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Editor's 
Introduction 

Digital recently announced record- 
breaking 30,390 tpmC performance 
on a Digital UNIX cluster of  64-bit 
RISC AlphaScrver systems. In  this 
issue, engineers from the UNIX team 
describe the key technologies that 
enable thcse near supercomputer 
performance levels as \vcll as provide 
the cluster characteristics of  high 
availability and scalability. Also pre- 
sented in this issue are advanced 
UNIX programming tools for masi- 
mizing performance, X servcr soft- 
ware that supports tlie Microsoft 
family of  operating systems, and new 
network directory serviccs that sim- 
plifj management. 

First defined by Digital UI the early 
1980s, clustcrs are highly available, 
scalable multicomputer systems built 
with standard parts and offering the 
advantages ofsingle-computer systems. 
Wayne Cardoza, Fred Glover, and 
Sandy Snaman compare clusters with 
other types ofmulticoniputer config- 
urations and describe the major com- 
ponents o f  Digital's newest cluster 
in~plementation, TruClustcr systems, 
for the 64-bit UNIX environment. 
The  cluster interconnect, called 
MEMORY CHANNEL, is critical to  
the cluster's outstanding performance. 
MEIVORY CHANNEL implements 
clusterwide virtual shared memory 
and reduces overhead and latency by 
two to three orders of  magnitude 
over conventional interconnects. 

AJso developed for the Digital 
UNIX environment (version 4.0) are 
two program analysis and optimiza- 
tion tools-OM and Atom. The  tool 
technology originated in Digital's 
Westcrn Rescarch Laboratory, whcre 
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rescarchers focused on providing 
performance diagnosis and improve- 
ments for large customer applications. 
Sofnvarc developers Linda Wilson, 
Craig Neth, and Mike Rickabaugh 
from the UNIX Development Envi- 
ronment Group dcscribe the object 
modification tools and the flexibility 
they provide over traditional tools 
that are implcmented in the realm o f  
compilers. In  addition to  demonstrat- 
ing practical application of  the tools, 
the authors cxaminc the process o f  
transferring technology from research 
to development. 

For mixed operating system 
environments, Digital developed 
Windows-bascd X scrver software, 
callcd excursion, to  allow the win- 
dows of  a remote host running UNIX 
or OpenVMS to display on  a desk- 
top running the Microsoft Windows 
operating system. The  latest version 
of  excursion, described here by John 
Freitas, Jim Peterson, Scot Aurenz, 
Chuck Guldenschuh, and Paul 
Ranauro, is \vholly rewritten t o  masi- 
mize graphics performance and t o  
support thc k~ll range of  Windows 
platforms: Windows, Windows 95, 
and Windows NT. This ncw version 
is based 011 the X Window System 
version 11, release 6 protocol from 
the X Consortium. 

T w o  network directory services 
that reduce con~plexity and increase 
choices for n c ~ v o r k  managers are the 
subjects of  our  next papers. The  first 
is designed for lnultiple networked 
environments; Integrated Directory 
Services (IDS) software integrates 
multiple scrvices into one directory- 
service-independent systcm. Margaret 
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Olson, Laura Holly, and Colin Strutt 
outline the problems that have lim- 
ited thc use ofdirectory serviccs and 
the different design approaches the 
team considered t o  simpliljr directory 
services use and make it more attrac- 
tive. They then describe the IDS 
extensible, object-based framework, 
which con~prises an application 
programming interface and a ser- 
vice provider interface. Nest, Rich 
Rosenbaum and Stan Goldfarb 
prcsent thc Common Dircctory 
Interface (CDI) for DECnet/OSI. 
Implemented as shared libraries in 
thc Digital UNIX and OpenVMS 
operating systems, CDI is designed 
to give network managers a choice 
of  directory serviccs. T h e  authors 
describe the libraries and thc registra- 
tion tool set ofmanagement opera- 
tions that is layered on  a specialized 
API. 

Coming up in the./nunznlare 
papers about a new log-structured 
clusterwide file system called Spiralog, 
the 64-bit OpenVMS operating 
system, speech rccognition software, 
and the UNIX clusters message- 
passing system and its use for pro- 
gram parallelization. 

Jane C.  Blakc 
Managing Editor 



Foreword 

Don Harbert 
Vice President, lhVIX D~isiness 

Digital not only invented clusters but 
continues to  set the standard by 
which all other cluster systems are 
measured. T h e  VAXcluster success 
and that o f  Digital's latest UNIX clus- 
ter systems derive from superb engi- 
neering t h ~ t  builds on  the system 
definition put forth in the early 1980s 
by the VAS engineering team: an 
available, extcnsiblc, high-performancc 
multicomputer system built from 
standard processors and a general- 
purposc opcraring system, with chal-- 
actcristics of both loosely and tightl!l 
coupled systcn~s.* 

We in the UNIX community arc 
proud of our VAXcluster lleritage 
and have engineered our  products 
t o  provide the sarnc kinds o f  bencfi ts 
to  customers that VAXcluster systems 
provide! I n  the opening paper for 
this issue o f  r h c ~ ~ o u r n n l ,  members 
of  the Digital UNIX engineering 
tcam describc the n~ulticomputer 
system for thc Digital UNIX environ- 
ment, called TruCluster, which, like 
the VAXclustcr system, is designed 
for liigh availability, scalability, and 
performance. 

The  technology, ofcourse, is dif- 
ferent, and the cnvironmcnt is open. 
The fi~ndanicntal concepts are never- 
theless the same. The  TruCluster 
system is a loosely coupled, general- 
purpose system connected by a 
high-performance interconnect. It 
maintains a single security domain 
and is managed as a single system. 

* Nancy 1'. I(ronclil)crg, Heliry M. LC\.?, 
and Willianl 1). Srreckcr, "VAXclusrcrs: 
A Closely-CouplcJ Disrriburcd Sysrt.ni," 
AC,M Tr~~n.tcl io~?s or/ <:ompuler .S)sic,n~.s, 

\lol. 4, 110. 2 (1L1.ly 1986): 130-146. 

t Illgiral has rcn~tncd \'AXclustcr systems 
to 0pel1ViMS Cluster sysrcms. 

Cluster services rcmaiil available even 
wlien other members arc una\~ailablc. 
Like VAXcluster systems, TruClustcr 
systems implcrncnt a distributed lock 
nianager, which provides synchro- 
nization for a highly parallelized 
distributed database system. T h e  
tecluiology for the lock manager, 
however, is nc\illy iniplemented for 
the UNIX cnvironmcnt. Also com- 
pletel!! new is the interconnect tech- 
nology tor TruCluster systems. 
MEMORY CHANNEL is a rcliablc, 
high-speed interconnect based on  
a design by Digital partner Encore 
Computer Corporation. MEMORY 
CHANNEL addresses the unique 
needs ofclustcrs by implementing 
clustcr\vidc virtual shared memor!l; 
the interconnect reduces overhead 
and latency by nvo to tliree orders 
of  magnitude.' Rccai~sc MEMORY 
CHANNEL uses the industry- 
standard P(:I, dcsigncrs can implc- 
mcnt the ncnvorlc at \!cry lo\\; cost. 
We believe this interconnect tech- 
nology puts Digital pears ahead of  
the competition. 

The  T r ~ ~ C l u s t c r  system is the latest 
example of  Digital's intent t o  re~nain 
a technology lcadcr in thc UNIX 
market. Wc began by developing 
the first high-perfbrmance, 64-bit 
general-purpose operating system, 
L)EC OSF/l,  shipping in March 
1993. Thc  frst Digital UNIX clustcr 
rclcasc, DE(:safc Available Server 
Environment, Follo\vcd soon there- 
afier in April 1994. The an.nouncc- 
mcnt in April 1996 o f T r ~ ~ C l u s t e r  
systems with MEMOICY CHANNEL 

$ Richard 13. Gillctt, "Mcmory Cl la~~~lc l  
Nctwo~-k for P( : I  ," Il;/k:llio.o 

(February 1996): 12-18. 
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again places Digital t ir  allcad of  thc 
competition technologically. Tllc 
performance of thcsc a\lailable clustcr 
systcn~s now approaches that of  very 
expmsive supcrcomp~ltcrs. System 
pcrformance has bccn measured at 
the record-breaking rate of  30,390 
tpmC o n  four AlpliaSer\,cr 8400 
systems runlling Digital UNIX and 
the Oracle Uni\rcrsal Scrver \vith 
0 r ~ c I c  Parallel Scrvcr. The pre\~ious 
pesfi)rniance record, 20,9 18 tpmC, 
was held by the propricrary Tandcni 
Himnlaya 1<10000- 112; Digital's 
opcn s!lstcm clustcr pcrformance 
record is 1 .5 timcs the Tandem 
pcrfi)r~~lance record at one-third 
the systcm cost. 

For Digital, clt~stcrs of high- 
pcrk)nnance 64-bit systcms are 
to  ;I great cstent at the hcart of  its 
co1nmcrcial3nd technical scrvcr 
strategy. Digital UNIS  has been 
def ncd and engineered for the ser- 
\.cr b~~sincss, specifically, for the high- 
performance co~nrncrcial and largc- 
p~)blcm/scic~ltific cn\'ironmcnt. To 
be succcssfi~l in the opcn system mar- 
ket, ho\\re\w-, a conipnny must reach 
outsiclc itself to  joi~itly engineer prod- 
~ ~ c t s  ivith leading sof tw~rc  suppliers 
that lin\,e the sohvare customers 
~ ~ c c c i  to  be compctiti\.c. Tllerefol-e, 
the first Tri~Clustcr implementation 
is designed with Digital's partnew- 
11injor s o h ~ ~ a r e  companies-to meet 
t l ~ c  rcq~~iremenrs ti)r high pcrformancc 
anci f~~nctionalinr in the commcrci31 
d~~tabasc  server market. 

The  conlpetiti\lc challcngc ~io\ \~ is 
to mnint,lin Digital's significant lcad 
in providing outsrandiug cluster pcr- 
ti)rmancc, a\.ailability, and nfhrdabil- 
in. From a technological perspecti\,c, 
the immediate and achievable goal 

is t o  increase the n ~ ~ n i b c r  of  clustcr 
nodes h-om 4 to 10 or  2 0  nodes. 
Within this mngc, Digital maintains 
a simple cluster system n~odc l  that 
offers thc pcrforlnancc ad\~nntnges 
of  clusterins and avoids the disadvan- 
tages, such as the mviagcJncnt prob- 
lc~iis and qu;ilification hcadachcs, of  
more complex topologies. Further, 
the Digital UNIX organization \\f i l l  
focus on ,I ncur cluster tile systcln, 
configuration flexibility, ~nanagcment 
tools, and a clustcr alias that allo\\.s 
a single-system vie\\! for clients and 
pccrs. The  overall goal of  this work 
is to c \ ~ o l \ ~ c  toward a more general 
computing cn\ . i ro~~ment .  

The  kinds o f  tools that both sim- 
p l i ~  and cnliancc pcrfor~nancc arc 
cxemplifcd by the program a~lalysis 
and optimization tools prcscntcci 
in this issuc. 11~1ilr on  Digital U N l S  
version 4.0 and announced in April, 
these tools help sofn\rare dc\jclopcrs 
extract ~ n a x i r n ~ ~ m  pcrfi)r~uancc tiom 
the system. The  story of  the tools 
ilc\~elopmcnt is a n  excellent csn~nple 
of  the direct application of  research 
t o  products. Thc po\ver of the O M  
objcct ~moditication tool and tllc analy- 
sis tool \\it11 objcct rnodifc;ition 
(Atom) \\,as rccog~lized by de\,clopcrs 
c\xn as research progressed; in hct,  
sc~luconductor designers dc\.clopcd 
Atoni tools to c\duate  nc.\\, Alph;~ 
clup i~nple~ncntations. The result 
of  tlus close cooperation b ~ h \ ~ c c l l  
research and dc\,elopmcnt is ,id\,;~nced 
program~lli~lg tools for c~~s to~l lc r s .  

Thcsc efforts in the UNlX organi- 
zation arc manifestations of  1)igital's 
commitmcot t o  open systems. Other  
3rcns ofcngi~lccring \\rlicl.c this com- 
mitment is apparent are also repre- 
sented in this issue. For exa~rlplc, 
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cXc~~rsion sohvarc is key t o  intcgra- 
tion bcnvcen  microso off's Windows 
Eirnily of  prodt~cts and Dig~tal's 
UNIX and OpenVMS products. 
This \\~lioll!l reviscd \icrsion both 
adds ncnr fi~nctionnlity and conserves 
systcm resources. Another major area 
ofstrength for Digital is its networks 
products. Networks cngincers 
Jcscribc nvo csamplcs ofnenvork 
scr\liccs that incrcasc users' choices 
and cstcnd system f ~ ~ n c t i o n d i n ,  
i.c., the Integrated I>ircctory Scr\.iccs 
(IDS) ;lnd the Common 13irectory 
Intcrhce. 

1)jgital's strate&?) is to  co~i t in i~c  t o  

cnginecr products that provide out-  
smnding performance and price/ 
performance in opcn en\ t ~ ~ - o ~ l ~ ~ ~ c ~ l t ~ .  ' 

In  all areas of  engi~lccring-systems, 
scr\~iccs, nen~rorlting-our goal is 
to set the stanciard by \\.hich all othc~-s 
arc ~ncasured. 



Design of the TruCluster 
Multicomputer System 
for the Digital UNlX 
Environment 

The TruCluster product f rom Digital provides 
a n  available a n d  scalable multicomputer sys- 
t e m  f o r  t h e  UNlX environment .  Al though it was 
des igned f o r  genera l -purpose  computing,  t h e  
first implementation is directed a t  t h e  needs  
of large  d a t a b a s e  applications. Services such 
as distr ibuted locking, failover management ,  
a n d  remote  s to rage  access a r e  layered o n  a 
high-speed cluster interconnect. The  initial 
implementation uses  t h e  MEMORY CHANNEL, 
a n  ext remely  reliable, high-performance inter- 
connect specially des igned by Digital f o r  t h e  
cluster system. 

I 
Wayne M. Cardoza 
Frederick S. Glover 
William E. Snaman, Jr. 

The pri~na-!I goal for the first release of the TruCLuster --- - -- 
-.- 

system For thc Digital U N I S  opcrati~ig s!lstcn~ was to 
develop a liigli-perforninnce commercial database 
server environment running on a cluster of several 
nodes. l>at,~basc applications oftcn require computing 
power and I/O connecti\lity and band\\lidtli greater 
than that provided by niost single systems. In addi- 
tion, availability is a key rcqi~irement for cntcrprises 
tliat are dependent on database services for nor~iial 
operations. These requirenicnts led 11s to implement a 
cluster ofconipi~ters that cooperate to provide serviccs 
but fail independently. Thus, both performance and 
a\gailabilit\. are addressecl . 

We chosc an industry-standard benchmark to gauge 
our  success in meeting performance goals. Tlie 
Transaction Processing Performance Council TPC-C 
bcnchniark is a \videly accepted measurcmcnt of the 
capdbilip of large servers. Our  goal \\#;is to achie\~e 
industry-leading numbers in excess of  30,000 transac- 
tions per miuutc ( tpmC) with a four-node TruCluster 
system. 

Tlie Tri~Cluster version 1.0 product pro\!jdes 
reliable, shared access to large amounts of  storage, 
distributed synchroniziltion for applications, efficient 
cluster co~n~niinication,  and application fi~ilover. The 
focus 011 database servers docs not mean that the 
TruClustcr system is not suitable for other applica- 
tions, but that the inevitable design decisions and 
trade-offs fix the first product \\!ere made \\;it11 this 
goal in mind. Although other aspects of pro\liding 
a single-system view of  a c l ~ ~ s t e r  are i~iiportant, they 
are secondary objectives and \\ , i l l  be phased into the 
product o\.er tinie. 

This pdper begins \vith a brief coniparison of com- 
puter spstclns and presents the advantages of clustered 
computing. Next, it introduces the TruCluster prod- 
uct and describes the design of  its key softcvare cornpo- 
nents and thcir relationsliip to database applications. 
Tlie paper then disci~sses the design of the MEMORY 
CHANNEL interconnect for cluster systems, along 
with the design of  the low-level sofnvarc foundation 
for cluster s)lncliro~iizution and co~iimunication. 
Finally, it addresses application failover and hardware 
configurations. 
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Brief Comparison of Computing Systems 

Contemporary computing systems evolved tiom 
centralized, single-node time-sharing systems into s a -  
era1 distinct styles of m ~ ~ l t i n o d e  computer systelns. 
Single-node systems provided uniform nccessibility 
to resources and services and a s i~ ig le -~na~ iage~ i i e~ i t  
domain. They were li~nited with respect to scalability, 
ho\\/ever, and system failures usuaU!~ resulted in a com- 
plete loss of service to clients of the systeni. 

Multinode computer systems include symnlctrii: 
multiprocessing (SMP) systelns and massi\lcly parallel 
processors (MPPs). They also include network-based 
computing systcms such as the Open Sohitare 
Foundation 1)istributcd Computing Environment 
(OSF DCE), Sun ~\/Iicrosystenls Inc.'s Open Network 
C o ~ n p u t i ~ l g  (ONC), and \vorkstation Lir~ns. ' ,2 Each of 
these systenls addresses one or more of the benefits 
associated with clustered computing. 

SM1' configurations provide for tightly coupled, 
high-performance resource sharing. In their effective 
range, SMP systems provide the highest-perh)rma~lcc 
single-system procluct for shared-resource applica- 
tions. Outside that range, however, both hard\vare 
and sohvare costs increase rapidly as more processors 
are added to an SiM1' systcm. In addition, SMP avail- 
ability characteristics are more closely associated \\;it11 
those ofsingle s!istclns because an SMl'system, by defy 
inition, is conlposed of multiple processors b ~ ~ t  not 
mu1 tiple memories or  I/O subsystems. 

MPP systems such as the Intel Paragon serics were 
developed to  support complex, high-performance 
parallel applications using systems designed with hun- 
dreds of processors. Thc indi\ridual processors of an  
M1'1' system \\,ere typically assigned to spccitic tasks, 
resulting in fairly special-purpose machines. 

The DCE and ONC technologies provide support 
for common naming and access capabilities, user 
account managcmcnt, nuthcntication, and the rcplicn- 
tion of certain ser\!ices for inlpro\ui n\lailability 
Worltstation farms S L I C I I  as the Watson lksearch Cen- 
tral Computer Cluster deliver support for thc pal-allel 
execution of applications within multiple computer 
en\.ironments typically constructed using off-the-shelf 
s o h a r e  and hard~vare.' ONC, DCE, and Eirms pro- 
vide their services and tools in support of heteroge- 
neous, multivendor computing environ~nents with 
hundreds of nodcs. They are, lio\ve\,er, much fi~rther 
away from realizing the benefits of a single-system vie\\/ 
associated with clustered computing. 

In the continuum of n ~ ~ ~ l t i n o d c  coinputcr systcms, 
the advantage of the cluster s!lsteni is its ability to 
provide the single-system lie\\. and ease of manage- 
ment associated with SIMP systems and at the same 
time supply the hilure isolation and scalability of dis- 
tributed systems. 

Cluster systems have clear advantages over large- 
scale parallel systems on  one side and heterogeneous 
distributed systems on  the other side. Cluster systems 
provide Inany cost and availability advantages over 
large parallel systems. They are built ofstandard build- 
ing blocl<s nrith no unusual packaging or interconnect 
requirements. Their 1/0 band\vidth and storage con- 
ncctivity scale well with sta~ldard components. They 
are inherently more tolerant of failures due  to looser 
coupling. 1'~irallel o r  rni~ltiprocessor systems should be 
thought of  as cluster components, not as clustcr 
replace~ne~~ts .  

Cluster systems have a different set of advantages 
over distributed systems. First they arc homogeneous 
in nature and more limited in size. Cluster systems can 
be more efficient \\/hen operating in more constrained 
environments. Data formats arc known; tlicre is a 
single-security domain; failure detection is certain; and 
topologies are constrained. Cluster systems also are 
likely to liavc interconnect performance advantages. 
Protocols are more specialized; interconnect charac- 
teristics are more lu~~iform; and high perfol-mance can 
be gu.lrantecd. Finally, the vendor-spccific nature of 
cluster systems allows them to evolve faster than het- 
erogeneous distributed systems and \\,ill probably 
always al lo\-\, thcm to have advantages. 

There arc numerous examples of general-p~~rpost: 
clusters supplircl by most computer \!e~~dors, inc l~~ding 
ATkT, lljgital, He\vlett-l'ackard, Intcmational Busi- 
ness Machines Corporation, Sequent Computer Sys- 
tems, Sun Microsystems, and Tandem Computers. 
13igitaJ's 0pc1iVMS cluster system is gcncrally acccpted 
as the most complete cluster product offering in the 
industry, a~lcl it achieves many of tile single-system 
managen1cnt attributes.' Much of the fi~nctionality of 
the OpenVMS cluster system is retained in Digital's 
T r ~ ~ C l ~ s t e r  p r o d ~ ~ c t  offerings. 

Structure of the TruCluster System 

Digital's TruCluster mul t icomp~~ter  system is a highly 
available and scalable structure of UNIX servers that 
preserves many of the benefits of  a centralized, single 
colnputcr system. The TruCluster product is a collec- 
tion of loosel!l coupled, general-p~~rposc computer 
systerns connected by a high-perforlnance intercon- 
nect. I t  maintains a single security domain and is man- 
aged as a single system. Each cluster node may be 
a uniprocessor or  a multiprocessor system executing 
the Digital UNIX operating system. Figure 1 sho\i~s 
a typical cluster configuration. 

Each cluster member is isolated ti-om sofnvare and 
hard\\,arc fai~lts occurring o n  other cluster mcmbers. 
Thus, the Tru(:luster system does not have the tightly 
coupled, "fail together" characteristics of multiproces- 
sor systcms. Cluster services remain n\~ailable even 
when individual cluster members are temporarily 
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Figure 1 
Co~lfiguration of a Fournodc Clt~stcr System 

i~navailablc. Other important availability objectives of  
the TruCluster server include quick detection ofcom- 
ponent and member failures, on-line reconfigurations 
to accommodate thc loss of  a failed component, and 
continued service while safe operation is possible. 

The TruCluster product supports large, highly 
available database systems through several of  its key 
components. First, tlie distributed remote disk ( D m )  
facility provides reliable, transparent reliiote access to 
all cluster storage from any cluster nodc. Nest, the dis- 
tributed lock manager (DLM) enables the elements of 
a distributed database system to synchronize activity 
011 independent cluster nodes. Finally, elcnients of 
Digital's DECsafe Available Server Environment 
(ASE) provide application failover.' In support of all 
these components is the connection manager, \vhich 
controls cluster menibcrship and the transition of 
nodes in and out oftlie cluster. Figure 2 is a block dia- 
gram showing tlie relationships between components. 

Each major component is described in the reniain- 
der of this paper. In  addition, we describe the high- 
performance MEMORY CHANNEL interconnect 
that \itas designed specifically for the needs of cluster 
systems. 

Distributed Remote Disk Subsystem 

The distributed remote disk (DRD) subsystem was 
developed to support database applications by present- 
ing a clusterwide \liew of disks accessed through the 
character o r  raw device interface. The Oracle l'arallel 
Server (OPS), which is a parallelized version of the 
Oracle database technology, uses the DRD subsystem. 

The D W  subs)lstern provides a clusterw~de name- 
space and access mechanism for both physical and log- 
ical (logical storage manager or  LSM) volumes. The 
LSM logical device may be a concatenated, a striped, 

or  a mirrored \,olume. DKD devices are accessible 
from any cluster me~nber  using the DRD device name. 
This location independence allows database sohvare 
to treat storage as a u~iifor~nly dccessible cluster 
resource and to easily load balance o r  h i 1  over activity 
between cluster nodes. 

Cluster Storage Background 
Disk devices on UNIX systems are commonly ~ccessed 
through tlie UNIX file slatem and an  associated block 
device special filc. A disk device may also be accessed 
through a character device special file or ra\v device 
that provides a direct, unstructured interfice to tlie 
device and bypasses the block buffer caclic. 

Database management systems and sonic other 
high-performance UNIS applications are often 
designed to take advantage of tlie character dcvicc spc- 
cia1 file interfaces to inipro\~e performance by avoiding 
additio~lal code path length associ:lted with the f le sys- 
tem cache.".' Thc 1 / 0  profile of  these systc~iis is char- 
acterized by large files, random access to records, 
private data caches, and concurrent read-write sharing. 

Overall Design of the DRD 
The  DRD subsystem consists of  four primary conipo- 
nents. The remote rant disk ( M U )  pseudo-driver rcdi- 
rects DRD access requests to tlie cluster member 
serving the storage device. The server is identified by 
information maintained in the D W  devicc database 
(RRDB).  Requests to  access local DIID devices are 
passed through to local device drivers. The block ship- 
ping client (13SC) sends requests for acccss to renlote 
1)KD devices to tlie appropriate DIU3 server and 
returns responses to the ca.ller. 7Yhe block shipping 
server (BSS) accepts requests from 13SC clients, passes 
them to its local driver for service, and returns the 
results to the calling BSC client. Figure 3 shows the 
components of the DM3 s~~bsystem. 

The DRI) management component supports DRD 
device naming, device creation and deletion, device 
relocation, and device status requests. During the 
DRD device creation process, the special device file 
designating the DRD device is created on  each cluster 
member. In addition, the D 1 U  device nunibcr, its cor- 
responding physical device number, the nenvork 
address of the serving cluster member, and other con- 
figuration parameters are passed to  the DRD driver, 
which updates its local database and communicates 
the information to other cluster nie~iibers. The DRD 
driver may be queried for device status and DRD data- 
base information. 

Clusterwide Disk Access Model 
During the design of tlie DRD sitbsystem, \ire consid- 
ered botli hared (~nultiported) and served disk ~iiodels. 
A multiported disk configuration provides good failure 
recovery and load balancing characteristics. 011 the 
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other hand, I/O b i ~ s  contention and Iiard\vare queuing 
delays from f ~ ~ l l y  connected, shared disk contigurations 
can limit scalability. In  addition, present standard 1/0 
bus technologies limit configuration  distance^.^ As a 
consequence, wc selected a served disk model for thc 
DIU) i~iiplementation. With this model, software 
qi~euing alleviates the bus contention and bus queuing 
delays. This approach provides i~nprovcd scalability and 
fault isolation as well as tlexible storage configura- 
t i o n ~ . ~ ' ~  Full corlnectivity is not reqnired, and estencied 
machine room cluster configurations can be con- 
structed using standard networks and 1/0 buses. 

The 1'>1U> implementation supports clusterwide 
access to DM'> dcvices using a software-based emnla- 
tion of a fully connected disk configuration. Each 
device is assigned to a single cluster member at a time. 
The membcr rcgistcrs the device into the clustcr- 
\vide narnespncc and serves the device data to  other 
cluster members. Failure recovcrv and load-balancing 
support are includcd with the 1)lW device implemen- 
tation. The failure of a node or controller is transpur- 
ently masked ~vlien another node connected to  the 
shared bus takes over serving the disk. As an option, 
automatic load balancing can move service of  the disk 
to the node generating the most rcqilests. 

In the Tru(:lustcr version 1.0 product, data is 
transferred between requesting and serving cluster 
members using the high-bandwidth, low-latency 
LMEIMORY CHANNEL interconnect, which also sup- 
ports direct memory acccss (DIMA) benveen the I /O 
adapter of the serving node and the 11i;iin memory of  
the requesting node. The overall cluster design, lio\\l- 
ever, is not dependent on the MEhllOllY CHANNEL 
i~lterconnect, and alternative cluster interconnects will 
be supported in ti ~ t u r e  sofhvare releases. 

DRD Naming 
The Digital UNIX operating s!lstcm presently supports 
character device special file names fix both physical disk 
devices and LSM logical volumes and mainrains a sepa- 
rate de\licc namespace for each. An important DlU) 
design objective was to  develop a clusterwide naming 
scheme integrating the physical and logical devices 
within thc D l U  namespace. We considered defining 
J. ne\\; single namespace to support all cluster disk 
devices. Our  research, however, revealed plans to inuo- 
duce significant changes into the physical device nam- 
ing scheme in a f i ~ t i ~ r e  base system release and the 
co~iiplications of  licensing the logical disk technology 
honi a third party that maintains control over the logi- 
cal volume namespace. These issues resulted in defer- 
ring a true cli~sterwide device namespace. 

As an interim approach, we chose to create a sepa- 
rate, clusterwide DRD device naniespace layered on  
the existing physical and logical device naming 

schemes. Translations from 1)lU) device names into 
the underlying physical and logical devices are main- 
tained by the I)RD device mapping database on each 
cluster node. 1)IW device "scr\licesn are created by 
the cluster 'idministrator using the scr\fice registra- 
tion facility." Each "add Service" management opera- 
tion gencrates a ~lnique service number that is 
used in constructing the DlUI dcvice special file name. 
This operation also creates the new DRD device 
special file on each cluster member. A traditional 
UNIX-device-naming con\tention results in the cre- 
ation of DRD special device file names in the form of 
/de\!/drd/drd{ser\lice number)." 

DRD Relocation and Failover 
ASE hilover (see the discussion in the section 
Application Failover) is used to support D1W failovcr 
and is fi~lly integrated within the cluster product. The 
device relocation polic!~ defined during the creation of  
a DRD d e ~ i c c  indicates whcthcr the device rnay be 
reassigned to another cluster membcr as a result of 
a node or  controller failure or a load-balancing opcra- 
tion. In the event o f a  cluster mcmbcr failure, D m  
devices exported by the failed member are reassigned 
to an a1tcrn.m server attached to tlie same shared 1 / 0  
bus. During reassignment, the 1)LW device databases 
are updated on all cluster members and DRD I/O 
operations are resumed. Cluster dcvjce services rnay 
also be reassigned during a planned relocation, such 
as for load balancing or  me~iiber removal. Any DRD 
operation in progress during a relocation triggered by 
a failure \\rill be retried based upon the registered DKD 
retry policy. TIic retry mechanism must revalidate tlie 
database translation map for the target DRD device 
because the scrvcr binding may have been modified. 
Failover is thus transparent to database applications 
and allo\ia them to ignore configi~ration changes. 

Several challenges result fro111 the support of 
multiported disk configurations under various failure 
scenarios. One of the more difficult problems is distin- 
guishing a failed member from a busy member or a 
communicatio~~ fault. The ASE hilover mechanism was 
designed to maintain data integrity during service 
failover, and to ensure that subsequent disk operations 
are not lionorcd fi-0111 a member tliat has been declared 
"do\vn" by the remaining cluster members. This ASE 
mechanism, which makes usc of small computer sys- 
tems interbce (SCSI) target mode and device reserva- 
tion, \\!as integrated into the TruCluster version 1.0 
product. and supports the DRD service guarantees. 

Other challenges relate to preserving serialization 
guarantees in the case of cluster member failure. 
Consider a parallel application tliat uses loclts to serial- 
ize access to shared DRD devices. Suppose the applica- 
tion is holding a write lock for a given data block and 
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issues an update for tliat block. Before the update 
operation is ackno\vledged, ho\vever, the local mcni- 
ber fails. The distributed lock manager, \vhich will 
have been notified of the member failure, then takes 
action t o  release the lock. A second cooperating appli- 
cation executing on another cluster member now 
acquires the write lock for that same data block and 
issues an update for that block. If the failure had not 
occurred, the second application would have had to 
wait to acquire a \\!rite lock for the data block ~ ~ n t i l  the 
first application rcleascd the lock, presumably aher its 
write request had completed. This salne serialization 
must be maintained during failure conditions. Thus, it 
is imperative that the write issued by the first (now 
failed) application partner not be applied aker the 
write issued by tlie second application, even in the 
prcscnce of a timing or nen\iorl< retransmissio~i anom- 
aly tliat delays this first \vrite. 

T o  avoid the reorderilig scenario just described, 
we employed a solution called a sequence barricr in 
which the connection manager increments a secluence 
number each time it completes a recovery transition 
that results in rcleascd locks. The sequence number 
is communicated to each DRD server, which uses 
the sequence number as a barrier to prevent apply- 
ing stale \\(rites. This is similar to the immediate com- 
mand feature of thc Mass Storage Control Protocol 
(MSCP) used by OpcnV1MS cluster systelns to provide 
similar guarantees. Note that n o  application changes 
are required. 

