HIGH PERFORMANCE FORTRAN
IN PARALLEL ENVIRONMENTS

Dlg I'tal SEQUOIA 2000 RESEARCH
Technical
Journal

Eﬂﬂunan "

Volume 7 Number 3
1995

Editorial

Jane C. Blake, Managing Editor
Helen L. Patterson, Editor
Kathleen M. Stetson, Editor

Circulation
Catherine M. Phillips, Administrator
Dorothea B. Cassady, Secretary

Production

Terri Autieri, Production Editor
Anne S. Karzeff, Typographer
Peter R. Woodbury, Hlustrator

Advisory Board

Samuel H. Fuller, Chairman
Richard W. Beane

Donald Z. Harbert

William R. Hawe

Richard J. Hollingsworth
Richard F. Lary

Alan G. Nemeth

Robert M. Supnik

Cover Design

The images on the front and back covers

of this issue are different visualizations

of the same data output from a regional
climate simulation program run by Dr.
John Roads of the Scripps Institution of
Oceanography. The data depicted con-

tain measures of temperature, liquid and
gaseous water content, and wind vectors,
the topography represented by the data

is the western U.S. in January 1990. Pro-
viding earth scientists with the ability to
visualize such data is one of the objectives
of the Sequoia 2000 rescarch project—

a joint effort of the University of California,
government agencics, and industry to build
a computing environment for global change
research. This issue presents papers on sev-
eral major arcas explored by Sequoia 2000
researchers, including an electronic reposi-
tory, networking, and visualization.

The cover was designed by Lucinda O’Neill
of Digital’s Design Group. Special thanks go
to Peter Kochevar for supplying the cover
images.

The Digital Technical Journal is a refereed
journal published quarterly by Digital
Equipment Corporation, 30 Porter Road
LJO2 /D10, Littleron, Massachusetts 01460.
Subscriptions to the journalare $40.00
(non-U.S. $60) for four issues and $75.00
(non-U.S. $115) for cight issues and must
be prepaid in U.S. funds. University and
college professors and Ph.D. students in

the electrical engineering and computer
science fields receive complimentary sub-
scriptions upon request. Orders, inquiries,
and address changes should be sent to the
Digital Technical fJournal at the published-
by address. Inquiries can also be sent clec-
tronically to dy@digiral.com. Single copies
and back issues are available for $16.00 each
by calling DECdirect at 1-800-DIGITAL
(1-800-344-4825). Recent back issues of the
Journalare also available on the Internet at
http://www.digital.com/info/DT] /home.
html. Complete Digital Internet listings can
be obrtained by sending an electronic mail
message to info@digital.com.

Digital employees may order subscriptions
through Readers Choice by entering VIX
PROFILE at the system prompt.

Comments on the content of any paper are
welcomed and may be sent to the managing
editor at the published-by or network address.

Copyright © 1995 Digital Equipment
Corporation. Copying without fee is per-
mitted provided that such copies are made
for use in educational institutions by faculty
members and are not distributed for com-
mercial advantage. Abstracting with credit
of Digital Equipment Corporation’s author-
ship is permitted. All rights reserved.

The information in the Journal is subject
to change without notice and should not
be construed as a commitment by Digiral
Equipment Corporation or by the compa-
nies herein represented. Digital Equipment
Corporation assumes no responsibility for
any errors that may appear in the fournal.

ISSN 0898-901X
Documentation Number EY-T838E-T]

Book production was done by Quantic
Communications, Inc.

The following are trademarks of Digital
Equipment Corporation: Digital, the
DIGITAL logo, AlphaGeneration,
AlphaServer, AlphaStation, DEC, DEC
OSF/1, DECstation, GIGAswitch,
TURBOchannel, and ULTRIX.

Doré is a registered trademark of Kuborta
Pacific Computer Inc.

Exabyte is a registered trademark of
Exabyte Corporation.

Hewlett-Packard and HP are registered
trademarks of Hewlett-Packard Company.

IBM and SP2 are registered trademarks
of International Business Machines
Corporation.

llustra is a registered trademark of llustra
Information Technologies, Inc.

Intel is a trademark of Intel Corporation.
MCT is a registered trademark of MCI
Communications Corporation.
MEMORY CHANNEL s a trademark

of Encore Computer Corporation.
Mosaic is a trademark of Mosaic
Communications Corporation.
Netscape is a trademark of Netscape
Communications Corporation.
NewtonScript is a trademark of Apple
Computer, Inc.

NFS is a registered trademark of Sun
Microsystems, Inc.

OpenGL is a registered trademark and
Open Inventor is a trademark of Silicon
Graphics, Inc.

PictureTel is a registered trademark of
PictureTel Corporation.

PostScript is a registered trademark of
Adobe Systems Inc.

SAIC is a registered trademark of Science
Applications International Corporation.

Siemens is a registered trademark of
Siemens Nixdorf Information Systems, Inc.

Sony is a registered trademark of Sony
Corporation.

SPEC is a trademark of the Standard
Performance Evaluation Council.

Telescript is a trademark of General Magic, Inc.
UNIX is a registered trademark in the

United States and other countries, licensed
exclustvely through X/Open Company Lid.

Contents

Foreword

HIGH PERFORMANCE FORTRAN IN
PARALLEL ENVIRONMENTS
Compiling High Performance Fortran for
Distributed-memory Systems

Design of Digital’s Parallel Software Environment

SEQUOIA 2000 RESEARCH

An Overview of the Sequoia 2000 Project

The Sequoia 2000 Electronic Repository

Tecate: A Software Platform for Browsing and
Visualizing Data from Networked Data Sources

High-performance I/0 and Networking Software
in Sequoia 2000

Jean C. Bonnev

Jonarhan Harris, John A. Bircsak, M. Regina Boldug,
Jill Ann Diewald, Israel Gale, Neil W. Johnson,
Shin Lee, C. Alexander Nelson, and Carl D. Offner

Edward G. Benson, David C.P. LaFrance-Linden,
Richard A. Warren, and Santa Wirvaman

Michael Stonebraker

Rav R. Larson, Christian Plaunt,
Allison G. Woodruft, and Marni Hearst

Peter D. Kochevar and Leonard R. Wanger

Joseph Pasquale, Eric W. Andcrson, Kevin Fall, and
Jonathan S. Kav

Digital Technical Journal Vol.7 No. 3

5

24

66

84

1995

Editor's
Introduction

Scientists have long been motivators
tor the development of powertul
computing environments. Two
sections in this issue of the Jorrnal
address the requirements of scientific
and technical computing. The first,
from Digital’s High Performance
Technical Computing Group, looks
at compiler and development tools
that accelerate performance in paralle]
environments. The second scction
looks to the future of computing;
University of California and Digital
rescarchers present their work on a
large, distributed computing environ-
ment suited to the needs of earth sci-
entists studving global changes such
as ocean dynamics, global warming,
and ozone depletion. Digital was an
early industry sponsor and participant
in this jomnt research project, called
Sequota 2000.

To support the writing of parallcl
programs for computationally intense
environments, Digital has extended
DEC Fortran 90 by implementing
most of High Performance Fortran
(HPF) version 1.1. After reviewing
the syntactic features of Fortran 90
and HPF, Jonathan Harris et al. focus
on the HPE compiler design and
explain the optimizations it performs
O IMprove interprocessor communi-
cation in a distributed-memory envi-
ronment, specifically, in workstation
clusters (farms) based on Digital’s
64-bit Alpha microprocessors.

The run-time support for this dis-
tributed environment is the Parallel
Software Environment (PSE). Ed
Benson, David LaFrance-Linden,
Rich Warren, and Santa Wirvaman
describe the PSE product, which is
layered on the UNIX operating sys-
tem and includes tools for developing

Digital Technical Journal

parallel applications on clusters of up
to 256 machines. Thev also examine
design decisions relative to message-
passing support in distributed svstems
and shared-memory systems; PSE
supports network message passing,
using TCP/IP or UDP/IP prorocols,
and shared memorv.

Michacl Stonebraker’s paper opens
the section featuring Sequoia 2000
research and is an overview of the
project’s objectives and status. The
objectives encompassed support tor
high-performance 1/0 on terabvte
data sets, placing all darain a DBMS,
and providing new visualization tools
and high-speed networking. After

a discusston of the architectural lavers,

he reviews some lessons learned by
participants— chief of which was to
view the system as an end-to-end
solution—and concludes with a look
at future work.

An efficient means for locating
and retrieving data from the vast
stores in the Sequoia DBMS was
the task addressed by the Sequota
2000 Electronic Repository project
team. Rav Larson, Chris Plaunt,
Allison Woodruff, and Marti Hearst
describe the Lassen text indexing
and retrieval methods developed
for the POSTGRES database svstem,
the GIPSY system tor automatic index-
ing of texts using geographic coor-
dinates discussed in the text, and the
TextTiling method for automatic
partitioning of text documents to
cnhance retrieval.

The need tor tools to browse
through and to visualize Sequoia
2000 data was the impetus behind
Tecate, a sottware platform on which
browsing and visualization applica-
tions can be built. Peter Kochevar

Vol.7 No. 3 1995

and Len Wanger present the features
and functions of this rescarch proto-
tvpe and offer details of the object
model and the role of the interpre-
tive Abstract Visualization Language
(AVL) for programming. Thev con-
clude with example applicanions that
browse data spaces.

The challenge of high-speed net-
working for Sequoia 2000 is the sub-
ject of the paper by Joseph Pasquale,
Eric Anderson, Kevin Fall, and Jon
Kay. In designing a distributed svstem
that cfhciently retrieves, stores, and
transfers verv large objects (in excess
of tens or hundreds of megabytes),
thev focused on operating svstem
1/0 and neowork software. They
describe nwo /0 svstem software
solutions—container shipping and
peer-to-peer 1/O—that avoid data
copying. Their TCP/IP network
software solutions center on avoiding
or reducing checksum computation.

The editors thank Jean Bonney,
Digiral’s Dircctor of External
Research, for her help in obtaining
the papers on Sequoia 2000 rescarch
and for writing the Foreword to this
1SSUC.

Our next issue will feature papers
on multimedia and UNIX clusters.

M

Jane C. Blake
Menaging Editor

Foreword

Jean C. Bonney
Directoi: fxterial Resecrch

The Information Utility, the
Informaton Highway, the Interner,
the Infobahn, the Information
Economv—the sound bvtes of the
1990s. To make these concepts
reality, a robust technology infra-
structure is necessary. In 1990,
Digital’s research organization saw
this need and sct out to develop an
experimental test bed that would
examine assumptions and provide a

basis for a technology edge in the *90s.

The resulting project was Scquoia
2000, a three-vear rescarch collabora-
tion benween Digital, campuses of the
University of California, and several
other industry and government orga-
nizatons. The Sequoia 2000 vision is
Petabytes (1. trillions of bytes)

of data in u distribudted archive,
transparently managed. and
logically viewed over a high-speed
network with isochronons capabilitics
vt a host of tools

—in other words, a big, fast, casy-to-
use system.

Although the vision s still not reality
today, our more than three years

of participation in Sequoia 2000
rescarch gave us the knowledge base
we sought.

After a rigorous process of pro-
posal development and review by
experts at Digital and the University
of California, Sequoia 2000 began
in June 1991. The focus of the
rescarch was a high-speed, broad-
band nenwork spanning University
of California campuses from Berkeley
to Santa Barbara, Los Angceles, and
San Dicgo; a massive database; stor-
age; a visualization system; and clec-
trronic collaboration. Driving the
rescarch requirements were carth
scientists. The computing needs of
these scientists push the state of the
art. Current computing technologies
lack the capabilities carth scientists
need to assimilate and interpret the
vast quantities of information col-
Jected from satellites. Onee the data
are collected and organized, there is
the challenge of massive simulations,
simulations that forecast world climate
ren or even one hundred years from
now. These were exactly the kinds
of challenges the computer scientists
needed.

Among the major results of three
yvears of work on Sequoia 2000 was
aset of product requirements for
large dara applications. These require-
ments have been validated through
discussions with customers in finan-
cial, healtheare, and communications
industries and in government. The
requirements include

= A computing environment built
on an object relational database,
i.c., a data-centric computing
system

= A databasce that handles a wide
variety of nontraditional objects
such as text, audio, video, graph-
ics, and imagces

Digital Technical Journal

= Support for a variety of traditional
databases and file systems

® The ability to perform necessary
operations from computing
environments that are intuitive
and have the same look and feel;
the interface to the environment
should be generic, very high level,
and casily tailored to the user
application

= High-speed data migration
between secondary and tertiary
storage with the ability to handle
very large data transfers

® Nerwork bandwidth capable
of handling image transmission
across networks in an acceptable
time frame with quality guarantees
for the dara

= High-quality remote visualization
of any relevant data regardless
of format; the user must be able
to manipulate the visual data
interactively

= Reliable, guaranteed, delivery
of data from tertiary storage to
the desktop

Sequoia 2000 was also a catalyst
for maturing the POSTGRES research
database software to the point where
it was ready for commercialization.
The commercial version, Hustra,
is available on Alpha platforms and
is enjoying success in the banking
industry and in geographic informa-
tion system (GIS) applications, as
well as in other government applica-
tions with massive data requirements.
[Mustra is also making inroads into the
Internet where it is used by on-line
services.

Yet another major result of Sequoia
2000 was a grant from the National

Vol.7 No.3 1995

(3]

Acronautics and Space Administra-
rion (NASA) to develop an alternate
architecture for the Earth Observing
Svstem Dara and Information System
(EOSDIS). EOSDIS will process the
petabytes of real-time data from
the karth Obscerving System (EOS)
satellites to be launched at the end
of the decade. The alternate infor-
mation architecture proposed by the
University of California faculty was
the Sequora 2000 architecture. 1t
will have a major influence on the
EOSDIS project.

For the carth scientists, gains

were made in simulation speeds and
in aceess to large stores of organized
data. These scientists used some of
Digiral’s first Alpha workstation farms
and software prototypes for their cli-
mate simulations. An ¢ight-processor
Alpha workstation farm provided a
nwo-to-one price/performance advan-
tage over the powertul, multimillion-

dollar CRAY C90 machine. In another

carth science application, scientists
using Alpha and hicrarchical storage
svstems coutld simulate wo vears’
worth of climate data over the week-
end without operator intervention;
tormerly, tvo months” worth of dara
rook one day to simulare and required
considerable operator intervention.
Thus many more simulations could
be processed in a fixed time and
“time to discovery™ was decreased
constderably.

Now thar we can look at Sequona
2000 in retrospect, would we do
such a project again? The answer
is a resounding “ves” from all of
us involved. 1t was a complex proj-
ccr that included 12 University of
Ca
uate students, and 20 staff. Another

itornia faculoy members, 25 grad-

Digal Technical Journal

Vol 7 No. 3

8 faculty members and students pro-
vided additional expertise. Four of
Digiral’s engineers worked on site,
and a variety of support personnel
from other industry sponsors partici-
pated, mcJuding SAIC, the Calitornia
Deparnment of Warer Resources,
Hewlett-Packard, Metrum, United
States Geological Survey (USGS),
Hughes Application Information
Services, and the Army Corps of
Engincers.

Burt as 1s the case with such ambi-
rious projects, there were unantici-
pated and ditficult lessons for all

to learn. To experiment with real-
lite test beds means considerably
more than writing a rigorous set

ot hvpotheses in a proposal. Michacl
Stonebraker, in his paper, notes a
number of challenges we faced and

the lessons learned. One of the issues
that kept surfacing was the “grease
and glue” tor the infrastructure, that
is, the interoperabiliny of pieces of
sofrware and hardware that composed
the end-to-end svstem. This remains
a challenge that needs research if we
are going to achieve the promised
goals of internenworking. Another
sticky pornt was scalability. On the
one hand, itis ditficult to build a very
large nerworked svstem from scratch.
On the other hand, as we slowly built
the mass storage svstem to the point
of minimal critical mass, we tound
that the current ott-the-shelf tech-
nologies tor mass storage were not
ready to be put use for our purposces.
So, ves, we believe the project was
worthwhile with some cavears. We
gained critical knowledge about the
technology, and we also came a long
wav in learning the art of directing
and leading the tvpe of project that is

1995

necessary to assist the Information
Technology industry in its quest
for the ubiquitous distributed
information svstem.

How clse are we going to get
msight into the critical issucs of build-
ing and reliably operating a robust
information infrastructure without
building a large test bed with real end
users whose needs push the state of
the artar cach point along the wav?

We believe thar large projects similar
to Sequona are crucial. The papers
rhat tollow attest to the imporrant
knowledge gained. We have focused
spectticallv on the end-to-end svstem
from the scientists’ deskrops ro the
mass storage svsten, the challenge
ot building and using a large data

repository, the mely and fast move-
ment of very farge objects over the
nerwork, and browsing and visualiz-

ing data from nerworked sources.

Compiling High
Performance Fortran
for Distributed-
memory Systems

Digital's DEC Fortran 90 compiler implements
most of High Performance Fortran version 1.1,

a language for writing parallel programs. The
compiler generates code for distributed-memory
machines consisting of interconnected work-
stations or servers powered by Digital’s Alpha
microprocessors. The DEC Fortran 90 compiler
efficiently implements the features of Fortran 90
and HPF that support parallelism. HPF programs
compiled with Digital’s compiler yield perfor-
mance that scales linearly or even superlinearly
on significant applications on both distributed-
memory and shared-memory architectures.

Jonathan Harris
John A. Bircsak

M. Regina Bolduc
Jill Ann Diewald
Israel Gale

Neil W. Johnson
Shin Lee

C. Alexander Nelson
Carl D. Offner

High Performance Fortran (HPF) is a new program-
ming language for writing parallel programs. It is
based on the Fortran 90 language, with extensions
that cnable the programmer to specify how array oper-
ations can be divided among multiple processors for
increased performance. In HPF, the program specifics
only the pattern in which the data is divided among
the processors; the compiler automates the low-level
details of synchronization and communication of data
berween processors.

Digital’s DEC Fortran 90 compiler is the first imple-
mentation of the full HPE version 1.1 language
(except for transcriptive argument passing, dynamic
remapping, and nested FORALL and WHERE con-
structs). The compiler was designed for a distributed-
memory machine made up of a cluster (or farm) of
workstations and/or servers powered by Digital’s
Alpha microprocessors.

In a distributed-memory machine, communication
between processors must be kept to an absolute mini-
mum, because communication across the network 1s
cnormously more time-consuming than anv operation
done locally. Digital’s DEC Fortran 90 compiler
includes a number of optimizations to minimize the
cost of communication between processors.

This paper briefly reviews the features of Fortran 90
and HPF that support parallelism, describes how the
compiler implements these features efticiently, and
concludes with some recent performance results
showing that HPF programs compiled with Digital’s
compiler yield performance that scales linearly or even
supcrhinearly on significant applications on both
distributed-memory and shared-memory architectures.

Historical Background

The desire to write parallel programs dates back to the
1950s, at least, and probably earlier. The mathematician
John von Neumann, credited with the invention of the
basic architecture of today’s serial computers, also
invented cellular auromara, the precursor of roday’s
massively parallel machines. The continuing motiva-
tion for parallelism is provided by the nced to solve
computationally intense problems in a rcasonable time
and at an affordable price. Today’s parallel machines,

Digital Technical Journal Vol.7 No.3 1995

which range from collections of workstations con-
nected by standard fiber-optic networks to tightly cou-
pled CPUs with custom high-speed interconnection
networks, are cheaper than single-processor svstems
with equivalent performance. In many cases, equiva-
lent single-processor svstems do not exist and could
not be constructed with existing technology.

Historically, one of the difticulties with parallel
machines has been writing parallel programs. The work
of parallelizing a program was far from the original sci-
ence being explored; it required programmers to keep
track of a great deal of intormation unrelated to the
actual computations; and it was done using ad hoc
methods that were not portable to other machines.

The experience gained from this work, however, led
tO a consensus on a better way to write portable
Fortran programs that would pertorm well on a variety
of parallel machines. The High Performance Fortran
Forum, an international consortium of morc than
100 commercial parallel machine users, academics,
and computer vendors, captured and refined these
ideas, producing the language now known as High
Performance YFortran.'* HPF programming systems
are now being developed by most vendors of paralle]
machines and software. HPF is included as part of the
DEC Fortran 90 language.”

One obvious and reasonable question is: Why
invent a new language rather than have compilers

automatically generate parallel code? The answer is
straightforward: it is gencerally conceded that auto-
matic parallelization technology is not vet sutficiently
advanced. Although parallelization for particular archi-
tectures (e.g., vector machmes and shared-memory
multiprocessors) has been successtul, it is not fully
automatic but requires substantial assistance from the
programmer to obtain good performance. That assis-
tance usually comes in the form of hints to the compiler
and rewritten sections of code that are more parallcliz-
able. These hints, and in some cases the rewritten code,
are not usually portable to other architectures or com-
pilers. Agreement was widespread at the HPF Forum
that a set of hints could be standardized and done in a
portable way. Automatic parallelization technology is
an active field of research; consequently, it is expected
that compilers will become increasingly adept.” ' Thus,
these hints are cast as comments—called compiler
directives—in the source code. HPF actually contains
very little new language beyond this; it consists primar-
ily of these compiler directives.

The HPF language was shaped by certain key
considerations in parallel programming;:

s The need to identify computations that can be
done in parallel

= The need to minimize communication between
processors on machines with nonuniform memorv
access costs

Digital Technical Journal Vol.7 No.3 1995

= The need to keep processors as busy as possible by
balancing the computation load across processors

It is not always obvious which computations in
a Fortran program are parallelizable. Although some
DO loops express parallelizable compurtations, other
DO loops express computations in which later itera-
tions of the loop require the resules of earlier itera-
tions. This forces the compuration to be done in order
(seriallv), rather than simultancously (in parallel).
Also, whet
sometimes depends on user dara thar mav vary from
run to run of the program. Accordingly, HPF conrains
a new starement (FORALL) for describing parallel
computations, and a new directive (INDEPENDENT)
ro identify additional parallel compurtations to the
compiler. These features are equally usctul for distrib-
uted- or shared-memory machines.

HPF’s data distribution dircctives are particularly
important for distributed-memory machines. The
HPF dirccrives were designed primarily to increase
performance on “computers with nonuniform mem-
ory access costs.” Ot all parallel architectures, distrib-

1er or not a computation s parallclizable

uted memory is the architecrure in which the location
of dara has the greatest cffect on access cost. On
distribured-memory machinces, mterprocessor com-
munication is very expensive compared o the cost of
ferching local dara, rypically by several orders of mag-
nitude. Thus the effect of suboptimal distribution of
dara across processors can be catastrophic. HPF direc-
tives tell the compiler how to distribute data across
processors; based on knowledge of the algorithm, pro-
grammers choose directives thar will minimize com-
munication time. These directives can also help
achieve good load balance: by spreading data appro-
priately across processors, the computations on thosce

dara will also be spread across processors.

Finally, a number of idioms that are important in
parallel programming either are awkward to express in
Forrtran or are greatly dependent on machine architec-
ture for their efficient implementation. To be usetul in
a portable language, these idioms must be casy ro
express and implement cthicienty. HPF has captured
some of these idioms as library routines for efticient
implementation on very different architectures.

For example, consider the Fortran 77 program in
Figure 1, which repeatedly replaces cach clement of
a two-dimensional array with the average of its north,
south, east, and west neighbors. This kind of compu-
ration arises in a number of programs, including irera-
tive solvers for partial differential cquarions and
image-filtering applications. Figure 2 shows how this

On a machine with four processors, a single HPF
directive causes the arrav 4 to be distribured across
the processors as shown i Figure 3. The program

integer n, number_of_iterations, i,j,k
parameter(n=16)
real A(n,n), Temp{(n,n)

(Initialize A, number_of_iterations)
do k=1, number_of_iterations

Update non-edge elements only
do i=2, n-1
do j=2, n-1
Temp(i, jY=CACi, j=1)+ACi, j+1)+ACi+1, jI+ACi-1, j))I*0.25
enddo
enddo
do i=2, n-1
do j=2, n-1
ACi, j)=Temp(i,j)
enddo
enddo
enddo

Figure 1
A Computation Expressed in Fortran 77

integer n, number_of_iterations, i, j, k

parameter (n=16)

real A(n, n)

"hpt$ distribute A(block, block?

...(Initialize A, number_of_iterations)

do k=1, number_of_iterations
forall (i=2:n=-1, j=2:n-1) !Update non-edge elements only

ACi, §O)=CACi, j-D)+ACi, j+1)+ACiI+1, jO+ACi=-1, j))*0.25

endforall

enddo

Figure 2
The Same Compuration Expressed in HPF

executes in parallel on the four processors, with each
processor performing the updates to the array cle-
ments it owns. This update, however, requires inter-
processor communication (or “data motion”). To
0 2 compute a new value for A(8, 2), which lives on
processor 0, the value of A(9, 2), which lives on
processor 1, is needed. In fact, processor 0 requires the
seven values A(9, 2), A(9, 3), ... A(9, 8) from proces-
sor 1, and the seven values A(2,9), A(3,9), ... A(8,9)
from processor 2.'* Each processor, then, needs seven
values apiece from two neighbors. By knowing the lay-
out of the data and the computation being performed,
the compiler can automatically generate the inter-
1 3 processor communication instructions needed to exe-
cute the code.

Even for seemingly simple cases, the communica-
tion instructions can be complex. Figure 4 shows the
communication instructions that are generared for the
code that implements the FORALL statement for a
distributed-memory parallel processor.

Figure 3
An Array Distributed over Four Processors

Digital Technical Journal Vol.7 No.3 1995

Processor 0

Processor 1

Processor 2

Processor 3

SEND
A(8,2)...A(8, 8)
to Processor 1

SEND
A(2,8)...A(8, 8)
to Processor 2

RECEIVE
A(9,2).. A9, 8)
from Processor 1

RECEIVE

A(2,9)...A(8,9)
from Processor 2

SEND
A(9,2).. A9, 8}
to Processor O

SEND
A9, 8)... A(15, 8)
to Processor 3

RECEIVE
A(8,2).. A8, 8)
from Processor 0

RECEIVE
A(9,9)...A(15,9)
trom Processor 3

SEND
A(2,9)...A(8,9)

to Processor 0

SEND
A(8,9)... A(8,15)
to Processor 3

RECEIVE
A(2,8).. A8, 8)
from Processor 0

RECEIVE
A(9,9).. A9, 15)
from Processor 3

SEND
A(9,9)...A(15,9)
to Processor 1

SEND
A(9,9)... A4(9,9)
to Processor 2

RECEIVE
A9, 8)...A(15, 8)
from Processor 1

RECEIVE
A(8,9)...A(8, 15)

from Processor 2

Figure 4

Compiler-generated Communication for a FORALL Sratement

ugh the communication needed in this sim-
Although tt m t ded in t]
ple example is not difficult to figure out by hand,
keeping track of the communication needed for
higher-dimensional arrays, distributed onto more
processors, with more complicated computations, can
be a very difficult, bug-prone task. In addition, a num-
ber of the optimizations that can be performed would
¢ extremely tedious to figure out by hand. Never-
be ext ly ted to fig t by hand. N
theless, distributed-memory parallel processors are
programmed almost exclusively today by writing pro-
grams that contain explicit hand-generated calls to the
an) E communication routines. The

SEND and RECEIVE t t Tl
ifference between this kind of programming and pro-
diffc bet this kind of prog gandp
gramming in HPF is comparable to the difference
between assembly language programming and high-
evel language programming,.
level language prog

This paper continues with an overview of the HPF
language, a discussion of the machine architecture tar-
geted by the compiler, the architecture of the compiler
itself, and a discussion of some optimizations per-
formed by its components. It concludes with recent

A p

performance results, showing that HPF programs
compiled with Digital’s compiler scale linearly in sig-
nificant cases.

Overview of the High Performance
Fortran Language

High Performance Fortran consists of a small set of
extensions to Fortran 90. It is a data-parallel program-
ming language, meaning that parallelism is made pos-
sible by the explicit distribution of large arravs of data
across processors, as opposed to a control-parallel

Digiral Technical Journal Vol.7 No.3 1995

language, in which threads of computation are distrib-
uted. Like the standard Fortran 77, Fortran 90, and C
models, the HPF programming model contains a sin-
gle thread of control; the language itself has no notion
of process or thread.

Conceprually, the program executes on all the
processors simultaneously. Since each processor con-
tains only a subset of the distributed data, occasionally
a processor may need to access data stored in the
memory of another processor. The compiler deter-
mines the actual details of the interprocessor commu-
nication needed to support this access; that is, rather
than being specified explicitly, the derails are implicit
in the program.

The compiler translates HPF programs into low-
level code that contains explicit calls to SEND and
RECEIVE message-passing routines. All addresses in
this translated code arc modified so that they refer to
data local to a processor. As part of this translation,
addressing expressions and loop bounds become
expressions involving the processor number on which
the code is execuring. Thus, the compiler needs to gen-
crate only one program: the generated code 1s parame-
trized by the processor number and so can be executed
on all processors with appropriate results on cach
processor. This generated code 1s called explicit single-
program multiple-dara code, or explicit-SPMD code.

