS User: user

a-user reports-to user

ORGANIZATIONAI-EXPRESSION subordinates-of(User: a-user)
RETURNS User: user

user reports-to a-user

ORGANIZATIONAI-EXPRESSION group_of(User: a-user)
RETURNS Group: group

a-user belongs-to group

ORGANIZATIONAINALEXPRESSION VP_responsible-for-oup-of(User: a-user)
RETURNS User: user

user plays VP
IWPERSECTION
user responsible-for group-of(a-user)

ORGANIZATIONAL-EXPRESSION executing-agent(Workf1ow: a-workflow)
RETURNS User

(* prwided by the historical services of WFMS *)

Fezire 7 Orgunizational Expressions for the Travel Expense Reimbursement Example

Digital Technical Jourtlnl Ibl. 6 No 4 Tall 1994 41

Workflow Models

ORGANIZATIONAL_POLICY
WORKFLOW T r a v e l w s e R e i m b u r s e m e n t . F i l 1
OPERATION Ekecute ()
DOMAIN USA, EUROPE, ASIA
ORGANIZATIONAL~EXPRESSION employees ()

ORGANIZATIONAI-POLICY
WORKFLOW TravelEnpenseReimbursement.Check
OPERATION Execute ()
DOMAIN USA, EUROPE, ASIA
ORGANIZAT10NaI~ExPRESS10N

secretaries()
I ~ E C T I O N

subordinates-of(
manager-of (

executing-agent (
TravelEkpense~eimbursement.Fill)))

oRGANIZATIo~NALPOLICY
WORKFLOW TravelExpenseReimbursement.Sign
OPERATION Execute ()
DOMAIN USA. EUROPE, ASIA
ORGANIZATIONAL_EXPRESSION

manager-of (

executing-agent (

TravelExpenseRehbursement.Fil1))

ORGANIZATIONALNALP0LICY
WORKFIX)W havelExpenseReimbursement.Reimburse
OPERATION Execute ()
DOMAIN USA, EUROPE, ASIA
ORGANIZATIONAL-EXPRESSION

financial-clerks0
INTERSECTION

User: user responsible-for
groug_of (
executing-agent(

Travel-seReimbursement.Fil1))

ORGANIZATIONALNALPoLICY
WORKFLOW TravelmpenseReimbursement.Sign
OPERATION Execute()
DOMAIN USA, EUROPE, ASIA
ORGANIZATIONAL-EXPRESSION

manager-of (
executing-agent(
TravelExpenseReimbursement.Fil1))

DI-E
executing-agent(

Trawl~enseReimbursemsnt.Fil1)

Figure 9 Organizutbnal Policj! jiw the Sep~imtion of Duty

Approaches like the ones mentioned earlier in users for a workflow. None of these approaches
the paper provide a fixed set of types for modeling provitlcs a language like PDL that can freely define
an orgiinization or a fixed set of h~~ict ions, such ;IS the organizational aspect as the application seman-
"role player" or "supervisot;" from which to select tics requires.

4 2 H)l . 6 No. 4 Fall 1994 Digital Tech~ticnl Jorrrnnl

Policy Resolution in Workflow Management Systems

ORGANIZATIONAL~POLI(N
WOlwFLOW TravelExpenseRehbursement.Sign
OPERATION Delegate (User: a-user)
DOMAIN USA, m O P E , ASIA
ORGANIZATIONAI~EXPREsSIoN

IF a-user IN
(manager-of (

manager-of (
executing-agent (
Travel-enseRe-s-t.Fil1)))

OR
VP-responsible-form-of(
executing-agent (

Travel~seReimbursement .Fi l1)))
THEN

manager-of (

executing-agent(
have1~seReimbursement.Fill))

Figure 10 Organizational Policy for the Delegate Operation

Policy Resolution Engine
The policy resolution engine is a mechanism that
evaluates organizational policies for a WFMS. Serving
as a base service, the policy resolution engine
manages organizational policies and organizational
expressions, as we1 l as the organization schema and
its population. The engine also provides interfaces
for the clefinition, modification, and evaluation
of these objects. The interfaces are distinguished
by the kincl of service they provide. There are basi-
cally two kinds of interfaces: evaluation interfaces
and management interfaces.

Evaluation Interfaces Policy resolution engine
clients use evaluation interfdces to evaluate organi-
zational policies or organizational expressions
when necessary. The engine provides four evalua-
tion interfaces: two for organizational policies
("resolve" and "conform to") and two for organi-
zational expressions (also "resolve" and "conform
to"). The resolve operation for organizational poli-
cies expects a workflow reference and one of its
operations as input values. This operation selects
an appropriate organizational policy, evaluates it,
and returns a set of users eligible to execute the
given task of the workflow. The conform to opera-
tion for organizational policies expects a workflow
reference, one of its operations, and a user as input
values. This operation resolves the appropriate
organizational policy for the workflow and checks
whether the user is contained in the set of results
for that organizational policy (i.e., if the user con-
forms to the policy). If the user is contained in the

set of results, the conform to operation returns the
value "true"; otherwise it returns the value "false."
Policy resolution engine clients use this operation
to validate a request by a user to execute a certain
task of a workflow.

The resolve and conform to operations for orga-
nizational expressions work analogously. Instead
of a workflow reference, the operations expect
the name of an organizational expression as input.
The operations evaluate the named organizational
expression and return the set of results, which
is used if the resolve operation is called. The con-
form to operation returns true and false values as
described in the previous paragraph.

Management Interfnces Management interfaces
are used to define, mod~fy, or delete organizational
policies, organizational expressions, or organiza-
tion schemas and their populations. These inter-
faces look like the following operations that are
provided for organizational policies: create, delete,
modify, list, get. The create operation creates an
organizational policy; the delete operation deletes
a policy; the mod~fy operation allows users to
change an organizational policy to adjust to new
requirements; the list operation returns the identi-
fiers of all policies; and the get operation returns
the complete description of a policy.

Designers do not call these management inter-
faces directly, since they comnlunicate their
changes through user-friendly interfaces or tools.
These tools are either graphics oriented or language
oriented. In a graphics-oriented tool, a designer

Digital Techtricnl Joua-nal Vol. 6 No. 4 Fa11 1994

Workflow Models

manipulates icons ancl graphical synibols, which in
t~lrn res111ts in calls to the appropriate Iilanagement
interfaces. Alternatively, a graphics tool can gener-
ate ;I I-'I>L script according to the nianipi~lations of a
riser ancl submit this script to the policy resolution
engine. In this case, the engine interprets the sub-
mitted script and changes its internal state ;~ccortl-
ingly. Language-oriented tools enable ;I designer to
tlirectly express changes using 1'I)I.. These tools take
sj>ecifications and translate them into n1;inagenient
interfi~ce calls. Of course, they can also submit the
1;lnguage specifications tlirectly as P1>1. scripts to
the policy resolution engine. as tlescribed above.

Legmy DntaOases Many large enterprises 1i;lve
developetl databases that contain some or ;i l l of the
organizational data the policy resolution engine
needs to evaluate organizationill policies. These
tlatabases, called legacy dat;~b;lses, niigllt be self-
implemented or based on stan~l;~rds efforts like
those related to providing directory services on
networks, i.e., X.500.-' In general, organizations
must tleal with one of the following scenarios:

No legacy tlatabase exists. N o existing dat;~base
1x1s to be considered, ant1 the policy resolution
engine can use its own tl;~t;lbase to Ix~ild 1113 org;~-
nizationnl knowledge.

Legacy databases contain all relevant clata. To
use the policy resolution engine, the tlatabase
must provide a sufficiently expressive query
interface, on top of which queries issuetl fro111
the engine can be evali~atetl. The o~1l.y ;~tlclitional
information that has to be storetl is org;lniz:l-
tion211 policies and organiz;~tion;il expressions.
The or,ganization has to choose whether to
extend the legacy databases or t o use the
database within the policy resolution engine.

h legacy d;~t;tbase contains some relevilnt cl i i t ;~ .

In atltlition to organizational policies ilncl orga-
niz;~tionnl expressions, organiz:ition;~l objects
and re1ationshi.p~ must be storetl in either the
legacy database or the d;rtabase 01 the policy res-
olution engine.

If the relevant tl;ita is stored in several databases,
the qitrrjring interface nii~st be built in si~cli ;I way
that tlie policy resolution engine can issue the nec-
essary clueries, which might span several datab;~ses.
Furthermot-e, semantics issues have to be dealt
with in heterogeneous enviro~~ments.-5--"

Architecturwl C o ~ ~ s i ~ l e r ~ ~ t i o i ~ s - C Z i e ~ ? t ~ of a I-'o/icjl
Resolrltioj~ Etr'yitrc From an architectural point o f
view, there ;Ire two possible ways to design a policy
resolution engine:

1. Incorl>or;tte tlie policy resolution engine into
a W,MS. The engine woulcl be a module. whose
operations ;ire liidtlen by the exported inter-
faces of tlie W/I-'MS. IUI calls to the engine opera-
tions wo~~ l t l I)e ninde tlirough the interface of
the WFMS.

2. Make the policy resolution engine an indepen-
dent component. Tlie engine would be a server
with a WFMS system as one of its clients. All
clients of the engine, including the WklS, woultl
be able to tlirectly ;tccess tlie exported oper;t-
tions of the engine.

PRA recomn~encls thc implementation of :I policy
resolution engine ;is ; i n independent base service.
wliicli can be usetl by clients other than a WF,\lS.
For example. an electronic mail system can be
a client of the policy resolution engine. Since elcc-
tronic mail is sent to users, rather than enunier;~te
the electronic mail :~tltlresses of the recipients by
Iiantl, organiz;~tion;~l cxpressiolis can provicle tlie
atldresses. For es;~mple, ;I manager could sencl ;In
electronic mail message to ";ill my subortlinates" or
an engineer coulci send ;in electronic mail message
to "all my colleagues who are engineers." Tlie sani-
ple operational expression shown in Figure I 1
returns ;tIl electronic m:iil ;iddresses of all subordi-
nates of ;I given uses.

Allotlies possible client is a transaction process-
ing monitol; \vhicli incorpor;ltCs workf'low n1;in-
agemetit.-- I>;iy;tl et al. reference a service callerl
role resolution. which is ;In earlier development of
policy resolution.-x

ORGANIZATIONAL-EXPRESSION subordinates(User: a-user)
RETURNS String: user.e-mail

user reports-to a-user

Figure I / O~;y~~rzimtior~n/E~p~'ession for Electi-olric .If~ri/

Policy Resohtion in Workfloru Management Systems

Figure 12 sfiows a schematic representation of
a policy resolution engine with three clients-a
WFMS, a transaction processing monitor, and an
electronic mail system.

Summary
The sample workflow discussed in this paper, that
is, the travel expense reimbursement workflow,
illustrates that roles are sufficient as task assign-
ment rules for only the sin~plest scenarios. Since
workflow management systems are tleploped in sit-
uations where complex workflows are rnodeled
ancl executed, a more general ancl powerful model
callecl the Policy Resolution Architecture (PRA) was
developetl. PRt\ provides the concept of an organi-
zational policy, An organizational policy is more
general than a role in that it relates a workflow type
to an organizational expression that determines the
set of eligible users for the workflow. Because they
state all criteria a user has to fulfill and do not limit
the selection basecl on their properties or interrela-
tionships, organizational policies specify all eligible
users. Since an organizational expression is related
to a workflow type by an organizational policy, task
assignment through organizational policies is a very
general approach. Organizational policies are eval-
uated basecl on organization schema anti their
populations (organization structures). Since PlW

provides a way to model arbitrary complex organi-
zation schemas, arbitrary organizations can be mod-
eled and subsequently populated. This generality,
in conjunction with 0rganization;ll policies, pro-
vides a powerful ant1 flexible approach to task
assignment in workflow management.

I want to thank the anonymous referees whose
remarks helped me a great deal in revising this

WORKFLOW TRANSACTION
MANAGEMENT PROCESSING

ELECTRONIC I SYSTEM I I MONITOR I I I

RESOLUTION
ENGINE

Figure 12 Client-seruer Strzrcture
of a Policy Resolution Engine

paper. Susan Thomas assisted me by improving my
English and thus making the paper more readable.
Kathy Stetson was always very helpfill in coordinat-
ing the writing and revision processes.

References

1 . T. May, "Know Your Work-Flow Tools," BYTE

(July 1974).

2. T. Kreifelts and I? Seuffert, "Acldressing in
an Office Procedure System," Message Hand-
ling Systems, State of the Art and Future
Directions: Proceedings IFIP WG 6.5 Working
Conference on Message Hc-rnciin,g Systems,
R. Speth, ed. (Amsterdam: North-Holland,
1787).

3. S. Chang and W! Chan, "Transformation
and Verification of Office Procedures," IEEE
Transuctions on Software E~zgineering, vol.
SE-11, no. 8 (August 1985).

4. W! Croft and L. Lefkowitz, "Task Support in an
Office System," ACkI Trunsactions on Office
b~omzat ion Syste~ns, vol. 2; no. 3 (July 1984).

5. C. Ellis and G. Nutt, "Office Information Sys-
tems and Compi~ter Science," Conzpt~ting
Surveys, vol. 12, no. 1 (March 1980).

6. C. Ellis and M. Bernal, "Officetalk-D: An
Experimental Office Information System:'
First SIGOA Conference on Office Informa-
tion Systems (1982).

7 C. Ellis, "Formal and Informal Models of
Office Activity," Information Processing 83,
R. Mason, ed. (Amsterdam: North-Holland,
1983).

8. B. Kdrbe and N. Ramsperger, "Concepts and
Implementation of Migrating Office Pro-
cesses," Verteilte Kunstlicbe Intelligenz und
Kooperatives Arbeiten: 4. Internationaler
GI-KongreJS Wissensbasierte Systeme, Infor-
mntik Facbberichte 291, W! Brauer and
D. Hernandez, eds. (Munich: Springer-ireslag,
October 1791).

9. T. Kreifelts, "Coordination of Distributed
Work: From Office Procedures to Custom-
izable Activities," Verteilte Kiinstlicbe
Intelligenz uncl Koopetatiues Arbeiten; 4.
Internationaler GI-Kongrej3 Wissensbasierte
Systenze, Infomatik Facbberichte 291,
W Brauer and D. Hernandez, eds. (Munich:
Springer-Verlag, October 1991).

Digital Techrzical Jorcrnal Wl . 6 /Vo 4 FLII~ 1994

Workflow Models

10. C. Cook, "Streamlining Office Procedures-
An Analysis Using the Information Control
Net Model," AFlPS Conference Proceedings of
the 1980 National Co~rzputer Conference,
Anaheim, California (May 1980).

T. Katayama, "A Hierarchical and Functional
Software Process Description and Its Enac-
tion," Proceedings of the Elerwnth I~zterna-
tional ColzJiererice o n S ~ N t z ~ ~ a r e Engineering
(May 1989).

11. I. Ladd and D. Tsichritis, "An Office Form Flow
Moclel," AF1P.S Conference Proceedings of the
1980 National Conzp~lter Corlfere~zce, &la-
heim, California (May 1980).

l? Mi ant1 W. Scacclii, Oper~~t ionu l So1za1ztic.s
oj. Process Er~uctrnent nrld Its P r o t o t ~ p e
Inz~let~?e?ztcitio~zs (Los Angeles: University
of Southern C;~liforni;~, C ; o ~ i i ~ i ~ t e r Science
l lepart~lient , April 1991).

12. L. Baumann and R. Coop, "Autonzatecl Work-
flow Control: A Key to Office Productivity,"
AFlPS Conji?rerzce Proceedings of the 1980
National Comnbuter Conference, Anaheim,
California (May 1980).

P: Mi and W Sc;~cchi, ~tlorlelirz'y Artict~btiorz
Work in SoJtu~are En~ilzeering Processes (Los
Angeles: University of Southern California,
Computer Science Department, April 1991).

U. M. Zisman, "Representation, Specification
and Automation of Office Procedures," PI1.D.
dissertation (Philadelphia: University of Penn-
sylvania, Wharton School, 1977).

P: Mi and W Sc;~cchi, "A Knowledge-B;lsed
Environment for Modeling ant1 Simulating
Softw;lre Engineering Processes," rEL;'s Trnrzs-
actiorzs (111 K ~ ? o ~ ~ ~ l e ~ i g e L M Z ~ 1)ut~l Engi~zeel'-
irtg, vol. 2 , no. 3 (September 1990). 14. B. Curtis, M. Kellner) and J. Over, "Process

Modeling," Conzrn~tniccttiorts o f t h e ACM, vol.
35, no. 9 (September 1992).

L Osterwe~l , "Softw;lre Processes Are Soft-
ware Too," Proceedings ($the N i ~ i t b btternrl-
tional C'orlference o n Soft.Lipr~re Engineering
(March/April 1987).

15. W Deiters and V. Gri~hn , "The Funsoft Net
Approach to Software Process Management,"
International Jour~ ia l of So ftzuure Engineer-
ing and Knoujledge Engineering, vol. 4, no. 2
(1994).

L. Williams, "Software Process Modeling:
A Behavioral Approach," Proceedin,ys of the
T e d 7 Itzter?latiotzal Conference or? SoJt~~w1.e
Engineering (1988). 16. \V Deiters, C! Gruhn, and H Weber, "Software

Process Evolution in MELIMAC," The Itrtpact of
CASE Tt?ch?zolo'qy o n .So ftu3rrr.e Processes
Series o n SoJlzuare E n ~ z n e e r l ~ ~ g arzd KI~OLLII-
eclgeEngineerir~g, vol 3, D Cooke, ed (S~nga-
p o r e World Scientific Publ~shlng, 1994)

W Royce, iM;~naging the Develo1~ment of
Large Software Systen~s," Proceedi7t~s of tlw
Ni11tl~ Inter.n~rti017~11 Co)~fere~zce 011 S($t~i l~rc
Engineel.illg (Nlarcli/Aprjl 1987).

17 D. Harel et al., "STATELMATE: A Working Envi-
ronment for the Development of Complex
Reactive Systems," Proceedings of the Tenth
International Conference o n Softzi~are Engi-
neering. (1988).

B. Boehm, "A Spiral Nlodel o f Softw;lre Devel-
opment and Enhancement," AGM S f ~ t u ~ r ~ r e
Engineering !\'otes, vol. 11, no. 4 (Augi~st 1986).

C. Hegarty and L. Kowe, "<:ontrol Loops ant1
Dynamic Run Modifications Using the Uerke-
ley Process-Flow I~ngllage," P r o c c ~ e d i ~ ? ~ , ~ oJ'
the Third Inlenzatzon~ll ConJkrence o n Dntcl
and Krlozuledge .(jisterns Jor i l l ~ r ~ ~ t ~ j ~ ~ c t ~ ~ r i ~ z g
and En~ineerirz~y, Lyons, France (1992).

18. W Humphrey and M. Kellner, "Software Pro-
cess Modeling: Principles of Entity Process
Models," Proceedin~s of the Eleoenth Inter-
national Conference o n Sq f t~ i~c~re Erzgineer-
ing (May 1989).

S. Jablonski, "Data Flow Man;igement in Dis-
tributed Ci&i Systems,'' Proceedings c.$ tl7e
Third I~z ter~zat io~zal Corzfererzce on Datu
a n d Knozcledge S]sternsJor rWu;rr~tf2ucturirzg
and Engineering, Lyons, France (1992).

19. M. Jaccheri and R. Conradi, "Techniques for
Process Moilel Evolution in EPOS," IEEE Trans-
actions o n Software Erigineering (December
1993).

Vol. G No. 4 Fall 1994 Digital Technical Jortrnnl

30. Proceedings of the Third hzternational Con-
ference on Data and Knowledge Systems for
Manufactziring and Engineering, Lyons,
France (1992).

31. H. Yoshikawa and J. Goossenaerts, eds., Infor-
mation Infrastructure Systems for Manufac-
turing (Amsterdam: North-Holland, 1993).

32. T. Harder ant1 A. Reuter, "Principles of
Transaction-oriented Database Recovery,"
ACM Computing Surveys, vol. 15, no. 4
(December 1983).

33. I? Attie, M. Singh, A. Shet, and M. Rusinkiewicz,
"Specifying and Enforcing Intertask Depen-
dencies," Proceedings of the Nineteenth
International Conference on Very Large
Dcltabases (VLDB), Dublin, Ireland (1993).

34. Y Breitbart, A. Deacon, H. Schek, and
G. Weikum, "Merging Application-centric
and Data-centric Approaches to Support
Transaction-oriented Multi-system Work-
flows," SIGMOD Record, vol. 22, no. 3 (Sep-
tember 1993).

35. U. Dayal, M. Hsu, and R. Latlin, "A Transac-
tional Model for Long-Running Activities,''
Proceedings of the Seventeenth Interna-
tional Conference on Very Large Databases
(VLDB), Barcelona, Spain (September 1991).

36. H. Garcia-Molina and K. Salem, "Sagas:' Pro-
ceedings of the 1993 ACiVI SIGMOD Interna-
tional Conference on ikknclgement of Data
(1987).

37, Bulletin of the Technical Committee on Data
Engineering, vol. 16, no. 2 (June 1993).

38. S. Jablonski, "Transaction Support for Activity
Management," Proceedings of the Workshop
on High Performance Transaction Processing
Systms (HPTS), Asilomar, California (1993).

39. H. Wichter and A. Reuter, "The ConTract
Model:' in Transaction Models for Advanced
Datubase Applications, A. Elmagarmid, ed.
(San Mateo, California: Morgan Kaufnlann,
1992).

40. T. Malone and K. Crowston, "The Interdisci-
plinary Study of Coordination," ACM Comput-
ing Survqts, vol. 26, no. 1 (March 1994).

Policy Resolution in Workflow Management Systems

41. T. Malone, K. Crowston, J. Lee, and B. Pentland,
"Tools for Inventing Organizations: Toward a
Handbook of Organizational Processes," CCS
WP $141, Sloan School WP #3562-93 (Cam-
bridge: Massachusetts Institute of Technology,
Center for Coordination Science, May 1993).

42. R. Burkhart, "Process-based Definition of
Enterprise Models," Proceedings of the First
International Conference 01% Enter-rise Inte-
gration 1Modeling Technology (ICEIMT),
Hilton Head, South Carolina (June 1992).

43. C. Bugler, "Enterprise Process Modeling and
Enactment in GERAM," Proceedings of the
International Conference on Automation,
Robotics and Computer Vision (ICARCV '94),
Singapore (November 1994).

44. M. Fox, "The TOVE Project: Towards a Com-
mon-Sense Model of the Enterprise," Proceed-
ings of the First International Conference on
Enterprise Integration Modeling Technology
(ICEIMT), Hilton Head, South Carolina uune
1992).

45. Proceedings of the First Intel-national Con-
ference on Enterprise Integration Modeling
Technology (ICEIMT), Hilton Head, South Car-
olina (June 1992).

46. R. Katz, "Business/enterprise Modeling," IBM
Systems Journal, vol. 29, no. 4 (1990).

47. J. Sowa and J. Zachman, "Extending and For-
malizing the Framework for Information Sys-
tems Architecture," IBM Systems Journal, vol.
31, no 3 (1792).

48. E Vernadat, "Business Process and Enterprise
Activity Modelling: CIMOSA Contribution to
a General Enterprise Reference Architecture
ancl Methodology (G E M) , " Proceedings
of the International Conference on Automa-
tion, Robotics and Computer Vision (I a K C V
94), Singapore (November 1974).

49. T. Williams, "Architectures for Integrating
Manufacturing Activities and Enterprises,"
Information Infrastructure Systems for Man-
zlfactziring, H. Yoshikawa and J. Goossenaerts,
eds. (Anlsterdanl: North-Holland, 1993).

50. E Flores and T. Winograd, Understanding
Computers and Cognition (Reading, IMA:
Addison-Wesley, 1987).

Digital Tech~ricnl Journal Vol. 6 No. 4 Fall 19.94

Workflow Models

51. R. Medina-Mores, R. Winogr;ld, T. Flores, ant1
E Flores, "The Action Wrl<flow Approach to
Workflow M;~n;~gcrnent Technology," Pr.oceed-
ings of the ACb1 1992 Cor/fe~.erzce or? Corrz-
I2ute.r S~tpported Cooperrllille Work (CTCW),

Toronto, Ontario, Ca~i;ltl;~ (November 1992).

S. Sarin, K. Abbot, ancl D. McCarthy, ''A Process
Motlel ;mtl System lor Supporting Co1labor;l-
t ive Work," I-'roceedirz~s r,S the ACil.1 SIGOIS
Corzfer.e?/ce 0 1 1 O~;yrr~zizatio~zaI COIIII ILIL~IW
Sj~sterr~.s (November 1991).

IM. Sli:~n, "Pegasus Architecture ;11ltl Design
Principles," Proceedings ofllne 1993 ACJI .SIC;-
,\I011 1 1 1 t e r ~ i ~ ~ t i o ~ 1 ~ 1 1 Co~zference or1 i%Irrl~rrgc-
rrzerit oJ'D~rLrr. Washington. D.C. (May 1993).

52. T. Danielsen and l J . Einkoke-D;tb;~tz, "The
hniigo Activity ,Moclel," in /<eserrrch into Aief-
ulorks and Distributed Al,l,licrrtiol~s, R. Speth.
ed. (Munich: North-Holl;~nd, Elsevier Science
I'ublishers H.Vv 1988). PI. Ans;~ri, I.. Ness, M. Rusinkiemiicz, ant1

A. Slietli, "llsing 1:lexible Transactions to Sup-
port Multi-S!,stem 'Seleconiti~unicatio~i i\r)pIi-
c;rtions," Pr.ocec~dii7gs of the Figl?tc>cr/lb
I?~lcrr~crlior~al CorzJi.~.cr/ce on 142171 L ~ I I K ~
I1alabase.s (' 1 . 1 Vancouver. HI-itish
Colu~iibi;~, <;;in;~d;~ (1992).