As another esan~ple,  client retransmissions of 
D1W protocol reclilests that are not ide~iipotent can 
cause serious consistency probler~ls. Ilecluest transac- 
tion IDS and DRD server duplicate transaction caches 
are employed to avoid undesirable effccts of clicnt- 
generated retransmissions.'; 

Cluster member failures are mostly transparent to 
applications executing on client mernbcr systen1s. 
Nondisuibuted applications may fail, but they can be 
autoniatically restarted by ASE facilities. DlU> devices 
exported by a serving ~rieniber become unavailable for 
a small amount of time when the member fails. Cluster 
failover activities that ~ i i ~ l s t  O C C L I ~  before the I)RD 
service is again a\~ail;~blc include detecting and \fen@- 
iug the member failure, purging the disk device SCSI 
hardware reservation, assigning an alternate server, 
establishing the new reservation, and bringing the 
device back on-line. A database application serving 
data from the DR1) device at the time of  the failure 
may also have registered to have a restart script \vitIi 
a recovery phase esecuted prior to the restart of tlie 
database application. A possible lack of transparency 
may result if somc clicnt applications are not desigucd 
to accommodate this period of illaccessible DRD ser- 
vice. The DRl) retry request policy is configurable 
to accommodate applications interacting dircctly wit11 
a DRD device. 

Distributed Lock Manager 

The distributed lock manager (DLM) provides syn- 
chronization services appropriate for a highly paral- 
Jelized distributed database system. Databases can use 
locks to control access to distributed copies of data 
buffers (caches) or  to limit concurrent access to shared 
disk deviccs such as those provided by the DRD sub- 
system. Iacks can also be used for controlling applica- 
tion instance start-up and for detecting application 
instalice failures. In addition, applications can use the 
lockillg services for their other synchronization needs. 

Eveti though this is a completely new ilnplementa- 
tion, the lock manager borrows from the original 
design and concepts introduced in 1984 with the 
VAXcluster distributed lock manager.'" These concepts 
were used in several recent lock manager implementa- 
tions for UNIX by other vendors. In  addition, the 
Oracle Parallel Server uses a locking application pro- 
gramming interface (MI) that is co~~ceptually similar 
to that offered here. 

Usage of the DLM 
The Jock manager provides an API for request- 
ing, releasing, and altering  locks.'^'" These locks are 
requested on  abstract names chosen by the applica- 
tion. The nanics represent resources and may be orga- 
nized in a 1iierarcli)r. When a process requests a lock on 
a resource, that request is either granted or  denied 
based on  csamination of  locks already granted on the 
resource. Cooperating components of  an application 
use this service to achieve mutually exclusive resource 
usage. In  addition, a mode associatcd with each lock 
request allows traditional levels of sharing such as mul- 
tiple readers cscluding all \vriters. 

The API provides optional as!~nchronous request 
completion to allow queuing requests o r  overlapping 
multiple operations for increased perforn~ance. 
Queuing prevents retry delays, eliminates polling 
overhead, and provides a first in, first out  (FIFO) fair- 
ness mechanism. In addition, asynchronous requests 
can be i~scd as the basis of a signaling mechanism to 
detect component failures in a distributed system. One 
component acquires an exclusi\,e lock on  a named 
resource. Other components queue incompatible 
requests \\lit11 as)rnchronous completion specified. If 
the lock holder fails or  otherwise releases its lock, the 
waiting requests are granted. This usage is sometimes 
referred to as a "dead man" lock." 

A process can request notification when a lock it 
holds is blocl<ing another request. This allows elimina- 
tion of Inany lock calls by effecti\,ely caching locks. 
When resource contention is lo\\.,, a lock is acquired 
and held ~ ~ n t i l  another process is blocked by that lock. 
Up011 receiving blocking notification, tlie lock can be 
released. When resource contention is high, the lock 
is acquired and released immediately. In addition, this 
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notification mechanism call be used as the basis of a 
general signaling meclianisni. Onc coniponent of thc 
application acquires an exclusive lock on a named 
resource tvith blocking notification specified. Other 
components then acquire illcompatible locks on  that 
resource, thus triggering the blocking notification. 
This usage is hewn as a "doorbell" lock." 

The DLlM is often used to coordinate access to 
resources such as a distributed cache of  database 
bloclts. Multiple copies of the d'lta are held under 
compatible locks to  permit read but not write access. 
When a writer \\/ants an incompatible lock, readers are 
notified to dourngrade their locks and the writer is 
granted tlic lock. The \vriter ~iiodifies the data before 
downgrading its lock. The reader's lock requests are 
again granted, and the reader fetches the latest copy of 
tlie data. A value block can also be associated with each 
resource. Its value is obtained when a lock is granted 
and can be changed when certain locks are released. 
The value block can be used to colnniunicate any use- 
fill information, including tlie latest version nuniber of 
cached data protected by tlie resource. 

Design Goals of the DLM 
The overall clesign goal of the lock manager was to 
provide services for highly scalablc database systcms. 
T ~ ~ L I S  correctness, robustness, scaling, and speed were 
the overriding subgoals of the project. 

C:arefi~l dttcntion to design details, rigorous testing, 
internal consistency checking, and years of esperie~lce 
\\,orking with tlie VMS distributed lock manager have 
all contributed to  ensuring the correctness of the 
ilnplcmentation for the Digital UNIX system. Because 
the lock manager provides guarantees about the state 
ofall locks cvhen either a lock holder or  thc node upon 
which it is running t'ails, it can ensure the internal lock 
state is consistent as far as survi\rillg loclc holders are 
concerned. This robustness pcr~lmits the design of 
applications that can continue operation when a clus- 
ter node fails or  is rel-noved for scheduled service. The 
choice of a I<er~iel-bascd scrvicc and thc use of a mes- 
sage protocol also contribute t o  robustness as dis- 
cussed belo\v. 

In terms of performancc and scaling, the lock man- 
Jgcr is designed for minimal overhead to its users. The 
kernel-based service design pro\fides high perfor- 
mance by eliminating the contest switch overhead 
associated with server daemons. The lock manager 
uses tlie kernel-locking features of the Digital UNIX 
operating system for good scaling on  SMP systems. A 
ker~lel-based service as opposed to a library also allows 
the lock manager to make strong guarantees about the 
internal consistency statc of locks \ \hen a lock-holding 
process fails. 

The message protocol contributes to cluster scaling 
and perforrnance through a scaling property that 
maintains a constant cost as nodes arc added to the 

cluster." The message protocol also provides suffi- 
ciently loose coupling to allow the lock manager to 
maintain internal lock state cvhen a node fails. The use 
of  messages controls the amount of internal state visi- 
ble to  other nodes and provides natural checkpoints, 
which limit tlie damage resulting from tlie failure of 
a cluster node. 

DLM Communication Services 
The LILM session service is a conimunicatio~i layer 
that takes advantage of MEMORY CHANNEL fea- 
tures such as guaranteed ordering, low error rate, and 
low latency. These features allow the protocol to be 
very si~nplc with an associated reduction in CPU over- 
head. The  service provides connection establishment, 
delivery and order guarantees, and buffer manage- 
mcnt. The connection manager uses the communi- 
cation service to establish a channel for the lock 
manager. The lock manager uses the communication 
services to communicate between nodes. Because the 
service hides the details of the communication meclia- 
nis~n,  alternative interconliects can be used \vithout 
changes to the lock manager's corc routines. 

The ilse of the MEMORY CHANNEL interconnect 
provides a very low latency communication path for 
small messages. This is ideal for the lock nianager since 
lock rnessages tend to be very small and the users of 
the lock manager are sensitive to latency since they 
wait for the lock to be granted before proceeding. 
Small rnessages are sent by simply \vriting them into 
the receiving node's memory space. No other com- 
munication setup needs to  be performed. Many net- 
work adapters and coniniunication protocols are 
biased to\vard providing high throughput only when 
rclativcly large packets are used. This means that the 
perforrnance drops off as the packet size decreases. 
Thus, the iMEMOKY CHANNEL intercolinect pro- 
vides a better alternative for communicating small, 
latency-sensitive packets. 

Connection Manager 

The connection manager defines an operating envi- 
ronment for the lock manager. The design allows gen- 
eralization to other cljentb; but in the TruCli~ster 
version 1.0 product, the lock manager is the only con- 
sumer of the connection manager services. The envi- 
ronment hides the details of dynaniically changing 
configurations. From the perspective of the lock man- 
ager, the connection manager manages the addition 
and removal ofnodes and maintains a communication 
path between each node. These services allowed us to 
sirnpli@ the lock manager design. 

The connection manager treats each node as a niem- 
ber of  a set of  cooperating distributed components. 
It maintains the consistency of  the set by admitting 
and removing members under controlled conditions. 



The connection !.lanagel- pro\-ides configuration- 
rclatcd event notification and othcr support serviccs 
to each mcrnber of a set. It pro\.ides notification \ \hen 
members are added 2nd rcmovcci. It nlso maintains 3 

list of current members. Tlic connection nlallager also 
pro\jides notitication to clients when ~ ~ n s a f e  operation 
is ~.>ossible as a result of partitioning. Partitioning exists 
when a member o f a  set is ~1113warc oftlic csistence of 
n disjoint set ofsirnilar clients. 

The connection m;lnagcr can be extended in 
client-specific \\pa!ls to t;?cilit,ltc handling of mcm- 
bership change e\*ents. Estcnsio~u are integral, \veil- 
s!rnchronized parts of tlie me~nbership change 
mcclia~~is~ii .  The lock Iiianagcr uses an estension to 
distribute a globally consistent director!r database and 
to coordinate lock database rebuilds. 

The connection manager nlaintains a fully con- 
nected web of co~nmunic.i t io~~ channels between 
members of the set. Menibership in tlie sct is conrin- 
gcnt upon bcing able to communicate with all other 
~ n c n ~ b e r s  of  that set. The use of the communication 
channels is entirely i~ncicr the control of tlic lock miin- 
agcr or  any other clicnt that may ~rsc tlie connection 
manager in the future. When a client recluests admis- 
sion to  a set, the connection Inanager establishes a 
communicatio~i cha~lncl bct\\iccn the ne\v clicnt nnd 
a11 existing clients. I t  mo~litors these connections to 
ensure they remain f~nctio~li i l .  A connection hils 
when a commirnication channcl is unusable bctwccn 
3 pair of clients or  \\rlicn 3 clicnt nt citlicr end o f  the 
clinnnel fails. The connection nianagcr detects these 
conditions and reconfigurcs the set to contain only 
fi~lly connected members. -- I lie combination of a IiighI!~ a\railiiblc c o ~ i i ~ i i u ~ i i -  
cation channel, togcthcr \\.it11 sct mcrnbersliip and 
synchronized membership cliange responses, allo\vs 
optimizations in the lock man,~gcr's messdge protocol. 
The lock manager can scnd a message to another nodc 
and know that either the message will be deli\lered or  
tliat the configuration \ \ , i l l  he ;iltercd so  tliat it does 
not matter. 

The use of thc conncction rnnn'lger greatly s i n -  
plitics the design and implcmcntation of tlie loci< 
manager. The connection manager allo\\s most of 
tlic logic for handling configurntion changes and com- 
~nunication errors to be 111ovcd away from main code 
p~t l i s .  This illcreases mainline perfi)rmance and sinipli- 
tics the logic, allowing 11io1-e e~llphasis 011 correct and 
efficient operation. 

Memory Channel Interconnect 

<:luster performance is cr-iticnlly clepcnderit on tlic 
cluster interco~inect. This is d i ~ c  both to tlie higli- 
band\vidtli recllrirerncnts of bulk data transport for 
1)111) and to tlie low Intenc!~ rccji~ircd for DI,M opern- 
tions. Although the cluster architecture allo\vs for any 
high-spccd interco~incct, the initial implementation 
supports only tlie new IMEIMOKY CHANNEL inter- 
connect designed specifically for tlie needs of cluster 
systcms. This very rcli;~blc, high-spccd interconnect is 
based on a pre\.ious interconnect designed by Ellcore 
C:ompter Corporation.'" It has been signiticantl!, 
cnli.inccd by Digital to impro\'c d'ita integrity and 
pro\'ide for higher perfi)rmance in the f i ~ n ~ r e .  

Each cluster node has a MEIVORY CHANNEL 
intcl-f~cc card tliat connects to n hub. The liub can bc 
t l~ought  ofas a switch that provides either broadcast or 
point-to-point connections benvcen nodes. I t  also 
provides ordering guarantees and docs a portion of 
the crl.or detection. Tlie current implcmentatio~~ is an 
eight-node hub, but larger l i ~ ~ b s  arc planned. 

Tlic MElMORY CHANNEL interconnect pro- 
\*ides a 100-1~1egaL~yte-pe1--scco1ic1, memory-mapped 
connection to other cluster mcmbcrs. As sho\\v in 
Figure 4, clustcr members ~nny  rnnp transfers fl-om t l ~ c  
MEMORY CHANNEL interconnect directly into 
tlicil- memory. The effect is of  3 \\?I-ire-only \\,indo\\! 
into tlic mcmory of othcr cluster systclns. Transfcrs 
;ire done with standard memory ;icccss instructions 
rather than special I/<) instructions or  device access 

MEMORY I CHANNEL 1 
TRANSFER MEMORY 

CHANNEL 
TRANSFER 

NORMAL 
MEMORY 
WRITE 

NODE 0 
ADDRESS SPACE 

MEMORY CHANNEL 
BUS ADDRESS SPACE 

NODE 1 MEMORY 

- -- - - 

Figure 4 
Transfcrs Pcrformcd by thc MEMORY CHANNEL Intcrconncst 
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protocols to a\.oid the o\,erhcad us~~nll!, present \\lith 
these techniques. The use of memory store instruc- 
tions results in extremely lo\\, latency (nvo microsec- 
onds) and lo\v o\~erl ie,~d for a transfcr of any length. 

Thc MEMORY CHANNEL interconnect guaran- 
tees csscntially no undetected errors (approsiniately 
rile salne undetected error ratc as Cl'Us or n ~ e m o r ) ~ ) ,  
allowing the elimination of chccksunls and other 
rnccha~ljsms that detect software errors. The detected 
error rate is also exrremel!~ lo\\, ( o n  the order of one 
crror per year per connection). Since rcco\,ery code 
csecutes very infrequently, \\,c are assured t h ~ t  rela- 
tively simple, brute-force recovery from sofnvare 
errors is adecluate. Using hard\\,are crror insertion, \\re 
have tested recovery code nt el-ror rates of many per 
second. T h i ~ s  we are confident there are n o  problems 
at tlie actual ratcs. 

Low-level MEMORY CHANNEL Software 
I,ow-level sofnvore interfaces are provided to insi~late 
the nest laver of sofnv.1re (e.g., lock Inanager and dis- 
tributed disks) from the details of the MElMORY 
CHANNEL inipIenicnt.~tion. We have taken the 
approach of providing a very thin layer to  i~ilpact per- 
for~nance as little as possible and allow direct use of the  
MEMORY CHANNEL interconnect. Higher-level 
sofnva. re then isolates its use oflMEMOl<Y CHANNEL 
in a tmnsport layer that can later be modified for addi- 
tional clt~stcr interconnects. 

The \\,rite-only nature of the MEMORY CHANNEL 
i ~ i t e r c o ~ ~ ~ ~ c c t  leads to some challenges in designing 
and imple~ncnting sohvnrc. The only \\lay to see a 
copy of data \vritten to the IMEMORY CHANNEL 
intcrconncct is t o  niap MEMORY CHANNEL trans- 
fers to another region of mclnory o n  the same node. 
This lends to nvo very visible programming con- 
straints. First, data is read and \\/ritten from different 
addrcsscs. This is not a natural programming style, and 
code must be Ivritten to treat a location as turo vari- 
ables, one for read and one for write. Second, the 
effect of a \\.rite is delayed by the tra~isfcr latenc!!. At 

microseconds, this is short but is enough time to  
csccute hi~ndreds of instructions. Hardivare features 
nrc pro\.idcd to stall until data has been looped back, 
h i ~ t  very carefill design is neccss.lry to niinin~ize these 
stalls and place them correctly. \iVe have had several 
s ~ ~ b t l c  problems when an algorithm did not include a 
stall ~ i n d  proceeded to rend stale darn that was soon 
o\~crwritten by data in transit. Finding these problems 
is especially difficult becai~sc much cvidcnce is gone by 
the time the problem is observed. For example, con- 
sider a linked list that is implemented in a region of 
mcmor!l mapped t o  all clustcr nodes through the 
1MEMORY CHANNEL illterconncct. If nvo elelne~lts 
are inserted on  the list \vithou t inserting proper waits 

for the loopback delay, the effect of thc  first insert \\,ill 
not be visible \vhen the sccond insert is done. This 
results in corrupting the list. 

The difficulties just described ,Ire most obvious 
whcn dealing with distributed shared nicmory. Low- 
level software intended to  support applications is 
instead oriented toward a ~iiessagc-passing model. 
This is especially apparent in the features provided for 
error detectio~l. The primary mechanisms allow either 
thc receiving or the sending nodc to check for any 
errors over a bounded period of tinlc. This error check 
rcqi~ires 3 special hard\vare transaction with each node 
and involves a loopback delay. If an error occurs, 
tI1c sc~ider must retransmit all messages and the 
receiver must not use any data received in that time. 
This mechanism works well with the expected error 
ratcs. Howcver, a shared memory model makes it 
extremely difficult to bound the data affected by an 
error, i~nless each modification of a data element 
is separately clwcked for errors. Sincc this involves 
a loopback dcla!l, man!! of the perceived efficiencies 
of shared memory may disappear. This is not to  say 
that a shared memory model cannot be used. It is just 
that error detection and control of concurrent access 
lnust be well-integrated, and node hilures require 
carcf~~l  recovery. In addition, the write-only nature of 
MEMOltY CHANNEL mappings is more suited to 
message passing than shared memory due to  the 
cstrc~ncly carefill programming necessary to handle 
delayed loopback at a separate address. 

APTs are provided primarily to  Inanage resources, 
control rnemor!, mappings, and provide synchroniza- 
tion. MEMORY C f i W N E L  APIs perk)rni the follow- 
ing tasks: 

Allocation and mapping 
- Allocate or  deallocate the MElVORY 

CHANNEL address space. 
- Map the MEMORY CHANNEL, interconnect 

For receive or  transmit. 
- Unmap the MEMORY CHANNEL 

interconnect. 

Spinlock synchronization 
- Create and delete spinlock regions. 
- Accluire and release spinlocks. 

Other synchronization 
- Create and delete n~ritc acknowledgment 

regions. 
- l t e q ~ ~ e s t  write ack~~o\vlcdgmcnt. 
- Create and delete sofwarc ~iotification channels. 
- Send notification. 
- Wait fbr notification. 

Error detectioll and rcco\,el-!I 
- Get cilrrellt error co i~n t .  
- Check for errors. 
- Register for callback o n  cuor  



Higher layers of software are responsible for transfer- 
ring data, checking for errors, retrying transfers, and 
synchronizing their use of  MEMORY CHKilNEL 
address space after it is allocated. 

Synchronization 
Efficient synchronization mechanisms are essential 
for high-performance protocols over a cluster inter- 
connect. MEMORY CHAi-UNEL Ilardware provides 
two important syncl~ronizatio~i niechanisms: first, an 
ordering guarantee that alJ writes arc sccn in the same 
order on all nodes, including the looped-back write on 
the originating node; second, an acknowledgment 
request tliat returns the current error state of all other 
nodes. Once the acknowledgment operation is com- 
plete, all previous \vrites are guaranteed either to Iia\~e 
been received by other nodes or  rcportcd as a transniit 
or  receive error 011 some node. We have implemented 
clusterwide software spinlocks based on these guaran- 
tees. Spinlocks are used for many purposes, including 
internode synchronization of other components and 
concurrency control for the clusterwide shared-mem- 
ory data structures ~ ~ s e d  by the lo\v-lcvel MEMORY 
CHANNEL sofnvarc. 

A spilllock is structured as an array with one element 
for each node. To  acquire thc spinlock, a node first 
bids for it by writing a value to  the node's array ele- 
ment. A node wins by seeing its bid looped back by the 
MEMORY CHANNEL interconnect \vithout seeing 
a bid from any other node. The ordering guarantees of 
the MEMORY CHANNEL ensure that n o  other node 
could have concurrently bid and belicved it had won. 
Multiple nodes can realize they have lost, but more 
than one node cannot win. In case of a conflict, many 
different back-off techniques can bc used. The win- 
ning node then changes its bid v a l ~ ~ e  to an own value. 
This last step is not necessary for correctness, but  it 
does help with resolving contention and \vith various 
failure recovery algorithms. All higher-level synchro- 
nization is built on combinations of spinloclts, order- 
ing guarantees, and error aclu~owlcdgmcnts. 

Error Recovery and Node Failures 
Most of  the difficult problems in the low-level soft- 
ware relate to error reco\/ery and node failures. In spite 
of its reliability, errors \ \ r i l l  occur in tlic MEMORY 
CHANNEL interconnect, and they must be handled 
as transparently as possible. Transparency is key to s i n -  
plifiing the communication model seen by higher- 
level sohvarc. I n  addition, nodc failures from 
hardulare o r  sohvare faults are more frequent than 
MEMORY CHANNEL errors and must be dealt \\/it11 
even in the most inconvenient portions of the low- 
level code. The  MEMORY CHANNEL intercon~lect 
is managed through a collection of distributed data 

structures that must be kept consistent. Sofnvare locks 
31-c used to s)~nchronizc access to these structures, but 
errors may leave them in an inconsistent state. 
Guaranteed error detection before the relcase of a lock 
allo\vs operations to bc rcdone in case of an error. 
Thus, all sequences of MEMORY CHANNEL \\!rites 
I T I L I S ~  be idernpotent to take advantage of tliis straight- 
forward error-recovery technique. 

Ifa node failure occurs, a sur\~i\ling node must make 
all data structures consistent before it releases locks 
hcld by the failed nodc. To  Itecp this a manageable 
task, we have written caref~~lly structured algorithms 
to handle each inconsistent state. In general, struc- 
tures arc changed such that a single atomic write com- 
niits a change. If a node fails before this last \\,rite, 110 
recovery is necess'lry. As an  example, consider n data 
structure that is co~llplctely initialized bcforc being 
added to a list. A single write is used to acco~nplish the 
list addition. If a node (ails, the last \vrite was either 
done or  not and, in either case, the list is consistent. 
Complications arise \vl~en another node has n receive 
crror on  the last write done by a failing node. In  this 
case, the failed node ca111iot retry after detecting the 
error, so  the node cvith the receive error has a different 
view of  the list than all other surviving nodes. To 
rcsolve tlus cvent, OIIC node must propagate its view of 
the list to all other nodes before it releases the lock 
held by the failed ~ i o d e .  An!{ node can d o  tliis because 
each has a self-consistent vie\\. of  the list. If the node 
\\it11 the receive error propagates its \vie\\!, the last ele- 
ment added by the failed node is lost. This s j t~~at ion is 
no  different, however, from having thc nodc fail a few 
instructions earlier. Thc challenge is to design recoil- 
cry for all these cases and maintain our  sanity by mini- 
mizing the n ~ ~ n l b e r  ofsuch cases. 

Another interesting problem is maintaining a con- 
sistent count of errors across all nodes. This count 
is Itcy to the error protocols of both the lo\\,-level 
MEMORY CHANNEL software and higher layers 
since cornparjsons of a saved and a current \lalue 
bou~ld  the period ovcr which data is suspect. The 
count may bc read o n  one node, transferred with 
a message, and cornpared to a current value on 
another nodc. Thus, a consistent value on all nodes 
is critical and must be maintained in tlic presence of 
arbitrary combinations of rcceive and transmit errors. 
(Although errors arc \!cry infrequent, they may be cor- 
related; so algoritlims 111ust work well for crror bursts.) 
The write acknowledgment, described earlier, guaran- 
tees that other nodes havc received a svritc ~\ i t l iout  
error. It is used both to implement a lock protecting 
tlic error C O L I I T ~  and to guarantee tliat all nodes have 
sccn an ~ ~ p d a t e d  count. Updati~ig the count is a slo\\. 
operation due to multiple round-trip delays and long 
crror time-outs, but it is performed very infrequently. 
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Future Enhancements to MEMORY CHANNEL 
Software 
Fully supportcd MEMORY CHANNEL APIs arc 
currently available only to other layers in the UNIX 
kernel for two important reasons: First, MEMORY 
CHANNEL is a new type of interconnect and we want 
to  better understand its uses and advantages before 
committing to a fully functional API for general use. 
Second, many difficult issues of  security and resollrce 
limits will affect the final interface. T o  help Digital 
and its customers gain the necessary experience, a lim- 
ited functionality version of a user-level MEMORY 
CHANNELAPI has been implemented in the version 
1.0 product. This interface supports allocation and 
mapping of MEMORY CHANNEL space along with 
spinlock synchronization. I t  is oriented toward sup- 
port of parallel conlputation 111 a cluster, but we also 
expect it will serve the needs of many commercial 
applications. Once we have a better understanding of 
how high-level applications will use the lMEMORY 
CHANNEL interconnect, we will extend the design 
and provide additional APIs oriented toward both 
commercial applications and technical computing. 

Application Failover 

Digital's TruCluster multicomputer system is a logical 
evolution of  the DECsafe Available Server Envi- 
ronment (ASE). An ASE system is a rnultinode con- 
figuration with all nodes and all highly available 
storage connected to shared SCSI storage buses. 
Figure 5 shows an ASE configuration. Software on 
each node monitors the status of  all nodes and of  
shared storage. In case of a failure, the storage and 
associated applications are failed over to surviving sys- 
tems. Planned application failover is accomplished by 
stopping the application on one node and restarting 
the application on a surviving node with access to any 
storage associated with the application. Application- 
specific scripts colitrol failover and usually d o  not 
require applicatio~i changes. 

SCSI BUS 1 

NODE 0 NODE 1 

I I SCSI BUS 2 I I 

Figure 5 
Typical ASE Contiguration 

In addition to supporting the application failover 
mechanisms from ASE, the TruCluster system sup- 
ports parallel applications running on  multiple cluster 
nodes. In case of  a failure, the application is not 
stopped and restarted. Instead, it may continue to cxe- 
cute and transparently retain access to  storage through 
a distributed disk server. I11 rtdd~tion, more general 
hardware topologies arc supported. 

Hardware Configurations 

The TruCluster version 1 .0  product supports a maxi- 
mum of four nodes connected by a high-speed 
MEMORY CHANNEL interconnect. Thc  nodes may 
be any Digital UNlX system with a peripheral compo- 
nent interconnect (PCI) that supports storage and the 
MEMOlZY CHANNEL interconnect. Highly available 
storage is on shared SCSI buses connected to  at least 
two nodes. Thus, a cluster looks like multiple ASE 
systems joined by a cluster interconnect. 

Although the limitation to four nodes is temporary, 
we d o  not intend to support large numbers of nodes. 
Ten to  nventy nodes on  a high-speed interconnect is 
a reasonable target. A cluster is a component of a dis- 
tributed system, not a replacement for one. If very 
large numbers of  nodes are desired, a distributed 
system is built with cluster nodes as servers and other 
nodes as clients. This allows maintaining a simple 
lnodel of a cluster system \\~ithout having to allou~ for 
many conlplex topologies. Aside from sirnpjicity, there 
are performance advantages from targeting algorithms 
for relatively small and simple cluster systems. 
Although the nuniber ofnodes is intended to be snlall, 
the individual nodes can be high-end multiprocessor 
systems. Thus, the overall computing power and the 
I/O bandwidth of a cluster are extremely large. 

Conclusions 

With the con~pletion of  the first release of  Digital's 
TruCluster product, \ve believe we have met our goal 
of providing an environment for high-performance 
commercial database servers. Both the distributed loclc 
manager and the remote disk services are meeting 
expectations and providing reliable, high-performance 
services for parallelized applications. The MEMORY 
CHANNEL interconnect is proving to be an excellent 
cluster interconnect: Its synchronization and failure 
detection are especially compatible with many cluster- 
aware components, which are enhanced by its low 
latencies and simplified by its elimination of conlplex 
error handling. The error rates have also proven to be 
as predicted. With over 100 units in use over the last 
year, we have observed only a very small number of 
errors other than those attributable to debugging new 
\iersions of thc 11 a~ ad ware. 
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Detailed component performance measurements 
are still in progress, but rough comparisons of DRD 
against local 1/0 have shown n o  significant penalty in 
latency o r  throughput. There is of course additional 
CPU cost, but it has not  proven to  be significant for 
real applications. DLM costs are comparable to VMS 
and thus meet our  goals. Audited TPC-C results with 
the Oracle database also validated both our design 
approach and the implementation details by showing 
that database performance and scaling with additional 
cluster nodes meet our expectations. 

The previous best reported TPC-C numbers were 
20,915 tpmC on  Tandem Computers' Himalaya 
K10000-112 system with the proprietary Nonstop 
SQL/MP database software. TIie best reported num- 
bers with open database software were 11,456 tpmC 
on  the Digital Alphaserver 8400 5/350 with Oracle7 
version 7.3. A four-node Alphaserver 8400 5/350 
cluster with Oracle Parallel Server was recently audited 
at 30,390 tprnC. This represents industry-leadership 
performance with nonproprietary database sofware. 

Future Developments 

We will continue to  evolve the Tri~Cluster product 
toward a Inore scalable, more general computing envi- 
ronment. In  particular, we will emphasize distributed 
file systems, configuration flexibility, management 
tools, and a single-system view for both internal and 
client applications. Work is under way for a cluster file 
system with local node semantics across the cluster sys- 
tern. The new cluster file systelii will not replace D 1 D  
but will compleme~it it, giving applications the choice 
of  raw access through DRD or fi~ll, local-file-syste~ii 
semantics. We are also lifting tlie four-node limitation 
and allowing more flexibility in cluster interconnect 
and storage configurations. A single network address 
for tlie cluster system is a priority. Finally, further steps 
in managing a multinode system as a single system will 
become even more important as the scale of cluster 
systems increases. 

Further in the future is a true single-syste~ii view of  
cluster systems that will transparently extend all 
process control, communication, and synchronization 
mechanisms across the entire cluster. An implicit trans- 
parency requirement is performance. 
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Delivering Binary Object 
Modification Tools for 
Program Analysis and 
Optimization 

Digital has developed two binary object 
modification tools for program analysis and 
optimization on the Digital UNIX version 4.0 
operating system for the Alpha platform. The 

technology originated from research performed 
at Digital's Western Research Laboratory. The 
OM object modification tool is a transforma- 
tion tool that focuses on postlink optimizations. 
OM can apply powerful intermodule and inter- 
language optimizations, even to routines in sys- 
tem libraries. Atom, an analysis tool with object 
modification, provides a flexible framework for 
customizing the transformation process to ana- 
lyze a program. With Atom, compilation system 
changes are not needed to create both simple 
and sophisticated tools to directly diagnose or 
debug application-specific performance prob- 
lems. The linker and loader are enhanced to sup- 
port Atom. The optimizations OM performs can 
be driven from performance data generated 
with the Atom-based pixie tool. Applying OM 
and Atom to commercial applications provided 
performance improvements of up to 15 percent. 

I 
Linda S. Wilson 
Craig A. Neth 
Michael J. Rickabaugh 

Historically on UNIX systems, optimization and pro- 
gram analysis tools have been i~npleniented primarily 
in the realm of compilers and run-time libraries. Such 
implementations have several drac\!baclcs, Iio\vever. 
For example, although thc optimizatio~is performed 
by compilers are effective, typicall!: they are limited to 
those that can be performed \vithin the scope of a sin- 
gle source file. At best, the con~piler call optimize the 
set of files presented during one compilation run. 
Even the most sophisticated systems that save iriterme- 
diatc representations usually cannot perform opti- 
mizations of calls to routines in system libraries or 
other libraries for which no source o r  intermediate 
forms arc available.' 