In some cases, the programmer may find it useful
to write explicit-SPMD code at the source code level.
To accommodate this, the HPF language includes an
escape hatch called EXTRINSIC procedures that is
used to leave data-parallel mode and enter explicit-
SPMD mode.

We now describe some of the HPF language exten-
sions used to manage parallel data.

Distributing Data over Processors

Data is distributed over processors by the
DISTRIBUTE directive, the ALIGN directive, or
the default distribution.

The DISTRIBUTE Directive For parallel execution of
array opcrations, each array must be divided in mem-
ory, with cach processor storing some portion of
the array in its own local memory. Dividing the array
into parts is known as distributing the array. The HPF
DISTRIBUTE directive controls the distribution of
arrays across cach processor’s local memory. It does
this by specifving a mapping pattern of dara objects
onto processors. Many mappings are possible; we illus-
trate only a few.

Consider first the casc of a 16 X 16 array A4 in an
environment with four processors. One possible speci-
fication for A is

real AC16, 16)

'hpf$ distribute A(*x, block)

The asterisk (*) for the first dimension of A means
that the array elements are not distributed along
the first (vertical) axis. In other words, the clements
in any given column are not divided among differ-
ent processors, but are assigned as a single block to
one processor. This type of mapping is referred to as
serial distribution. Figure 5 illustrates this distribution.

The BLOCK keyword for the second dimension
means that for any given row, the array elements are
distributed over cach processor in large blocks. The
blocks are of approximately equal size—in this case,
they are exactly equal-—with each processor holding
one block. As a result, A is broken into four contigu-
ous groups of columns, with each group assigned to
a separare processor.

Another possibility is a (*, CYCLIC) distribution.
As in (*, BLOCK), all the elements in each column are
assigned to one processor. The elements in any given
row, however, are dealt out ro the processors in round-
robin order, like playing cards dealt our to players
around a table. When elements are distributed over 1
processors, cach processor contains every iith column,
starting from a different offsct. Figure 6 shows the
same array and processor arrangement, distributed
CYCLIC instead of BLOCK.

As these examples indicate, the distributions of the
separate dimensions are independent.

A (BLOCK, BLOCK) distribution, as in Figure 3,
divides the array into large rectangles. In that figure,
the array clements in any given column or any given
row are divided into two large blocks: Processor (0 gets
A(1:8, 1:8), processor 1 gets A(9:16, 1:8), processor 2
gets A(1:8,9:16), and processor 3 gets A(9:16,9:16).

Figure 5
A (*, BLOCK) Distribution

Figure 6
A (x, CYCLIC) Distribution

The ALIGN Directive The ALIGN directive is used to
specity the mapping of arrays relative to one another.
Corresponding elements in aligned arrays are always
mapped to the same processor; array operations
between aligned arrays arc in most cases more efficient
than array operations betsveen arrays that are not
known to be aligned.

The most common use of ALIGN is to specify that
the corresponding elements of two or more arrays be
mapped identically, as in the following example:

Digiral Technical Journal Vol.7 No.3 1995

'hpf$ align AC(i) with B(i)

This example specifies that the two arrays A and Bare
always mapped the same way. More complex align-
ments can also be specified. For example:

'hpf$ align ECi) with F(2*i-1)

In this example, the elements of Fare aligned with the
odd clements of . In this case, £ can have at most half
as many elements as #.
An array can be aligned with the interior of a larger
array:
real AC(12, 12)

real B(16, 16)

'hpf$ align ACi, j) with B(i+2, j+2)

In this example, the 12 X 12 array A is aligned with
the interior of the 16 X 16 array B(see Figure 7). Each
interior element of B is always stored on the same
processor as the corresponding element of A.

The Default Distribution Variables that are not explic-
itly distributed or aligned are given a default distribu-
tion by the compiler. The default distribution is not
specified by the language: different compilers can
choose different default distributions, usually based
on constraints of the target architecture. In the DEC
Fortran 90 language, an array or scalar with the detault
distribution is completely replicated. This decision was
made because the large arrays in the program are the
significant ones that the programmer has to distribute
explicitly to get good performance. Any other arrays
or scalars will be small and generally will benefit from
being replicated since their values will then be available
everywhere. Of course, the programmer retains com-
plete control and can specity a different distribution
for these arrays.

Replicated data is cheap to read but generally
expensive to write. Programmers typically use repli-
cated data for information that is computed infre-
quently but used often.

Figure 7
An Example of Array Alignment

Digital Technical Journal Vol.7 No.3 1995

Data Mapping and Procedure Calls

The distribution of arrays across processors introduces
a new complication for procedure calls: the interface
berween the procedure and the calling program must
take into account not only the type and size of the rel-
evant objects but also their mapping across processors.
The HPF language includes special forms of the
ALIGN and DISTRIBUTE directives for procedure
interfaces. These allow the program to specify whether
array arguments can be handled by the procedure as
they are currently distributed, or whether (and how)
they need to be redistributed across the processors.

Expressing Parallel Computations
Parallel computations in HPF can be identified in four
ways:

= Fortran 90 array assignments
= FORALL statements

s The INDEPENDENT directive, applied to DO
loops and FORALL statements

= Fortran 90 and HPF intrinsics and library functions

In addition, a compiler may be able to discover paral-
lelism in other constructs. In this section, we discuss
the first two of these parallel constructions.

Fortran 90 Array Assignment In Fortran 77, operations
on whole arrays can be accomplished only through
explicit DO loops that access array clements one at a
time. Fortran 90 array assignment statements allow
operations on entire arrays to be expressed more simply.

In Fortran 90, the usual intrinsic operations for
scalars (arithmetic, comparison, and logical) can be
applied to arrays, provided the arrays arc of the same
shape. Forexample, if 4, B, and C arc two-dimensional
arrays of the same shape, the statement C'= A4 + B
assigns to cach element of C a value equal to the sum
of the corresponding ¢lements of Aand B.

In more complex cases, this assignment syntax can
have the eftect of drastically simplifying the code. For
instance, consider the case of three-dimensional
arrays, such as the arrays dimensioned in the following
declaration:

real D(10, 5:24, -5:M), EC(0:9, 20, M+6)

In Fortran 77 syntax, an assignment to every ele-
ment of D requires triple-nested loops such as the
example shown in Figure 8.

In Fortran 90, this code can be expressed in a single
line:

D = 2.5%D+E+2.0

The FORALL Statement The FORALL statement 1s an
HPF extension to the American National Standards
Institute (ANSI) Fortran 90 standard but has been
included in the draft Fortran 95 standard.

DCi, j, k) = 2.5%p(i,

k) + EC(i-1, j-4, k+6) + 2.0

Figure 8
An Example of a Triple-nested Loop

FORALL is a generalized torm of Fortran 90 array
assignment syntax that allows a wider variety of array
assignments to be expressed. For example, the diago-
nal of an array cannot be represented as a single
Fortran 90 array section. Therefore, the assignment of
a value to every clement of the diagonal cannot be
expressed in a single array assignment statement. It
can be expressed in a FORALL statement:

real, dimension{(n, n) :: A
forall (i = 1:n) AGi,) =1

Although FORALL structures serve the same pur-
pose as some DO loops do in Fortran 77, a FORALL
structure is a parallel assignment statement, not a
loop, and in many cases produces a different result
from an analogous DO loop. For example, the
FORALL statement

forall (i = 2:5) C(i, i) = €Ci-=-1, i-1)

applied to the matrix

11 0 0 0 O
022 0 0 0
C = 0 033 0 0
0 0 044 O

L0 0 0 0 55]

produces the following result:

110 0 0 0
011 0 0 0
c =10 02 0 0
0 0 033 0
L0 0 0 0 44

On the other hand, the apparently similar DO loop

do i =2, 5
i, i) = ¢¢i-1, i-1)

end do

produces
IT 0 0 0 0
o1 0 0 0

¢ =10 011 0 0
0 0 011 ©
0 0 0 011

This happens because the DO loop iterations are per-
formed scquentially, so that each successive element of
the diagonal is updated before it is used in the next
iteration. In contrast, in the FORALL statement, all
the diagonal elements are fetched and used before any
stores happen.

The Target Machine

Digital’s DEC Fortran 90 compiler gencrates code
for clusters of Alpha processors running the Digiral
UNIX operating system. These clusters can be separate
Alpha workstations or servers connected by a fiber dis-
tributed dara interface (FDDI) or other network
devices. (Digital’s high-speed GIGAswitch /FDDI sys-
tem is particularly appropriate.’) A shared-memory,
symmetric multiprocessing (SMP) system like the
AlphaServer 8400 system can also be used. In the case
of an SMP system, the message-passing library uses
shared memory as the message-passing medium; the
generated code is otherwise identical. The same exe-
cutable can run on a distributed-memory cluster or an
SMP shared-memory cluster without recompiling.
DEC Fortran 90 programs use the execution envi-
ronment provided by Digital’s Parallel Software
Environment (PSE), a companion product.** PSE
is responsible for invoking the program on multiple
processors and for performing the message passing
requested by the generated code.

The Architecture of the Compiler

Figure 9 illustrates the high-level archirecture of
the compiler. The curved path is the path taken
when compiler command-line switches are ser for
compiling programs that will not execute in parallel,
or when the scoping unit being compiled is declared
as EXTRINSIC(HPF_LOCAL).

Figure 9 shows the front end, transform, middle
end, and GEM back end components of the compiler.
These components function in the following ways:

= The front end parses the input code and produces
an internal representation containing an abstract
syntax tree and a symbol table. It performs exten-
sive semantic checking.'®

Digital Technical Journal Vol.7 No.3 1995

SOURCE

OBJECT

CODE CODE
— | FRONT END—|—>| TRANSFORM |—>| MIDDLE END I———>| GEM |—>

Figure 9
Compiler Components

= The transform component pertorms the transfor-
mation from global-HPF to explicit-SPMD form.
To do this, it localizes the addressing of data, inscrts
communication where necessary, and distributes
parallel compurations over processors.

= The midd
tion into another form of internal representation
suitable for GEM.

» The GEM back end, also used by other Digiral
compilers, performs local and global optimization,
storage allocation, code generation, register alloca-
tion, and emits binary object code."”

¢ end translares the internal representa-

In this paper, we are mainly concerned with the
transform component of the compiler.

An Overview of Transform

Figure 10 shows the transform phases discussed in this
paper. These phases perform the following key tasks:

= LOWER. Transforms array assignments so that
they look internally hke FORALL statements.

= DATA. Fills in the data space information for each
symbol using information from HPEF directives
where available. This determines where cach data
objecr lives, i.e., how it is distriibuted over the
processors.

= [TER. Fills in the iteration space information for
each computational expression node. This deter-
mines where cach computation takes place and
indicates where communication is necessary.

= ARG. Pulls funcrions in the interior of expressions
up to the statement level. Tralso compares the map-
ping of actual arguments to that of their corre-
sponding dummies and generates remapping into
compiler-generated temporarics if necessary.

—>| LOWER I——v[DATA I——>r ITER I,
————->| ARG I-—'[DIVIDE |—>| STRIP I——>

Figure 10
The Transform Phascs

12 Digital Technical Journal Vol.7 No.3 1995

= DIVIDE. Pulls all communication inside expres-
sions (identified by ITER) up to the statement level
and identifies what kind of communication is
needed. Tt also ensures that imformation needed for
flow of control is available at each processor.

= STRIP. Turns global-HPF code into explicit-SPMD
code by localizing the addressing of all data objects
and mserting explicit SEND and RECEIVE calls
to make communication explicit. In the process,
it performs strip mining and loop optimizations,
vectorizes communication, and optimizes nearest-
neighbor compurations.

Transform uses the following main data structures:

= Symbol rable. This is the symbol table created by
the front end. It is extended by the transform phase
ro include dope information for arrav and scalar
symbols.

. Dowree. Transform uses the dotree form of the
abstract synrax tree as an internal representation of
the program.

= Dependence graph. This is a graph whose nodes are
expression nodces 1n the dotree and whose edges
represent dependence edges.

= Dara spaces. A data space is associated with cach
data symbol (i.c., cach arrav and each scalar). The
data space information describes how each data
object is distributed over the processors. This infor-
mation is derived from HPF directives.

» Ireration spaces. An iteration space is associated
with cach computational node in the dotree. The
iteration space information describes how compu-
rations arc distributed over the processors. This
information is not specified in the source code but
1s produced by the compiler.

The nrerrelationship of these data structures is dis-
cussed in Reference 18. The dara and iteration spaces
to the processing pertormed by transform.

are centra
The Transform Phases

LOWER

Since the FORALL statement is a generalization of a
Fortran 90 array assignment and includes it as a special
case, it is convenient for the compiler to have a uni-
form representation for these two constructions. The

LOWER phase implements this by rurning cach
Fortran 90 arrav assignment into an cquivalent
FORALL sratement (actuallv, into the dotree repre-
sentation of one). This unitorm representation means
that the compiler has far fewer special cases to consider
than otherwise might be necessary and leads o no
degradation of the generared code.

DATA

The DATA phase specifies where dara lives. Placing

and addressing data correctly s one of the major tasks

of ransform. There are a large number of possibilitics:
When a value is available on every processor, it 1s

said to be replicated. When itis available on more than
once but not all processors, it is said to be partially
replicated. For instance, a scalar mav live on onlv one
processor, or on more than onc processor. Tvpically, a
scalar is replicated—it hves on all processors. The rephi-
cation of sca
processor has a copy of the requested value. Stores to
replicated scalar data can be expensive, however, it the

ar data makes fetches cheap because cach

value to be stored has not been replicated. In that case,
the value to be stored must be sent to cach processor.

The same consideration applics to arravs. Arravs
may be replicated, in which case each processor has a
copv of an entire arrav; or arravs may be partially rephi-
cated, in which case each element of the array is avail-
able on a subscr of the processors.

Furthermore, arravs that are not replicated mav be
distributed across the processors in several ditferent
fashions, as explained above. In fact, cach dimension
of cach arrav may be distributed independently of
the other dimensions. The HPEF mapping directives,
principally ALIGN and DISTRIBUTE, give the pro-
grammer the ability to specify completely how cach
dimension of cach arrav is laid out. DATA uses the
information in these directives to construct an internal
description or data space of the favour of cach arrav.

ITER

The ITER phase determines where the mrermediate
results of caleulations should live. Its relationship to
DATA can be expressed as:

B DATA decides where parallel data lives.
= [TER decides where parallel computanions happen.

Each array has a fixed number of dimensions and an
extent in cach of those dimensions; these properrtics
rogether determine the shape of an array. After DATA
has finished processing, the shape and mapping of
each array is known. Similarly, the resutt of'a computa-
rion has a particular shape and mapping. This shape
mav be different from that of the data used in the com-
putarion. As a simple example, the computation

AC:,:,3) + B(:,:,3)

has a owo-dimensional shape, even though both arravs
A and B have three-dimensional shapes. The dara
space data structurce is used to describe the shape of
cach arrav and its lavout in memory and across proces-
sors; similarly, ieration space is used to describe the
shape of each computation and its layout across
processors. One of the main tasks of transform is to
construct the iteration space for cach compuration so
that it leads to as little interprocessor communication
as possible: this construction happens in ITER. The
compiler’s view of this construction and the interac-

tion of these spaces are explaimed in Reference 18.

Shapes can change within an expression: while some
operators return a result having the shape of their
operands (e.g., adding two arravs of the same shape
returns an array of the same shape), other operators
can return a result having a different shape than the
shape of their operands. For example, reductions like
SUM return a result having a shape with lower rank
than that of the input expression being reduced.

One wel
computations happen is the “owner-computes” rule.
With this method, all the values needed to construct
the computation on the right-hand side of an assign-
ment statement are ferched (using interprocessor
communication it necessary) and computed on the
processor that contains the left-hand-side location,
Then they are stored ro that left-hand-side location (on
the same processor on which they were compured).

-known mecrhod of determining where

Thus a description of where compurations oceur is
derived from the output of DATA. There are, however,
simple examples where this method leads to less than
optimal performance. For instance, in the code

real A(n, n), B{(n, n), C(n, n)
'hpts distribute A(block, block)
Thpf$ distribute B(cyclic, cyclic)
"hpt$ distribute C(cyclic, cyclic)
forall (i=1:n, j=1:n)
ACi,) = BC(i, j> + CCi, j)
end forall

¢ would move B and C to
align with A4, and rhen add the moved values of Band
Cand assign to A, It is certamly more etficient, how-

the owner-compures ru

ever, to add Band ¢ together where they are aligned
with each other and then communicate the result to
where it needs to be stored to A. With this procedure,
we need to communicare only one set of values rather
than two. The compiler identifies cases such as these
and generates the compurtation, as indicated here, to
minimize the communication.

ARG
The ARG phasc performs any necessary remapping of
actual arguments at subroutine call sites. It does this
by comparing the mapping of the actuals (as derer-
mined by ITER) to the mapping of the corresponding
dummies (as determined by DATA).

Vol.7 No. 3

Digital Technical Journal 1995

1

2
R}

In our implementation, the caller performs all
remapping. If remapping is necessary, ARG exposes
that remapping by inscrring an assignment statement
that remaps the actual to a temporary thar is mapped
the way the dummy is mapped. This guarantees that
references to a dummy will access the correct data as
specified by the programmer. Of course, it the parame-
teris an OUT argument, a similar copy-out remapping
has to be inserted after the subroutine call.

DIVIDE

The DIVIDE phasc partitions (“divides™) cach expres-
sion in the dotree into regions. Each region contains
compurtations that can happen withour interprocessor
communication. When region R uses the values of
a subexpression computed in region S, for example,
INErprocessor communication is required to remap
the computed values from their locations in § to their
desired locations i1 R, DIVIDE makes a temporary
mapped the wav region R needs it and makes an
explicit assignment statement whose left-hand side
is that temporary and whose right-hand side is the
subexpression compured m region S, In this way,
DIVIDE makes explicit the interprocessor communi-
cation that is unplicit in the iteration space informarion
attached to cach expression node.

DIVIDE also performs other processing:

= DIVIDE rephcates expressions needed to manage
control flow, such as an expression representing
a bound of a DO loop or the condition in an [F
statement. Conscquently, each processor can do
the necessary branching.

® For cach statement requiring communication,
DIVIDE identifics the kind of communication
needed.

Depending on what knowledge the two sides ot the

communication (i.c., the sender and the receiver)

have, we distinguish two kinds of communication:

— Full knowledge. The sender knows what 1t is
sending and to whom, and the receiver knows
what it is receiving and from whom.

— Partal knowledge. Either the sender knows

what it is sending and to whom, or the receiver
knows what it is receiving and from whom, but
the other party knows nothing.
This kind of message is typical of code dealing
with irregular dara accesses, for instance, code
with arrav references containing vector-valued
subscriprs.

STRIP

The STRIP phase (shortened from “strip miner™;
probably a better term would be the “Jocalizer™) rakes
the statements categorized by DIVIDE as needing

Digiral Technical Journal Vol.7 No. 3 1995

communication and inserts calls to library routines to
move the data from where it is to where it needs to be.

It then localizes parallel assignments coming from
vector assignments and FORALL constructs. In other
words, cach processor has some (possibly zero) num-
ber of arrav locarions that must be stored to. A set of
loops 1s generated that caleulates the value to be stored
and stores it. The bounds for these loops are depen-
dent on the distribution of the arrav being assigned to
and the scetion of the array being assigned to. These
bounds mav be explicit numbers known at compile
time, or thev mav be expressions (when the array size
1s not known at compile time). In any case, they arc
exposcd so that they mav be oprimized by later phases.
They are nor calls to run-time routinges.

The subscripts of each dimension of cach array in
the statement are then rewritten in terms of the loop
variable. This modification effectively turns the origi-
nal global subscript into a local subscript. Scalar sub-
scripts are also converted to local subscriprs, but in this
casc the subscript expression does nor involve loop
indices. Similarly, scalar assignments that reference
arrav clements have their subscripts converted from
global addressing to local addressing, based on the
original subscript and the distribution of the corre-
sponding dimension of the array. They do not require
strip loops. For example, consider the code fragment
shown in Figure 11a.

Here £ is some variable whose value has been
assigned before the FORALL. Ler us assume that A4
and £ have been distributed over a 4 X 5 processor
arrav in such a way that the first dimensions of A and B
arc distributed CYCLIC over the first dimension of the
processor array (which has extent 4), and the second
dimensions of A and B are distributed BLOCK over
the sccond dimension of the processor array (which
has extent 5). (The programmer can express this
through a facility in HPF.) The gencerated code is
shown in Figure 11b.

It the array assigned to on the left-hand side of such
a statement is also referenced on the right-hand side,
then replacing the parallel FORALL by a DO loop
mav violate the “fetch before store” semantics of the
original statement. That is, an arrav clement may be
assigned o on one iteration of the DO loop, and this
new value mav subscquently be read on a later itera-
don. In the original meaning of the statement, how-
ever, all valucs read would be the original values.

This problem can always be resolved by evaluating
the right-hand side of the statement it its entirety into
a temporary array, and then—in a second set of DO
assigning that temporary to the left-hand side.

loops
We use dependence analysis to determine if such a
problem occurs atall. Even ifiic does, there are cases in
which loop transtormations can be used to climinate
the need for a temporary, as outlined in Reference 19.

real AC100, 20>, B(100, 20>
'hpf$ distribute A(cyclic, block),
forall (i = 2:99)
ACi, k) = B(i, k?
end forall

(a) Code Fragment

m = my_processor ()

if k mod 5 = Lm/4J then

do i = (if m mod 4 = 0 then 2 else 1), (if m mod 4 = 3 then 24 else 25)

ACi, Lk/51> = B(i, Lk/51)
end do
end if

(1) Pscudocode Generated for Code Fragment

=

B(cyclic, block)

Figure 11

Codc Fragment and Pscudocode Generared for Code Fragment

(Some poor implementations always introduce the
temporary even when it is not needed.)

Unlike other HPF implementations, ours uses
compiler-generated inlined expressions instead of
function calls to determine local addressing values.
Furthermore, our implementation does not introduce
barrier synchronization, since the sends and receives
generated by the transform phase will enforee any
nceessary synchronization. In general, this is much less
cxpensive than a naive insertion of barriers. The
rcason this works can be seen as follows: first, any valuc
needed by a processor is computed either locally or
nonlocally. If the value is computed locally, the normal
control flow guarantees correct access order for that
value. If the value is computed nonlocally, the gener-
ated receive on the processor that needs the value
causes the receiving processor to wait until the value
arrives from the sending processor. The sending
processor will not send the value until it has computed
it, again because of normal control-flow. If the sending
processor is ready to send data before the receiving
processor is ready for it, the sending processor can
continue without waiting for the data to be received.
Digiral’s Parallel Software Environment (PSE) butters
the dara until it is needed.

Some Optimizations Performed by the Compiler

The GEM Dback end
Opuimizations:

performs the following

= Constant folding

= Opumizations of arithmetic 1F, logical IF, and
block IF-THEN-ELSE

= Global common subexpression elimination

= Removal of invariant expressions from loops

= Global allocation of general registers across pro-
gram units

= In-line cxpansion of statement functions and
routines

= Optimizaton of array addressing in Joops

= Value propagation

= Deletion of redundant and unreachable code

= Loop unrolling

» Sofrwarc pipclining to rearrange instructions
benween different unrolled loop iterations

= Array temporary climination

In addition, the transform component performs
some important optimizations, mainly devoted to
improving interprocessor communication. We have
implemented the following optimizations:

Message Vectorization

The compiler generates code to limit the communica-
tion to one SEND and one RECEIVE for cach array
being moved between anv two processors. This is the
most obvious and basic of all the optimizations that a
compiler can perform for distributed-memorv archi-
tectures and has been widely studied 222

Digiral Technical Journal Vol.7 No.3 1995

If the arravs 4 and B are laid out as in Figure 12 and
if B1s to be assigned to 4, then array clements 53(4),
B(5), and (6}, all of which live on processor 6,
should be sent to processor 1. Clearly, we do notwant
ro generate three distinet messages tor this, Therefore,
we colleet these three clements and generate one mes-
sage containing all three of them. This example
involves full knowledge.

Communications mnvolving partial knowledge arce
also vectorized, bur they are much more expensive
because the side of the message without inttial knowl-
edge has to be informed of the message. Although
there are several ways to do this, all are costly, either in
time or in space.

We use the same merhod, incidentally, to inline the
HPEF XXX_SCATTER routines. These new routines
have been introduced to handle a parallel construct

rhat could cause more than one value to be assigned to
the same location. The outcome ot such cases s deter-
mined by the routine being inlined. For instance,
SUM_SCATTER simplyv adds all the values thar arrve
ar cach location and assigns the final result to thar loca-
tion. Although this is an example of interprocessor
communjcation with partial knowledge, we can stll
build up messages so that only a minimum number of
MICSSAZES Are Sent.

In some cases, we can improve the handling of com-
munications with partal knowledge, provided they
occur more than once in a program. For more intor-
mation, please see the sccrion Run-tinie Preprocessing
of Irregular Data Accesscs.

Strip Mining and Loop Optimizations

Strip mining and loop optimizations have to do wirh

generating etficient code on a per-processor basis, and

so in some sense can be thought of as conventional.

Generally, we follow the processing detalled in

Reference 19 and summarized as:

= Strip mining obstacles are climinared where possi-
ble by loop transtormations (loop reversal or loop

interchange).

ARRAY A ARRAY 8
PROCESSOR
NUMBER 1 2 5 6 7 8
mem(Apase + 0] 7 mem|Bpase + 0] 2] 8|12
mem[Apase + 1] 8 mem(Bpzae + 1] | 1]15] 9
. 1]9 . 2|60
: 2 [10 : 3|7 [
3 |11
a2
5
6
Figure 12

Two Arravs in Memory

Digital Technical Journal Vol 7 No. 3 1995

= Temporaries, if introduced, are of minimal size; this
1s achieved by Joop interchange.

» Exterior loop optimization is used to allow reused
data to be kept in registers over consecutive itera-
rions of the innermost loop.

= Loop fusion enables more ctficient use of conven-
tional optinizarions and minimizes loop overhead.

Nearest-neighbor Computations
Nearest-neighbor computations are common in code
written to discretize partial differential equations. Sce
the example given in Figure 2.

Ifwe have, for example, 16 processors, with the array
A distributed in a (BLOCK, BLOCK) fashion over the
processors, then conceprually, the array s distributed as
mn Figure 13, where the arrows indicate communica-
tion needed berween neighboring processors. In fac,
in this case, cach processor needs to sce values only
from a narrow strip (or “shadow edge”) in the memory
of 1ts neighboring processors, as shown in Figure 14,

The compiler identifies nearest-neighbor computa-
tions (the user does not have to tag them), and it alrers
the addressing of cach arrav involved in these compu-
rations (throughout the compilation unir). As a result,
cach processor can store those array elements that are
needed from the nejghboring processors. Those arrav
elements arc moved 10 (using message vecrorization)
at the beginning of the computation, after which the
cntire computation is local.

Recognizing nearest-neighbor statements helps
generate betrer code in several wavs:

= Less run-time overhead, The compiler can casily
identify the exact small portion of the array
that needs to be moved. The communication for
nearest-neighbor assignments is extremely regular:
At cach step, cach processor s sending an enrire
shadow cdge to preciselv one of its ncighbors.
Thercfore the communication processing overhead
1at is, we are able to gencerate

is greathy reduced. T

-

-

Figure 13
A Nearest-neighbor Communication Pattern

Figure 14
Shadow Edges tor a Nearest-neighbor Compurarion

communication involving even less overhead than
general communcation involving full knowledge.
= No local copyving. If shadow edges were not used,
then the following standard processing would take
place: For cach shifted-array reference on the right-
hand side of the assignment, shift the entire array;
then identify that part of the shifted array that fives
locally on cach processor and create a local tempo-
rarv to hold it. Some of that temporary (the part
representing our shadow edge) would be moved in
from a neighboring processor, and the rest of the
remporary would be copied locally from the origi-
nal array. Our processing climinates the need for
the
substantial for large arravs,

ocal temporary and for the local copy, which is

s Greater locality of reference. When the actual com-
putation 1s performed, greater locahny of reference
is achieved because the shadow edges (i.c., the
received values) are now part of the arrav, rather
than bemg a temporary somewhere clse in memory.

= Fewer messages. Fially, the optimization also
makes it possible for the compiler to see that some
messages mav be combined into one message,
thereby reducing the number of messages that
must be sent. For instance, if the right-hand side
of the assignment statement i the above example
also contained a term A(7+ 1, j+ 1), even though
overlapping shadow cedges and an additional
shadow edge would now be in the diagonally adja-
cent processor, no additional communication
would need to be generated.

Reductions

The SUM intrinsic function of Fortran 90 takes an
array argument and rerurns the sum of all its elements.
Alternatively, SUM can rerurn an array whose rank is
one
whose values is the sum of the elements in the argu-

ess than the rank of its argument, and cach of

ment along a line parallel to a speciticd dimension.