53. li. Fellling, K. Joerger, ant1 I>. Sag;~lon~icz,
Kno~~~lecl'ge S~lste~rzsji)r Process iblrrrlrrgo~ro~t
(Palo Alto, CA: Teknowletlge Inc., 1986).

54. J. Guyot, "A Process Model for I>;~ta I3;1ses," .VG
A1011 Record, vol. 17, no. 4 (I)rcemher 1988).

I). Ev;~ns, "l'i~tting Elves to Work: Vi'orkflow
Technology in ;I Law Firm," Proceeclir7gs
the Cror~I>iocrrc '9.3 ConJerence, San Jose,
Californi;~ (199 3).

55. C. BuBler and S. Jablonski, "An Al~proach to
Integrate Workflow Modeling and Org~niza-
tion modeling in an Enterprise," Pr.oceedir?gs
(f t h e Tbirri IEEE /r?trrr~ntional Work.sho/j o l r

E)/nblir?g Teclonologies: I~IJiz~.strrrctrrr.e
Collcrbor-crti~je Eriter-prises (WIX ICE), Mar-
gantown, West Virginia (April 1994).

D. Sng, "A National Information Infrastruct~~re
for the 21 st (:entury Collaborati\~e Enter-
prise," Pr~occecli~r~.s (, f lhe 117ter'1zatiolral Ch~r-
ji.1.er7c.c or7 Aulornntior~, Robotics crlzd
Corri/)/rte~. Visiorr (ICAKCV ,941, Singapore
(November 1994).

5 S. Jablonski, "MOBILE: A illodul:~r \Vorkflonr
Model and Architecture," P~.ocec~dirz~.s lloe
Fourth Working Conference 017 /?]~r?ar~/ic
iL1orlelli~zg and IrzJorrlzaLiorz ,~]'ste117s, Noortl-
wijkerhout, Netherlantls (September 1994).

R. I\il;~rsli;~l<, "(:li~racteristics of a Workflow
Systern- IM i nd l'ou r 1''s and Ii's," Pr.oc.eedin~.s
of the C~,oct/~zllare '93 Confere~zce, San Jose,
C;~liforni;~ (1995).

57. M. Hsu, A. Ghoneimy, and C . Kleissner, "An
Execution Moclel for an Activity M;m;~gement
System," Procecdirgs oj.tl7.7~' LVorl?sho/) OM High
Perfor-lrlrrnce Trrr~~srrctior~ ,S]afcr)r.s (1991).

C . SuRler ;~ntl S. Jablonski, "Implenienting
Agent <:oordin;~lion for Workflow Manage-
ment Sj,stems Ilsing Active Database Systems,"
P~~oceeclirrgs (4' t l ~ Fo~lr'tl? Irzter~~zntior~crl
Wor.lzsbo/) 0 1 1 Rcsccir.ch 1s.s~rc.s in Dutcr Er /xi-
~?ecr.i?z'y: /-lcl ioe Dcrf~base S]ater?/s (RIDE-All\
'941, Ho11sto1-1, 'l'exas (February 1994).

58. Nl. Hsu and A t . Howartl. "LVork-Flow ant1
Legacy Systenis," BY7E (Julj. 1994).

5 I Le).mann and W Altenliuber~ "M;ln;~gilig 13usi-
ness Processes ;IS ;in Inform;~tion Resoi~rce~"
It3,ll .~?;ste~ns Jour7zn1, vol. 33, 170. 2 (1994).

C. Ellis, S. <;il,l,s. ;mcl G. Rein, "Groupware-
Some Issues ant1 Experiences," Cornrrzulzica-
tiorrs o f the A(>ll, vol. 34, no. 1 (January 1991).

60 1Vorkflolu iWrrizrlge111er11 5otlrilo1.e The
H~~srrless Oppor*t~ilzrlll (Ovunl Ilepork4,
December 1991)

L. Lawrence, "The Role of Roles," W)~r.rjlrilers
ar?d.Sec~~~~.iL~j: vo1. 12, 170. 1 (1993).

I . 'I-. White and L. Fischer, "A'PLL~ Ti)ol.s./i)~. iVer~l
Times: The Wo~.kJloiu Pr~rcrdi&r?? (Al;~metla:
Future Strategies Inc., Book Ilivision, 1994).

L. Aiello, I). N;~r'tli. ;~nd h4. Panti. "Motleling
the Office Structure: /I First Step towartls the
Office Expert S~~sLem." Second AC\I .SIGO~l

Confi.r.er~cc. or/ 0J;licc 11zjor.r)zatiolz .S]ate l~~s
(.-1C:l1 ,\/(,()A), vol. 5, nos. 1 ; I I I ~ 2 (1984).

62. J . H;rir. "Contrasting Workflow Nloclels: Get-
ting to the Roots of Three Ventlors," /-'~~oceerl-
ings oj' the Groclpurnr.e '93 CorIJi'~.er/ce. S;III
Jose. California (1993).

73, D. Denning, Cryptography and Data Sectirity
(Reading, MA: Addison-Wesley 1983).

74. Blue Book, Volzitne VI11, Fuscicle VIII.8, Data
C'om7nz~nicatio1z Netzuorks: Directorj Kec-
om~nendcitions X.500-X.-521 (Study Gro~lp
vl/), Comite Consultatif 1nternation:tle de
Telkgraphique e t Telephonique.

75. S. Ceri and J. LVidom, "Managing Semantic
Heterogeneity wit11 Production Rules and Per-
sistent Queues." Proceedings of the Nine-
tee1ith Cotijiet-ence on Very Llrrge Dat~~bases
(VLI)H), Dublin, Ireland (1993).

7 W. Kent, "Solving Domain i'isrnatch ancl
Schema Mismatch Problems with ;in Object-

Policy Resolzition in Workfi'oze M ~ ~ f z q e m e ~ z t Systetns

Oriented Database Programming Language,"
Proceedings of the Seventeenth Interna-
tional Conference on Very Large Databases
(VLDB), Barcelona, Spain (September 1991).

77 U. Dayal et al., "Third Generation TP Moni-
tors: A Database Challenge," Proceedings 01'
the 1993 ACjl.1 SIGIVIOD International Cb@er'-
ence on ~CIa~i~ige~nent of Dcitci, Washington,
D.C. (May 1993).

78. C. Bugler, "C;~pability Based Modeling,"
Proceedings og' the First Itzternatio~zal Con-
ference on Enterprise Integration iblo~/elitzg
Technology (ICEI,WT), Hilton Head, South
Carolina (June 1992).

Digilnl Technicnl Jotrrtral Val. 6 /\'(I. 4 Fit11 1904 49

Stewart K Hoover
Gary L. Kratkiewicz

The Design of DECmodel
for Windows

The DECnzodelf?)r Wl~ldo~lls softziia~.e tool represents n signific~rnt ~dl~alzce in the
der!elopnzent of b~rsr~less process ~r~o~le l s The DECn~odcl loo1 ~ l lo i~ . s r ~ i p d deoel-
opnzerzt of rnzodels and grlrphicnl represerztutrons ofb11~11le.s~ / I I . O C ~ S S ~ S 611 p1'011id-
ing a labo,wtor)i enr~iro~~merzt.foi" testing processes befire prop~gating t/~eirz into
z~lorkflous Such an c111pr.oach can significa?ltIjl~, reduce t l ~ e risk ~ssociated timith
large i~zvest~~lerlts 111 irfo~)l'~llcrtion tec/?r?oiogj' Tl?e DECiriocIel ~ les i~ l z iizcoqorntes
k n o z v l e d e - e l , sz~n~rlutron, ar~dg~zlyhiccrl user' il~teiplce Ie~h~rologj~ 0 1 1 a PCplnt-
fonn based or2 t / 3 ~ ~kficros~ft Windous operating syste112 IJniqlre to the desrgi? is the
tnatzlzer in zilhich it separates the 11zode1 of-the busi~zessprocesses f iio~?i the ruezL1s or
prese~ztntions of the mo~1ek.l.

M;~ny approaches have been developed for untler-
stantling, specifying, testing, ancl \/;~litlating busi-
ness processes. In the late 1980s, Iligital began to
reengineer some of its most conlplex and mission-
critical bilsiness processes. I t soon beci~nie :ippar-
ent that modeling metl~otlologies ant1 tools were
needed to document. test, ancl valitlate the reengi-
neerecl processes before they were irnplemented.
as well as to provide a high-leveJ specification for
their clesign allcl implementation. <:onsecluently,
Digital decided to provide the business process
engineer with tools similar to those usctl by archi-
tects, mechanical designers, and computer and soft-
ware engineers.

The first implementation of 1)igit;il's tlynaniic
business luocleling technolog)< Symbolic ~Mocleling.
w;is developetl at Digital's Artificii~l Intelligence
Technology Center. The technolog! \v;~s emboclietl
in an application called Symmod. which in I991 r;ln
only on a VAXstation system.! Symmod's knowletlge
base ant1 simulation engine were implenienteel
using the LISI-' prograni~ning I;~ngt~i~ge anti the
Knowledge Craft product, a L.ralne-l);~s~d knom~l-
edge representation package with n~otleling :lntl
simulation features.? Because motlels were written
in I.ISI' code, users hat1 to be computer prograni-
mess as well as business consultants. Tlie npplica-
tjon contilined a graphical present;~tion bi~iltler ; ~ n d
viewer iniplen~entecl in the (1 progrnmming Ian-
guage that used a relational database h)r presenta-
tion storage. The user hat1 to start the knowledge

base component ;ind tlle presentation component
as separate processes. A primitive ~ t~a i lbos system
was used for interprocess cornm~~nication. To serve
tlie needs of nontechnical business users ant1 to
achieve the necessary product quality, Symmod
neetled to be completely redesigned and I-ebuilt.

In early 1901, the Mocleling and Visua1iz;ltion
Group tlecitletl to build a procluct version of tlie
Symmod ;~pplication, which would be released as
the DE<:niocleI tool. Tlie team drafted requirements,
specific;~tions, ;~ncl an arcl~itecture. The DECmodel
procluct was initi;~lly t;~rgeted at two platforms:
VliXstation workstations rilnnilig ~ ~ n d e r the
DECwintlows operating system and person;rl con?-
puters (I-l<:s) running i~ncler the Windows N T oper-
ating system. As users were interviewetl ant1
req~lirements were ;~ccum~llatecl, it became clei~r.
however. tb;~t 19. F;lr the most i~nlmrtatlt platfor111
for I>E<:model users was tlie PC: platform 11;lsetl
on the Wintlows oper;~ting system. Consequently,
the DE<:motlel development effort shifted to this
pl;~tforrn.

During 1991, the te:lm enh;lncetl the existing ver-
sion of Symmocl so that it nrould ineet user neetls
until the release o f the protluct version for I1(:s. Tlie
most significant enh;~ncement was the develop-
ment of an S Window System interface for building
and editing rnoclels. A second important enhance-
ment n ~ ~ s ;I gri~phic;ll shell program that trans-
parentl!. st;~rtecl i ~ p the knowledge base and
presentation components for tlie user.

The Design of DECmodel for Windows

In March 1992, Digital officially announced Phase
0 (the strategy and requirements determination
phase) of the DECmodel for Windows product.

Design and Development Goals
The DECmodel product design team had the follow-
ing goals:

Provide a modeling tool that maps directly to
business processes

Allow the modeling of both the static and the
dynamic characteristics of the business process

Allow multiple views of the business process
model by separating the model from the presen-
tation of the business process during simulation

Allow the user to interact with the tool and to
nuke decisions while the business process is
being simulated in order to let the user "test-
drive" the business process

Provide a tool that is easy to use for business con-
sultants and that requires no programming

Note that the designers intentionally omitted the
following goals from the DECmodel design:

Include resource constraints and queuing

Allow the user to perform a statistical analysis
of the behavior of the business process

By far the most important goal for the DECmodel
design was the first one listed, an obvious mapping
between elements of the model and business pro-
cesses. The anticipated users of the DECmodel tool
were business analysts and consultants, not system
designers ant1 software engineers. The designers
felt that adding levels of abstractions to a modeling
tool would make it less acceptable to the intended
users. A notable corollary to providing an obvious
mapping was modeling both the static and the
dynamic characteristics of the business process.

To engage the user in interacting with the model
and test-driving the business process required
a graphical interface that was separate from the
model. This "presentation" layer of the DECmodel
tool provides a layout and graphical appearance
that has the look and feel of the actual business pro-
cess, hiding the irrelevant technical details of the
model. The presentation enables the user to step
through the business, watching information and
material flows occur, and thus see where the
dependencies and concurrencies exist.

Designers believed that while simulating the
business, the user should be able to interact with
the model and thereby select and test more than
one scenario. The DECmodel tool was intended to
be a working scale model of the business, giving the
user a sense of how the business process would
work as different choices were made. The tool, by
design, neither predicts congestion and through-
put as a function of resource constraints nor pro-
vides information through statistical reports. The
DECmodel product was designed to provide a slow,
deliberate simulation of the business, not to com-
press weeks or years of activities into a few sec-
onds, leaving behind only a statistical summary.

The team's development goals for the DECmodel
product were to

Provide a tool that runs on a popular hardware
platform used by business consultants

Achieve a short time-to-market, i.e., delivery
within one year

Utilize a widely accepted software base technol-
ogy (for maintainability)

Tbe DECmodel World View
Every modeling ancl simulation tool is based on
a predefined view of the world.i In the DECmodel
world view, a business process is composetl of
aggregate centers capable of performing one or
more tasks or work steps. Each aggregation is
referred to as a process, and the tasks that can occur
in a process are called activities. Processes commu-
nicate through the exchange of messages, which
are sent by activities and received by another pro-
cess or other processes or by the same process that
contains the activity."

This view differs significantly from the one taken
by the typical workflow model in which work steps
are directly linked. In the DECmodel model, an
activity that sends a message to a process has no
knowledge of what work steps will occur next. For
example, when a customer (a process) sencls an
order (a message) to a supplier (another process),
the customer does not know what work steps
(activities) the supplier will initiate when it
receives the order. It is invisible to the customer
whether or not the supplier decides to change its
work rules, for instance, by sending the order to a
second source because materials are not available.
Similarly, when the supplier's activities have been
completed and the material that was ordered has

Digital Techrricul Jouraal Vol. 6 No. 4 Fall 1994

Workflow models

been sent to the customer, the supplier has neither
knowletlge of nor dependencies on the work steps
that the customer 11ndert;rkes next. In contrast, in
a wol-kflow niodel eacli task is directly linked to
another task. Changes in the supplier's way of doing
business force c11;inges in how the customer's tasks
connect to the supplier's t;~sks. LMore strccinctly> the
DECmotlel tool encapsulates the behaviors and
work rules of each indiviclual process in tlie larger
business process. This clifference between the pro-
cess ant1 workflow motlels is shown in Figure 1.

Processes, Activities, and Messages
As tlescribetl above, the DECrnodel motlel repre-
sents a business process ;IS a collection of smaller
encapsulatecl processes. The behavior of each pro-
cess is defined by the activities that it contains. Tlie
DE(:nioclel tool provicles three general types of
activities: generating ;~ctivities, processing activi-
ties, and terminating activities. Generating ant1 ter-
minating ;~ctivities represent tlie boundaries of the
model; processing ;~ctivities represent the work
steps in the business process.

An activity is characterizecl by (I) a receive rule,
which clefines the messages that the activity neecls
for initi;rtion, (2) ;I dur;~tion, and (3) ;I sentl rule.
which tlefines the rnesssiges th;it the activity sentls
out ; ~ t tlie encl of its duration. Generating activities
have only send rules, ;~nd terniin;~ting ;~ctivities
have onl}. receive rules.

PROCESS A PROCESS B

i r e 1 The Process /\.lode/ i1el:s~ls
the WorkJ7o~o iblodel

Activities c;in send messages to processes only.
The receiving process makes the message known to
every activity tliat uses the nicssage in its receive
rule. Messages are universal to the model, and the
same message type can be sent by activities in dif-
ferent processes.

Processes can have state kno'ivletlge (attributes)
that can be assigned values as ;I side effect of ;in
activity being completed. 'l'he ;~ctivit!~ can use
a process attribute value to decide what niess;lges
to send out ant1 where to sentl them. 'l'liat is, pro-
cesses have a state that can be alteretl to change the
behavior of the model.

Like processes, messages c;11i contain inl'or-
mation, which is storetl in their attributes. When
a process receives a message ;lntl p;rsses i t on to
an activity, inforniation in tlie message can be ~ ~ s e d
in both the receive rule antl the sentl rille of tlie
activity. Aclditionally, tlie information in a receivetl
message can be copied into tlie attributes of
any message that a n activity sends. In this w;~): tlie
DECmodel tool supports information propag;~tion.

The DECmotlel represent;ltion o f b~~siness bor-
rows heavily from both the stocliastic-timed I'etri
net (STPN) model and the object p21ratligm founcl in
object-oriented ~lesign.~('

The .Ytocl~astic-till~cd Pelri Net ~Wodel ile1.s~l.s the
DEC~rzoclel illode1 fin STI'N rnotlel represents a
system 21s ;I collection o f places, tr;~nsitioris, arcs.
and tokens. Places contain tokens antl act ;IS inputs
to transitions. A tr;rnsition results i n tlie movement
of a token to another pl;lce i f ;in ;lrc exists between
the transition ant1 the pLace. Before ;I transition can
occur, a token must be pxsent :I[e;~cli pl:~ce tliat is
connectetl to the transition I,y ;In arc. iissociatecl
with eacli transition is a n exl>onentiall!~ distributed
random variable that expresses the clelay between
the enabling of the transition ancl the firing of tlie
transition.

Tlie DECmotlel motlel weltls the S'I'I'N place, tran-
sition, ant1 arc elements into ;I single ol~ject callecl
2111 activity. The analogo~~s elcnicnts o f the S'l'l'N ;lncl
DECmotlel motlels are

STPN D~Cmodel
Place Activity receive ri~le
Transition Activity cl~rr;~tion
loken message
h c Activit), send rule
- Process

Tlge Design OJ'DECnzodelfoi- W i n d u ~ ~ ~ s

The DECmodel model goes beyond the STPN

rnoclel by

I . Adding the process object between the activity
send rules (arcs) and the activity receive rules
(places). Each process can have multiple activity
send r ~ ~ l e s . As the process object receives mes-
sages (tokens), it dispatches them to the appro-
priate activity receive rule (place).

2. Allowing more than one type of message (token)
to exist.

3. Storing information in both the processes and
the messages (tokens).

4. Using AND, OR, and message-matching receive
rules in the activity receive rules (p1;ices).

5. Not restricting durations to being exponentially
distributed random vari:tbles.

Like an STPN model, a L)ECmodel model does not
explicitly have resources but can represent the
availability of a resource by sending a message to a
process when the resource is available.

Figure 2 shows the workflow system from
Figure 1 as both an STPN model and a DECmodel
model with the process receiving messages from
the activities.

The DEClnodel ililoclel uarzd Object-oriented Desig~l
The elements of object-oriented design that the
DECmodel model fully draws upon are encapsula-
tion of information and the message-method para-
digm. Information is enc;ll>sulated within DECmoclel

ACTIVITY 1 ACTIVITY 2 ACTIVITY 3 ACTIVITY 4

KEY:

0 PLACE
- TRANSITION TOKEN

(a) Stochastic-tirned Petri Net Model of a Four-uctir~ity WorkJozo

0 PROCESS

0 ACTIVITY

- ACTIVITY RECEIVE RULE

ACTIVITY SEND RULE

MESSAGE

(6) A DECmodel Model of u Four-activity Workfi'o~u ~ ~ l i t h a Process
Dispatching Messrrges 6etuleen Actiz~ities

Fig~we 2 The Stoclgastic-tiarlied Petri Net Model uerszls the DEC'nzodel P~~ocess-nctiility iMoclel

Workflow models

objects 2nd is not availal3le glob all^: However, an
important difference exists between I>E<:moclel sys-
tems and object-oriented systems. In I>E<:motlel
systems, a number of messages may by setpired to
trigger a behavior; whereas, in cl;~ssic;rl object-
orientetl systems, each message triggers a method.

The DECmodel tool supports polymorphism, in
that the same message can be sent to different pro-
cesses, which can result in tlifferent behaviors.
Developers investigated going beyontl standard
polymorpliism by using one message to trigger clif-
ferent activities within the same process. The
approach considered was to irse process "filters" to
examine the information in ;I messxge ;rncl then
decide which activity or activities in the process
shoultl receive it. This feature was not comj3letely
developeel because of time constraints ant1 ;I less-
than-clear mapping between the concept and the
actual practices in most business. Furtlie~; using
activity send r~rles that utilize the inforn1:rtion con-
tained in messages can provide ;I similar c;r1>ability

The DECmodel tool does not sul~port inheri-
t;rnce, but the underlying technology of the protl-
uct does support this feati~re. As in the case of
nonstandard polymorpbisn~, time-to-m;~rket pres-
sul-es and the lack of clear evidence tli;tt tlie fe;rture
would be used in business processes tlrove the
clecision not to inclutle inheritance support. Aso,
tlie l>E<:moclel product does not currently support
cl:rss types beyond the built-in cl;rsses of the pro-
cess and the three activity types.

Process Hierarchies
To ;rtldress the goal of b;rving a strong ni;rpping
between the model ant1 real business processes, the
l>K:model model supports processes within pro-
cesses. I-'rocesses can receive messages in two w;r).s:
hier;~rchical routing ant1 peer-to-peer routing.

In a business process, a message sent to a high-
level process sl~oultl travel t h ro~~gh the process hier-
;lrcIiy to the activity that is to act upon the message.
For ex;rmple, a11 activity in the sales process sl~ould
be able to sentl a message to the ni;rn~~f;~ccuring pro-
cess ant1 not be concernetl that m;~nuf;rcturing con-
tains several subprocesses. The knowledge of how
to relay a message shoultl be in tlie receiving pro-
cess, not the sending process.

In business, however, much conimunic;rtion
o c c ~ ~ r s on a peer-to-peer basis, with inform;rtion
seltlom routed up ant1 down the org;rniz;rtion hier-
archy For example, the results o f ;I n1;rrketing
research activity go directly to the rn;~nuf;rct~~ring

planning function without traveling don~n through
the various levels of the manufactirring org~niza-
tion. In a DP:(:moclel motlel, as in most businesses,
when an activity is completed, ;I message can be
sent directly to any process in the business.

The I>E<:rnodel design feature that allows pro-
cesses to receive n1ess:rges ancl then pass them on to
subprocesses and activities can result in nitrltij,le
message receipts 1-Or a single send operation. That
is, one activity can sentl a single message that is
receivetl by every ;rctivity in the niodel that inclutles
the message in its receive rule. ?vIodeling experts dis-
agree about how well this phenomenon maps to
real busiliess processes. The UECnlodel user can
avoid this effect, if tlesirecl, by using uniquely naniecl
messages in the sencl rules of activities.

The Presentation
The first DE<:nlotlel tlesign goal was supportetl by the
modeling par;rdign of processes, activities, and mes
sages. 'fhe presentation ;)spec1 of the DECmodel tool
supports the go:rls of a strong separation betwecn
tlie model ;rncl the gr:rphic;rl representation of the
business process ;rntl the need to support user inter-
action ant1 tlecisions (luring ~notlel simulation.

The present;rtion of the model is basetl on views
that contain net~vorketl nocles. Each node in a view
can represent zero o r more processes in the niodel;
however, no l~rocess can be represented by more
than one node in a single view. This mapping
between the r)rocesses in tlie model and the nodes
in a view allows tlie user to clevelop ant1 animate
multiple views of the model simultaneously. For
example, one view miry show the model at its lomi-
est level of tletail, with each process in tlie motlel
maplxd to ;I single nocle. h o t h e r view may show
a higher level of ni;ily~ing, with multiple processes
m;lppetl to the sxnie node. A third view may m;rp
processes basetl o n attributes such as geographic
location, the organizational chart, or technologj,.
The construction of I lie views is left to tlie cre;rtiv-
ity of tlie an;rlyst b~rilding tlie niodel.

During motlel simulation, the DECmotlel tool
uses anim;rtion to show the movement of messages
from one process to irnother. Tlic user can ;11so
view the messages ancl their irttl-ibutes.

To accommoclate user interaction, the DE<;model
tool provides a menu sencl rule in the clefinition of
an activity I f ;In ;rctivit). uses the menu sentl rule,
just before the ;rctivitjr fires, a menu appears t l u t
allo\vs the user to make a choice that tletermines
what messages ;ire to be sent b!. t l ~ e activity ancl

5 4 I"ol 6 iVo. 4 k l l 199r Digital Tecbtricnl Jorrrirnl

The Design of DECnzodelfor Windows

wliich processes are to receive them. The user is
unaware of the actual send rule; the choice made
forces one of a set of send rules to be selected. The
use of menus, animation of messages moving
between processes, and user-controlled stepping
through the simulation gives the user the feeling of
test-driving the business process.

Architecture and Development Process
The overall DECmotlel architecture, shown in Figure
3, contains two layers. The inner layer of the architec-
ture is the internal engine, which provicles the means
for representing, storing, and executing (simulating)
models. The internal engine is designed using ROCK,
a frame-based, object-oriented knowledge repre-
sentation system, and AMP, a modeling and simula-
tion frame-class library implemented in ROCK.' The
outer layer of the architecture is the user interface,
which provides the means for all user interdction
with the DECmotlel model and has two major com-
ponents: the model builder and the presentation

builder. The user interface is designed as a set of
classes specialized from the Microsoft Foundation
Classes. Interaction between the two layers is
achieved with an internal application programming
interface (MI).

This architecture was chosen for both technical
ancl pragmatic organizational reasons. The parti-
tioning into two layers allowed the internal engine
to be built using state-of-the-art knowledge repre-
sentation technology ancl the user interface to be
built using state-of-the-art graphical user interface
technology. The disadvantages in this separation
were the necessity of designing an internal API and
the need to duplicate some data (nominally stored
in the knowlerlge base) in the user interface.