The traditional UNIX performance anal!rsis tools, 
prof and gprof, require compiler support for inserting 
calls to predefined run-time library routines at the 
entry to each procedure. The  monitor routines allow 
more user control over prof and gprof profiling capa- 
bilities, but their usage requires modifications to the 
application source code. Because these capabilities are 
implemented as compilation options, users of the tools 
must rccornpile or, in the case of the monitor routines, 
actually rnodih their applications. For a large applica- 
tion, this can be an onerous requirement. Further, if 
the application uses libraries for which the source is 
~~ua\~ailable,  many of the analvsis capabilities are lost or 
severely impaired. 

Ry comparison, object modification tools can per- 
form arbitrary transfor~nations on the exec~~table  
program. The OM object modification tool is a trans- 
formation tool that focuses on postlink optimizations. 
By perhrming transformations after the link step, 0 iM 
can apply po\verfill intermodule and interlanguage 
optimizations, even to routines in system librar~cs. 

Object transformations also have benefits in the area 
ofprogram analysis. Atom, an analysis tool with object 
modification, provides a tlesible framework for cus- 
tomizing the transformation process to  analyze a pro- 
gram. With Atoni, compilatio~i system changes are not 
needed to develop specialized types of debugging o r  
performance a~ialysis tools. Application de\lelopcrs can 
create both simple and sophisticated tools to directly 
diagnose o r  debug application-specific performance 
problems. 
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The OM and Atom technologies originated from 
rcscarch performed at Digital's Western Rcscarch 
Lab (WRL) in Palo Alto, California.' The softwarc 
was developed into products by the Digital UNIX 
De\~cloprnent Environment (DUDE) group at 
Digital's UNIX engineering site in Nashi~a, New 
Hampshire. Both technologies are currently shipping 
as supported products on  Digital UNIX vcrsion 4.0 
for the Alpha platform." 

This paper first provides tecl~nical overviews for 
both OM and Atom. An cxample Atom tool is 
presented to demonstrate ho\v to use the Atorn appli- 
cation programming interface (API) to develop a CLIS- 

tomized program analysis tool. Becausc OM and 
Atom can be used together to enhance the effective- 
ness of optimizations to  application programs, the 
paper includes an over\,ic\v regarding the bcncfits of 
profiling-directed optimizations. 

Subsequent sections discuss the product develop- 
mcnt and technology transfer process for O M  and 
Atom and several design decisions t l ~ a t  were made. 
The paper describes the working relationship between 
WlU, and DUDE, tlic utilization of the technology on 
Independent Sohvare Vendor (ISV) applications, and 
the factors that drove tlie separate development strate- 
g i c ~  for the two products. The paper concludcs with 
a discussion about areas for h r t l ~ e r  investigation and 
plans for fiiture enhancements. 

Technology Origins 

l<cscarcI~ers at WRL investigating postlink optimiza- 
tion techniques created 01M jn 1992.' Unlike compile- 
time optirnizers, which operate on a single file, postlink 
optirnizers can operate on the entire exccutab.lc pro- 
gram. For instance, Oi\/I can remove procedures that 
were linked into the executable but were never called, 
thcrcby reducing the tcxt space required by thc pro- 
gram and potentially in~proving its paging behavior.' 

Using the OM technology, tlie researchers f ~ ~ r t h e r  
discovered that the samc binary code modif cation 
techniques needed for optimizations could also be 
applied to  the area of  program instrunientation. In  
fact, the processes of  instrumenting an existing pro- 
gram and generating a new esecutable could bc 
encapsulated and a programmable interface provided 
to drive the instrunlentation and analysis proccsscs. 
Atom evolved from this work.".' 

In 1993, WRI, researchers Amitabh Srivastava and 
Alan Eustacc bcgan planning with DUDE engineers 
to provide OM and Atom as supported products on 
t l ~ c  Digital UNIX operating systeni. Different product 
dcvelopment and technology transfer stratcgics wcrc 
used for delivering the two technologies. The scc- 
tion Product Developlncnt Collsiderations discusses 
thc methods used and tlic forces that influcnccd 
the strategies. 

Technical Overview of OM 

OM performs tr.~nsformations in three phases. I t  pro- 
duces an intermediate representation, performs opti- 
mizations on that representation, and produces an 
executable image. 

Intermediate Representation 
In the first phase, OM reads a specially linked input 
file that is produced by the linker, parses the object 
code, and produccs a11 intermcdiatc rcprcsentation 
of the instructions in tlie program. The flow informa- 
tion and the program structure are maintained in 
this reprcscntation. 

Optimization 
In  the optirni~~lriion phasc, OM pcrfornls \various trans- 
formations on the intermediate reprcscntation crcatcd 
in the first phase. These transformations includc 

Text size reductions 

Data sizc reductions 

Instruction and data reorganization to improve 
cache behavior 

Instri~ction scheduling and peephole optimization 

User-directed procedure inlining 

Text Size Reductions One  typc of text sizc rcduction 
is the elimination of i~nused routines. Starting at the 
entry point of the image, OM examines the instruction 
stream for transfer-of-control instructions. OM fol- 
lows each transfer ofcontrol until it finds all reachable 
routines in the image. The remaining routines are 
potentially ~lnrcac11'1lslc and are candidates for remo\~al. 
Before removing them, OM checks all candidates for 
any address references. (Such references will sho\-\~ up 
in the relocation entries for the symbols.) If no  refer- 
ences exist, O M  can safely remove the routine. A sec- 
ond type of text size reduction is the eliluination of 
most GP register reloading sequences.") 

Data Size Reductions 13ccause it operates on the entire 
program, OM perforn~s opdmizations that con~pilers 
are not able to perform. One instance is with the 
addressability of global data. The general instruction 
sequence for acccssing global data recluircs tlie usc of 
a table of address constants (the .lita sectioll) and code 
necessary for maintaining the current position in the 
table. Each entry in the address constant tablc is relo- 
cated by the linker. Because O M  knows the location of 
all global data, it can potentially remove the address 
entry \\!bile inserting and re~ i io \~ i~ ig  code to morc effi- 
ciently refercncc the data directly. Rernovi~xg as Illany 
of the .lita entries as possible leaves more room in the 
data cache (D-cache) for the application's global data. 
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5. i-,~ccute the instrumcntatioli tool 011 the target 
program, providing t l ~ c  linked alialysis codc  as an  
al-gulncnt. 

T h e  final step produccs an  instrumented program 
linlteci with the analysis coclc. Figure 1 slio\\ls thc 
chnngcs in memory layout b c n \ ~ c c n  tlie original p ro -  
gram and the  i n s t r ~ ~ m e n t c d  prograni.  

LOW 
MEMORY 

HIGH 
MEMORY 

STACK 
- 

READ-ONLY DATA 
EXCEPTION DATA 

PROGRAM TEXT i - TEXT START --- 

I INSTRUMENTED 
PROGRAM TEXT I 

PROGRAM DATA 
UNlNlTlALlZED 

An Example Atom Tool for Memory Debugging 
T h e  follo\\ring discussion o f  311 es'lmple Atom tool 
demonstrates how t o  use the  Atoni  API t o  dc \~e lop  a 
customized program nnalysis tool. 

A c o m m o n  dc \~c lopment  problern is locating the  
source o f  a mcmory o\ler\\~rite. Figure 2 shows a con- 
t r~\%d example program in \\~hich tlie loop t o  initialize 
an army exceeds tlie array boundary and ovcr\vrites a 

/ 
INITIALIZED 

UNINSTRUMENTED 
PROGRAM LAYOUT 

NEW DATA 
START 

ANALYSIS gP 1 ANALYSIS DATA I INITIALIZED I 
ANALYSIS DATA 
UNlNlTlALlZED 
(SET TO 0) 

PROGRAM gp --, PROGRAM DATA I INITIALIZED 

PROGRAM DATA 
UNlNlTlALlZED 

INSTRUMENTED 
PROGRAM LAYOUT 

PROGRAM 
TEXT 
ADDRESSES 
CHANGED 

PROGRAM 
DATA 
ADDRESSES 
UNCHANGED 

Source: A. Srivaslava and A. Eustace, "ATOM: A System for Buildlng Customized Program Analysis Tools." 
Proceedings 01 the SlGPLAN '94 Conference on Programming Language Design and Implementation. 
Orlando. Fla. (June 1994). This paper is also available as Digital's Western Research Laboratory 
(WRL) Research Report 9412. 

Figure 1 
Mc~nor!. 1.ayout of Ins t rumc~~tcd  Progra~iis 

1 l o n g  n u m b e r s C 8 1  = C O ) ;  
2 l o n g  * p t r  = n u m b e r s ;  / *  T h i s  p o i n t e r  i s  o v e r w r i t t e n  * /  
3 
4 m a i n 0  
5 
6 i n t  i; 
7 
8 f o r ( i = O ;  i < 2 5 ;  i + + )  
9 n u m b e r s C i 1  = i; 

1 0  1 

/ *  b y  t h i s  a r r a y  i n i t i a l i z a t i o n .  * /  

Figure 2 
E s . ~ ~ n p l c  P~.ogram \\.it11 1Vlc111ol-y O\,c~.\\lrirc 
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pointer \~nriable. I n  this case, the initialization OF the 
numhcrs army defined in li~lc 1 over\vritcs the con- 
tents oftlie variableptrdcfined in line 2. This type of 
problenl is often diffic~~lt  and time-consuming to 
locate with tr;lditional debugging tools. 

Atom call be used to develop a simple tool to locate 
the source of the overu,~-ite. 'The tool \\/auld instru- 
Inelit each storc instruction in the program a11d pass 
the effective address of tlie store instruction and  the 
value being stored to an analysis routine. The analysis 
routine would determine if the cffcctive addrcss is tlic 
address being traced and, if so, generate a diagnostic. 

The instrumentation and ilnnlysjs files for tlie 
mem-debug tool are sho\\/n in Figurc 3. 
InstrumentInitO) registers the analysis routines with 
the Atom instrumentation engine and specifies that 
calls to the get-args() and open-log() routines be 
inserted before the program begins esecuting. A call 
to the close-log() routine is dictated when the pro- 
gram tcrniinatcs execution. The Atom instrumcnta- 
tion cngilie calls InstrumentInit() exactly once. 

l 'he Atom instrumentation engine calls the 
Instru~ncnt()  routine once tbr each executable objcct 
in the program. Tlie routine instruments each store 
uistruction tliat is not a stack ~ p e r a t i o ~ l  with a call to tlie 
analysis routinc ~ i i e n i ~ t o r c ( ) .  Ench call to tlie routinc 
provides the ,~ddress of the storc instruction, the target 
address of tllc store instruction, the \!;llue to be stored, 
and the file Iianie, p roced~~re  name, and linc nu~nbcr. 

The  ope^^-log() and close-log() analysis routines arc 
self-explanatory. The messages could have been \\lrittcn 
to tlie standard output, because, in this example, they 
would no t  hiive interfered \\*it11 tlie progran~ o~r tput .  

Tlie get-args() r o ~ ~ t i n c  rc;lds tlic value of thc 
il/lE~\~l-DE/~l/~;-tlR~;Senvironnlcnt variable to obtain the 
data addrcss to be traced. Tlie tool could hnvc been 
written to accept arguments from the comrnanci linc 
i~sing the -toolargs s\vitcli. The instrumentation codc 
\\rould then pass the arguments to the analysis routine. 
In the case of this tool, using the environment \rnrinbIc 
to pass tlic arguments is beneficial because thc pro- 
gram does not have to be reinstrumented to trncc a 
new address. 

The mem-store() routinc is called from each storc 
instruction site that \\;as instru~~iented.  If the target 
address of the store operation does not match the 
trace addrcss, tlie routine simply returns. If there is a 
match, a diagnostic is logged tllat gives information 
abo~ l t  the location of the storc. 

To  demonstrate how this tool would be used, sup- 
pose one has determined by debugging that the vari- 
able ptr is being overwritten. The nm comnlancl is 
used to dcter~lline the addrcss ofptr: as follo\\.s: 

% nm -B p r o g r a m  I g r e p  p t r  
0 x 0 0 0 0 0 1 4 0 0 0 0 0 c 0  G p t r  

Instrument tlie program \\lit11 the mem-debug tool. 

% a t o m  p r o g r a m  m e m - d e b u g . i n s t . c  
mem-debug.ana1.c 

Set the rMIM-DEBlIG-ARC;.Ten\~ironment variable with 
the address to trace. 

% s e t e n v  MEM-DEBUG-ARGS 1 4 0 0 0 0 0 ~ 0  

Run the instrumented program, 

and view tlie log file. 

% m o r e  p r o g r a m . m e m - d e b u g . l o g  

T r a c i n g  a d d r e s s  0 x 1 4 0 0 0 0 0 c 0  

A d d r e s s  0 x 1 4 0 0 0 0 0 c 0  m o d i f i e d  w i t h \  
v a l u e  0 x 1 6 :  

a t  : 0 x 1 2 0 0 0 1 1 c 4  P r o c e d u r e :  m a i n \  
F i l e :  p r o g r a m - c  L i n e :  9 

Using this simple Atom tool, the location ofa meln- 
or)' o\vr\\~rite can be detected quickly The instru- 
mented progralii executes at nearly normal speed. 
Tradition~l debugging methods to detect such errors 
are mi~ch more time-consuming. 

Other Tools 
An arcn in \\~liich Atom capabilities have pro\?ell particu- 
la-ly po\verli~I is for liardu~arc modeling and sin1~1l:ation. 
Atom has been used as n teaching tool in university 
courses to train students o n  hardware and operating sys- 
tem design.  moreo over, Digital hardware designers have 
de\.eloped sopllisticated Atom tools to evaluate designs 
for nc\v implementations of the Alpha clip.  

Thc Atom tool kit contains 10 example tools that 
dcmo~lst~.ate the capabilities of this technology. Tlie 
examples i~lclude a branch prediction tool, which is 
L I S ~ ~ L I ~  for compiler designers, a procedure tracing tool, 
\vIiich c;ul be usehl in following the tlo\v of ~~nhnl i l ia r  
code, and a simple cache sim~~lation tool. 

Atom Tool Environments 
Analysis of certain types of progra~iis can require use of 
specially designed Atom tools. For instance, to analyze 
a program that uses POSIS threads, an Atom tool to 
handle threads must also be designed, because the 
analysis routines \ \ r i l l  be called from the threads in the 
~ p p l i c a t i o ~ ~  program. Thercforc, the analysis r o ~ ~ t i n c s  
need t o  be reentrant. They niay also need to syncliro- 
,,izc ,, , cccss . . . . . to data that is shared alnorlg the threads o r  

manage data for individual threads. The  thread man- 
agement in the analysis routines adds overhead to  the 
execution time of the ins t r~~mented program; this 
o\~crhead is not necessary for a tionthreaded program. 
To effecti\cly support both threaded and nontlireadcd 
prograins, nvo distinct versions of the same Atom tool 
need to coexist. Designers developed the concept of 
tool environments to  address the issues of  providing 
~li i~lt iple v~rsions of an Atom tool. 
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I: mem-debug- i  n s  t . c  - I n s t r u m e n t a t i o n  f o r  m e m o r y  d e b u g g i n g  t o o l  

* T h i s  t o o l  i n s t r u m e n t s  e v e r y  s t o r e  o p e r a t i o n  i n  a n  a p p l i c a t i o n  a n d  
* r e p o r t s  w h e n  t h e  a p p l i c a t i o n  w r i t e s  t o  a  u s e r - s p e c i f i e d  a d d r e s s .  
* T h e  a d d r e s s  s h o u l d  b e  a n  a d d r e s s  i n  t h e  d a t a  s e g m e n t ,  n o t  a  
* s t a c k  a d d r e s s .  
* 
* U s a g e :  a t o m  p r o g r a m  m e m - d e b u g . i n s t . c  m e m - d e b u g . a n a 1 . c  
* 

I * 
* I n i t i a l i z a t i o n s :  r e g i s t e r  a n a l y s i s  r o u t i n e s  
x d e f i n e  t h e  a n a l y s i s  r o u t i n e s  t o  c a l l  b e f o r e  a n d  a f t e r  
* p r o g r a m  e x e c u t i o n  
* 
* g e t - a r g s 0  - r e a d s  e n v i r o n m e n t  v a r i a b l e  MEM-DEBUG-ARGS f o r  a d d r e s s  t o  t r a c e  
* o p e n - l o g 0  - o p e n s  t h e  l o g  f i l e  t o  r e c o r d  o v e r w r i t e s  t o  t h e  s p e c i f i e d  a d d r e s s  
* c l o s e - l o g 0  - c l o s e s  t h e  l o g  f i l e  a t  p r o g r a m  t e r m i n a t i o n  
* m e m - s t o r e 0  - c h e c k s  i f  a  s t o r e  i n s t r u c t i o n  w r i t e s  t o  t h e  s p e c i f i e d  a d d r e s s  
* I 

v o i d  I n s t r u m e n t I n i t ( i n t  a r g c ,  c h a r  * * a r g v )  
C 

A d d C a l l P r o t o ( " g e t - a r g s O V ;  
A d d C a l l P r o t o ( " o p e n ~ 1 o g ~ c o n s t  c h a r  * ) " ) ;  
A d d C a l l P r o t o ( " c l o s e ~ 1 0 g ~  ) ' I ) ;  

A d d C a l l P r o t o ( " m e m ~ s t o r e ( V A L U E , R E G V , l o n g , c o n s t  c h a r  * , c o n s t  c h a r  * , i n t ) " ) ;  

A d d C a l l P r o g r a m ( P r o g r a m B e f o r e ,  " g e t - a r g s " ) ;  
A d d C a l l P r o g r a m ( P r o g r a m B e f o r e ,  " o p e n - L o g " ,  

b a s e n a m e ( ( c h a r  * ) G e t O b j N a m e ( G e t F i r s t O b j O ) ) ) ;  
A d d C a l l P r o g r a m ( P r o g r a m A f t e r ,  " c l o s e - L o g " ) ;  

I f /  
I n s t r u m e n t  e a c h  o b j e c t .  

I n s t r u m e n t ( i n t  a r g c ,  c h a r  * a r g v C I ,  O b j  * o b j )  
1 

P r o c  * p r o c ;  
B l o c k  * b l o c k ;  
I n s t  * i n s t ;  
i n t  b a s e ;  / *  b a s e  r e g i s t e r  o f  m e m o r y  r e f e r e n c e  * /  

/ * 
* S e a r c h  f o r  a l l  o f  t h e  s t o r e  i n s t r u c t i o n s  i n t o  t h e  d a t a  a r e a .  
* I 

f o r  ( p r o c  = G e t F i r s t O b j P r o c ( o b j ) ;  p r o c ;  p r o c  = G e t N e x t P r o c ( p r o c ) )  C 
f o r  ( b l o c k  = G e t F i r s t B L o c k ( p r o c ) ;  b l o c k ;  b l o c k  = G e t N e x t B L o c k ( b l o c k ) ) t  

f o r  ( i n s t  = G e t F i r s t I n s t ( b 1 o c k ) ;  i n s t ;  i n s t  = G e t N e x t I n s t ( i n s t ) )  t  
I * 
* I n s t r u m e n t  m e m o r y  r e f e r e n c e s .  S k i p  S s p  b a s e d  r e f e r e n c e s  
* b e c a u s e  t h e y  r e f e r e n c e  t h e  s t a c k ,  n o t  t h e  d a t a  a r e a .  
* M e m o r y  r e f e r e n c e s  a r e  i n s t r u m e n t e d  w i t h  a  c a l l  t o  t h e  
* m e m - s t o r e  a n a l y s i s  r o u t i n e .  T h e  a r g u m e n t s  p a s s e d  a r e  
* t h e  t a r g e t  a d d r e s s  o f  t h e  s t o r e  i n s t r u c t i o n ,  
* t h e  v a l u e  t o  b e  s t o r e d  a t  t h e  t a r g e t  a d d r e s s ,  
* t h e  PC a d d r e s s  o f  t h e  s t o r e  i n s t r u c t i o n  i n  t h e  p r o g r a m ,  
* t h e  p r o c e d u r e  name, f i l e  name, a n d  s o u r c e  l i n e  f o r  t h e  
* PC a d d r e s s .  

Figure 3 
Instrumcntation and h a l v s i s  Codc for the  rneni-debug Tool 
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/ *  O u t p u t  f i l e  f o r  d i a g n o s t i c s  *I 

I* A d d r e s s  t o  m o n i t o r  *I 

i f  ( I s I n s t T y p e ( i n s t ,  I n s t T y p e S t o r e ) )  C 
b a s e  = G e t I n s t I n f o ( i n s t ,  I n s t R B ) ;  
i f  ( b a s e  ! =  REG-SP) C 

A d d C a l l I n s t ( i n s t ,  I n s t B e f o r e ,  " m e m - s t o r e " ,  
E f  f A d d r V a l u e ,  
G e t I n s t R e g E n u m ( i n s t ,  I n s t R A ) ,  
I n s t P C ( i n s t ) ,  
P r o c N a m e ( p r o c ) ,  
P r o c F i  l e N a m e ( p r o c ) ,  
( i n t ) I n s t L i n e N o ( i n s t ) ) ;  

> 
> 

/ * 
* m e m - d e b u g . a n a 1 . c  - a n a l y s i s  r o u t i n e s  f o r  m e m o r y  d e b u g g i n g  t o o l  * 
* U s a g e :  s e t e n v  MEM-DEBUG-ARGS h e x - a d d r e s s  b e f o r e  r u n n i n g  
* t h e  p r o g r a m .  
* D i a g n o s t i c  o u t p u t  i s  w r i t t e n  t o  p r o g r a m . m e m - d e b u g . l o g  
* 1 

# i n c l u d e  < s t d i o . h >  
# i n c l u d e  < s t d l i b . h >  
# i n c l u d e  < s t r i n g . h >  
# i n c l u d e  < s y s / t y p e s . h >  

s t a t i c  F I L E  * l o g - f i l e ;  

s t a t i c  c a d d r - t  t r a c e - a d d r ;  

/ * 
* C r e a t e  L o g  f i l e  f o r  d i a g n o s t i c s .  
* I 

v o i d  
o p e n - l o g ( c o n s t  c h a r  " p r o g n a m e )  
C 

c h a r  nameC2001 ;  

s p r i n t f ( n a m e ,  " % s . m e m - d e b u g - l o g " ,  p r o g n a m e ) ;  
l o g - f i l e  = f o p e n ( n a m e ,  " w " ) ;  

i f  ( !  L o g - f i  l e )  C 
f p r i n t f c s t d e r r ,  "mem-debug:  C a n ' t  c r e a t e  % s \ n " ,  n a m e ) ;  
f f l u s h ( s t d e r r ) ;  
e x i t ( 1 ) ;  

1 

f p r i n t f ( 1 o g - f i l e ,  " T r a c i n g  a d d r e s s  O x % p \ n \ n U ,  t r a c e - a d d r ) ;  
f f l u s h ( 1 o g - f i l e ) ;  

1 

/ * 
* C l o s e  t h e  l o g  f i l e .  
* I 

v o i d  
c l o s e ~ l o g ( v o i d )  
C 

f c l o s e ( 1 o g - f i l e ) ;  
> 

1 * 
* G e t  a d d r e s s  t o  t r a c e  f r o m  t h e  e n v i r o n m e n t .  
* I 

v o i d  
g e t - a r g s c v o i d )  

Figure 3 ( con t inued)  



c h a r  * a d d r ;  
i f  ( ! ( a d d r  = g e t e n v ( " M E M - D E B U G - A R G S " ) )  C 

f p r i n t f c s t d e r r ,  "mem-debug: s e t  MEM-DEBUG-ARGS t o  h e x  a d d r e s s \ n U ) ;  
f f l u s h c s t d e r r ) ;  
e x i t ( 1 ) ;  

> 
t r a c e - a d d r  = ( c a d d r - t )  s t r t o u l ( a d d r ,  0, 1 6 ) ;  

C 

1 

/ * 
* The t a r g e t  a d d r e s s  i s  a b o u t  t o  b e  m o d i f i e d  w i t h  t h e  g i v e n  v a l u e .  
* I f  t h i s  i s  t h e  a d d r e s s  b e i n g  t r a c e d ,  r e p o r t  t h e  m o d i f i c a t i o n .  
* / 

v o i d  
mem-s to re (  

c a d d r - t  t a r g e t - a d d r ,  / *  A d d r e s s  b e i n g  s t o r e d  i n t o  * I  
u n s i g n e d  l o n g  v a l u e ,  / *  V a l u e  b e i n g  s t o r e d  a t  t a r g e t - a d d r  * /  
c a d d r - t  PC, / *  PC o f  t h i s  s t o r e  i n s t r u c t i o n  * /  
c o n s t  c h a r  * p r o c ,  / *  P r o c e d u r e  name * /  
c o n s t  c h a r  * f  i l e ,  / *  F i l e  name * /  
u n s i g n e d  1  i n e )  I *  L i n e  n u m b e r  * /  

C 
i f  ( t a r g e t - a d d r  == t r a c e - a d d r )  C 

f p r i n t f ( 1 o g - f i l e ,  " A d d r e s s  Ox%p m o d i f i e d  w i t h  v a l u e  O x % L x : \ n " ,  
t a r g e t - a d d r ,  v a l u e ) ;  

f p r i n t f ( 1 o g - f i l e ,  " \ t a t  : Ox%p ", p c ) ;  
i f ( p r o c  ! =  NULL) C 

f p r i n t f c l o g - f i l e , " P r o c e d u r e :  % s  ", p r o c ) ;  
i f c f i l e  ! =  NULL) 

f p r i n t f ( 1 o g - f i l e , " F i l e :  % s  L i n e :  %d" ,  f i l e ,  L i n e ) ;  
1 
f p r i n t f ( L o g - f i l e ,  " \ n u ) ;  
f f l u s h ( l o g - f i l e ) ;  

1 

Figure 3 (continued) 

Tool environments accom~iiodate sea~iiless intcgra- 
tion of specialized vcrsions of tools into tlie Atom tool 
kit. They pro\ride a mc,lns for extending the Atom Itit. 
This facility allo\\rs the addition of  specialized Atom 
tools by Digital's layered product groups o r  by cus- 
t o m ~ ~ . ~ ,  \\.hile maintaining a consistent user interface. 

Thc vcrsions of thc At0111 tools hiprof, pixie, and 
Third Degree that support POSIX threads are pro- 
vided as a separate en\ironnient. hiprof is a perfor- 
mancc analysis tool that collects data similar to but 
with more precision tllan gprof. pixie is a basic block 
profiling tool. Third lkg ree  is a meliior!r leak detec- 
tion tool. 

The follo\\ring command invokes the Atorn-based 
pixie tool for use on a nonthreaded program: 

% a t o m  p r o g r a m  - t o o l  p i x i e  

The follo\ving command invokes the version of the 
pixie tool that supports threaded programs: 

% a t o m  p r o g r a m  - t o o l  p i x i e  - e n v  t h r e a d s  

Tools for other specialized environments call be 
provided by defining a ncw e~~vironnient  name. For 
example, Atom tools \vritten to work with a language- 
specitic run-time environment can be added to the 

Atom tool kit by selecting an cnvironmcnt name for 
tlie category of tools. Similarly, tools designed to cvork 
on the kernel coitld be collected into an environment. 

The environ~nent name is used in the namcs of the 
tool's instrumentation, analysis, and description files. 
The description filc for a tool provides the names 
of the instrunicntation and analysis files, as wcll as spe- 
cial instructions for  conipiljng and linking the tool. 
For example, the pixie description file for threaded 
programs is named pixie.threads.dcsc. I t  identifies 
the threaded versions of the pixie instrun~entation and 
analysis files. The Atom driver builds the name of 
the description filc from the arguments to the -tool and 
-env s\vitchcs on the command line. The contents 
of the description file then drive the subsequent steps 
of the build proccss. 

Tool environments can be added \vitliout modifica- 
tion to the base Atom technology, thereby providing 
estensibility to the tool kit cvhile maintaining a consis- 
tent interface. 

Compact Relocations 
Atom inserts code into the test  of  the program, thus 
changing the location of  routines. Atom requires 
that relocation information be rctaincd in  the 
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eseci~table image created by the linker. This allows 
Atom to properl!. perform relocations o n  the instru- 
mented executable. 

During the normal process of linking, tlie relocation 
entries stored in object files are eliminntcd once the!' 
ha\~e been resol\led. Beca~~se  it cfkcti\,cJy relinlts tlie 
cxecutable, Atom must Iiave access to the relocatioli 
inforniatio~i. 

Consider, for example, an application that invokes a 
fi~nction through a statically initialized filnction pointer 
\~ariablc, as slio\\~n in the follo\\ing code scgmcnt: 

v o i d  f o o c i n t  a, i n t  b )  
C 

v o i d  ( * p t r - f o o ) ( i n t ,  i n t )  = f o o ;  

v o i d  b a r 0  
C . . . 

( * p t r _ f o o ) ( l , 2 ) ;  
J 

The address of h ~ ~ c t i o n j i ~ o i s  stored in tlie memory 
location referenced by the j~/~:,/bo variable. When 
Atoni instruments tlus application, the address of  
fbo will change, asid Atom needs to knotv to update 
the contents of the memory location referenced by 
ptt: jix). This is possible only ifthere is a relocation rccord 
l~ointj~ig at tlus rnemor!, location. Adding compact relo- 
cations to the executable file sol\res this probleni. 

Compact relocations are snialler than r c g ~ ~ l a r  relo- 
cations for nvo reasons. First, the Atoll1 system docs 
not require all the information in tlie regular reloca- 
tion records in order to instrument an esecutablc. 
Atom changes only the layout of tlic tcst segment, 
so relocation records that describe the data segments 
are not needed. Second, tlie remaining relocations 
can often be predicted by analyzing othcr parts of  
the esecutable file. This property is used to store a 
co~npact for111 of the rer-rlaining relocntion records. 
Since compact rclocatio~l records drc rcprcsentcd in a 
different forrn than regular relocations, tiicy are stored 
in the .cornliient section of the object f lc rather than 
in the normal relocation area. 

Profiling-directed Optimization 

OM and tlie Atom-based pixie tool can interoperate 
~ u i n g  profiling-directed optimization. The Atom- 
based pixie tool is a basic block prof lcr tliat pro\lidcs 
execution counts for eacli basic block \\,lie11 the pro- 
gmrn is ~ L I I ~ .  The execution counts are then used as 
input to OM for performing optimizations 011 the ese- 
cutable that are driven From actual run-time perfor- 
nlwcc data. 

As an example, the follo\\,ing steps \\roulcl bc 
pwforrned to utilize profiling-directed optimizations 
~ l t l i  OM: 
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1. % c c  - n o n - s h a r e d  - 0  p r o g r a m  * . o  

2. % a t o m  - t o o l  p i x i e  p r o g r a m  

3. % p r o g r a m - p i x i e  

4. % c c  - n o n - s h a r e d  -om 

- W L , - o m - i r e o r g - f e e d b a c k , p r o g r a m  * . o  

In step 1, a nolisharcd \~crsion of  the program 
is built. In step 2, tlie Atom-based pixie tool instru- 
ments the program. Step 2 produces program.pixie 
and program.Addrs flcs. Step 3 results i11 the csc- 
cution of the instrumented program to generate a 
program.Counts file. This file contains an eseci~tion 
count for eacli basic block in the program. The last 
step pro\.ides the basic block profile as input to OM. 
OM rearranges the text segment o f the  program such 
that the most frequently cxecuted basic blocks and 
procedures are placecl in prosi~iiity to  each other, thus 
improving tlie instruction cache (I-cache) hit rate. 

Product Development Considerations 

Bringing the OM and At0111 technologies fro111 the lab- 
oratory illto use 011 currelit Digital UNIX production 
systems required frequent co~iimunication and coordi- 
nation benvccn WRL and DUDE engineers working 
on opposite coasts of the U.S. The success of both proj- 
ects depended upon cstablishi~lg and maintaining an  
atmosphere of cooperation among the engineers at tlic 
t\\.o locatio~~s. Common goals and criteria for bringing 
the technology to product supported the teams during 
de\.elopment and planning \vork. 