In cither case, the rank of the result is less than that of
the argument; thercfore, SUM is referred to as a
reduction intrinsic. Fortran 90 mcludes a tamily of
such reductions, and HPF adds more.

We inline these reduction mtrinsics 1 such a way
as to distribute the work as much as possible across
the processors and to minimize the number of mes-
sages sent.

In general, the reduction is performed in three basic
steps:

1. Each processor locally pertorms the reduction oper-
atdon on its part of the reduction source into a bufter.
2. These partial reduction results are combined with
those of the other processors in a “logarichimmic”
fashion (to reduce the number of messages sent).

3. The accumulated resulris then loca
target location.

v copied 1o the

Figure 15 shows how the computations and com-
munications occur in a complete reduction of an array
distributed over four processors. [n this figure, cach
vertical column represents the memory of a single
processor. The processors are thought of (in this case)
as being arranged 11 a 2 X 2 squarc; this is purcly for
conceptual purposes—the actual processors are typi-
callv connected through a switch.

First, the reduction is performed focally in the
memory of each processor. This is represented by the
vertical arrows in the figurce. Then the computations
are accumulated over the four processors in two steps:
the nwo parallel curved arrows indicate the inter-
processor communication in the first step, followed by
the communicarion indicared by the remaming curved
arrow In the second step. OFf course, for five to cight
processors, three communication steps would be
needed, and so on.

Although this basic idea never changes, the actual
generated code must take into account various factors.
These include (1) whether the object being reduced

=

/

Figure 15
Compurations and Communication for a Complere
Reduction over Four Processors

Digital Technical Journal Vol.7 No. 3 1995

is replicated or distribured, (2) the ditterent distri-
butions that cach arrav dimension might have, and
(3) whether the reduction is complete or partial (i.c.,
with a DIM argument).

Run-time Preprocessing of Irregular Data Accesses
Run-time preprocessing of irregular data accesses is
a popular technique.®* If an expression involving the
same pattern of irregular data access is present more
than once in a compilation unit, additional run-time
preprocessing can be used to good effecr. An abstract
example would be code of the form:

call setup(Uu, Vv, W)

do i = 1, n_time_steps, 1

do i =1, n, 1

AV(i)) = AV(i)) + BWW(i))
enddo
do i =1, n, 1

CV(id) = Cv(id) + DW(i))
enddo
do i =1, n, 1

E(V(i)) = EV(id)) + F(W(3))
enddo

enddo

which could be written in HPF as:

call setup(U, VvV, W)

do i = 1, n_time_steps, 1
A = sum_scatter(B(W(1:n)), A, Vv{(1:n))
C = sum_scatter(D(W(1:n)), C, Vv{(1:n))
E = sum_scatter(F(W(1:n))>, E, V(1:n))

enddo

To the compiler, the signiticant thing about this
code is that the indirection vectors Vand W are con-
stant over iterations of the loop. Therefore, the com-
piler computes the source and target addresses of the
data that has to be sent and received by each processor
once at the top of the loop, thus paving this price one
rime. Each such statement then becomes a communi-
cation with full knowledge and is executed quire ctti-
ciently with message vectorization.

Other Communication Optimizations

The processing needed to ser up communication ot

array assignments is fairly expensive. For each element
of source data on a processor, the value ot the dara and
the targer processor number are computed. For cach
rarget data on a processor, the source processor num-
ber and the rarget memory address are computed. The
compiler and run time also need o sort our focal data
that do not involve communication, as well as to vee-
torize the data that are to be communicated.

We trv to optimize the communication processing
by analvzing rhe iteration space and data space of the

arrav sections involved. Examples of the parterns of

operations that we oprimize include the following:

s Contiguous data. When the source or target local
arrav section on cach processor is in contiguous
memory addresses, the processing can be optimized

Digital Technical Journal Vol 7 No. 3 1995

to treat the section as a whole, instead of comput-
ing the valuc or memory address of cach element in
the section.
In general, arrav sections belong to this category
it the last vector dimension is distributed BLOCK
or CYCLIC and the prior dimensions (if anv) are
all serial.
[f the source and target array sections satishy even
more restricted constraints, the processing overhead
may be furcher reduced. For example, arrav opera-
tions that involve sending a contiguous section of
BLOCK or CYCLIC distributed data to a single
processor, or vice versa, belong to this category and
result in very efficient comimunication processing.

= Unique source or rarget processor. When a proces-
sor only sends dara to a unique processor, or a pro-
cessor only receives dara from a unique processor,
rhe processing can be oprimized to use thar unique
processor number mstead of computing the proces-
sor number for cach clement in the section. This
optimization also applics ro rarger arravs that are
fully replicared.

= Irregular data access. [t all indirection vectors
arc fully replicared for an nrregular dara access,
we can actually implement the array operation as
a full-knowledge communication instead of a more
expensive partial-knowledge communication,

For example, the rrregular data access statement
ACv(:))y = B(:)

can be turned into a regular remapping statement if
11s fullv replicated and A and Bare both distributed.
Furthermore, it Bis also tully replicated, the stare-
ment is recognized as a local assignment, removing
the communication processing overhead altogether.

Performance

In this section, we examine the performance of three
HPF programs. One program applies the shallow-
water cquations, discretized using a finite difference
scheme to a specific problem; another is a conjugate-
gradient solver for the Poisson equation, and the
third 1s a three-dimensional finite ditference solver.
These programs are not reproduced in this paper, but
they can be obtained via the World Wide Web at
htep:/ /wwidigital.com/into /hipe /190 /.

The Shallow-water Benchmark

The shallow-water cquations modcl atmospheric
flows, tides, river and coastal flows, and other phe-
nomena. The shallow-water benchmark program uscs
these equations to simulate a specitic flow problem. It

1a

models variables related to the pressure, velociry, and
vorticity at each point of a two-dimensional mesh that

is a slice through cither the water or the atmosphere.
Partial differential equations relate the variables.
The model is implemented using a finite-difterence
method that approximates the partial differential
cquations at cach of the mesh points.” Models based
on partial differential equations are at the core of many
simulations of physical phenomena; finite difterence
methods are commonly used for solving such models
on computers.

The shallow-water program is a widely quoted
benchmark, partly because the program 1s small
enough to examine and tune carefully, vet it performs
real computation representative of many scientific sim-
ulations. Unlike SPEC and other benchmarks, the
source for the shallow-warer program is not controlled.

The shallow-water benchmark was written in HPE
and run in parallel on worksration farms using PSE.
There is no explicit message-passing code in the pro-
gram. We modified the Fortran 90 version that
Applied Parallel Rescarch used tor its benchmark data.
The FOO /HPF version of the program takes advantage
of the new features in Fortran 90 such as modules.
The Fortran 77 version of the program is an unmodi-
fied version from Applied Parallel Research.

The resulting programs were run on two hardware
configurations: as many as ecight 275-megahertz
(MHz) DEC 3000 Model 900 workstations connected
by a GIGAswitch system, and an eight-processor
AlphaServer 8400 (300-MHz) system using shared-
memory as the messaging medium. Table 1 gives the
speedups obtained for the 512 X 512-sized problem,
with [TMAX set to 50,

The speedups in each line are relative to the DEC
Fortran 77 code, compiled with the DEC Fortran
version 3.6 compiler and run on one processor. The
DEC Fortran 90 -wsf compiler s the DEC Fortran 90
version 1.3 compiler with the -wsf option (“parallel-
ize HPF for a workstation farm”) specificd. Both

Table 1

compilers use version 3.58 of the Fortran RTL. The
operating system used s Digital UNIX version 3.2.

Table 1 indicates that this HPF version of shallow
water scales very well to eight processors. In fact, we are
getting apparent superlinear speedup in some cases.
This is duc in part to optimizations that the DEC
Fortran 90 compiler performs that the serial compiler
does not, and in part to cache effects: with more proces-
sors, there is more cache. On the shared-memory
machine, we are getting apparent superlinear speedups
even when compared to the DEC Fortran 90 -wsf
compiler’s one-processor code; this is likely due to cache
effects. The program appears to scale well bevond eight
processors, though we have not made a benchmark-
quality run on more than eight identical processors.

For purposes of comparison, Table 2 gives the pub-
lished speedups from Applied Parallel Research on the
shallow-water benchmark for the IBM SP2 and Intel
Paragon parallel architectures. The speedups shown
arc relative to the onc-processor version of the code.
This table indicates that the scaling achieved by the
DEC Fortran 90 compiler on Alpha workstation farms
1s comparable to that achieved by Applied Parallel
Research on dedicated parallel systems with high-
speed parallel interconnects.

A Conjugate-gradient Poisson Solver
The Poisson partal differential equation is a work-
horse of mathematical physics, occurring in problems

Table 2
Speedups of HPF Shallow-water Code on IBM’s and
Intel’s Parallel Architectures

——Number of Processors
8 4 3 2 1

IBM SP2 7.50
Intel Paragon 7.38

3.81 — 1.97 1.00
384 — 195 1.00

Speedups of DEC Fortran 90/HPF Shallow-water Equation Code

DEC Fortran 90 -wsf

DEC Fortran 77

Compiler Compiler
- -Number of Processors- |
8 4 3 2 1 1

Eight 275-MHz, 8.57 3.13 2.19 1.59 1.00 1.00

DEC 3000

Model 900

workstations in

a GIGAswitch farm

Eight-processor, 10.6 5.30 3.86 1.97 1.12 1.00

300-MHz,
shared-memory
SMP AlphaServer
8400 systems

Digiral Technical Journal Vol.7 No.3 1995

19

20

of heat flow and electrostatic or gravirational poten-
tal. We have investigated a Poisson solver using the
conjugate-gradient algorithm. The code exercises
both the nearest-neighbor optimizations and the
inlining abilities ot the DEC Fortran 90 compiler.®

Table 3 gives the timings and speedup obtained
ona 1000 X 1000 arrav. The hardware and software
configurations arc identical to those used for the
shallow-warter imings.

Red-black Relaxation

A common mecthod of solving partial differential
cquations is red-black relaxation®® We used this
method to solve the Poisson cquation in a three-
dimensional cube. We compare the parallelization
of this algorithm for a distributed-memory system
(a cluster of Digital Alpha workstations) with Parallc]
Virtual Machine (PVM), which is an explicit message-
passing library, and with HPF.” These algorithms arc
based on codes written by Klose, Wolton, and Lemke
and made available as part of the suite of GENESIS
distributed-memory benchmarks.*

Table 4 gives the speedups obtained for both
the HPF and PVM versions of the program, which
solves a 128 X 128 X 128 problem, on a cluster of
DEC 3000 Model 900 workstations connected by an
FDDI/GIGAswitch svstem. The speedups shown are
relative to DEC Fortran 77 code written for and run on
a single processor. This table shows that the HPF ver-
sion performs somewhat better than the PVM version.

There 1s a significant difference in the complexity of
the programs, however. The PVM codc is quite intri-
cate, because it requires that the user be responsible
tor the block partitioning of the volume, and then for
explicitly copying boundary faces benween processors.
By contrast, the HPF code is intuitive and far more
easily maintained. The reader is encouraged to obtain
the codes (as described above) and compare them.

Table 3

Table 4

Speedups of DEC Fortran 90/HPF
and DEC Fortran 77/PVM on
Red-black Code

— Number of Processors —
8 4 2 1

DEC Fortran 77 1.00
DEC Fortran 77/PVM 7.01 3.73 1.79 —
DEC Fortran 90/HPF 8.04 4.10 1.95 1.05

In conclusion, we have shown that important algo-
rithms familiar to the scientific and technical commu-
nity can be written in HPF. HPF codes scale well to at
least eight processors on farms of Alpha workstations
with PSE and deliver speedups competitive with other
vendors’ dedicated parallel architecrures.

Acknowledgments

Significant help from the following people has been
essential to the success of this project: High
Performance Computing Group enginecring manager
Jeft Rever; the Parallel Software Environment Group
led by Ed Benson and including Phil Cameron,
Richard Warren, and Santa Wiryvaman; the Parallel
Tools Group managed by Tomas Lofgren and includ-
ing David LaFrance-Linden and Chuck Wan; the
Digital Fortran 90 Group led by Keith Kimball; David
Loveman for discussions of language issues; Ned
Anderson of the High Performance Computing
Numerical Librarv Group for consulting on numeri-
cal issues; Brendan Boulter of Digital Galway for the
conjugate-gradient code and help with benchmarking;
Bill Celmaster, for writing the PVM version of the red-
black benchmark and its related description; Roland
Belanger for benchmarking assistance; and Marco
Annaratone for useful technical discussions.

Speedups of DEC Fortran 90/HPF on Conjugate-gradient Poisson Solver

DEC Fortran 90 -wsf

DEC Fortran 77

Compiler Compiler
— —— — — — Number of Processors— !
8 4 3 2 1 1
Eight 275-MHz, 14.1 8.38 5.20 2.52 1.07 1.00
DEC 3000
Model 900
workstations in
a GIGAswitch farm
Eight-processor, 17.0 9.02 6.87 4.51 0.98 1.00

300-MHz,
shared-memory
SMP AlphaServer
8400 systems

Digital Technical Journal Vol.7 No.3 1995

References and Notes

10.

11.

High DPerformance Fortran Forum, “High Perfor-
mance Fortran Language Specification, Version 1.0,”
Scientific Programming, vol. 2, no. 1 (1993). Also
available as Technical Report CRPC-TR93300, Center
for Research on Parallel Compurtation, Rice University,
Houston, Tex.; and via anonvmous ftp from
ritan.cs.rice.cdu in the dircctory public/HPEF /draft;
version 1.1 is the file hpt v11 ps.

C. Koclbel, D. Loveman, R. Schreiber, G. Stecle, Jr.,
and M. Zoscl, The High Performance Fortran
Henelbook (Cambridge, Mass.: MIT Press, 1994).

Digital High Performeance Fortran 90 HPF and
PSE Mania! (Maynard, Mass.: Digital Equipment
Corporation, 1995).

DEC Fortran 90 Langiiage Reference Mantial (May-
nard, Mass.: Digital Equipment Corporation, 1994).

E. Albert, K. Knobe, J. Lukas, and G. Steele, Jr., “Com-
piling Fortran 8x Arrav Features for the Connection
Machine Computer Svstem,” Sympositin on Parallel
Programining: Experience with — Applications.
Languiages, and Systems. ACM SIGPLAN. July 1988.

K. Knobe, J. Lukas, and G. Steele, Jr., “Massively Par-
allel Dara Optimization,” Frontiers 88: The Second
Sympositem on the Froutiers of Massively Parallel
Computation. [ELE, George Mason University,
October 1988.

K. Knobe, J. Lukas, and G. Steele, Jr., “Data Opti-
mization: Allocarion of Arrays to Reduce Communica-
rion on SIMD Machines,” Jorrnal of Parallel and
Distributed Computing. vol. 8 (1990): 102-118.

K. Knobe and V. Nartarajan, “Data Optimization:
Minimizing Residual Interprocessor Dara Motion on
SIMD Machines,” Frontiers 90: The Third Synmpo-
siunt on the Frontiers of Massively Parallel Compu-
tation. IEEE. University of Marvland, October 1990.

M. Gupta and P. Banerjee, “Demonstration of Auto-
matic Data Partitioning Techniques for Parallelizing
Compilers on Multicompurers,” [EEE Transcctions
on Parallel and Distributed Systems. vol. 3, no. 2
(1992): 179-193.

M. Gupta and P. Banerjee, “PARADIGM: A Compiler
for Automatic Data Distribution on Multicomputers,”
[C593: The Seventh ACM International Confercnce
on Supercompuiting, Japan, 1993.

S. Chatterjee, J. Gilbert, and R. Schreiber, “The
Alignment-distribution Graph,”™ Sixth Annual Work-
shop on Languages and Compilers for Parallel
Computing, 1993.

14.

16.

20.

22.

23.

24.

Digiral Technical Journal

. J. Anderson and M. Lam, “Global Optimizations for
Parallelism and Locality on Scalable Paralicl
Machines,” Proceedings of the ACM SIGPLAN 93
Confererice on Programmning Language Design
and hmplementation, ACM Press. vol. 28 (1993):
1290-1317.

. The seven values A(9, 2), A(9, 3), ... A(9, 8) can be
expressed conciselv in Fortran 90 as A(9, 2:8).

R. Souza ct al., “GIGAswitch Svstem: A High-
performance Packet-switching Platform,” Digitcl
Technical Journal vol. 6, no. 1 (1994): 9-22.

E. Benson, D. LaFrance-Linden, R. Warren, and
S. Wirvaman, “Design of Digital’s Paralle]l Software
Environment,” Digital Technical Journal, vol. 7,
no. 3 (1995, this issuc): 24-38.

D. Loveman, “The DEC High Performance Fortran
90 Compiler Front End,” Frontiers '95: The Fifib
Symposinnm on the Frontiers of Massively Parallel
Computation, pages 46-53, Mcl.ean,
February 1995, IEEE.

Virginia,

. D. Blickstein et al., “The GEM Oprimizing Compiler
Svstem,” Digital Technical journal. vol. 4, no. 4
(Special Tssue, 1992): 121-136.

. C. Offner, “A Dara Structure for Managing Parallel
Operations,” Proceedings of the 27th Hauwali Inter-
national Conference on Systen Sciences. Volitime
II: Softiware Technology (IEEE Computer Society
Press, 1994): 33-42.

. J. Allen and K. Kennedy, “Vector Register Allocation,”
IEEE Transactions on Compuiters. vol. 41, no. 10
(1992):1290-1317.

S. Amarasinghe and M. Lam, “Communication Opri-
mization and Code Generation for Distributed Mem-
orv Machines,” Proceedings of the ACM SIGPLAN "93
Conference on Programming Language Design
and fmplementation, ACM Press. vol. 28 (1993):
126-138.

. C.-W Tseng, “An Optimizing Fortran D Compiler
for MIMD Distributed-Memory Machines,” Ph.D.
thesis, Rice University, Houston, Tex., 1993, Available
as Rice COMP TR93-199.

A. Rogers, “Compiling for Locality of Reference,”
Technical Report TR91-1195, Ph.D. thesis, Cornell
University, [thaca, N.Y., 1991.

J. Salrz, R. Mirchandaney, and K. Crowley, “Run-time

Parallelization and Scheduling of Loops,” /EEE Trdns-
actions on Compiiters (1991): 603-611.

R. Sadourncy, “The Dvnamics of Finite-difterence
Models of the Shallow-water Equations,” Journal of
Atmospheric Sciences, vol. 32, no. 4 (1975).

Vol.7 No.3 1995

21

22

25, B. Boulter, “Performance Evaluation ot HPF tor Scien-
titic Computing,” Procecedings of 1Heh Performance
Compriting dand Networking. lectiure Notes in
Computer Science 919 (Springer-\erlag, 19951,

26. W. Press, S, Teukolsky, W. Vetrerling, and B. Flannery,
Numerical Recipes in Fortian: The Art of Scientific
Computing (Cambridge: Cambridge University Press,

2d edition, 1992).

27. A, Gast, PUVM: Parallel Virtial Machine (Cam-
bridge, Mass.: MIT Press, 1994).

28. A. Hey, “The GENESIS Distributed Memory Bench-
marks,” Parallel Computing. vol. 17, no. 10-11
(1991): 1275-1283.

Biographies

Jonathan Harris

Jonarhan Harris is a consulting engineer in the High
Performance Computing Group and the project leader
tor the rransform (HPF parallelization) component ot the
DEC Formran 90 compiler, Prior to the High Performance
Fortran project, hie designed the instruction set for the
DECmpp, a 16K processor machine thar became opera-
tional in 1987. He also helped design a compiler and
debugger tor the machine, contributed ro the processor
design, and invented parallel algorithms, some of which
were parented. He obrained an MUS. in computer science
in 1985 as a Digital Resident at the University of Hlinots;
he has been wich Digiral since 1977.

John A. Bircsak

A principal software engineer in Digital’s High Pertormance
Computing Group, John Bircsak contributed to the design
and development of the transtorm component of the DEC
Fortran 90 compiler. Betore joinmng Digital in 1991 lie was
mvolved in the design and development ot compiters ar
Compass, Inc.; prior to thar, he worked on compilers and
software tools at Ravtheon Corp. He holdsa BS E.in
computer science and engineering trom the Universiey

of Pennsylvania (1984) and an M.S. in compurer scicnce
from Boston University (1990).

Digiral Technical Journal Vol. 7 No. 3 1995

M. Regina Bolduc

Regina Bolduc joined Digital in 19915 she is a principal
sottware cogineer in the High Pertormance Computing
Group. Regina was involved in the development of the
transtorm and front end components of the DEC Fortran
90 compiler. Prior to this work, she was a senior member
of the technical stattar Compass, Inc., where she worked
on the design and development of compilers and compiler-
generator tools. Regina received a B.A. in marhematics
from Emmanucl College in 1957,

Jill Ann Diewald

Jil Diewald contributed to the design and implementa-
tion of the transtorm component of the DEC Formran 90
compiler. She isa principal software engineer in the High
Performance Computing Group. Betore joining Digital
in 1991, Jill was a technical coordinator at Compass,
Inc., where she helped design and develop compilers and
compiler-related rools. Prior to that position, she worked
at Innovative Svsrems ‘Techniques and Dara Resources,
Inc. on programming languages that provide cconomic
analvsis, modeling, and database capabilities for the finan-
cra) markerplace. She hasa B.S. i computer science trom
the University of Michigan.

Israel Gale

Isracl Gale is a principal writer in the High Pertormance
Computing Group and the author of Digital’s High
Performance Fortran Turorial. He joined Digiral in 1994
after receiving an AN degree in Near Eastern Languages
and Civilizations tfrom Harvard University,

Neil W. Johnson

Before coming to Digital in 1991, Neil Johnson was a
staft scientist ar Compass, Inc. He has more than 30 vears
of experience in the development of compilers, including
work on the vectorization and optimization phases and
rools tor compiler development. As a principal software
engincer in Digital’s High Performance Computing
Group, he has worked on the development of the front-
end phase for the DEC Forrran 90 compiler. He is a mem-
ber of ACM and holds B.A. (magna cum laude) and MLA.
degrees in mathematics from Concordia College and the
University of Nebraska, respectively.

Shin Lee

Shin Lee is a principal software engineer in Digital’s High
Performance Computing Group. She contributed to the
design and development of the transform component of
the DEC Fortran 90 compiler. Betore joining Digital in
1991, she worked on the design and development of com-
pilers at Encore Computer Corporarion and Wang Labs,
Inc. She reccived a B.S. in chemistry from National Taiwan
University and an M.S. in computer science from Michigan
State University,

C. Alexander Nelson

In 1991, Alex Nelson came to Digital to work on the
SIMD compiler tor the MasPar machine. He is a principal
software engineer in the High Performance Computing
Group and helped design and implement the transtorm
component of the DEC Fortran 90 compiler. Prior to this
work, he was employed as a sottware engineer at Compass,
Inc. and a systems architect at Incremental Systems. He
received an MLS. in computer science from the University
of North Carolina in 1987 and an M.S. in chemistry (cum
laude) from Davidson College in 1985. He is a member
of I’hi Beta Kappa.

Digital Technical Journal

Carl D. Offner

As a principal software engineer in Digital’s High
Performance Computing Group, Carl Offiner has primary
responsibility for the high-level design of the transform
component of the DEC Fortran 90 compiler. He is also

a member of the Advanced Development Group working
on issues of parallelizing DO loops. Before joining Digirtal
in 1993, Carl worked at Intel and at Compass, Inc. on
compiler development. Before that, he raught junior high
and high school mathemarics for 16 vears. Carl represents
Digital at the High Performance Fortran Forum. He is

a member of ACM, AMS, and MAA and holds a Ph.D.

in mathemarics from Harvard University.

Vol.7 No.3 1995

23

24

Design of Digital’s
Parallel Software
Environment

Digital’s Parallel Software Environment was
designed to support the development and exe-
cution of scalable parallel applications on clus-
ters (farms) of distributed- and shared-memory
Alpha processors running the Digital UNIX oper-
ating system. PSE supports the parallel execu-
tion of High Performance Fortran applications
with message-passing libraries that meet the
low-latency and high-bandwidth communica-
tion requirements of efficient parallel comput-
ing. It provides system management tools to
create clusters for distributed parallel process-
ing and development tools to debug and pro-
file HPF programs. An extended version of dbx
allows HPF-distributed arrays to be viewed,

and a parallel profiler supports both program
counter and interval sampling. PSE also supplies
generic facilities required by other parallel lan-
guages and systems.

Digital Technical Journal Vol 7 No. 3 1995

Edward G. Benson

David C.P. LaFrance-Linden
Richard A. Warren

Santa Wiryaman

Digital’s Parallel Sofrware Environment (PSE) was
designed ro support the development and exccution
of scalable parallel applications on clusters (farms) of
distribured- and shared-memory Alpha processors
running the Digital UNIX operating svstem. PSE
version 1.0 supports the High Performance Fortran
(HPF) language; it also supplies generic factlitics
required by other parallel languages and svstems. PSE
provides tools to define a cluster of processors and to
manage distributed parallel execunion. It also conrains
development tools for debugging and protiling paral-
lel HPE programs. PSE supports optimized message
passing over multiple interconnect tvpes, including
fiber distribured data inrerface (FDDI), asvnchronous
rranster mode (ATM), and shared memory.!

In this paper, we present an overview of PSE version
1.0 and explain why it was designed and sclected
for use with HPFE programs. We then discuss cluster
definition and management, describe the PSE appli-
cation model, and discuss PSE’s message-passing com-
munication options, including an optimized transport
for message passing. We conclude with our pertor-
mance results.

Overview of PSE

Manv rescarchers and computer industry experts
believe that to achieve cost-cftective scalable parallel
processing, svstems must be built using off-the-
shelf components and not specialized CPUs and
interconnects.? In accordance with this view, we
have designed Digital’s PSE to support the building
of a consistent ver flexible and casy-to-use parallel-
processing cnvironment across a nenworked collection
of AlphaGeneration worksrations, servers, and svim-
metric multiprocessors (SMPs). Layered on top of the
Digital UNIX operating svstem, PSE provides the sys-
tem software and tools needed to group collections of
machines for paralle] processing and to manage trans-
parently the distribution and running of parallel appli-
cations. PSE is implemented as a set of run-time
librarics and utilides and a dacimon process.

PSE version 1.0 is designed ro support clusters con-
sisting of 1 to 256 machines interconnected with any
nenworking fabric that Digital UNTX supports with the

transmission control protocol /internet protocol
(TCP/1P). Newworking technologies can range tfrom
simple Etherner to FDDI, ATM, and MEMORY
CHANNEL. Parallel execution is most efticient when
the interconnect technology ofters high-bandwidth
and low-latency communications to the user at the
process level. When building a cluster for paraliel pro-
cessing, the bisectional bandwidth of the communica-
tfions fabric should scale with the number of processors
in the cluster. In practice, such a configuration can be
achieved by building clusters using Alpha processors
and Digital’s GIGAswitch/FDDI as components in a
multistage switch configuration. Figures 1 and 2
show two cxamples of PSE cluster configurations.
Although the design center for PSE 1s a ser of machines
conpected by a high-speed local arca mterconnect, a
be constructed thar remote
machines connecred by a wide arca neowork.

PSE is a collection of many interrelated entities that
support parallel processing. PSE’s modcl is to collect
machines (called members) into a set (called a cluster).
The members are generally all the machines at a site or
within an organization that have or might have PSE
mstatled. One then subsets the cluster mro named
{(penrtitionsy that mav overlap. The members ot a parti-
von usually share some common attribute, which
could be administrative (e.g., the machines of the
development group), geographic (e.g., connected to

clusrer can includes

the samie FDDI swireh), or relevant to the configura-
rion (¢.g., large memory, SMP).

The members of a cluster, the partitions, and other
related data form a configuration database that can be
maintained in different ways, but preferably by a sys-
tem administrator. The configuration database can be
distribured using the Domain Name System (DNS) or
as a simple file distributed by Nerwork File System
(NES)." A dacmon process farmd runs on cach mem-
ber to provide per-member dvnamic information,

such as availability and svstem load average. The static
database plus the dvnamic information allow applica-
tions to perform tasks such as toad balancing.

HPF Program Support

PSE was designed to be largely language-ndependent;
it currently supports the HPY programming language.
HPF allows programmers to express data parallel com-
putations easily using Fortran 90 array-operation syn-
rax. As a result, uscrs can obrtain the benefits of parallel
processing without becoming systems programmers
and developing message passing or threads-based pro-
grams. The HPF language and compiler are discussed
elsewhere in this issuc of the Digital Technical
Jottrnal”

Writing parallel applications in HPF 1s significantly
less complex than decomposing a problem and coding
a solution using cxphcit message passing, but good
development tools are required. To allow the viewing
of HPF distributed arrays, we developed an exrended
version of dbx and a parallel profiler that supports both
program counter and interval sampling. These tools
are discussed later in this paper.