The partitioning mapped well to the human
resources available in the DECmodel team. The
DECmodel engineers had strong skills in developing
LISP, knowledge-based, and X Window System appli-
cations but little experience in tleveloping C++,
ROCK, or Microsoft Windows applications. With the
architectural separation, one team was able to
focus on the internal engine using C++ and ROCK
and, therefore, did not have to learn much about

I the efficient use of human resources in the develop-
I ment process overcame the technical disadvan-
I tages of the approacli.
I DECmodel development proceeded with the two
I teams. Since the bulk of their development work
I was com~leted first. the members of the knowl-

-
AMP A I I DECmodel layers: the internal engine and the user

I ROCK I interface.
1 INTERNAL ENGINE I
I C DECMODEL APPLICATION I Internal Engine
I - - - - _ - - _ - - - _ -

The internal engine represents models of dynamic I----------+.---- r---- business processes in a knowledge base and exe-

1 cutes these models using discrete event sim~~lation.
MODELING LANGUAGE ' This layer provides a set of services for interacting

I I with the knowledge base. These services are
I PERSISTENT STORAGE

I
accessed through the DECmodel tool's internal API. L - - - - - - - - - - - - - - - - - - - I
The internal engine contains the DECmotlel knowl-
edge base, simulation engine, and means of persis-
tent storage. Using the DECmodel methodology to

Digitnl Tecbnicnl Jocrmnl Vol. 6 A'o. 4 Fall 1994

Workflow Models

represent ;ind execute business process motlels,
the internal engine

Represents the structure, attributes, and behavior
tlescriptions of the business processes in a hiowl-
edge base. (This representation is the model.)

Rej~resents the s l r i ~ c t ~ ~ r c , ;ittribi~res, and behav-
ior descriptions of the ;inimatetl \~isualiz:~tion
o f the moclel in a kaowledge lxise. (This repre-
sentation is the present;ttion.)

Represents tlie connections between the model
and the resentat at ion in ;I ktiowledge base.
(This represent;~tio~i is the model-presentation
n~appi~ig.)

Rel,resents the clyn;imic behavior of the l>usiness
processes by al lowing for discrete event simula-
tion of the knowledge base.

Knorille~lge Base 'The r>Ec:model knowledge base
contains the frame-based, object-oriented rep-
resentation of tlie moclel, tlie presentation, and
the connections Ixtween tlie~ii. It also main-
tains the rnotlel rel;~tions, attributes, ;mcl methods.
The knowledge base contains both cl;lsses ant1
instanccs. The cl;~sses specify I)E(:moclel objects;
sets of instz~nces m:~ke up specific models ant1 pre-
sentations. In addition to cont;~ining a11 the infor-
mation ;tbout rnotlel and presentntion beli;~\~ior and
structure, the k~lo~vletlge base conti~ins all the
gr;~phical inform;~tion useel 17)' the moclel builder
ancl the presentntion builder This inforrn;~tion is
upd;~ted in real time.

K ~ ~ o z ~ ~ l e ~ I ~ q e Rtpi.ese?1tutioi7 Tecln~~ologj~ The
I)E(:n~otlel I<nowledge bxse atid siliii~lation engine
;Ire implemented in 1<0<:K, ;I h.;mie-b;lsetl, object-
orientetl I<nowleclge represent;ition system written
in the (:++ ~rogr;i~ii~iiing l;~ngu;~ge. IlO(;K iniple-
ments the IMKA knowletlge representation technol-
ogy and is usetl as ;I set o f A P ~ filnctions in ;I C++
programming environment.

KO<:K provides useful features s i~ch as frames.
multiple inheritance of tlat;~ and methotls, user-
clefined rel;~tionsliil,s, 21ncl contexts. The basic unit
of knowletlge in I<()(:K is a fr;~me, whicli represents
an object or ;I concept. A frame is ;I collection of
slots tl1;1t contain tlie attribute, relationship, and
1"-ocedural inform;~tion about the object or the con-
cept. Attribute slots store values, relation slots
store user-defined links between frames. and mes-
sage slots store methotls (functions) that ;Ire

executed when the frame receives the approp-
riate message from the ;~pplic;~tion program. Class
frames represent object types or categories.
Instance fri~rnes represent p;rrticular members of
a class. ROCK requires fr;lme classes to be org;~nizecl
in a class hierarchy. Attribute slots ;~ncl message
slots can inlierit v;ilues ;rnd metliocls from cl;isses at
;I higlier level in the hierarchy. This rneclianism can
be used to tlefine default values for h-;[me classes.
Both frame classes ant1 frame inst;~nceh re objects.
ancl both can be tlynamically created, operated on.
and deleted tluring run time. With respect to the
C++ language, all frxmes appear to li;~vr the s;lnie
data type. Slots are objects, \vhose I>eIi:~\lior is
definetl intlepenclent of t l~e frames.

Portions of the knowledge base are built using
AMP, a motleling ant1 simulation frame-class library
implementetl in ROCK. AMP contains objects for
representing process motlels that cont;~in entity
flow, for constructing ant1 running tliscrete-event
simulations. xncl for generating, collecting, ancl
reducing statistical d ~ t ; ~ .

The DECmodel fr;inle cl:~sses ;ire subcl;isscs of
ROCK and AWP classes and contain relations,
attributes, and methods that tlescribe the content
and behavior of IlECrnotlel objects. Some 1)M;motlel
frame classes are abstract classes used only as
a basis for more specific subcl;~sses; others ;Ire i~secl
for instanti;ition of J)E(;rnotlel ohjects. The
DECnlodel tool contains three t!rpes of t'riime
cl;~sses: lnotlel objects, prcse11t;ltion objects. and
project objects. A specific I>Ec;rnotlel project is rep-
resented within the knowledge base :IS ;I set of
model, presentation, ancl project instanccs. These
instances are created in the knowletlge base by
loadi~ig a DE<;model motleling language (I>>ll.) file
or tlirough interaction with the moclel I>uiltler or
tlie presentation builder.

Persistent Stot-age The 1)MI. is ;I subset of tlie
ROCK frame definition language and is used by
the knowledge base for persistent stol-;tge.
A DEC;model project is stored as AS<:II text in three
files that contain tlie model, present;~tion. ;~ncl m;lp-
ping objects. The language crnploys I<O(:r< sy11t;lx
but uses only the fr;i~ne cl;~sses ;ind slots definetl in
the l>E(:motlel knowletlge base.

The DEC~notlel tool utilizes the l<O<:K frame clefi-
nition interpreter as the 1)1\IL interpreter. Sincc the
ROCK interpreter was not intended to be used for
persistent storage, the 1)ECrnotlel tlevelol~ers mstle
several niinor moclific;itions to obtain tlie tlesirecl

The Design of DECnzodelJor Windozus

error handling capabilities. The DECrnodel tool
contains its own DML code generator.

Sirnul~~tion Engine The simulation engine exe-
cutes a discrete event simulation of the model in
the knowledge base. This simulation can be per-
formed either interactively or in a batch mode. The
simulation engine was clesigned to be so robust
that a model can be simulatecl at any stage of its
development, regardless of inconsistencies or
undefined elements.

The simulation engine interacts with the presen-
tation builder to control sin~ulation, animation, ancl
graphics. The user controls simulation through
the presentation builder. The presentation builder
calls simulation engine Apt h~nctions to perform
the requested actions, such as starting, step-
ping through, pausing, ending, and reinitializing
the simulation

Script Engine and Comyiler Scripts provide
a means of specifying user-defined actions to cus-
tomize model animation and to perform spe-
cial presentation actions during simulation. The
DECmodel tool contains a language for defining
scripts, a script compiler, and a script engine for
executing the scripts. Although the DECmodel team
wanted to avoid requiring any programming in the
tool, tlevelopers decided that a script language was
the only way to implement these features in the
available time frame.

The script language contains functions for

Annotating, hiding, showing, flashing, moving,
highlighting, and scaling presentation icons

Playing sounds and sound loops

Animating connections between nodes

Showing, hiding, and clearing certain kinds of
windows

Starting other applications

Temporarily stopping execution

Loacling a new project

Starting and pailsing the simulation

Displaying files

Displaying a list of DECmodel development team
members

Ancdysis and Reporting Services The knowledge
base contains services that allow the user to ana-
lyze models and presentations in the knowledge
base and to generate reports.

The consistency advisor checks models, presenta-
tions, and mappings for inconsistencies and poten-
tial problems at any point in the model development
process. This check is analogous to the syntax check
performed by a compiler. The consistency advisor
check IS the primary model-building debugging a ~ d
for users. Inconsistencies in the model do not pre-
vent a model from being simulated.

The model description report lists the descrip-
tion, messages sent, and messages received for each
activity and process. The model table report con-
tains the basic model information in a table format
for easy access by another application, database, or
spreadsheet. The simulation summary report cotl-
tains information on simulation performance.

Design and Iinplenze~ztntion Decisions The inter-
nal engine for the first DECmodel product release,
DECmodel for Windows version 1.0, was imple-
mented as a Windows dynamic link library (DLL)
using the Winclows version of RO(;K version 1.0, the
Windows version of AMP version 1.0, ancl Microsoft
C/C++ version 70. For DECmodel for Windows
version 1.1, clevelopers ported the internal engine
to Microsoft Visual C++ version 1.0.

Several options existed for implementing the
DE(:motlel knowledge base. The knowledge base of
the Symmod application, the precursor to the
DECmodel product, was implemented in a LISP envi-
ronment. The DECmodel engineering team wanted
to n101~e to a more stantlarcl programming environ-
ment and, therefore, focusetl on C++ and C++-based
tools. However, a straight C++ implementation
would have required the reimplementation of
knowledge representation, sjmulation, ant1 model-
ing technology available in other tools.

Another lnodeling and simulation technology,
the Modeling and Simulation System (MSS), had
been developed for Digital's Artificial Intelligence
Technology Center by the Carnegie Group, Inc.
(CGI)? This graphical tool was designed at a lower
level than Symmod. It used a modeling sinlulation
language ant1 was developed to implenlent the next
version of Symmod. However, the MSS modeling
paradigm was not compatible with that of the
DECmodel tool.

IMKA had also been recently cle~~eloped by
CGI, funded by a consortium of companies, as a

Digital Technicnl Jourtrnl 1b1. 6 No. 4 Full 1994

Workflow Models

replacement for the Knowletlge (:r:ift protluct.
IMKA's implementation, liO(:K. Iricketl some o f the
cliiss libraries included in Knowletlge (:r;lft for sini-
illation and process mocleling but rrin significantly
faster than Knowletlge Craft. The engineering tram
clecitled to use ROCK to implement the knowleclge
base because of its knowletlge representation
power antl its C++ compatibilit)~. Digital contractetl
with <:(;I to port the class libraries to ItO(:K. The
team, therefore, had a head start in designing and
implementing the internal engine. The portability
of ROCK was also an advantage; switching to the
Windows platform from the DE<:wintlows platform
causetl no disruption in tlevelopment.

The original intent of the engineering team was
to irnplemcnt the DECmoclel tool as a single exe-
cutable file. The knowletlge l.xlse cont;iins much
global data, hom~ever, ant1 restrictions on the
number. of data segrnents reqi~irecl developers to
implement the internal engine as ;I l)l.l.. 'l'his encap-
sulation of tlie internal engine allows it to be ilsed
in other applications and enables easy porting to
other platforms. The uK;model team tlevelol>ed
;I set of internal API h~nctions rrntl structures to
allow interactions between the D1.L-based internal
engine and the executable-basetl user interface.

The Symmod application hat1 a tilodeling
1angu;lge based on LISP for persistent storage of
motlels and ilsed a relational d;lt;ib;lse for persistent
storage of presentations. Consitleration was given
to developing a mocleling langu;ige specific to
tlie I)E(:model tool. Instead, the engineering team
decicled to use the ROCK frame clefinition lan-
guage, since it was alreatly comj,letcly definetl xnd
debuggecl ant1 had an interpreter. 'T'he term1 i~sed
tliis language for persistent storage of both models
rind presentations to allow easy sharing of projects
between users and to simpli@ debugging by users
anti I)E<:motlel tlevelopers.

The knowledge base team was responsible for
implementing the internal MI between tlie user
interhce and the knowledge base. This interface was
specifiecl in detail early in the project. The te;uln kept
the specification up-to-date throitghout the project.
It prep;lred 19 revisions antl proclucetl a fi t i ; l l doc11-
nlent of tnore than 200 pages. 'I'his specifici~tion kept
interl-'rice problems to ;I minimum, thus dehising
;I potential source of major technicrll problems.

TIie team specified the objects in grerlt tletrlil
erirly in tlie project. It also heltl sever;~l internal
;intJ external tlesign reviews. These lneasures
reduced the number of potenti:~l tlesign problems

ant1 thus yieltlecl ;I higher-qi1alit)7 product r~ntl
a faster in1plelnent;ition.

User Interf~ice
The user interface provides the means for all user
interaction with the IlECmodel tool. It h;a two
~ilajor components: the model builder ancl the pre-
sentation builder.

The user interface is designed as a set of c1;lsses
specialized from the Microsoft Foundation Classes.
Most of these special I>ECnlodel user interface
classes correspontl to frame classes in the knon~l-
edge base; the rem;~incler are necessar). for iniple-
menting t h e user interfirce. l'he three main types o f
user interface classes-windows, graphic objects,
and tlialog boxes-;lrc usctl by both the niotlel
builder ;lnd the presentation bujltler.

Wi~zdou~ CILISSL'S The user interface contains sev-
eral types of window classes: graphics wintlows.
text windows. :~ntl a frame window.

The graphics window classes are all derived from
the generic 1)M:model graphics winclow class.
Graphics windows cont;iin gritphic objects, such as
boxes or lines. IJsers act upon these nlinclonrs
through menu comnlr~nds or through the Wintlo\vs
messages generatecl hy the mouse atit1 mouse but-
tons. The gr;ipliics windows are the model wintlow,
the view windows, ;lntl the palettes. Menu coni-
mands specific to c;ich gr;~phics winclow ;Ire han-
tllecl I,y niess;lge hantl lers within the window class.

The text window c1;lsses are derived from the
generic l>E<:model text winclow class. Text win-
dows are gener:~lly read-only and display various
types of textual information, such as tlescriptions.
the text of files. ;tnd clock information. As in the
case of gr;~phics wintlows, menu commantls spe-
cific to each text window are liantllecl by message
handlers within the wintlow class.

The one fi-;ume window class, i t . , the top win-
dow class. is tlerivetl fro~ll the CMUlFrameWncl
Microsoft Fo~~ntl;~tion (:lass ;lntl serves as the frame
wintlow for the :~l)plicrition. The menu cornmi~ntls
not specific to ;L pr~rticul;ir winclow are hantlletl by
tlefault mess:tge h;~ntllers witllin this wintlow.

G'r~~)hic.s CI~.s.se.s (;raphics wintlow classes usc
graphic objects to build models and presentations.
These c1;tsses implement the processes, activities,
nodes. connections, ;ind ;innot;~tions displayed in
the Motlel Editing Window ancl in the views.

58 W)I. 6 No. 4 Ail1 199.1 Digital Techtrical Jo~~rrral

The Design of DECmodeL for Windows

Dialog Box Classes The DE<:model tool contains
a large number of dialog boxes derived from the
CModalDi;~log Microsoft Fountlation Class. The tool
uses these di;llog boxes to define the information
and relationships contained in the DECrnodel
objects.

Menus The 1)ECmodel tool uses a set of menus
individualizccl to match the capabilities of the
wintlow currently in use. When ;i user starts the
DECmodel applic;~tion, the tool presents a reduced
menu that allows the user to start a new project
or to load an existing one. Once a project is in
memory the menu changes as the user switches
between the Motlel Editing Window, the views, ant1
the other wintlows. Menu comniantls activate mes-
sage handler functions within the window classes.

Appeumnce o f the User Interjace Figure 4 shows
a small but typical DECmodel model. The figure dis-
plays each process and its member activities. Note
that each of the three activity types is denoted by
a different icon. Lines indicate the potential flow
of messages. Figure 5 shows the DECrnodel presen-
tation for the model that appears in Figure 4. The
presentation contains both a view and the support-
ing wintlows, e.g., the simulation clock and the
description wintlows.

Design and Implementation Decisions The team
implementecl the user interface for DECmodel for
Windows version 1.0 using Microsoft C/C++ ver-
sion 70 and Microsoft Foundation Classes version
1.0. For DECmodel for Windows version 1.1, devel-
opers portecl the user interface to Microsoft Visual

t --..+ m
Home Trea

Visit hc to r

,epare f Hospital 8

ment

~ v a l u a t t ~ a b Tests

Evaluate Symptoms
Arrange Discharge

Begin T+tment

k l
Pay Bill

--.

Z n c e Carrier

i
'M

Confirm Coverage

Ho ~ l t a l Admissions - /' \"-A-!
schedule Room

Admit bt ient

Notify Billing

1
Hos'ital Records

Perform Lab Tests

Locate or Create Records

d
Bill Patient

I

Figure 4 ~ g ~ i c a l DECmodel Model

Digital Technicnl Jorrrtral Wd. G No. 4 Fall 1994 59

Workflow Models

Patient is Not Well ~ 0 p r Insurance Company

1 Admissions (Lab I

I RemD ' ' ' Billing I
-.

message name : Record Request
received by : Hospital Records

Fig~ire 5 Dpic~11 IlEC,'111odel Pr~esei~tation (f i r tl7e Ll-lo~lc>l .l%,ozi~rl in Fig~lvc' 4)

(I++ version 1.0 and Microsoft Fotrnrlation (;l;lsst:,
version 1.5.

As statetl at the beginning 01' 11ie pilper, the
1)1:(:111oclel [~roduct was initi;~lIj' t;~rgetetl a t both
V~\\Xst;~tio~i workstations rirnning untler the
I>E(:windows operating system and I'(:s rutining
untler the Windows NT oper;lting system. <:onse-
quently, when developers tlecidetl to focus solely
on the I>(; platform running untlel- tlie stantlard
W ~ I I ~ O W S operating system, the user interface
tlevelopment effort was disruptetl. Engineers h;~d
done a significant amount of tlesign \vork toward
achieving a DE(:winclows implementarion.

The 1)Ecmodel engineering te;lm consitleretl
other class libraries and user interk~ce implement;+
tion lxrckages (such as xv), btlt most were tlefi-
cietit in Windows features or in the l o o k ;~ntl feel.
Since the Windows operating systeni WAS tlie only
platform for tlie foreseeable fi~ture, the engineering
t a m felt that using microso oft Fountlation <:lasses
was the best cfioice. However. they m;~cle tliis deci-
sion after they had perfortnetl a significant amount
of development work with one of the tools. Much
of the work hat1 to be redone. which contributed to
the schedule del:y,

I)i~ri~ig the tlesign ;~nd development of tlie
DECrnodel procluct, the te;lni debatetl how gapl~jc ;~ l
to make the I I S C ~ interk~ce, tli;lt is, to what extent tlia-
log boxes shoulcl be usetl. Although the goal was to
make the user interface as graphical as possible, the
tight scliedule forcetl the team to postpone plans for
graphical etlitors in klvor of dialog boxes, which
were faster to implement. For example, the team hat1
initially planned to implement an Activity Editing
Window 2nd 11;ltl p;~rti;~lly developed it. This window
was to provitle ;I complete view of an activity and
;lIlow gr;~phic;~l editing o f its information. Schedule
constr;~ints requjrrtl the te;im to abandon tliis pl;m
;inti to tlevelol-, ;I ser o f tlialog boxes that were not ;IS

easy to use but were Lister LO implement.
The user interk~ce tlesigri was not specified or

com~~iitted to storyl,o;~rtls i n any detail at the begin-
ning of the project. partially to save time after
the tlisruptions in the development work. This cleci-
sion led to more lost time later in the project,
though, because user interface feat~lres were
tlesignetl quickly ant1 sometimes incompatibly. ant1
consequently requiretl I-eworking. In addition, the
resulting user interface w;~s not as easy to use as i t
could 1i;ive been ifbettrt- plitnned.

60 Ibl. fi No. J Full 1994 nig i tn l Tecbiriccrl Jo~~vtrn l

The Design of DECnzodel for Windozus

External review of the user interface design was
not performed until late in the project. The review
yielded some ideas that would have resulted in
a more usable product; however, there was not
enough time left in the scheclule to implement them.

Delivery
A cliscussion of the released product and the team's
success in achieving the clesign and development
goals follows.

Release
Digital released version 1.0 of the DECmodel for
Windows product in November 1993 ant1 version
1.1 in April 1994. Version 1.0 contained the basic
capabilities for building models and presentations
of business processes; version 1.1 added a set of
minor enhancements and bug fixes. Because of its
small, focused market and the large cost savings
that can result from its use, the DECmodel tool was
introduced as a low-volume, high-priced product.
The protluct includes the software, example mod-
els, documentation, and a week of hands-on train-
ing. The DECmodel tool is an integral part of Digital
Consulting's reengineering practice.

Success of Design Choices
The separation of the model from the presentation
is the single most important element of the prod-
uct's success. This feature, along with animation,
distinguishes the DECmodel tool from its competi-
tion. Some users have even requestecl the capability
of building the presentation first and then gener-
ating the corresponding model. Such capability
would require consiclerable investigation.

The paradigm of process-activity encapsulation
is difficult for some users to become accustomed
to. Many still prefer to build a model using a work-
flow approach, which the DECmodel tool can sup-
port, rather than by defining each process ancl its
behavior indepentlently.

The exclusion of resource constraints has limited
the application of the DECmodel tool to system
design, thus preventing its use in motleling sys-
tem perform;lnce. Although the capability was orig-
inally not a product goal, many users would like
a future version of the DECmodel product to pro-
vide this feature.

To perform speck11 user-defined actions during
the simulation, a script language was included in
the DECmodel tool. This clesign feature violated the

goal of requiring no programming, and some users
found scripts hard to use. However, many users have
requested that a future DECmodel version provide
more script functions and extend the script language
to be more like the RASlC progamniing language.

Also, to enhance the use of the DECmodel tool in
the design of business processes, a future version
should support classes to make generic processes
available as building blocks of a business process.

Development Successes and Lessons
The DECnloclel engineering team successfi~lly
released a software protluct on the Microsoft
Windows platform, the one most popular with busi-
ness consultants. This achievement was significant
because the group of engineers began the project
with no PC experience. The team did not meet its
one-year delivery goal, and the goal slipped to one
ancl one-half years after the Phase 0 announcement.
However, this time frame was still extremely short
for developing a con~plex PC product from scratch.

The product retained the existing Symbolic
Modeling paradigm (i.e., a process-activity-message
model and a strong distinction between model and
presentation) and exhibited performance an order
of magnitude better than that of the Symmod prod-
uct, which it replaced. The product utilized the
most widely accepted modern programming tech-
nology base (C/C++), which simplified rnaintain-
ability and reduced the neecl for special training
of maintainers.

Splitting the development team into two sub-
teams worked well. It distributed the amount of
learning about new technologies required by the
engineers and minimized the overall tlevelopment
time. Key factors in the siiccess of this approach
were the tletailetl object and internal A131 specifica-
tions that were kept up-to-date throughout tlevel-
opment and thus provided a reliable interface
between the two parts of the project.

After the product was released, the DECnlodel
team identified certain factors that could have
made the team and the product even more success-
h11. The entire engineering team would have bene-
fited from Wintlows training at the onset of the
project. The Windows design of the user interface
should have been specified and committecl to story-
board in much greater detail much earlier in the
project. In addition, the team should have arranged
for Wintlows experts to review the clesign. These
changes in the engineering process wou Id have
helped the team procluce a cleaner, easier-to-use,

Digilril Technical Jounzal WJI. 6 No. 4 Fall 1994

Workflow Models

more maintainable user interface and would have
reduced implementation time. The project sched-
ule should have been created using a bottom-up
rather than a top-down process. The initial one-year
schedule was based 011 an unrealistic, management-
imposed release date. When the engineering team
revised the schedule and calculated a release date
based on their detailed estimates, the team met the
new date.

Summary
Modeling and simulating business processes is an
important part of business process reengineering.
Digital developed the DECmodel tool specifically
for this type of simulation. Although it borrows
many ideas from other disciplines of modeling and
simulation, as well as from object-oriented design,
the DEClnodel product is unique in the way it niod-
els business processes, separates the model from
the presentation, and represents the model as
frames in a knowledge base.

Acknowledgments
The authors would like to acknowledge the follow-
ing people who also contributed to the design of
the DECmodel product: Ty Chaney, David Choi,

Laurel Drummond, Peter Floss, Arnal Kassatly, Mike
Kiskiel, Kip Landingham, and Janet Rothstein.

References

1. Symmod User's Guide (Maynard, ;cW: Digital
Equipment Corporation, 1990).

2. Knoulledge Craft Reference Manual (Pittsburgh,
PA: Carnegie Group, 1988).

3. S. Hoover and 11. Perry, Simulation, A Problem
Solving A~~pronch (Reading, M A : Addison-
Wesley, 1989).

4. DEC7nodel for Windoi~ls: Modeler's Guide (May-
nard, MA: Digital Equipment Corporation, 1994).

5. J. Peterson, Pet?+ Net Theory and iModeling of
Syslenzs (Englewood Cliffs, v: Prentice-Hall,
1981).

6. G. Booch, Object Oriented Design (Redwoocl
City, CA: Benjamin-Cummings, 1991).

7. ROCK Software Fz~!zct zonal Specification, Ver-
sion 2.0 (Pittsburgh, PA: Carnegie Group, 1991).

8. Modeling and Simulnl ion System User's Guide
(Pittsburgh, PA: Carnegie Group, 1991).

6 2 Vol 6 No. 4 Fall 1994 Digital TechnicalJou?-n~11

Dennis G. Giokas
John C. Rokickri I

The Design of ManageWORKS:
A User Interface Framework

The ManageWORKS IVorkgroup Administrator for Wi~zdotus softzuare prod~~ct is
Digital's integration platform for system and network management of heteroge-
neous local area networks. The Man~~ge\VORKSproduct enables multiple, heteroge-
neous network operating system and network interconnect device lnanagement
from GI single PC r~~nning under the microso oft Windows operating system. The
ilIaizc~geW0lZKS soJhuare is a user inteface f r a n u o r ; that is, the seruices it pro-
uides are primarily targeted at the integration of the user intelCfnce elements of
management applications. It manifests the organizational, navigational, and fz~nc-
tional elements of system and network management in a coherent zuhole. Viewers,
such as the hierarchical outline viewer and the topological relationships uiez~ler
that are components of the ManagelVORKS software, provide the organizational
and nclvigntionnl elements of the system. Management applications developed by
Digital and by third parties through the iMnnagelV0RKS Software Developer's Kit
provide the functional elements to manage network entities. This paper discusses
the user interface design that implements these three elements and the software sys-
tem design that supports the user interfnce framework.