Among the product development considerations 
for OM and Atom \\/ere 

1. The products must address a business o r  customer 
requirement. 

2. The products must meet customer expectations of  
features, usability, quality, and performance. 

3.  Eng~neering, q u a l ~ q ~  assurance, and doci~mentation 
resources must be ~dentified to  ensure tliat thc 
products coilld be enh,lnced, updated to operate 
on nenr platform I-elcases, and supported througli- 
out  thcir life cyclcs 

4. The products nlust be released a t  the appropriate 
times. lleleasing a product too early could result in 
high support costs, perhaps at tlie expense of  n e ~ !  
de\lelopmeut. Releasing a product too  late could 
compro~nise 1)igital's ability to le\lerage the new 
technology most effccti\lel y. 

Product Development and Technology Transfer 
Process for OM 
As part of thcir research and de\relopment efforts, 
WRL engineers applied OM to large applications. 
Researchers and Digits engineers at ISV porting labo- 
ratories \\,orl<ed together to share information and to 
diagnose the performance problems of  programs in 



i~se  on actual production systems, such as relational 
database and CAD applications. This cooperative 
effort helped engineers determine the types of  opti- 
miz.ations that would benefit the broadest range of  
applications. In addition, the engineers were able to 
identi$ thosc optimizations that w o ~ ~ l d  be usefill 
to specific classes of applications and make them 
switch-selectable through the OM interfixe. Tlie per- 
for~nance improvements achieved on ISV applications 
enabled OM to meet the criteria for addressing CLIS- 
tolncr nccds. 

Although WRL researchers also applied OM to tlie 
S1'l-X benchmark suite to measure performance 
improvements, the primary focus of the O M  tech- 
nology development \\!as to provide performance 
impro\~enients for applications currently in \videspread 
use by the Digital UNIX customer base. With the 
focus of performance improvements on large cus- 
tomer applications, OM satisfied a prominent Digital 
business need for inclusion in the Digital UNIX devel- 
opment environment. 

Engineers discussed the limitation that O M  did not 
s i~ppor t  sharcd libraries and thc programs that used 
them. In this respect, the technology would not meet 
the expectations of all customers. Many ISV applica- 
tions and other performance-sensitive programs, how- 
ever, are built nonshared to improve execution times. 
Engineers determined that the benefits for this class 
of application ounveighed this limitation of OM, 
and,  therefore, the limitation did not prevent nloving 
forward to develop the prototype into a product. 
llevelopcrs recognized the risks and support costs 
associated with shipping the prototype, yet again 
decided that tlie proven benefits to existing applica- 
tions out~vcighed these factors. 

Because of the pressing business and customer 
needs for this technology, DUDE and WRL engineer- 
ing concurred that O M  should be providcd as a fully 
supported component in Digital UNIS  version 3.0. 
FLIII product devclop~nent commitnie~~ts  from DUDE 
engineering, docurrientation, and quality assurance 
could not be made for that release, ho\vever. After 
discussion, WRL provided technical support and 
extensions to O M  to address this necd. DU1)E engi- 
neering agreed to provide consulting support to WRL 
researchers 011 object file and synibol table formats nlld 
on evaluations of text and data optimizations. 

The next issue the engineers faced was how to inte- 
grate OM into the existing development environment. 
They evaluated three approaches. 

Tlie first approach was to make OM a separate tool 
directly accessible to users as /usr/bin/om. Thus, an 
application developer could i~tilizc OM as a separate 
step during the build process. This approach offered 
two advantages. First, it was similar to the approach 
used to achieve the present internal use of 01M and 

\vould recl~~ire f e~v  additional modifications to the 
Digital UNIX de\~elopment en\~ironnient. The second 
advantage was that Atom and O M  could be more 
easily merged into one tool since their usage would be 
similar. This merging would provide the potential 
efficiencies of a single stream of  sources for the object 
modification technology 

A major disadvantage of this approach was that it 
put additional burden on  tlie application developer. 
O M  requires a specially linked input file produced by 
the linker. This intermediate input file is not a corn- 
plete executable nor is it a pure OMAGIC file.'" This 
approach ~ i o u l d  require customers to  add and debug 
additional build steps to  usc OM on their applications. 
The WRL and DUDE engineers agreed that the user 
complexity of this approach would be a significant bar- 
rier to user acceptance of OM. 

Tlie second approach was to change the conlpiler 
driver to invoke OM for linking an executable. With 
this approach, a switch would be added to  the com- 
piler driver. If this switch was given, the driver would 
call /usr/lib/cmplrs/cc/om instead of  the system 
linker to d o  the final link. 

This approach had the advantage of reducing the 
complexity of the user jntesL~ce for building an apylica- 
tion with OM. A developer could specify one switch to 
tlie compiler driver, and the driver would automatically 
invoke OM. This would allow a developer to introduce 
feedback-directed opti~nizations into the program by 
sinlyly relinking with the profiling information, thus 
rnalung OM easier to use and less error-prone. 

The disadvantage of this second approach was that 
the complex symbol resolution process in the linker 
would need to be added to OM. The process of  per- 
forming symbol resolution on Digital UNIX operating 
systems is nontrivial. There are special rules, boundary 
conditions, and constraints that the linker must under- 
stand. OM was designed to modify an already resolved 
executable, and any problems introduced from adding 
linker semantics would discourage its use. Also, dupli- 
cating linker capabilities in OM \\~ould require addi- 
tional overhead in maintaining both components. 

The advantages and disadvantages of the second 
approach motivated the development of a third 
approach. The compiler driver could be changed to 
invoke OM during a postlink optiniization step. As 
in the second approach, a switch from the developer 
\vould trigger the invocation of OM; however, OM 
would be run after the linker had perfonned symbol 
and library resolution. 

The third approach is the one currently used. This 
method maintains separation between tlie linking and 
optimization phases. When directed by the -om switch, 
Id produces a specially linlted object that will be used as 
input to OM. The compiler driver supplies this object 
as input to O M  when the linking is completed. 
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The WKL anci 1)Ul)E engineers found that this 
fi~nctional scpar.~tion also improved the cfficicnc!, of  
tlie development efforts ben\~een WRL and 1)UI)E. - [.he separation pcrmittcd concurrent WRL, dc\~clop- 
meut on  OM and I)Ul>E dcvcloymcnt o n  Id, \\lit11 
minimal interference. This approach allo\\,cd more 
development timc to be dedicated to technical i s s ~ ~ e s  
rather than denling \\fit11 source management n ~ i i i  intc- 
gration issues. 

1)UL)E engineers added the OM. soul-ccs into the 
1)igital UNIS dc\,clopmcnt pool nod intcgr.~tcd 
updates fro~-n WRL. WRL assumed rcsponsi bility for 
testing OM prior to projtiding source ~lpdntcs. As pre- 
\,iously outlineci, 1)Ul)E cngincers intcgt.ltcd support 
h r  01M into the existing dcvelopma~t  environment 
tools for tlie initial release. 

Because of pl-o\cn performance improvcmcllrs o n  
ISV applications, committed engineering cfforts b!, 
WIG, and testing ncti\.itics nt both I>igir~l sitcs, engi- 
nccrs judged the tcchnolop InatLlrc cnougli k)r rclensc 
on production systems. Efficient de\.elop~ncnt stl-ntc- 
gjes enabled Digital to rapidly turn this leading-cdgc 
tcch~iology into a p r o d ~ ~ c t  that bcncfits .in important 
segment of the l>jgital U N I S  c~lstotncr b,lse. 

WKL continued engineering s~~ppo l - t  f0r O M  
through the l>igital UNIS vcrsion 3.0 and 3.2 rclcascs. 
Ilesponsi bility k)r the technology grniiuall!, sl~iftcd 
fi.0111 W l U  to 1)Ul)E o \ ~ r  the coilrse of these ~.eIeascs. 
C:urrcntly, L)Ul>E ffirlly supports and cnhnnccs 01M 

while W l U  continues to provide consultintion o n  tlie 
technology 2nd input for f i ~ t i ~ r c  i~npro \~e~nc~ i t s .  

Product Development and Technology Transfer 
Process for A tom 
WKL deploycd c;~rly \,crsions of tllc Atom tool kit at 
internal Digital sitcs, ISV porting Inbor;ltorics, and 
universities, thus allo\\ling dc\.elopers to cspcl.irnc11r 
\\:it11 and evaluate the Atom Al'I. TIic early a\~ailnbiljn! 
o f  the tool kit promoted use of  tlie Atom tcchnology. 
User feedback and rcqucsts for features helped the 
engineers to ~ilol-c cluickly and effcctivcly develop a 
robust technolog\, fro111 tlie prototype. 

Engineers tlirougliout 1)igitnl rccognizcil Atoll1 as ;I 
uniq~le and ~ ~ s c f i ~ l  tccl111ology. Atom's Al'l, \\.it11 
instrumentatio~~ nnd an.ilysis capabilities do\\,n to the 
instruction level, increased the po\\*er and di\rcrsity of 
tools tliat could bc created for software 2nd Ilard\\jarc 
dc\!clopment. Hard\\jarc develop~iient tcnms ~~scci  
Atom to simulate the performance of Alpha 
implcmentarions. Sofn\.are dc\*clopcrs crcntcci .~nd 
shared Atom tools for debugging and measuring pro- 
grL~lii perf'ol-msi~icc. "l'lic \.al~le of tlie Atom tcclinolog. 
in sol\ring application clc\~clopment problems pr.o\.iclcd 
tlie business justification for developing the tcchnol- 
o ~ y  illto a product. 

The prototype \,ersion of  Atom had several 
limitations. 

Like O M ,  the prototype version of Atom \vorkcd 
only on nonshared applications. A production 
version of Atom would r c q ~ ~ i r c  support for call- 
shilrcd programs and sharcd libr.lrics, since, by 
d e t i ~ ~ l t ,  programs are built as cnll-sharcci prograliis. 
A \,iablc Atom product offering nccded to s ~ l p -  
port these t!,llcs of  progralns, in addition to non- 
shared programs. 

Progmms ncedccl to be rclinkccl to retain relocation 
i n h r ~ n a t i o ~ i  before At0111 coi~ld be L I S C ~ .  This addi- 
tional build step impaired the usability ofAtom. 

Tlie Atom prototype performed poorly because it 
consunled a 1;lrgc alnount o f ~ i ~ c m o r y .  bIucIi of the 
data collcctcd a b o l ~ t  an esecr~tnblc h r  optimization 
p ~ ~ r p o s c s  \\.,is 11ot ~iecded for 17rog1'x'n anal!'sis 
transk)rm;itions. 

TIie A t o ~ n  AI'I rcqirired estensi\,c design and de\.el- 
o p n c n r  to support call-shared progra111s and 
sharcd librnrics. 

Tlic cngi~iccrs decided to allo\\ the OM and Atom 
technologies to diverge so  tliat the differing requirc- 
ments  ti)^- optimization and program anal!rsis could be 
~ n o r c  cffccti\~cl!r nddrcsscd in cnch component. 

Because tlic cost ofsupporting n rclcasc of the Atom 
prototylx u-oi~ld lia\re been high, WRI. and 1)Ul)E 
cliginccring dc\,clopcd a stratcgy for sim~~lcaneously 
releasing the Atom prototype while focusing engincer- 
ing efforts o n  dc\rcloping tlie pl-odi~ctio~i \u s ion .  An 
Atom Acl\s,inccci l)c\rclopment Kit (r\l)l<) \\,as rcleascd 
~\vith l>igitnl UNIS version 3.0 as the initial stcp of the 
strategy. The A1)K provided custonicr ;lccess to the 
tcchnology \\.it11 limited support. E~lginecrs \.ic\\-cd 
the Inclt ofsupport for sharcd csec~~tablc  objects as an 
acceprablc l i~i~itntio~i for the Atom Al)K lmt unaccept- 
able fix the f nal product. 

In iiddition to allowing WRL and 1)UDE engineers 
to ~ ) C L I S  OII p r o d ~ ~ c t  development, this ti rsr strstegic step 
pcrmittcd the engineering teams Inorc timc and f l c~ i -  
bilin. to incrcmcntall!~ ;~cld support fix Atom illto otlier 
production com~x)~ients,  such as the linker and the 
londcr. For usabilin purposes, minor cxtc~isions \\.ere 

made to the loader to allo\\, it to auto~nnticnlly load 
ins t r~~~ncn tcd  sI131.cd libruies p r o d ~ ~ c c d  by Atom tools. 

The scconci stcp of the strategy \\us to provide 
updated Atom kits to users as dcvdopmcnt of tlie soft- 
ware 1"-ogrcsscd. These kits included the source code 
for csnmplc tools, manui~ls, and rcfcrc~lcc pages. The 
update liits pcrti)rli~cd t\\.o f i~nctio~is;  the!' supported 
users nn~t  rllc!' pro\,ideci feedbucl< to the clc\.elop~iient 
teams. 1)Ul)E and WRL engineers posted information 
intcr~lally \\.itliin l>igital \\.lien kits \\,ere a\railable and 
developed n m;liling list ofAtom ~~scl-s.  Tlie Atom user 



community gre\\. t o  include uni\.crsiries and several 
cstcrnal cLIstoliicrs. 

Once the Atom ADK a11d update strategy \\.ere 
cstablishcd, 1lUL3E enginccring bcgan to i~mplement 
support for At0111 in tlic linlccr. As mentioned carlier, 
Atom inserts rest into a program and requires reloca- 
tion informution to create a correctly instrumented 
csccutnblc. Tlie Atom prototype required a program 
to bc linked to retain the relocation intbr~nation, and 
this rcquirenient prese~ited a us;ibility problem for 
i~scrs. Iclcnll!~, At0111 \\,auld be ~ b l c  to instri~mcnt the 
cxcc~ltables and shared libraries produced b!, default 
by the linker. 

I\/lodi+ing thc li~iker to retail1 1111 traditio~ial reloca- 
tion information by dehul t  \\,;is not  acceptable since 
the size increase in the csecutablc \vould have been 
p~.ol~ibiti\!c. In some cases, 4 0  pcrccnt of the object f le 
consists of  relocation records. Engineers did not \lie\\/ - 

nn increase of  that magnitude as 3 vi:lble solution. In 
ncldition, tliis soliltion contlictcd \\,it11 tlie goal of 
lligiral UNIX version 5.0 to reduce object file size. 
As 3 compromise, D U1)E e ~ l g i ~ ~ c e r i n g  implemented 
c o ~ i i p ~ c t  relocation support in the linker. Compact 
relocations provided an acceptable solution since they 
rcqi~ircd Kir less space than regular relocation records, 
typically less than 0 .1  pcrccnt of the total file size. 

Anothcr side effect of using compact relocations as a 
solution Mas that it introduced a dependency benveen 
Aton] nnd Id. All csecutablc objects to bc processed by 
Arom needed to ha\~e been generated \\,it11 the linker 
that contained compact relocation support. There- 
fore, to support Atom, la!,crcd product libraries and 
third-party libraries needed to be relinked with tlie 
compact relocation support. 

In Digital UNIX version 3.0, Id \\Ins modified to 
gcllcratc compact relocation information in ese- 
curable objects. This aIlo~\~cd At0111 to instrument the 
dchult  o ~ ~ t p u t  of Id. Engineers \jic\\lcd tliis capability 
;IS cl-itic;ll to the usability and ultimate success of the 
Arom rcchnology. The compact re locat io~~ support in 
Id \\.As ~.cfincd ,111d estc~ldcd oircr the course of se\zeral 
1)igital UNIX releases as dc\,clopment \\,ark \virh 
Atom ~xogrcssed. 

(:oncurrcntl!., the \YRL. rcscarcli team expanded 
and b c g n  development of thc Atom Third Degree 
and hiprof tools. WRL engineers also continued \\,it11 

additions nnd impro\!cmcnts to .I suitc of exa~nplc 
Atom tools. 

After the release of  Digital UNIX version 3.0, 
l)Ul>E began dcsign and dc\celopmcnt of the produc- 
tion \.crsion of the core Atom teclinologv and the API. 
1)UI)E engineers moditiecl and extended the Atom 
Al'l ns tool dc~elopmcnt  progrcsscci at W l U .  During 
peak development periods, engineers disci~ssed design 
issi~cs dail!, by telephone and electronic rnail. 

The original Atom A D K  included the source code 
for n nu~iiber of esamplc At0111 tools, Because some 
of these tools contained hm-d\\,nre implementation 
clcpcndencics, they \\,auld rccli~irc ongoing and long- 
term support to remain operntionnl on changing 
implementations of the Alpha architecture. For the sec; 
ond  sh ip~ne~ i t  of the Atom A1)K in Iligital UNIX ver- 
sion 3.2, thcse l~igll-maintcnancc tools \\<ere remo\cd 
and made available through unsupported channels. 

Kcr\veen releases of  the AI)I< on the lligital UNIX 
operating s!,stem, the enginccring teams continued to 
dcli\rcr i~pdate kits. Engineers scheduled delivery of 
the update kirs to coincide \\,it11 key ~nilestones in the 
soft\\,,lrc development process. This strategy ga1.e 
them more control o\.er the dc\~elopment schedule 
and minimized risk. The update kirs pro\lided irnmedi- 
ate field test exposure for the evolving Atom sohvare. 
The design, development, and kit process was prac- 
ticed iteratively over a year to  develop the original 
idcns into 3 fill1 product. The Atom updntc ltits \\'ere 
provided for Digital UNIX version 3.0 and later sys- 
rcms, since most users did not have access to early ver- 
sions of l3igitnl U N I S  \rcrsion 4.0.  17ro\/iJing Atom 
kits for use on  pre-version 4.0 systems nllo\\,ed the 
sofivare to be exercised in the field on actual applica- 
tions prior to its initial rclcasc as a supported product. 
Althoi~gh support for earlier operating system versions 
added o\.crhead and complexity to the process of  pro- 
viding the update kits, the engineering tennis \~alued 
the ahunciance of user feeclbnck that the process 
yielded. The benefits of 11sc.r input to the so%\~are 
dc\,cloprncnt process o~~t\ \ ,cighcd the o\,c~.licad costs. 

lluring Digital U N I S  \*ersion 4 .0  de\~elopment, 
\YRI. engineers finalized the implementations of the 
hiprof and Third Degree tools and transferred the tool 
sources to DUDE for further development. The PVRL 
developers had added support for threaded applica- 
tions o n  prc-version 4.0 lligital UNIX systems. 
Because the implementation of  threads changed in 
1-ersion 4.0,  DU1)E engineers needed to update tlie 
Arom tools accordingl!: 

1)UL)E engineers also de\feloped an Ato~ii-based 
pixie tool \\.ith support for threaded ;~pplications. In  
KICT, the Atom-based pixie tool rcplnccd the original 
vc1.sio11 of pixie in Digit.11 UNlS \,usion 4.0. The 
Atom-based pixie allo\ved ne\v fcatu~-es s ~ ~ c h  as sup- 
port for shared libraries and thrcnds to  be more 
efficiently added into the prociuct offering. Tlie devel- 
op~i lcnt  of an Atorn-based pixie tool sol\red the exten- 
sibility proble~lls that \vc~-c being faccd with the 
original version of pixie. 

WRL. engineers also began to use Atom for instru- 
menting prc-\.ersion 4.0 Digital UNIS Iter~~cls, de\,el- 
oping special tools for collecting kernel st'ltistics. 
Atom \\,as extended by DUDE engineering as needed 
to silpport instrumentation and analysis of  the Iternel. 

\'()I. 8 No.  1 1996 2'9 



The Atom tool kit and example tools were shipped 
with Digital UNIX version 4.0. The pixie, hiprof, and 
Third Degree tools \\rere shipped with the Sofnvare 
Development Environment subset of Digital UNIX 
vcrsion 4.0. Research rcgarding LISC ofAtom for ker~icl 
instrumentation and analysis continues. 

WRL continues to share ideas and consults 
with DUDE on the f ~ ~ t u r e  directions for the Atom 
tecl~nologj/. 

Conclusions 
Developing OM into a product directly from research 
proved to be challenging. Problems and issues that 
needed to be addressed had to be handled within the 
scliedulc constraints and pressures of a co~nmittcd 
relcase plan. 

In contrast, the ADK mcthod uscd to  deliver thc 
Atom product allowed the Atom de\lelopers to  spend 
more time on  product development issues in an envi- 
ronment relatively frec from the prcssures associated 
\vith daily schedules. The ADI< mechanism, however, 
probably limited tlie exposure of  Atom technology at 
some customer sites. 

The close cooperation o f  cngi~ieers fro111 both 
research and de\lcloprnent was necessary to accom- 
plish the goals of the two projects. Wc believe that a 
collaborative development paradigm was key to suc- 
cessfi~lly bringing research to product. 

Future Directions 

This paper describcs the c\wlution of the O M  and 
Atom technologies t l~rough the release of the Digital 
UNIX version 4.0 operating system. Digital plans to  
investigate many new and improved capabilities, somc 
intended for future product releases. Plans are under 
way to 

Provide support in OM h r  call-shared progranls 
and shared librarics. 

Support the use of At0111 tools on programs opti- 
mized \.c,itb OM. 

Investigate providing an  API to allo\v program- 
mable, customized optimizations to be deli~~ercd 
through OM. 

Investigate reuse of instrumented shared librarics 
by multiple call-shared programs that have been 
instrumented with the same Atom tool. 

Research support for Atom tools that provide sys- 
ternwide and per-process analysis of shared libraries. 

Extend Atom to  iniprovc kernel analysis. 

Simplifj, the use of the profiling-directed optilliiza- 
tion facilities of Atom 2nd 01M through an 
improved interface. 

Extend the Atom tool kit to provide de\lelopment 
support for thrcad-safc program arialjsis tools. 

In addition to enhancements to the Atom product, 
original Atom- based tools are expected to become avail- 
able through the development activities of students and 
educators at universities. Internal Digital developers will 
continue to develop and share tools as bvell. 
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Design of excursion 
Version 2 for Windows, 
Windows NT, and 
Windows 95 

Version 2 of the excursion product is a complete 
rewrite of the successful Windows-based X 
server software package. Based on release 6 

of the X Window System version 11 protocol, 
the new product runs on Microsoft's Windows, 
Windows NT, and Windows 95 operating sys- 
tems. The X server is one of several components 
that compose this package. The other compo- 
nents are X Image Extension, the control panel 
(which constitutes the user interface for product 
configuration), the error logger, the application 
launcher, and the setup program. An interprocess 
communication facility enables the excursion 
components to communicate in a uniform fash- 
ion under all three operating systems. A unique 
server design using object-oriented program- 
ming techniques integrates the X graphics con- 
text with the Windows device context into a 
combined state management facility. The result- 
ing implementation maximized graphics perfor- 
mance while conserving Windows resources, 
which are in limited supply under the 16-bit 
version of the Windows operating system. The 
control panel was coded completely in the C++ 

programming language, thus making full use 
of the Microsoft Foundation Class library to 
minimize development time and to ensure 
consistency with the Windows user interface 
paradigm. 

John T. Freitas 
James G. Peterson 
Scot A. Aurenz 
Charles P. Guldenschuh 
Paul J. R m a u r o  

Digital developed the eXcursion family of display 
server products to  provide interopcrability between 
desktop personal computers (PCs) running the 
Microsoft Windo\vs operating s!lstcm and remote 
hosts running the X Window Systcm operating system 
under the U N I S  or OpenVMS operating systems. The 
first version of  tlie excursion X server was a 16-bit 
application written specifically for Microsoft Windo\vs 
versio~is 3.0 and 3.1.  As the pop~~lari ty of Windows 
increased and desktop systems were connected to cor- 
poratc nctworlts, the marltet for S interoperability 
grew quickly. The 16-bit excursion code, milch of 
urhich had been ported from 32- bit U N I S  code, \vas 
again portccl-this time to Microsoft's Win32 appli- 
cation prograinming interface (API)  to support the 
Windo\vs N.1' operating svstern. Whcn release 6 of 
the S Windon) System version 11 protocol (Sl l R 6 )  
appeared and a new sample implemcntntion source 
l i t  bcci~nlc available ti-om the X Consortiuni, the 
excursion team decided that it \\,as t i ~ n c  for a completc 
rewrite o f  the excursio~l software. Microsoft had 
established the \Win32 API as n uniform coding inter- 
bcc  for all its Windo\vs-based operating systems. Since 
development tools such as 32-bit co~npilers and 
debuggers of sufficient quality and robustness had 
becorne available, it \\.as now possible to implcme~it a 
high-qunlity, 32-bit product. p r o d ~ ~ c t  \ v o ~ ~ l d  sup- 
port the entire range of  Windows-based platforms, 
from notebook PCs running the Windo\vs operating 
system to high-end Alpha systems running the 
Windo\\;s NT operating s!lstem. 

Terminology 

This paper incorporates certain conventions to clarify 
the distinction b e m ~ e e ~ ~  the two window systems 
under consideration. Xiilin~louj refcrs to the collection 
of data structures, concepts, and operations that con- 
s t i t ~ ~ r e  a \\lindo\v, as defined in the X Window System 
elivironnient. LL'ir132 il:i~dolll refcrs to 3 \\,indo\\. as 
defined in Microsoft's Win32 API. 

When referring to a \vindo\v systcni as opposed to 
a particular \viildo\\l instance, X IVi/il?~lorr~ S ~ f e t n  
is somcti~ncs abbreviated to  X.  W/irrclorts denotes 
tlie Microsoti Windows operating system. 
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Note that the \\lord h ~ r m ~ ~ p  has more than one 
meaning. In the X en\.ironment, a bitmap is a nvo- 
dimensional array of bits, and a ~ ) I A ~ I ~ I L I / >  is a two- 
dimcnsio~ldl array of pixels, \i~lierc eacl~ piscl may 
consist of one or more bits. Under the Win32 AI'I, t l ~ c  
terln bitmap is used exclusively; that is, no distinction 
is ~ n a d c  bcnveen an array of depth 1 and nn arra!l of  
dcptll 1 1  I n  this paper, the term pix~nap is used in 
its general scnsc to refel- to X pixel arrays, and tlie 
term bitmap refers to the Win32 concept. 

Another conllnon point of confi~sion \\~licn dis- 
cussing the X Window System en\,ironmcnt is the use 
of the terms .scr.oc.r. and clic.rzr. To one familiar \\fit11 filc 
anci print scrircrs, the meanings of tl~csc two terms in 
tlic S c~l \~i ron~i ient  mdy seem to be rcvcrscd. I n  the X 
cn\~ironnicnt, the serI7er is a display scrvcr, and the 
clients arc the applications requesting display scr\,iccs. 
The S server and tl.le X client applications may reside 
on the s ~ ~ n c  PC, b ~ ~ t  the po\\!er of the eXcursion soft- 
ware is in its ability to  bridge tlic gap bchvccn the 
Windo\vs desktop and the traditioiial S11  UNIX and 
OpcnVMS workstations. 

excursion Version 2 Product Goals 

The design of cXcursion version 2 \\!as driven primarily 
by the Follo\ving product goals: 

S t ~ p ~ x ) r t  X Windo\\, System version 11, release 6. 

Sup~mr t  the Microsoft \/Vindo\\~s, Windo\\!s NT, 
and Windows 95 operating systems. 

<;ode tlic single source pool to  Microsofi's Win32 
API. 

Excccd gr.\phics performance ofcXcursion vcrsion 
1 ns mcusured with the standard benchmarl< tests 
XI lperfand Xbench. 

Preserve maintainabiliy by using modular coding 
and limiting changes of the saniple implen~entation 
fi-om the S <:onsortium. 

Mnsimize reliability by performing cstended error 
chccking and resource managclnent. 

C:orrcct kno\vn protocol co~~formance deticiencies 
in \ icrsio~~ 1. For example, in version 1 ,  pl'inc mask 
s ~ ~ p p o r t  \\,as iinpleniented For on ly  '1 feu) graphics 
operations. Version 2 would provide plane mask 
support for all graphics operations. 

Components of excursion Version 2 

In cXc~~rsion ve r s io~~  1, most of the fi~nctions provjdeci 
by the product \ifere combined in a single executable. 
T o  c o n s ~ r \ ~ c  resources and to  partition the codc for 
easier maintenance, version 2 is di\iidcd into several 
separate colnponents or modules. Some of tllese run 
as individual proccsscs, and some arc built as dynamic 
link libraries (1Il . l~).  A DLL is a shared memory 

library module that is linked to the calling program at 
run time. 

eXcursion version 2 is piirtitioned into the follo\\,ing 
major components: 

X server. l'he X scr\>cr is tlie primary component of 
eXcursion version 2. The X scrvcr process is respon- 
sible for displaying windows and graphics o n  the 
Windows desktop and for sending keyboard, 
mouse, and other c \ ~ c ~ i t s  to the client application. 

X Image Extension. X extensions are additions to 
the server that support fi~nctionalin~ not addressed 
by the core X11 protocol, such as displaying shaped 
(nonrectangular) cvindo\\(s, handling large requests, 
testing/rccording, and imaging. All estensions 
except the X Image Estension (XIE) are implc- 
mented internally in the S ser\*er. Because of its 
size, XIE is iniplcnlwltcd as a pair of  DLLs, one for 
XIE \,ersion 3 and one for SIE version 5. 

C o ~ ~ t r o l  pancl. As tllc primary user interface, tlic 
control panel provides the user \\lit11 access to tlie 
many configuration settings. It is an independent 
Win32 application implcmcnted using Microsoft 
Vis~ial C++ and the Microsofi Foundation Class 
(MFC) l i  b~.ary. 

I~lterprcxcss aco~nrnunication library. The inter- 
process communication (IPC) library is an operar- 
ing system-indcpendcnt library used by cooperating 
processes or tasks to communicate configuration 
a i d  status information. 

Error logger. The error logger is a simple Win32 
application that records error and status informa- 
tion from othcr cXcursion components in a win- 
dow, a file, or  the Windoivs NT event log. 

Application launcl~cr. The application lau~ichcr is a 
Win32 application that starts X client applications 
at the request of the X server o r  the control panel. 
The application launcher is i~l\isiblc to the user. 

1Zegistry interface. The registry interface is an 
operating s!!stcm-indcpc~icic~it interface to the 
excursion co~lfigi~ration profile. The registry inter- 
face is implemented as a Win32 DLL. 

X Server 

The  core of the eXcursio~l product is the X server, a 
Win32 application that accepts X reqilcsts from clicnt 
applications and transforms them iiito graphics on the 
Windo\vs desktop. The device-independent portion of 
the server code is ported from the sample implemcnta- 
tion provided by the X Consortiuni. The device- 
dependent portion treats the Win32 API as the device 
interface t h r o ~ ~ g h  \ilhich clicnt rcqilests are material- 
ized on the screen. ?'he eScursio11 S server is illus- 
trated in Figure 1 .  
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I INTERNAL WINDOW MANAGER I 
X REQUESTS NETWORK DEVICE-INDEPENDENT DEVICE-DEPENDENT WIN32 FUNCTION CALLS 

X EVENTS TRANSPORT CODE I CODE t WIN32 MESSAGES 

Figure 1 
Tlic cSc~~rsion X Scr\~cr 

.. . 
l'llc scr\,cr can operate in one oFt\\,o ~nodcs:  singlc- 

\\<indo\\. ~nocie or  rnulti\vindo\\ moric. I n  single- 
\\.indo\v mode, the server creates one Win32 \\indo\\; 
\\,hich reprcscnts the X root \vinclo\\.. All descendant 
\\,incio\\rs and their contents  re ci1..1\\'11 ill to t l ~ c  root 
\\,indo\\,  i sing Win32 f ~ ~ n c t i o n  cnlls. 111 m~~lti \ \ , indo\\ ,  
mode, tlie root \vindo\v is a \irtt~aI \\.indo\v; t11at is, it is 
never ciraivn on the screen. Each top-lc\vcl child of the 
root \\?indo\\, Iias a corl-esponding Win32  indo\ do\\; 
\vIiich is created \\+en the X \\!indo\\$ is mnppeci. All 
dcsccndants of a top-lc\,cl \\'indo\\! arc drnwn inside 
the Win32 \\?indow \\,it11 Win32 cnlls. iMulti\\,indo\v 
~ n o d c  thereby creates a desktop enviro~lmcnt in \vhich 
S ,ipplications are peers of other Win32 npplicntio~~s. 