High performance and cfficient communication are
essential to success in parallel processing. PSE includes
a private message-passing library for use with compiler-
generated code. Thus it avoids overhead such as bufter
alignment and size checking that are required with
user-visible programming nrerfaces, such as Parallel
Virtual Machine (PVM).* The message-passing library
supports shared memory and both TCP/IP and user
datagram protocol (UDP)/IP protocols on many
types of media, including FDDI and ATM. PSE also
includes an optional subscr implementation of the
UDP, known as UDP_prime, that has been optimized
to reduce latency and improve cfficiency. This opti-
mization is discussed later in this paper.

FULL-DUPLEX

FDDI A

GIGASWITCH FDDI |

|

[

[|

ALPHASERVER DEC 3000 DEC 3000 DEC 3000 |
8400 MODEL 900 MODEL 900 MODEL 900 |
SMP SERVER WORKSTATION WORKSTATION WORKSTATION |
L . : : I

. . . ! |

| DEC 3000 . | bEC 3000 . | DEC 3000 . |

' | MODEL 900 " | MODEL 900 * | MODEL 900 « | ALPHASERVER |

.| worksTATION | | wORKkSTATION |+ | woRKsTATION | + | 2100 SERVER |
e . o o |
ETHERNET NETWORK v

BRIDGE

Figure 1
PSE Basic Configuration

Digiral Technical Journal Vol.7 No.3 1995

~

.

§ R
= \
AN
\\\\\ /////// P \\‘ e
AN NN A N N N
RN // AN /S AN \—1
W 74 \\\\\\\ gy e
V7200 Y/ . Cirne]
N\ 74 \\\\\%// e [LA
/W(\\\\ /////??M | e | s | G5
i W /////// Y 7 = :
Jiy W \\\\\\ VP e
i NN\ AN Vo) .
Vi N Wy b : ;

Figure 2
PSE Multstage Switch Configuration

Before developing PSE tor use with HPF programs,
Digital considered nwo major alternatives: the distrib-
uted computing covironment (DCE) and PVAM
(At thar time, the message-passing interface | MPI|
standard effort was in progress.')

Although a good model for client-server application
deplovment, DCE is designed for use with remote CPU
resources via procedure calls to librarics. This model
is verv different from the data-parallel and message-
passing nature of distribured parallel processing. Irs
svinchronous procedure call model requires the exren-
sive use of threads. In addition, DCE contains a signif-
icant number of serup and management tasks. For
these reasons, we rejected the DCE environmenr,

Digital Technical Journal Vol. 7 No. 3 1995

Three major considerations in our choice to develop
PSE instead of using PVM were stability, performance,
and rransparency. At the start of the PSE project, the
publicly available version of PVM did not meer the sta-
bility, performance, and transparency goals of the PSE
project.

Cluster Definition and Management

PSE is designed to operate in a common systen envi-
ronment where systems are organized so thar user
aceess, file name space, host names, and so on are con-
sistent. The ulrimate goal for the svstems in a distrib-
uted parallel-processing environment is to approach

the rransparent usability of a svmimetric multiproces-
sor. Facilities such as NFS (to mount/share file svstems
among machines, in particular working dirccrories)
and network intormartion service (NIS) (also known as
“vetlow pages”™ and used to share password files) arc
frequently used to ser up a common system environ-
ment. In such an environment, users can log into any
machine and sce the same environment. Other distrib-
uted environments such as Load Sharing Faciliry
(LSE) make this same design assumption."

A consistent file name space allows all processes that

make up an application to have the same fle svstem
view by simply changing directory to the working
directory of the invoking application. Consistent user
access allows PSE to use the standard UNIX remote
shell faciliey to start up peer processes with standard
security checking,.

Svstems in a common system environment are can-
didates to become members of a cluster. A cluster 1s
often the largest sct of machines running PSE and
sharing @ common system environment within an
organization or site. A cluster is divided into parritions
that can overlap. A partition consists of a sct of
machines grouped together to mecet the needs of an
apphication or uscr. Although partitions may be
defined in many wavs, svstems in a partition usually
share common atrriburtes.

Partitions
Parallel programs run most cfticiently on a balanced
hardware configuration. Typically, organizations have
avaried collection of machines, Over time, organiza-
rions often acquire new hardware with different net-
work adaprers, faster CPUs, and more memory. Such
sittations can casily lead to increasing difficulty in
predicting application performance if scheduling
and load-balancing algorithms treat all machines in
entlv. In addition to hardware differ-
ences, mdividual machines can have difterent software
installed thae aftects the ability to run applications.
The PSE engincering team recognized that the
number of characteristics that users might want to
manage for processor allocation and load-balancing
purposcs would be overwhelming. To limit the prob-
lem, a design was chosen that allows machines to be
grouped arbitrarily into named partitions. A partition
can be thought ot as a parallel machine. Although

acluster equiva

a system ¢an be a member of two difterent partitions
and therefore cause overlap, PSE docs not attempt to
foad balance or schedule processes bevond partition
boundarics. Overlapping partitions can thercfore cre-
ate a complex and portentially contlicting scheduling
situation. Well-defined and managed partitions allow
For flexibility and predicrability.

In addition to 1dentifving machine membership,
partition detinition allows various exceution-related

characteristics to be ser. Examples include the specifi-
cation of a default communicanion tvpe, the default
execution priovity, the upper bound on the execution
priority, and access control to partition resources.
Access control 1s enforced only on PSE-related activiry
and does not aftect the use of the machine tor other
applications.

Configuration Database

PSE cluster configuration information is captured m
a database. The database includes a list of cluster mem-
bers, partitions, and partinon members. Additional
attributes such as the default partition of a cluster, user
access lists for a parttion, and preferred nenwork
addresses for members ofa partition can be encoded in
the darabasc.

The PSE contfiguration database can be distributed
to all cluster members i two wavs: by storing it in
a file that is accessible from all cluster members, or by
storing it as a Domain Name System (DNS) database.
The usage patterns of the cluster database fit well with
the usage patterns of a DNS database. In particular,
DNS provides central administrative control with
version numbering to maintain consistency during
updates. Itis designed for querv-often, update-seldom
usage; it is distributed and allows secondary servers to
increase availabiliry, Applicarions Jinked with the PSE
run-time libraries rransparently access the darabase to
obtain configuration information.

In the DNS darabase, cach PSE configuration
token-value pair is stored as DNS TXT records. The
original spccification for DNS did not have TXT
records, but additional general informartion was
attached to domain names at the request of MIT’s
Project Athena.”” The hist of the TXT records, along
with DNS header information such as version number,
forms a DNS domain whose name is the PSE cluster
name. To faalitate the creation and setup of a PSE
cluster, we built the psedbedit utility for editing and
maintaining configuration darabases.

A simple file that is avatlable on all members of the
cluster can also be used as the cluster configuration
database. The file could be made available through
NES or copied to all nodes using rdist. This alternartive
might be appropriate for very simple clusters where
the services of DNS are not warranted or in cascs
where local policy precludes the use of DNS.

Dynamic Information and Control

In addition to the static Information of the configura-
tion database, there are also several pieces of dynamic
information thar optimize usage of clusters and parti-
tons. At the most ftundamental level is availability, i.c.,
is a machine running? Other information includes the
number of CPUs, load average, number of allowed
PSE jobs, and number of active PSE jobs. All these

Digital Technical Journal Vol.7 No.3 1995

27

IQ

factors can help an application choose the best set of
members for parallel execution. This dvnamic informa-
tion is collected by a dacmon process (farmd). The
farmd daemon process executes as a privileged (root)
process on cach cluster member and listens for requests
on a well-known cluster-specific UDP/IP port.

Multiple cluster members defined in the contigura-
tion database are designated as load servers. The load
servers are the central repository for the dvnamic
information for the entire cluster. Their farmd process
periodically receives time-stamped updares from the
individual dacmons. Applications query the load
servers for both static and dvnamic information,
Applications do not themselves parse the darabase nor
query the individual farmd daemons running on each
cluster member.

Once PSE is installed and configured, farmd s
started each time the system is booted. The name of
the cluster that farmd will service and the number of
PSE jobs (job slots) thar will be allowed ro run are sct,
The inetd facility is used to restart farmd in responsc to
UDP/ID connection rcquests, if farmd is not run-
ning." Use of the inetd fadlity to start farmd improves
the availability of machines to run PSE applications by
transparently restarting farmd in the case of a failure.

As farmd dacmons are started, they atempt to
cstablish TCP/IP connections with their neighbors as
defined by the PSE configuration database.”” This
process is undertaken by all cluster members and
quickly results in a configuration ring whose purpose
is the detection of node or neework failures. We chose
a simple ring of TCP/IP connections becausc the
mechanism is passive, i.c., it relics on the loss of
TCP/IP connectivity and doces not impose any addi-
tional load on the system or nenwork under normatl
conditions. When connectivity to a member is lost,
neighboring cluster members report the member
being unavailable. This prevents PSE from attempting
to schedule new applications on the failed member.

Failures that do not break the configuration ring, bur
prevent updated load information from being sent to
the load server, are detected by checking the time-
stamps on previously received load information. As
soon as a “time-to-live” period expires for a particular
member’s load information, the load servers disable fur-
ther use of the suspect node. System managers arc also
able to set the number of job slots to zero ar any time,
thus disabling the host tor new PSE-rclated activities.
This has no effect on currently executing applicarions.

Pseudo-gang Scheduling

The start-up sequence for a PSE application includces
the potential modification of exccution priority and
scheduling policy. These changes are made n accor-
dance with the user command-line options and /ot the
default characteristics defined by the PSE configura-
tion database. To allow nonroot UlID processes to

Vi 7 Ny 2 1908

Vieviral Tosedvinicoal Tesire1val

clevate scheduling prioriues and /or alternate sched-
uling policies, farmd modifies the user process’s
scheduling priority or policy. Processes scheduled at
a high rcal-tume priority using a first in, first out
(FIFO) queue with preemption policy achieve a
pseudo-gang-scheduling effect. (Gang scheduling
ensurcs that all processes associated with a job are
scheduled simultancously.) This cftect occurs because
of the scheduling preference given high-priority jobs
and because PSE polls for messages for a period of
time betore giving up the CPU.

Using PSE

Parallel applications are developed for PSE using the
Digital Fortran 90 compiler. When the Fortran 90
compiler is invoked with the -wst N flag, HPF source
codes are compiled and then linked with a PSE library
for parallel exccution on WV processors. After defining a
partition in which to run, a PSE application can be run
simply by typing the name of the application. The fol-
lowing example shows the compilation and exccution
of a four-process program called myprog on a set of
cluster members in the partition named fast.

csh> setenv PSE_PARTITION fast
csh> f90 ~wsf 4 myprog-190 -o myprog
¢csh> myprog > myprog.out < myprog.dat &

Transparently, PSE starts up four processes on
members of the partition fast; creates communications
channels benween the processes; supports redirected
standard input, output, and error (standard 1/0); and
controls the exceution and termination of the applica-
tion. Several environment variables and run-time flags
are available to control how an application executes.
Figure 3 shows how ro use PSE.

PSE Application Model

PSE implements an application as a collection of inter-
connected processes. The initial process created when a
user runs an application is called the controlling process.
[t provides application distribution and start-up services
and preserves UNIX user-interface semantics (1.ce., stan-
dard 1/0), but does not participate in the HPF parallel
computation. The controlling process usually deter-
mines which partition members to use for the paralle
compttation by getting svstem load information from
a load server and then distributing the new processcs
across the partition. As an alternative, users can direct
computation onto specific partition members.

The controlling process starts a process called the
io_manager on ecach partition member participat-
ing in the parallel execution. Each io_manager then
starts onc or more application peer processes that
perform the user-specitied compuration. The use of
an io_manager is necessary o create a parent-child

STATIC
SOURCE DATABASE
“MYPROG.F90” (E.G., DNS)
Y
OPTIONS >| COMPILER
(E.G., -WSF 4) ‘
DYNAMIC INFORMATION
(E.G., LOAD)
OBJECT FILE CLUSTER
“MYPROG.O" VoI IIIIIICIIIIIo
' P
: | |HOST : :
) | [(CLUSTERMEMBER) | | 1
LIBRARIES: [! '
+ FORTRAN STANDARD L Lo
« RUN-TIME LINKER (LD [
- PSE -0)} [HosT o
|| |(CLUSTERMEMBER) |1 |
VT - _—_—__ | |
: [: :
“EXECUTA?LE : : HOST [SMP] | :
MYPROG i | | (CLUSTER MEMBER) | +
COMMAND LINE | | oo
SWITCHES AND [bmmmmmmmmm- - :
ENVIRONMENT \ |
VARIABLES i |
EXECUTION i ?COL?JTSTER MEMBER) |
(E.G., SHELL) . '
t |
e L 1
| —»| {PARTITIONS)
-
CONTROLLING
PROCESS
PEER SPAWN

AND CONTROL

Figure 3
PSE Usc

process relationship between the io_manager and peer
processes. This relationship is used for exit status report-
ing and process control. It also enables or eases other
activities, such as signal handling and propagation. Peer
processes create communication channels between
themselves and perform standard 1/0 through a desig-
nated pecer. Standard 1,/0 is forwarded to and from the
controlling process through the io_manager. Figure 4
shows a PSE application structure.

Application Initialization
Prior to the execution of anv user code, an initializa-
tion routine executes automatically through funcuon-
ality provided by the linker and loader. The
initialization routine implements borth the controlling
process functions and the HPF-specific peer initializa-
tion. Because no explicit call is required, parallel HPF
procedures can be used within non-HPF main pro-
grams, and proper itialization will occur. A simple
HPF main program can also be used with PSE to start
up and manage a task-parallel application that uses
PVM or MP] for message passing.

In general, the controlling process places peer
processes onto members of a partition, although hand
placement of individual peers onto sclected members

is possible. To achieve efficicncy and fairness in map-
ping a set of peers, the controlling process consults
with a load server for load-balancing information.
Which members are used and the order in which they
are used is based on cach member’s load average,
number of CPUs, and number of available job slots.

As an alternative, PSE may map peer processes onto
members based upon a user-selected mode of opera-
tion. In the detault physical mode of operation, PSE
maps one peer process per member. In virtual mode,
PSE allows morce than one pecr process per member,
thereby cnabling large virtual clusters. This is useful
for devcloping and debugging parallel programs on
limited resources. Virtual clusters also improve appli-
cation availability: when the requested number of peer
processes 1s greater than the available set of parrition
members, applications continue to run; however, they
may sufter performance degradation.

Application Peer Execution

Each application peer process has an lo_manager
parent process that provides it with environment
mninalization, exit value processing, 1/0 buftering,
signal forwarding, and potential scheduling priority
and policy modification. Rather than include the

Digiral Technical Journal Vol.7 No.3 1995

29

30

MEMBER MEMBER MEMBER
10_MANAGER 10_MANAGER IO_MANAGER
PEER PEER
PROCESS I | PROCESS
SN[~ —~——— “r-——~~——7 - "~-———1 N ras
CONTROLLING AR S T
PROCESS 32 Ly
PEER PEER
4} PROCESS PROCESS
STANDARD /0

PEER-TO-PEER COMMUNICATICONS

Figure 4
PSE Application Structure

jo_manager’s functions in cach PSE executable,
the 10_manager is implemented as a simple utilin:

Application peers run the same binary image as the
controlling process. They inhertt their current working
dirccrory, resource usage limits, and an augmented set
of environment variables from their controlling process
through their parent io_manager. When started, the
imtalization process deseribed for the controlling
process is repeated, but peers do not become control-
ling processes because they detect that a controlling
process already exists. Instead, peer processes return
from the initialization routines with communication
links established and are ready to run user-application
code. Figure 5 represents a controlling process, four
application peers running on three members, and the
communications benwveen processes.

Application Exit

Multiple peer exits can have potentially conflicting exit
values. Coordinating them into a single meaningtul
application exit value is the most challenging rrans-
pareney issuc faced by PSE. Under normal circum-
stances, all peer processes exit without error and at
approximately the same time. The resulting exiv values
arc reported to the application controlling process by
the 1o_managers. The application (1.e., the controlling
process) is allowed o exit without error only when all
exitvalues arce recorded and standard 1/0 conncctions
are drained and closed. The HPF compiler generates
synchronization code to guarantee the roughly svn-
chronous exit for all nonerror conditions. This pre-
sumption allows PSE to mmplement a timely exit
model, t.c.; one by which we can reasonably assume

farmd
LOADSERVER

A
LOAD INFORMATION

HOST A

v

LIBPHPF |~

STANDARD 110
AND SIGNALS

L

APPLICATION |=—

CONTROLLING
PROCESS

HOST B

e

fa(;\d

IO MANAGER

i

LIBPHPF

HPF
COMMUNICATIONS

APPLICATION

PEER PROCESS

—>r OTHER HOSTS/PEERS

Figure 5
Communications between PSE Processes

Digiral Technical Journal Vol.7 No. 3 1995

normal activiny will cease after receiving the last exit
notification from an 1o_managger.

Peers that exit abnormally make it difficult to
provide a mecaningful cxit value for the apphcaton.
Consider one peer process that exits due to a segmen-
tation fault and another that exits duc o a floating-
pownt exception. There is no single exit value possible
for the application; PSE chooses the first abnormal
value it sces. Furthermore, as a result of error deree-
ton in the communication library, the other peer
processes will exit with lost nenwork connections. Tris
possible that the controlling process will see an exit
value tor this ettect before it sees an exit value for one
of the causces, resulting in a misleading application exir
value, To understand a faultng parallel application
running under PSE, the core files associated with cach
peer process must be examined.

PSE includes support for capturing the entire appli-
carton core state and for discriminating the multiple

¢

core files of a parallel application. Because peer pro-
cesses share the same working directory, any core files
generated would be tnconsistent and overwrite one
another due to N processes writing to the same core
file namc. PSE solves this problem by cstablish-
mg a signal handler that catches core-generating sig-
nals, creates a peer-specitic subdirectory, changes to
the new directory, and resignals the signal to cause the
writing of the core file. The root for the core directo-

rics can be st through an environment variable.
Issues

Although PSE achieves the standard UNIX look-and-
feel for most application situations, complete trans-
parcncy 1s not achieved. For example, timing an
application-controlling process using the c-shells
built-in time command, does not time uscr code or
provide meaningtul statistics other than the clapsed
wall clock time to start a parallel application and to tear
it down. Another situation that highlights the paral
nature of PSE occurs during application debugging:

¢
multiple debug sessions are started by running the
application with a debugger flag rather than by using

dbx dircctly.

Tools for HPF Programming

The development model tor HPF-based applications
isa two-step process. First, a serial Fortran 90 program
is written, debugged, and optimized. Then it is paral-
felized with HPF directives and again debugged and
optimized. The development tools supplicd with PSE
address profiling and debugging. Unlike most of PSE,
which is language-independent, both the pprof profil-
ing faciliy and the “dbx in n windows” debugging
Racility are specific to HPF programming.

Profiling

Several issues in profiling parallel HPF programs do
not apply to Fortran programs that exccute scriallv,
HPF exccution occurs through multiple processes on
multiple processors simultancously and therefore pro-
duces muluple profiling data sets. The storage and
analvsis of thesc data scts must be coordinated to pro-
duce accurate and comprehensive program profiles.
Unlike typical Fortran programs, significant time ¢an
be spenr communicating in an HPF program. The
Digital UNIX prof and pixie utilitics do not handle
cither of these issues.” In addition, the prof utility has
coarse-grained (1-mullisccond resolution) program
counter (PC) samphng and reports only down to the
procedure level. To address these issues, Digital added
profiling support to the Fortran 90 compiler and
developed the pprof analyvsis tool.

Data Collecting The PSE parallel profiling facilitv
handles profiling data collection in parallel by writing
data to a sct of files rthat are uniquely named. It
encodes the application name, the type of data collece-
rion, and the peer number of the process. The analysis
tool pprof merges the data in the file ser when per-
forming analysis and producing reports.

It supports two tvpes of dara collecting: nonin-
rrusive traditional PC sampling and intrusive interval
profiling. PC sampling simply records the program
counter at each occurrence of the svstem clock inter-
val interrupt. To achicve an accurate execution profile
with PC sampling, programs must be fong running
to become statistically significant. Also, it is difficult to
gather do-loop iteration data using PC sampling.

We developed interval profiling support to overcome
the deficiencies of PC sampling. Interval profiling is
achieved with compiler-inserted functions that record
the entry and exit times for the execution of each event.
This produces an accurate exceution profile. Events
include routines, array assignments, do loops, FORALL
constructs, message sends, and message reccives.

Because the entry and exit times are recorded, time
spent exccuting other cvents within an event is
mcladed, which gives a hicrarchical profile. To achieve
fine-resolution timings (single-digit nanoseconds), the
Alpha process cvele counter is used to measure time.'¢

Analysis The pprof utility provides many different
ways to examine and report on a large set of profiling
data from a parallel program execution. Different
approaches include focusing on routines, statements,
or communications. In contrast, prof reports on proce-
dures onlv. With pprof, the scope of the analysis can be
limited to a single peer process or encompass all appli-
cation processes. The range of reports generated can be
comprehensive or limited to a number of cvents or

Digital Technical Journal Vol.7 No.3 1995

31

(751

(853

a pereentage of time. Users can specify their reports
from a combination of analysis, report formar, and
scoping options. By default, the pprof utility reports on

which provides an overall view of application behavior.
Paralle] programs exccure most etficiently when
there is minimum communication berween processes.
The high-level, dara paralle] nature of the HPF
language reduces the visibility of communication to
the programmer. To make tuning casier, pprof was
designed with the abiliny to focus tuning on communi-
cation. Reports can be generated that help correlate
HPE dara-distribution
obscrved communication activities,

the use of directives to

Debugging

For PSE version 1.0, we are supplving a “dbx in nwin-
dows™ capability. Each peer is controlled by a separare
instance of dbx that has its own Nrerm window. This
capability gives users basic debugging functionality,
including the ability to set breakpoints, get backeraces,
and examine variables on an all-pcer or a per-peer
basis. We added a new command to dbx, hpfget, that
allows the viewing of individual elements of a distrib-
uted arrav. We recognize 1t as far from meceting the
challenges ot an HPF debugger, and we are continuing
the development of a new debugging technology.

Message-passing Model

One of the goals of PSE is to support high-performance,
reliable message passing for parallel applications. At
the start of the project, the HPF language and com-
pifer technology were stll in their infancy. kven
though no HPF application code base existed, the PSE
team needed to determine the messaging-passing
requircmients. To support message passing success-
fullv, PSE had to be flexible cnough to accommodate
new interconnect technologies and nerwork proto-

cols, adapr to the message-passing characteristics of
future HPF applications, and support the changing
demands of the compiler. A need for high perfor-
mance and efficiency with Tow latency was assumed.

The PSE message-passing faciliny provides primi-
tives to initialize and terminate message-passing oper-
ations, to allocate and deallocare message butters, and
to send and receive messages. A PSE message contains
a tag, a source peer number, and variable-lengrh dara.
The higher
sage identifier on receive. The data is a stream of bytes
without any data-tvpe information. These primitives
are not intended to be used in the application code.
The HPF compiler implicitly gencrates calls to these
primitives. Because the message-passing primitives are
tightly coupled to the HPF compiler, overhead such as
king can be

avers fill in the tag, which is used as a mes-

data-alignment restrictions and crror chee
eliminated.
1995

Digital Technical Journal Vol. 7 No. 3

The PSE message-passing model assumes that the
application peers are running on svstems with the same
CPU architecture and nenwvorking capabilitics. Each
peer process can send or receive binary messages
directly to or from anv other peer. This is difterent from
the PVM model, where messages might be routed to
a pvmd dacmon to be multiplexed to another peer; or
miessages might be converred to external data represen-
ration (XDR) to allow for data passing berween
machines with different architecrures.'”

Butter allocation and deallocation routines are spe-
citic to cach of the communication options that PSE
supports. (These options are discussed in the follow-
ing scctions.) Before a message can be sent, a buffer
must be allocated. The send primitive sends the mes-
sage and implicitly deallocates the butfer. The receive
primitive impliciely allocates a bufter conraining the
newly arrived message. Receive buffers have to be
located explicitly after they are used. Our initial
design allowed a reccived message buffer ro be reused
for sending a new message, possibly to a different peer.
This design was inefficient, especially when a commu-
nication option such as shared memory optimizes
buffer allocation on a peer-by-peer basis. The current

dea

design uses a peer number as a parameter to the butter
allocation routine and docs not allow reuse of the
received message bufter.

The send primitive sends a message contained in
a preallocated buffer to a specitied peer. Tt guarantees
reliable in-order delivery of messages. For underlving
protocols, such as UDP/IP that do not provide this
level ot service, the message-passing library must pro-
vide it. A broadcast primitive is also provided to send
asingle message to all peers.

The receive priminive uses a particular message tag
to receive a message with a matching rag from any
peer. This allows the compiler to use functions that can
perform caleulations correctly when data is required
from several peers, regardless of the order in which
messages arrive. The normal operation for receive is
to block the receiving peer until a matching ragged
message arrives. A nonblocking receive is also pro-
vided o poll for messages.

Communication Options

PSE provides applications with several run-tme sclec-
rable communication options. Within a single SMP
system, PSE supports message passing over shared
memory. On multiple system configurations, PSE sup-
ports ncowork message passing using the TCP/IP or
UDDP/IP protocols over any nerwork media that the
Digital UNIX operating system supports. Currently,
PSE supports a single communication option within
an application execution, bur the design supports
multiple protocols and interconnects. Run-time sclec-
tion of the communication options and media, which

is implemented using a vector of pointers to funcrions
within a shared library, provides flexibility to introduce
new protocols and media without having to recompi
or relink existing applications.

¢

Shared-memory Message Passing

The use of shared memory as a message-passing
medium allows for very high performance because
data docs not have to be copied. When designing
shared-memory messaging, we looked ar a varicry of
nterrelared issuces, including coordmation mecha-
nisms, memorv-sharing strategies, and memory con-
sumption. The use of locks (i.¢., semaphores) i the
rraditional manner to coordinate access to shared-
memory segments proved problematic. For examp
clients often request a message from anv peer, not

¢,

from a particular peer. This implies the use of a general
receive semaphore that senders would unlock after
ivering dara. Contention for a single loc

de K could be
significant and could become a performance bottle-
k. Instead of locks, a simple set of producer and

consumer indexes is used to manage a ring buffer of

nce

messages. Senders read the consumer index and
update the producer index, and reccivers read the pro-
ducer index and update the consumer index to svn-
chromze. No locking is required.

haring strategics are possible: all
peers may share a single large segment, cach pair of
peers may share a segment, and cach pair of peers may

Scveral memory-s

have a pairof unidireetional segments. The use of unidi-
rectional pairs of shared-memory segments otfers sev-
eral advantages: it simplifies the code by climinating
multplexing; i fies in well with the design of MEMORY
CHANNEIL hardware, which is unidirectional; and by
creating receive segments with read-only prorection, it
promotes robustness.’® A disadvantage to the use of
unidirectional segiment pairs is increased memory usce

duc to Inuired sharing. Because of its advanrages and
because the coordination of the producer/consumer
index does not require segments to be shared between

peers, we sclected unidirecrional pairs of shared-
memory segments as our memoryv-sharing strategy.

To enhance performance, a receiver spins, waiting
for a peer to produce a message. If there is no dana
after a number of spin irerations, the recetver voluntar-
ilv deschedules itself. The number of spin irerations
was chosen to be small enough to be polite, but large
enough ro permit scheduling when a peer produced
a message. An additional performance enhancement
allows rhe user, via command line option, to prevent
peers from migrating benween processors, which
results in better cache utilization.

TCP/IP Message Passing

TCP/ 1P s the default communication option. It pro-
vides tull wire bandwidth for peer-to-peer communi-
catrion with large message transfer sizes across a variety

of network media. The implementation of the message-
passing primitive operations is relatively straight-
forward since TCP/IP provides reliable; in-order,
connection-oricnted delivery of messages. The TCP/
1P initialization routine sets up a vector of bound and
connected socket descriptors, one tor each peer. These
sockets are used to send messages to other peers. The
receive primitive uscs a blocking sclect() svstem call on
all sockets. Because TCP/IP is connection based,
abnormal peer termination and nenwvork faults can be
detected by connection loss.

Although TCP/IP provides acceptable bandwidth,
latencv-sensitive applications might sufter from the
processing overhead of the TCP/IP protocol. The
connection-oriented narure of TCP/IP also requires
the application to maintain many socket descriptors,
which reduces scalability and necessitates the use of
expensive select() system calls on receive.

UDP/IP Message Passing
To address the larency and over

wad of TCP/IP, PSE
provides UDP/IP as an option that can be selected at
run time. UDP/IP is a conncectionless prorocol that
provides unordered, best-cftort delivery of messagces.
Because UDDP/IP is conncectionless, the initialization
funcrion needs to ser up a single locally bound socker
description for all peer-to-peer communication. File
descriptor use is not a scaling issue when UDP/IP
is used for messaging.