The ManageWORKS Workgroup Administrator for
Windows software product is Digital's strategic
tool for providing system and network manage-
ment of heterogeneous local area networks (WNs).
It serves as Digital's platform for the integration
of PC LAN management. From the perspective
of the end user, i t . , the LAN system aclministrator
and network manager, the kManageW<)RKS product
cornpriscs a suite of modules that integrates
a diverse set of management activities into one
workspace. From the perspective of the cleveloper
of system and network management applications,
the klanage\VORKS product is an extensible and
flexible software framework for the rapid develop-
ment of integrated management modules, all of
which presents a consistent user interface.

The design of the management system was user
centric, i.e., usability was the top priority. Thus,
we began the design work without any precon-
ceived notions about the management software sys-
tem design. The clesign that emerged and that is
documented in this paper was driven solely by the
user interface paradigm developed and tested with
our customers.

Digital Techtrical Joiir#ral Vol. 6 No. 4 Fall 1994

This paper focuses on how the ManageWORKS
software presents and integrates its fi~nctionality
to the end user. Specifically, the paper presents
details of the user interface paradigm and discusses
the design rationale and the design methods
employed. The paper also discusses the design of
ManageWORKS software in support of the user
interface framework.

Ih-iving Forces bebind the Design
The MallageWORKS software was first released
as a component of the PATHWORKS version 5.0
for DOs and Windows procluct. The foci for
that PATHWORKS release set the tone for the
Matiage\VoRKS design. The PATHWORKS version 5.0
design objectives were to

1. Enhance the usability of the PATHWORKS prod-
uct. Since the PATHWORKS system was rooted in
a command line-based user interhce, the goal
was to develop a graphical user interhce for the
system that was based on the Microsoft Windows
operating system. Such a user interface would be
contemporary, easier to learn, and easier to use.

PC LAN and System Management Tools

2. Enhance the manageability of the PATHWORKS
product. The goal was to reduce the cost of own-
ership by improving the ulstallation, configura-
tion, and administration of the system.

The ManageWORKS design team i~setl two voice-
of-the-customer techniques to provide more depth
and detail for the two high-level product design
objectives. First, the team used Contextual Inquiry
to determine a customer profile and to develop
a clearer statement of the user's work.' Then, the
team tested user interface prototypes with cus-
tomers by means of formal usability testing. From
15 to 20 customers and users participated in each
of three rounds of usability testing.

Early in the investigation, Contextual Inquiry
revealed that the profile of the PATH\VORKS system
administrator had changed drastically during the
five years since the PATHWORKS product was first
released. A typical system administrator in the era
of PATHWORKS version 1.0 had been a VAX/VMS sys-
tem manager who inherited the responsibility of
installing and managing a PC File and print-sharing
procluct. The interface into the system was ;I VT-class
terminal running command line-basecl utilities.
Totlay, a system administrator is usually a PC user
who is quite familiar with graphical user interfaces.
Such an administrator is more likely to be trained ill

the installation, configuration, and nianage~nent of
PCs and I-'<; networking software than his/her pre-
tlecessors. This change in the profile encouraged
us to shift the PATHWORKS focus from using host-
I~~secl command line ~ltilities to manage the system
to using client-based graphical utilities.

We also profiled the customer network configu-
ration. During the same five years, it changecl from
a very simple and homogeneous environment with
just a few PATHWORKS servers to a medium-to-large
heterogeneous PC LAN. At present, configurations
comprise network operating systems that consist
of Novel1 NetWare, Microsoft W N Manager, icntl
Apple Appleshare file and print services, as well
as other services that are emerging in the PC U N
environment. The network operating systems are
deployed on their native platforms and by Digital
on the OpenVMS ant1 DEC OSF/l platforms. Each sys-
tem has its own tools to manage the clients and
the servers. Each has a different user interface that
results in a long learning curve and thus high train-
ing costs or low productivity for system administra-
tors. Customers reported that they desired tools
with a consistent user interface to manage this
dive I-s i t)r.

The team employed software itsability testing
throughout the develop~nent life cycle. Two usabil-
ity tests were performed with early design proto-
types; the final test was performed with our first
pass at a detailed concept design. We performed
the usability testing with customers to test user
interface and functional element design concepts
that we developed as a result of the Contextual
Inquiry. The user thus served as a design partici-
pant. With each iteration of the formal testing. we
tested specific functional concepts in three key
areas: (1) mechanisms to navigate among the man-
aged entities, (2) mechanisms to organize these
entities, and (3) the functional capability inherent
in the management directives supported. (Note
that, in this paper, the servers, services, and
resources managed by means of the ManageWORKS
software are collectively referred to as managed
entities.) The major lessons that we learned from
this testing effort and then applied to the user inter-
face and software designs are as follows:

1. The 1ManageWORKS software had to provide
mechanisms to navigate among a cliverse set of
managed entities on the I A N or in some user-
defined management domain. Users want to be
able to view and thus "cliscover" the entities that
are to be managed. The system had to present
the managed entities in graphical display formats
that were familiar ant1 enticing to users. Users
welcome the ability to support different styles
of presentation. Final 1): users need easy tnecha-
nisrns to navigate tlirougli the hierarchy of
a n entit)!

2. Navigation mechanisms, ;as just descrihetl, work
well for novice users but become tedioi~s ant1
constraining for more experienced users, as we
could attest to after our experience with the pro-
totypes. The solution that we presented to users
allowed them to create custom views of their
managed entities, i.e., to organize their manage-
ment tlomains. This concept was well received
by users tluring usability testing.

3. The ManageWORKS product had to provide
mechanisms that consistently performed the
functions that were common among a diverse
set of management applications. The product
design presents users with an object-oriented
view of the managed environment. The builtling
block of this design is the object, an abstraction
of a manageable entity such as a server or a net-
work router. Each object is a member of a single

I.'?[. 6 No. 4 FLIII I994 Digital Tecbrricnl Jourirnl

The Desi<yn of l l f c i n c i g e ~ v o ~ ~ ~ ~ : A User Interf~ice Frame~i!otiC?

object class that clescribes the set of object
instances within it. The ManageWORKS appli-
c;~tion renclers objects to the user as icons in ;I

viewer. For example, for a LAN t11:lt cont:iins
three NetWare servers, tlie object class called
Netwire Servers woulcl contain three objects,
e;ich of which represents one of the three intli-
vidual Netwre servers on the Lt\N. When users
focus on an object, the tool reveals which
;~ctions ;ire valid in the object's current contest.
This ;~pproacli differs from the tr;ldition;il com-
m;md line approach in which the iiser first
selects tlie utility (action) ;ind then specifies
the objects upon which to act. Interestingly,
whereas novice users fountl this object-focusecl
concept easy to grasp, those who considered
theniselves strong users of the traclitional com-
manel line Jnanagement utilities experienced clif-
ficulty in wasping the new concept.

4. The typical customer has a diverse ancl large
(200 to 1,000) number of entities to manage. To
adclress this need, tlie prototype testing pre-
sentetl users with tlie ability to manage more
than one entity at the same time ancl the ability
to manage many entities as one. llsers liked
being able to view and modify the properties
of multiple entities at the s;lme time as well as
being able to modify the same property across
;I set of like entities.

5. In addition to providing a consistent user inter-
kite, the MiinageWORKS protluct should integrate
the management tools into one workspace. User
feetlback led to the design of the user interf~ce
framework as the delivery vehicle for ;I diverse
sct o f m;inagement appl ic:ltions.

The Key Sofiware Design Principles
At this point in tlie tle\~eloprnent cycle, the tlesign
h)cus shifted From developing ancl testing user
interface ant1 fi~nctionalit), conce]>ts to tlesigning
the I\ilan;igeWOIlKS software itself. With wh;it we
consitlered to be ;I good i~ntlerstanding of the user's
neecls, we proceecled to tlesign ;I softwilre architec-
ture to st~pport those requirements.

I'rior ;~rchitectures that were filn1ili;rr to the
design team servecl as starting points for the design.
The following two examples represent sources of
tlesign concepts that we employed and adapted to
suit our objectives. Each represents an opposing
end of the spectrum with respect to design objec-
tives and iniplernentation.

The ManageWORKS te;im ;idopted tlie concept of
plug-in niodules, a softw;ire clesign t l i ;~ t is supported
by the Windows 1)ynaniic Link Library (DLL) archi-
tecture.?TIie design is also in common use by many
Winclows app.lications inclutling the Wintlows
Control Panel, the utility that manages the local
clesktop's configur;ition ant1 user preferences.'

The next challenge was to tlecide how much
constraint to impose on the design of the
ManageWORKS' plug-in niodules and how consis-
tent the modules milst he. I>igit;~l's extensible enter-
prise management director, the IIECmcc product,
incorporatecl some excellent concepts.' In particu-
lar, our design was influenceel by the way in which
DECnicc layered the m;uiagement responsibility
into presentation modules. fiinctional moclules,
and access niodules. Early in the design process, we
decided to separate the l~avigation ant1 presenta-
tion of managecl entities from the access and func-
tional management of the entities.

Another DECmcc concept. which is used, for
example, in the access module layer, was the pre-
sentation of a consistent view to the layers above. I
This concept, however, was not suitable for tlie
ManageWORKS clesign because it would have pl;icetl
constraints on the user intertiice tlesign, in particu-
lar, on the presentation of the attributes of man-
aged entities. The design team was not willing to
comproniise on this aspect of tlie tlesign.

Tluis, we decided on ;I M;inageV;/OIIKS design rh;it
can best be descrihetl as a user interface frame-
work. The initial release, which was a component
of I-'ATHWORKS version 5.0 for DOS and Windows,
offered few services other than to tie together the
user interface ele~nents required for system and
11etwor.k management. I'he user interface services
neetlecl were dictated by the five user interface
requirements previoi~sly tlescribecl.

The M;ln;lgeWORKS tlcsign incorporates two tylxs
of plug-in moclules: n;lvigation modules, referred to
in the ManagelVORKS product as Object Navigation
Moclules (ONMs), and ;~pplication modules, referred
to as Object Management Moclules (OMMs). The
ManageWORKS framework controls tlie control
flow and mess;iging between the modules.

ONMs allow for any number of navigation niotlels
to be supported ancl t~setl singly or simultaneously
by the user. Altl~ough, by clesign, ONMs possess no
knowledge of the managcd entities or entity rela-
tionships they display, they tlo possess the ability
to display entities with tlie relationships inherent
in them. ONMs also provide the mechanisms for

The Design of M a n a g e w o ~ ~ S : A User Interface Frainezuork

-- -

ManageWORKS Workgroup Administrator

Figure 1 MnnngeWORKS ViewerAs

the 1P Discovery (Navigator) viewer). This view
shows a scaled map; the entire contents of the map
viewer appears in a rectangular outline, which rep-
resents the user's current viewport into the data.
The user can use the PC pointing device to drag and
reposition the viewport.

Because the ONM maintains context when the
user "edits," i.e., modifies, the contents of a viewer,
the user can customize or organize the managed
entities as desired. By means of the Edit Viewer,
ONMs allow user customization within a viewer
with the support of user-definable hierarchies. For
example, each instance of a viewer can represent
a different management domain for the usec The
benefit is that the user can find objects and then
arrange them into hierarchies that are most useful.

As stated earlier, OMMs control the user inter-
faces for displaying and moddying managed entity
properties. The ManageWORKS framework pro-
vides for consistency in how the OMMs invoke the

user interfaces and ill how the user interfaces inter-
relate to the ONMs.

The consistency starts with the ManageWORKS
Actions menu. The basic management directives on
managed entities originate from this menu. The
major challenge in designing this menu was to avoid
using too many menu items, menu items that would
change constantly (i.e., by addition or deletion),
menu items that had three or four levels of hierar-
chy, and menu items that were not context sensitive
to what the user was doing. The objective was to
find a small set of words that conveyed the manage-
ment functions the user would most often perform.
We felt that these words should always be present
in the Actions menu, but to eliminate confusion for
the user, they should be rendered inactive when
not valid. On the other hand, we realized that this
small set of menu choices could never fully support
the actions on managed entities; therefore, the soft-
ware had to provide an extensibility mechanism.

Digital Technical Joiimul Vol. 6 No. 4 Fa11 1994 67

PC LAN and System Management Tools

We began the design process by developing an
entity/action matrix. One axis contained a list of
the entities that we envisioned being managed
from the ManageWORKS software. ?'lie other axis
contained a list of the actions that coulcl be per-
formed on the entities. We marked the intersec-
tions of the axes. 111 forming the list of actions, we
chose words that were used in existing products
that managed the same entities, words that we
tliought should be considered in a good user inter-
face, and finally, synonyms to those words already
listed. This approach gave us a clear picture of the
conitnon actions and also providecl a thesaurus of
words from which to choose. The common actions
on managed entities that emerged from tliis exer-
cise were

1. Make a new entity of some type

2. Display all the managed entities.

3. View and modiw the entity's properties.

4. Eliminate the entity.

The ManageWORKS software supports these
cornmoll actions through the following Action
menu choices:

I . Create. Choose Create to make a new entity.

2. Expand. Choose Expand to view all the entities
that the ManageWORKS software is managing.

3. Properties. Choose Properties to display a dialog
box that manifests al I the entity's properties. The
user can then vie.vv the properties and make
modifications. as appropriate.

4. Delete. Choose Delete to eliminate the entity.

The clesign of the Properties dialog box is one
of tlie key user interface style elements of the
ManageWORKS product; however, NlanageWORKS
does not enforce or provide for tliis element.
Rather, the consistency is a fi~nction of a user inter-
face style guide for OMMs ant1 some common
library routines that support this user interp~ce
style.%(' Figure 2 shows the dialog boxes of two
of the three OMMs that come with the current
ManageWORKS product: tlie Simple Network
Management I'rotocol (SNMP) Manager OMBl ant1
the LAN Manager (LA\$) server managenlent OMM.

(The third OMM, for NetWare servers, is not shown.)
Note the Selected Objects fielcl in the SNMP dialog
box. The iLlanage\KrORKS software allows the user to

select multiple objects of the same class from
a viewer and to invoke an OMM methocl. The list of
selected objects is contained within this drop-
down list box, l'he user can easily view the
attributes of different objects from tlie same dialog
box. 'l'lie dialog box displays various sets of man-
aged entity properties. The user can select the
desired set of properties from the View or Modify
drop-down list boxes.

Figure 2 demonstrates that two dialog boxes can
be active at the same time. This feature supports the
ManageWORKS design requirement that the user be
able to manage more than one entity at a time. The
ManageWOINS product supports, in effect, threads
of execution to allow multiple OMkls to be active
simult;tr~eously. Support for the design principle
of managing many entities as easily as one is not
a function of the ManageWORKS software but of
the OMMs, since OMMs control. the methods used to
mallage entities.

The Sopware System Design
o~anageWORKS
The focus of the paper now shifts to the
Man;igewORKS internals that support the clesign
principles and user interface just clescribed.

The Application Framework
As an application, the Manage\lUORKS product is
merely a software framework for in te~at ing its top-
level user interface with the user interfaces of the
OMMs and ONMs. The ManageWORKS application
consists of two main components: (1) the user inter-
face shell and (2) the clispatchec Figure 3 tlepicts
the relationship between these ManageWORKS corn-
pollents and the OMMs and ONMs.

The user interface shell is a stantlard ivlicrosoft
Windows application that supports the top-level
\Vinclows user interface components-the main
application window and its menu bar, tool ribbon,
and status bar. The user interface shell translates all
user interaction by means of the menus, tool rib-
bon, ant1 mouse actions into OMM and ONM appli-
cation l~ rog r~n~ming interfaces (APIs) to perform
work for the encl user. The shell is also responsible
for initializing and terminating the r~pplication,
inclucling the clispatcher.

l'he clispatcher is responsible for maintaining
a link between the user interface shell and all
tlie OMMs, as well as for providing service routines.
The dispatcher loads and initializes all OMFvls

48 Rl. 6 No. 4 Fall 1994 Digital Tecljtrical Journal

Figtcre 2 ~Mun~cgelVoRKS OM!M Properties Dinlog Bc~ses

OBJECT
NAVIGATION
MODULE

r - - - - - _ _ _ _ _ _ _ _ _ _ _ _ - - - - - -_ - - - - - - - -___
I
I
I

I
I

I USER INTERFACE SHELL

I

I
I

I I
I
I t ------------ - - - - - - - - - - -

MODULE MODULE MODULE

DATABASE

Figure 3 ManageWORKS Application
4rchitectut-e

present basetl on an initialization file that the
end user configures at installation time (or, if sub-
sequent modules ;Ire added, by means of the
 management Module S e t ~ ~ p program). To enable
this routing to occul; the d~sp;~tcher maintains a list
of all OiLIMs loaded and the object classes that they
support.

One service that the dispatcher provides for
OMMs and ONkIs is the ability to motlify the menu
bar. OivlMs and ONMs may adtl ant1 set menu items
but only through the ~ P l s . The ManageWORKS soft-
ware ultimately controls what gets displayetl in the
menus basetl on w h ~ t objects are selectecl in a
viewer, which prevents the motlules from directly
manipulating the menu bar.

The Application Programming Intfl~ices
Once we had tleflnetl the concepts of the
ManageWORKS user ~nterfi~ce ant1 object classes, we
designecl a conin~on set ofAPIs thdt all O M M ant1 O N M
developers would employ. The MIS that emerged
focused primarily on the object-both its class
and its instance. Because the current set of object-
oriented languages and tools does not map well to

PC LAN and System Management Tools

the services supplied by the Winclows system, these
APls are in a more conventional C/Pascal program-
ming la~lguage style rather than in a C++ style.

The Mls that an OMM milst support fall into three
categories based upon their scope of operation:
(1) module based. (2) class based, ancl (3) object
based. All APIs have parameters that contain infor-
mation pertinent to the API call, including the
object identifier (OID), which identifies the object
on which to perform the operation.

Module-based MIS perform initialization, termi-
nation, ant1 informatioll reporting for the entire
OMM. The initialization includes determining how
many object classes an OMM supports. This func-
tion is important because an O M M can support
more than one class, e.g., a hierarchy of classes. By
checking for software dependencies on the operat-
ing system or support libraries, the O M M can also
make sure that the computer environment is capa-
ble of supporting the OMM. For example, Digital's
implementation of the OMM that manages NetWare
servers requires that the NetWare client be installed
and configured on the PC. Module termination
occurs before the ManageWORKS software termi-
nates, which allows OMMs to clean up any
resources they may have used. The informatioil
fi~nction provides information such as the module's
name and copyright information.

Class-based MIS support the actions that apply to
all objects within a class. These fi~nctions include
initialization, termination, configuration, ant1
reporting information about what actions and
properties can be accessed by the entl user in the
ManageWORKS user interface. A class-based config-
uration API presents a configi~ration window for
each class to the user; the user can then change the
behavior of the object class. For example, the user
can indicate whether or not files on a disk with hid-
den or system attributes or hidden LAN iManager file
services should be displayed.

Object-based APIs provide the ability to manipu-
late individual objects within the ManageWoRKS
software. With these MIS, OMMs can accomplish all
the base actions and those operations provicled for
in the user interface. These APIs include functions
to create, clelete, insert, remove, cop): get and set
properties, display a properties dialog box, main-
tain containership relationships (e.g., technology-
based hierarchies), and maintain classes that can be
created and inserted into an object. Approximately
30 APIs (a small manageable set) must be imple-
mented to be ManageWORKS compliant.

Each class- or object-based API requires an OID
or list of 01Ds on which to perform the opera-
tion. When called, each class MI acts on a single
object class. The caller manages all memory needed
for the successful completion of an API, i.e., no
MI returns a pointer to data. APIs that can return
a variable amount of information use a two-step
calling convention. The first call determines the
buffer size required to holcl all the data; the second
c;~ll retrieves that tlata. This two-call approach
recluires OMMs to efficiently gather informa-
tion using OMM-specific information caches to
store information retrieved from the managed
entity.

ONMs contain all the module-, class-, and object-
based UIs that exist in a standard OMM but also
contain some viewer-specific APls. These APls
include functions to display viemiers, select dis-
played objects, expancl objects, update objects, ancl
retrieve displayecl objects. New ONMs can be tlevel-
oped using these APb.

The Ohject Identzjcier
To represent objects within the ManageWORKS soft-
ware, we chose the approach of assigning an OID to
each object in the system. This number embodies
the irlformation of the class to which the object
belongs as well as the uniqueness of the indivitlual
instance of an object within the class.

The assignment of an OID to an object is the
responsibility of the OMM. The ManageWORKS soft-
ware dynamically assigns to an object class an OID
that represents the class, and the OMM is responsi-
ble for creating the unique instance values within
the context of that class. This approach allorvs
OMMs the flexibility of using any strategy to assign
these values, e.g., sequential assignment or map-
ping to a particular technolog): such as an external
database record.

Each o l D is a 32-bit number; the high 12 bits con-
tain information that identifies the class to which
the object belongs. This bit arrangement places a
limit, 2"-1, i.e., 4095 (a value of 0 is invalid), on
the number of classes that can be active with
ManageWRKS at any one time. The low 20 bits pro-
vide the uniqueness for each object instance within
the class, providing for up to 220- 1, i.e., more than
1 million, individual instances within a single class.
The advantages to using an OID lie in allowing
objects to store information in any format they
wish and using access fi~nctions to get at that infor-
mation in a consistent manner.

70 Vol. 6 ,Vo 4 Fall I994 Digital Techrrical Journal

The Design of Manage WORKS: A User Interface Framezuork

Storing Information about Objects
Although the OMMs are responsible for assigning
OIDs to objects within a class ant1 for storing infor-
mation about each object that can be managed, we
did not want every O M M under development to
have to create its own mechanism to accomplish
these tasks. We decided to create an object database
that would store information about objects and gen-
erate new OlDs for the OMivis.

Initial designs of this object database were to
support multiple users and thus allow the sharing
of information between multiple ManageWORKS
users and other applications. Because the schedule
for the first release of the ~ManagewORKS software
did not give us ample time to employ a commer-
cially available database, we decided to create our
own clatahase to support the management of
object classes ant1 object instances. This database
supports only a single user and consists of indexed
files for (1) object information, (2) class infor-
mation, ant1 (3) containership information. Tlie
existence of these files is hitlden under a tlatabase
API, which supports all the management aspects
of objects, from creating and deleting classes
and objects to reatling and modifying attributes of
those objects.

To allow future changes in the underlying tech-
nology of the database, we placed the database
code into a DLL. For the second release, we created
a new database DLL, with the same APls, that works
with Rorland's clBase TV tlatabase implementation.
By simply replacing the database DLL, all OMMs can
now take advantage of having information shared
between Manage\VORKS users across the network.
This clesign allows for comanagement of the LAN by
m~~lt iple network ad~ninistrators who have the
same information available. The OMMs do not have
to make any source code changes to work with this
new tlatabase DLL, but additional APls are present to
allow for the use of advancetl database features.

Before an OMM can create objects in the tlata-
base, the object class itself must be created in
the tlatabase. Because it dynamically assigns Oll)s,
the object database must store unique information
about the class along with the OlD. Each O M M must
register an object class, where each class has a name
that can be presented to the user in the user inter-
face, ant1 a class tag. The class tag is a 64-byte char-
acter string that must be unique among all OMMs.
The database dynamically assigns an OID to a newly
created class and maintains that mapping to the
class tag. We decided that using a unique 64-byte

character string would result in less conflict among
OMM developers than assigning hartl-coded OID val-
ues to each customer that wanted to develop an
OivlM. By not hard-coding the values, we ensured
that each newly created object class woultl receive
the next OID value. Thus, different end users who
are using different sets of OMMs may have different
OID values assigned to each of the object classes.

OM&ls can use this object dat, d b ase to create
object classes or objects within those classes, ant1
to store any amount of information with each
object. Most objects store enough information
to get to another data source, thereby ,prevent-
ing information in the clatabase from becoming
inconsistent with the managed entity. For example,
a NetWare Server OMM saves only the server
name in the database because with that name the
OMM can make NetWare MI calls to retrieve other
information.

When the object database creates an object, it
assigns the object an (>ID within the space of that
object class. Thus, OMMs can rely on the database for
creating unique O1Ds for each object in the system.

Another feature of the object database is the
concept of transient and permanent objects. Tlie
object database DLL writes transient objects not
into the database files but rather to global system
memory in the Winclows operating system. Having
the objects in memory creates a large performance
gain and avoids the problems associated with disk
thrashing. To indicate the type of object that is
created, the object database reserves bit 19 of
the (>ID to use as a flag. If the bit is set by the O M M

or ONM, the object is transient. When an object is
created in the database, the OID for the class is
passed to the tlatabase DLL with or without bit 19
set, thus determining whether the object is tran-
sient or permanent.

In our initial development work, we quickly dis-
covered that creating all the OID entries in a
database file diminished performance. This prob-
lem was most evident in the development of the
DOS file system OMM. This OMM enumerates direc-
tories, which causes a disk seek operation and
a disk read operation for the enumeration. Next a
write of the object to the database file on the same
disk causes another disk seek/write operation. This
resulted in tremendous disk thrashing. We envi-
sioned that many OMMs woulcl enumerate and cre-
ate a list of contained objects each time an object is
expanded, so we wanted this operation to be fast
and efficient.