Singlc-\\-indo\v mode is usef~l  tbr emulating J com- 
plctc \\rorkstation environment including the \\.indo\v 
mnrlagcr ;ind the scssio~l or  dcsl<top manager. In multi- 
\\inclo\\. mode, cirn\\ring to nnd getting input from tlie 
root \vindo\\. is restricted b!~ tllc S scr\,cl to p r - ~ \ ~ c n t  
conflicts with the Microsoft Windo\\,s system's L I S ~  

of the desktop \\,indo\\,. Despite this restriction, tlie 
~nnlti\vindo\\, mode, \\,he11 ~ ~ s c d  \\,ith rllc llnti\,c \\,in- 
do\\, manager, pro\lides the c lca~~cst  i~itcgration of the 
S and Windo\\~s environments. 

Resource Management and Performance 
Both tlic S ,ind bVin32 systelns Ii,~\,c \>uilt-in  lotions 
ofgr~pl i ics  state and resource allocation. Tlic scman- 
tics and usage of the concept, lio\\c\.cr, arc quite dif- 
f t rc~i  t i l l  the n\,o \ \ x i  ndo\ \  systems. 

In X,  gr~phics  state is mnintnincd in n ci.ira 5tr~1ctu1.c 
kno\\*n as a graphics contest (G<:). A (;<: has an indc- 
pe~idcnt  existence and may be created, destroyed, 
[~pdnrcd, q ~ ~ e r i c d ,  and copied at \\,ill hy the X applica- 
tion. During graphics operations, .I G<: is nssociatcti 
with the X "drawable" (\vi~tdo\\: or  pismnp) being 
drawn into, and information in the G(: is used to f ~ l l y  
dcf nc the operation. For example, the C ; ( :  may specie 
foreground o r  backgroc~nd colors, line snlcs, or  font 
information. 

The Win32 API has a concept cnllcd a dc\.icc co11- 
text (I)(:), \vhich also contains state infor~ii.ition but 
\\rliosc PLII.POX is niorecI(~seI!~ related to pro\.idirig 
device illdependence. Conscq~~cnrly, t\\.o diffcrcnt 
t y l x s o f  LXs are required under the Win32 API, 

depcnciin~ on  \\.licrhcr the graphics operation is dl-a\\.- 
ing to n \\rincio\\. or to n bitmap. Furthermore, .I \\.in- 
do\v DC may be ;~llocated either permanentl!, o r  kom 
a cache, depending o n  its cspccted lifetime. Any dm\\.- 
ing operation t11crck)rc rccluires that both the (;(: 
uscd in the S grnpliics ~ . c q ~ ~ c s t  and tlie DC ~1sei1 in rhc 
ulti~natc Win32 call be properly set ~ r p  and synclll-o- 
nized. The m;lnncr in \\.liicli this is done has a signiti- 
cant effect o n  the graphics performance of the ser\,er. 

Before an X graphics opcrntion can be started, tlic 
GC must be \,alidntcti. Validatio~l is a process of 
preparing the o u t p ~ l t  device to render the gr.lphics 
properly. I n  the c;lsc of the eScursion server, the out- 
p u t  dc\.ic.c is n Win32 I)<:. For every graphics com- 
mand, the C;<: mllst be cl~cckcd for changes and the 
appropriate Win32 objects and state \-ali~es milst bc 
selected illto the 1)C:. This process can be very timc- 
co~lsr~rni~ig .  The kc!, to maximizing performance is to 
rccognizc tlint most oper.1tions arc rcpetiti\~e. A typic.ll 
stream of S rcqucsts tends to contain man!' comm.lllds 
directed nt the same \vindo\v \\lit11 the same (X:. 
Therefore, the \\,3y to reduce GC/DC \.alidation timc 
is to cncllc the most rcccllt G(:/L'>C pair so that si~bsc- 
quent commands t113t use tlie same combination nccti 
not  trigger 3 validation step. In some cases, graphics 
opcrations \\.ill toggle kct\\,ccn two or  rnorc GCs. (For 
esample, the (:op!:A~.ca opcr~ltion takes a source a n d  :I 
destination.) The pcrfi)r~nancc jn these cases c'ln be 
inipro\,cd b!. simpl!. caching Inore than one recclit 
GC/DC pair. Tuning cspcl-ime~lts on the ser\.c.r 
re\,ealcci tl1;lt 3 c;~c[lc size bcn\reen 2 and 4 \\-as suffi- 
cient to mnsimizc pc~. fornin~~ct .  Under tllc WillJo\\.s 
and Windo\\.s 95 operating systems, \\,here resources 
are limited, n cachc size of 2 is used. Under the 
\Vindo\\zs NT opcr,iting system, the cachc size is 4. 

In the cScul.sion scl.vcr, the notion of n c~clicd 
GC/D(; pair is cncupsulatcd in a C++ class wlled ,I 

WSDC. The WSlX: remembers the Win32 objects thnt 
have been sclcctcd into the DC and the last GC that \\,as 
~lscd \\,it11 it. As long .IS these elements d o  not c11,lngc 
from one gr;lpliics o p c r ~ t i o ~ i  tc) thc ~ ~ e s t ,  110 \*nlidntion 
is necessary. If the clic~lt appliciltion changes the con- 
ccnts of the (;<:, any affected objects in the 1)C nrc 
tagged and the ~ i c s t  glapliics opelation on that WSIX: 
\\.ill recluirc nc\\. o0jccrs to be selected into tlic DC. 



E\.cnts in the \\,indo\\ system can also c;li~se W X l X  
clcmcnts to become in\.alid. For  csaniplc, if tlic \\.in- 
do\\. is ~no\rcd o n  the sc1-cc11 by the \\!indo\\, nianager, 
its clip list may lia\lc clinngcd. -1'his causes the WXlX; 
to in\rnlidatc the clip rcgion in its 1)C. (Clip list and 
rcgion arc defined in tlic fi)llo\ving section.) The nest 
graphics operation o n  tli;lt \\lindo\\r \ \? i l l  rccluire the 
clip rcgion to be rccnlcu1;ltcd and reloaded. 

Clipping in Single- window Mode 
In tlic X Windo\\, Systc~ii cnvironnlent, a11 rlcsccn- 
tialits o f the  root \vinJo\\, li;i\,c ,I clip list, which is a list 
of rectangles that dcfines tlic \iisible area of thc \\,ill- 

do\\/. Tlic clip list is equal to the area of tlie child 
\vindo\v mini~s any arcas that are occluded by otIic1- 
X \\,inclo\\'s. Before dr.l\\.ilig illto a descciidai~t \\.ill- 

clo\v, the server mList con\,crt the clip list into ;I Win32 
rcgion. 111 the Win32 ,\PI, a region is a polygonal nrca, 
iiot ncccssaril!~ ~.ectnngular, thnt 5311 be selected into 
;I I)(: for clipping. 13ct?)1.c initiating a gr~pllics o ~ i t -  

piit operation, the tilrgct WSD<; checks to see if the 
current rcgion for tlic windo\\r is valid. I f i t  is not, the 
S clip list is con\lct.tcd to a Win32 rcgion and com- 
bined \\.it11 the client-supplied clip list in the C<:, if 
any. The result is sclcctcd into the output 1)C. 

Clipping in Multiwindow Mode 
In ~nulti\\.indo\\, ~ n o d c ,  rhc root \\.indow is invisible. 
Each top-lc\~el X \\,indo\\, (first-generation cliilcl of tlic 
root) corresponcls to a Win32 \vinclo\\l on the clcsktop. 
N o  clipping is necessary for thcsc \vindo\\.s, because 
Will32 does tliis ,iuromLiticall!~. For \vindo\vs belo\\. 
tlie tirst generation, clipping is nccomplishcti in a man-  
ner similar to that L I S C ~  i l l  s i~iglc-\ \ . i~ldo\~  node, csccpt 
t11,lt tlic offset of tlic clip region must be adjusted to be 
~.cl,~ti\,c to the top-lc\,el \\,incio\\ instead of relati\,c to 
tlic root \vindo\\: 

Graphics Rendering 
(;I-:lpliics rendering is ;lt the heart of the S scr\Icr. 'S\\~o 
of thc core go;lls for tlic eXcursion version 2 projcct 
\\,ere to  significnntly impro\,c server performclnec o\,cr 
tli.it of the eScursion vcrsion 1 senrer and to i~npro\,e 
scr\.cr conipliancc to the S protocol specjfcation. 
Figure 2 colnpnrcs the performance of  the eScursion 
\,crsion 2 ser\.er \\'itti tll;lr of the \us ion  1 sc~-\.c~.. Tlic 
s ~ i ~ l d a r d  benchmark tests S 1 lpcrf  and Xbcnch \\'ere 
run over a local arcn ~iet\\,ork to eXcursion run~l ing 
o n  n 66-meg,lIicrtz I ' c~i t i~~rn processor \\gitli ; I I ~  S3 
video card. 

Tlic sample X scr\,cr ~ ~ p o n  \\,liich tlie excursion X 
scr\.ci- is based pro\'idcs .I m~cliinc-indepe1ic1c1lt Ia!zcr 
that is capable of rcnciering all X graphics t l i ro~~gl i  .I 

small set of dcvicc-dcpcndcnt fi~nctions. In the 
cXcursion S scr\,er, tlic Win32 fi~nctions pro\ridc the 
\irtu.ll Iiard\\,arc intcrLicc. For masimuln pcrti)~-- 
rnnncc, X graphics rcclucsts are passed to the Win32 
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PERFORMANCE BENCHMARK 

Performance excursion excursion 
Benchmark Version 1 Version 2 Improvement 

XBench 
linestones 135,735 239,740 76.6% 
f i l  Istones 38,083 74,331 95.2% 
blitStones 59,743 88,320 47.8% 
arcstones 2,172,720 3,662,770 68.6% 
textstones 156,190 214,762 37.5% 
complexStones 71,633 71,699 0.1 % 
XStones 80,057 126,408 57.9% 

XI I perf 
Xmark 1.6495 2.5805 56.4% 

Notes: 
The test machine was a DECpc XL 566. 

Since excursion version 1 did not support 16-bit fonts, the version 2 
numbers were substituted to obtain the Xmark number. 

Figure 2 
Co~iipwison o f  sXc~~rsion \rcrsion 1 :lnd \krsion 2 
Pcrform;lncc 

API as early 11s possible \\,ithout compromising the 
requested rcnderilig. Many X graphics 1.cc1ucsts ]nap 
neatly into Win32 calls \\,it11 little or  n o  data 11ianip~1- 
lation. Some complex grapliics rcclucsts, Iio\\,c\.cr, 
cannot bc pr,lcticnll!, mapped into liigli-lc\,cl CVin32 
calls and acliicvc proper piselization. 111 such cases, the 
machinc-indcpc~icic~it f~nc t ions  arc callcd as helper 
fi~nctions to brcnk tlie recl~lest do\\fn into simpler 
graphics rcclucsts. 

GDI Context Switching To reduce contest s\\,itcliing, 
Windoivs batclics g ~ ~ p l i i c s  device il.itc~.Kicc (G1)I) 
cnlls. The dcL2ult G1)1 batch size is 20, but this limit 
can be ndji~sted per thread. Testins \vitli a mix of all S 
requests sl~o\\.cd tliat an o\,erall pcrformancc increase 
of about 9 percent c o ~ ~ l d  be achieved by increasing the 
GDI batch limit to 30. At tliis level, tlicrc is rlo mea- 
si~rable latency, a ~ i d ,  fi~rtliermore, iricrcasing tlic batch 
size beyond tliis point had n o  mcnsurahlc benefit. 



Sonie competing X server products set the batch size 
very high (100) at the bcgi~ining ofc\,cry rcqucst and 
flush the queue at tlle end. This appro1 c .I i I 13s n o  mca- 
surable benefit over 0111- simpler method, probably 
because the Windows operating system nlrcndy pcr- 
forms tinier-based flushing to prevent dra\ving Intc~lcy. 

Similarly, ~ \~henevcr  possible, Win32 graphics calls 
are combined to rcclucc the overhead of contest 
s\vitcl~ing. For example, an S PolyLine rcclucst could 
be rendered \\.it11 a series of Win32 1,incl'o c,ills, 
but it is r n ~ ~ c l i  more cfficicnt to render the I'olyLine 
recluest with 3 single Win32 PolyLine call. Siniilarl!r, a 
I'olyRectangle X request is best rendered wit11 a singlc 
Pol!!PolyLine c ~ l l .  

Solid Fills Many different Win32 resources s ~ ~ c h  as 
pens, brt~shcs, fonts, and clip regions ma!, be rcquircd 
for any given graphics request. The resources nccdcd 
are determined by tlie graphics operation itself nnd the 
state of  the X GC. As ~iotcd earlier, these resources arc 
cre'~ted as needed and ~n'ln.~gcd by the WX1)C objects, 
rcmoving significant complexity a ~ l d  nearly redundant 
code from the ncti~al graphics drawing routines. 

Mlindo\vs Pen structures provide color rind dnsh 
pattern mihen dra\ving line objects. For Jra\\ring lines, 
segments, and arcs, the S scrver creates and LIKS l'ens 
that correspond to the GC state. I n  some cases, ho\\.- 
ever, exact pjsclization cannot be acliie\,ed \vlicn usjng 
Windows Pelis. Esamples of this ase dra\\ling \vide 
lines with raster operations other than (;>;copy or  
\vith long, dash patterns. In these cascs, machine- 
independent functions arc ~ ~ s e d  to reduce the rcclucst 
to a set of  spans (single-lvidth horizontal lincs) to be 
filled. The use of  l'ens is also abandoned in special 
cascs \\+en the highly optimized GDI pattcrn block 
tmnsfcr (PatBlt) function can be used. PatRlt fills rcc- 
tangular regions \\,it11 specified colors or  patterns. It is 
h e r ,  for example, to L I S ~  the PatBlt f ~ n c t i o n  to  dra\v 
vertjcal or  horizontal lincs than to use tht: Windo\vs 
traditional line-clr.i\\jing f~~nctions.  

Windows Brush structures provide color and pat- 
tern when dracving fillcd rectangles, fillcd polygons, 
and filled arcs. Again, for performance I.easons, the 
l'atBlt function is often used even \\,hen tlicrc is a 
higher-level fi~nction that seems to be a closer 1natc11. 
For example, PatRlt can perform the S I'olyPoint 
rcquest about 10 pcrccnt faster than Setl'ixclV, the 
Windows standard call for setting single pixel values. 
Similarly, PatBlt can perform the X PolyFillRect 
request a b o ~ ~ t  14 pcrccnt faster than tlie \iVinclo\\a 
FillRectangIe call. 

Tile and Stipple Fills An X pismap can be specified as a 
piittern to be ~~sec l  \\,hen performing fi l l  operations. 
When the pisniap is created, it is realized as n Win32 
bitmap. When the pixmap has a depth greater than 1,  
it is used as a color tile that will be used for thc till. If 

the pismap h;is a depth of 1, it can be used as either a 
transparent o r  an opaquc stipple. An opaque stipple 
dra\\a both tlie (X's foreground and background col- 
ors, where tlic stipple is 1 and 0 respectively. A trans- 
parent stipple is similar except that it leaves the 
destination ~ ~ n t o ~ ~ c h e d  \+here thc stipple is 0. 

When tlie tile or  opaque stipple is 8 by 8 or  smaller, 
a Win32 color brush is created and cached for the 
dr,i\\ring. 0 1 1  the Windo\\rs NT systcm, krushcs larger 
than 8 b!, S can be created, but our csperience IIJS 
shown it to be slo\ver to  draw \\pith them than it is to 
perform a scries of bit block transfer (BitBlt) opera- 
tions from the ti.le/stipple bitmap to tlie destination. 

Transparent Stipple Fills There is a Win32 fi~nction, 
~MaskKlt, that seems ideally suited fix performing 
tmnsparcnt stipplc fills. This function, Iio\\fe\,er, \!,as 
not  fi~lly implemented on  all platforms at the time \ve 
designed the cXcursion version 2 soft\\*a~-e product. 
Without this fi~nctjon, there is n o  easy \vay in thc 
Win32 environment to perform the transparent stip- 
ple operations. When the foreground color is either 
0 or  OsE'FFE', the raster operation can be remapped 
to get the proper effect. General rcctiingular fills that 
d o  not mect the req~~irements oftlic special case previ- 
ousl!. mentioned must be accomplished by first con- 
verting the stipple bitmap to the depth of the 
destination ancl then remapping the raster operation. 
In general cascs that are not rectangular fills, machine- 
independent fi~nctions are called to  break down the 
request into sp3m 

Image Requests The GetImage and PutImage 
I-equests are other examples of X graphics requests 
that d o  not nlnp \\,ell into tlie Win32 API. onl!, 
\tray i l l  thr Win32 en\,ironment to put  image data o n  
the screen is to first create a Win32 bitnlap and initial- 
ize it with the image data, and then call thc BitBlr 
f i~nct io~l  to copy the bitmap to tlic scrcen. X inlage 
data al\vays lists tlie top scan lines first, \\/hereas the 
b o t t o ~ n  scan lines are listed first in Windows bitmap 
data. Tlicrcfi)rc, before the bitmap is initialized, the 
S imagc c1,ita must be scan-line tlippcti. Similarl!; 
the X (;ctI~nagc request requires the use of an inter- 
mediate bitmap and also recl~~irrs the scan-line flip. 

Plane Mask Support h y  graphics opcl-ation ill X can 
be modified by setting a plane niask in tlic GC. The 
plane mask specjfi cs \vhich bits of  the destination pixel 
arc allo\\aed to bc changed. Without a plane mask, an  
X graphics operation may be defined as 

dst t src @ dst, 

\\?here @ is one of the 16 binar), raster operations 
(e.g., OK, A N D ,  and XOR). When a plane mask is 
given, the following assignment dcfincs the destina- 
tion pixel: 



dst + ((src @ dst) S: pm ) I (dst & -pm) 

Most video hardwnl-e de\*iccs support plane masking, 
and those that d o  not support it generally provide List 
access to vidco random-.~cccss memory (1lAiM). 'l'hc 
Win32 A H ,  ho\vcvcr, provides neither plane miisking 
nor direct vidco lL4M ;icccss. To understand why, you 
must realize that Windo\\,s lias virtualized tlic color 
hnnclling in an attempt to mediate contlicts bct\\,ecn 
npplicntions tliat \\*auld otlic~~\\~isc \\.ant to nioditj' the 
colormap (the pixel-to<olor mapping [able). I n  this 
\.irtual color environment, the concept of planc masks 
lias n o  mealiuig because Win32 applications ~ ~ c c d  not 
I<no\zr the pixel value thnt corresponds to a particular 
co.lor. See tlie section Color ltcsoi~rce I\/la~lage~~icnt for 
an explanation of lio\\r tlic excursion sohvarc 1nan;lgcs 
to assign specif c pixel \.alucs to colors. 

In tlic general plane masl< case, it is necessar!, for the 
S scr\.cr to first s<i\-c the contents of the dcstiuation in 
;I bitmap. The graphics c.in then be temporaril!~ drm\,n 
\ \ ' i t I io~~t regard to the planc mask. Those bits i l l  the 
destination that are specified by die planc mask 
as being unaffected cnn then be restored from the sa\cd 
bit~nap. This process \\.ill \\rorlc in ever!! case but is inef- 
ticicnt since it in\rol\.cs sc\acral graphics operations 
behrc  achieving the f nal result. Many speci;ll c;iscs can 
be reduced to one or  n1.o siniple steps b!. rnodieing the 
source color and rastcr opcrntion. Table 1 sho\\*s ho\v 
the source color and raster opelation call be set to 
acliit.\o the plane niask etEct. The excursion S sc~.\,c~. 
i~scs these optimizations for many graphics operations 
~ ~ h e ~ i  the source till is a solid color. 

Internal Window Manager 
I n  the absence of ;I \ \ ,indo\\ manager, tlie cScursion 
server creates a11 \vindo\\rs as pop-up \vindo\\,s. All \\,in- 
iio\\,s, including top-lc\.cl \vindo\vs in ~iiulti\vindo\\, 
mode, are undecorated. The!! have no Win32 borders, 
title bars, o r  system menus. To move, size, minimize, 
mnximize, or  close windo\\/s, the user IniIst r ~ ~ n  ;I \\)in- 
d o ~ ~  ~nanager. 

An cXcursion user nl\\*ays has the option of using 
one of tlic many X-based \vindo\\. managers available, 
st~cli as tlie Motif Windo\\. ~Ma~xiger. Ho\\.c\,er, many 
users \ \ . i l l  \\.ant 3 \\ ' i~iiio\\, mnnager parndigm that is 
co~isistcnt \\zit11 Windows so tliat all \\.indo\\,s on tlic 
dcsktop have the sanic user interface. T o  accomplish 
this, a built-in window manager is provided as part of 
the excursion scrvcr. This internal window manager 
is olxrati\ze only in n i~~l t i \ \~ j~ldo\ \ l  mode. 

The internal \\,indo\\, mnnagcr, although linl<cd \\zit11 
the server, is functionally isolated from the rest of the 
code so that it can easily be disabled. Thls allo\vs ester- 
nnl \vindo\\. managers to be used and also tici1i~tc-s 
ciebugging by nllo\\,ing problems to be isolated. The 
\vindo\v Iiianager crcnrcs n "hool<" into the scr\lcr's 
wj~ldow procedure, so rliat a11 Win32 messages arc first 

examined by the \\,indo\v managcr. This gives the 
\\.indo\\, manager the opportunity to act on \vindo\v 
nianagenient-relilteci messages such as those tliat indi- 
cate a change i l l  tlic \\~indow's configuration or  state. 
If the willdo\\) ~nanagcl- decides to liclndlc a mcssage, it 
is removed from tlic queue, and the server never sees 
it. If the \vindo\v manager is not interested, tlie mes- 
sage is passed on to the normal \vindo\v proccdure. 

The p~rrposc of the internal \\,indo\\- ninnager is 
t o  gi\re S \ \ r i~~do\\ ,s  tlle s .me appearance and belia\.ior 
as Win32 \\,indows tliat arc created by typical desk- 
top applicntions, such as word processors and 
spreadsheets. Wlicn an X \.vindo\v is mapped for 
tbe first time, tlic intcrnal \\lindow manager receives 
a Win32 WM-CItEATE message. Before tlie \\/indo\\) 
becomes \risible on  the screen, the \\,indo\\r Inan- 
agcr alters tlic style of tlie Win32 \\.indo\\, to 
WS-0VERLAl'l'El)~VINDOW. Win32 \\.indo\vs with 
this style arc autoniatically managed by Windo\vs, 
\\hich hnndlcs ~i io \~ing,  resizing, iconitjing, maxin~iz- 
ing, and closing thr  windo\\fs. Each of tliesc actions 
causes a corresponding message to be sent to tlie 
scr\ler's windo\v procedure. The internal windo\\: 
manager intercepts the messages and dispntclies theni 
to the appropriate intcrnal fi~nction. 

The role of the intcrnal \vindo\\. managcr coniple- 
ments the I-ole of tlie server. The server processes client 
requests on S \vindo\\.s and translates theni illto opera- 
tions on Win32 windou.s. The intcrnal wi~idow man- 
ager handles Windo\vs messages tliat indicate changes 
to a Win32 window and translates them into con-e- 
sponding changes to the u~iderlying X windo\\/. For 
example, the   no st important message that the win do\\^ 
manager handles is WMVINDOWPOSCHANGING. 
This message is sent just before any change in the \\,in- 
do\\.'s position, size, staclung order, o r  \,isibilip: If this 
message indicates tliat tlie \vindo\v size changed, tlie 
\\findo\\/ managcr changes the size of the corrcspond- 
ing X \v indo~\~ and sends a Configul-eNotit) event to 
tlie client. Si~nilarly, tlie window managcr trnnslates 
other uscr-directed events such as focus clinngc, \\)in- 
do\\* stacking, and iconification into changes to the 
i~nderlying X data structures. In most cases, tlie \\.in- 
do\v manager does this by calling into the device- 
incleprndent Iiiycr, rlius sinlulating an S ~.eclucst that 
\vot~ld occur froni an external \\lindow manager. 

Mouse, Keyboard, and Input Focus 
Mouse actions iind keystrokes are received by the 
excursion scr\Icr as Win32 niessages. Each mcssage 
co~ltnins information about the \\)indo\\ that recei\~ed 
tlie inpi~t  2nd the time of the input. For IIIOUSC moves 
and clicks, thc scr\,cr uses the \vindo\v information to  
locate the corresponding S \\.indo\\, and for\v.lrds an 
S event to rliat \vi~ldo\\. Iceyboard input is for\varded 
to the u,indoc\l tliat ci~rrcntl!~ lias S focus. 
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Table 1 
Plane Mask Optimizations 

Requested X Raster 
Operation 

src 0 0 1 1 Modified Source Color and 
dst 0 1 0 1 Notes Raster Operations 

GXclear 
GXand 

GXandReverse 

src t -pm, rop <- and 

src + src I -pm 
src t -pm, rop c xor 

GXcopy src t -pm, rop t and 
src t src & pm, rop c or 

GXcopy 
(src & pm) = pm 

GXcopy 
(src & pm) = 0 
GXandlnverted 

GXnoop 

GXxor 
GXor 

GXnor 

src t pm, rop t o r  

src <-SIC I -pm, rop t and 

src t src & prn 
src t src & pm 

src t src & prn 
src t -pm, rop t xor 
src t src I -pm 

src + pm, rop + xor 

GXequiv 

GXinvert 

GXorReverse src t src & pm 
src t -pm, rop + xor 
src t -pm, rop +and 
src t -src & pm, rop c or 
src t src I -pm GXorlnverted 

GXnand src t src I -pm 
src t -pm, rop t xor 

GXset src + prn, rop t or 

Notes: 
1. dst is unchanged when src equals 1 for these raster operations. Therefore, t o  preserve the value of dst when 

pm equals 0, set src equal t o  1. 

2. dst i s  unchanged when src equals 0 for these raster operations. Therefore, to  preserve the value of dst when 
pm equals 0, set src equal to  0. 

3. This operation sets all dst bits t o  1 except where the plane mask equals 0. This can be done simply by ORing 
pm into dst. 

4. This operation clears all dst bits except where the plane mask equals 0. This can be done simply by ANDing 
pm into dst. 

5. XORing with 1 has the effect of inverting. To invert only where pm equals 1, XOR pm with dst. 

6. These operations are performed in two steps. Note that dst is inverted when src equals 1. First perform the 
operation with src set to  1 where pm equals 0. dst is now correct except that i t  is inverted where pm equals 0. 
The second operation of XORing with the invert of pm corrects this. 

7. These operations are performed in two  steps. Note that dst is inverted when src equals 0. First perform the 
operation with src set t o  0 where pm equals 0. dst is now correct except that i t is inverted where pm equals 0. 
The second operation of XORing with the invert of pm corrects this. 

8. This operation is  performed in two  steps. First dst is set t o  0 whenever pm equals 1. Then dst is set t o  1 when- 
ever both pm and src equal 1. The two  special cases can be reduced t o  operations that use GXset and GXclear. 

9. This operation is performed in two steps. First dst is set t o  0 whenever pm equals 1. Then dst is set to  1 when- 
ever prn equals 1 and src equals 0. 

10. dst is unchanged; therefore, no operation is required. 
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Tlic S server is n singlc application in thc Win32 
c~ i \~ i ron~ i i e~ i t  tI1;it L L ~ \ ~ ~ ~ ~ "  all tlic X windo\vs it crcntcs. 
From the user's pery>ccrivc, tlioi~gh, there may appear 
to be Inore than one >( application running, each with 
its o \ \ r ~ l  collectio~i of \vindows. The user cspccts to 
bc nb1.e to  shifi the keyboard focus fro111 one \vindow 
to another in tlie same fashion that f o c ~ ~ s  is shifted 
L>ct\\~ccn other applications. When an estcrnal \\*indo\\, 
manager is in use, ~ C L I S  c o ~ l t r ~ l  is straiglitfor\\~nldird. 
.. - 
I lie \vincio\v maliagcr, using \\,hatever sc~nantic it 

\\.:IS designed for, monitors mouse evcnts and shifts 
focus accordingly. Ho\\fcver, tlie semantic modcl for 
tliis may or may not br consistent with the Win32 
modcl. In cithcr casc, the \\iindo\\~ decorations, c.g., 
bordcrs, title bars, and menus, arc almost guaranteed 
to be different. A L I S ~ I .  ivlio \\?ants a consisteot uscr 
interface moc.lc1 across a11 applications must c~iiplo!~ 
the inter~ial \\'illdo\\, manager. 

At any given rime, one \\.indo\\, o n  the screen has 
Win32 focus and onc X \vindo\v has X focus. Tlic two 
\vil~do\vs 'Ire not necessnrily the same. Since tlie S 
server creates and owns all the S \vindo\\~s in i~sc,  the 
scrvcr rcceives ltcyboard input when any onc of  its 
\\rindows has Win32 fi)cus. The keystrokes are not 
necessnrily sent to [lie undcrl!,ing S \\~indo\\r, ho\\~ever. 
Thcy arc sent to tlic \\!indo\\? that has X focus. 'The 
internal \\.indo\\, manager assigns X focus to the X \\.in- 
do\\, that receives Win32 focus. The client receiires 
notification of this eLrcnr and may decide to assign S 
focus to sollle other windo\\), perhaps a child \\rindow. 

The server must therefore keep track of  both the 
X \\lindo\v that currently has focus and the state of 
Win32 focus. When the scn8cr loses Win32 focus, the 
X focus is assigncd to  tlic root \\indo\\'. When tlie 
scrvcr rccei\.es Win32 focus, X f o c ~ ~ s  is assigncd to tlic 
X \\!indo\\, that prc\.iously had it. Whenever X focus is 
cllangcd by an applic,~tio~i or  by the \\/indo\\, nidnager, 
tllc current X focus st,~tc is cached so that it can be 
restored later, if necessary. 

Font Management 
Fonts and test f~~nction,ility mnlte up a signif cant por- 
tion of any graphics arcliitccture. Both the X and the 
Win32 systcms dcfinc a rich set of  test-rendering 
opcra t io~~s  and can proccss sc\reral font formats. 

The fonr nlnnagcmcnt library supports both bitniap 
and scalablc outline fonts. Bitmap font glyphs arc sim- 
ply reformatted and i~sed.  Scalable hrmats,  such as 
Adobe Typel,  are rasterized on demancl into the X 
font for~iiat. 

For masi~num performance, the scsver draws test 
\\ith native Win32 fonts using the Win32 Al'I. Win32 
fonts are bitmnp fonts in the FON format. Win32 
fi~nctionalin co\,ers tlie great majority of test-drawing 
operations, but there are a fe\v c,lses in \i,hich it is 
either not possiblc or  not efficient to use Win32 fonts. 

The server can also draw directly \vitli tlie X fonts to 
provide f i l l 1  X font support and complctc test-drawing 
fi~nctionality. Tliis u~ietl~od uses Win32 BitBlt() opcra- 
tions to copy the ch.iracter glyphs to the display as 
biunaps. L>ra\\ling speed with this method is accept- 
able but not ~nas imum. 

Therefore, both S and Win32 fonts are used. The 
Win32 fonts may be thought of as optional accclera- 
tors: the ser\,cr uses them whenever possible and falls 
back to the S h n t s  when necessary. The decision to 
fall back can be madc on a variety of co~iditions. Tliis 
technique has also proved useful in working around 
problerns such as test-drawing bugs in individual 
video drivers. 

Since scalable font outlines arc rastcrized into 
bitrnaps at run time, they are generally drawn directly 
\vith the internal X font format. The extra \vork of 
compiling a companion Win32 font at run time gener- 
ally outweighs its \/due as an accelerator. 

X bitmap fonts are most commonly distributed in 
tlie Bitniap 13istribution Format (BDF), a11 ASCII tcxt 
source file. The eXcursion team \\!rote a font compiler 
tool that ge~icrarcs n,lti\.e Win32 (FON format) fonts 
from the BL)F sources. The fonts created can be used 
by any Win32 application. 

7'11e co~npiler can Senerate either tlie commo~lly 
used version 2 format or the extended \icrsion 3 for- 
mat, which is ~~cccssarp for large fbnts that require 
more than 64 kilobytes (KR) ofglyph storage. F i g ~ ~ r c  3 
illustrates the process of generating cqi~i\~alcnt X and 
Win32 fonts fiom ;I common source. 