Reliable in-order delivery of messages is imple-
mented at the library level. Each peer maintains a set of
send and reccive ring butters, one for cach peer. The
ring bufters have producer and consumer indexes
to wdicate positions in the ring where messages can
be read or written. The bufter-allocation primirive
allocates bufters from the send ring whenever possible,
or from a pool of overflow butters when the ring is full.
The use of an overtflow buffer climinates the need for
upper levels to provide flow control or to block sends.
The send and receive primitves manipulate the pro-

ducer and consumer indexes of the send and receive
rings. In-order delivery of messages is guaranteed
through the use of a sliding window protocol with
sequentially numbered messages. For efticiency, piggy-
backed acknowledgments are used.

To improve scheduling svinchronizaton among
multiple peers, especially when a high-priority FIFO
scheduling policy is used, the UDP/IP option uscs a
nonblocking socker. On receive, it loops calling the
recvirom() system call many times before calling the
expensive select() svstem call to wait for a message to
arrive. Abnormal peer termination and network faults
cannot be detected since the socker laver does not
maintain a connection state. The UDP/IP option con-
tains a user-specifiable time-out value by which the peer
application wil

exttwhen rhere is no socket activity.

Digiral Technical Journal Vol.7 No.3 1995

34

The UDP/IP option provides better bandwidth
than the TCP/IP with smaller messages and matches
the TCP/IP bandwidth at large message size. The
user-level Jatency reduction, however, was less than
expected. The next two sections discuss our investiga-
tion into ways to optimize the latency of UDP/IP and
the performance of the message-passing options.

Optimizing UDP/IP

Our initial approach to improve latency was to reex-
amine the standard UDP/IP code path within the
Digital UNIX kernel for unnecessary overhead. Our
idea was to create a faster path, optimized for a
UDP/IP over a local area nerwork (LAN) configura-
tion by reducing numerous conditional checks in the
path. Although this work viclded some improvement,
it was not enough to justify supporting a deviation
from the standard code path. An overhaul of the origi-
nal code path would have been necessary for this
approach to gain significant improvement in latency.

UDP/IP provides a general transport protocol,
capable of running across a range of nctwork inter-
faces. We realize the value in retaining the generality
of UDP/IP. For optimal performance, however, we
anticipate typical cluster configurations being con-
structed using a high-performance switched LAN
technology such as the GIGAswitch/FDDI system.*
In such configurations, the [P family of protocols
presents unnecessary protocol-processing overhead.
A messaging system using a lower-level protocol, such
as native FDDI, would offer better latency, but its
implementation requires the usc of nonstandard mech-
anisms to access the dara link layer directly, which is less
general and portable than a UDP/IP implementation.

Based on the above observations, we designed a new
protocol stack in the kernel; called UDP_prime, to
coexist with the standard UDP/IP stack. UDDP_prime
packets conform to the UDP/IP specification.'” To
reduce the amount of per-packet processing and
approach that of a lower-level protocol, UDP_prime
imposes several restrictions on its use. These restric-
tions optimize the typical switched LAN cluster config-
urations. To rectain the generality of UDP/IP,
UDP_prime falls back to the standard UDP/1D stack
when these restrictions are not applicable.

Restrictions on UDP_prime

The LAN nature of the cluster configuration imposes
a restriction on UDP_prime. Each cJuster member has
to be within the same IP subnet, which is directy
accessible from any other member. With this restric-
tion, routing decision and internct-to-hardware
address resolution can be done once for each peer-
to-peer connection rather than on a per-packet basis.
Per-packet UDDP/IP checksum processing can also
be eliminated, because intermediate routing is not

Digital Technical Journal Vol. 7 No.3 1995

involved and the data link cyclic redundancy check
(CRC) is sufficient to guarantee error-tree packets.

The next restriction is the maximum length of the
message. PSE message passing uses fixed-size bufters.
UDP_prime restricts the maximum buffer size to be
the maximum transmission unit (MTU) of the underly-
ing network interface. This eliminates per-message 1P
fragmentation and defragmentation overhead. Since
the messaging clients have to fragment the messages
into fixed-size bufters at the higher layer, there is no
need for the 1P layer to perform further fragmentation.

One complication in our current implementation
occurs when multiple peers are running on a single
system while others are on remote systems. The
default behavior for peers within a single system is
to communicate across the loopback interface. In this
situation, there are two MTU values, one for the net-
work interface and one for the loopback interface.
Our current implementation of UDP_prime does not
allow communication over the loopback interface so
that a single-size MTU can be used. Further studies
need to be done to find an optimal maximum bufter
size, taking into account multiple MTU values, page
alignment, and so forth.

Based on the above restrictions, UDP_prime opti-
mizes the per-packet processing overhead of sending a
packet by constructing a UDP, IP, and data link packet
header template for each peer at initialization. Except
for a few ficlds, the content of these headers is static
with respect to a particular peer. UDP_prime defines a
new IP option, IP_UDP_PRIME, for the setsockopt()
system call, to allow the messaging system to define
the set of peers and their Interner addresses involved in
the application execution.” The IP option processing,
done prior to sending any message, makes routing
decisions, performs Internet-to-hardware address res-
olution, and fills in the static portion of the header
fields. When sending a packet, UDP_prime simply
copies the hecader template to the beginning of the
packet, minimizing the per-packet processing over-
head and increasing the likelihood of the templates
being in the CPU cache. Several header fields, such as
the 1P identification, header checksum, and packet
length fields, are then filled dynamically, and the com-
plete packet is presented to the interface layer.

UDP_ prime Packet Processing

Since a UDP_prime packet is a UDP/IP packet, the
standard UDP/IP receive processing can handle the
packet and deliver it to the messaging client. To trig-
ger the use of UDP_prime optimized receive process-
ing, the sending system uses the type of service (TOS)
field within the IP header to specify priority delivery of
the packet.?! The priority delivery indication does not
by itself uniquely differentiate between UDP_prime
and UDP/IP packets, as any other IP packets can
also have the TOS field set to priority. As a result, the

optimized receive processing has to check for the
packet’s adherence to the UDP_prime restrictions.
Nonadherence to the restrictions reroutes the packet
to the standard receive processing code.

When a packet arrives at a network interface, the
interface posts a hardware interrupt, and the interface
interrupt service routine processes the packetr. The
standard interrupt service routine deletes the data link
header, and hands the packet over to the netisr kernel
thread.” Netisr demultiplexes the packet based on
the packet header contents and delivers it to the appli-
cation’s socket receive buffer. Netisr, designed to be
a general-purpose packet demultiplexer, runs at a low-
interrupt priority level. The main reason for a thread-
based demultiplexer is extensibility. New protocol
stacks can be registered to the thread. Since there is
no a priori knowledge of the execution and SMP lock-
ing requirements of these stacks, a thread-based low-
mterrupt priority demultiplexer is needed so thart the
network interrupt processing time can be held to a
minimum. The extensibility feature; however, intro-
duces a context switch overhead.

For UDP_prime, the packet header processing time
on the receive path is almost a small constant. We
modified the interface service routine to demultiplex
the packet by processing the data link, IP, and UDP
headers, and deliver the packer to the socket receive
buffer without handing it over to netisr. This short cir-
cuit path is used only when the packet is a UDP/IP
packet with no IP fragmentation and with priority
delivery indication. If these conditions are not met,
the standard netisr path is chosen. The UDDP_prime
reccive path eliminates the netisr context switch over-
head. This is a significant advantage, especially when
the receiving application runs with a real-time FIFO
scheduling policy.

SMP Synchronization

One ditficulty in designing the UDP_prime stack to
run in parallel with the standard UDP/IP stack was
in SMP synchronization.” The socket buffer structure
is a critical secton guarded by a complex lock.
Requesting a complex lock in Digital UNIX blocks
execution if the lock is taken. To prevent deadlocks,
its use is prohibited at an elevated priority level, such
as the case in the interrupt service routine. To work
around this problem, a new spin lock was introduced
in the short circuit path and in the socket layer where
access to the socket bufter needs to be synchronized.

Performance

To measure message-passing performance, we used
nwvo DEC 3000 Model 700 workstations connected by
a GIGAswitch/FDDI system using TURBOchannel-
based DEFTA full-duplex FDDI adapters. Each work-

station contained a 225-megahertz (MHz) Alpha
21064 microprocessor and was running the Digital
UNIX version 3.0 operating systen.

Figure 6 shows the message-passing bandwidth for
TCP/1IP, UDP/IP, and UDP_prime transports at dif-
ferent message sizes. The bandwidth was measured at
the message-passing application programmer interface
(API) level, taking into account allocation and deallo-
cation of cach message buffer in addition to the data
transmission. TCP/IP, UDP/IP and UDP_prime
bandwidth peaks at approximately 95 megabits per
second at a 4,224-byte message, approaching the
EDDI peak bandwidth. UDP/IP approaches the peak
bandwidth at a 1,400-byte message, and UDP_prime
at a 1,024-byte message. Reaching the peak band-
width using small messages is a measure of protocol
processing efficiency.

Figure 7 shows the minimum message-passing
latency for TCP/IP, UDP/IP, and UDP_prime
transports at different message sizes. The latency was
measured as half of the minimum time to send a mes-
sage and receive the same message looped by the
receiver system over many iterations. The measure-
ment made allowance for the allocation and deallo-
cation of each message buffer, in addition to the
round-trip transmission.

Compared to the TCP/IP option, UDP/IP has a
slightly higher minimum Jatency. This is not expected,
because the onginal goal of the UDP/IP option was to
reduce TCP/IP processing overhead. It is, however,
encouraging to sce only a slight degradarion in latency
when the reliable in-order delivery protocol is imple-
mented at the library level. This prompted us to use
the same protocol engine in the library for
UDP_prime. At a very small message size (4 bytes),

MBITS/SECOND

P

0 500 1000 1500 2000 2500 3000 3500 4000 4500

MESSAGE SIZE (BYTES)

KEY:
UDP_PRIME
--—-~ TCP/P
------ UDP/IP
Figure 6

Peer-to-Pecr Bandwidth

Digirtal Technical Journal Vol.7 No.3 1995

w

1000F .
900t T
800} = -

600
500
a0t
300F

200
100F

MICROSECONDS

0 500 1000 1500 2000 2500 3000 3500 AOIOO 45b0
MESSAGE SIZE (BYTES)

KEY:
UDP_PRIME
- ——~ TCPIP
-+ UDP/IP
Figure 7

Minimum Peer-to-Peer Latency

protocol processing overhead dominates the latency.
At this point, UDP_prime was 44 percent (103.5
microsceconds) better than TCP/IP, cven though
UDP/IP and UDP_prime use the same mechanism.

As the message size increases, the protocol processing
rime remains constant, but the data copy time becomes
dominant. Despite this, UDDP_prime was approximately
12 percent better at a 4-kilobvre message.

Future Work

The current communication options along with the
UDI_prime optimization provide good pertormance
for HPF-style message passing on SMP svstems and
clusters. To remain competitive, however, we need o
consider support for new high-performance commu-
nicanion media and configurations. We are working on
support for MEMORY CHANNEL, the use of multi-
ple inrerconnects and protocols wirhin an application
running on a cluster of SMPs, and lighrweight proto-
cols for use with ATM ar speeds ot 622 megabits per
second and higher. The tlexibility of the message-pass-
ing design will allow current applications to use future
communication options without relin

We are also working on a new HPF debugger tech-
nology. Debugging a cluster-stvle HPE program is
considerably harder than debugging a uniprocessing
program. HPF’s single-program multiple-dara (SPMD)
parallel programming modcl ncludes a
threaded control structure, a global name space, and
el exccurion. HPF also sup-

kKing.

single-

looselv synchronous paral
ports the calling of extrinsic procedures that use other
parallel programming stvles or nonparallel compura-
nonal kernels.

C

Digital Technical Jouwrnal Vol.7 No.3 1995

The goal of an HPF debugger is to present the
application in source-level terms. Since HPF is roughly
Fortran 90 with dara-distribution directives, HPF is
conceprually a single-threaded application with the
compiler ranstorming picces of the application to exc-
cute in paraflel. As a result, an HPF debugger has o
rake the stares from the actual peer processes and
[view of the application. It
1s not alwavs possible to do rhis with complete preci-
sion. Consider the user interrupting the application,
which interrupts the peer processes at different poines
within the computation. It is unlikelv each peer is at
the same place (e.g., the same program statement),
and 1t is quire Iikelv that the stack backeraces of the
peers differ! Even if thev are ar the same place, they
could be m different iterations of their focal portions
ofa parallehized loop-like operation.

At the start of the HPF debugger project, we sur-
veved a variery of debuggers and disqualified all of
them for logistical and/or technical reasons. Rather
than modifv an existing debugger technology so rhat
it could debug cluster-stvle HPE programs, we initi-
ated an eftort to build a new debugger technology.
As we continue to design the new HPF debugger to
be general-purpose, porrable, and extensible, we will
be able to capitalize on modern programming con-
cepts, paradigms, and rechniques.

recreate a single source-feve

Summary

PSE contains the tools and cxccution environment to
debug, rune, and deplov parallel applications written
in the HPF language. From an end user’s perspective,
PSE provides transparency, flexibility, and compati-
bility with famihar tools. Using standard UNIX com-
mand synrax, the same exccurable can be run serally
or in parallel on hardware ranging from a single-node
svstem to a cluster of SMIP svstems. PSE supports sev-
cral high-performance message-passing protocols run-
ning over avariery of nerwork media. From a svstem
administrator’s perspective, PSE provides the flexibil-
ity to create a cluster from standard components and
to control the cluster by assigning access controls and
serting scheduling policy and priorities. Although it
currently supports onlv the HPF language, PSE
the flexibility and generic infrastructure to support
other parallel languages and programming modcls.

nas

Acknowledgments

The PSE team would like to thank the members of the
Fortran 90 and HPF compiler teams and to acknow]-
cdge the contributions of Chuck Wan, Rob Rodon,
Phil Cameron, Isracl Gale, Rishivur Nikhil, Marco
Annaratonc, Berr Halstead, and George Surka.

le

References

(93]

9.

10.

11.

15.

16.

. Digital High Performance Fortran 90: HPF and

PSE Manaal (Mavnard, Mass.: Digital Equipment
Corporation, Order No. AA-2ATAA-Te, 1995).

G. Bell, “Scalable, Parallel Computers: Alternatives,
Issucs, and Challenges,” International Journal of
Parallel Programming. vol. 22, no. 1 (1994).

H. Kung et al., “Nerwork-based Multicomputers: An
Emerging Parallel Architecture,” Proceedings Super-
Computing 91.

. W, Michel, DD An Introduction to Fiber Dis-

tributed Data Trterfuce (Newton, Mass.: Digital
Press, 1992).

R. Souza er al., “GlGAswitch Svstem: A High-
performance Packer-switching Platform,” Digital
Technical fournal vol. 6, no. 1 (Winter 1994): 9-22.

Interner Engincering Task Force, “Domain Name
Svstem,™ REC 883 (November 1983).

. Harris et al., “Compiling High Performance Fortran
> f g Hig
for Distributed-memory Systems,” Digital Technical

Journal vol. 7, no. 3 (1995, this issuc): 5-23.

- G Geist et aly, PYME Parallel Virtual Machine—

A Users' Guide and Tutovial for Networked Parallel
Computing (Cambridge, Mass.: The MIT Press,
1994).

W. Rosenberry, Understanding DCE (Sebastopol,
Calif.: O’Reilly & Associates, Inc,, 1992).

W. Gropp ct al., Using MPIL: Portable Parallel Pro-
gramming with the Message Passing Interface
(Cambridge, Mass.: The MIT Press, 1994).

LSF Administretors Guide (Toronto, Ont., Canada:
Plattorm Computing Corporation, 1994).

- G, Champine, MIT Project Athena: A Model for

Distributed Campus Computing (Newton, Mass.:
Digital Press, 1991).

. W. Stevens, UNIX Network Programming (Engle-

wood Cliffs, N.J.: Prentice-Hall, 1990).

- Do Comer, lnterneticorking with TC/IP(Englewood

Clitts, N.J.: Prentice-Hall, 1991).

DIC OSF/I Programmers Gitide (Maynard, Mass.:
Digital Equipment Corporation, Order No. AA-
PS30C-TE, 1993).

R. Sites, ed., Aipha Architectire Reference Manuval
(Burlington, Mass.: Digital Press, Order No.
EY-L520E-DD, 1992).

- Interner Engineering Task Force, “XDR: External

Data Representation,” RFC 1074 (June 1987).

R. Gilletr, “Mcemory Channel Nerwork for PCL: An
Optimized Cluster Interconnect,” Hot Interconiects
{1995).

19. J. Postel, “User Datagram Protocol,” RFC 768 (Menlo
Park, Calif.: SRI Nerwork Intormation Center, 1980).

20. DEC OSF/1 Reference Pages, Section 2: System Calls
(Mavnard, Mass.: Digital Equipment Corporation,
Order No. AA-PS30C-TE, 1993).

21. J. Postel, “Internet Prorocol,” RFC 791 (Menlo Park,
Calit.: SRI Nerwork Information Center, 1981).

22. Open Software Foundation, Design of the OSF/1
Operating System (Englewood Cliffs, N.].: Prentice-
Hall, 1993).

23. J. Denham, P. Long, and J. Woodward, “DEC OSF/1
Version 3.0 Symmectric Multiprocessing Implemen-
tation,” Digitul Technical journal. vol. 6, no. 3
(Summer 1994): 29-43.

Biographies

Edward G. Benson

Ed Benson is a principal engineer and the project leader
for the parallel software environment product. Ed is

a 1981 graduate of Tufts University. He joined Digital
in 1984 after working ar Harvard University and ADAC
Corporation. In previous work at Digital, he led the
DECmpp and VAXlab software projects and contributed
to the design and deveJopment of the POSIX real-time
extensions in Digital UNIX and OpenVMS.

David C. P. LaFrance-Linden

David LaFrance-Linden is a principal software engineer in
Digiral’s High Performance Fortran Group. Since joining
Digiral in 1991, he has worked on tools for parallel pro-
cessing and has developed a promising new debugger tech-
nology capable of debugging HPF. He has also contributed
to the PSE implementation and compile-time performance
of the HPF comipiler. Before joining Digital, he worked at
Symbolics, Inc. on front-end support, networks, operating
system, performance, and CPU architecture. He received

a B.S. in mathematics from M. T in 1982,

Digital Technical Journal Vol.7 No.3 1995

37

A

8

Richard A. Warren

Richard Warren is a principal sottware engineer in the
High Pertormance Computing Group, wherce his primary
responsibility is the design and development ot Digital’s
parallel software environment. Since joining Digital in
1977, Richard has contributed to PDP-11 svstems devel-
opment and VAX 32-bir shared-memory multiprocessor
designs. He has also been a member of Corporare Research,
first as an assignee in parallel processing to the Microelec-
rronics and Computer Technology Corporation (MCC

and later as a rescarcher ar the Digital Joint Project office
at CERN, where he hedped develop high-availabiliny system
sottware. Richard has a B.S. in clectrical and computer
enginecring from the University of Massachusetts and is

a co-inventor on several patents relating to coherent write-
back cache design and high-performance bus/memory
designs for SMPs.

Santa Wiryaman

A senior software engineer in the High Performance
Computing Group, Santa Wirvaman develops enhance-
ments to the Digital UNIX kernel and UDP/IP prorocol
stack to support optimal performance of message passing
over FDDILand ATM nerworks. Since joining Digiral’s
performance group in 1987, he has also contributed to
many nerwork-related performance characterizations,
benchmarks, and the development of performance rools
for UNTX and Windows N1, Santa received B.S. (1985)
and M.S. (1987 degrees in computer science from
Cornell University and Renssclacr Polvrechnic Institute,
respectively.

5

Digital Technical Journal Vol.7 No. 3 1995

An Overview of the
Sequoia 2000 Project

The Sequoia 2000 project is the joint effort

of computer scientists, earth scientists, gov-
ernment agencies, and industry partners to
build a better computing environment for
global change researchers. The objectives of
this widely distributed project are to support
high-performance I/0 on terabyte data sets,
to put all data in a database management
system, and to provide improved visualization
tools and high-speed networking. The partici-
pants developed a four-level architecture to
meet these objectives. Chief among the lessons
learned is that the Sequoia 2000 system must
be considered an end-to-end solution, with all
pieces of the architecture working together.
This paper describes the Sequoia 2000 project
and its implementation efforts during the first
three years. The research was sponsored by
Digital Equipment Corporation.

Michael Stonebraker

The purpose of the Sequoia 2000 project is to build a
better computing environment for global change
researchers, hereafter referred to as Sequoia 2000
clients. These researchers investigate issues such as
global warming, ozone depletion, environment toxifi-
cation, and species extinction and are members of
carth science departments at universities and national
laboratories. A more detailed conception for the proj-
ect appears in the Sequoia 2000 technical report
“Large Capacity Object Servers to Support Global
Change Research.™

The partcipants in the Sequoia 2000 project are
investigators of four types: (1) computer science
researchers, (2) earth science researchers, (3) govern-
ment agencies, and (4) industry partners.

Computer science researchers are responsible for
building a prototype environment that better serves
the needs of the rtarger clients. Participating in
the Sequoia 2000 project arc investigators from the
Computer Science Division at the University of
California, Berkeley; the Computer Science Depart-
ment at the University of California, San Diego; the
School of Library and Information Studies at the
University of California, Berkeley; and the San Diego
Supercomputer Center.

Earth science researchers must explain their needs
to the computer science investigators and use the
resulting prototype environment to perform better
earth science research. The Sequoia 2000 project
comprises earth science investigators from the
Department of Geography at the University of
California, Santa Barbara; the Atmospheric Science
Department at the University of California, Los
Angeles (UCLA); the Climate Research Division at
the Scripps Institution of Oceanography; and the
Department of Earth, Air, and Water at the University
of California, Davis.

To ensure that the resulting computer environment
addresses the needs of the Sequoia 2000 clients, gov-
ernment agencies that are affected by global change
matters participate in the project. The responsibility of
these agencies is to steer Sequoia 2000 research
toward achieving solutions to their problems. The
government agencies that participate are the State of
California Department of Water Resources (DWR),

Digirtal Technical Journal Vol.7 No.3 1995

40

the State of California Departiment of Foresrry, the
Coordinated Environment Rescarch Laboratory
(CERL) of the United States Army, the National
Acronautics and Space Administration {NASA), the
National Oceanic and Atmospheric Administration
(NOAA), and the United Srates Geologic Survev
(USGS).

The rask of the industry participants is to use
the Sequoia 2000 technology and to ofter guidance
and rescarch direction. In addition, theyv are a source
of free or discounted compuring equipment. Digital
indus-

Equipment Corporation was the origina
vy partmer. Recently, Epoch Svstems, Hewlert-
Packard, Hughes, IHustra, MCI, Metrum Svstems,
PicturcTel, RSI, SAIC, Sicmens, and TRW have
become participants.

The purpose of this paper 1s to present the goa
the Scquoia 2000 project and to discuss how we
achieved rhese goals and the results we accomplished
during the first three vears. The paper describes the
architecrure thar we decided to pursue and the srate of

s of

the software eftorts in the various arcas. The most
important lesson we have Tearned is that the Sequoia
2000 svsrem must be considered an end-to-end solu-

tion. Henee, clients can be satistied only if all pieces of
the archirecture work togerher in a harmonious fash-
1o1. Also, many services required by the clients must be
provided by cvery clement ot the archirecrure, cach
working with the others. We tllustrate this end-to-end
characteristic of Sequoia 2000 by discussing threc
issues thar cross all parts of the svstem: guaranteed
delivery, abstracts, and compression. We then indicate
other specific lessons that we learned during the first
three vears of the project. The paper concludes with the
current state of the project and its future direcrions.

The Sequoia 2000 Architecture

The Sequoia 2000 architecture is motivated by tour
fundamental computer scicnce objectives:

L. Support bigh-performeice /O on terabyle dela
sets. The Sequoia 2000 clients are fruswated by cur-
rent computing environments because they cannot
effectively store the massive amounts of dan
desired for rescarch purposcs. The four academic
clients plus DWR collectively want to be able to
store approximately 100 rerabyees of information,
much of which is common data sets used by multi-
ple investigarors. These clients would like high-
performance svstem software that would allow
sharing ofassorted tertiary memory devices. Unlike
the 1,/0 activities of most other scientific comput-
ing uscrs, their activity involves primarily random
aceess. For example, DWR is digitizing the ageney’s
library of 500,000 slides and is putting it on-line
using the Sequoia 2000 svsteny. This data set has

Digital Technical Journal Vol.7 No.3 19953

some locality of reference but will have consider-
able random acriviry.

20 Put all data in a dalabase inanagement system
(HBAS). To maintain the metadata thar describe
their data sets and thus aid in the retrieval of infor-
manon, the Sequoia 2000 clients wanr to move
all their dara to a DBMS. More important, using
a DBMS will facilitare the sharing of information.
Because a DBMS insists on a common schema for
shared information, it will allow the rescarchers to
define a schema. Then all researchers must use
a common notation for shared dara. Such a svstem
will be a big improvement over the current situa-
rion where every data set exists in a unique format
and must be converred by everv researcher who
wishes to use it

S Provide improved visualization (ools. Sequoia
2000 clients use popular scientific visualization
tools such as Explorer, Khoros, AVS, and 1DL and
are cager to use a next-generaton toolkit,

(O8]

4. Provide high-speed neticorking. Scquoia 2000

chents reahize thara 100-terabyre storage server (or
L00-terabye servers) will not be located on cach of
rtheir deskrops. Morcover, the storage 1s likely to be
located at the other end of a wide avea nenwork
(WAN), far from their client machines. Since the
chents” visualization scenarios invariably involve
animation, for example, showing the last 10 vears
of the ozone hole by plaving time forward, the
clients require ultrahigh-speed nenworking to move
sequences of images from a server machine to
a client machine.

To mecer these objecrives, we adopted the four-level
architecture illustrared in Figure 1. The archirecture
comprises the foorprint laver, the file svstem laver, the
DBMS Javer, and the application laver. This section
discusses our efforts at cach of the levels and then con-
cludes with a discussion of the Sequoia 2000 nerwork-

ing that connects the clements of the architecture.

The Footprint Layer

The foorprint laver is a software svstem that shuclds
higher-level software, such as file svstems, from device-

specitic characteristics of robotic devices. These charac-
teristics include specitic robot commands, block sizes,
and media-specific issues. The footprint laver can be
thought of as a common robot device driver. A foot-
print implementation exists for cach of the four rertiary
memory devices used by the project, namely, a Sonv
write once, read many (WORM) optical disk jukebox,
an HP vewritable oprical disk jukebox, a Metrum VHS
rape jukebox, and an Exabvre 8-millimeter rape juke-
box. Collectively, these four devices and the CPUs and
disk storage systems in front of them were named
Bigfoor, after the Jegendary, very rall recluse spotred
occasionally in the Pacific Northwest,

APPLICATIONS [*7]

A

&

DATABASE
MANAGEMENT
SYSTEM

!

NETWORK {

FILE SYSTEMS F—

FOOTPRINT

|

STORAGE DEVICES

Figure 1
The Sequoia 2000 Architecture

The File System Layer

On top of the tootprint laver is the file system laver.
Two file systems manage data in the Bigfoor multilevel
memory hierarchy. The first file system is Highlight,
which extends the Log-structured File System (LEFS)
pioncered for disk devices by Ousterhout and
Rosenblum to tertiary memory.” The original LFS
treats a disk device as a single continuous log onto
which newly written disk blocks are appended. Blocks
are never overwritten, so a disk device can always be
written sequentially. Hence, the LFS turns a random-
write environment nto a sequential-write environ-
ment. In particular problem areas, this may lead to
much higher performance. Benchmark data support
this conclusion.* In addition, the LFS can always iden-
nfy the last few blocks that were written prior to a file
system failure by finding the end of the log at recovery
time. File system repair is then very fast, because
potenually damaged blocks are easily found. This
approach differs from conventional file svstem repair,
where a laborious check of the disk must be performed
to ascertain disk integrity.

Highlight extends the LFS to support tertary mem-
ory by adding a second log-structured file system on
top of the footprint layer. This file system also writes
tertiary memory blocks sequentially, thereby obtain-
ing the performance characteristics of the LES. The
Highlight file system adds migration and bookkeeping
code that treats the disk LFS file system as a cache for
the tertiary memory file system. In summary,
Highlight should provide good performance for
workloads thatr consist of mainly write operations.
Since Sequoia 2000 clients want to archive vast

amounts of data, the Highlight file system has the
potential for good performance in the Sequoia 2000
environment.

The second fle system is Inversion.” Most DBMSs,
including the one used for the Sequoia 2000 project,
support binary large objects (BLOBs), which are
arbitrary-length byte strings of variable length. Like
several commercial systems, Sequoia’s data manager
POSTGRES stores large objects in a customized
storage system directly on a raw storage device.® As
a result, it is a straightforward exercise to support con-
ventional files on top of DBMS large objects. In this
way, the front end turns every read or write operation
into a query or an update, which is processed directly
by the DBMS. Simulating files on top of DBMS large
objects has several advantages. First, DBMS services
such as transaction management and security are auto-
matically supported for files. In addition, novel charac-
reristics of our next-generation DBMS, including time
travel and an cxtensible type system for all DBMS
objects, are automatically available for files. Of course,
the possible disadvantage of simulating files on top of
a DBMS is poor performance. As reported by Olson,
Inversion performance is exceedingly good when large
blocks of data are read and written, as is characteristic
of the Sequoia 2000 workload .’