Digital TechnicalJournal Vol. 6 Are. 4 Fa11 1994 7 1

PC LAN and System Management Tools

Introdz~cing New OMMs and ONrMs into
the ManageWORKS Software
In traditional software development, the addition
of new functionality into an application generally
requires source code modification and recom-
pilation. Clearly, this approach would not allow
ManageWORKs developers to meet the goal of
providing an extensible application framework.
Developers needed a way to write software that
could become part of the ManageWORKS applica-
tion without requiring changes to the application.

Since the ManageWORKS software runs in the
Microsoft \Vinclows operating system environment,
software developers were able to take aclvantage of
Inany features of the Windows system. We usecl
DLLs to provicle an extensible framework for the
Manage\VoRKS product.

By creating a DLL that conforms to the set of
APIs neetletl to manage an object or to implenient
a viewer, we can adcl new DLLs at any time to add
fi~nctionality to the 1ManageWORKS software. There-
fore, all OiLliLls ancl ONMs must be implemented as
DLLs. The registration process neecled to be simple
ancl dynamic for these DLLs. Using a Winclows appli-
cation initialization (1N1) file, the dispatcher reads
the list of entries in the file and attempts to load and
initialize all OMMs and ONivls defined. Entl users can
add new OMMs by running the ManageWORKS
Management Module Setup program, which simpli-
fies the installation of any OMMs provided by either
Digital or a third-party venclor.

When an OMM is introduced, the ManageWORKS
software needs to assign an 0111 to each object
class that the O>lM handles. This is accomplished
by asking the dispatcher for an O1V for the class
based upon a supplied class tag. The dispatcher
then uses the object database to have the OID
assigned. The dispatcher's use of the object data-
base ensures that the oID for the class is unique
to that class. OMiLIs can ask the object database
directly, but this is merely a side effect of the
dispatcher's use of the object database and is not
recommended.

Interactions between ManagelVORKS
Components
Most ManageWrORKS events occur when the user
interacts with the user interface, >ilthough OMMs
and ONPIS can generate events that cause cornmu-
nication to occur between the components of
the system. The usual flow of control through
the Manage\VORKS software begins with a viewel;

the set of selected objects in a viewer, and tlie valid
managed entity actions it1 the Action menu. 'The
application uses the dispatcher to call a j,articular
API to the correct OMM for the class of object being
operated upon. In this section, we walk through
three typical user interaction scenarios. For each
scenario, we describe key elemel~ts of control flow
between the user interface shell, the dispatcher,
the ONA4 involved, and the OMM involved. These
scenarios illustrate how the ManageWORKS elements
fit and work together to achieve our primary objec-
tive, i.e., to design a user interface framework with
consistent mechanisms to display organize, and
navigate through nlanagernent entities for the pur-
pose of managing one or more of those entities.

Scerznrio I This scenario outlines the process of
displaying the properties dialog box of the selected
object(s) in a viewer.

1. The user has selected one or more objects of the
same class in a viewer by clicking wit11 the mouse.

2. The user then chooses the Properties menu item
from the Actions menu. As a reminder, this action
invokes the properties dialog box, which by style
guide convention, supports the viewing and
modification of a managed entity's properties.

3. The ManageWORKS software queries the selected
viewer for the list ofselectecl objects and obtains
the OIDs of the ohjects from the viewer.

4. The ~Manage\vORKS dispatcher decocles the
object class portion of the OID.

5. The ManageWORKS software tells the OMM of
that object class to display the properties dialog
box for the list of objects (()IDS) supplied.

6. Thc oMiLI displays a properties dialog box that
contains all tlie supplied objects. The O M M has
complete control of the user interface for this
window ant1 conlplete control over the access to
the managed entity mechanism to get and set the
properties from the managed entities.

Scerzario 2 This scenario outlines the process of
expanding a selected set of objects in a hierarchical
viewer. Expancling an object results in the display
of the object's descendants within the hierarchy
tlefinecl by the O M M . Tlie user may render this dis-
play in a hierarchical fashion with one of the hierar-
chical view styles or as a descendant portion of
a topological view.

72 Vol 6 1% 4 Fd11l 1934 Digital Tech~rical Jorrrtinl

The Design of ~unageWORKS: A User Interface Frarneu~ork

1. The user has selected one or more objects in
a viewer by clicking with the mouse. The objects
may be of the same class or of different classes.

2. The user then chooses the Expand menu item
from the Actions menu.

3. The ManageWORKS software queries the selected
viewer for the list of selected objects and obtains
the orus of the objects from the viewer.

4. The ManageWOINS software tells the selected
viewer to expand the list of objects suppliecl (the
selected objects from the last call).

5 For each selectecl object to be expanded, the
viewer queries the object by means of the dis-
patcher for the list of contained objects within
that object. The dispatcher calls the OMM that
supports the object to get the list of contained
objects. The viewer repeats this process for all
OlDs to be expanded.

6. For a hierarchical view, the viewer places the list
of objects into the viewer in a hierarchical fasl-1-

4. If it is over a viewel; the mouse tells the target
viewer what objects the user is dragging over it.
The source ONM sends a ManageWlORKS-defined
Windows message to the target viewer window
with the list of OIDs being dragged.

5. The target viewer determines what object the
mouse is over and if that object is selected. The
set of objects targeted to receive the dropped
object comprises either the individual object, or
ifselected, all the selected objects in the viewer.

6 The target viewer queries the O M M of each target
object about what class of object can be dropped
on it. If all the target objects can accept the
dragged objects, the cursor changes shape to
reflect a potentially successful drop. Otherwise,
the cursor changes to reflect that the drop
would not succeed at this mouse location.

7 When the user drops the objects, the same verifi-
cation occurs as during the drag operation. If the
drop is not going to be successful, the viewer
that initiated the drag operation returns the
mouse cursor to the original location. .,

ion. For a topological map view, the viewer
either creates a new window or replaces the cur- 8. If the drop operation passes the verification

rent wintloy depending on the choice the user step, each object that the user is dragging is

has indicated through the customization dialog copied by the O M M to each target object. This

box. The window shows the descendant set of is done iteratively for each dragged object, and

objects with their topological relationships. each copy has the potential for failure. For exam-
ple, a DOS file can be dragged to a DOS disk class

7. For each of the containecl objects, the viewer
queries the object's OMM by means of the dis-
patcher for its name and bitmap, and to deter-
mine whether it can potentially be expanded by
the user. The viewer repeats this process for
each contained object to be displayetl and then
renders each item.

Scenario 3 This scenario outlines the process of

object, but whe11 the copy is attempted, the disk
may not have enough free space to successhllly
copy the file. When each dragged object is
copied, the OMM of the target object is told that it
should now contain the new object. This causes
the hierarchy to be properly updated. A clrag-
and-drop operation that is intended to move an
object is implemented as a copy followecl by
a removal of the original.

dragging and dropping an object onto another
object in a viewer. The OMM of the target object Conc~usions
controls the semantics of this operation. We feel that we have been successful at building a

unique user interface framework that integrates a
1. The viewer controls drag-and-drop operations. diverse set of applications; the design essentially

2 . The viewer determines the OrDs of the object(s) meets all but one of the objectives we established.

that the user is dragging. Because by design we limited the scope of services
provided by the framework, we could not meet all

3. As the user moves the mouse, the vicwer of our end-user objectives. Specifically, the respon-
receives mouse move messages from the sibility of allowing the user to manage many enti-
Windows system and determines if the mouse is ties as though they were one fell on the OMMs and
over a viewer. The window messages are sent not on the framework itself. Although we would
directly to the viewer window. have liked the framework to provide this service,

Digital Technical J o u m l Vol. G No. 4 Fa11 1994

PC LAN and System Management Tools

such a design was not feasible, given that the OM^!

controlled both the access to the managed entity
and the user interface to view and modify entity
properties.

The reader shoultl observe that the first two
major releases of the ~ManageWORKs software pro-
vide few core services. The core services include
the user interface shell, the viewers, and the object
database that ship with the ManageLVORKS product
and the ManageWORKS Software 1)eveloper's G t .
These components serve as a unifying framework
for the functional modules, which provide the user
with tools to manage entities and are t l~us the "heart
and soul" of the environment. Future development
of core framework services is under consideration.
Among the areas under active consideration are
Windows Object Linking and Embedding (OLE) sup-
port and scripting support for inter- and intra-OMM
control. Such services would make ONMs and
OMMs more consistent, usefill, and powerfill for the
end user. At the same time, these services would
free the indivitlual cleveloper from writing this
code and thus provide the developer the freedom
to focus on the value-added functionality.

Acknowledgments
Many people contributed a great deal to the design
and implementation of the ManageWORKS product.
Although the contributors are too numerous to men-
tion intlividually, we would like to acknowledge
the functional groups within the PATHWORKS

organization to which they belong, namely,
Business Management, ~Marketing. Human Factors
Engineering, Systems Quality Engineering, Docu-
mentation, Release Engineering, Field Test Admin-
istration, and, of course, Software Development
Engineering.

References

1. K. Holtzblat and S. Jones, "Contextual Inquiry:
A Participatory Technique for System Design" in
Purticipntol-~1 Desigtz: Principles and Practice,
A. Namioka and D. Schuler, eds. (Hillstlale, NJ:

Lawrence Erlbaun~ Associates, Inc., 1993).

2. &licrosoft Windozus Guide to Progranznzing
(Redmoad, \VA: microso oft Press, 1990).

3. Windows 3.1 Software Developer's Kit, Control
Panel Applets in Online Help (Redmond, Wh:
Microsoft Press, 1992).

4. C. Strutt and D. Shurtleff, "Architecture for an
Integrated, Extensible Enterprise M;~nagement
Director" in Integrated Netzuork fblanngement,
vol. 1 , B. Meandzja and J. Westcott, eds. (h s t e r -
dam: North-Holland, Elsevier, 1989): 61-72.

5 . MLI~U@?WORKS Progrc~nln?iny Gt~lde (Maynard,
IMA: Digital Equipment Corporation, Order No.
AA-QADFB-TE, 1994).

6. Mn~zqelvOI<K.S Progwnzmerk Refe?.eizce (May
narcl, IW: Digital Equipment Corporation, Ortler
No. AA-QADGB-TE, 1994).

74 Vol. 6 IVO. 4 Full 1.994 Digital Technical Jozrrnal

James E. Johnson I

The Structure of the OpenVMS
Management Station

The OpenI'MS Management Station software provides a rob~fit client-server
application between a PC running the ~Vlicrosoft Windows operating system and
several OpenVAlS clz~ster systems. The initial version of the OpenvrMS Munagement
Station sofhuare concentrated orz allowing custonzers to handle the system man-
agement functionality associated with user account management. To achieve these
attributes, the OpenvlMS Management Station software uses the data-sharing
uspects of. 0penV1VfS cluster systems, a commzinications design that is secure and
that scales well with additional target systems, and a management display that is
geared for the simultaneous management of multiple similar systems.

Overview
The OpenVMs Management Station version 1.0 soft-
ware provides a robust, scalable, and secure client-
server application between a personal computer
(PC) running the microso oft Windows operating
system and several OpenVMS systems. This man-
agement tool was developed to solve some very
specific problems concerning the management of
multiple systems. At the same time, the project
engineers strove for a release cycle that could bring
timely relief to customers in installments.

Before the advent of this new software, all
OpenVMS base system management tools have either
executed against one system, such ,as AUTHORIZE,
or against a set of systems in sequence, such as
S Y S M N . Furthermore, the existing tools that do
provide some primitive support for the manage-
ment of multiple systems either do not take advan-
tage of or do not take into account the inherent
structure of a VMScluster system.

In contrast, the OpenVMS Management Station
product was designed from the outset for efficient
execution in a tlistributed, multiple system configu-
ration. The OpenVMS Management Station tool
supports parallel execution of system manage-
ment requests against several target OpenVMS
systems or VMScluster systems. Furthermore, the
software jncorporates several features that make
such multiple target requests natural and easy for
the system manager.

Data from customer surveys indicated the need
for a quick response to the problems of managing
OpenVMs systems. For this reason, the project team
chose a phased delivery approach, in which a series
of frequent releases would be shipped, with sup-
port for a small number of system management
tasks provided in an individual release.

The initial version of the OpenVMS Management
Station software concentrated on providing the
system management functionality associated with
user account management. This goal was achieved
by using a project infrastructure that supported
frequent product releases. This paper describes
the OpenVMS Management Station software, con-
centrating on the client-server structure. It also
presents the issues and trade-offs that needed to be
faced for successful delivery.

Managing OpenVMS User Accounts
Managing user accounts on an OpenVMS operating
system is a relatively complicated task.' The man-
ner in which the user is represented to the system
manager is the cause of much complexity. The
attributes that define a user are not located in one
place, nor is much emphasis placed on ensuring
consistency between the various attributes.

For example, Table 1 gives the attributes of an
OpenVMS user stored in various files, including the
user authorization file (SYSUAF.DAT), the rightslist
file (RIGHTSLIST.DAT), and the DECnet network

Digilul Technical Journal Vol. 6 No. 4 Fa11 1994 7 5

PC LAN and System Management Tools

Table 1 Breakdown of Data Stores and Management Utilities for OpenVMS Users

Data Store Attributes Management Utility

SYSUAF. DAT Username, AUTHORIZE
Authorization data (e.g.,
passwords), process quotas,
login device, and directory
Rights identifiers
Remote<->local user
DECnet proxy mappings
User's mail profile VMS$MAIL-PROFILE.DAT

QUOTA.SYS (per disk)
Login directory
TNT$UADB.DAT

User's disk quota
User's home directory
User's location, phone number,
and organization information

AUTHORIZE
AUTHORIZE

MAIL
D ISKQUOTA
CREATWDIRECTORY
<new with OpenVMS
Management Station
software>

proxy file (NET$PROXY.DXT). Prior to the OpenVh~lS
Management Station product, these files were nla1i-
aged by a collection of low-level utilities, such as
AU"fl3OIUZE. Although these i~tilities provicle the
ability to manipulate the individual user attributes,
they offer little support for ensuring that the overall
collection of user attributes is consistent. For
instance, none of these utilities woultl tletect that
a user's accoiint had been created with the user's
home directory located on a disk to which the user
had no access.

All of these factors create additional complexity
for an OpenViMS system manager. This complexity is
compounded when a number of loosely related
OpenVMS systems must be managetl at various sites.
The user account management features of the
OpenVMS Management Station product are designed
to alleviate or remove these additional complexi-
ties for the OpenVMs system manager.

OpenVMS System Configurations
The OpenVMS operating system can be used in many
wags. The features of the \~1\.1Scluster methocl allow
systems to expand by increment;illy adding storage
or processing capacity. In addition, tlie OpenvMS
operating system is frequently iised in networked
cor.lfigurations. Its inherent ricl'ness leads to a large
and diverse range in the possible OpenVMS configil-
rations. The skill and effort required to manage the
larger configurations is considerable.

For instance, Figure 1 shows a possible customer
configuration, in which a number of VMScluster
systems extend across a primary and a backup site.
Each cluster has a somewhat different purpose, as
given in Table 2. Here OpenVMS workstations are

deplogetl to users who need tletlicated processing
power or graphics support, and personal computers
arc deployetl in other departments for data access
and storage. Fina.ll): tlie table lists some groups of
users who need access to multiple systems, some-
times with changed attributes. The system manager
for this type of configuration would repeatedly per-
form many tasks across several targets, such as sys-
tems or users, with small variations from target to
target. 'I'he OpenVMS Management Station protluct
was designetl to operate well in configurations
such as this.

A distributed system is clearly necessary to sup-
port effective and efficient systems management for
configurations such as the one shown in Figure 1.
A clistributecl system should support parallel execu-
tion of requests, leverage the clusterwide attributes
of some system management operations, and pro-
vide for wide area support. These characteristics
are expanded in the remainder of this section.

Supporting P~irallel Execution
Support of parallel execution has two different
inlplications. First, the execution time should rise
slowly, or preferably remain constant, as systems
are aclded. This itllplies that the execution against
any given target system should be overlapped by
the execution against the other target systems.
Second, for parallel execution to be usable in a wider
range of cases, it should be easy and straightforward
to make a request that will have similar, but not iden-
tical, behavior on the target systems. For instance,
consitler adding a user for a new member of tlie
development staff in the configuration shown in
Figure 1. The new user would be privileged on the

Vo1. 6 Aro. 4 Fa11 1994 Digital Technical Journal

The Structure of the OpenVMS Mc~n,agenzent Station

ETHERNET

I I I 6000 6000 6000

VAX VAX VAX
6000 6000 6000

VAX VAX
6000 6000 COUPLER

CLUSTER A
DlSK DlSK DlSK

CLUSTER C

DlSK DlSK DlSK
CLUSTER I3

Figure I Distributed OpenVMS System Configuration

tlevelopment vMScluster system, but unprivileged
on the production cluster. I t should be straightfor-
ward to express this as a single request, rather than
as two disparate ones.

Leveraging VMScluster Attributes
OpenVMs system management tasks operate
against some resources and attributes that are
shared clusterwide, such as modifications to the
user authorization file, ant1 some that are not
shared, such as the system parameter settings.

In the first case, the scope of the resource
extends throughout the VMScluster system. Here, it
is desirable (and when the operation is not idempo-
tent, it is necessary) for the operation to execute
once within the ViMScluster system. In the latter
case, the operation must execute against every sys-
tem within the cluster that the system manager
wants to affect. Also, the set of resources that falls
into the first case or the second is not fixed. In the
OpenVhlS operating system releases, the ongoing
trend is to share resources that were node-specific

Table 2 Usage and User Community for Sample Configuration

Name Usage User Community

Main production cluster

Development cluster

Backup production cluster and
main accounting cluster

Operations group
Production group
Development group (unprivileged)
Operations group
Development group
(full development privileges)
Operations group
Development group (unprivileged)
Production group
Accounting group

Workstations Workstation owner
Some of operations group

Digital Tecbrrical Jourlrul Val. 6 No. 4 Fall 1994 77

PC LAN and System Management Tools

throughout a VMScluster system. The OpenVMS
Management Station software must handle
resources that have different scopes on different
systems that it is managing at the same time.

Wide Area Support
Management of a group of OpenvMs systems is not
necessarily limited to one site or to one local area
network (LAN). Frequently there are remote backup
systems, or the development site is remote from the
production site. Almost certainly, the system man-
ager needs to be able to perform some management
tasks remotely (from home). Therefore, any solu-
tion must be able to operate outside of the LAN

environment. It should also be able to function rea-
sonably in bandwidth-limited networks, regardless
of whether or not the slower speed lines are to
a few remote systems, or between the system man-
ager and all the managed systems.

OpenVMS Management
Station Structure
The resulting structure for the OpenVMS Man-
agement Station software is shown in Figure 2. The
components contained within the dashed box are
present in the final version 1.0 protluct. The other

components were speczied in the design, but were
unnecessary for the initial release.

The client software on the I-'C uses the
ManageWOliKS management framework from
Digital's I'ATHWORKS protluct. This extensible
framework provides hierarchical navigation ant1
presentation support, as well as a local configura-
tion d a t a b a ~ e . ~ The framework dispatches to
Object Management Modules (OMMs) to manage
individual objects. OpenVMS Management Station
has three OMMs that are used to organize the system
manager's view of the managed systems. These are
 management Domains, VMScluster Systems, and
OpenVMS Nodes. In addition, two OMkIs manage
user accounts: OpenVMS Accounts and Openv~MS
User. The first OMM is used to retrieve the user
accounts atid to create subordinate OpenVMS User
objects in the ManageWORKS framework hierarchy.
The second contains the client portion of the
OpenVMS user account management support
Underlying the last two OiMMs is the client commu-
nications layer. This provides authent~cated com-
munications to a server

The server software on the Openvkls systems
consists of a message-dispatching niechanlsm and
a collection of server OMMs that enact the various
management requests. The dispatcher is also

.
'-PC CLIENT
I
I
I
I
I

LOCAL

MANAGEWORKS FRAMEWORK KJ-rn s G u R A T l o N

COMMUNICATION LAYER Y
SERVER INFRASTRUCTURE

UASERVER

FORWARDING COMMUNICATION LAYER

SERVER INFRASTRUCTURE

FORWARDING COMMUNICATION LAYER

Figure 2 OpenVMSManagement Station Structure

Vol. G No. 4 Fa11 1994 Digital Technical Jourlrnl

The Structure of the OpenVAfS~Managernent Station

responsible for forwarding the management
request to all target VMScluster systems and inde-
pendent systems, and for gathering the responses
and returning them to the client. The version 1.0
server contains two OMMs: UAServer and Spook.
The former implements the server support for both
the OpenVMS Accounts and OpenvMs User Ohms.
The Spook OMM implements the server component
of the authentication protocol.

Other clients were not built for version 1.0 but
were planned into the design. Specifically, these
items are (1) a local client to provide a local applica-
tion programming interface (AN) to the functions
in the server, and (2) a proxy agent to provide
a mapping between Simple Network Management
Protocol (SNMP) requests and server functions.

Design Alternatives
Before this structure was accepted, the designers
considered a number of alter~satives. The two areas
with many variables to consider were the place-
ment of the communications layer and the use of
a management protocol.

Co7?7m~~rzic~ition.s La7)er Placement The first
major structi~ral question concerned the place-
ment of the communications layer in the overall
application.

At one extreme, the c.lient coulcl have been a dis-
play engine, with all the application knowledge in
the servers. This design is simi.lar to the approach
used for the X Window System and is sufficient for
the degenerate case of a single managed system.
Without application knowledge in the client, how-
ever, there was no opportunity for reduction of
data, or for the simplification of its display, when
attempting to perform management requests to
several target systems.

At the other extreme, the application knowledge
coilltl have been wholly contained within the
client. The server systems would have provided
simple file or disk services, such as Distributed
Computing Environment (DCE) distributecl file
server (DFS) or Sun's Network File Service (NFS).

Since application knowledge would be in the
client, these services would provide management
requests to either a single managed system or to
multiple systems. However, they scale poorly. For
instance, in the case of user account management,
scven active file service connections would be
required for each managed system! Furthermore,
these services exhibit very poor responsiveness if

the system manager is remotely located across
slower speed lines from the managed systems.
Finally, they require that the client understand the
scope of a management resource for all possible tar-
get OpenVMS systems that it may ever manage.

These various difficulties led the project team to
place the data gathering, reduction, and display
logic in the client. The client communicates to one
of the managed systems, which then forwards the
requests to all affected independent systems or
VMScluster systems. Similarly, replies are passed
through the forwarding system and sent back to the
client. The chosen system is one that the system
manager has determined is a reasonable choice as
a forwarding hub.

Note that the forwarding system sends a request
to one system in a VMScluster. That system must
determine if the request concerns actions that
occur throughout the ViMScluster or if the request
needs to be forwarded further within the
VMScluster. In the second case, that node then
acts as an intermediate forwarding system.

This structure allows the client to scale rea-
sonably with increasing numbers of managed sys-
tems. The number of active communication links
is constant, although the amount of data that is
transferred on the replies increases with the num-
ber of targeted managed systems. The amount of
local state information increases similarly. Although
it is not a general routing system, its responsiveness
is affected less by either a system manager remote
from all the managed systems, or by the manage-
ment of a few systems at a backup site. Finally, it
allows the managed VMScluster system to deter-
mine which management requests do or do not
need to be propagated to each individual node.

Use of Standard Protocols The second major
structural question concerned the use of de facto or
de jure standard enterprise management protocols,
such as SNMP or Common Management Information
Protocol (CMIP).J."oth protocols are sufficient
to name the various management objects and to
encode their attributes. Neither can direct a request
to multiple managed systems. Also, neither can han-
dle the complexities of determining if management
operations are inherently clusterwide or not. The
project team could have worked around the short-
comings by using additional logic within the man-
agement objects. This alternative would have
reduced the management software's use of either
protocol to little more than a message encoding

Digital Techtricnl Jotrrnnl Vol. 6 No. 4 Fall 1994 79

PC LW and System Management Tools

scheme. However, it was not clear that the result
\vould have been useful and manageable to clients
of other management systems, such as NetView.

On a purely pragmatic level, an SNMP engine was
not present on the OpenvMS operating system. The
CMIP-basecl extensible agent that was available
exceedecl the management software's limits for
resource consumption and responsiveness. For
instance, with responsiveness, a simple operation
usuig AIJTHORIZE, such as "show account attributes,"
typically takes a second to list tlie first user account
ancl is then limited by display bandwidth. For suc-
cessful adoption by system managers, the project
team felt that any operation needecl to be close to
that level of responsivcncss. Early tests using the
CA4lP-based common agent sliowetl response times
for equivalent operations varied from 10 to 30 sec-
onds before the first user was displayed. Remaining
user accounts were also displayed more slowly but
not ;is noticeably

In the final analysis, the project engineers could
have either portetl an SNA4I3 engine or corrected
the resource ancl responsiveness issues with the
CMIP-based common agent. However, either choice
would have recli~irecl diverting considerable project
resources for questionable payback. As a result, the
product developers chose to use a simple, private
request-response protocol, encoding the man-
agement object attributes as type-length-value
sequences (TLVs).

Client Component
With the OpenVklS Management Station, the client
is the component that directly interacts with tlie
system manager. As such, it is prini;~rily responsible
for structuring the display of management infor-
mation and for gathering input to upclate such man-
agement information. This specifically includes
capabilities for grouping the various OpenVlLlS
systems according to the needs of the system man-
agel; for participating in the ;~uthentication pro-
tocol, ancl for displaying and upd;~ting user account
information.

Grouping OpenVrMS Sj,stems for
Management Operations
The system manager is able to group indivitlual sys-
tems and VbIScluster systems into loose associ;~-
tions called tlomains. These do~iiains themselves
may be grouped together to produce a hierarchy.
The systern manager uses hierarchies to inclicate
the targets for a request.

Note that these hierarchies tlo not imply any
form of close coupling. Their only purpose is to aid
the system nian;lger in organization. Several differ-
ent hierarchies may be usecl. For a given set of sys-
tems, a system manager may have one hierarchy
that reflects physical location ant1 another that
reflects organization boundaries.