The X font format contains extra information (e.g., 
metrics and properties) tliat cannot be dcrived from 

X and Win32 Fonts T11c X font management library is 
a modular architecture that defines an API for reading 
n~id \\~riting individual fonr formats. The nlodt~lc tliat 
implcmcnts the API for a givcn font format is called a 
I-endercr. Tliis approncli nllo\\.s X to support sc\~el-al 
h n t  formats: the library's renderer modules con\,ert 
cstcrnal formats to a singlc, internal bitmap format, 
\\,liicli is used for all draiving operations. The term 
X,/~)III refers to font dam in tliis internal format. 

X FONT 
LIBRARY 

BDF FONT Y ~ ~ ~ R S I O N  WINDOWS (FON) 

COMPILER FONT 

Figure 3 
Font Conversion 
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tlie Win32 font. Therefore, tlic S and Win32 fonts arc 
uscci together; the S infor~nl~tion comes from the 
S font and the Win32 h n t  is used b\. tlie Win32 API. 

Realizing Win32 and X Fonts When the )i server first 
opens a font, it involtes the h ~ ~ i c t i o n  RealizeFont( ). 
Tliis fi~nction gives the server an  o p p o r t ~ ~ ~ ~ i t ) ~  to initial- 
izc data structures and perform any format-specific 
operations necessary to make the font available. 

To  make a Win32 h n t  n\.ailnble for dru\\.inp, 
tlic scr\'cr retrie\.es tlic filename of the font from the 
scr\zer's look-up table and registers it \\.it11 tlie Win.32 
AI'I using the f ~ n c t i o n  AddFoutIkso~~rce() .  A handlc 
to the font is obtained from (:rcatcFontIndircct(), and 
tllereaftcr the handle is sclcctcci into the desired 1)C 
for drajving operations. If tlic Win32 realization fiiils 
k ~ r  any reason, the code simply realizes the X font 
instead. Failing to realize a Win32 font docs not neces- 
s.iril!l imply an error condition. Such failure hnppens in 
any case in nlhich tllc ~ c l - \ ~ c r  dcciiics that it is best to 
use tlie X font directly. 

Tlie internal X font format is 3 set ofdata structilres. 
The glyphs are storcd in convcntionnl arra!'s in i ~ s c ~ .  
niemory. To  improi~e pcrformnncc, the ser\,er I-calizcs 
an S font by writing all glyphs to a Win32 bitmap in 
off-screen memory. CrcatcBitmap() returns a 1i;indlc 
For later reference, and the glyphs in the bitmap arc 
indesed for use in drawing opcmtions. 

Drawing with Win32 and X Fonts The glyphs i l l  X test 
strings are ofien kerned, tliat is, o\,crlapped for best 
typogr~phic appearance. To dra\\r \\.ith Win32 fonts, 
tlie scr\.er emulates the \\!A!, X ctl-a\~,s test b!, using 
ExtrestOut(), \\lhicIi uses an intcrchnracter spacing 
vector to place the indi\.idual glyphs. The font's X met- 
r i c ~  are used directly to calculate this \:ector. 

Glyphs fi-om S fonts arc dra\\~n by performing 
I3itBlts fi-om tlie Win32 bitmap to the target \ v i n d o ~ ~  
or bitmap. The server places the glyphs ~lsing the fi~nt's 
X nietrics as described in the p r c \ i o ~ ~ s  paragraph. 

Color Resource Management 
Altlioi~gli some X Windo\\. System concepts and struc- 
tures map fairly closely to thosc in the Win32 s!.steni, 
color resource management is handled differ- 
ently. 'l'he difference is most c\~ii ic~it  \\!lien dealing 
with pse~~docolor  video systems. (:onseclucntly, this 
paper describes only this case. 

The X Windoc\, System environment shares 256 col- 
ormap cclls among all applications that use tlie dcfault 
colormap (i.e., those th,lt ilo uot h.i\~e a private col- 
or~n.ip). Applications can allocntc cclls in the default 
color~nap to protect them fro111 ~nodification by otlicr 
applications. I n  contrast, the Win32 system allo\\'s 
eacli application complete access to tile s!!steni palcttc 
\vliile tlic application has focus and maps the palettes 
of the ~\:indo\ils w i t l i o ~ ~ t  focus as best it can. 

In  thc X Windo\\. System cn\,ironme~lr, \\,lien an 
application reserves a colormap cell, it references the 
cell \\.it11 a pisel \,iilue. This \,aluc is an indes into tlie 
colormap and is used to look i ~ p  tlie value that will 
;~ctunlly be storcd ill scr-ccn mcriior)l \\,hen that pixel 
\~aluc is used in a dra\\~ing oper.ltion. 

In tlic Win32 systeni, color manngcnicnt is handled 
hy the palette manager through a palcttc structure. 
Eiicli ;ipplication lius a logical palctte, and a single sys- 
tem pdctte contains the colors currently mapped to 
the hard\\~arc colorn~np. Applicatio~is reference colors 
rclati\.c to their logical pnlcttc, and tlie palette n u n -  
q e r  lia~idles the mapping ben\lccn tlie logical palette 
2nd thc system palette. M'licn an  application is given 
focus, tlie palette manager maps a11 tlie colors from the 
logical palctte into the systelri palctte. If  the system 
palette docs not have e ~ ~ o ~ ~ g l i  empty cclls, tlie palette 
man;igcr frees cells allocated to other applications. If 
this occurs, the palette mnnagcr \ \ r i l l  attempt to remap 
the otlicl. applications' colors into any remaining free 
cclls in tlie system coloniiap. I f  ~ i o t  enough cells are 
free, any remaining unmapped colors are mapped to 
the system palette colol-s that most closely match. 

l3cc;i~1sc ofthis \\,a! of handling color resource man- 
aKclnent, an application docs not kno\\r \ \hat  value is . . 
being stored in screen meliiory For any particular color 
2nd the value stored for any color can change over the 
lifctinic of the  ~pplication. 'Tliis situation presents sig- 
nificant difficulties for X operations tliat require exact 
kno\vlcdge o f the  pixel valucs in screen memory, such 
as the GctImage operation and operations in\rol\ring 
pl.lnc ~nnslts. Thc  scr\,cr \\mrks around the difficulties 
b!. crcuting tn.0 Win32 logical palettes. 

-The tirst palette, i.e., the \\$orking palette, corre- 
spo~lds  exactly to thc X dcf ' i~~lt  colormap and does not 
allo\\i sharing of tlie palettc by Win32 applications. 
CVhc~ier~er an S \ \~i~ido\\ /  has toci~s, tlie \\!orlting palette 
is in use. This causes tlic Win32 palette manager to set 
LIP tlic system palettc such that it directly corresponds 
to tlie X colormap, and operations that arc pisel based 
\\.o~-k properl!,. 

.The other palctte, i.e., the identity palette, is set up 
to correspond esactly to tlie system palette. The iden- 
tity palette is used \vlienc\,cr n o  X \\~indo\v has focus. 
I lccu~~se of the correspondence, no  translation is 
in\~ol\reci bcween tlie identity palctte and the system 
palcttc, which allows thc X scrvcr to know what piscl 
\~alue is stored in screen nicniory. 

Tlie X Windo\v System cn\iiron~iient alloria for pri- 
\, ,~tc colormaps, \\rliich arc created anci ~lscd by a single 
npplication. The server creates a \\lorking palette for 
cvcry colorniap created. Wlic~l the colorniap is installed 
(normally by the \vindo\v manager \\,hen the X applica- 
r iol i  is gi\,en focus), the excursion soh\,are installs thc 
 or or kin^ pi~lettc associated \\*it11 the private colormap. 

Tlic cXcursion X ser\,cr currently supports the 
I'scuclo(:olor \.isual class and the StaticGray depth 1 



visual class, \vliicIi is rn~inly used for bitmaps. 
cXcursion \rcrsion 1 also supported a StaticColor V ~ S L I ~ I  
class h r  I (,-color \ d c o  graphics array (VGA) displays. 
cXcursion version 2 treats VGA devices identically to 
Psc~~doColo r  dc\iccs and allo\vs the Windo\4.s piilettc 
malager to generate ditl~ering patterns for the 
i~navailable colors. 

Network Interface 
With the release of X1 1K6, the S <:onsortiu~n colii- 
bined all transport-specific codc into a single place 
in the sourcc tree, the S transport interface. The 
eXcursion team exte~ided the X transport interface to 
include Ncnvork C:omputing l)e\,ice's (NCD's) 
Sremote serial line transport. <:o~nbined with the 
transmission control protocol/internet protocol 
(T<:P/IP) and 1IECnct transports, the eXcursion 
product c.111 no\ \ ,  execute S sessions ojler an!! of tliesc 
transports simultaneously. Tlie eXcursion product 
supports any T<:P/IP stack tli;lt complies \\-it11 the 
Winsock \rcrsio~~ 1 .1  irnplenicntatio~l, PATHWOllI<S 
1)ECnet protocol, and NC1)'s Xrcmote protocol for 
scrial line. 

Tlie X transport interfi2ce pro\sidcs fi~nctions that 
are common to all transports, such as pal-sing an 
address inro a host and port n ~ ~ n i h e r .  Tlic interhcc 
does not provide a11 aI>st~-~ctio~i for tlic select() call, 
because it assumes that this call is transport indepen- 
dent. Unforti~nntcly, the Xrcmotc protocol requires 
.In indcpcndcnt select() mechanism, and, thus, it 
\\.as necessary to implement a select() abstraction to 
conibi~lc rhc transport-indcpc1icIc11t select() \\.it11 the 
Srelnote select( ). Although somc\\.Jiat co~npromisecl 
by this addition, pcrformancc \\..is a problem only 
\\,hen the Srcmotc protocol \vas used in conibjnation 
with either the .I'(:P/IP or  the 1I1-Xnct protocol. 

X Image Extension 

cXcursion \,crsio~l 2 provides \versions 3 and 5 of the 
S Image Extension to support a \vide rangc ofiniaging 
applications. 1Sccnuse it is a Iargc body of code, S1E 
is implemented as a pair of Win32 I)L,Ls to conser\.c 
mclnory on slrstcms tliat \ \ , i l l  not be running applic.1- 
tio~is that use SIF,. 

Normally, access to a DLL is one-\\,a!. Applications 
can load 2nd ~nnkc function calls inro a DLL, but 
becai~se it is linked dynamically at  run time, the DLL 
code cannot make fi~nction calls back into the calling 
'~pplicntion. SIE, l~o\\,e\~er, must call into the cic\zicc- 
dependent layer of tlic set-\-er to perform any required 
dra\\-ing after processing its imaging requests. To per- 
mit this, a n  addition to the intcrhcc \\/as designed. 
When the XIE DLL is initialized, the caller supplies a 
list of pointcrs to the fi~nctions nccded by the XIE. 

7 - 
1 he DLI, fills an arra!l witti thcsc pointers dnd then 
calls back indirectly through the array. On the 
\Vindo\vs operating system, this design could create a 
probleni because under Win32 Al'ls, global data in '1 
DLL is not instanced; tliat is, the cocic is not  rccntr;int. 
The approach \\.arks in this case bccai~se there is only  
one copy of the DLL loaded. If another app.licntion 
\\,as sharing the DLL, the pointers \\,auld be ovcr\\,rit- 
ten by the second initialization. 

Control Panel 

The eXcursion control panel is the primary interface 
through \\4iicl1 tlie user confgurcs 2nd controls tlic 
product. Some other components create simple \\!in- 
dows or  icons, but these functions are limited. The 
control pancl constitutes 9 0  pcrccnt of the user intcr- 
face for the cXcursion application. This fact malces the 
control pancl an ideal candidate for the rapid applica- 
tion devclopnlcnt feati~res of the  microso oft Visual 
C++ en\ironn~cnt.  The control pancl is a Wj1i32 appli- 
cation coded 3lmost entirely in C++ and linked \\lit11 
the Microsoft Foundation Class library. 

7 7 

.I he niflin pilrposc of the colltrol panel is to prc- 
sent a managcable interface t l ~ r o i ~ g h  \\'hicIi the user 
can \fie\\. and ~ n o d i %  tlie eXcursion configuration pro- 
file. To  do  tliis in n Inannrl- consistent \\,it11 the ne\\. 
Windows 95 shell, the l'ropcrty Sheet MFC objcct 
\\/as choscn. Property Shccts arc tabbed dialog boxes 
that have the advantage of organizing large amounts 
of data settings in a compact space. They arc used 
extensi\,cly by the Windo\\.s 95 opcr3ti1ig systc~li and 
by the most recent \.ersions of h4icrosoft applic~tions. 

Tlie l'ropcl-h Sheet objcct is 3 subclass of the 
Windo\\rs ohjcct rind is essentially a containel- for tlic 
tabbed pagcs. Each tab, \\!hen cliclted by tlie nser, dis- 
plays a dialog box that is subclassed fi-om the MF<: 
Property Pngc object. The indi\vidual pagcs can be 
visually configured a ~ l d  revised i~sjng the class \\tizard 
feature of  Microsoti Visual C++. The designer simply 
selects dinlog box controls such as buttons, drop lists, 
o r  edit fields and positions them o n  the dialog box. 
The codc to handle user actions is then f lled in. 

Tile cSc~~rs ion  control pancl is slio\\.n in Figi11.c 4. 
We constructed an initial P I -o to tyc  of tlie control 
panel application \\,it11 about 6 0  percent of the fnnl 
fi~nctionalip in less than one month. 

lnterprocess Communication Library 

eXcursion \.crsion 2 consists of  sc\wal cooper.iting 
processes t h ~ t  must conin~unicate and synchronize 
\vith one anotlicr. \/VIien a rc~iiotc S application is 
started by tlic server o r  the control panel, the ~pplica- 
tion launcher signals when tlie operation is complctc. 
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Figure 4 
The cXcursion Control Panel 

Error and status inforn~ation is sent to the error loggel- 
by the othcr components. When tlic user changes 
a configuration setting through thc control panel, the 
changc tilust be communicated to the S scr\.cr, if it is 
running. In some cases, the changc can take effect 
immediately; in othcr cnscs, the ser\'el- cannot i~nple- 
ment thc change \vithout I-cstarting. The control panel 
and the server must e n p g c  in a dialog so tliat the user 
can he informed as to \vIiat actio11 must be taken, ifany. 
P .  

Ilie IP<: library is an operating system-independent 
API tliat permits cXcursion components to determine 
\vhich otlicr components are present and to cschangc 
co~nmands and config~~l-ution infor~n;~tio~i.  

The Windows N'I' operating system providcs scvcral 
built-in IPC mechanisms, but most arc nor n\.ailablc 
on the Wi~ldo\vs o r  Wil~do\\.s 95 systems. The onl!. 
mechanism that is uni\*crsal to the three operating 
systems is the rncssngc-passing i~iterfacc in tlic Win32 
API. This mechanism, while not the most cfticicnt, is 
rcJati\lcl!l straightfor\\jard to iniplerncnr. Sincc the pcr- 
f o r m a ~ ~ c c  dclnands o n  tlic IPC library were detel-- 
mincci to be very light, this mcclianism \\as chosen. 

'I'he disadvnntngc of the Win32 niessage-p~ssing 
interface is that it is \\111do\v based, not  proccss bnscd. 
~Mcssages arc I-ccci\.cd by n callback procedure that 
must be associatccl nith a \\indo\\, heforc an!* commu- 
nication can take place. If an application has not yet 

cl-eared a \\,indo\\; o r  never creates ,I \\li~ldo\\; ns is tlic 
cnsc with the application launclicr, n o  comml~nicatio~i 
is possible. To  rc~iiedy this, the l.I'C: library crc.ltcs its 
o\\,n windo\\, \vllcn the calling process initializes. The 
IPC \\indo\\. is nc\,cr mappcd to the screen, so  it is not 
\,isiblc to the user. All intcrp~.occss co~nii iunic;~tio~i 
passes t h r o ~ ~ g l i  tlic IPC \\,indo\\. 

The IPC l ib r~ ry  consists of n collection o f  u~iiquc 
lncssages and an API. The Incssagcs arc registered 
\\fitli the Win32 function Registcr\Vindo\~~Mc,u:agc. 
'This ensures tliat the messngcs used by the excursion 
applicatioll d o  not conflict \\?it11 sgstcrn messages o r  
Iiicssagcs i~sed by other applications. The eSc~~rs ion  
I PC messages arc 

i~xC,om~x)1ic1itStartedh4sg, \\rliicl~ the IPC: posts to 
;1II ~ O I I I ~ O I I C I I ~ S  \vlien a component initializes. 



ipcl<estartServerMsg, which the IPC sends to the 
server to tell it to restart. 

ipcRestartSer\7erStatusMsg, \vhich the IPC posts 
with the status of the rcstart rcquest. 

ipclnquireMsg, which the IPC sends to  retrieve a 
data item from a component. 

ipcProfileChangedMsg, \\lhich the control panel 
scnds when the registry profilc changes. 

ipcI,auncl~OneCo~iipleteMsg, which the applica- 
tion launcher sends to noti@ the server of launch 
completion. 

ipcLaunchAIIComplete~Msg, \vhich the application 
launcher sends to noti@ tlie servcr of lau~icli coni- 
pletion. 

ipcHideAIWiridowsMsg, which the server sends to 
all components to  tell them to hide all their win- 
dows. The excursion application uses this messagc 
to execute the pause/resume feature. 

ipcShowAllWindowsMsg, which the server scnds 
to all corilponents to tell them to show all their uin- 
dows. Thc excursion application uses this message 
to  execute the pause/rcsun~c feature. 

In addition to sending and rccei\,ing messages, 
eXcu~.sion processes can use the IPC library to deter- 
mine which other components are running. The  IPC 
initialization procedurc creates a wi~ldow with a 
i ~ n i c l ~ ~ e  name that identifies thc calling component. To  
determine whether a specific component is present 
in the system, the IPC scarchcs all windows 011 the 
system until it finds one with the correct name. 

Error Logger 

'The error logger is a Win32 application that receives 
error and informational messages from other compo- 
nents and either displays them in a window o r  logs 
them to a file. O n  the Windows NT operating system, 
inhrmarion that may help system managers or users 
diagnose problems ma)( add~tlonally be recorded In 
the Windows NT e\,ent log. 

Application Launcher 

Thc application launcher is a Win32 application th i~t  
handles requests from the control panel o r  server to 
start X client applications. The clicnt may reside o n  
a rcmotc host or  on tlie samc machinc. 

When the user reclilests the servcr o r  control panel 
to start an X client application, it starts the excursion 
application launchel- in a separate process. The applica- 
tion command, host name, account information, net- 
work transport, and command shell are passed to tlie 
launcher in its command line arguments. The launcher 
makes thc connec t io~~  to the rcmotc system, initiates 

the command using the selected protocol (resec, rsh, 
l)E<:nct object, o r  local command), and scnds an IPC 
mcssage to the server indicating that a new application 
is starting. 

Registry Interface 

The Windows NT opcrating systcni i ~ l t r o d ~ ~ c c d  a ncnf 
concept called tlie registry. This is a protected database 
maintained by tlie operating system, wherein Win32 
applications may store config~~ration and state infor- 
mation. The registry has a well-defined API and 
a maintenance utility program that is shipped with 
the Windows N T  operating system. Under the 
Windows operating systeln, config~~ration information 
is kept in simple text files, which are vulnerable to 
accidental or  malicious tampering. At the time the 
design of excursion versio~i 2 was under way, ~t ' was 
unkno\vn which, if ejther, of these two methods would 
be available under the Windows 95 opcrating system. 
Nevertheless, all three of these operating sjatems had 
to be supported. 

VVc dcsigned an API for acccssi~lg the configuration 
i~lh)r~nation in a manner independent of the operating 
system. I(no\vledge of the  operating system and its reg- 
istry access method is encaps~~latcd in the library. Since 
sc\lcral independent processes must access the informa- 
tion, the library is built as a l)LI, to conserve memory. 
The interface basically resembles that of tlie Windo\vs 
NT registry API but eliminates some ofthe complexity. 

If the eXcursion software has not been configured 
\vhcn thc registry interface first acccsscs the profilc, 
default values for all settings arc selectccj to allo\~, the 
sofnvare to  function normally. 

Summary 

With computer systems bascd o n  the Microsol? 
Windows operating system increasing in power and 
decreasing in price, Windows-based systems are appear- 
ing on desl<tops that once held \+,orltstations running 
the UN IX o r  OpenVMS operating systems. Windo\vs 
systems must be able to access applications on remote 
filc and c o ~ i i p ~ ~ t e  servers running in the X Windo\v 
System environlnent. Version 2 o f  tllc cXcursion prod- 
uct provides desktop integration of X client applications 
with native Win32 applications. Modular coding tech- 
niclues, object-oriented programming, and selective use 
o f  the Microsoft Foundation Class library helped 
rcducc development time, and improve performance, 
maintainability, and reliability. 
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Laura E. Holly 
Colin Strutt Integrating Multiple 

Directory Services 

The Integrated Directory Services (IDS) infra- 
structure implements a directory-service- 
independent interface. The IDS infrastructure 
is used by applications that store and retrieve 
information about resources in environments 
with either multiple directory services or one 
of several directory services. The IDS interface 
isolates users and application writers from 
the unique requirements of different directory 
services by providing a view of a single, logi- 
cal directory service through a simple federa- 
tion mechanism. To retrieve resources from 
the logical directory, IDS determines i ts phys- 
ical location and converts the resource from 
a directory-specific to a canonical format. 
Extensible schema tables represent the canon- 
ical format for each resource and allow IDS to 
represent resources created using both the IDS 
interfaces and the directory-specific interfaces. 

1)igital has developed the Integratecl 1)irectory 
Scrvices (113s) technology to provide a mcch,~nism for 
integr~ting multiple directory services into a single sys- 
tem. In this paper, \ve examine the development of the 
11)s infi.astructure. We begin by discussing thc prob- 
lems hced by net\\lorlc directory applications. Nest \vc 
describe our design goals, the IDS infrastructure, and 
our initial implementation on  the PA-1-HWOlWS 
product. Mre conclude \\lit17 a brief discussion of plans 
k)r f i ~ t ~ l r e  cle\~elopment. 

Directory Support in Multiple Environments 

Although &rectory services are a powerfill mechanism 
ti)r distributing and accessing certain kinds of informa- 
tion, relative.ly few applications choose to use them. 
Digital's PATHWOIUG application \\/as in need of a 
clirectory for printers nnd file shares. PATHWORKS is 
;I 11envork operating system (NOS) integration product 
tliat gives users ncccss to both Microsoft's LAlU 
Manager and Novell's NetWare file and print shares. As 
we studied how to incorporate directory support into 
PATHWORKS, \ve came to  a better undcrstnnding of 
t l ~ c  problems faced by directory applications in general. 

Nenvorks are growing rapidly, as are the amount 
and kind ofinformation tliat can be accessed through 
the netu/ork. We \ \we certain that f i~turc network 
,~pylication p r o d ~ ~ c t s  \ v o ~ ~ l d  have an even greater need 
for a directory, and therefore a general solution was 
needed. We then set out  to design a system that would 
remove the barriers to directory service application 
usage a i d  deployment. We resolved the tension 
between the product deadline and the time required 
to implement the general solution by designing a 
coniplete solution and implementing whnt \\[as neccs- 
sary to prove the design and t o  meet the inimediate 
needs of the PATHWORKS product. 

Existing Directory Services 
There are a n ~ ~ m b e r  of general-purpose directory ser- 
vices. Some of the more familiar include X.500, 
Novell's NetWare llircctol-)I Service (NDS),  thc Cell 
1)irectory Service (CDS), and Banyan Systems' 
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StrcciI'.llk.' ' 111 tlle past, director!( scr\.iccs \\,ere in rcl- 
ati\,cl\, li~nitcd llse beca~~se  most directory scr\riccs 
\\,ere tied to either an operating system or  .I tru~isport 

r ~ c ~ ~  \\.ere con- o r  both. 111 nddition, director!? sen  ' 
ncctcd to n multiti~dc of applicatio~~ ~x-ogl-a~nlning 
i n t e ~ - ~ ~ c c s  (Al'Is) that \\)ere i~icolnpatiblc and difficult 
to ~ ~ s c .  iMore ~.ecently, directory services I i ; 7 \ ~  been tied 
to nct\vork opcrati~ig systems or  applications, ~ l t l i c r  
th;ln to Ilost olxrating systems or  transports. If any- 
thing, tllc numI7er of L'sta~idard" AI'ls 11~1s gro\vIi. 

In I.irgc networks, this complcsity has resulted in 
the proliferation of directories, often containing over- 
lapping intbrmation. This makes the network man- 
ager's job ciifficult, \vhich in turn creates resistance to 
ciircctol-y npplications. At the same time, nenvork and 
NOS technology has developed to  a point \vliere an 
cvcr-illcreasing amount of information is being shared 
o n  different machines. To give a silnplc example, 
,~lmost every server at l)igitalls Littlcton site has a con- 
nection to the lligll-\~olumc printcr in the cop!/ center, 
\\lit11 a different name on every server. A dircctory 
\vould si~npli$ users' access to tliis singlc pliysic~l 
resourcc by presenting a single name for tlic printer, 
if only the .~pplication \\triter could figure out \vIiich 
dil-cctory scr\icc to use and ho\v to use it. 

Other Approaches 
As discussed Inter in the Ilesign of t l ~ e  11)s Frame\\.ork 
,111ii Sc~.\'icc l'roviders scction, 11)s dcfi ncs both nn hP1 
 nil .I service provider interface. Support for a n y  dircc- 
tory service can be provided by \\,riting a service 
provider mociulc. ~Uicrosoft's OLE Directory Services 
(OLE 1)s) takes a similar approach to 11)s) \\;it11 a more 
limited initial implernentation.Altliougli the current 
11)s implcmcntation rutis under Microsoti Windows, it 
\\!as designed to port to other systems. OLE 1)s depends 
o n  features of the Windo\\s operating systems. 

The >;/Open Fcderatcd Naming (XFN) specification 
\4r.is not complete at the tinie \Ire \\,ere designing IDS, 
,111d it tiid not include either a service provider in ter f ie  
or  n rcfcrcncc implementation." We did cs;lrninc the 
XFN d r ~ t i  anci designed the 11)s interface to be coln- 
p.itiblc \\,it11 SFN, with a vie\\, ro\\,arci supporti~ig the 
XFN AI'I in the firti~re. Supporting the SFN interhces 
o n  top o f  11)s \\,auld be a relati\~cl!) straiglithr\vard 
tnsk, ,lnd \\,c lia\re considered doing tliis. 

The PATH WORKS Application 
In rhc NOS cnvil.on~nent, e:lcli NOS hns its own 
ciircctor!. or  pseudo-directory. NctWarc version 3 
implcmcnrs the Binder!,; NetW;irc 4 implements 
N1)S.' The various implementations of Microsoft's 
LAN Manager protocols provide a virtunl clircctory 
bnscci o n  infol-mation niaintained by its cio~nnin con- 
trollers. 111 n multiple NOS cn\.iron~ncnt, the user is 

presented \\.ith multiple information sources fro111 the 
multiple dircctorics. F,\vcn \\lorsc, the user niay be 
faced \\,it11 multiple information sources even in a sin- 
~ l e  NOS environment, sjnce there may be ~nultiplc 
NetVVnre l<j~lderics or LAN Mnnager domains. 

M~~l t ip l e  NOS en\~iro~lme~xts d o  not, in and of them- 
selves, causc co~nplcxity and confi~sion. I'roblems arise 
\\>hen people within n singlc environment want to share 
resources XI-oss m~~l t ip lc  c1l\~iro111iients. For example, 
consider 3 c o ~ n ~ i i o ~ l  Ioc:ll area nenvorlc (LAN) configw 
ration \\lliere NctWnrc is i~istallccl on tlie clients and 
servers for one depart~nent and Microsofi's LAN 
Manager (contnincd \\tithin products sucli ns 
Microsofi's Windo\vs for Workgroups, Windo\\.s 95, 
and Windo\\fs N'T' operating systelns, or the LAN 
Server product from International Busi~iess ~Uachines 
Corporation) is installed o n  the clients and servers for 
a1iothe1- departtilent. If c,lch department's resources, 
users, and administration personnel are kept distinct, 
there is n o  problem. Howc\lcr, any desire to allow 
users to share resources bct\vccn departments, o r  to 
have cornmon nd~ninistration o\ler the departme~lts 
introduces ~dmi~iistrnti\,c n~lci uscr problems. If a 
printer is to he slinrcd by tlie nvo departments, it must 
be administered t\\/ice: once i l l  thc NetWare environ- 
ment rind once in the LAN Malinger en\~ironmcnt. 
Users in the tn.0 departments use different names for 
the same printer. Later NOS imple~iientations, sucli as 
Digytal's PATHCVOl<I<S \.crsion 5.0 or tlic ncnvorlting 
sofnvare built into Microsoft's \iVindo\\ls 95 that pro- 
vides support for multiple NOS protocols, clo nothing 
to manage the rnultiplicjty of names for the same nct- 
work resource. 

As \ve were contcmplnting the set of capabilities 
we needed to design for the next generation of 
PATHWORKS client products, we realized that solv- 
ing the connectivity proble~li implied in a multiple 
NOS e~ivironmcnt was not enough. User access and 
administrator control of  NOS resources needed to be 
considerably simpler. 
i\s \\.e looked at the problcms in larger networks, 

\\.e saw the need for the ability to provide morc sophis- 
ticated mc,lns to locate NOS resources. T!.pically, 
NOS client soft\varc pro\,ides the means to bro\\.sc 
the ncnvork to l o c ~ t c  n resource. Ho\\re\rer, browsing 
requircs the user to kno\\l tlic location of the resource, 
specifically the name of the server, and to be able to 
clloose the r c so~~rcc  o n  the server by recognizing 
something about the resourcc name or  a resourcc 
description providcd by the adn~inistrator. What \\/as 
needed \\,as a design that .~llo\\zs a user to search, as 
\\,ell as bro\\rsc, for .I resoi~ r ~ e  based on vario~ls attrib- 
utes describing the rcsoLlrcc. 

Finall!; existing NOS cn\,iron~nents have a fairl!, Iim- 
ired vie\\ of the set of resources that can be referenced . 
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l<otli NetWare n~ld \rarioi~s LAN iLI;ln;iger implemen- 
tations pro\,ide s ~ ~ p p o r t  for pri~itcrs ,ind file shnrcs. 
Wc \\,anted to be able to catcnd tile types ofresources 
thiit c o ~ ~ l d  be referencccl and m;~~lagcd from tlie ~ic\\ ,  
clircctory capability tliat \vc \Irere designing. 

Thus we embarked on a design for the facility 
initiall!~ called IDS, for Integrated 1)ircctory Set-\,ices. 
The P A T H W O W  \ a s i o n  6.0 iniple~nentatioll was 
evcntu~lly called Directory Assistant. \Ve refer to this 
technology as 11)s t I i ~ - o ~ ~ ~ l i o ~ ~ t  this paper. 

Design Goals 

As \\'c looked at the rcquircmc~l ts of the I'AAI''HWORI<S 
p r o d ~ ~ c t ,  \\!e ~ O L I I ~ ~  tlinr m.lny of those req~~irenients 
c o ~ ~ l d  techllicaIl!/ be ~iicr  \\~itll ,III!~ dircctory service tliat 
\inas integrated illto the 1'ATHWORKS applicatio~is anci 
tool sets. PATHWOIWS I-cquil-cd tlie ;ibility to 

Give a single name to resources that cnn be acccsscd 
by means of multiple ~ c r \ ~ c r s  or  protocols 

I~isi~latc end L I S C ~ S  horn changes in the \\.ay 
resources are allocarcd among the senrers 

1h4;inage resources in Jn NOS-independent manner 

We coi~ld not si~nply pick n dircctory ser\licc and 
integrate it illto PATH\IVOI<l<S, because \ve could not 
rccli~irc tliat all customers deploy a particular dircctor!~ 
scr\rice at their site. The PATt1WOl<I<S product is 
both NOS- and transport-indc~>c~icie~~t; introducing 

S L I C I I  a d e p c ~ i d c ~ ~ ~ e  \\,as i~~iacccpt.~blc. LVc qilicld!' real- 
ized that these \Yere tlie requil-cmc~its that kept many 
other applications from  s sing dircctory services. 