At the present time, Highlight is operational but
very buggy. Inversion, on the other hand, is used to
manage production data on Sequoia’s Sony WORM
jukebox. Unfortunately, the reliability of the proto-
type system has not met user expectations. Sequoia
2000 clients have a strong desire for commercial oft-
the-shelf (COTS) software and are frustrated by docu-
mentation glitches, bugs, and crashes.

As a result, the Sequoia 2000 project team has also
deployed two commercial file systems, Epoch and
AMASS. The Epoch file system is quite reliable but
does not support cither of Sequoia’s large-capacity
robots. Hence, it is used heavily but only for small data
scts. The AMASS file system is just coming into pro-
duction use for Sequoia’s Metrum robot and replaces
an earlier COTS system, which was unreliable. Given
the experience of the Sequoia 2000 ream with tertiary
memory support, tertiary memory users should care-
fully test all file system software.

The DBMS Layer

To meet Sequoia 2000 client needs, a DBMS
must support spatial data such as points, lines, and
polygons. In addition, the DBMS must support the
large spatial arrays in which satellite imagery is natu-
rally stored. These characteristics are not met by pop-
ular, general-purpose relational and object-oriented
DBMSs.” The best fit to client needs is a special-
purpose Geographic Information System (GIS) or
a next-generation object-relational DBMS. Since it

has one such object-relational system, namely

Digital Technical Journal Vol.7 No.3 1995

4]

42

POSTGRES, the Sequota 2000 project clected to
focus its DBMS efforts on this system.

To make the POSTGRES DBMS suitable for
Scquoia 2000 use, we require a schema tor all Sequoia
dara. This database design process has evolved as a
cooperative exercise benween various database experts
at Berkeley, the San Diego Supercomputer Center,
CERL, and SAIC. The Sequoia schema s the collec-
tion of metadata that describes the data stored in the
POSTGRES DBMS on Bigtoot. Specifically, these
metadata comprise

= A standard vocabulary of terms with agreed-upon
definitions that are used to describe the dara

= A ser oof tvpes, instances of which mayv store data
valucs

= A hierarchical collection of classes that describe
aggregations of the basic tvpes
= Funcrions defined on the rvpes and classes

The Sequoia 2000 schema accommodates four
broad categories of data: scalar, vector, raster, and text.
Scalar quantities are stored as POSTGRES tvpes and
assembled into classes in the usual way. Vecror quanti-
rics are stored in special line and polvgon tvpes.
Veerors are fully enumerated (as opposed to an arc-
node representation) to take advantage of POSTGRES
indexed scarches. The advantages of this representa-
rion are discussed in more detail in “The Sequoia
2000 Benchmark.™”

Raster data constitute the bulk of the Sequoia 2000
dara. These dara are stored in POSTGRES mult-
dimensional arrays objects. The contents of rextual
objects (in PostScript or scanned page bitmaps) arc
stored in a POSTGRES document tvpe. Both docu-
ments and arrays make use of a POSTGRES large
object storage manager that can support arbitracy-
engrh objects.

We have runed the POSTGRES DBMS to meet
rthe needs of the Sequoia 2000 clients. The interface
to POSTGRES arrays has been improved, and a novel
chunking strategy is now operational.® Insread of
storing an arrav by ordering the arrayv indexes from
fastest changing to slowest changing, this system
chooses a stride for cach dimension and stores chunks
ofthe correct stride sizes in cach storage object. When
user queries nspect the array in more than onc way,
this rechnique results in dramatically supcerior retricval
performance.

Scquoia 2000 clients tvpically run queries with user-
defined functions in the predicate. Morcover, many
of the predicates are very expensive in CPU time to
compute. For example, the Santa Barbara group has
written a tunction, SNOW, that recognizes the snow-
covered regions in a satellite image. It is a user-defined
POSTGRES function thataccepts an image as an argu-
ment and returns a collection of polvgons. A tvpical

Digital Technical Jouwrnal Vol.7 No.3 1995

query using the SNOW function for the table
IMAGES (id, date, content) would be to find the
images that were more than 50 percent snow and that
were observed subsequent to June 1992, In SQL, this
query is expressed as follows:

selectid

from IMAGES

where AREA (SNOW (content)) > 0.5
and date > “Junc 1, 19927

The first clause in the predicate requires the CPU to
evaluate millions of instructions, whercas the sccond
clause requires onlv a few hundred instructions. The
DBMS must be cognizant of the CPU cost of clauses
when constructing a query plan, a cost component
that has been ignored by most previous optimization
work. We have extended the POSTGRES oprimizer to
deal intelligently with expensive functions.”

Lt is highly desirable to allow popular expensive
functions to be precomputed. In this way, the CPU
need only evaluare cach such function once, rather
than once for cach query in which the function
appears. Our approach to this issue is to allow data-
bases to contain indexes on a function of the dara and
not on just the data object itself. Hence, the database
administrator can specifv that a B-tree index be buile
for the funcrion AREA (SNOW(content)). Arcas of
images are arranged in sort order 1n a B-tree, so the
fivst clause in the above query is now verv inexpensive
to compute. Using this technique, the function s
compured at data entry or data update time and not at
query evaluation time. A consequence of function
indexing is that inserring a new image into the data-
base may be very time-consuming, since function
computation is now included in the load transaction.
To deal with the undesirable lengrhy response times
for some loads, we have also explored lazy indexing
and partial indexing. Thus, index building docs not
need to be synchronous with data loading.

The teedback from the Sequoia 2000 clients regard-
ing POSTGRES is that it is not reliable enough to
serve as a base for production work. Morcover, the
documentation is inadequate, and no facility exists to
train users. Our uscrs want a COTS product and not
aresearch prototvpe. Consequently, the Sequoia 2000
project has migrated to the commercial version of
POSTGRES, namely the Iilustra system, to obtain a
COTS DBMS product. Migration to this system
required reloading all project data, a task that is now
nearlv complete.

The Application Layer

The application laver of the Sequoia 2000 architecture
contains five clements:

1. An oft-the-shelf visualization tool

2. A visualization environment

3. A browsing capability for textual information

4. A facility to interface the UCLA General Circula-
rion Model (GCM) to the POSTGRES/Illustra
svstem

5. A deskrop vidcoconferencing or “picturephone”
facility

For the off-the-shelf visualization tool, we have
converged around the use of AVS and IDL for project
activities. AVS has an casy-to-use “boxes-and-arrows”
user interface, whereas IDL has a more conventional
lincar programming notation. On the other hand,
IDL has better nwo-dimensional (2-12) graphics fea-
tures. Both AVS and IDL allow the user to read and
write file data. To connect to the DBMS, we have writ-
ten an AVS-POSTGRES bridge. This program allows
the user to construct an ad hoc POSTGRES query and
pipe the result into an AVS boxes-and-arrows nenvork.
Sequoia 2000 clients can use AVS for further process-
ing on any data retrieved from the DBMS. IDL is
being interfaced to AVS by the vendor. Consequently,
data retrieved trom the database can be moved into
IDL using AVS as an intermediary. Now that we have
migrated to the Ilustra DBMS, we are considering
porting this AVS bridge to the Illustra application pro-
gramming interface (API).

AVS has some disadvantages as a visualization tool
for Sequoia 2000 clients. First, its type system, which
is different from the POSTGRES /Illustra type system,
has no direct knowledge of the common Scquoia
2000 schema. In addition, AVS consumes significant
amounts of main memory. Architecturally, AVS
depends on virtual memory to pass results berween
various boxes. It also maintains the output of each box
in virtual memory for the duration of an execution scs-
sion. The uscr can thus change a run-time parameter
somewhere in the neowork, and AVS will recompure
only the downstream boxes by raking advantage of the
previous output. As a result, Scquota 2000 clients,
who generally produce very large intermediate results,
consume large amounts of both virtual and real mem-
ory. In fact, clients report that 64 megabytes of real
memory on a workstation is often not enough to
cnable serious AVS use. Furthermore, AVS docs not
support zooming in to investigate data of interest to
obtain higher resolution, nor does it keep track of the
history of how any given data clement was con-
structed; 1.c., the so-called darta lincage of an item.
Lastly, AVS has a vidco plaver model for animation
that is too primitive for many Sequoia 2000 clients.

Consequently, we have designed nwo new visualiza-
tion environments. The first svstem, called Tecare, is
being built ar the San Diego Supercomputer Center.
The Tecate infrastructure enables the creation of appli-
carions that allow end users ro browsc for and visualize
data from networked data sources. This softwarc

platform capitalizes on the architectural strengths of
current scientific visualization systems, network
browsers, databasc management system front ends,
and virtual reality svstems, as discussed in a companion
paper in this issuc of the joiurnal

The other svstem, Tioga, is a boxes-and-arrows pro-
gramming cnvironment that is DBMS-centric, 1.e., the
environment type system is the same as the DBMS
type system. The Tioga user interface gives the user
a flight simulator paradigm for browsing the output
of a network. In rthis way, the visualizer can navigate
around data and then zoom in to obtain additional
data on items of particular interest. The preliminary
Tioga design was presented at the 1993 Very Large
Databases Conference.'” A first prototype, described
by Woodrutt, 1s currently running. "

A commercial version of the Tioga environment has
also been implemented by HMustra. The Sequoia 2000
project is making considerable usc of this tool, which is
named Object-Knowledge. Early user experience with
both Tioga and Object-Knowledge indicates that these
systems arc not casy to use. We are now exploring
ways to improve the Tioga system. The objective is to
build a svstem that a scientist with minimal training in
the environment can use without a reference manual.

The third clement of the application laver is a
browsing capability for textual information of interest
to our clients. This capability i1s a cornerstone of the
Sequoia 2000 architecture. Initially, we converted a
stand-alone texr retrieval svstem called Lassen to our
DBMS-centric view. The first part of the Lassen system
is a facility for constructing weighted kevword indexes
for the words in a POSTGRES document. This index-
ing system, Cheshire, builds on the pioneering work of
the Cornell Smart system and opcrates as the action
part of a POSTGRES rule, which is triggered on cach
document inscrtion, update, or removal.™** The scc-
ond part of the Lassen svstem is a front-end query tool
that understands natural language. This tool allows
a user to request all documents that satisfy a collection
of keywords by using a natural language interface. The
Lassen system has been operational for more than
a vear, and retrievals can be requested against the cur-
rentlv loaded collection of Sequoia 2000 documents.

In addition, we have moved Lassen to 239.50,
a popular protocol oriented toward intormation inter-
change and information retrieval.”* The client portion
of Lassen has been changed to emit Z39.50, and
we have written a 239.50-to0-POSTGRES translator
on the server side. In this way, the Lassen client code
can access non-Sequoia 2000 information and the
Sequoia 2000 server can be accessed by rext-retricval
front ends other than the Cheshire svstem.

With our move to the Illustra DBMS, we have con-
verted the client side of Lassen ro work with Dlustra,

Digital Technical Journal Vol.7 No.3 1995

43

44

IMustra has an integrated document data tvpe with
capabilitics similar to the extensions we made to
POSTGRES.

A related Berkeley project is focused on digitizing
all the Berkeley Computer Science Technical Reports.
This project uses a Mosaic client to access a custom
World Wide Web server called Dicenst, which stores
technical report objects ina UNIX file system. Ina few
months, we expect to convert Dienst to store objects
in the Sequoia 2000 database, rather than in fi
When this svstem, nicknamed Database Dicnst, is
operational, Mosaic/Dicnst service will be available
for all textual objects in the Scquoia schema.

Our fourth thrust in the application laveris a facility
ro interface the UCLA General Circulation Model
{GCM) to the POSTGRES/ Hlustra svstem. Fhis pro-
gram is a “dara pump™ because it pumps data our of
the simulation model and into the DBMS. We named
rhe program “the big lift™ after the DWR pumping
station that raises Northern Ca
Tehachapt Mounrains into Southern Calitornia.

Basically, the UCLA GCM produces a vector of sim-
ulation outpur variables for cach time step of a lengthy
run for cach tile in a three-dimensional {3-1)) grid of
the atmosphere and ocean. Depending on the scale
of the model, its resolution, and the capability of the
scrial or parallel machie on which the model is run-
ning, the UCLA GCM can produce from 0.1 to 10.0
megabytes per second (MB/s) output. The purpose of
the big litt is ro mstall the output dara inro a database
in real time. UCLA scientists can then use Object-
Knowledge, Tioga, Tecare, AVS, or 1D ro visualize
their simulation outpuat. The big Lift will likely have to
exploit paral
to keep up with the execution of the model on a mas-
sively parallel archirecrure.

CS.

Hfornia warer over the

clism in the data manager, it is required

The fifth application svstem 1s a conferencing svs-
rem. Since Sequota 2000 15 a distbured project, we
learned early that face-to-face mectings thar required
participants to travel to other sites and clectronic mail
were not sufficient to keep project members working
as a team. Conscquently, we purchased conference
room videoconterencing, cquipment for cach project
sire. This technology costs approximately $50,000 per
site and allows multiway videcoconferences over inte-
grated services digital nenwork (ISDN) lines.

Although the conference room cquipment has
helped project communication immensely, it must be
set up and taken down ar each use because the rooms
it occupies at the various sites are normally used as
classrooms. Therctore, videoconferencing tends o be

used for arranged conferences and not for spur-ot-rhe-
moment interactions. To alleviate this shorrcoming,
Sequoia 2000 has also invesred in deskrop videocon-
terencing. A video compression board, a microphone,
speakers, a nerwork connection, a video camera, and

Digital Techical Journal Vol.7 No.3 1995

the appropriate softwarc can turn a conventional
worksrarion into a deskrop videoconferencing facility.
In addition, video can be casily rransmirred over the
nerwork interface thatis present in virtuallv all Sequota
2000 clicut machines. We are using the Mbone soft-
ware suite to connect about 30 of our client machines
n this fashion and are migrating most of our video-
conterencing activities to desktop technology. This
efforr, which is called Hollvwood, strives to further
improve the abiliny of Sequota 2000 researchers to
communicate.

Norte rthar the Sequoia 2000 rescarchers do nor
need groupware, i.c., the ability to have common win-
dows on mulriple client machines separated by a WAN,
in which common code can be run, updared, and
mispected. Rather, our rescarchers need a wav ro hold
imprompru discussions on project business. Thev
want alow-cost multicast picturephone capability, and
our deskrop videoconterencing cftorts arc focused in
this direction.

Sequoia 2000 Networking

The last topic of this section on the Sequoia 2000
architecture 1s the nerworking agenda. Regarding
Figure 1, it is possible for the implementarion of cach
laver to exist on a different machine. Specifically, the
application can be remote from the DBMS, which can
be remore from the file svstem, which can be remote
from the storage device. Each laver of the Sequora
2000 architecture assumes a local UNIX socket con-
nection ora local arca network (1LAN) or WAN connec-
tion using the transmission control prorocol /internet
protocol (TCP/IP). Actual connections among
Scquoia 2000 sites use cither the Interner or a dedi-
cated T3 network, which the Universine of California
provides as part of its contribution ro the project.

The networking ream judged Digital’s Alpha
processors to be fast enough to route T3 packets.
Hencee, the project uses conventional workstations as
routers; custom machines are not required. Fur-
thermore, the Scequoia 2000 nerwork has installed
a unique guaranteed delivery service through which

an application can make a contract with the nerwork
that will guarantee a specific bandwidely and latencey if
1at does not

the client sends information at a rate t
exceed the rate specified in the coneract. These algo-
richms, which are based on the work of Ferrari, require
a setup phase for a connection that allocates band-
width onall the lines and in all the swirches.”

Lastly, the nerwork researchers are concerned that
the Digital UNIX (formerly DEC OSF/1) operating
system copies every byte four times in between retriev-
ing it from the disk and sending it out over a nenwork
conncection. The cfficient integration of networking
services into the operating svstem is the topic of
a companion paper by Pasquale et al. in this issue.

1o

Sequoia 2000 as an End-to-End Problem

The major lesson we have learned from the Sequoia
2000 project is that manv issues tacing our clients can-
not be isolared to a single laver of the Sequota 2000
architecture. This section describes three such end-ro-
cnd problems: guaranteced delivery, abseracts, and
compression.

Guaranteed Delivery
Clearly, guaranteed delivery must be an end-to-end
contract. Suppose a Sequoia 2000 client wishes to visu-
alize a specific compurtation; for example, the clieng
wants to observe Hurricane Andrew as it moves from
the Bahamas to Florida to Louisiana. Specifically, the
client wishes to visualize appropriate satellite imagery at
a resolution of 500 X 500 in 8-bit color at 10 frames
per second. Henee, the client requires 2.5 MB/s of
bandwidth to his screen. The tollowing scenario might
be the computation steps that take place.

The DBMS must run a query to ferch the satcllire
imagery. The query might require returning a 16-bit
dara valuce for cach pixel thatwill ultimately appear on

the screen. The DBMS must therefore agree to exe-
cute the query in such a wav that it guarantees output
ararate of 5.0 MB/s.

The storage svstem at the server will ferch some
number of 1L,/O blocks from sccondary and /or tertiary
memory. DBMS query optimuzers can accurately guess
how many blocks they need to read to satistv the
query. The DBMS can then easilv generate a guaran-
reed dedivery contract that the storage manager must
satisty, thus allowing the DBMS to satisfy its contract.

The nenwvork must agree to deliver 5.0 MB /s over
the nerwork link that connects the client to the server.
The Sequoia 2000 network software expects exactly
this tvpe of contract request.

The visualization package must agree to translate
the 16-bir dara element into an §-bit color and render
the result onto the screen at 2.5 MB /s,

In short, guaranteed delivery 1s a collection of con-
rracts that must be adhered to by the DBMS, the
storage system, the nerwork, and the visualization
package. One approach to architecting these contracts
was presented ar the 1993 Very Large Darabases
Conference, "

Abstracts

One aspect of the Sequoia 2000 visualization process
is the necessity of abstracts. Consider the Hurricane
Andrew example. The client might initiallv want to
browse the hurricane at 100 X 100 resolution. Then,
on finding something of interest, the dient would
probablyv like to zoom n and increase the resolution,
usually to the maximum available in the original dara.
This ability to dvnamically change the amount of reso-
lution i an image is supported by abstracts.

Note thar providing abstracts 1s a much more pow-
erful construce than merely providing for resolution
adjustment. Specitically, obraining more detail may
entall moving from one representation to another. For
example, once could have an icon for a document,
zoom in to sec the abstract, and then zoom in further
to see the entire document. Hence, zooming can
change from iconic to textual representation. This use
of abstracts was popularized in the DBMS community
by an ecarly DBMS visualization svstem called the
Spatial Dara Management Svstem (SDMS).

Sequoia 2000 clients wish o have abstracts; how-
ever, it is clear that they can be managed by the visual-
ization rool, the DBMS, the nerwork, or the file
svstem. In the former case, abstracts are defined for
boxes-and-arrows nenworks. " In the DBMS, abstracrs
would be defined for individual data elements or for
data classcs. If the nenvork manages abstracts, it will
use them to automaticallv lower resolution to elimi-
nate congestion. Much rescarch on the oprimization
of network abstracts (called hicrarchical encoding of
dara in thar commumry) is available. In the file system,
abstracts would be defined for files. Sequoia 2000
rescarchers arc pursuing all four possibilities, and it is
cxpected ¢

1at this notion will be one of the powerful
constructs to be used by Scequoia 2000 sofrwarce,
perhaps in multiple wavs.

Compression

The Sequota 2000 clients are adamant on the issuc of
compression—they are open to any compression
scheme as long as it is lossless. As scientists, they
believe that ultimate resolution mav be required to
understand futare phenomena. Since 1t is not possible
to predict what these phenomena might be or where
thevy might occur, the Sequoia 2000 scientists want
access to all data ar full resolution.

Some Sequora 2000 data cannot be compressed
economically and should be stored in uncompressed
torm. The inclusion ot abstracts ofters a mechanism to
lower the bandwideh required berween the storage
device and the visualization program. No saving of

tertiary memory through compression is available tor
such data.

Other data ought to be stored in compressed form.
The question of when compression and decompres-
sion should occur can be handled by using a just-in-
time decompression strategy. For example, it the
storage manager compresses data as they are written
and then decompresses them on a read operation, the
neowork manager may then recompress the data for
transmission over a WAN to a remote site where they
will be decompressed a second time. Obviously, data
should be moved in compressed form and decom-
pressed only when necessary. In general, decompres-
sion will occur in the visualization svstem on the client
machine. If scarch criterta are performed on the dara,

Digital Technieal Journal Vol.7 No.3 1995

46

then the DBMS may have to decompress the dara to
perform the scarch. It an application resides on the
same machine as the storage manager, the file svstem
must be in charge of decompressing the data. All soft-
es in the Sequota 2000 architecture must
cooperate to perform just-in-time decompression and
as-carly-as-possible compression. Like guaranteed
delivery, compression is a task that requires all software
modules to cooperate.

ware modu

Specific Lessons Learned

In addition to the end-to-end issues, we learned other
lessons from the first three vears of the Sequota 2000
expericnce, as discussed in this section.

Lesson 1: Infrastructure is necessary, time-consuming,
and very expensive.

We Jearned earlv i the projecr that electronic mail and
rravel benween sites would not result in the desired
degree of cooperation from geographically dispersed
rescarchers from different disciplines. Conscquently,
we made a significant investment i infrastruceure,
This mncluded meetings for all the Sequoia 2000 par-
ticipants, which are now held twice a vear, and video-
conferenciig equipment at cach site. Through rhis
video link, project members interacr by holding
a wecekly distributed seminar, semimonthly operations
committee meetings, occasional steering commirtee
meetings, and mecrings berween researchers with
common mnterests. The video qualiny of the project’s
current videoconferencing equipment is not high, and
to achicve success when participants are located far
apart, specially trained individuals must operate the
equipment. Nevertheless, the equipment has proven
ro be valuable in generating cohesion in the dispersed
project. We have installed deskrop videoconterencing
svstems on 30 Sequoia 2000 workstations and expect
to replace our current conference room cquipment
with nexr-generation desktop rechnology.

In addition, we conducted a learning experiment in
which a course raught by onc of the Sequoia 2000 fac-
ulty members at the Santa Barbara campus was broad-
cast over our videoconferencing equipment to four
other sites. Students could take the course for credit at
their respective campusces. Of course, the overhead of
setting up such a course was substantial. A new coursce
had to be added at each campus, and every step in the
approval process required bricfings on the tact that the
instructor was from a ditferent campus and on the way
evervthing was going to work. This experiment was
popular, and students have requested additional
courses taughr in this manner.

On the other hand, we also tried to run a computer
science colloquium using this rechnology. We broad-
cast from various sites to six computer scicnce depart-
ments around the U.S. Initial student interest was high

Digital Technical Journal Vol.7 No. 3 1995

because of the lineup of eminent speakers. Such speak-
crs could be recruited casily, because they only had to
locate the nearest compatible equipment and then get
to that site. No air trave] was required. The experiment
fatled, however, because attendance decreased through-
out the semester and ended ar an extremely low level.

The basic problem was that, typically, speakers were
not skilled in using the medium—they would put too
much information on slides and then flip though the
cre rrans-
mission. Also, the question-and-answer period could

shdes betore remote sites could get a comp

not be very interactive because of the many sites
involved. The experiment ended after one semester
and will not be repeated.

Lesson 2: There was often a mismatch between the
expectations of the earth scientists and those of the
computer scientists.

The computer scientists on the Sequoia 2000 team
wanted access to know ¢ application specialists
who could describe their problems in terms under-
standable to the computer scientist. The computer
scientists then wanted ro think through clegant solu-
tions, verifv with the earth scientists that the solutions
were appropriate, and then prototvpe the results. The
carth scientists wanted final COTS solutions to their
problems; they were unsympathetic about poor docu-
mentation, bugs, and crashes.

With considerable cftorr, the expecrations are con-
verging, The ulumate solution is to move to COTS
software modules as they become available for por-
tions of the svstem and augment the modules with
in-house protorvpe code.

We have found that the best way to make torward
progress was to ensurc that cach earth science group
using Scquoia 2000 protorvpe code had one or more
sophisticated staff programmers who could deal
successtully with the quirks of prototype code. With
computer science expertise surrounding the carth sci-
entists, the problems in this area became much more
manageable. We also discovered that we could distrib-
ute such expertise. In fact, support programmers for
Scquoia 2000 clients are often not at the same physical
locarion as the clienr.

cdgeab

Lesson 3: Interdisciplinary research is fundamentally
difficult.

Onc lengthy discussion on the construction of a
Sequoia 2000 benchmark cventually led to the discus-
sion presented in the 1993 ACM SIGMOD contference
paper cntitled “The Sequoia 2000 Benchmark,”
which we referred to previously.” The computer sci-
ence rescarchers were arguing strongly for a represen-
tative abstract example of carth science dara access,
i.c., the “speemark of earth science.” On the other
hand, the carth scientists were equally adamant rhat
the benchmark convey the exacr data accessces.

Finally, the computer scientists and the carth scien-
tists realized that the word “benchmark” has a different
meaning for cach of the two groups of researchers. To
carth scientists, a benchmark is a scenario, whercas to
computer scientists, a benchmark is an abstract exams-
ple. This vignette was typical of the experience these
two disciplines had trying to understand one another.
Fundamentally, this process is time-consuming, and
ample interaction time should be planned tor any proj-
cct that must deal with multiple disciplines.

The Scquoia 2000 project participants made effec-
rive use of “converters.” A converter is a person of one
discipline who is planted directly in the rescarch group
of another discipline. Through informal communica-
tion, this person serves as an interpreter and translator
for the other discipline. Converters arc encouraged by
the existence of a formal exchange program, whereby
central Sequoia 2000 resources pay the living expenses
of the exchange personnel.

Lesson 4: Database technology is a major advance for
earth scientists.

Our initial plan was to introduce database technology
into the project with the expectation that the earth sci-
entists would pick it up and use it. Unfortunately, they
arc accustomed to data being in files and found it very
difficult to make the transition to a databasc view. The
carth scientists are becoming increasingly aware of
the inherent advantages of DBMS technology.

In addition, we appointed the earth scientist with
rhe most computer science knowledge as leader of the
database design eftort. This person chaired a commit-
ree of mainly computer scientists who were charged
with producing a schema.

This technique tailed for several reasons. Firse, the
computer scientists disagreed about whether we were
designing an interchange format, by which sites could
reliably exchange data sets (i.c., an on-the-wire repre-
sentation), or a schema for stored data at a site. Most
carth science standards, such as the Hierarchical Data
Formatr (HDF) and the nenwork Common Data Form
(netCDFE), are of the first form, and there was substan-
tial enthusiasm for simply choosing onc of thesce for-
mats.""” On the other hand, some compurter scientists
argucd that an on-the-wire representation mixes the
data (e.g., a satellite image) and the metadata that
describe it (e.g., the frequency of the sensor, the date
of the data collection, and the name of the satellite)
into a single, highly encoded bit string. A better design
would scparare the rwo kinds of data and construct
a good stored schema for it

A seccond problem was that numerous legacy
formats arc currently in use, and some carth scientists
did not want to change the formats theyv were using.
This led to many arguments about the merits of one
legacy format over another, which in turn caused the

opposing sides to conclude that both tormats under
discussion should be supported in addition to a neu-
tral representation.

A third problem was thar carth science data are fun-
damentally quite complex. For example, earth scien-
tists store geographic points, which are 3-D positions
on the earth’s surface. There are approximately 20
popular projections of 3-1> space onto 2-D space,
including (latitude, fongitude), Mercator projection,
and Lambert Equal Azimurthal projection. With every
instance of a gecographic point, 1t 1s necessary to assocl-
ate the projection system that is being used. Another
data problem is reJated to units. Some geographic data
are represented as integers, with miles as the funda-
mental unit; other data are represented as floating-
point numbers, with meters as the underlving unit.
In additon, satcllite 1imagerv must be massaged in
a variety of wavs to “cook” it from raw data into
a usable form. Cookig includes converting imagery
from a one-dimensional stream of data recorded in
satellite flight order into a 2-1D representation. Many
details of this cooking process must be recorded for all
imagery. This dramatically cxpands the metadata
about imagery as well as forces the earth scientist to
write down all the extra data clements.

Schema design turned out to be laborious and veryv
difficult. The earth scientists did not have a good
understanding of database design and thus were not
prepared to take on the extreme complexity of the
task. As a result, we have reconstructed our database
design effort. Now, two computer scientists are
responsible for producing a schema. Thev interact
with the earth scientists when such action helps to
accomplish the task.