Figure 3 shows a typical hierarchy. In the figure,
the system manager has grouped the VMScluster
systems, PSWAPP1 and PCAM', into a domain called
My Management Domain. The display also shows
the results of a "list users" request at the domain
level of the hierarchy, A "list users" request can also
be exec~ttecl against a single system. For instance, to
obtain the list of users on the PCAM' VMScluster sys-
tem, tlie system manager need only expand the
"OpenVlLlS Accounts" item directly Ibelow it.

P~~rticipntion in the
Authenticalion Protocol
I t was an essential requirement from the start for
the 011enVMS Management Station software to be at
least as secure as tlie tsaditional OpenvlLls system
management tools. Furthernlore, due to the rela-
tively insecure nature of I'Cs, the product could not
safely store sensitive data on the client systern. For
usability, however, the product had to limit the
amount and frequency of authentication data
tlie system manager needecl to present.

As a result, two OMMs, the Vh4Scluster ancl the
OpenVMS Node, store the Ol,en\'MS username that
the system manager wishes to use wlien access-
ing those systems. For a given session within the
ManageWORKS software, the first comn~unication
attempt to the managed system results in a request
for a password for that username. Once the pass-
wortl is entereel, tlie client ancl the server perform
a challenge-response protocol. The protocol estab-
lishes that both the client ancl the server know the
same password without exchanging it in plain text
across the network. Only after this authentication
exchange has successfully completed, does the
server process any manage~iient recluests.

The hashecl password is storetl in merno~y at the
client anel used for two further pilrposes. First, if
the server connection fails, the client attempts to
silently reconnect at the next request (ifa recluest is
outstancling when the failurc occurs, that request
reports a failure). This reconnection attempt also
undergoes the same authentication exchange. If tlie
hashed password is still valid, however, the recon-
nection is made without apparent interruption or

8 0 W)/ 6 rVo 4 rnll /Y94 Digital Technical Jorrrrttrl

The Strz~cture of the 011enVMS &lanc~gement Station

Viewer Edi tv iewer Actions 1001s Options H indow Help

1 1 1 p191 pi-IBI
OpenVMS Management Station -= M y management domain

-$ZI: OpenVMS Accounts
@ DANA on SYSMGT
A% DAVIDSON on SYSMGT
@ DCESSERVER on PCAPT
@ DEFAULT on PCAPT
@ DEFAULT on SYSMGT
ABr D E V A W A N on SYSMGT
#6 DFSSFS-RESD on SYSMGT
,#& DNSSSERVER on SYSMGT
& DPLSSERVER on SYSMGT

DQSSSERVER on PCAPT

A l iving legend [at least in his mind]
Stu Davidson
DCE Services
OpenVMS provided account template
OpenVMS provided account template
R. Devarajan
DFS server access
DNSSSERVER
~ ~ d ~ l a n Server
DQSSSERVER default account

+ -
[DANA]
[DAVIDSON]
[DCESSERVER]
[USER]
[D E FAU LTj
[D E V A W A N]
[DECNETj
[DNSSSERVER]
[DPLSSERVER]
[DQSSSERVER]

&% DZlEDZlC on SYSMGT 11 Tony Dziedzic I[DZIEDZIC] I
&!% DZIEDZIC-N on SYSMGT Tony Dziedzic [DZIEDZIC-N]

+% SYSMGT
-% PCAPT

+,: OpenVMS Accounts
-
4

+i 1
-

rj7WI
/ -- - - - - - -

Figure 3 Manageinent Domain View

requests for input from the system manager.
Second, the hashecl password is used as a key to
encrypt particularly sensitive data, such as new
passwords for user accounts, prior to their trans-
mission to the server.

The resulting level of security is quite high. I t cer-
tainly exceeds the common practice of remotely
logging in to OpenVMS systems to manage them.

Displgy and Update of User
Account Information
The 0pe1iVMS iMan;~gement Station version 1.0
client software primarily supports user account
management. This support is largely contained in
the OpenVMS User O M M . This nodule presents the
OpenVMS user account attributes in a consistent,
unified view.

The main view from the OpenvMS lJser OivIM is
c;~lled the zoom tlisplay. This series of related win-
dows displays and allows modification to the user
account attributes. The displays are organized so
that related attributes appear in the same window.

For instance, all the mail profile information is in
one window.

The first window to be displayed is the character-
istics display, which is shown in Figure 4. This win-
dow contains general information about the user
that was found ciuring usability testing to be needed
frequently by the system manager Occasionally,
information was needed in places that did not
match its internal structure. For instance, the "new
mail count" mias founcl to have two windows: the
user flags clisplay, which had the login display
attributes, and the mail profile display.

The OpenVMS User OMM and the zoom display
organize the attributes into logical groupings,
simpl~fy the display and modification of those attri-
butes, and provide fairly basic attribute consistency
enforcement. The project team did encounter one
case in which no standard text display provecl suffi-
ciently usable. This was in the area of access time
restrictions. All attempts to list the access times
as text proved too confusing during usability test-
ing. As a result, the project clevelopers produced

Digital Tech?rical Jozirnnl Vol 6 i\'o 4 Fall I984 81

PC LAN and System Management Tools

a specializetl screen control that tlisplayed the time
range directly as shown in the Time Restrictions
section of Figure 5. Later, system managers w l ~ o
participated in the ~lsability testing found this to be
very usable.

The tlisplay ant1 presentation work for the
OpenVMS User ONIM was necessary for ilsability.
However, this does not directly address the need
to support requests against multiple simultaneous
targets. For the OpenVMS User OMM, these targets
may be either multiple VMScluster systems or inde-
pendent systems, multiple users, or a combination
of either configuration with multiple users.

At its simplest, this support consisted of simply
triggering a request to have multiple targets. This is
done through the Apply to All button on any of the
zoom windows. By pressing this button, the system
manager directs the updates to be sent to all user
accounts on all target systems listed in the
user name field. This action is sufficient if the sys-
tem manager is performing a straightforward task,
such as "set these users' accounts to disabled." It is
not sufficient in a number of cases.

For example, one interesting case involvcs user
account resource quotas. One reason a system

manager ch;~nges these settings is to accommodate
a new version of an application that needs increased
values to function correctly Prior to the clevelop-
ment of the Ope~lvlclS Management Station tool, the
system manager had to locate all the users of this
application, examine each account, and increase
the resource quot;~s if they were below the appli-
cation's needs. Conversel): with the OpenVMS
Management Station product, the system manager
selects the users of the application in the domain
display (Figure 3), and requests the zoom display
for the entire set. The system manager then
proceecls to the user quota tlisplay and selects the
cli~otas to change. The selection takes the form of
a conditional request-in this case an At Least
condition-and the value to set. The system man-
ager then presses the Apply to All button, and
the changes are carried out for all selected users.
Figure 6 shows the user quota display.

Communications Component
The communications component is responsible for
managing communications between thc client and
servers. It provides support for transport-indepen-
(lent, request-response communic;~tions, auton~ated

8 2 Ibl. 6 Ab. 4 Fall 1994 Digital Technicnl Jourtrnl

The Strcrctwre of the Ope~zVblS iVIcinczgement Station

Username: ~JJOHNSON on PSWAP -

Primarp Days

Tuesday
Wednesday
Thursday
Friday

, Time Restrictions

iProcesmg Mode Prigary Day Accers-
I

I 8 L-1 1
t

I C Batch ' I
I

, , C & W ~ r k , Secondary Day Access: I

/ r Bemote

Figure 5 User Time Restrictions Display

Fi<yure 6 {Jser Quota I)isplcg~

Digital Tecbrrical Jozrrrc~zl Vol 6 No 4 Tull 1994 83

PC LAN and System Management Tools

reconnection on failure, ant1 support routines for
formatting and tlecoding attributes in messages.

Because of the request-response nature of the
communications, the project team's first approach
was to use remote procedure calls for cornniunica-
tions, using DCE's remote procetlure call (RPC)
mechanism.5 This matches the message traffic for
the degenerate case of a single managed system.
lwanagement of multiple systems can easily be mod-
ekd by atlding a continuation routine for any given
management service. This routine returns the next
response, or a "no more" indication.

The RPC mechanism also handles much of the
basic data type encoding and decoding. A form of
version support allows the services to evolve over
time and still interoperate with previous versions.

The project team's eventual decision not to use
DCE's RPC was not due to technical concerns. The
technology was, and is, a good match for the needs
of the OpenVMS Management Station software.
Instead, the decision was promptecl by concerns
for system cost and project risk. At the time, both
the OpenvMs Management Station protluct ancl the
OpenVMS DCE port were under development. The
DCE on OpenVklS protluct has since been delivered,
and many of the system cost concerns, such as
the license fees for the RPC run time and the need
for non-OpenVMS name and security server sys-
tems, have been corrected.

In the end, the OpenVMS Management Station
software contained a communications layer that
hid Inany of the details of the underlying implemen-
tation, offering a simple request-response para-
digm. The only difference with an RPC-style model
is that the data encoding and decoding operations
were moved into support routines called directly
by the sender or receiver, rather than by the com-
munications layer itself. In fiuture versions, the goal
for this Jayer is to support additional transports,
such as simple Transmission Control. Protocol/
Internet Protocol (TCP/IP) messages or DCE's RPC.
An investigation into providing additional trans-
ports is currently under way

The remainder of this section describes the com-
munications layer in more detail, inclucling the
mechanisms provided to the client OMMs, how
reconnection on failure operates, ant1 the message
encoding and decoding support routines.

Client Request-response Mechanisms
The Oklkts in the client system call the communica-
tions layer directly. To make a recluest, an O M M first

updates the collection of systems that are to receive
any future management requests. Assuming this
was successful, the 0Mh4 then begins the request
processing by retrieving the version number for the
current forwarding server. Based on that, the O M M
then formats ancl issues the request. Once the
request has been issued, the Oklkl perioclically
checks to see if either the response has arrived or
the system manager has canceled the request. IJpon
arrival of the response, it is retrieved and the mes-
sage data decoded.

To perform this messaging sequence, the OivlM
uses a pair of interfaces. The first is used to estab-
lish and maintain the ccillection of systems that are
to receive any management requests. The second
interpace, which is compatible with x/open's XT1
standard, is used to issue the request, determine if
the response is available, and to retrieve it when
it is." third interface that supports the encoding
and tlecoding of message data is described in a fol-
lowing section.

Reconnection on Failz~re
The OpenVMS Management Station product
attempts to recover from communications failures
with little disruption to the system manager
through the irse of an automated reconnectio~~
mechanism. This mechanism places constraints on
the behavior of the request and response messages.
Each request must he able to be issued after a recon-
nection. Therefore, each request is marked as either
an initial request, which does not clepend on server
state from previous requests, or as a continuation
request, which is used to retrieve the seconcl or
later responses from a multiple target request and
does depencl on existing server state.

If an existing communications link fails, that link
is marked as unconnected. If a response were
outstanding, an error woultl be returned instead of
a response message. When the communications
layer is nest calletl to send a request across the
unconnected link, an automated reconnection is
attempted. This involves establishing a network
connection to a target system in the request. Once
the connection has been established, the authenti-
cation protocol is executed, using the previously
supplied authentication data. If authentication
succeeds, the request is sent. If it is a continuation
request, and the target server has no existing state
for that request, an error response is returned.

At most, the resulting behavior for the system
manager is to return an error on a management

84 Vol. 6 i\'o. 4 F6iI1 1334 Digital Tecbtricnt Jmtrrtnl

The Structure of the OpenVMS Managenzent Station

request, indicating that communication was lost
during that request's execution. If no request was
in progress, then there is no apparent disruption of
service.

Message Encoding and Decoding
Messages from the OpenVMS Management Station
tool are divided into three sections. The first sec-
tion contains a message header that describes the
length of the message, the protocol version number
in use, and the name of the target OMM. The second
section contains the collection of target systems for
the request. The third section contains the data
for the OMM. This last section forms the request and
is the only section of the message that is visible to
the OMMs.

The OMM data for a request is typically con-
structed as a command, followed by some number
of attributes and command qualifiers. For instance,
a request to list all known users on a system, return-
ing their usernames and last login time, could be
described as this:

C O M M A N D L I S T - U S E R S
M O D I F I E R U S E R N A M E = " * "
A T T R I B U T E S U S E R N A M E ,

L A S T - L O G I N - T I M E

The OMM data for a response is typically a status
code, the list of attributesfrom the request, and the
attributes' associated values. There may be many
responses for a single request. Using the LIST-USERS
example from above, the responses would each
look like a sequence of:

S T A T U S S U C C E S S
A T T R I B U T E S U S E R N A M E (< v a l u e >)

L A S T - L O G I N - T I M E (< v a l u e >)

There are many possible attributes for an OpenVMS
user. To make later extensions easier and to limit
the number of attributes that must be retrieved
or updated by a request, the OMM data fields are
self-describing. They consist of a sequence of mes-
sage items that are stored as attribute code/item
length/item value. The base data type of each
attribute is known and fixed.

Message encoding is supported by a set of rou-
tines. The first accepts an attribute code and its
associated data item. It appends the appropriate
message item at the end of the current message.
This is used to encocle both requests and responses.
The second routine takes a message buffer and an
attribute code, returning the attribute's value and

a status code indicating if the attribute was present
in the message buffer. The client uses this routine
to locate data in a response. The third routine takes
a message buffer, a table listing the attribute codes
that are of interest to the caller, and an action rou-
tine that is called for each message item that has an
attribute code found in the table. The server OMMs
use this routine to process incoming requests.

Handling of Complex Data Types
In general, the interpretation of data between the
client and server systems did not pose a significant
concern. There was no floating-point data, and the
integer and string data types were sufficiently simi-
lar not to require special treatment. However, the
OpenVMS Management Station software did need
a few data types to process that were not simple
atomic values. These required special processing to
handle. This processing typically consisted of for-
matting the data type into some intermediate form
that both client and server systems could deal with
equally well.

For instance, one such data type is the time-
stamp. In the OpenVMS operating system, times
are stored as 64-bit quadword values that are
100-nanosecond offsets from midnight, November
18, 1858. This is not a natural format for a Microsoft
Windows client. Date and time display formats vary
greatly depending on localization options, so the
data needed to be formatted on the local client. The
developers used an approach that decomposed the
native OpenVMS time into a set of components, sim-
ilar to the output from the $NUMTIM system or the
UNIX tm structure. This decomposed time struc-
ture was the format used to transmit timestamp
information between the client and server.

Server Component
With the OpenVMS Management Station product,
the server component is responsible for enacting
management requests that target its local system.
The server also must forward requests to all other
VMScluster systems or independent systems that any
incoming request may target. The server is a multi-
threaded, privileged application running on the
managed OpenVMS systems. It consists of an infra-
structure layer that receives incoming requests and
dispatches them, the server OMMs that enact the
management requests for the local system, and a for-
warding layer that routes management requests to
other target systems and returns their responses.

Digital Techtrical Journal Vo1. 6 No. 4 Full 1994 85

PC LAN and System Management Tools

Serz~er Infrastructure
The server infrastructure, shown in Figure 7. is
responsible for tlispatching incoming requests to
tlie server OiMiMs and the forwarding layer. It has a
set o f threads, one for each inbound connection, a
pair of work queues that buffer individual requests
ant1 responses, and a limited set of worker thre:~ds
that either call the appropriate OMM or forwartl the
request.

The inboi~nd connection threads are responsible
for ensuring that tlic request iclentifies ;i known
O M M and meets its message requirements. The
connection threads must also ensure t l ~ ~ t the OMM
version number is within an acceptable range ;lnd
that the link is sufficiently authenticated. The
inbound threatls are then responsible for repli-
cating the I-ecluest ancl placing requests tl>;~t have
only one target system in the recluest work quct~c.
Once :i I-esponse ;Ippe;lrs in the response work
queue, these threads returri the response to the
client system.

A fixetl number of worker threatls are responsi-
ble for taking messages from the request work
cllleue ant1 either forwarding them or calling the
;~plxopsi;~te local OMM. Each result is placed in tlic
response queue as a response message. A fixed
number of five worker threads was chosen to
ensure that messages with many targets coultl not
exhaust the server's resources. Responsiveness ant1
resource usage were acceptable throughout tlie

tlevelopment and testing phases of the project, and
the number of worker threads was kept at five.

In ;ltlclition to the basic thread structure, tlie
infrastructure is responsible for participating in the
;~l~tlientic;~tion exchange for inbound connections.
This is ;~ccomplislied tlirougli the use of a speci:il-
izetl server OMM, called Spook. The Spook OIMM

uses the basic server infrastructure to ensure that
;~uthentication requests are forwarded to the appro-
priate target system. This mechanism reduced the
amount of specialized logic lieetled for the authen-
tication protocol: for this reason, the server OiMiMs
must tleclare if they require an authenticated link
before accepting an incorning request.

Server OMM Strztcture
The server OkNs are at the heart of the server.
These Ob1,Lls are loacled dyn;~mic;rlly when the
server initi;ilizes.

Figure 8 shows the structure of the UtlServer OMRI
in Openvkls ~lanagenient Station version 1.0. 'T'he
server 0MivJ consists of the main application mod-
ule, the preprocessing routine. and the postprocess
jng routine. The interfaces are synchronous, passing
OMM tl;~t;i sections from the request ant1 response
messiige b~~ffers. In addition, the maill applic:~tion
motlule executes in the security context, called ;I

persona, of the authenticated caller. This ;~llows nor-
mal access checking and auditing in the OpenVMs
operating system to work tr~nsparentl):

OUTGOING I FORWARD
REQUEST

+ - - - -1- - REQUEST IS TARGET LOOK UP OMM NAME

I LOCAL? ATTACH AUTHENTICATION

I REQUEST WORK QUEUE CONTEXT TO REQUEST

I REPLICATE REQUESTS-
ONE PER TARGET SYSTEM

I
STALL
THREAD

I
I 1

I MATCH RESPONSE TO
- - - - - t+

RESPONSE WORK QUEUE REQUEST
INCOMING SEND RESPONSE
RESPONSE 1

- -
I
1 INCOMING
1 REQUEST <------
I

WAlT FOR 1 NEXT
REQUEST

I ' OUTGOING
1 RESPONSE

--r---'
I ' Y

I FIVE WORKER THREADS

Y I
ONE THREAD PER CONNECTION I

Figure 7 Serz~er. In frc~str~rct~r r'e and J ~ L ' . Y . T I I ~ ~ Flozr I

The Stl-zlctzlre of the OlIefzVMS Management Station

LEVEL?

MESSAGE
FOR HERE?

MANAGERS

FORWARD
TO TARGET

ROUTINE

a: FROM
TARGET

A A A

DISK QUOTA

Figure 8 UAServer OMM

The preprocessing and postprocessing routines
are used to ease interoperation of multiple ver-
sions. They are called if the inconling request has
a different, but supported, OMM version number
than the one for the local OMM. The resulting 01\11\l

data section is at the local OMivl's version. These
routines hide any version differences in the OMM's
data items and free the main application from the
need to handle out-of-version data items. If the pre-
processing routine is calletl, the server infrastruc-
ture always calls the postprocessing routine, even if
an error occurretl that prevented the main OMM
application from being called (for instance, by a
link failure during forwarding). This allows the two
routines to work in tandem, with shared state.

The actual management operations take place in
the main application portion of the server OMivI. It
is structured with an application layer that provides
the interface to the management object, such as the
user account. This uses untlerlying resource man-
agers that encapsulate the primitive data stores,
such as the authorization file. The application layer

knows what resources are affected by a given man-
agement request. Each resource manager knows
how to perform requested modificatio~~s to the
specific resource that it manages.

For instance, the UAServer application layer
knows that the creation of a new user involves
several resource managers, including the authoriza-
tion file and file system resource managers. How-
ever, it does not specifically know how to perform
low-level operations such as creating a home direc-
tory or modtfying a disk quota entry In comparison,
the file system resource manager knows how to do
these low-level operations, but it does not recognize
the higher level requests, such as user creation.

The application layer for all OMMs offers an inter-
face ant1 a buffer. The request message passes the
OMM data section to the interface, and the buffer
holds the OMM data section for the response mes-
sage. Similarly, all resource managers accept an
OMM data section for input and output parameters,
ignoring any O M M data items for attributes outside
their specific resource. Because of the loose

Digital Tecbnical Journal Vo1. 6 IW. 4 Full 1994 87

PC LAN and System Management Tools

coupling between the resource managers and the
application layer, the resource managers call be eas-
ily reused by server OiMiMs developed later.

Summary
The OpenVMS Management Station tool has demon-
strated a robust client-server solution to the manage-
ment of user accounts for the OpenVMS operating
system. It provides increases in functionality and
data consistency over system management tools pre-
viously available on the OpenVMS operating system.
In addition, the OpenWS Management Station soft-
ware is focused on the management of several
loosely associated VMScluster systems and indepen-
dent systems. It has addressed the issues concern-
ing performance, usability, and functionality that
arose from the need to issue management requests
to execute on several target systems.

Acknowledgments
I wish to thank the Argus project team of Gary
Allison, Lee Barton, George Claborn, Nestor Dutko,
Tony Dziedzic, Bill Fisher, Sue George, Keith
Griffin, Dana Joly, Kevin McDonough, and Connie
Pawelczak for giving me a chance to work on such
an interesting and exciting project. I also wish to
thank Rich Marcello and Jack Fallon for providing

support and encouragement to the team through-
out the project, and for their further encourage-
ment in writing about tliis experience.

1. OpenVrMS AXP Guide to System Security
(Maynard, MA: Digital Equipment Corporation,
May 1993): 5-1 to 5-37

2. D. Giokas and J. Rokicki, "The Design of
ManageWORKS: A User Interface Framework,"
Digital Technical Journal, vol. 6, no. 4 (Fall
1994, this issue): 63-74.

3. J. Case, M. Fedor, M. Schoffstall, and J. Davin,
Network Workzng G I P O L L ~ , Internet Engineering
Task Force RFC 1157 (May 1990).

4. DECnet Digital vetw work Architecture, Common
Man~zgement Information Protocol (CMZP), Ver-
sion 1.0.0 (Maynard, MA: Digital Equipment Cor-
poration, Order No. EK-DNA01-FS-001, July 1991).

5. J. Shirley, Guide to Writing LICE ApFlications
(Sebastopol, CA: O'Reilly &Associates, Inc., 1992).

6. X/Open CAE Specification, X/Open Transport
Interfnce (XTI), ISBN 1-872630-29-4 (Reading,
1J.K.: X/Open Company Ltd., January 1992).

88 Vo1. 6 KO. 4 Fall I994 Digital Technical Journal

John R. Lawson, Jr: I

Automatic, Network-directed
Operating System SoJware
Upgrades: A Platform-
independent Approach

The initial sjistein load (ISL) cc~pability of Digital's lciyeredproduct POLYCENTEK
Soft~vare Distrib~~tion (formerly known as RSIVI) version 3.Oprovides Open WVlS sys-
tenz managers zuitl? GL network-directed tool for performing ciutomatic opemti~zg
system softzuc~re &@grades. The design of the POLYCENTER Softwcire Distribution
prodz~ct integrates a number of new and varied softzvare architectures to perfor~~z
the ISL A description of the POLYCENTER Softujare Distribution implementation of
the ISL for the Open Vrfi operating systmn details the steps of the ISL process. The soft-
ware's nodular ISL mechanism can be expanded for use on other Digital and norz-
Digital operating systelns and hardzvareplatfor~ns.

The POLYCENTER Software Distribution version 3.0
product provitles automatic, centrally delivered,
network-directed operating system software
upgrades through a process called the initial system
loatl.l The term initial system load (ISL) has existed
for a number of years in various forms and has come
to describe the act of loading the operating system
software onto brand-new (virgin) systems without
the need for locally attached tape drives or other
removable media devices. This term, more loosely
applied, may also be used to describe other opera-
tions such as operating system upgrades.

The ISL technology provides many advantages
over the traditional means of performing upgrades.
Typically, irpgrades are performed one system at
a time, at each console by the system manager, who
must maintain the correct set of installation media
for each client system's unique set of peripherals
and answer each qi~estion as the upgrade pro-
cedure prompts. In a network managed by the
POLYCENTER Software Distribution product, operat-
ing system upgrades are performed simultaneously.
Any number of ISI. operations can be invoked by
using a single installation medium and often by issu-
ing a single commantl. In addition, the ISL mecha-
nism can be used for system disk maintenance
operations, such as upgrade, replacement, replica-
tion, backup, or compression.

The 130LYCENTER Software Distribution product
can be extended for use with non-Digital operating
systems and hardware platforms all controlled
from its one user interface. In most cases, 110 back-
ups need be performed 011 the clients' system disks.
A halted client system, of course, must be launched
into the first step manually.

This paper describes the POLYCENTER Software
Distribution version 3.0 product. I t begins by dis-
cussing the software environment and the software
technologies usecl by the ISL process. It then states
the project team's goals for the product. The paper
next relates the ISL scheme implemented by
the POLYCENTER Software Distribution version 3.0
product for the OpenVMS operating system. The
paper concludes with a discussion of the details of
expanding the ISL to other platforms. It is assumed
that candidate operating systems are capable of at
least simple task-to-task communication through
the DECnet network (or some emulation), but other
communication mechanisnls coirld be devised
instead.

SoLfware Environment
The POLYCENTER Software Distribution product
defines operating system software as everything on
the volun~e that is typically called the system disk.
This includes boot files, data files, configuration

Digital Tecbt~icnl Joztrrrnl Vol 6 1% 4 Fall 1994 89

PC LAN and System Management Tools

files, utilities, compilers, layered products, ancl cus-
tomizations. It even includes user directories, if
they exist on that system disk.