C)ur assumption \vas tliat ~ i i a ~ i y  ncn\.ork applicn- 
tions \ \ ' o ~ ~ l d  use directory scr\.iccs if they coi~ld ,  bur 
tli;it fc\v of  them could nssumc or  require a particular 
director!/ service. Working from that assumption, \\,e 
sclcctcd the follo\\~ing design rcq~~irements for 113s: 

llirectory service incicpcndcncc 

Ability to access csisting d ~ t a  

Ability to join dispar.lrc nLlmcspnccs into a single, 
logical nnmcspacc 

l<emo\.al of barriel-s to succcssf~l deploy~iient of 
n \\-idc area 11et\\~orIi (\VAN) clircctor!, 
Ability to hide directory lialnc synms 

Support of scarcli 

S ~ ~ p p o r t  of  application-specific directory entries 

Directory Service Independence 
(:~lstolncrs must be ~ b l e  to clioosc. tlic director!, scr\ ice 
ill \\,liic!i the!, store resource infi)rnlation. Some cus- 
tomers Ii;~\,c 3 preferred dircctol.!, scr\,ice, \\,Iiich the!. 
\\,;i~it to c o ~ i t i n ~ ~ e  to IISC. OtIicr c~~sto~i icrs ,  \\rho arc not 
using a particular directory scr\.icc, prefer that Digital 
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pt-()\,ides the director!, scr\~icc. In  3 fex~, cnses, a cus- 
tolncl- might \\,is11 or  cvcn need to store information 
; I ~ O L I I  different resources in diffcrcnt dircctory services. 

Ability to Access Existing Data 
A great deal of  i~ifor~nation currently exists in 
application-specitic director!1 services and in NOS- 
specific dircctory scr\ficcs. A rclati\,cly large nurnbcr 
o f  applications also use the niitive interf~ces to  store 
information in the NOS directories. Allo\\,ing users 
to .lcccss tliis information dircctl!, through 113s \\.as 
critical. \Ye e~pressl!~ \\,anreti to a\,oid tl?e need to 
ciuplic.lte director!, informatio~~ in separate, incolnpat- 
iblc s\,stcrns. 

Ability to Join Disparate Namespaces into a Single, 
Logical Namespace 
Many directory services arc ailncd nt a specifi c applica- 
tion o r  J set of applications. For csample, current 
X.500 deployments contain mostly people infonnn- 
tion such as narnes, phone numbcrs, and electronic 
mail addresses. (Note: S.500 is an extremcl!, flesible 
di~-ccto~-\r scr\,ice tliat can be used to store almost an!, 
kinti of i n f o r ~ n a t i o ~ ~ ,  but for Iiistorical reasons most 
dcplo!,ments contain peoplc information.) NOS direc- 
torics contain infor~iintion abo i~r  N O S  rcsources such 
ns printers. Consecluently, ninny uscl- environments 
lin\,c niultiple directory services, each of  \\.hich con- 
tains critical business i~iformilrion. To access this exist- 
ing c1at.1 and present it to the L I S C ~  i l l  a ~ i iea~i i~igf i~l  \yay, 
rlicsc multiple directory namcspnces must be joined 
into ;i single, logical naniespncc. 

Removal of Barriers to Successful Deployment of 
a WAN Directory 
Hicr.~rchicnl directory scr\iiccs gcnernll!, require that 
tlic n,lming hierarchy be dcs ig~~cd  before the directory 
is cicplo!!cti. Sincc the hicrarcliy consists of names, 
11nd n.1mrs are sensiti\~c nnei political entities, this cnn 
be rill cstrcrnely difficult task. Or~nnizations also 
c1i.ingc over tirne, t i~rthcr complicating the problem of  
cicsigning a n;lme hierarchy." 

01-gnnizations that succcssf~~ll!~ cleploy directory ser- 
vices d o  so  from the bottom up. The NOS directories 
arc clcploycd precisely because they a\.oid the prob- 
Icms i~lhcrcnt in a nanie hieral-chy. An administrator 
call set up a No\lcll 3.s Bindery k)r a local organization 
\\~itliout \\lorr!ling about ho\v tlic name o f  one group 
rclntcs to the nalncs of .ill the other groups. The 
do\\,nsidc to the NOS directories is tliat they have 
,I limitccl nbilit\r to scale bc!,ond a 1.AN. With IDS, \\.c 
\\.n~ltcd to p~.o\.ide a fra~iie\\,ork tl~.ir \\,oi~ld gron. \\'it11 
tlic user's environment. A user could start with a local 
dircctory hilt jncorpornte that ~iircctory illto an enter- 
prise o r  global directory \\,lien the time \\,as appropri- 
ntc, \\.ithout affecting the end usel-s or  tlic applicatio~~s. 
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Figure 1 
Structure of the Integrated Directory Services 

entry; it is a directory scrvice object that represents 
some netc\~orl< object. A tpesoL(rct' class is tlie definition 
of that type ofdirectory entr)l. For example, the direc- 
tory entry that describes a spccific printer is an IDS 
resource, and the IDS class that describes every printer 
entry is a resource class. 

The framework provides extensibility by dcfinu~g 
C++ object classes that allow for the creation and 
manipulation of resources, attributes, and attribute 
values in a type-indcpendent manner. Tlie type inde- 
pendence allows both applications and the frame\\~ork 
itself to 111anipulate IDS attributes and attribute values 
~vithout knowing their types. As long as the new types 
are built o n  top of existing IDS system types, applica- 
tion writers may define new IDS types without nlodi- 
fylng the service providers. 

The framework dispatches directory operations to 
the appropriate service provider and maintains overall 
systeni state and integrity. I t  maintains a list of the 
service providers that are currently available and 
shows the errors encountered in any failed loads. 
This allows the system to continue to opcrate, albeit 
in a degraded state, even though one of the service 
providers may be rnalhnctioning. 

Before we discuss the design of the SPI, we describc 
the framework's objects. 

IDS Entry The funda~nental IDS object is the canoni- 
cal representation of a directory entry, the IDS entry. 

The 11)s entrp is an abstract object. To create a 
resource class, applications define a resource type and 
derive it from the IDS entry. IDS entry objects are cre- 
ated and manipulated through the API and translated 
into the appropriate native director!l format by the ser- 
vice providers. Derivatives of the IDS entry may define 
additional methods, but they may not override the 
IDS entry methods. The IDS entrp methods are part 
of the framework. 

The IDS entry methods h11 into one of nvo 
categories: those wl~ich manipulate the attributcs and 
values contained in the IDS entry in a type-indepen- 
dent manner, and those which perform operations on 
the directory. Each IDS entry, each attribute, and each 
attribute value contains a type. For convenience, deriv- 
atives of the IDS entry may defile additional   net hods 
that manipulatc certain attributes or  values directly. 
For example, a derivation that defines a printer might 
define a method to set the description attribute. The 
implementation of  this method would call the general 
IDS entry attribute and value manipulation method 
to set the value of the appropriate attribute. 

As shown in Figure 2, the IDS entry contains identi- 
Ging i~lf'or~nation and the attributes and attribute 
values that describe the resource. The colltext identi- 
fies the service provider that performs directory opera- 
tions on this entry and the location \vithin that 
directory service in which this entry is stored. The 
resource type defines the kind of resource that this 
entry represents. The resource name is the name by 
which applicatioris and users refer to  the entry. 

The a t t r ib~~ tes  of the entry are contained in a set. 
Each attribute in turn contai~ls the value or  list of v.11- 
ues associated with the attribute. 

Contexts Tlie context is an object that uniquely iden- 
tifies a partici~Jar location in a particular riamespace. 
Thc IDS contest is very similar in concept t o  the SF& 
c o n t e ~ t . ~  All contexts contain the type identifier fc,r 
the directory service and an internal name. The type 
identifier is used by the IDS fran~exvork to  dispatch 
operations to the appropriate service provider. The 
internal name is the location within tlie directory ser- 
vice described by this contest. The internal name is 
represented in the native syntax of  the underljring 
directory service. The service provider is responsible 
for setting and maintaining this internal name. (See 
Figure 2 . )  

Attributes and Attribute Values The type of an 
attribute defines the data type of  its value o r  values. 
The attribute value object is a canonical representation 
of an actual attribute value. The attribute value objcct 
defi ncs a set of methods for accessing and nianipulat- 
ing \lalues. For each data type supported in IDS, there 
is a corresponding attribute value derivation in the 
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Figure 2 
IDS Entry 

IDS framework. This allo\vs applications, and the IDS 
frame\vork itself, to manipulate 'ittribute \dues  with- 
O L I ~  kno\\ling their types. The service providers, on the 
other hand, use the type information to translate from 
the IDS data formats to their native data formats. 

Types To allow customers and third parties to identi@ 
their own IDS resources, the IDS type mechanism 
must i~niquely identi* objects. Thc two identifiers we 
considered using \\/ere ~~ni\lcrsal uniclue identifiers 
(UUIDs) as defi ned by the Open Sohvare Foundation 
Distributed Computing Environment (OSF DCE) and 
object identifiers (011)s) as defined by the open sys- 
tems interconnection (OSI) ~tandards ." , '~  Some direc- 
tory ser\tices identil+ attributes witl~ OIDs, while others 
use UUIl3s. For applications defining new resources, 
we wanted to avoid the necessity to obtain both an 
OID and a UUID. It  is possible to encode a UUID in 
an OID, but the reverse is not ~ I . L I C .  

We could encode a UUID in an 0 1 D  by registering 
an OID prefix. The prefis \vould indicate that the 

sequence aker the prefix was a UUID. UUIDs are 
fixed-length structures generated fro111 time stamps 
and Ethernet addresses, and therefore arbitrary infor- 
mation such as an OID cannot be encoded in them. 
UUIDs are also easier for npplicatio~~ writers to gener- 
ate because numerous systems ship with tools to 
generate them. 

Certain directory services, for example X.500, have 
external type definitions for the directory entries. I t  
is possible to  define a generic entry and then map 
arbitrary \ialues into that entry, but IDS entries would 
not be meaningfill when viewed with the native direc- 
tory management tools. We felt that this was unac- 
ceptable, because it would make the management of  
IDS entries in the namespace much Inore difficult. 
Some systems use UUIL)s to represent the type infor- 
mation. We chose to use UUIDs since they are both 
easy to  generate and can be used in both UUID and 
OID class definition systems. The L I S ~  of OIDs n~ould 
require UUIDs to  be generated for UUID-based 
systems and mappings to be maintained. 
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Communities An 11)s comniunin is both an aci~nillis- 
tr;~ti\*c srouping mcchnnism and ,I logical location for 
IDS resources. When pcoplc interact \\.it11 the TDS sys- 
tem, they scc a community .is tllc orpclnizins principle. 

;idministrator controls tllc boundaries and nleln- 
bership of an 11)s cornmunit\,. Typically, a cornmunit\. 
represalts either a partic~113r location sl~cll 3s a build- 
ing or .I fi~~ictionnl grouping s ~ ~ c l i  as n \\,ark g r o ~ ~ p .  

Initi,~lly, \\!c co~lsidcrcd a supcrcol~tcst to join multi- 
ple directories into a single logical directory. This 
S L I ~ C ~ C O I I ~ C S ~  \ \ 'o~~l t i  hn\.c cont.lincd m~~lr ip lc  contests, 
one for c ~ c l i  type o f  I-csourcc suppo~.tcd b!, IDS. We 
c\.c~iti~,~lly s ~ ~ b s u m c d  tlic supcrco~ltcst into 3 cornmu- 
n i p  and called it a rcsourcc context list. An 11)s com- 
munity is stored ;IS :I special object i l l  the dircctory. 
Each commn~iity's rcsollrcc context list describcs the 
dircctorics that makc up the community. The resource 
contcst list is the federation ~ncchanism by which IDS 
deter~nincs where rcsoilrccs of cacli type are stored. 
Each entry in thc rcsourcc contest list is n pair of 
resource type and contest. As users and applic;itions 
operate o n  entries in a co~nrni~nit!~, tlic 11)s fi;~me\\lork 

COMMUNITY 

DEFAULT 
CONTEXT 1 

RESOURCE COKlUCT L16T 
RESOURCE. 
CONTEXT 

CONTEXT 

OBJECT - 
TYPE PRINTERS 

FILE SYSTEMS 

KEY 

n COMMUNITY 

-1 RESOURCE CONTEXT LIST 

RESOURCE CONTEXT 

OBJECT TYPE 

CONTEXT 

(through IDS entry and c o ~ n m ~ ~ n i t y  methods) inspects 
the rcsourcc type and the c o n l ~ n ~ ~ n i p  to dcter~ninc the 
contest. Figl~re 3 illustrates all 11)s community. 

One of the prol.>lcms \vc anticipated \\,.is that large 
organizatio~ls \\roulci uaturally tend to Ila\.e many 11)s 
cornmuniries: Ho\\s \vould tllc uscr identi6 these? We 
considered an additional liicrarch!, in \\.llicl~ commLI- 
nities \\.auld be nlembcrs of  other conimunitics. Our 
usability cons~~ltants cmph;isizrd that users should not 
have to bro\\.se a hierarchy to ncccss resources. In 
response, \Ire dc\reloped the concepts oftlie local nnci 
the home c o ~ l l ~ i ~ ~ u i i t y .  Tlic local comm~lnit\, is associ- 
ated lvith the machine 3 Llscr is c i ~ r r c ~ ~ t l y  11si11g-it 
represents a physical location. The home community 
is the one \\it11 \ \~ l~ich  the uscr is associateti 01- bclongs. 
We en\isioned that the home comm~~nit!, \ \ ,o i~I~i  Lx 
the same as the local community at  the user's normal 
place of \\:ark, but there is no rccluircmcnt inherent in 
the design that things he orsanizcd this \\lii!~. For 
esamplc, iEa user is ,~ssociatcd \\iitli t l ~ c  c o r n ~ ~ ~ u n i r ! ~  at 
her work site and the machi~ic she uses is also located 
at that work site, both her local community and 

Svc Provider Type = F7801 DB7-F675-1 lCD-A8C2-08002B187DlA (ODBC) 

/ 
External Name = IDS-Group Community 
Internal Name = E.\\tuxedo\idsodbc\idsdbdir.mdb 
Svc Provider Private = NULL 

Svc Provider Type = EFF4B840-EC52-11 CD-9E5E-08002BBA95CA (CDS) 
External Name = ids-cell.lkg.dec.com 
Internal Name = ids-cell.lkg.dec.com 
Svc Provider Private = NULL 

Svc Provider Type = C723E850-A1A6-1OAB-A699-08002B361 FC1 (LDAP) 

/ External Name = c=us;o=dec;ou=IDS-Group Community 
Internal Name = c=us:o=dec;ou=IDS~Group Community 
Svc Provider Privale = YUMMY. 386. TCPIIP 

Figure 3 
111s C:om~n~~nin  



her home community represent this \\rork site. If this 
user \\,arks at another \vork site and uses a different 
~iiaclli~le, her liome c o ~ n ~ n i ~ n i t \ i  remains tlie saine, but 
her local comrnunity reflects the community where 
the ncc\( rnachi~lc resides. The concepts of local and 
home communities d o  11ot reduce the number of 
communities, but thcy d o  pro\!ide a direct method by 
\\'llicl~ users can access t l ~ c  communities that contain 
the resources they most fi.cquently use. The local and 
11o1nc communities are n con\,enience; users and appli- 
cations are in no \\lay rcstrictcd to those communities. 

Search Support Searching is liaudled by the search 
objcct. The search objcct contaius a community (or 
list of commi~nities), a resource type, and an attribute 
filter. l ~ l l e  attribute filter supports both eql~ality , ~ n d  
comparison matching of attribute \ d u e s  and allo\vs 
callers to construct co~nplcs requests by concatenating 
comparisons together in a series of Boolean opcra- 
tions. For examplc, a caller could construct a filtcr 
t1i;lt rcturned all printer objccts tliat (((are located 
o n  Floor2) OR (are located on  Floor3)) AN13 (sup- 
port color printing)). C:ombi~led with tlie local and 
liome comrni~nity support, fi ltcrs allo\v applicatio~ls 
and users to  express ideas SLICII  3s L'pri~it this at  tllc 
closcst printer tliat supports color, n\,o-sided printing, 
and then transmit it to an!, f.~csimile ~nachine in my 
I I O I I I C  community." -. 1 he scarch object's dchult tiltcr returns all objects o f  
the resource type in the local co~nniunity. The scarch 
object resolves the cornmiunity to a contest and pnsscs 
it to the servicc pro\,idcr. :The ser\~ice pro\,idcr con- 
structs a list of matching 11)s cntr!l objects to return to 
the user. In  IDS, tllc searcll objcct supports bro\\aing. ,. 1 hc search objcct has ~ncthods  that display a dialog 
and construct filters based o n  user input. When 
designing tlie system, \\'c debated \\,herher it \\!as bcr- 
tcr fbr the search objcct to contain both the filtcr and 
the smrch dialogs or  whether the filter construction 
belonged in the 113s c11tl.y. We chose to Iteep the 
scarcli dialogs separate from the IDS entry. Espcricncc 
\\tit11 i~nple~iicnting resources derived from the I I X  
cntr! has sho\\!n this to  be an error. Currently it is ncc- 
cssary to derive ti-om nvo objects, IDS entry and the 
sc;ircli object, to implc~ncnt n resource t l i ~ t  has n 

resource-specific senrcli dialog. We \\rill be modit\ling 
the scarcli and 11)s entry objects so that the construc- 
tion of tlie filters and the dialog tliat constructs the 
filters are IDS entry mcthods. 

Schema The service pro\.iders translate bet\vcen the 
nati\,e directory objcct and the IDS entry. I n  general, 
directory scr\,ice entries arc not self-describing. I n  
existing directory sel-\,ices, either a schema o r  tlic 
application is expected to know the director!,-specific 
format of the data. The latter is more common tll.un 

the former, and in any case the schema mcthoclologies 
are unique to CLICII directory servicc. 

From tlie point of\ric\\l of the nati\,e directory ser- 
vice, IDS is the application. To properly convert the 
data, the scr\licc providers must know \\!liar it is. The 
scr\~ice pro\lidcrs use the schema to detcr~ninc tlic cor- 
rect attribute and value types to use \vlien constructing 
thc IDS elltry of n p;irticular ~ p c .  

The schenia describes resource types, attribute 
types, and nttributc \,slue data types. Logically, the 
schema is a set o f  tables, one for each scl.vicc provider, 
which maps the nnti\lc name or  type to tllc 11)s name 
or  type. Tllesc tahlcs are read by tlie IDS schcma com- 
ponent \\/lien 11)s is initializcd. Bccausc tlicsc t;~blcs 
are external to the system, they can be modified by 
users or applications. 

There is one limitation on  thc cstcnsjou of the 
schenia: Ne\v attribute and resource typcs can be 
defined, bur tlic!~ must be composed horn tlic prede- 
fined IDS attributc value types that the scr\.ice . . 
providers can support. The servicc pro\,idcrs \\,ould 
have to be moclificti t o  support additional attribute 
value data typcs. This limitation is not as scvcre as it 
at first appea1.s. A rich set of data types is defined in 
the existing directory services, and a relatively small set 
is in comnlon LIS~FC.  By defining tl.lc 11)s data typcs to 
encoliipass tlic set of data nipes dctincd by existing 
directory scrviccs, \ire ha\te reduced tliis lilniration to  
n tlieoreticnl r;ithcr than a practical problem. 

As a conscquencc o f  tlie use of schema, ~ipplications 
II ILIS~ spec$ tllc resoi~rce type for any 11)s operation. 
This is a limitation that in principle docs not exist in 
other directory systems. M e r  some consideration, \ve 
concludcd that fc\v i~scfi~l operations can be performed 
on an object \\,hose type is u~lkno\\rn. To pcrfcxm an 
operation on ol7jects of all types, the schema can be 
interrogated for the list of all supporrcti 113s object 
types, and the opcmtion is then iterated over each type. 

The System Object Tlie system objcct l o ~ d s  2nd 
initializes the servicc pro\riders. O n  initialization, the 
systenl objcct constructs a list of the a\,nilable service 
pro\iders from those defined in a local configuration 
tile. 

Tlie system objcct constructs and maintnins tlie list 
ofluiown commu~litics. The system object obtains tliis 
list using tlic follo\ving meclianisnis: 

Inspect a \vcll-k~lou~n location (if one exists) to see 
ifit contai~ls a cache of luio\\:n con~mu~iitics. 

For each ser\,icc pro\,idcr, call tllc disco\,cr method 
to ask the ser\.icc prolrider for its list of kno\\tn 
conimunitics. 

If the system objcct is initializing for the ti 1st time. 
prompt the user to create a cornmi~nity. 



Application Programming Interface Before constructing the resource in the directory, 
As mentioned previousljl, we divided the framework the operation validates the IDS entry against thc 
into an API and a service provider interface (SPI). Tlie sche~na to ensure that it does not violate the schema. 
APT consists of tlie search object methods, tlie IDS For example, attempting to  create a resource ~ ~ i t h o i ~ t  
entry methods, the attribute object and value object a recluircd attribute value pair \liolates the schema and 
methods, and the system object methods necessary to is flagged as an error. Conversely, the delete operation 
access communities. removes the 113s resource frorn the directory. 

The modi6  operation updates the attribute and 
Service Provider Interface values associated with the resource in the directory. 
The SPI specifies the interface between the 11)s frame- The niodit) operation supports the follo\ving updatc 
work and the native directory serviccs. It defines tlie directives: 
semantics for aU operations that lnay be performed on 
IDS information regardless of which directory service Adda~ ie \va t t r ib~~ tca~ id \ l a lue .  

stores the information. The SpI effecti\rely insulates ' Add a new value to an esisting attribute. 

both the IDS frame\vork and the IDS applications Replace a value of an esisting attribute. 
from the ~ ~ n i q u e  syntax and requirements of different , D ~ I ~ ~ ~  an its 
directory services. Delete a \,slue frorn an esisting attribute. 

A directory-specific modu lc, cal led a scn!iceprol?idcr 
lihmq~, provides a directory-service-specific iniplemen- 
tation ofall SPI operations and translates resource in for- 
mation back and forth between thc 11)s cntry and 
the service-provider-specific format. A service provider 
library must be implemented for each directory service 
to be supported by IDS. Any directory scrvicc or jnfor- 
mation repository system that can provide the IDS SPI 
semantics may be nn IDS ser\jice pro\lider. 

SPI Semantics The IDS SPI defines the following 
main operations: create, read, search, modifi: ciisco\,er, 
and delete. All SPI operations specifi the namc of the 
IDS community upon which to o p c r ~ t c .  Each 113.5 
co~nmunity maintains a list of contexts that spccifil 
in which service provider IDS rcsoilrccs of a partici~lar 
type are stored and in what location within the service 
provider. The SPI uses this com~.l~unity name to  
rctricvc the context information that directs the oper- 
ation to  the correct service provider library. With the 
exception of the delete operation, \\~liicli requires an 
cxplicitly set context ( to  be sure that an cxplicitly 
located object is selected for deletion), if the caller 
does not set tlie comniunity name, the local con~n iu -  
nity is assumed. 

The create, delete, niodit), and redd f~nc t ions  all 
operate on a single IDS resource at a time. Each, 
therefore, provides an IDS c l~t ry  object t o  idcntilj, 
and/or describe the resource. 

The create operation creates a new 113s resourcc in 
the dircctory. The create operation specifics the type of 
IDS resource to be created, the resource's name, and 
tlic IDS attributes and values associated with the 
rcsourcc. O n  a successhl create operation, the scrvicc 
provider constructs a uniql~e directory-specific nilme for 
tlie new IDS resource and stores this namc in the 
object's IDS cntry. The scrvicc pro\~idcr subscclucntly 
may use this name to find the object morc cluicklv rather 
than constructing it from thc name, resourcc e p c ,  and 
contest information contained in the IDS cntry. 

Each modi5  directive is verified against tlie scliema 
before being applied to  the directory. 

A read operntion retrieves a i~niquely specjfied 
IDS resource from the directory, translates it into 
IDS entry format, and rcturns the IDS entry to 
the caller. Tlie read f~nc t ion  is typically used to com- 
pare the directory format of an IDS resource to  one 
maintained in niclnory by an application, or to process 
IDS resources returned from a search operation one 
at a time. 

The search k~nction identifies and returns 11)s 
resources that match the characteristics specified by 
the caller. To  bound tlie scope of the search, the caller 
specifies tlic follo\ving search characteristics: resourcc 
type, com~nunity name or namcs to be searched, and 
a filter containing attributes and associated values or  
valuc ranges. 

The discover operation is called by the IDS system 
object to  find all conimunities kno\vn to  a given ser- 
vice provider. Scrvicc providers for directory serviccs 
that support a server solicitation and advertisement 
nenvol-k protocol implement a discover fi~nction. In  
these dircctorics, scr\.ers advertise their presencc in 
response to nenvork solicitation requests. Tlie dis- 
cover method uses the directory's native solicitatio~l 
and advertiscmcnt protocol to discover local dircctory 
servers and then issues the appropriate operations to 
the server to determine if it has defined any IDS com- 
munities. Scrvice providers that d o  not have a solicit.1- 
tion and advertisemcnt protocol can implement an 
alternative discovery mechanism such as retrieving the 
co~iirnunity information from a file or  provide 110 dis- 
covery mechanisni. 

Construction of the System: Directory, Session, and 
IDS Entry Objects rTlic SPI is constructed of three 
framc\vork objects: tlic director!! object, tlie session 
object, and the directory operntion methods of the 
IDS entrv object. The directory object w responsible 
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for scrvicc provider initialization and termination, 
~nnintcnancc of session objects, and con~munity dis- 
covery. Each service provider exports one directory 
ohjcct to the IDS frarnc\vork. The sessio~l object 
implements all the directory operations o n  a servicc 
provider. Session objects are obtained from the service 
provider by nlcans of  the directory object. The 11)s 
cntry directory opcmtion methods deterrninc the con- 
test if it lias not been set, obtain a session object from 
the proper dircctory, and dispatch the operation to the 
nssoci;ltcd scl-vice provider tluough the session object. 
For cfficicncy, session objects may be cached by the 
servicc providers. 

lmplementation Considerations 

Once \ire had established our basic approach, \vc 
t11rncd our attention to implementation decisions. 

Client versus Server 
Our first consideration was whether to implement this 
tcchnolog, as sohvare csecuring on a server system or  
as sofn\~nrc cxccuting o n  a client system. The server 
solution had a num bcr of attractive qi~alities: it \\rould 
not be necessary to lia\le all the native directory clients 
on all the desktops, and potentially complex pro- 
cessing \ \ T ~ L I I C I  occur on an appropriate platforni. 
Ho\vcvcr, \vc identitied nvo problems with the server 
solution. Tlic first concerned security. T o  access the 
director)! ser\!icc o n  hchalf of a partic~llar user, we 
wot~ld have to impersonate that client user on the 
scrvcr nlachine. Although this can bc done without 
exposing security holes, doing so adds another layer of 
complexity to the problem. TIlc second probleni \\lit11 
tllc scrvcr solution \\.as that it required the custolner 
to find ;i machine for and deploy a server prior to  get- 
ting started \\!it11 tllc sjrsteln. One of the design goals 
\\.as to rcmovc barriers to  directory deployment, and 
\\,e \\*ere concerned that a server solution \\,auld add 
'1 barrier, We sn\v a need for both client- and ser\.er- 
based solutions, and since the client solution \\!as s i n -  
pler to implement, w chose to start there. 

Security 
The 11)s interfaces Ienvc security to the underlying 
directory scrviccs; \ve did not attempt to abstract a 
general-purposc, access control or  authcntication 
intcrtkc. ?'lie primary reason for this was a conviction 
that the vast majority of current directory information 
is world read, and thcrcfore a complex access control 
intcrhcc \\,as not necessary. An access control and 
a ~ ~ t h e n t i c a t i o ~ ~  layer that \vas director!!-service- 
independent w o ~ ~ l d  lia\!c added significantly to  thc 
complesity of the project, and \ve chose to  postpone 
tliis problem. I l>S docs pass requests directly to tlie 
native directory-scrvicc client; IDS does not alter 
or  inipcrso~iate the t~scr's identity. In that sense, it 

perfectly presenres the sec~lrity inherent in the under- 
lying directory services. 

Filter lmplementation 
Tlic implementation of the IDS attribute filter is based 
o n  the string filter as defined in RFC 1777.'; The 
Lighnveiglit Directory Access Protocol (LDAP) string 
filter provided a convenient internal representation, 
and we \\lould be able to  reuse the LDAP parsing and 
processing code that \ile had developed as part of an 
earlier product. We considered using SQL to construct 
111s attribute filters, but chose not to do  this for imple- 
melltation convenience. 

Service Provider Considerations 
Initi,illy, \ye thought that developing a directory- 
ser\~icc-illdependent interface would not be difficult. 
Most of the required operations such as read and write 
are straiglitfor\\~ard and ob\~ious. The il-nplementatio~i 
of such a11 interface, hou~ever, proved to be difficult 
bcc;iuse the i~nderlying directory services have, in some 
cases, very different native capabilities and semantics. 
We cliose to iruplement ser\lice provider libraries for 
the k)llo\\*ing three types ofservice providers: 

Open Database Connect (0DRC)-compliant 
database 

S.500-based directory using the LDAP 

1)CEC:DS 

These scrvicc providers are reprcsentati\!c of tlic types 
of  directories that exist today. Table 1 highlights soliie 
of tlie differences among the three directories. As 
tliis table illustrates, not all directories can nativcly 
support the semantics described by the IDS SPI. 
In these situations, we have follo\ved three alterna- 
tives: ( 1 )  thc service provider library iniplcmcnts the 
filnctio~iality, (2)  the IDS framc\vork iniplemcllts 
the f~nctionality, or  (3)  in a small rlumber ofcases, the 
scrvicc provider cannot implement the fi~nctionalinl 
and remains less fi~nctional. 

Some operations cannot be supported nati\.ely by 
only one or  a small handful of  directory ser\,ices. For 
these operations, we require the service provider devel- 
opers to ilnplement (or  enli~late as best they can) the 
fi~nctionality in thc specific servicc provider library for 
that directory. For functions that a number of service 
providers c;lnnot support or  that arc sufficiently difti- 
cult to implement, \ve provide a cornliion iniplemcnta- 
tion o r  emulation in the IDS framework that service 
provider libraries can call. For example, CDS does not 
natively support an attribute-based search mcchallisrn. 
Ilather than attempt to implement a CDS search capa- 
bi l i t?:  \ve chose to provide an IDS frame\i~orlc "prune" 
fi~nction that applies an IDS filter to a list of IDS entries 
and returns only those entries that satis6 all conditions 
of the fi lter. Service providers such as CI)S call then 



Table 1 
Differences among the  ODBC, X.500, and CDS Directories 

Functionality ODBC X.500 CDS 

Distributed directory service No Yes Yes 
Hierarchical organization of directory information 
Attribute-based search 
Attribute value-based search 
Native schema support 
User can extend IDS schema 
Transactional semantics 
Tolerant of intermittent connectivity 

Yes 
Yes 
Yes 
N 0 

Yes 
No 

Yes 
Yes 
Yes 
Yes 
Yes 
No 
Yes 

Yes 

N 0 

N 0 

No 
Yes 

Provides security mechanism on connections N o Yes Yes 

emulate the IDS search tinction by enun~eniting all 
resources of a particular type and then call the prune 
function to pare down the list of resources. 

The IDS schema irnplcniclitation is another csaniple 
of a common capability we have provided for all service 
providers to  use. Not all service providers support 
object, scliema and, of those that do, fewer still can SLIP- 

port user extension o f  the schema. We chose to ;illow 
user extensibility and implemented a service-provider- 
independent sclic~na intcrfiacc and ~iiechanism. 

In a few instances, \\re determined that it ~ v o ~ ~ l d  be 
too expensive in terms of implementatior~ time to pro- 
vide a service-pro\lidcr-specjfic or  an IDS-franic~/ork 
implementation of an SPI-mandated h~nctioo.  In 
these cases, we allowed the service pro\lider to remain 
noncompliant. For example, a call to initiate a session 
to a ser\~ice provider specifies user name and password 
arguments. For those directories that support user 
namc and pass\\~ord security mechanisms, we preserve 
that functionality. For directories such as the ODRC 
service provider that d o  not support thesc security 
mechanisms, howcvcr, wc provide n o  additio~ial sccu- 
rity measures. The cost to implement and deploy such 
a security mechanism o ~ ~ ~ v e i g h s  the gain ofhaving the 
additional features. 