Lesson 5: Project management is a substantial problem.
Sequoia 2000 is a large project. About 110 people
attended the last general mecting. The atrendecs
included approximately 30 computer scientists, 40
carth scientsts, and 40 visitors from industry. Multiple
efforts on multple campuses must “plug and play.”
Svnchronizing distributed development is an extreme
challenge. Furthermore, the skill of project manage-
ment is not fostered in a university environment, nor
1s it rewarded in a university faculty evaluation.

The principal investigators viewed the time spent
on project management as time that could be berter
invested in research activities. An obvious solution
would be for the Sequoia 2000 project to hire a pro-
tessional project manager. Unfortunately, it is impos-
sible to pay a nonfaculty person the marker rares
normally received by such skilled persons. Onc strat-
egv we attempted 1o use was to solicit a visitor with
the desired skill mix from one of our industrial spon-
sors. Our cfforts in this direction failed, and we were
never able to recruit projecr management expertise for

Digital Technical Journal Vol.7 No.3 1995

47

48

the Scquoia 2000 efforr. As a result, project manage-
ment was performed poorly at best. Inany furure
project, this component should be addressed satistac-
torily up front by project personne

arge

Lesson 6: Multicampus projects are extremely difficult
to implement.

Sequoia 2000 work is taking place in seven different
organizations within the University of California edu-
cational system. There is a constant need to transtfer
money and people among these organizations. Accom-
plishing such moves is a difficule and slow process,
however, because ot the burcaucracy within the svs-
rem. In addirion, the personnel rules of the University
are often in conflict with the needs of the Sequoia
2000 project. As a result, multi-institution projects,
where participants are in different and often distant
v difficulr to carry out.

locations, are extreme
Status and Future Plans

The Sequoia 2000 project is more than three vears old
and has ncarly accomplished its objectives. We have
a common schema in place for all Santa Barbara and
UCLA dara, and all participants have agreed to usce the
schema. This schema serves as leverage for the stan-
dards cftorts under wav in rhe spatial arena.” The
infrastrucrure 1s in place to cnable this schema to
evolve as more data tvpes, user-defined functions, and
operators are included in the future,

The combination of Object-Knowledge, Hustra,
Epoch, and AMASS is proving robust and mects our
chents’ needs. Lastly, we have ample resources to
move our prototvpe into production use at UCLA and
Santa Barbara during the next several months.

We are also extending the scope of the prototvpe in
nwo different dircctions. First, we will recruir addi-
tional carth scientists to utilize our svstem. This will
require extending our common schema to meet their
needs and then installing our suite of software at therr
site. We expect 1o recruit two to three new groups
during the nexe vear.

Second, a companion projecr, the E
Repository, has as one of its objectives to use the
Sequoia 2000 technology to support an environmen-
tal digital library of acrial photography, polvgonal
data, and texe tor the Resources Agency of the State of
California.** This clectronic library project is exrend-
mg; the rcach of Sequoia 2000 rechnology from carth
scientists toward a broader community.

Our research activities are also very active. As nored

CcCrronic

earlier, we are continuing our visualizarion activitics
and anticipate an improved Tioga svstem. The
Sequoia 2000 clients have made it clear that they wanr
seamless access to distribured dara, and we have
evolved POSTGRES to a wide-arca distributed DBMS

Digital Techniaal Journal Vol.7 No. 3 1995

that makes decisions based on an economic paradigm,
This system is called Mariposa.” In our COTS svstem,
a bad impedance mismarch exists between the DBMS
and the tertiary memory file systems. We have there-
fore shitted our rescarch focus to constructing an
intelligent mass storage interface that properly sup-
ports a DBMS.

Finally, the Sequoia 2000 network currently sup-
ports scrvice guarantees, but there 1s no economic
framework in which to place multiple levels of service.
As aresult, our nenworking research is focused on con-
struction of this tvpe of tramework.

We anticipate a robust production environment for
carth scicnce researchers by the end of 1995, In addi-
tion, we expect to continue to improve the Scquoia
2000 covironment with future research resules in the
above arcas.

References and Notes

1. M. Stoncbrakerand J. Dozicr, “Large Capacity Object
Servers to Support Global Change Rescarch,™ Sequoia
2000 Technical Reporr 91/1, Berkeley, Calitornia
(Julv 1991},

2.] Kohl cral, “Highlight: Using a Log-strucrured File
Svstem for Tertiary Storage Management,” /2roceed-
i1nes of the 1993 Winter E SENIN Meeting. San Diego,
California (January 1993).

3. M. Rosenblum and J. Ousrerhout, “The Design and
Implementation of a Log-structured File Svstem,”
AC Transactions on Compriting Systenis (TOCS)
(February 1992).

4. M. Scltzer et al, “An Implementation ot a Log-
structured File System tor UNIX,Y Procecdings of the
1993 Winter SENIX Meeting. San Diego, California
(January 1993).

5. M. Olson, “The Design and Implementation of the
Inversion File Svstem,” Proceedings of the 1993
Winter (SENIN Meeting. San Diego, California
(January 1993).

6. M. Stoncbraker ct al, “The Implementation of
POSTGRES,” IELE Transactions on Knowledge and
Deiler Engineering CTRDE) (March 1990).

7. M. Stoncbraker et al, “The Sequoia 2000 Beneh-
mark,” Proceedings of the 1993 ACM SIGUOD
Conference. Washingron, D.C. (Mav 1993).

8. S. Sarawagi and M. Stoncbraker, “Efficient Organiza-
rion of Large Mulddimensional Arvavs,” rocecdings
of the 1993 IEEE Dalea Engineering Conference.
Houston, Texas (February 1993).

9. J. Hellersrein and M. Stoncbraker, “Predicare Migra-
rion: Optimizing Querics with Expensive Predicates,”
Proceedings of the 1993 ACM SIGMOD Conference,
Washington, D.C. (May 1993).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

P. Kochevar and L. Wanger, “Tecate: A Software
Platform for Browsing and Visualizing Data from

Networked Data Sources,” Digital Technical

Journal, vol. 7, no. 3 (1995, this issue): 66-83.

M. Stonebraker ct al., “Tioga: Providing Data Man-
agement for Scientific Visualization Applications,”
Proceedings of the 1993 VLDB Conference, Dublin,
Ireland (August 1993).

A. Woodrutfetal., “Zooming and Tunneling in Tioga:
Supporting Navigation in Multidimenstonal Space,”
Sequoia 2000 Technical Report 94,/48, Berkelev,
California (March 1994).

R. Larson, “Classification, Clustering, Probabilistic
Information Retrieval and the On-Line Cartalog,”
Library Quarterly (April 1991).

Information Retricval Application Service Defini-
tion and Protocol Specification for Open Systems
Interconnection, ANSI/NISO 239.50-1992 (revi-
sion and redesignation of ANSI Z239.50-1988) (New
York: American National Standards Institute /National
Information Standards Organization, 1992).

D. Ferrari, “Client Requirements for Real-time
Communication Secrvices,” [EEE Commititications
(November 1990).

J. Pasquale et al., “High-performance 1/0 and Net-
working Software in Sequoia 2000,” Digital Techni-
cal Journal, vol. 7, no. 3 (1995, this issue): 84-96.

C. Heror, “SDMS: A Spatial Data Base System,”
ACM Transactions on Computing Systems (TOCS)
(June 1980).

The National Center for Supercomputing Applications
(NCSA) ar the University of Illinois developed
the Hierarchical Dara Format (HDF) as a multiobject
file format.

Network Common Data Form (netCDF) is an inter-
face for scientific data access and a freely distributed
software library that provides an implementation of
the intertace. netCDF was developed bv Glenn Davis,
Russ Rew, and Steve Emmerson at the Unidata Pro-
gram Center in Boulder, Colorado. The netCDF
library defines a machine-independent format for
representing scientific data. Together, the intertace,
the library, and the format support the creation,
access, and sharing of scientific darta.

J. Anderson and M. Stonebraker, “Sequoia 2000
Mertadata Schema for Satellite Images,” SIGMOD
Record, Vol. 23, No. 4 (December 1994).

R. Larson ctal., “The Sequoia 2000 Electronic Repos-
itory,” Digital Technical Journal, vol. 7, no. 3 (1995,
this issuc): 50-65.

M. Stonebraker et al., “An Economic Paradigm for
Query Processing and Data Migration in Mariposa,”
Proceedings of [EEE Parallel and Distributed
Information Systeins Conference. Austin, Texas
(September 1994).

Biography

Michael Stonebraker

Michael Stonebraker is a professor of electrical engineer-
ing and computer science at the University of California,
Berkeley, where he has been emploved since 1971. He
was one of the principal architects of the INGRES rela-
tional database management svstem and subsequently
constructed Distributed INGRES. For the last six years,
Michael has been developing POSTGRES, a next-generation
DBMS that can manage objects and rules, as well as data.
Michael is a founder of INGRES Corporation, the founder
of Illustra Information Technologies, a past chairman of
ACM SIGMOD, and the author of many papers on DBMS
technology. He lectures widely and was the winner of the
first ACM SIGMOD innovations award in 1992.

Digital Technical Journal Vol.7 No.3 1995

49

50

The Sequoia 2000
Electronic Repository

A major effort in the Sequoia 2000 project was to
build a very large database of earth science infor-
mation. Without providing the means for scien-
tists to efficiently and effectively locate required
information and to browse its contents, how-
ever, this vast database would rapidly become
unmanageable and eventually unusable. The
Sequoia 2000 Electronic Repository addresses
these problems through indexing and retrieval
software that is incorporated into the POSTGRES
database management system. The Electronic
Repository effort involved the design of proba-
bilistic indexing and retrieval for text documents
in POSTGRES, and the development of algo-
rithms for automatic georeferencing of text
documents and segmentation of full texts

into topically coherent segments for improved
retrieval. Various graphical interfaces support
these retrieval features.

Digital Technical Journal Vol.7 No. 3 1995

Ray R. Larson
Christian Plaunt
Allison G. Woodruff
Marti A. Hearst

Global change researchers, who study phenomena that
include the Greenhouse Effect, ozone depletion,
global climate modcling, and ocean dynamics, have
found scrious problems in attempting to usc current
information svstems to manage and manipulate the
diverse mformation sources crucial to their research?
These information sources include remote sensing data
and 1mages from satellites and aircraft, databases of
measurements (e.g., temperature, wind speed, salinity,
and snow depth) from specific geographic Jocations,
complex vector informanion such as topographic maps,
and large amounts of rext from a variety of sources.
These texrual documents range from environmental
IMpact reports on various regions to journal articles
and technical reports documenting research results.

The Scquoia 2000 project brought together com-
puter and information scientists from the University
of California (UC), Digital Equipment Corporation,
and the San Dicgo Supercomputer Center (SDSC),
and global change rescarchers from UC campuses to
develop practical solutions to some of these problems.”
One goal of this collaboration was the development of
a large-scale (i.e., multiterabyte) storage system that
would be available to the researchers over high-speed
nerwork links. In addition to storing massive amounts
of dara in this svstem, global change rescarchers
needed to be able to share its contents, to scarch for
specific known items in it and to retrieve relevant
unknown items based on various criteria. This sharing,
scarching, and retrieving had ro be done cthiciently
and cftecrively, even when the scale of the database
reached the multterabvee range.

The goal of the Electronic Repository portion of
the Sequoia 2000 project was to design and cvaluarte
micthods to meet these needs for sharing, scarching,
and retrieving database objects (primarily rext docu-
ments). The Sequota 2000 Electronic Repository
is the precursor of several ongoing projects at
the University of Calitornia, Berkeley, rhar address
the development of digital libraries.

For repository objects to be effectively shared and
retricved, they must be indexed by content. User inter-
faces must allow rescarchers to both search for irems
based on specific characteristics and browsc the repos-
itorv for desired information. This paper stunmarizes

the research conducted in these arcas by the Sequoia
2000 project participants. In particular, the paper
describes the Lassen text indexing and retrieval meth-
ods developed for the POSTGRES database system,
the GIPSY system for automatic indexing of texts
using geographic coordinates based on Jocations men-
tioned in the text, and the TextTiling method for
improving access to full-text documents.

Indexing and Retrieval in the Electronic Repository

The primarv engine for information storage and
retrieval in the Scquoia 2000 Electronic Repository
is the POSTGRES next-generation database man-
agement system (DBMS).* POSTGRES is the core of
the DBMS-centric Sequoia 2000 system design. All
rhe data used in the project was stored in POSTGRES,
including complex mulnidimensional arravs of data,
spanal objects suclh as raster and vector maps, sarellite
images, and scts of measurements, as well as all the
full-text documents available. The POSTGRES DBMS
supports user-defined abstract data types, user-defined
functions, a rules system, and many features of object-
oriented DBMSs, including inheritance and methods,
through functions in both the query language, called
POSTQUEL, and convenuonal programming lan-
guages. The POSTQUEL query language provides all
the features found in relational query languages like
SQL and also supports the nonrelational featurcs of
POSTGRES. These features give POSTGRES the abil-
ity to support advanced information retrieval methods.

We used these features of POSTGRES to develop
prototvpe versions of advanced indexing and retrieval
techniques for the Electronic Repository. We chose
this approach rather than adopting a separate retrieval
svstem for full-text indexing and retrieval for the fol-
lowing reasons:

1. Textelements are pervasive in the database, ranging
in size from short descriptions or comments on
other data items to the complete text of large docu-
ments, such as environmental impact reports.

2. Text elements are often associated with other data
items (¢.g., maps, remote sensing measurements,
and aerial photographs), and the svstem must sup-
port complex quenes involving multiple data nvpes
and functions on darta.

(o8]

. Many text-only systems lack support for concurrent
access, crash recovery, data integrity, and security of
the databasc, which are features of the DBMS.

4. Unlike many rext retrieval systems, DBMSs permit

ad hoc querving of any element of the database,

whether or not a predefined index exists for that
clement.

Moreover, there are a number of interesting
research issucs involved in the integration of methods

of text retrieval derived from information retriceval
research with the access methods and facilities of
a DBMS. Information retrieval has dealt primarily
with imprecise queries and results that require human
interpretation to determine success or failure based on
some specified notion of relevance. Database systems
have dealt with precise queries and exact matching of
the query specification. Proposals exist to add proba-
bilistic weights to tuples in relations and to extend
the relational mode) and query language to deal with
the characteristics of text databases.”* Our approach to
designing this prototvpe was to usc the features of the
POSTGRES DBMS to add information retrieval meth-
ods to the existing functionality of the DBMS. This
section describes the processes used in the prototype
version of the Lassen indexing and retrieval system and
also discusses some of the ongoing development work
directed toward generalizing the inclusion of advanced
information retrieval methods in the DBMS.°

Indexing

The Lassen indexing method operates as a daemon
invoked whenever a new text item is appended to the
database. Several POSTGRES database relations (i.c.,
classes, in POSTGRES terminology) provide support
for the indexing and retrieval processes. Figure 1
shows these classes and their logical linkages. Thesc
classes are intended to be treated as system-level
classes, which arc usually not seen by users.

The wn_index class contains the complete WordNet
dictionary and thesaurus.” It provides the normalizing
basis for terms used in indexing text elements of the
database. Thar is, all terms extracted from data elements
in the databasc arc converted to the word form used in
this class. The POSTQUEL statement defining the
class is

create wn_index (

termid = intd4, /* unique term ID */
word = text, /* the term or phrase */
pos = char, /* WordNet part of speech

information */
sense_cnt = int2, /* number of senses of word */
ptruse_cnt = int2, /* types and locations of */
offset_cnt = int2, /* related terms in WordNet*/
ptruse = int2[] , /* database are stored in */
offset = int4[]) /* these arrays

All other references to terms in the indexing process
are actually references to the unique term identificrs
(termid) assigned to words in this class. The wn_indcex
dictionary conrains individual words and common
phrases, although in the prototvpe implementation,
only single words are used for indexing purposes. The
other parts of the record include WordNer databasc
information such as the part of speech (pos) and an
array of pointers to the different senses of the word.

The kw_term_doc_rel class provides a linkage
between a particular text item in any class or text
large object (we will refer to cither as documents) and

Digital Technical Journal Vol.7 No.3 1995

w

o

WN_INDEX

KW_TERM_DOC_REL

KW_DOC_INDEX

y

KW_SOURCES

ANY CLASS AND
ATTRIBUTE

KW_INDEX_FLAGS

[

KW_RETRIEVAL

KW_QUERY

Figure 1

The Lassen POSTGRES Classes tor Indexing and Their Linkages

a particular term from the wn_index class. The
POSTQUEL definition of this class is

create kw_term doc_rel (

termid = intd4, /* WordNet termid number */
synset = intd4, /* WordNet sense number */
docid = int4, /* document ID */

termfreq = int4) /* term frequency within
the document */

The raw frequency of occurrence of the term
in the document (termfieg) 1s included in the
kw_term_doc_rel tuple. This information 1s uscd in
the retrieval process for calculating the probability of
relevance for each document that contains the term.
The kw_doc_index class stores information on indi-
vidual documents in the database. This information
includes a unique document identifier (docid), the
location of the document (the class, the attriburte, and
the tuple in which it is contained), and whether it is
a simple attribute or a large object (with effectively
unlimited size). The kw_doc_index class also main-
tains additional statistical information, such as the
number of unigue terms found in the document. The
POSTQUEL definition is as follows:

create kw doc_index (

docid = int4, /* document ID */

reloid = oid, /* oid of relation
containing it */

attroid = oid, /* attribute definition of
attr containing it */

attrnum = int2, /* attribute number of attr
containing it */

tupleid = oid, /* tuple oid of tuple
containing it */

sourcetype = int4, /* type of object -- attribute
or large object */

doc_len = int4, /* document length in words */

doc_ulen = int4) /* number of unique words in

document */

Digital Technical Journal Vol.7 No.3 1995

The kw_sources class contains information about
the classes and attributes indexed at the class level, as
well as statistics such as the number of items indexed
from any given class. The following POSTQUEL
statement defines this class:

create kw_sources (

relname = charlsé, /* name of indexed
relation */

reloid = oid, /* o0id of indexed
relation */

attrname = charlé, /* name of indexed
attribute */

attroid = oid, /* object ID of indexed
attribute */

attrnum = int2, /* number of indexed
attribute */

attrtype = int4, /* attribute type -- large

object or otherwise */
num_indexed = int4, /* number of items
indexed */

last_tid = oid, /* oid and time for last */

last_time = abstime, /* tuple added */

tot_terms = int4, /* total terms from all
items */

tot_uterms = int4, /* total unique terms from

all items */
include_pat = text, /* simple patterns to */
exclude_pat = text) /* match for indexable
/* items */

The other classes shown in Figure 1 relate to the
indexing and retrieval processes. The Lassen prototvpe
uses the POSTGRES rules svstem to perform such
tasks as storing the clements of the bibliographic
records in an appropriate normalized form and to trig-

ger the indexing daemon.

Defining an attribute in the database as indexable
for information retrieval purposes (i.c., by appending
anew tuple to the lkw_sources definition) creates a rule
that appends the class name and attribute name to the

kw_index_flags class whenever a new tuple is appended
to the class. Another rule then starts the indexing
process for the newly appended data. Figure 2 shows
this trigger process.

The indexing process extracts each unique keyword
from the indexed attributes of the database and stores
it along with pointers to its source document and its
frequency of occurrence in kw_term_doc_rel. This
process is shown in Figure 3. The indexing daemon
and the rules system maintain other global frequency
information. For example, the overall frequency of
occurrence of terms in the database and the total num-
ber of indexed items are maintained for retrieval pro-
cessing. The indexing daemon attempts to perform
any outstanding indexing tasks before it shuts down. It
also updates the kw_doc_index tuple for a given index-
able class and attribute with a time stamp for the last
item indexed (last_tid and last_time). This permits
ongoing incremental indexing without having to
reindex older tuples.

Retrieval
The prototype version of Lassen provides ranked
retrieval of the documents indexed by the indexing
daemon using a probabilistic retrieval algorithm. This
algorithm estimates the probability of relevance for
each document based on statistical information on
term usage in a user’s natural language query and in
the database. The algorithm used in the prototype is
based on the staged logistic regression method.®

A POSTGRES user-defined function invokes ranked
retrieval processing. That is, from a user’s perspective,
ranked retrieval is performed by a simple function
call (kwsearch) in a POSTQUEL query language

POSTGRES APPEND

S

»| INDEXABLE
(ELASS

RULE-TRIGGERED » | KW_INDEX _
APPEND FLAGS

Y

RULE STARTS
FUNCTION
DAEMON_TRIGGER

ALREADY

DO NOTHING RUNNING?

START KWINDEXD AS
SEPARATE PROCESS

statement. Information from the classes created and
maintained by the indexing daemon are used to esti-
mate the probability of relevance for each indexed doc-
ument. (Note that the full power of the POSTQUEL
query language can also be used to perform conven-
tional Boolean retrieval using the classes created by the
indexing process and to combine the results of ranked
retrieval with other search criteria.) Figure 4 shows the
process involved in the probabilistic ranked retrieval
from the repository database.

The actual query to the Lassen ranked retrieval
process consists simply of a natural language statement
of the searcher’s interests. The query goes through the

KW RETRIEVE KW_SOURCES
SOURCES m\::%EXTRACT SOURCE

RETRIEVE ANY NEW
IDEXABLE ‘ TUPLES IN INDEXED
CLASSES
READ INDEXED
LARGE ATTRIBUTE OR LARGE
OBJECT OBJECT AND EXTRACT
WORDS AND FREQUENCY
WN_
EXCLUSION NORMALIZE WORD FORM KW_
USING WORDNET STOPWORDS
MORPHING AND GET |
WN_INDEX . TERMID

APPEND NEW WORDS
TO THE WN_INDEX

DICTIONARY
APPEND NEW
KW_TERAM_
DOG. REL KW_TERM_DOC_REL

TUPLE

MORE WORDS?

KwW_DOC_ APPEND NEW
INDEX KW_DOC_INDEX TUPLE

MORE
DOCUMENTS?

KW_ REPLACE KW_SOURCES
SOURCES ENTRY WITH NEW TIME

MORE
INDEXES?

YES

YES

YES

NEW INDEX
FLAGS?

SLEEP FOR A WHILE
AND START OVER FOR
X TIMES

Figure 2
The Lassen Indexing Trigger Process

Figure 3
The Lassen Indexing Daemon Process

Digital Technical Journal Vol.7 No.3 1995

53

RETRIEVE USING
KWSEARCH
FUNCTION CALL

v

NORMALIZE WORD
FORM USING WORDNET
MORPHING AND GET
TERMID

3

RETRIEVE EACH
KW_TERM_DOC_REL
TUPLE USING TERMID

!

RETRIEVE EACH
KW _DOC_INDEX
TUPLE USING DOCID

)

CALCULATE PROBABILITY
OF RELEVANCE USING
STAGED LOGISTIC
REGRESSION FORMULA

Y

APPEND ENTRIES TO

KW
RETRIEVAL
KW_RETRIEVAL AND
KW QUERY
KW _QUERY

RETURN
QUERYID

WN_
EXCLUSION
WN_INDEX ‘
KW_TERM
DOC_REL

KW DOC
INDEX

KW._
STOPWORDS

Figure 4
The Lassen Retrieval Process

same processing steps as documents in the mdexing
process. The individual words of the query are
extracted and located in the wn_index dictionary
(after removing common words or “stopwords™). The
termids for matching words from wn_index are then
used to retrieve all the tuples in kw_term_doc_rel that
contain the term. For each unique document identifier
in this list of tuples, the matching kw_doc_index tuple
is retrieved. With the frequency informarion contained
in kw_term_doc_rel and kw_doc_index, the estimated
probabilitv of relevance is calculated for cach docu-
ment that contains at Jeast once term in common with
the query. The formulae used in the calculation are
based on experiments with full-text retrieval.® The
basic equation for the probabilistic model used in
Lassen states the following: The probability of the
event that a document is relevant R, given that there
is a set of V“clues” associated with that document, A,
fori=1,2,... N\ is

log O(RIA,,...,Ay) = log O(R) + D.[log O(RIA,)
~logO(R)], (1)

Digital Technical Journal Vol.7 No.3 1995

where for any cvents £ and F! the odds O(EIL) is
PEVE)PCENL), Le., a simple transformation of the
probabilitics. Because there is not enough information
to compute the exact probability of relevance for any
user and any document, an estimation is derived based
on logistic regression of a set of clues (usually terms or
words) contained i some sample of queries and the
documents previously judged to be relevant to those
querics. Fora set of M terms that occur in both a query
and a given document, the regression equation is of
the form

M
log O(RI A Ay) = ¢+ ¢+ fIM) D X, + - -
A\ !

+c SIM) D K+ M+ M, (2)
1

where there are K retrieval variables X, ;o used to
characterize each term or clue, and the ¢; coefficients
are constant for a given training set of queries and
documents. The coetficients used in the protonpe
were derived from analvsis of full-text documents

and queries (with relevance judgments) from the
TIPSTER informartion retrieval test collection.” The
derivation of this formula 1s given iy “Probabilistic
Retrieval Based on Staged Logistic Regression.” The
full retrieval cquation used for the prototvpe version of
retrieval described in this section 1s

log O(RIA,...,Ay) =~ — 351

/ \ \
+ \37 7 1[374 21\,”_1 + 0.330]Z/\”“

1Y)
~0.1937 EY] +0.0929.47, (3)

where

X, 18 the quotient of the number of imes the mth
rerm occurs in the query and the sum of the tortal
number of terms in the query plus 35;

X, 18 the logarithm of the quotient arrived at by
dividing the number of times the mith rerm occurs in
the document by the sum of the toral number of terms
in the document plus 80;

X, 3 is the logarithm of the quotient arnived at by
dividing the number of times the nith term oceurs in
the databasc (i.c., in all documents) by rhe toral num-
ber of terms in the collection;

M is the number of terms held i common by the
querv and the document.

Note that the W* term called for in Equation 2 was
not found to provide any significant difference in the
results and was omitred from kquation 3. The con-
stants 35 and 80, which were used in X, and X, >,
ave arbitrary but appear to offer the best results when
set to the average size of a query and the average size
ot a document for the particular darabase. The
sequence of operations performed to calculate the
probability of relevance is shown in Figure 5. Note
that in the figure, k1, ..., £5 represent the constants
of Equation 3.

The probability of relevance 1s calculated for each
document (bv converting the logarithmic odds to a
probability) and is stored along wirh a unique query
identifier, the document identifier, and some location

information in the kw_retrieval class. The query itself

CALCULATE NUMBER OF
TERMS IN COMMON
BETWEEN QUERY AND
DOCUMENT M

FOR EACH DOCUMENT
CONTAINING ANY TERM
IN THE QUERY

RETURN

v

FOR EACH TERM m THAT
OCCURS IN THE QUERY

v

SUM FREQUENCY OF
TERM IN QUERY DIVIDED
BY ALL TERM
OCCURENCES PLUS A
CONSTANT

SXm

v

CALCULATE LOGARITHM
OF SUM OF NUMBER OF
TIMES TERM OCCURS IN
DOCUMENT DIVIDED BY
TOTAL TERMS IN DOCUMENT
PLUS A CONSTANT

2Xma

v

CALCULATE LOGARITHM
OF SUM OF NUMBER OF
TIMES TERM OCCURS IN
DATABASE DIVIDED BY
TOTAL TERM OCCURENCES
IN DATABASE

-S-Xm,a

YES

NO

f

MORE DOCS?

CALCULATE DOCUMENT
PROBABILITY OF RELEVANCE
P(R)=1/1+e (- LOG O(R))

CALCULATE DOCUMENT LOG
ODDS OF RELEVANCE
LOG O(R) = K1 + (S~ [k2 * S X1

+ K3 SXmo + kd S Xmal)

+ k5 M

A

CALCULATE
S=1/({VM+1)

A

Figure 5

The Caleulation for the Staged Logistic Regression Probabilistic Ranking Process

Digiral Technical Journal Vol.7 No.3 1995

[531

3]

and 1ts unique identifier are stored in the kw_query
class. To see the results of the retrieval operation, the
querv identifier is used to retrieve the appropriate
kw_retrieval tuples, ranked in order according to the
estimated probability of relevance. The kw_retrieval
and kw_query classes have the tollowing POSTQUEL
definitions:

create kw_query (

query_id = int4, /* ID number */
query_user = charle, /* POSTGRES user name */
query_text = text) /* the actual query */

create kw_retrieval (

query_id = int4, /* link to the query */
doc_id = int4, /* document ID number */
rel_oid = oid, /* location of doc */
attr_oid = oid,

attr_num = int2,

tuple_id = oid,

doc_len = intd4, /* size of document */

doc_match_terms = int4, /* number of query terms
in the document */

doc_prob_rel = float8) /* estimated probability
of relevance */

The algorithm used for ranked retrieval in the
Lassen prototvpe was tested against a number ot other
svstems and algorithms as part of the TREC competi-
ton and provided excellent retrieval performance.®
We have found that the retrieval coefticients used in
the formula derived from analvsis of the TIPSTER col-
lection appear to work well for a variety of document
tvpes. In principle, the staged logistic regression
retrieval coefticients should be adapred to the particu-
lar characteristics of the database bv collecting rele-
vance judgments from actual users and reapplving the
staged logistic regression analvsis to derive new cocffi-
cients. This activity has not been performed tor this
prototype Implementation.