The POLYCENTER Software Distribution product
allows the individual operating system to deter-
mine the definition of upgrading tlie operating sys-
tem software. For the OpenVkIS operating system,
upgrading could mean the complete replacement
of the contents of tlie system disk volume, includ-
ing the utilities, compilers, database, and custom-
izations. For the OpenVMS AXP operating system,
it could also mean the installation, without touch-
ing the rest of the volume, of only newly acqilirecl
OpenVMS operating system files and images. For
other platforms, it could mean any one of several
other techniques. Each platform can define what is
needed to perform operating system i~pgrades or
installations.

A network managed by the POLYCENTER Soft-
ware Distribution product consists of one or more
centrally located server systems; each server is
responsible for performing certain operating
system maintenance functions on its assignecl set
of client systems. The server system runs the
OpenVlVS operating system. Client systems run any
of a number of operating systems. The POIJ'CENTER
Software Distribution version 3.0 software sup-
ports backups, user authorizations, and layerecl-
product installations for clients lunning the VAX
VMS, OpenVlMS VAX, OpenVMS AXP, and Ul IR lX

operating systems. The software includes support
for IsL procedures to clients running the v ~ x VMS,

OpenVMS VAX, and OpenVMS AXP operating
systems. The software's ISL architecture, however,
supports expansion to other operating systems
and platforms.

Design of tbe POLYCENTER Sojlware
Distribution Product
The design of the POLYCENTER Software Distri-
bution version 3.0 product integrates a number of
new and varied software architectures. The soft-
ware development reqi~irecl the cooperation and
synchronization of two layered-product and two
operating system development groups.

Software Technologies
No single software technology is capable of auto-
matically upgrading system disks. Several must be
used in combination. A brief description of a num-
ber of suc l~ technologies that could be used to
implement the ISL process follows.

Maintenance Operations Protocol (MOP) is a net-
work protocol used to downloacl system software
into the memory of adjacent network nodes.

Remote triggering enables one client system to
cause another client system to reboot. The client
system must have triggering enabled and have
a triggering password defined and known to the
server node.

The load assist agent is a shareable image run-
ning in the context of the maintenance opera-
tions monitor (MOM) process on the server
system. This code permits a server to control
ancl customize (if necessary) the system soft-
ware being downloaded to the client.

The local area disk (LAD) protocol allows locally
attached disks or container files on server sys-
tems to be presented to the local area network
(LAN) for use as virtiial disks on client systems.
The Infoserver is the most common server of the
IAD protocol. OpenVMS systems running the
POLYCENTER Software Distribution product can
also act as LAD servers. A system can be a LAD
virtual disk.

The processor-specific primary bootstrap is
a low-level program that is loaded into the meni-
ory of a booting client. This program can be
loaded from a disk drive, a tape drive, the net-
work interconnect (NI), or read-only memory
(ROM). A small but self-contained program, it is
capable of communicating wit11 the machine's
console subsystem, most of the machine's inter-
nal resources, and the s)~stem disk from which it
loads a secondary bootstrap or the full operating
system.

Note that some operating systems (OpenVMS
included) claim that their bootstrap programs
are processor-independent. However, if the
operating system is under tlevelopment, support
will be adtlecl eventually to this bootstrap for
new CPU moclels and/or hardware variations.
Thus the processor-independent bootstrap pro-
gram from an earlier version of an operating sys-
tem may not support all the processor types
supported by a later version of this same pro-
gram. Therefore, processor independence is tied
to the set of processors supported by that par-
ticular version of the operating system. For this
reason, the POLYCENTER Software Distribution
product specifically stores an image of the boot-
strap program in a private directory alongside

Vo.'. 6 No. 4 Fall 1394 Digital Tecl~~zicnl Jor~rrrol

Automatic, Network-directed Opemting System Software Upgrades

the container file that houses a virtual system
disk (a bootable snapshot of the version of the
operating system).

The system start-up command procedure is a
command script that is responsible for bringing
the recently booted operating system to its hill
configuration. In an ISL, this command proce-
dure is tailored to configure only the resources
needed to perform the ISL. Sometimes, limited
command-level access is allowecl, but seldom is
full user access or timesharing permitted.

In the OpenvMs operating system, the BACKUP/
IMAGE command can duplicate a system disk
either directly from disk to disk, or indirectly
from a saveset file (which might be located on
tape or across the network) to disk.

Standalone BACKUP is a self-contained, diskless
operating system capable of executing BACKUP/
IIMAGE commands but not capable of network
operations.

The SYS$UPDATE:VMSKITBLD.COM procedure in
the OpenVMS operating system is used to create
a generic system disk, using the current system
disk software as a mode.1.

The POLYCENTER Software Installation (PCSI)
utility is capable of creating or upgrading a sys-
tem disk from a configuration file and a descrip-
tion file (possibly located at a remote network
location) or the current system disk.

All these software technologies are utilized in the
POLYCENTER Software Distribution ISL, except stand-
alone BACKUP and SYSJUPDATE:VMSKITBLD.COM,
because the former cannot be used remotely, and
the latter produces uninteresting system disks.
Anyone expanding the ISL, however, can use what-
ever techniques they choose, including those two.

Goals for the ISL Process
The development team had the following goals for
the POLYCENTER Software Distribution implemen-
tation of the ISL process.

The process must be totally automatic; only
halted client systems are permitted to require
human intervention.

Multiple ISL processes must run concurrently.
No specific limits should be placed on the num-
ber running in parallel (except for practical per-
formance reasons).

The software library must store several operat-
ing system images. They can be images of differ-
ent operating systems and/or different versions
of the same operating systems.

Client systems must not be restricted to specific
peripheral hardware.

The software must make no assumptions about
the hardware to which it is delivering software.
Whatever configurations are legal to a particular
operating system must also be supported by the
POLYCENTER Software Distribution product.

The client software must make no assump-
tions about the server system directing the ISL.
Therefore, it would be inappropriate to store
operating system images in BACKUP saveset
files, which are unique to the OpenVMS operat-
ing system.

Client software, including temporary system
disks, must be takenfrom the clients themselves.
Prepackaged operating system software is dis-
couraged because it becomes obsolete as new
versions of the operating system are developed,
and because it is rarely capable of being cus-
tomized by the user.

The JSL process should be expandable to other
operating systems and hardware platforms with-
out changes to the current product.

The POLYCENTER Software Distribution product
should be able to use Digital-supplied distribu-
tion media as operating system images, such as
the PCSI-based OpenvMs AXP version 6.1 CD-ROM.

The operating system image should occupy as
little disk space as possible.

The ISL process should work over all valid
DECnet network configurations. This require-
ment was only partially achieved: the LAD proto-
col works over the LAN only.

From these requirements, two achievements were
gained: the totally modular organization and the
compatibility with the OpenVMS AXP operating
system distribution CD-ROM. The former permits
support for other operating system and hardware
platforms to be added incrementally. The latter
enables system managers to simply load the latest
copy of the distribution media, invoke the PCSl util-
ity to record their configuration choices, and then
enter a single command to upgrade all their client
systems at once.

Digital Technical Jorrrnal Vol. G No. 4 Fa11 1 9 4 9 1

PC LAN and System Management Tools

Description of the ISL Steps
Regartlless of the operating system or hartlware
platform, the ISL process requires the following
si~ilple steps:

Load a processor-specific primary bootstrap
into the memory of the client system.

Boot a (usually read-only) version of the operat-
ing system from some form of temporary system
disk.

Determine the parameters of the ISL to be
performed.

 move the operating system software to the
target system disk.

Initiate the cleanup, configuration, tuning, and
reboot of the target system disk (which would
then contain the new version of the operating
system software).

Figirre 1 shows the steps of the ISL process in the
POLYCENTER Software Distribution Installation.

This section provides a description of each
step in the ISL process, contrastitig the OpenVMS
implementation with the POLYCEN'J'ER Software
Distribution implementation of the ISL for the
OpenVMS operating system. The discussion
includes both the traditional standalone installa-
tion based on the BACKUP command and the
OpenVMS-defined ISL or upgrade based on the PCSI

I I PROTOCOL 1

!
I-----------' j OPERATING
I PROCESSOR- : :SYSTEM

\
INSIDE THE BOOTSTRAP
IMAGE, A WORKSPACE
CONTAINS THE ISL
PARAMETERS

-+m SYSTEM

TARGET
SYSTEM
DISK

Figure I ISL Process in the POLYCENTER
Sofhvare Distribution Installation

utility. The PCSI-based upgrade very closely resem-
bles the ISL process of the POLYCENTER Software
Distribution version 3.0 product.

The modular layout of the POLYCENTER Software
1)istribution implemeiitation ant1 the extension of
the 1SL to other operating systems are discussetl in
the section Platform Independence.

Processor-specific Primary Bootstrap
The primary bootstrap is responsible for establish-
ing the connection needed between the client sys-
tem and the temporary (or virtual) system disk,
wherever that might be maintained.

Ope~zVhlS I~rzplementation If the distribution
medium is local, then the ROM bootstrap or a boot-
strap file on the medium is sufficient to boot the
operating system contained there. If the distribu-
tion medium is served to the LAN by an InfoServer
system, then the bootstrap image must be tlown-
loaded from an adjacent UECnet node with service
enabled on its N1 circuit common to that client, using
MOP. In OpenVMS AXP, this image is called APB.SYS;

in OpenVMS VAX, i t is ISL-SVAX.SYS or ISI,IYAX.SYS
(for smal I or large VAX systems, respectively).

?'he systeni manager requests the image to be
downloaded (at the console of each client system)
by entering special processor-dependent boot com-
mands. The MOM process on the adjacent node
drives the MOP tlelivery of the bootstrap image
to each clietlt. Before the connection between
the client systeni and the temporary system disk
can be established, the system manager must navi-
gate a series of menus to select the name of the
Infoserver service under which that distribution
medium is presented.

POLYCENTER Software Distribution Inzplenzen-
tation The client system boots from its NI
adapter, generating a MOP load request. The server
keeps the client's hardware NI address in its
database so it can detect and process this request.
This activates the load assist agent (LAA) under
the MOM process. The LAA retrieves the various
answers to the operating system configura-
tion questions from the PoLYCENTEll Software
Distribution library. It then passes those answers
]Ails the operating system version-specific pri-
mary bootstrap (A.PB.EXE for OpenVMS AXP or
ESS$ISL-VWISLOAD.EXE for OpenVlvlS VAX) back to
the kiOM process to be downloadecl to the client's
memory. Among these configuration answers are

92 Vol. 6 No. 4 Fall 1994 Digital Technical Joctrnnl

Automatic, Network-directed Operating System Softu~are U~gmdes

the name ant1 password of a LAD service, presented
by the server in a file containing the temporary sys-
tem disk. This primary bootstrap establishes the
logical connection between the client system and
this virtual system disk.

Temporary System Disk
The temporary system disk is a tailored copy of
the operating system to be installed. This system
disk is usually customized in such a way that its
only purpose is to perform the ISL.

OpenVMSZmplementation If it is mounted locally,
the temporary system disk is the distribution
medium. If the medium is presented to the client by
an Infoserver service, then the temporary system
disk is a virtilal disk bound to that LAD service. In
either case, the temporary system disk is mounted
as read-only.

The operating system booted from that niedii~m
is either standalone BACKUP (for traditional installa-
tions) or OpenvMS (for PCSI-based ISL installations
or upgracles). Since standalone BACKUP can per-
form only BACKUP operations, there is an extra,
time-consuming step. The system manager must
enter an appropriate BACKUP/IMAGE command to
move a portion of the operating system software
(the so-called REQUIRED saveset file) to the target
system disk and then boot onto the target system
disk (containing this partial OpenVMS operating
system) to continue the installation.

POLYCENTER Software Distribzition Implemen-
t ~ ~ t i o n The temporary system disk always con-
tains the full operating system to be installed. In
most cases, this temporary systeni disk is actually a
fully functional image of a model system disk taken
from another client system by an earlier FETCH
OPERATING-SYSTEM c ~ m m a n d . ~ The fetch process
(discussed later) has replaced this temporary sys-
tem disk's system start-up command procedure
with a script that runs the remaining steps of the ISL
process.

Previous versions of this product (also known as
RSM) included a prepackaged temporary systeni
disk with a fixed contents that was built by hand.
Software developers routinely captured the latest
versions of OpenVMS system disks inside boot con-
tainer files as small as 14,000 blocks! Although
an interesting academic achievement, this proved
to be an impractical approach. Digital releases
new processors from time to time, and each new

processor requires a new minimum version of the
OpenVMS operating system. The system disks cap-
tured in the boot container coultl not be easily
upgraded in the field. An engineering change order
was required for the POLYCENTER Software Distri-
bution product each time support was added to the
OpenVMs system for a new processor.

These previous versions also stored the operat-
ing system image in a BACKUP saveset file. This
method could be more space-efficient (page, swap,
and dump files consume no space in a saveset file),
but it violates one of the design goals.

In version 3.0, the software developers eliminated
the concept of separate BACKrJP saveset files and
boot containers. Since the operating system support
for the new processors exists in the software saved
in the operating system image, the clients can be
booted directly from that image. The POLYCENTER
Software Distribution version 3.0 product stores the
image of the model system disk directly into a con-
tainer file. This approach produced an interesting
side effect. If a particular processor is not supported
by the version of OpenvMs saved in the operating
system image, it is not possible to boot that proces-
sor into the ISL. As a result, an older version of the
OpenVMs operating system cannot be installed on
hardware that requires a newer version.

Parameters of the ISL
When operating system software is being installecl,
system configuration choices must be selected
from a number of variables. At a minimum, the
name of the target system disk must be known.
Answers might also be needed for questions such
as: which subsets of the operating system files are
to be installed? The ISL procedure 111ust be capable
of obtaining these answers, either by prompting
a user at the console of the client system or by some
automatic means.

OpenVMS Implementation At this point, the
OpenVMS operating system is running, ant1 a spe-
cial system start-up command procetlure has con-
trol. The system manager now answers a series of
prompts at the console. Only rarely does the
upgrade procedure ask all its questions at once
(and state that it is finished asking questions) before
commencing any time-consuming tasks. If it did,
the system manager could leave the console of one
machine to move to the console of the next
machine and so on. In this way, multiple upgrades
could be performed concurrently

Digital Technical Journal Vi l . 6 No. 4 Fa11 1994 93

PC LAN and System Management Tools

POLYCENTER Software Distribution Imi~lemen-
tation The parameters of the 1SL were down-
loaded along with the primary bootstrap image.
The system start-up procedure of the ISL executes a
program that locates the list of parameters in mem-
ory and returns them as logical names, which are
easier for command procedures to manipulate.
(Other operating systems would use their own eas-
ily accessible data storage mechanisms.)

The system start-up procedure starts the DECllet
networking software and establishes a network con-
nection with the POLYCENTER Software Distribution
server system, permitting access to larger amounts
of data than might fit into the bootstrap image. The
BACKUP saveset file useti by previous versions of
the POLYCENTER Software Distribution product was
accessed through this DECnet connection.

Move the Operating System Software
Each operating system has specific requirements
for creating or duplicating system disks. This step
uses the client operating system's standard proce-
dure to duplicate or upgrade the target system disk,
generally using the temporary system disk as its
source (or model). However, another means, such
as network files or library files, may be used.

0penVil.ISImpLe~nentation From this point, there
is no difference between an upgrade and an installa-
tion using the traditional standalone OpenVMs
mechanisms.

The OpenvMs mechanism now performs a series
of complex file replacements in a peculiar order,
which requires several reboots to complete. This
maximizes the existing free space on the target sys-
tem disk. After all the reboots have completed, the
olcl operating system files will have been deleted,
and the new files will have been delivered.

The PCSI-based upgrade does not need to perform
the several reboots, since the target system disk is
treated as a data disk. Its operating system files are
simply replaced with new versions taken from the
temporary system disk. This is one reason that
the PcsI-based OpenVMS upgrade is faster than the
traditional OpenVMS upgrade.

POLYCENTER Soft~uare Distribution I~npleme~z-
t ~ ~ t i o n Since h111 OpenVMS (including DECnet) is
running, all the resources of the OpenVivlS operat-
ing system are available for manipulating the target
system disk, which is also treated as a data disk.
Alternatives such as VMSKIT'BLD.COM (which cre-

ates tluplicate basic system disks), the BACKUP/
IMAGE command (which duplicates systenl disks in
their entirety), and the PCSl utility (which upgrades
system disks in place) coultl be utilized at this point.

The I3ACKUP/IMGE command moves the image of
the temporary system disk to the target system clisl<.
The PCSI utility replaces the operating system files
on the target system disk with the new operating
system files from the temporary system disk. In the
BACKUPAMAGE case, any system-specific custorniza-
tions or layered-product files that were saved into
the container file by the FETCH OPERATING-SYSTEM
process are now in place. In the pCsI case, how-
ever, all system-specific customizations or layered-
product files are left undisturbed.

Cleanup, Configuuration, Tuning,
and Reboot
Any final changes needed before allowing the dient
to use its new system disk are performed during the
cleanup, configuration, tuning, and reboot phase.
The client now boots from its newly upgraded
target system disk, and the temporary system disk
is no longer needed.

0penVM.Y Bnf~leme1ztntio7z As a final step, the
AUTOGEN procedure tunes the operating sys-
tem parameters to the hardware on which it is
intended to run. Any other configuration issues
(sucli as the network node name ancl address)
remain 21s exercises for the system manager to per-
form at some later time. The system reboots one
last time. For traditional installations, this reboot
may have been the fifth or sixth. Some of these may
have been ~iianual reboots, which require the s)a-
tem manager to issue nonstandard, processor-
specific console commands.

POLYCEIVTER Softu~ure Distribution I~nplernen-
tation When the BACKUP/IMAGE colnmancl is
used, customizations specific for the ISL, which are
all stored under the [RSMO.] directory tree, must be
removed from the target system disk, which, before
this step, is a perfect image of the temporary system
disk. In addition, the DECnet software must be
reconfigured. The DECnet databases still contain
the configurations saved in the temporary system
disk; these must be updated to reflect the hardware
on this client. As a final step, the client reboots
onto the target system disk, and the temporary sys-
tem disk is no longer required. With the PCSI-based
ISL, no cleanup is required.

94 I+) / . 6 iVo. 4 Fcrll 1994 Digitcil Tech~ricnl Jozrrncil

Autonzatic, Network-directed Operating System Softzvare Upgmdes

Fetching and Installing Operating
System Socfware
The POLYCENTER Software Distribution product
keeps images of model operating systems in its
private software librarjl. The act of placing soft-
ware into the library is called a fetch. The act of
delivering that software to a client system i s called
an install. The operating system commands are
FETCH OPEIUTIN<;-SYSTEM ancl INSTALL or IJPGRADE
OPERATING- SYSTEM.^ A model system disk cannot
be installed without first being fetched from a
client system or suitable distribution medium.

When processing an INSTALL OPERATING-SYSTEM
AVMS command, the POLYCENTER Software Dis-
tribution product uses the OpenVMS system
run-time library routine LIBSFIND-IMAGE-SYMBOL
in orcler to dynamically activate the shareable image
SYS$SHARE:RSM$ISL-INSTALI.-AVMS.EXE. This image
is called the ISL Director. It is used for both fetch
and install operations. The POLYCENTER Software
Distribution product calls the ISL Director routine
RSM$ISL-FETCH ancl passes to it a context data stnlc-
ture (described in the section Platform Indepen-
dence). This routine uses the software's remote
command execution agent (CEA) to issue Digital

The Fetch Operation command language (DCL) comrnands on the client
system. Non-OpenVMS clients would need to inlple-

The FETCH OPERATING-SYSTEM command takes
merit their own communicdtions mechanism, so

a parameter that is the name of the Operat- that the server system could direct the client to per-
jng system to be fetched. The POLYCENTER Software form reqLlired actions,
Distribution product uses ancl records this sym- These DCL commands cause the client to mount
bolic name because it is the key to a naming sdlerne the LAD ,,irtllal disk presented from the fetch tool kit
used to activate program motlules later. container file RSM$SDS-DATA:RSMSFETCH-AVMS.DSK.

Table 1 lists several symbolic names and the The client executes the command procedure
operating systems they might represent. I t is impor- [RSMV3.O]RSM$ISL-BOOT-AVMS.COM from the fetch
tant to remember that there is no built-in mapping toolkit virtual disk. 'This command procedure
between these names and the operating systems to
which they are mapped. This list is a theoretical . Determines the size of the client's system disk
sampling of what mappings could be configured on
a particular server system. Reports that system disk size to the ISL Director

Table 1 Required Files for Sample Operating Systems

Symbolic
Name Operating System Required ISL Files

VMS OpenVMS VAX
or VAX VMS

AVMS

ULTRIX

OSFl

AVMS5

WINDOWS

OpenVMS AXP

ULTRIX

OpenVMS VAX
with DECnet Phase V

OpenVMS AXP
with DECnet Phase V

MS-DOS running
Microsoft Windows

Digilal Tecbnical Jorrrnnl k l . G No. 4 Fall 1994 95

PC LAN and System Management Tools

The server creates an appropriately sized LAD
container file to receive the snapshot of the
client's system disk and serves it to the client.

Mounts the new virtual disk

Issues a BACKUP/INLAGE command to copy the
system disk to the virtual disk

Provides the server with access to the processor-
specific primary bootstrap image (APR.EXE)

The server saves the APB.EXE image in its library
alongside tlie newly created container file.

Customizes the virtual disk so it can be ilsetl as
the temporary system clislz cluring an ISL

The boot cornrnand procedure uses programs
and command procedures from the fetch toolkit
virtual disk to accomplish this step. In a FETCH
OPERATING-SYSTEM AVMS, this final step includes
creating a special system root [RSMO.SYSEXE],
placing a private system start-up commancl pro-
cedure [RSMV3.0]RSM$ISI,-STmTUP-AVMS.COM,
installing a program to retrieve the parameters
of the ISL [RS,MV3.0]RSM$ISL-(:LIENT-AVMS.EXE,
ancl installing a conlnland procedure to remove
these custoniizations [RSIW~.O]RSM$ISL-CLMWP-
AVMS.COM.

The two virtual disks are then dismounted, and the
server closes the container file and makes it avail-
able, write-protected, for ISL operations. These LAD

services can be accessed with binary passwords
known only to POLYCENTER Software Distribution
servers, so no casual access to the data contained
within is ever allowecl.

The Install Opemtion
The POLYCENTER Software Distribution product
retrieves the symbolic name of the operating
system (e.g., AVMS) from the database. The software
product uses the symbolic name to activate the
ISL Director image (SYS$SHARE:RSM$TSI,-INSTALL-
AVNIS.EXE) and passes control to its universal rou-
tine RSM$ISL-INSTALL. This routine enables the LAA

(SYS$SHARE:RSM$ISL-LAA-AVMS.EXE) and prepares
a clata file RSMSSDS-W/ORK:ISL-client.DAT for Llse
by the LAA after the client system requests it to be
downloaded.

If a DE(:net connection is possible between the
server system and the client system, then the com-
mand execution agent issues appropriate shutdown
and reboot commands to launch the ISL. If not, the
POLYCENTER Software Distribution process assumes

that the client is halted ancl that the system manager
will launch the client into the ISL manually.

When the k l 0 M process detects the client's Nr
adclress, it activates the LAA and passes control to
the routine at offset 0000 in the image. The parame-
ters to this procedure call (which are describecl in
the section Platform Independence) include the
node name of the client system and the address of
a callback routine used to deliver the bytes of the
bootstrap image to tlie client. The call back routine

Reads the RSMSsuS-\Y~~U<:ISL-C~~~II~.DAT' file
(describecl in the section Platform Independence)

Retrieves the processor-specific bootstrap
image (APB.EXE) from the library

Locates and writes the parameters of the ISL into
the bootstrap image's work space

Releases these bytes to MOM for delivery to the
client

Once this is downloaded, the server system
assumes a passive role, waiting for the client to
announce its own completion.

The processor-specific bootstrap image has
control of the client system. It locates the LAD ser-
vice name and password in the parameters of the
ISL to establish the connection to the temporary vir-
tual system disk (which is being presented by the
server system) and boots the OpenVMS AXP operat-
ing system.

The system start-up command procedure
(RSM$ISL-STARTUP-I\V~IS,COM) then receives con-
trol and

Starts enough of the OpenVMS operating system
to mount local disks ant1 start the DECnet net-
working software

Executes the program RSMSISI,CI.IENT-AVIMS. EXE
to retrieve the ISL parameters

With the parameters of the ISL stored in logical
names, the system start-up procedure then

Configures the target system disk

Initializes the target system disk if necessary

Starts the DE(:net networking software

Solicits filrther instructions (if any) from the
server system

Issues a BACKUP/IMAGE command to move the
operating system software from the temporary
system disk to the target system disk

96 MJI 6 No 4 A1lllY94 Digital Tecb$tical Jorirtiul

Automntic, Net 'zuork-directed Operating System Softzuare UI~grades

Executes the RSMJISL-CLEANUP-AVMS.COM com-
mand procedure to remove the customizations
specific for the ISL

The target system disk now appears to be identi-
cal to the model system disk just before the fetch
operation.

The UPGRADE OPERATING-SYSTEM and
FETCH CONFIGURATION Commands
The contents of the PCSI-instaUable distribution
medium for OpenVMS AXP bears a striking resem-
blance to a POLYCENTER Software Distribution tem-
porary system disk. This is no coincidence. The
OpenVMS AXP development team modeled the distri-
bution medium after the POLYCENTER Software
Distribution boot container, so the product would be
phlg-compatible. The obvious difference, however, is
that the system start-up procedure invokes the PCSI
utility instead of the BACKUF/LIMAGE command

The client system boots from the distribution
medium under the direction of the POLYCENTER
Software Distribution product. Next the procedure
starts the DECnet network software using the
parameters of the ISL. Then the PCSI configuration
answers are taken from the server system rather
than being promptetl manually at the console.
Everything else is the same.

Before any of this is possible, however, the sys
tern manager invokes the PCSl utility to record the
answers to all the configuration questions using
the RSM$TRIAL-INSTALL.COM command procedure.
The PCSI configuration file is then inserted in the
POI.Y(;ENTER Software Distribution library using
the FETCH CONFIGIJRATION cornmantl.

Note that when recording configuration files, the
PCSl utility permits users to defer answers until
installation time. Unfortunately, because of the
product's stipulation that no hum;in intervention
be required, such deferrals cause the ISL to fail.

Platform Independence
The following section details how the ISL process
can be expanded to other platforms and operating
systems. Table 1 gives a sample list of symbolic
names and their corresponding operating systems.
The POLYCENTEH Software Distribution version 3.0
kit provides only the VMS (for the VAX VklS ant1 the
OpenVMS \/AX operating systems) and the AVMS (for
the OpenVMS AXP operating system) ISL kits.

To add ISL support for other operating systems
and/or hardware platforms, the following require-
ments must be met.

The operating system must be bootable from a
read-only LAD virtual tlisk. (Among others, the
MS-DOS, ULTRIX, and DEC OSF/l operating sys-
tems are known to have this capability.)

The hardware platform must be &lop down-
loadable. (Most Digital processors have this
capability.)

The operating system's processor-specific boot-
strap image must have an LAA-writeable scratch
area for the parameters of the ISL.

The parameters of the 1% must be retrievable
by the operating system's system start-up com-
mand procedure.

The operating system must have a mechanism
for moving the contents of the temporary sys-
tem disk to the target system disk, which will
never be identical media. (Most operating sys-
tems have this capability.)

The ISI. Director shareable image (SYS$SHARE:
RSM$ISL-INSTALL-opern.EXE), containing entry
points RSM$ISL-FETCH and RSM$ISL-INSTALL,
must be active on the server system (running
OpenVMS).

The contents of the fetch toolkit container file
(RSMSSDS-DATA:RSM$FETCH-opra.DSK) need be
known only to the ISL Director. This file resides
on the server system (running OpenVMS) but is
read only by the client system and only during
a fetch operation.

The load assist agent (SYS$SHARE:RSM$ISL-LAA-
opem.EXE) must be capable of delivering the
operating system's processor-specific primary
bootstrap image (plus the parameters of the ISL)
to the client system, which runs on the server
system (running OpenVMS).

Table I lists the names of the files required to
support various operating systems. Note the nam-
ing scheme for the files. Each set of three files,
which compose a single IsL kit, implements the
entire ISL fetch ant1 install f~unctionality. The IsL
Director routine RSM$ISL-FETCH works in conjunc-
tion with the fetch toolkit. The ISL Director routine
RSM$ISL-INSTALL works in conjunction with the
load assist agent. Table 2 gives the naming conven-
tion used for all resources shared between these
three files. The term opera identifies the symbolic
name of the operating system. The term server
identifies the DECnet node name of the server

Digital Techaical Journal Vol. 6 ~Vo. 4 FUN 199Q 97

PC LAN and System Management Tools

Table 2 Naming Conventions Used by ISL Resources

Name Description

RSM$ISL-INSTALL-opera. EXE

RSM$ISL-LAA-opera.EXE

RSM$FETCH-opera.DSK

RSM$ISL-BOOT-opera. COM

Shareable image containing the ISL Director routines, which runs on
the POLYCENTER Software Distribution server (running OpenVMS).

Shareable image containing the load assist agent, which runs on
the POLYCENTER Software Distribution server (running OpenVMS).

Container file containing the fetch toolkit, which resides on the
POLYCENTER Software Distribution server system (running OpenVMS)
but is read only by the client system.
LAD service name for the fetch toolkit, which is served by the
POLYCENTER Software Distribution server (running OpenVMS)
to the client.

Command procedure responsible for actually performing the save
of the operating system software from the client's system disk to
the virtual disk, which runs on the client system.

Container file for the fetched operating system, which resides on
the POLYCENTER Software Distribution server system (running
OpenVMS).
(This directory may also be used to store the bytes of the processor-
specific bootstrap image so the load assist agent has easy access.)
LAD service name of the temporary system disk containing the
fetched operating system image, which is served from the
POLYCENTER Software Distribution server system (running
OpenVMS) to the client system.

Command procedure responsible for actually delivering the operat-
ing system software from the temporary system disk to the target
system disk. It runs on the client system but is booted from the
temporary system disk.
Command procedure for removing customizations specific to the
initial system load from a temporary system disk. It runs on the client
system but is booted from the temporary system disk.
LAD service name of the VAX "boot container" for operating systems
fetched prior to version 3.0, which is served from the POLYCENTER
Software Distribution server system (running OpenVMS) to the client
system (which in this case must be running OpenVMS VAX or VAX VMS).
LAD service name of the AXP "boot container" for operating systems
fetched prior to version 3.0, which is served from the POLYCENTER
Software Distribution server system (running OpenVMS) to the client
system (which in this case must be running OpenVMS AXP).

system, and the term opsys identifies the user- The pertinent fields of the QENTRY data structure
defined pseudonym for the fetched operating sys- passed to RSM$ISL-FETCH are
tern image.

The ISL Director c h a r pseudonymC643;
The ISL Director is a shareable image activdtetl by 1

LIB$FIND-IkMGE-SYIMBOL; therefore i t need not c h a r c 1 i en t-n o d e C 1 2 8 1 ;

have transfer vectors, as long as the two required 1
entry points are declared UNIVERSAL. These two c h a r L i b r a r y-n o d e C 1 2 8 1 ;

routines are called in user mocle. They are passed :
a single parameter, the address of a data structure h a r O p e a-h [:

called the QENTRY.

98 Vol. 6 No. 4 Fall I994 Digital Techrricrtl Jouvnnl

Automatic, Network-directed Operating System Software Upgrades

ant1 the pertinent fields of the QENTRY data struc-
ture passed to RSM$ISL-INSTALL are

char e therne tC191;

char client-nodeC1281;

char library-nodeC1281;

char opera-houseC81;

In both routines, the field called opera-house con-
tains the symbolic name of the operating system
(e.g., AVMS).

RSM$ISL-FETCH is responsible for copying a
bootable snapshot of the client's system disk into
the LAD container file SYSO.DSK. The LAD virtual
disk should be organized into the native format of
the operating system being fetched. The server sys-
tem will never attempt to read these files. To the
server system, this container is simply a large series
of bytes, whose meaning (to the client system) is
unimportant. This routine is responsible for obtain-
ing the size of the container file to be created,
creating that container file, and then serving it,
writeable, to the LAD. Once the fetch operation has
concluded, the container sliould be served again in
read-only format.

RSM$ISL-INSTALL is responsible for enabling the
LAA for the new client system. Since the LAA runs
under the MOM process, which is a non-POLYCENTER
Software Distribution environment, this routine
should also collect any and all information (such
as the DE(:net node name and address of the server
system) needed by the LAA, and store that infor-
mation in the f i e RSM$SDS-W0RK:ISL-client.DAT.
The content of this file is shared only between
RSM$ISL-INSTALL and the I..AA; therefore, the format
of the file is implementation-dependent.

The Fetch Toolkit
The fetch toolkit is also a LAD virtual disk organized
in a format that is native to the client's operating
system. Again, the server system will never read
this virtual volume. 'This virtual volume contains
the native operating system pieces necessary to
sm7e a snapshot of the model system disk, make it
bootable as the temporary system disk, and restore
it to its original state. These are usual.ly three sepa-
rate command procedures. The command proce-
dure that saves the system disk image must also

store the bytes of the operating system's primary
bootstrap image for future access by the LAA.

The Load Assist Agent
The LAA delivers the bytes of the processor-specific
primary bootstrap image to the client system. The
MOM process activates this shareable image dynam-
ically, but not using LIR$FIND-IMAGE-SYMBOL.
Therefore, the one required entry point to this
image must occur at offset 0000 in the image. (The
name of the entry point is unimportant.) This is
best accomplished using a single transfer vector.

This routine is called in user mode with three
parameters, the addresses of three data structures:
the MOMIDB, the MOMARB, and the MOMODR.

The offset MOMIDB$A-PAIW-DSC contains any
text from the NCP load assist parameter field. This
field contains arbitrary text that RSM$ISL-INSTALL
placed there. Normallj: this field contains a handle
used to retrieve the file RSM$SDS-W0RK:ISL-
client.DAT. A good handle is the DECnet node name
of the client system.

The offset MOIMARB$A-SEND-DATA is the address
of a routine to deliver data to the client. The LAA

need only collect and/or generate the data to be
delivered to the client; this callback routine deliv-
ers it to the client. Its two parameters are a string
descriptor identlfjling which and how many bytes
are to be delivered, and the relative address in the
client's memory to place these bytes. This callback
routine may be called repetitively.

The offset MO1LIODB$LTWSFER_ADDRESS must
be filled with the relative transfer address of the pro-
cessor-specific bootstrap image that was loaded into
the client's memory by MOMARB$A-SEND-DATA. For
OpenVMS VAX, this offset is traditionally zero,
because certain older \'AX processors are not capa-
ble of using any other value. That is one reason why
the transfer address for ISL-SVAX.SYS is always zero.

Summary
The ISL mechanism installs, maintains, and
upgrades operating system software. These simple
descriptions provide the framework for expanding
the ISI. process implemented in the POLYCENTER
Software Distribution version 3.0 product to plat-
forms other than OpenVMS VAX and OpenVMS AXP
operating systems. This expansion can make work
easier for system managers of multiple platforms
and may even start a de facto standard for perform-
ing operating system upgrades.

Digital Technical Journal Vol. 6 No. 4 FUN 1994 99

PC LAN and System Management Tools

Acknwledgments
I would like to thank Richard Bishop and Charlie
Hammond in the OpenVMS AXP Development
Group for allowing me to unify the POLYCENTER
Software Distribution version 3.0 ISL and the PCSI-
basecl OpenVMS AXP version 6.1 upgrade.

Note and Refmences

1. POLYCENTER Software Distribution is the new
name for Digital's Remote System Manager

product. The installed software continues to use
its traditional acronym RSM.

2. POLYCEVTER Software Distribution 1Mnnage-
Inent Gziide (Maynard, MA: Digital Equipment
Corporation, Order No. AA-JGOSE-TE, May 1994).

3. POLYCENTER Software Distribution Conz nand
Reference (Maynard, MA: Digital Equipment
Corporation, Order No. AA-JG03E-TE, iMay 1994).

I F u r t b w Readings

The following technical papers were written by
Digital authors:

R. Abugov and K. Zinke, "Wafer Level Tracking
Enhances Particle Source Isolation in a Manu-
facturing Environment," Fifh Annual IEEE/SEIW
Advc~nced Senziconductor ~Mnnufnctztring
Conference and Workshop (November 1994).

J. Card, A. McGowan, and C. Reed, "Neural Network
Approach to Automated Wirebond Defect Classifi-
cation," ASrME Proceedings of the Artificial Neural
Networks in Engineering (ANNIE '94) Conference
(November 1994).

S. Cheung, D. Jensen, ailcl G. Mooney, "Ultra-High
Purity Gas Distribution Systems for Sub 0.5um ULS1
 ma nu facturing," Fzyth Annzral IEEE/SEMI Advanced
Semiconductor Manufcrcturing Conference and
Workshop (November 1994).

R. Collica, B. Cantell, and J. Ramirez, "Statistical
Analysis of Particle/Defect Data Experiment Using
Poisson and Logistic Regression," IEEE Interna-
tional Workshop on Defect and Fault Tolerance
in VJJI Systems (October 1994).

B. Doyle, K. Mistry, ant1 C-L. Huang, "Analysis of
Gate Oxicle Thickness Hot Carrier Effects in Surface
Channel P-MOSFET's," lEEE Transactions on
Electron Devices (January 1995).

J. Edmondson, "Internal Organization of the Alpha
21164," IEEE First Interncltional Symni~osiz~m on
High-perjormance Comnp~lter Architect~lre (HPCA)

(January 1995).

L. Elliott, D. Paine, and J. Rose, "The Microstructure
ant1 Electromigration Behaviour of AI-0.35%Pd
Interconnects," Muterials Resec~rch Society
Sj~nzposium P~oceedings: ~Matericlls Reliability
in Microelectronics I V Symposium (April 1994).

C. Gordon and K. Roselle, "An Efficient and Accu-
rate Method for Estimating Crosstalk in Multicon-
ductor Coupled Transmission Lines," fEEE Third
Topicc11 Meeting on the Electrical Performance
of Electronic Packaging (November 1994).

D. Heimann, "Using Complexity-Tracking in the
Software Development Process," Thirty-second
Ann~rcrl Spring Reliability Symposium (April 1994).

A. John, "Dynamic Vnodes: Design ancl Imple-
mentation," USENIX 1995 Technical Conference
on UNIX andAdvanced Co~npz~ting Systems
(January 1995).

D. Jones and V Murthy, "Advancing Reliability
with State of the Art Software Tools," University
of iMGlnchester School of Engineering Third
Reliability Softt~wre Seminar and Workshop
(December 1994).

N. Khalil, J. Faricelli, and D. Bell, "The Extraction
of Two-Dimensional MOS Transistor Doping via
Inverse Modeling," IEEE Electron Device Letters
(January 1995).

A. Labun, "Profile Simulation of Electron Cyclotron
Resonance Planarization of an Interlevel Dielectric,"
Journal of Vacuum Science and Technology B
(JVSTB) (November/December 1994).

K. Mistry and B. Doyle, "How Do Hot Carriers
Degrade N-Channel MOSFETs?," IEEE Circuits and
Devices (January 1995).

C. Ozveren, R. Simcoe, and G. Varghese, "Reliable
and Efficient Hop-by-Hop Flow Control," ACM SIG-
COivIil/I 94 (October 1994).

R. Razdan and M. Smith, "A High-Performance
Microarchitecttire with Hardware-Programmable
Functional Units," Proceedings of the Twenty-
seventh Annual International Symposium on
Microarchitecture (MICRO-27) (December 1994).

R. Rios and N. Arora, "Determination of Ultra-Thin
Gate Oxide Thickness for CMOS Structures Using
Quantum Effects," IEEE International Electron
Devices Meeting/IEDM Technical Digest
(December 1994).

N. Sullivan, "Semiconductor Pattern Overlay,"
Proceedings of the International Society of
Photo-Optical Instrumentation Engineers (SPIE)
Microelectronic Processing: Integrated Circuit
Metrology and Process Control (Critical Rezjieug
(September 1994).

B. Thomas, "OpenVMS VO Concepts: CSR Access,"
Digital Systems Journal (November/December
1994).

Digital Technical Joumnl W)l. 6 No. 4 Fall 1994 101

I Recent Digital U S Patents

The follozuing patents were recently issued to Digital Equipment Corporation. Titles and rzam es s~lpplied
to us by the US. P ~ ~ t e n t and Trademark Office are reproduced exactly as tl?ey appear on the originalpzib-
lishedpatent.

5,208,692 D. McMahon

5,208,768 E. Simoudis

5,210,854 A. Beaverson ancl T. Hunt

5,210,865 S. Davis, W Golen~an, and
D. Thiel

5,217,198 V Samarov, W Paupl is, and
G. Doumani

5,218,678 B. Kelleher and S-S. Chow

5,220,661 J. Wray, A. Mason, I? Karger,
I? Robinson, W-M. Hu, and
C. Kahn

5,224,206 E. Simoudis

5,224,884 M. Singer, R. Noffke, and
D. Gilmour

5,233,684 R. Ulichney

5,235,697 S. Steely and J. Zurawski

5,239,634 B. Buch and C. MacGregor

5,239,637 S. Davis, W! Goleman, and
D. Thiel

5,241,564 J. Tang and J.L. Yang

5,242,761 Y Uchiyama

5,243,241 C-H. Wang

5,247,464 R. Curtis

5,247,618 S. Davis, W! Golernan, D. Thiel,
R. Bean, and J. Zahrobsky

5,251,147 J . Finnerty

5,251,227 T. Bissett, W Bruckert,
J. Munzer, D. Kovalcin, and
IM. Norcross

5,253,249 J. Fitzgerald and D. Shuda

5,253,353 J.C. Mogul

5,257,264 H. Yang and
K. K. Ramakrishnan

5,261,077 J.R. Duval, K.R. Peterson,
and T.E. Hunt

High Bandwidth Network Based on Wavelength Division
Multiplexing

Expert System Including Arrangement for Acquiring Redesign
Knowledge

System for Updating Program Stored in EEPROM by Storing
New Version into New Location and Updating Second
Transfer Vector to Contain Starting Address of New Version

Transferring Data between Storage Media While Maintaining
Host Processor Access for 1/0 Operations

Uniform Spatial Action Shock Mount

System and Method for Atomic Access to an Inpi~t/Output
Device with Direct Memory Access

Systern and Methocl for Reducing Timing Channels in Digital
Data Processing Systems

System and Method for Retrieving Justifiably Relevant Cases
from a Case Library

High Current, Low Voltage Drop Separable Connector

Method and Apparatus for Mapping a Digital Color Image from
a First Color Space to a Second Color Space

Set Prediction Cache Memory System Using Bits of the Main
Memory Address

Memory Controller for EngineeringDequeuil~g Process

Digital Data Management Systern for Maintaining Consistency
of Data in a Shadow Set

Low Noise, High Performance Data Bus System ancl ~Methocl

Magnetic Recording Medium and Methocl of Manufacture
Thereof

Totally Magnetic Fine Tracking Miniature Galvanometer
Actuator

Node Location by Differential Time Measurements

Transferring Data in a Digital Data Processing System

Minimizing the Interconnection Cost of Electronically Linked
Objects

Resets for a Fault Tolerant, Dual Zone Computer System

Bidirectional Transceiver for High Speed Data System

System and Method for Efficiently Supporting Access to I/<>
Devices through Large Direct-mapped Data Caches

Automatically Deactivatecl No-owner Frame Removal
Mechanism for Token Ring Networks

Configilrable Data Path Arrangement for Resol\~ing Data Type
Incompatibility (This case is related to PD89-0300.)

102 Vol 6 iVo 4 Fall 1994 Digital Technical Jout-nal

5.261.085 L.B. Lamport Fault-tolerant System and Method for Implementing a
Distributed State Machine

5,265,092 S.R. Solowa): A.G. Lauck, and
<;. Verghese

5,265,257 R.J. Simcoe ancl R.E. 'l'l~ornas

Synchronization Mechanism for Link State Packet Routing

Fast Arbiter Having Easy Scaling for Lirge Numbers of
Requesters, Large Numbers of Rcsource Types with Multiple
Instances of Each Type antl Se1ect;ible Queueing IXsciplines

5,274,811 A. Borg and D.W Wall Method for Quickly Acquiring and Using Very Long Traces
of Mixed System antl User Memory References

5,276,712 J.D. Pearson Method and Apparatus for Clock Recovery in Digital
Communication Systems

5,270,809 J . K . Grooms, R.L. Sites,
L.A. Chisvin, and DW SSrnIser

5,276,828 J. Dion

,Method and Apparatus for Capturing Real-time Data Bus
Cycles in a Data Processing System

Methotls oflMaintaining Cache Coherence and Processor
Synchronization in a Multiprocessor System Using Send ant1
Receive Instructions

5,276,851 C. Thacker and D. Conroy Automatic Writeback and Storage Limit in a High-performance
Frame Buffer and Cache Memory System

5,276,874 R.G. Thomson Method for Creating a Directory Tree in Main Memory Using
an Index File in Secondary Memory

5,278,974 R. Ramanujan, 1?J. Lemtnon,
ant1 J.C. Stickncy

Method ant1 Apparatus for the Dynamic Adjustment of Data
Transfer Timing to Equalize the Bandwidths of Two Buses in
a Computer System Having Different Bandwidths

5,280,478 H. Yang, PW Ciarfella,
K.K. R;~makrishnan

5,280,575 C.A. Young and N.E Jacobson

5,280,582 H. X ~ n g , K . K . Ramal<rishnan.
and A. Lauck

5,280,627 J.E. Flaherty anti A. Abrahams

No-owner Frame and Multiple Token Removal Mechanism for
Token Ring Networks

Apparatus for Cell Format Control in a Spreadsheet

No-owner Frame and Multiple Token Removal for Token Ring
Networks

Remote Bootstrapping a Node over Communication Link by
Initially Requesting Remote Storage Access Program Which
Emulates Local Disk to Load Other Programs

5,283,857 E. Simoudis Expert System Including Arrangement for Acquiring Redesign
Knowleclge

5,283,873 S.C. Steely and D.J. Sager Next Line Prediction Apparatils for a Pipelined Computer
System

5,287,;'t38 B.M. Kelleher

5,287,485 L. Umina and R. Anselmo

System and Method for Drawing Antialiased Polygons

Digital Processing System Including Plural Memory Devices
and Data Transfer Circuitry

5,287534 T: Reuther Correcting Crossover Distortion Produced When Analog
Signal Thresholds Are Used to Remove Noise from Signal

5,201,494 '1: Bissett, W Hruckert, and
J. Melvin

5,293,620 W Barabash ant1
W.S. Yerazunis

Method of Handling Errors in Software

Method and Apparatus for Scheduling Tasks in Repeated
Iterations in a Digital Data Processing System Having Multiple
Processors

5 , 2 9 2 G. J. Grula and W.C. Metz Method for Forming Trench Isolated Regions with Sidewal I
Doping

5,2g7269 D. Donalclson, M. How;ird,
D. Orbits, J. Parchem,
I>. Robinson, and D. Williams

Cache Coherency Protocol for Multi Processor Computer
System

Digital Technical Journal Val. 6 No. 4 Full 1794 103

Recent Digital US. Patents

5,298,464 RW Doe, R.D. Gates,
D.P Goddard, S.C. Hsu, and
R.L. Schlesinger

5,301,327 W McKeeman and S. Aki

5,303,382 B. Buch and C. MacGregor

5,303,391 R. J. Simcoe and R.E. Thomas

5,313,387 WM. McKeeman and S. Aki

5,313,464 EH. Reiff

5,313,641 R. J. Simcoe and 1I.E. Thomas

5,315,480 \! Samarov, G. Doumani, and
R. Larson

5,317,708 R. Edgar

5,319,651 R. Helliwell, R. Lary, B. Edem,
andJ. Johnston

B. Long and M.J. Hynes

M.C. Ozur, S.M. Jenness,
J.W Kelly, J . J. Walker, and
J.A. East

5,325,531 WM. McKeeman ancl S. Aki

5,327,368 R.A. Eustace ancl J.S. Leonard

5,327,557 J.E Emmond

5,330,881 A. Sidman and S. Fung

E Beaudelaire, M. Gangnet,
J. Herve, T. Pudet, and
J.V Thong

PA. Karger, A.H. Mason,
J.C.R. Wray, PIT. Robinson,
A.L. Priborsky, C.E. Kahn,
and T.E. Leonard

5,345,587 L.G. Fehskens, C. Strutt,
S. Wong, J.E Callander,
EH. Burgess, K.J. Nelson,
M.J. Guertin, D.L. Smith,
MW Sylor, KLX! Chapman,
R.C. Schucliard, S.I. Golclfarb,
R.R.N. Ross, L.B. O'Brien,
1?J. Trasatti, D.O. Rogers,
B.M. England, J.L. Lemmon,
R.L. Rosenbaum, and
adtlitional inventors

5,345,588 R. Peterson, B. Schreiber,
and S. Greenwood

Methocl of Manufacturing Tape Automated Bonding
Semiconductor Pack~ge

Virtual Memory Management for Source-code Development
System

Arbiter with Programmable Dynamic Request Prioritization

Fast Arbiter Having Easy Scaling for Large Numbers of
Requesters, Large Numbers of Resource Types with Multiple
Instances of Each v p e and Selectable Queueing Disciplines

Re-execution of Etlit-compile-nin Cycles for Changed Lines of
Source Code, with Storage of Associated Data in BuMrs

Fault Tolerant Memory Using Bus Bit Aligned Recd-Solomon
Error Correction Code Symbols

Fast Arbiter Having Easy Scaling for Large N u n ~ l ~ e r s of
Requesters, Large Numbers of Resource Types with 1Multiple
Instances of Each Type and Selectable Queueing Disciplines

Conformal Heat Sink for Electronic A4odule

Content Addressable Memory

Data Integrity Features for a Sort Accelerator

Interference Suppression System

Server Impersonation of Client Processes in an Object-based
Computer Operating System

Incremental Compiler for Source Code Development System

Chunky Binary Multiplier and Method of Operation

Single-keyed Indexed File for TP Queue Repository

Microlithographic Method for Producing Thick Vertically
Walled Photoresist Patterns

Process for Making Computer-aided Drawings

System and Method for Reducing Storage Channels in Disk
Systems

Extensible Entity Management System Inclutling a Dispatching
Kernel and Modules Which Independently Interpret ancl
Execute Commands

Thread Private Memory Storage for Multithread Digital Data
Processing

Vol. 6 IVO. 4 Fall 1994 Digital Technical Journal

Call for Authors
from Digital Press

Digital Press has become an imprint of Butterworth-Heinemann, a major inter-
national publisher of professional books and a member of the Reed Elsevier
group. Digital Press remains the authorized publisher for Digital Equipment
Corporation: the two companies are working in partnership to identlfy and pub-
lish new books under the Digital Press imprint and create opportunities for
authors to publish their work.

Digital Press remains committed to publishing high-quality books on a wide
variety of subjects. We would like to hear from you if you are writing or thinking
about writing a book.

Contact: Frank Satlow
Publisher
Digital Press
313 Washington Street
Newton, MA 02158
Tel: (617) 928-2649
Fax: (617) 928-2640
fps@world.std.com

ISSN 0898-901X

Printed in U.S.A. EY-T118E-TI195 04 14 14.5 Copyright 8 Digital Equipment Corporation. All Rights Reserved.

	Front cover
	Contents
	Editor's Introduction
	Biographies
	The Architecture and Design of HS-series Storageworks Array Controllers
	Policy Resolution in Workflow Management Systems
	The Design of DECmodel for Windows
	The Design of ManageWORKS: A User Interface Framework
	The Structure of the OpenVMS Management Station
	Automatic, Network-directed Operating System Software Upgrades: A Platform-independent Approach
	Further Readings
	Recent Digital U.S. Patents
	Call for Authors from Digital Press
	Back cover