The primarv contribution of the Lassen protorvpe
has been as a proof-of-concept for the integration of
full-text indexing and ranked retrieval operations in
a relational darabase management svstem. The proto-
type implementation that we have described in this
section has a number of problems. For example, in the
prototvpe design for indexing and retrieval opcrations,
all the informarion used is visible in user-accessible
classes in the database. Also, the overhead is fairlv
high, in terms of storage and processing time, for
maintaining the indexing and retrieval information in
this way. For example, POSTGRES allocates 40 byres
of system information for cach tuple in a class, and
indexing can take several seconds per document.

Currently, we are investigating a class of new access
methods to support indexing and retrieval in a more
efficient fashion. The class of methods involves declar-
ing some POSTGRES functions thar can extract
subelements of a given tvpe of attribute (such as words
in a text document) and generate indexes for each of
the subelements extracted. Other tvpes of data might

Digital Technical Journal Vol.7 No.3 19935

also benefit from this class of access methods. For
example, functions that extract subelements like geo-
metric shapes from images might be used to generate
subelement indexes of image collections. Particular
index element extraction methods can be of great
value iy providing access to the sort of information
stored in the Sequoia 2000 Electronic Repository. The
following scction describes one such index extraction
method developed for the special needs of Sequoia

2000 data.

GIPSY: Automatic Georeferencing of Text

Environmental Impact Reports (EIRs), journal arti-
cles, technical reports, and myriad other text items
related ro global change research that might be
mncluded in the Sequoia 2000 database are examples of
a class of documents that discuss or refer to particular
places or regions. A common retrieval task is to find
the items that refer to or concentrate on a specific geo-
graphic region. Although ir is possible to have a
human catalog each item for location, one goal of the
Elecrronic Repository was to make all indexing and
retricval automaric, thus elimimating the requirement
for human analvsis and classification of documents in
the database. Therefore, part of our rescarch involved
developing methods to perform automatic georefer-
encing of text documents, that is, to automatically
index and retrteve a document according ro the geo-
graphic locarions discussed or displaved in or other-
wise associated with its content.

In Lassen and most other tull-text information
rerrieval systems, searches with a geographical compo-
nent, such as “Find all documents whose contents per-
rain to location X,” are not supported directly by
indexing, query, or display functions. Instead, these
searches work only by references to named placcs,
essentially as side eftects of kevword indexing. Whereas
human indexers are usually able to understand and
apply correct references to a document, the costs in
time and money of using geographically trained human
indexers to read and index the entire contents ot a large
full-text collection are prohibitive. Even in cases where
a document is meticulously indexed manually, geo-
graphic index terms consisting of kevwords (rexe
strings) have several well-documented problems with
ambiguity, svnonvmy, and name changes over time."

Advantages of the GIPSY Model

To deal with these problems, we developed a new
model for supporting geographically based access to
text.”” In this model, words and phrases that contain
geographic place names or geographic characteristics
are cxtracted from documents and used as input to
certain database functions. These functions use spatial
reasoning and statistical methods to approximate the

geographic position being referenced in the text. The
actual index terms assigned to a document are a set of
coordinate polvgons that describe an area on the
earth’s surface in a standard geographical projection
svstem. Using coordinates instead of names for the
place or geographic characteristic ofters a number of
advantages.

= Uniqueness. Place names are not unique, ¢.g.,
Venice, California, and Venice, Italy, are not appar-
ently different without the qualifving larger region
to differentiate them. Using coordinates removes
this ambiguity.

= Immunity to spatial boundary changes. Political
boundaries change over time, leading to contusion
about the precise area being referred to. Coordi-
nates do not depend on political boundaries.

= Immunity to name changes. Geographic names
change over time, making it difficult for a user to
retrieve all information that has been written about
an arca during any extended time period. Coordi-
nates remove this ambiguity.

» Immunity to spatial, naming, and spelling varia-
tion. Names and terms vary not onlyv over tme but
also In contemporary usage. Geographic names
vary in spelling over time and by language. Areas of
interest to the user will often be given place names
designated only in the context of a specific docu-
ment or project. Such variations occur frequently
for studies done in oceanic locations. Names associ-
ated wirh these studies are unknown to most users.
Coordinates are not subject to these kinds of verbal
variations.

Indexing texts and other objects (¢.g., photographs,
videos, and remote sensing dara sets) by coordinates
also permits the use of a graphical interface to the
information in the darabase, where representations of
the objects are plotted on a map. A map-based graphi-
cal interface has several advantages over one that uses
text terms or one that simply uses numerical access to
coordinates. As Furnas suggests, humans use difterent
cognitive structures for graphical information than for
verbal information, and spatial queries cannot be fully
simulated by verbal queries.” Because manv geo-
graphical queries are inherently spatial, a graphical
model is more intuitive. This is supported by Morris’
observation that users given the choice between menu
and graphical interfaces to a geographic database pre-
ferred the graphical mode.”” A graphical interface,
such as a map, also allows for a dense presentation of
information.'

To address the needs of global change scientists, the
Sequoia 2000 project team proposed a new browser
paradigm."” This system, called Tioga, displays infor-
mation topologically according to continuous charac-
teristics that are attributes of the data.™ For example,

documents may be displaved on a map according to
their latitude and longitude. Documents may also be
displayed according to the time at which they were
generated and the time to which they refer, as well as
by more abstract functions such as the reading level of
the document and the author’s attitudes as expressed
in the document. A prototype of the geographical
browsing component was included in the Lassen
Geographic Browser, which is shown in Figure 6.

This browser allows any georeferenced object in the
database to be indicated by an icon on the map. The
user emplovs the mouse to center the map on any
location and to zoom in or out for more or less map
detail. Icons can be made to appear at any coordinates
and for any range of magnification values. When an
icon is selected by the user, a menu of the objects geo-
referenced at the icon coordinates and detail level are
displaved tor selection.

An Algorithm to Georeference Text

The advantages of georeferencing are apparent. Not so
apparent is how to perform such a task automatically.
We developed the following three-part thesaurus-
based algorithm to explore this task; the algorithm pro-
vides the basis for georeferencing in GIPSY."

1. Identifv geographic place names and phrases. This
step attempts to recognize all relevant content-
bearing geographic words and phrases. The parser
for this step must “understand” how to identifv
geographic terminology of two tvpes:

a. Terms that march objects or attributes in the
dara set. This step requires a large thesaurus of
geographic names and terms, partially hand built
and partially automatically generated.

b. Lexical constructs that contain spatial informa-
%

ton, ¢.g., “adjacent to the coast,” “south of the

delra,” and “between the river and the highwav.”

To implement this part of the algorithm, a list of
the most commonly occurring constructs must be
created and integrated into a thesaurus.

2. Locate pertinent data. The output of the parser is
passed to a function that retrieves geographic coor-
dinate data pertinent to the extracted terms and
phrases. Sparially indexed data used in this step can
include, for example, name, size, and location of
cities and states; name and location of endangered
species; and name, location, and bioregional char-
acteristics of different climatic regions. The system
must identifv the spatial locations that most closely
match the geographic terms extracted by the parser
and, when geographic modifiers are used, heuristi-
cally modify the area of coverage. For example, the
phrase “south of Lake Tahoe™ will map to the area
south of Lake Tahoe, covering approximately the
same volume. This spatial representation is, by

Digiral Technical Journal Vol.7 No.3 1995

| Zoom (times)

_Latitude (degrees _| Longitude (degrees)

| i} ! T (2
10 3 | 1
Latitude (minutes) P _Longitude (minutes) F Aspect Correction
(2 i [T — |l)
1 i 26 120

——— e — = — = "

Digital Technical Jowrnal

Display Map Hide Icons

Figure 6

Screen from the Lassen Geographic Browser

necessity, the result of an arbitrary assumption
of size, but its purposc is to provide only partial
evidence to be used in determining locations as
described below.

Since geopositional data for land use (¢.g., citics,
schools, and industrial arcas) and habirars (c.g.,
wetlands, rivers, forests, and indigenous specics)
15 also avatlable, extracred kevwords and phrases for
these tvpes of data must be recognized. The the-
saurus entries for this data should incorporate sev-
eral other tvpes of information, such as synonvimy
(e.g., Latin and common names of specics) and
membership (e.g., wetlands contain cattails, but
geopositional data on catrails may not exist, so we
must use their mention as weak evidence of a dis-
cussion of wetlands and use that data instecad).

For our implementation ot GIPSY, we used two pri-
mary data sets to construct the thesaurus. The first
was a subset of the Unirted States Geological
Survey’s Geographic Names Information Svystem
(GNIS)." This data set contains latitude /longitude
point coordinates associated with over 60,000 geo-
graphic place names in Calitornia. To facilitate

Vol. 7 No.3 1993

GeoBrowse Help

AVHRR Clip ‘ Cancel Display l

comparison with other data sets, the GNIS
latitude /longitude coordinates were converred ro
the Lambert-Azimuthal projection. Examples of
place names with associated points include

University of California Davis: —1867878 —471379
Redding: =1863339 —234894

Dara for land use and habitar dara was derived in
rhe United States Geological Survev’s Geographic
[nformation Rerrieval and Analvsis Svstem
(GIRAS).Y

Fach identified name, phrase, or region description
18 associated with onc or more polvgons that may
be the place discussed in the text. Weights can be
assigned to each of these polygons based on the fre-
quency of use of its associated term or phrase in the
text being indexed and in the thesaurus. Many rele-
vant terms do not exactly match place names or the
feature and land use types listed above. For exam-
ple, alfalfa is a crop grown in California and should
be associated with the crop data from the GIRAS
land use dara set. The thesaurus was therefore
extended, both manually and by extraction of

relationships from the WordNcer thesaurus, to
include the following types of terms:’
svionvmy
= = svnonvm
kind-of relationships
~ = hyponym (maple is a ~ of tree)

@ : = hypernym (tree is a @ of maple)
part-of relationships
= mcronvm (fingerisa # of hand)
% : = holonvm (hand is a % of finger)
& 1 = cvidonvm (pine is a & of shortleaf
pine)

. Overlay polvgons to estimate approximate loca-
tions. The objective of this step is to combine the
cvidence accumulated in the preceding step and
infer a set of polvgons that provides a reasonable
approximation of the geographical locations men-
tioned in the rext. Bach geophirase. weight. polygon
tuple can be represented as a three-dimensional
“exrruded” polygon whose base is in the plane of
the - and z-axes and whose height extends upward

(@3]

on the y-axis a distance proportional to its weight

(sec Figure 7a). As new polvgons arc added, scveral

CASES MAY AFISC.

a. If the base of a polvgon being added does not
intersect with the base of any other polygons, it
is simply laid on the base map beginning at =0
{see Figure 7Db).

b. It the polvgon being added is completely con-
tained within a polvgon that alrcady exists on the
geopositional skvline, it is laid on top of that
extruded polygon, i.e., 1ts base plane is posi-
tioned higher on the j-axis (sce Figure 7¢).

¢. Ifthe polvgon being added intersects but is not
wholly contained by one or more polygons, the
polvgon being added is split. The intersecting
portion is laid on top of the existing polygon and
the nonintersecting portion is positioned at a
lower level (i.c., at y=0). To minimize fragmen-
ration in this case, polvgons arc sorted by sizce
prior to being positioned on the skvline (see
Figure 7d).

In effect, the extruded polygons, when laid
together, are “summed” by weight to form a geoposi-
tional skyline whose peaks approximate the geograph-
ical locations being referenced in the text. The
geographic coordinates assigned to the text segment
being indexed are determined bv choosing a threshold
of elevation zin the skyline, taking the x-z planc at z.
and using the polygons at the selected elevation.
Raising the elevation of the threshold will tend to
increase the accuracy of the retrieval, whereas lowering
the elevation tends to include other similar regions.

To see the results of this process in the GIPSY proto-
type, consider the following text from a publication of
the California Department of Warter Resources:

The proposed project is the construction of a new
State Warer Project (SWP) facility, the Coastal Branch,
Phase 11, bv the Department of Warer Resources
(DWR) and a local distribution facility, the Mission
Hills Extension, by water purveyvors of northern Santa
Barbara County. This proposed buried pipelinc
would deliver 25,000 acre-feet per vear (AF/YR) of
SWP water to San Luis Obispo County Flood Control
and Water Conscrvation District (SLOCFCWCD) and
27,723 AF/YR 1o Santa Barbara County Flood Control
and Water Conscrvation District (SBCFCWCD)....
This extension would serve the South Coast and
Upper Santa Ynez Vallev. DWR and the Santa Barbara
Warer Purvevors Agency are jointly producing an
EIR for rthe Santa Ynez Extension. The Santa
Ynez Extension Draft EIR is scheduled for release in
spring 1991,

The resulting surtace plot appears in Figure 8. The
figure contains a gridded representation of the state of
California, which is elevated to distinguish it from the
base of the grid. The northern part of the state is on
the left-hand side of the image. The towers rising over
the state’s shape represent polvgons in the skyline
generated by GIPSY’s interpretation of the text. The
largest towers occur in the area referred to by the rext,
primarily centered on Santa Barbara County, San Luis
Obispo, and the Santa Ynez Valley area.

The surface plots generated in this fashion can also
be used for browsing and retrieval. For example, the
rwo-dimensional base of a polvgon with a thickness
above a certain threshold can be assigned as a coordi-
nate index to a document. These rwo-dimensional
polygons might then be displaved as icons on a map
browser such as the one shown in Figure 6.

Future Work

Research remains to be done on several extensions to
the existing GIPSY implementation. Because a geo-
graphic knowledge base and spatial reasoning are fun-
damental to the georeferencing process, they have
been the focus of initial research eftorts.

The existing prototvpe can be complemented by
the addition of more sophisticated natural language
processing. For example, spatial reasoning and geo-
graphic data could be combined with parsing tech-
niques to develop semantic representations of the
text. Adjacency indicators, such as “south of” or
“between,” should be recognized by a parser. Also,
the work on document segmentation described below
could be used to explore the locality of reference to
geographic entities within full-text documents.
GIPSY’s technique may be most effective when
applied to a paragraph or section level of a text instead
of to the entire document.

Digiral Technical Journal Vol.7 No.3 1995

60

(a) The "weight” of a polygon, indicated by the
vertical arrow, is interpreted as “thickness.”

ﬁgﬁ

Two adjacent polygons do not affect each other;
each is merely assigned its appropriate “thickness.”

(c) When one polygon subsumes another, their
“thicknesses” in the area of overlap are summed.

ﬂ —
When two polygons intersect, their “thicknesses”
are summed in the area of overlap.

Figure 7
Overlayving Polvgons to Estimate Approximate Locations

Digital Technical Journal Vol.7 No.3 1995

Figure 8
Surface Plot Produced from the State Water Project Text

TextTiling: Enhancing Retrieval through
Automatic Subtopic Identification

Full-length documents have only recently become
available on-line in large quantities, although technical
abstracts, short newswire texts, and legal documents
have been accessible for many vears.” The Jarge major-
itv of on-line information has been bibliographic (e.g.,
authors, titles, and abstracts) instcad of the tull text of
the document. For this reason, most information
retriecval methods are better suited for accessing
abstracts than for accessing longer documents. Part of
the repository research was an exploration of new
approaches to information retrieval particularly suited
to full-length texts, such as those expected in the
Sequoia 2000 database.

A problem with applying traditional information
retrieval methods to full-length text documents is that
the structure of full-length documents is quite differ-
ent from that of abstracts. (In this paper, “full-length
document” refers to expository text of any length.
Tvpical examples are a short magazine article and
a 50-page technical report. We exclude documents
composed of headlines, short advertisements, and any
other disjointed texts of whatever length. We also
assume that the document does not have detailed
orthographically marked structure. Croft, Krovetz,
and Turtle describe work that takes advantage of this
kind of information.**) One wav to view an expository
text is as a sequence of subtopics set against a backdrop
of one or two main topics. A fong text comprises many
ditterent subtopics that may be related to one another
and to the backdrop in many different ways. The main
topics of a text are discussed in its abstract, if one
exists, but subtopics are usually not mentioned.
Theretore, instead of querving against the entire
content of'a document, a user should be able to issue a

query about a coherent subpart, or subtopic, of a full-
length document, and that subtopic should be specifi-
able with respect to the document’s main topic(s).

Consider a Discover magazine article about the
Magellan space probe’s exploration of Venus.”
A reader divided this 23-paragraph article into the fol-
lowing segments with the labels shown, where the
numbers indicate paragraph numbers:

1-2 Intro to Magellan space probe
3-4 Intro to Venus
5-7 Lack of craters
8-11 Evidence of volcanic action
12-15 River Stvx
16-18 Crustal spreading
19-21 Recent volcanism
22-23 Future of Magellan

Assume that the topic of volcanic activity is of
interest to a user. Crucial to a system’s decision to
retricve this document is the knowledge that a dense
discussion of volcanic activity, rather than a passing ref-
erence, appears. Since volcanism is not one of the
text’s two main topics, the number of references to
this term will probably not dominate the statistics of
term frequency. On the other hand, document selec-
tion should not necessarily be based on the number of
references to the target terms.

The goal should be to determine whether or not
a relevant discussion of a concept or topic appears.
A simple approach to distinguishing between a true
discussion and a passing reference is to determine the
locality of the references. In the computer science
operating svstems literature, locality refers to the fact
that over time, memory access patterns tend to con-
centrate in localized clusters rather than be distributed
evenly throughout memory. Similarly, in full-length
texts, the close proximity of members of a set of

Digital Technical Journal Vol.7 No.3 1995 6l

62

references to a particular conceptis a good indicaror of
topicality. For example, the term volcanisin occurs 5
tmes in the Magellan article, the first four insrances of
which occur in four adjacent paragraphs, along with
accompanving discussion. In contrast, the rerm scien-
tists. which is not a valid subropic, occurs 13 times, dis-
ibuted somewhat evenly throughout. By its very
nature, a subropic will nort be discussed throughout an
entire text. Similarly, true subtopics are not indicated
by only passing references. The termy belly dencer
occurs only once, and its relared terms are confined to
the onc sentence it appears in. As its usage is only
a passing reference, bellv dancing is not a true subtopic
of this text.

Our solution to the problem of retaming valid
subtopical discussions while ar the same tme avoid-
ing being fooled by passing references is to make
use of locality information and to partition docu-
ments according to their subtopical structure. This
approach’s capacity for improving a standard informa-
ton retrieval task has been verified by information
retrieval experiments using full-text test collections
from the TIPSTER database.”

One way to get an approximation of the subropic
structure is to break the document into paragraphs, or
for very long documents, scctions. In both cases, this
entails using the orthographic marking supplicd by the
author to determine topic boundaries.

Another way to approximate local structure in long
documents is to divide the documents into even-sized
pieces, without regard for anv boundarics. This
approach 1s not practical, however, because we are
interested in exploring the performance of motivated
segmentation, Le., scgmentation that reflecrs the
text’s true underlying subtopic structure, which often
spans paragraph boundarics.

Toward this end, we have developed TexrTiling,
a method for partitioning full-length text documents
into coherent multiparagraph units called tiles.”
TextTiling approximates the subtopic structure of
a document by using patterns of lexical connectivity to
find coherent subdiscussions. The lavout of the tiles 1s
meeant to reflect the patrern ot subtopics contained in
an expository text. The approach uses quantitative lex-
ical analvses to determine the extent of the riles and to
classity them with respect to a general knowledge base.
The riles have been tound to correspond well to
human judgments of the major subtopic boundarics of

science magazine articles.

The algorithm is a nvo-step process. First, all pairs of
adjacent blocks of text (where blocks are usually three
to five sentences long) are compared and assigned
a similarity value. Second, the resulting sequence of
similarity values, after being graphed and smoothed, is
examined for peaks and valleys. High similarity values,
which imply that the adjacent blocks cohere well, rend

Digiral Technical Journal \ol.7 No.3 1995

to form peaks, wheycas low similarity values, which
mdicate a potential boundary benween tiles, create val-
leys. Figure 9 shows such a graph for the Discover
magazine article mentioned earlicr. The verrical lines
indicate where human judges thought the topic
boundaries should be placed. The graph shows the
computed similarity of adjacent blocks of text. Peaks
indicate coherency, and valleys indicate potential
breaks benween wles.

The one adjustable parameter is the size of the block
usced for comparison. This value, & varies slightlv from
text to text. As a heuristic, it is assigned the average
paragraph length (in sentences), although the block
size that best matches the human judgment dara 15
sometimes one sentence greater or smaller. Actual
paragraphs are not uscd because their lengths can be
highly irregular, leading to unbalanced comparisons.

Stmilarity 1s measured by using a variation of the
thadf (rerm frequency times inverse document fre-
quencey) measurement.™ In standard cfadf] terms that
are frequent in an individual document burt relatively
mfrequent throughout the corpus are considered to
be good distinguishers of the contents of the individ-
ual document. In TextTiling, each block of £ sen-
rences is treated as a unir, and the frequency of a term
within cach block is compared to its frequency i the
entire document. (Note that the algorithm uses a large
stop list; i.c., closed class words and other very fre-
quent terms are omitted from the calculation.) This
approach helps bring our a distinction bernween local
and global extent of terms. A term thatis discussed fre-
quently within a tocalized cluster {thus indicating
a cohesive passage) will be weighted more heavily than
a rerm thar appears frequently but scattered evenly
throughout the entire document, or mfrequently
within one block. Thus if adjacent blocks share many
terms, and those shared terms are weighted heavily,
there is strong evidence that the adjacent blocks
cohere with one another,

0.22}
0.20f
0.18
0.16

>

=014
ang

j 0.12

Z0.10

)
0.08
0.06
0.04
0.02

0 10 20 30 40 50 60 70 80
SENTENCE GAP NUMBER

Figure 9

Results of TextTiling a 77-sentence Science Article

Similarity between blocks is caleulated by the follow-
ing cosine measure: Given two text blocks £1 and 52,

H
2 Uy Wna

— = b
211"_211‘;
i 1

(=1

cos (b1,h2) =

where franges over all the terms in the document, and
i,y Is the thidfweight assigned to term ¢ in block b1
Thus, if the similarity score berween two blocks is
high, then not only do the blocks have terms in com-
mon, bur the common terms are relatively rare with
respect to the rest of the document. The evidence in
the reverse is not as conclusive. Ifadjacenr blocks have
a low similarity: measure, this does not necessarily
mean that the blocks cohere. In practice, however, this
negative evidence is often justified.

The graph is then smoothed using a discrete convo-
lution® of the similarity funcrion with the function
hy(.), where

by (1) = {2 0, otherwise.

The resultis smoothed further with a simple median
smoothing algorithm to climinate small local min-
ima.* Tile boundaries are determined by locating the
lowermost portions of vallevs in the resulting plot.
The actual values of the similarity measures are not
ative differences are what

taken nto account; the re
are of consequence.
Retrieval processing should reflect the assumption
that full-length text is meaningfully different in struc-
ture from abstracts and short articles. We have con-
ducted retrieval experiments that demonstrate that
raking text structure mto account can produce better
ts than using tull-length documents in the standard
way. " By working within this paradigm, we have
developed an approach to vector-space-based retricval
that appears to work better than retrieving against entire
documents or against scgments or paragraphs alonc.

I'esu

The resulting retrieval method matches a query
against motivated segments and then sums the scorces
trom the top segments for cach document. The high-
est resulting sums indicare which documents should
be retrieved. In our test set, this method producced
higher precision and recall than retricving against
cntire documents or against segments or paragraphs
alone.? Although the vector-space model of retrieval
was used for these experiments, probabilistic models

such as the one used in Lassen are equallv applicable,
and the method should provide similar improvement
in rerrieval performance.

We believe thar recognizing the structure of full-
length text for the purposes of information retricval

is very important and will produce considerable
improvement in retrieval effectiveness over most exist-
ing similaritv-based rechniques.

Conclusion

The Sequoia 2000 Electronte Repository project has
provided a test bed for developing and evaluating tech-
nologics required for etfective and efficient access to
the digital libraries of the future. We can expect thatas
digital librarics profiterate and include vast darabasces of
informarion linked rogerher by high-bandwidth net-
works, they must support all current and future media
in an easily accessible and content-addressable fashion.

The work begun on the Sequora 2000 Electronic
Repository is continuing under UC Berkeley’s digital
library project sponsored jointlv by rthe National
Science Foundation (NSF), the National Acronautics
and Space Administration (NASA), and the Detense
Advanced Projects Agency (DARDA).
Digital libraries arc a fledgling technology with no
firm standards, architectures, or even consensus
notions of what they are and how thev are to work.
Our goal in this ongoing rescarch is to develop the
means of placing the contents of this developing
global virtual librarv at the tingertips of a worldwide
clientele. Achieving this goal will vequire the applica-
rion of advanced rechniques for information retrieval,
information filtering, resource discovery, and the
application of new rechniques for automarically ana-
lyzing and characterizing data sources ranging from
texes to videos. Much of the work needed o enable
our vision of these new rechnologics was pioneered in
the Sequoia 2000 Electronic Repository project.

Rescarch

References

1. 1. Dozicr, “How Sequoia 2000 Addresses Issucs in
Dara and Intormation Svstems ftor Global Change,”
Sequoia 2000 Technical Report 92 /14 (S2K-92-14)
(Berkelev, Calif: University of’ California, Berkeley,
1992) (ftp://s2k-ttp.cs.berkeleviedu,/pub/sequoia/
tech-teports/s2k-9 2-14/52k-92- 14 ps).

[\

M. Stoncbraker, “An Overview of the Sequoia 2000
Project,” Digital Technical Jorinal vol. 7, no. 3
(1995, thisissuc): 39-49.

3. M. Sroncbraker and G. Kemnitz, “The POSTGRES
Next-generation Database Management Svstem,”
Communtications of the ACM. vol. 34, no. 10 (1991):
78-92.

4. N. Fubhr, “A DProbabilistic Relational Model for
the Integration of [R and Darabascs,” PProceediings
of the Sixteenth Annual International ACH
SIGIR Confercnce on Research and Development
in Information Retricval (SIGIR "93). Ditsburgh,
Tune 27-July I, 1993 (New York: Association for
Compuring Machinery, 1993): 309-317.

Digital Techmeal Journal Vol. 7 No. 3 1995

63

64

9.

10.

14.

16.

17.

Digital Technical Journal

Do Blair, “An Extended Relational Document
Rerrieval Model,” Information Processing

Management. vol. 24 (1988): 349-371.

R. Larson, “Design and Development of a Neowork-
Based Electronic Library,” Naigating the Networks:
Proceedings of the ASIS Midyear Meeting. Portland,
Oregon, May 21-25, 1994 (Mcdford, N.J.: Learned
Information, Inc., 1994): 95-114. Also available as
Scquoia 2000 Technical Report 94/54, Julv 1994
{ftp:/ /s2k-ftp.cs.berkelev.edu/pub/scquoia/tech-
reports/s2k-9 4-54 /s2k-94-54 .ps).

G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and
K. Miller, “Five Papers on WordNet,” CSL Report 43
(Princeton, N.J.o Princeton Universiev: Cognitive
Science Laboratory, 1990).

- W. Cooper, F. Gey, and D. Dabney, “Probabilistic

Retrieval Based on Staged Logistic Regression,” Pro-
ceedings of the Fifteenth Annal hiternetional AC
SIGIR Conference on Research and Development in
Information Retrieval (SIGIK "9.2). Copenhagen,
Denmark, June 21-24, 1992 (New York: Association
for Compurting Machinery, 1992): 198-210.

. Harman, “The DARPA TIPSTER Project,” SIGIR
Fortem. vol. 26, n0. 2 (1992): 26-28.

W. Cooper, A. Chen, and F. Gey, “Experiments in the
Probabilistic Retrieval of Full Text Documents,” Text
Retricral Conference (TREC-3) Draft Conference
Papers (Gaithersburg, Md.: Natonal Insritute of
Standards and Technology, 1994).

. A, Griftiths, “SAGIS: A Proposal tor a Sardinian Geo-

graphical Informartion Svstem and an Assessment of
Alternative Implementation Strategies,” fournel
of hiformation Science. vol. 15 (1989): 261-267.

. Holmies, “Compurers and Geographic Information
Access,” Meridian. vol. 4 (1990): 37-49.

A. Woodruff and C. Plaunt, “GIPSY: Georeferenced
Information Processing SYstem,” Journal of the
American Sociely for Information Science. vol. 45,
10. 9 (1994): 645-655.

G. Furnas, “New Graphic Reasoning Modcls for
Understanding Graphical Intertaces,” Human Fec-
tors in Computing Systems: Reaching Through
Technology Proceedings (CHI 91 Conference).
New Orleans, April-Mav 1991 (New York: Association
for Computing Machinery, 1991): 71-78.

. B, Morris, “CARTO-NET: Graphic Rerrieval and

Management in an Automated Map Library,” Special
Libraries Association. Geography and Map Divi-
sion Bulletin, vol. 152 (1988): 19-35.

C. McCann, M. Tavl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>