In addition, we found that not all directories pro- 
vide the same semantics for a particular operation. For 
example, when ~ ~ p d n t i n g  a resource, service pro\,idcrs 
handle existence checking of resource a t t r ib~~tes  diffcr- 
ently. If requested to add an attribute vnluc to an 
attribute that dvrs not  yet esist, one  servicc provider 
returns an error, while another implicitly creates the 
attribute. We worked around problems of this type by 
carcfiilly speci@ing the semantics and error conditions 
of all SPI operations. Service providers that d o  not 
nnti\rely support tliesc SPI semantics must implenlent 
whatever additional firrlctionality is required to d o  
so. For example, the CDS service provider required 
additional functions that determined and flagged 
whether or  not a pal-ticular attribute cxistcd. 

111 additio~i to  ;ill errors that are specific to ser\.ice 
pro\jiders, uJc return an error that is iodcpendent 
of any 11)s fi-anie\vorlc service provider. This adds 
another lc\lcl of consistency across 0111. sewice- 
provider iniplcmentations. 

Current Applications 

As \\,it11 any fo~rndation technolog\,, the proof of its 
viability l~cs with the applications t h , ~  c r~~p loy  it. I n  the 
PATHWORIG product, currentl\. I i ~ \ ~ c  three nppli- 
cations that L I S ~  11)s: 

Network Connect 

IDS Adnlinistration 

Resource Synchronizer 

The Nct\vork Connect application finds and con- 
nects L I S C ~ S '  pri~iters and file shares. It pro\,ides '1 user 
interface that allo\\ls users to bro\\.sc o r  search for file 
shares or printers. Through Net\\,ork Connect, ~lscrs 
call refer to  resources by their logical name or  their 
attributes. A single physical prilitcr, ~vitli queues on 
several ~iiachincs or  several NOS spstc~iis, is presented 
to users as a single printer. Network Connect uses the 
IDS API to access the IDS search capabilities and 
to translate a printer or  file share's 113s name to  its 
network-specific name to connect to the resource. 
Nenvork Connect may be acccsscd through the 
Windo\\,s version 3.1 Print Manager anti File i ianager 
utilities and through the PATHWORKS Nenuork 
Connect utility. 

Tlic IDS Administration utility (11)s Admin) allows 
a nebvorlt adn2inistrator to man.igc 11)s resources 
and communities. IDS Admin is integrated into the 
Digital iManagcWO1US \Vorkgroup Administrator 
for Windo\\a sohvare product." Admin creates, mod- 
ifies, and deletes resources and communities. I t  
also allo\vs Llscrs to  browse IDS resources and comrnLr - 
nities in the ~\/lanageWORI<S hicrarch!l and to search 
for IDS resources. 
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An adnli~ustrator  can manage IDS resources manu- 
J I I ~  through the lMc~nagck\iON<S user intercicc o r  can 
rely o n  information pro\!ided through the  semiauto- 
mntic resource collection utilities called the R e s o ~ u c c  
Gatherer and Resource Synchronizer. T h e  l<esourcc 
G a t l ~ r r e r  periodic:illy collects informntion a b o ~ ~ t  
nenvork LAN Manager  and Netware  printers 2nd file 
sharcs. T h e  Resource Synchronizer utility processes 
the gathered information, updating the directory. It  
also eliminates duplicate entries and discards informa- 
tion the administrator  islie lies t o  ignore. T h e  gatherer 
:lnd synchronizer allouj tlie dircctory t o  be kept up-to-  
date, even if resources arc added o r  removed t h r o ~ ~ g l l  
the native NOS intcrfaccs. 

Future Work 

111 the f i ~ t i ~ r e ,  we plan t o  improve the IDS estensibjlity 
mechanisms. Curl-eotly, a local copy o f  the  schema 
exists o n  every client. Propagating the changes t o  cach 
client will become a p r o b l e ~ n  as users and applications 
cstcnd the  schema. We are considering storing either 
tlic schcma o r  a pointer t o  tlic schcma in the dircctory. 

T h e  current  113s implc~nentat ion runs o n  bo th  
the Wilido\\,s versioli 3 .  I and \,ersion 3.1 1 opern t i~ ig  
S!~S~CI-J~S. We are currently p o r t i ~ i g  it  t o  Mlindo\\,s 95 
anti in\,estigating ports  to  otlicr operating systems, 
such as U N I S .  

TIic implementation docs ~ i o t  support  t l ~ c  entire 
113s design: Nt l iough  resource contest  lists arc i~nplc -  
mcnted,  tliel-e is n o  reasonable \\ray for a L I S ~ I  o r  
ndnlinistrator t o  crcatc tlicm. T h e  Llscr interface \\lorl< 
ti)r these features in the 11)s Admin application has no t  
!let bee11 completed. 

Summary 

11)s provides a mechanism for integrating mi~ltiple 
di~.cctor!! services into 3 single system. I t  is predicated 
on tlie ability t o  define a c o m m o n  set ofdirectory opcr- 
ntions and o n  the type j~lformation. T h e  implc~nc~i tn -  
tion o f  three very ciiffcrcnt service pro\liders-<:I)S, 
S.500, dnd ODI3C-i1idicates that we succecdcd in 
def  ning the dircctory opcratiol~s. T h e  L I S ~  o f  IDS in the 
PATHWORKS product s l~o\vs that it does address tlie 
p r ~ t i c a l  aspects of  the problem o f  integrating multiple 
directories into a single, logical dircctory scrvicc. 
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Digital has developed the Common Directory 
lnterface (CDI) as the means by which DECnetl 
OSI can now access and manage node name and 
address information in multiple directory ser- 
vices. CDI comprises libraries for node name-to- 
address translation and a tool set for managing 
and migrating node information among differ- 
ent directory services. The Common Directory 
Registration API is layered on top of a set of 
directory service wrapper routines to provide an 
extensible mechanism for adding new directory 
services. CDI gives customers greater flexibility 
in choosing a directory service and supports the 
new multiprotocol capabilities in DECnetIOSI, 
which support the open systems interconnec- 
tion (OSI) standards. 

I 
Richard L. Rosenbaiun 
Stanley I. Goldfarb 

Design of the Common 
Directory lnterface for 
DECnetIOSI 

The Common Directory Interface (CDI) provides tlie 
ability to  store and rctricvc DECnet node information 
from a variety of directory ser\lices. I t  consjsts of the 
CDI library, nrhich enables multiple directory access, 
and the CDI registration tool sct, \vhich creates and 
maintains node/addressing information in multiple 
directory services. CI>I was developed for tlie DECnet/ 
OSI for OpenVMS opcrating system version 6.0 and 
for the DECnet/OSl For Digital UNIX operating sys- 
tem version 3.0. 

This paper begins by presenting the product goals 
and the background of  the CDI design. It then dis- 
cusses the structure oftlie CDI components, the CDI 
library, and the CDI registration tool sct. 

Design Goals 

As the interface to I)E(:nct node information from 
multiple directory serviccs, CDI was designed to meet 
the following goals: 

Give DECnct ncnilo~-k administrators and users 
a dioice of directory ser\lices. 

Provide systcm administrators with an easy-to-usc 
node registration tool. 

Enablc easy and tlcsiblc configuration of directory 
choices. 

Pro\lide dcvelopcrs of thc 1)ECnct protocol soh- 
\\,are with a simple internal interface that hides the 
complesities and diffizrences between the various 
directory ser\,iccs. 

Provide a common design for both DECnct/OSI 
platforms: the OpcnVMS and the Digital UNIX 
operating systems. 

Intcropcrate with older, non-CDI systems. 

Background 

In 1991, Digital upddtcd ~ t s  DECnet nenvorl<~ng 
products to include the use of the D E C ~ I I S  distribi~ted 
director!/ service.' 1)ECdns providcd a highly scalable, 
distributed information source for translating node 
names to addresses and  addresses to node nanics. 
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I~iiti:ill!; customci- acccptmce of this ndlnc scr\,icc \\.ha 

lo\v for a number ofrcasons: 

1 Adoption of this 11c\r, technology reqilircd 3 signifi- 
cant learning cur\fe. 

Sigl~ificant planning cvas required before the 
DECdns service could be deployed. 

Users of sm~11 nct\\forlis did not need thc fc'itures of 
a distributed naming sel-\.ice--the costs o ~ ~ t -  
\\rcighed the I7elicfits. Thcsc cLrstomcrs rccl~~cstcd 
a narrling scr\,icc based on local files similar to  
the Phase IV DECnct prodirct. 

Customers were deploying a number of other 
directory services-in particular the I>omain 
Name System-for storing host ~nformation for 
transmission control protocol/internct protocol 
(TCl'/IP) neb\ orl<s.' 

A ne\v comprchc~lsive ser\.icc, S.500, had the 
ad\,antage of being an  international stun cia^-d:' 

These reasons, togethel- with the need to directly sup- 
port TCP/IP host namcs ,und addresses, pronipted 
Dlgital to incorporate new directory service cl~oiccs 
in a ne\v release o f  l>bCnet/OSI sofn\rnre. 

CDI: Basic Design 

Supporting multiple name serrrices requircri decisions 
to he made concerning naming syntax, n~i~l t ip lc  
address formats, ;ilid Ioc.lI file support. Tlicse decisions 
affected the design of both tlie C131 librnry and the 
CDI registration tool set. 

Client-based versus Server-based Design 
TIie earliest and most h~nda~nental  clesign ciccision \\,as 
choosing bcn\,eeli ,I client-based 01. a scr~cr-bnseci solu- 
tion. With a client-based design, support for the \ x i -  
~ L I S  directory scrviccs \ \ lo~~ld  bc accornplisl~cd through 
a val-iety of client-bascd programniing librarics. With 
a set-\let--based design, a single client libmry \ \ , o ~ ~ l d  
c o ~ n n l ~ ~ ~ l i c a t c  \vitIi a nc\v "multihcadcd" scr\,cr that 
\ \ , o~~ ld  fan out to the directory servers. 

Since clients outnumber sel-vcrs, a client-based 
approach .~fti-cts more systems during the ~lpgrade 
process. In  spite of this drawback, L\IC chose a client- 
based solution for the following reasons: 

Iolplernentation of the client-based design would 
be lcss complex than tlie server dcsign. 

A client-b.lsed design did not Jiave tlie syntax and 
protocol traoslation i s s~~es  of a scr\rcr-based design. 

With a scr\,cr-based solution, client ch.inges \r.ould 
still be rccluired to  support nc\v native naming 
syllt'lses. 

For s~nall installations, n o  server would be needed 
if node information \vas stored in n local file: local 
file support \\Ins not possible \\litti a scrver-only 
appro.1ch. 

Naming Syntax 
One of t l ~ c  most \,isible complications when support- 
ing multiple naming services is the need to  recognize 
diffcrcnt name syntaxes. Tablc 1 gives the different 
syntases fix tlircc lvidely used directory services. 

A fi~rtlicr coniplication ofsupporting different name 
syntaxes \\,as rhc use of an internal 1)ECdns name 
format by nct\\.ork management. One of the goals of 
the CDI dcsigri \\,as to allo\\r management requests 
to be exchanged \vitli older, non-C1)I systems. 

For the initial implementation, (:1)I continues to 
support tlie internal DECdns for~nat,  rather than use 
;I 11c \ \~ r ,  no11-1)ECdns specific f i ) r ~ ~ ~ ' i t  alongside 
the existing one. As a result, CI)I is rccluircd to map 
non-I)F,(:dns names onto  the 1)EC:dns format. For 
esan~plc,  rllc nalnc hq.~:\:,z.c.o~~i fioln the 1)omain 
Name Sysrcm maps onto  the 1)ECdns name 
DO.11. I/.\:. .11q . \ : l ~ . c o / l i  (actually o n  to the internal 
DECdns form of this name). 

Multiple Address Support 
Along with the introduction of  <:Dl, a major inno- 
\.ation in this rclcase of  DEC:nct/<)SI \\/as direct sup- 
port for I'<:l'/IP transports in addition to the existinp 

Table 1 
Naming Syntax 

Directory Service Example Name 

DECdns XYZ:.hq.sales.systeml 
Domain Name System system 1 .sales.hq.xyz.com 

Notes. 

The X.500 service is not supported by the first release of CDI 

The syntax shown for X.500 is commonly used but is not part of a standard 



s ~ ~ p ~ x ) r t  for 1)ECnet Phase 1V al.ld OSI. To simpli%, the 
initial implcn1cntatiol1, IP addrcsscs arc rct~-ic\.cci o~ll!' 
frotn the l>otnain Name System (nor from 1IECdns). 
Ho\\.c\.cr, rhc design of Cl>I allo\\.s tlic rctrie\-al of 
botli kinds of addresses fiom any supported directory; 
for cxnmplc, OSI addresses can be obtained from the 
l ) o t n ~ i ~ i  N ,me  S)atetii.i,i 

Suptwrt ofnlultiple protocols crcarcd anotlicr nam- 
ing issue. Many customers already have ;I 1)omain 
Name System in place in their networks. O h n  1)EC:net 
systems ;1rc i11so running TCP/IP protocols and arc reg- 
istered in tlic l>omain Name System, yet thcse systems 
arc 11ot running 1)ECnet sohvare o\.cr 'I'CI'/IP. For 
csamplc, a syste111 registered as l1cl.syz.com may be 
dircctly I-eachable \\.it11 TCP/IP but not \\.it11 l>ECnct 
over 'I'Cl'/IP. In  this case, it is possible that <:Dl may 
rctric\sc a valid IP address for a remote system thnt is 
unrcnch,~ble by tlic DECnet protocol. 

For tliesc reasons, \vlien CDI dctcrmines tllar botli 
tlic 1)omain Name System and the l>E<:Jns naming 
service ( o r  a local file) are specified in the scnrch path, 
it docs not stop processitlg the search path until both 
t l ~ c  11' addl-css and the OSI address liavc been 
obtained, or until the e ~ l d  of the list has bccn rcnched. 
I n  this \\lay, ifthe desired remote systcm is not running 
l)E(:nct o\*cr TCI'/IP, an attempt to connect \\,ill be 
made through the DECnet protocol, ~tsing a conncc- 
tionlcss ~ien\.ork ser\,ice (CLNS) OSI nddrcss. 

Local File Support 
Early \,ersions of the DECner nenvorking product 
offcrcd only .I local file for node-to-address informa- 
tion. The first release of DECnet/OSI rcplaced tlic 

local file \\,it11 the 1)EC:dns naming service. Unfor- 
tunately, administrators of small- and medium-sizcci 
networks found that the bcncfi ts of 13ECdns (scaling 
and centralized managet~lcnt) \\.ere ounveighed by its 
additional complcsity. 

A subsecluent version of l>ECnet/OSI introduced 
tlie Local Naming Option. This allowed approsi- 
mately 150 nodes to bc stored in a local file, but many 
customers found this number to be too small. 

CDI supports a very large local file: the supported 
limit is 100,000 nodes, but tl~cl-c is 110 tixed internal 
limit. In addition, tl~rougli the use of the search 
patli, customers c'in conf ig~~rc  tlie local file either as 
a backup to  a distributed scr\jice, or as a \\fay to prc)\,idc 
greater performance. Note that both of these q~~ali t ies 
are also pro\,idcd in ;I more nutomated \\lay by tlie CL>I 
cache (see the CDI Library Cache section for more 
infor~nation). 

Security Considerations 
CDI relies upon the security provided by the underlying 
directory services (or in the case of the local file, the f le 
spstcm). Security of its remote management featurcs 
depends on the ncn\,orlc tnanngement securinl system. 

CDI Libraries: Basic Design 

CDI is implemented as sIi3red libraries on both the 
Digital UNIS and the OpcnVlMS operating systems. 
At tlie highest le\,cl, tlie design is identical o n  both s!.s- 
tems, as sllo\\/n in Figure 1 .  Nanic-to-address transla- 
tion requests from the scssio~l control layer are passed 
through a single entry point in each CDI library. 

DECNETIOSI DECNETIOSI ... I APPLICATION I 1 APPLICATION 1 

-7 

CDI SHARED LIBRARY I 
COMMON DIRECTORY 
INTERFACE LIBRARY 

I 
I 
I 

INTERFACE INTERFACE . . .  

mr&l SERVER 

Figure 1 
Block l>iagram of the CDI Library 
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Depending upon the search path (described belo\\.), 
the Cl3I libraries transl'ltc and forward the request to 
one o r  liiore directory services (or  they look LIP the 
inforn~ation in a local file). 

The CDI implcmcntation was considerably more 
cornplex on the OpenVMS operating system than on 
the Digital UNIX operating systern due to  the dif- 
fering design of l>E<:nct/OSI 011 each system. On 
the Digital UNIX operating system, the DECnet/OSI 
session control layer consists of a shared library that 
is linked with each ncnvork application. Namc 
resolution requests arc processed synchronously. 0 1 7  

tlie OpenVMS operating system, session control is a 
component of the NET$ACP process. Since all name 
resolution requests arc channeled through this single 
process, ope ra t io~~s  II ILIS~ be asynchrono~~s ( r e q ~ ~ c s t s  
must block concurrcnt operations). I n  addition, sincc 
multiple requests may be sin~ultaneously outstancling, 
tlie library is ~n~~l t i th rcadcd .  Asynchronous, ~nult i-  
threuded operations on thc OpenVlMS operuting 
system are implemented ~ ~ s i r ~ g  the asynchrono~~s sys- 
tem trap (AST) mechanism. For these reasons, the 
CDI implementatio~l on OpenVMS was much largcr 
and more complex. 

CDI Search Path 
h i o t h e r  goal was to  permit flexibility in detern~ining 
a configuration of directory services. The C1)I design 
achieves this goal in nvo ways. First, it allo~\ts iidmin- 
istrators to  select their service(s) of  choice and to  use 
them in any order. The  search path is normally cre;ired 
during nen\~orl< config~~rntion and can be subsc- 
cluently managed either locally or  remotely. Second, it 
gives network users thc ability to use short, abbrevi- 
ated names instead of potentially cunibe~.somc fill1 
names. For example, they can use "system 1" instcad of 
"systernl .sales.hq.xpz.com." 

A single mechanism in tlie CDI library-the C1)I 
search patli-provides these nvo capabilities. The 
search path consists of a series of directory 
service/name template pairs, as sho\vn in F i g ~ ~ r e  22. 
When tlie CDI library is given a name to process, it 
scans the search path, replacing the "*" in the name 
template with rhc supplied name. For example, if the 
library was searcliing for the name,fi.oc/u, it \vould use 
tlie directory services identified from the names gener- 
ated shown in Figure 2b. 

During network configuration, a defiiult search 
patli is autoniatically configured based upon the local 
node name and the administrator-specified director!l 
services. This search patli behavior is similar to a 
number of existing T(:P/IP host name/address 
lookup imnplementations. 

CDI Library Cache 
Occasionally, name service lookups can take a long 
time to  complete (fbr example, if requests .ire travers- 

DECdns ' 
DECdns XYZ:.hq.sales.' 
DECdns XYZ:.DNA-Node-synonym.' 
Domain 
Domain '.sales hq.xyz.com 

(a)  Oircctory Service/Namc Tcrnplntc I'airs 

frodo (DECdns) 
XYZ:.hq.sales.frodo (DECdns) 
XYZ:.DNA-Node-synonym.frodo (DECdns) 
lrodo (Domain) 
frodo.sales.hq.xyz.com (Domain) 

( b) Address I nokup for Name ,/i-o~lo 

Figure 2 
Using the ClDI Search Path 

ing a slow net\\~ork link, a lookup could take several 
seconds). To improve performance, the CDT library 
incorporates a single cache that accum~~lates node 
information from all the directory services. Usually, 
the cachc is consulted before sending 3 request to 
a remote service. However, if session control deter- 
mines that cached information is stale-for example, 
if connection t o  a node at  a cached address reaches 
a node with a different name-it will reissue the call, 
requesting that the cache be bypassed. 

Each entry in the cache has a creation tiriie stored 
with it. The cache itselfhas a "time-to-live" value that 
can be modified by the administrator. If a cache 
lookup fi~tds an entry whose lifetime (rime since it was 
created) is greater than the time-to-live value, the 
cache entry is p ~ ~ r g e d .  

T o  prevent a period of low performance imlnedi- 
ately atier system start-up, the cachc is preserved 
across system reboots by periodically checkpointing 
it to a disk file. The checkpoint interval is adjustable 
by tlie administrator. 

CDI Registration Tool: Basic Design 

The CDI registration tool provides fi~nctions to create, 
modifi: rename, display, and delete node name and 
address information in any of the supported directory 
services. It runs on the major DECnet/OSI platforms, 
the OpenVlMS and the Digital UNIX operating systems. 

The bdsic requirements for tlie ClDI registration 
tool were the same as those for the C1)I library. These 
three requirements were the need to: 

Support different director!r services for storing 
node information 

Access each directory service using tlie appropriate 
application programming interfaces ( APIs) 



Store data in each directory service using the 
appropriate data types 

In addition, the following requirements wcrc spc- 
cifc to the CDI registration tool: 

Both a forms and console user interface had to 
be provided. These had to \vork identically on all 
l>ECnct/OSI operating system platfor~ns. 

Functions to transfer node information benveen 
the various directory services had to be provided. 

Other applications such as the DECnet/OSI 
nenvork control languagc (NCL) utility and othcr 
namespace nianagernent tools had to bc able to 
access node name man'igelnent functions. 

The directory services supported by tlie CDI regis- 
tration tool are slightly different from those supported 
by the CDI library. The CDI registration tool supports 
the l>ECdns, tlie local f le, and the DECnet Phase IV 
database services. 

Tlie DECnet Phase IV database is supported by the 
CI>I registration tool to allow administrators to use 
old Phase IV node information when populating 
the node names and addresses for DECnet/OSI. The 
l'hase IV database is not  supported for node name-to- 
address lookup by the CDI library. 

Due to  its lack of  a remote update capability, the 
llomain Name System is not supported by the CDI 
registration tool. Node name-to-address information 
in the Domain Name System is managed i~sing its 
native tools. Dynamic updating of the Domain Name 
System servers is currently under study by the Internet 
Engineering Task Force (IETF) Domain Name 
Svstem Working Group. 

Application Design 
The design of the CDI registration tool uses a client- 
based, multilayer approach. It is layered 011 top of a 
specialized API, called the Common Directory 
Ixegistration (CDR) API. The  CDR API differs from 
the API provided by the CDI library in that it presents 
a fill1 set of  management operations, rather than just 
the lookup operations required by DECnet/OSI. 

In  this design, the CDI registration tool provides 
fornis and console user i~iterfaces for node informa- 
tion management. I t  also provides functions beyond 
the basic ones provided by tlie CDR API, such as 
exporting from and importing to  a directory service. 
The fi~nction of  the CDR API is to perforrn all under- 
lying node name management operations in a stan- 
dardized manner. This layered approach was adopted 
to make node name management functions available 
to applications other than the CDI registration tool. 

The CDRAPI defi nes a node definition object. This 
contains all the information that is exchanged between 
the CDR API and the application and is a canonical, 

directory-service-independent data representation of 
all information needed by the CDR API to manage 
node names and addresses. 

To provide an extensible mechanism for adding new 
directory services, the CDR API is layered on top of  
a set of  directory service wrapper routines, one per 
supported directory service. Access to these \\(rapper 
routines is proviclcd by a set of cntry point t ~ b l c s  that 
can be extended to support neiv directory services. 
The CDR API is responsible for accepting application 
requests and dispatching them to the correct directory 
service by means of the appropriate wrapper routine. 
The CDR APT wrapper routines are described later in 
this section. 

Figure 3 shows the design of the Cl>I registration 
tool and tlie C1)RAPI. 

CDI Registration Tool User Interface 
The forms and the console user interhccs had to 
present exactly the same characteristics o n  both the 
OpenVMS and the Digital UNIX operating systems. 
Becaiise no high-level software pacltages at the time 
could provide this level of user intertice portability, we 
developed the111 for this application. 

The  console user interface parses commands and 
dispatches them to the appropriate user request pro- 
cessing routine, using a portable command parser. 

The for~iis user interface obtains input from task- 
specific forms and dispatches the function o r  f~nct ions  
associated with the form to the appropriate user 
request processing routine. Tlie forms processor 
was written specifically for this application because 
n o  existing libraries could provide tlie required level 
of portability. 

CDI Registration Tool User Request Processing 
Each user recluest lndps into a specific request process- 
ing function as follows: 

Register. Create a new node name cntry in tlie 
directory service. 

Add address. Add address information to a node 
name en try. 

Remove address. Remove address information 
kern a node name entry. 

Modi6  address. Replace the addrcss information in 
a node name entry. 

Update address. Replace the address information in 
one o r  more node name entries, using illformation 
obtained from the nodes themselves (if possible). 

Modifjl synonym. Replace the node synonym in a 
llode name entry. 

Rename. Change the name of a node name entry. 

Show. Display the information containcd in one or  
more node nanie entries. 
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Figure 3 
I3loc.k l>iagr.i~ii of thc CDI licgistmtioi~ Tool ;uid the CDR M'I 

cDI REGlsTRATloNTOOL ;---------------------, 
I 

I I 
I 

1)crcgister. Dcletc one or niorc nodc nnmc cntries 
by name, synonym, or  address. 

FORMS USER INTERFACE 
FORMS DEFINITIONS 

1Xcp"ir. Fix any detected problcn~s or  inconsistcn- 
cics in tlic directory ser\lice for one or  more nodc 

CONSOLE USER INTERFACE 
COMMAND TABLES 

nnmc entries. 

Export. <:opy the information h r  one or  more node 
nalnc entries from die dircctory scl-\,ice into a text fjle 
that can be copied benveen systems, cditccl if 11eccs- 
snr!; and imported into an!, otlicr dircctor!~ scl-\,ice. 

REQUEST DISPATCHER 

Import. Use an esport test file to rcgistcr, moditi; or 
dcrcgistcr node name entries in a directory scr\.icc. 

SHOW 
PROCESSING 

CDR APl CALLS 

Tlir requcst processing ro~rtilies perform a n y  rccl~~ired 
\~nlicintion of the user request and tl.nr~sl,ltc those 
recILlests to calls into the CDR API. Each request may 
map into one or  Inore CDK MI calls, dependins on tlie 
complcsity of the rcquest. For csa~nplc, register and 
dcregistcr reqilcsts both map illto single (:l')R APT calls, 
and export and import requests map into sc\~eral calls. 

Most rcqucsts arc straiglitfor\\.nrd in their pro- 
cessing rccluiremcnts. For example, a rcgistcr rccl~~est  
simpl!, c3lls the CDR A P I  register entry point. ?'he 
(:Dl< API tnkcs care of any complications in pl-occssing 
the recluest. 

Some reclucsts can opel-ate o \ t r  ~iiultiple node n;inic 
entries. For csamplc, the sIio\\l request enumcratcs 
the nodc name entries, retrieves the information con- 
tained in each nodc name cntr!r, ancl displays tlie infor- 
mation to the user. 

Ai esport request is similar to a show request, 
except that tlic resulting information is ~ r i t t e n  to  a 
test file in a standard format jnste3d of being displ'~\~cd 
to tlie user. The i~iiport  request, ho\ve\.er, is more 
coniplicated. This reclilcst Ini1st enumerate and she\\, 

the contents of the directory scr\,ice, and the11 com- 
pare the results \\~itli tlic contents of the test file. Rased 
on  the specific form of the import request, it may then 
register new nodc namc cntries, update the informa- 
tion in existing nocie Ilnnle entl-ics, o r  deregister listed 
node name cntries. 

The export and import rcqucsts make use of a text 
file to pro\,ide masim~rm flexibility. The use of a test 
file allo\\.s the information to  be copied between dis- 
similar platforms such as the OpenVlMS and the 
Digital UNIS operating systems, and allo\\rs the infor- 
ination to be lna~iip~~lutcd  sing standard tools such as 
batch filcs, grep, awk, ;lncl test editors. This is particu- 
larly usetill \\.hen applying a cIi;lnge to all node entries. 

REGISTER 
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For example, the contents of a directory service could 
be csportcd to a text file, the addresses in the test file 
changed to reflect a new routing area, ,lnd the results 
in2lx)rted back into tlie directory to update the esist- 
ing information. 

Tlie repair fi~nction performs a s l i o ~ \ ~  operation on 
all specified node names to determine if any consis- 
tency crrors arc found. This type ofcrror can occur in 
directory services that Iwep multiple physical records 
for cach logical node name entry. 13ECdns is one 
csaniplc of this Idnd of directory service, because it 
mes soft linlts to map node s!lnonyrns and addresses 
back to their respective node name entries. If this type 
of error is found, thc repair fi~nction rc-registers the 
~ ~ o d c  s!,nonym and address informatio~i to correct 
these inconsistencies. 

The most complicated request is the update request. 
This performs a sho\v request for the specified node 
n;lmes and attempts to use the current addressing 
informntion contained in the node name entry to make 
3 network management connection to tlie node itself. 
For each node name entry, it steps through the com- 
plctc set of registered addresses and tries each address 
i l l  turn, ~1si11g both a DECnet Phase IV connect and a 
l)ECnet/OSI connect. If a connect attempt is success- 
fill, it i~scs the appropriate network management 
requests t o  read the true addressing data. It then coni- 
pJres this ,~ddressing data to what it found in the direc- 
tor!, scr\~icc ,~nd  makes any necessary corrections to the 
node name entry. Tlie update operation does not oper- 
ate on I I' addresses due to the lack of  dynamic update 
cap3hilitics in tlie Domain Name Systcm servers. 

Before making the C D R M I  calls, all recluest process- 
ing routines convert the user request data into a node 
clefinition objcct, which is discussed in thc ncst section. 

CDR API Node Definition Object 
The nodc definition object is the only input data pro- 
vided to any of the CDRAPI entry points. It stores the 
neccss'lry data for any directory service operation, 
using a canonical representatioll. Thc nodc definition 
object contains tlie following: 

1. Type oftiircctory service to access 

2 Name of the node entry to access (depending on the 
opcratlon be~ng  performed, ~t may allow a full\; qud-  
16ed namc, a synonym, an address, or wldcards) 

3.  Syno~iynl name (for DECnet Phase IV access) 

4. l)E(:nct l'hase IV network servicc acccss point 
(NSAP) prefix (for use when a Phase IV address is 
specified) 

5. Aclclrcss information 

6. L)irectory narnes used for reverse mapping of  
synonym Iianles and addresses back to the fi~lly 
qildlified node name 

The CDRAPI controls all access to elements within the 
node definition object, which further isolates the call- 
ing application from the lower-level data structures. 

CDR API Entry Points 
Each CDR API entry point provides one logical fiinc- 
tion to the calling application. Each user request can 
translate into one o r  more CDR API functions. The 
functions are 

Register. Create a new node name entry in the 
directory service. 

Add address. Add address information to a node 
name entry. 

Remove address. Remove address information 
from a node name entry. 

Modify address. Replace tlie address information in 
a node name entry. 

Modify synonym. Replace the node synonym in a 
node name entry. 

Rename. Change the name of a node name entry. 

Show. Return the information contained in one or  
more node name entries. 

Deregister. Delete one o r  more node name entries 
by name, synonym, or  address. 

Enumerate. Return a series of node name entries, 
one at a time, based 011 a wildcard specification. 

All node information passed to and from the CDR 
API is in the form of  a node definition object, as 
described previously. The CDR API functions validate 
the ca~~onical  information contained in the node defi- 
nition object and dispatch a directory-service-specific 
function to handle the request. 

CDR API Directory Service Wrapper Routines 
Each directory service supported by the CDRAPI has 
an associated set of  directory service management 
wrapper routines. These routines provide entry points 
that are functionally identical to those provided by 
the CDR API. The CDR API does the initial input 
argument validation, and the directory service wrap- 
per routines perform the data manipulation in the 
underlying directory service. 

The CDR API dispatches the appropriate directory 
service wrapper routine using a set of entry point tables. 
This provides a means to easily extend the CDR API to 
include additional directory services in h tu re  versions. 

CDR API Wrapper Routines for DECdns 
In the DECdns name service, each node name entry 
contains all the information required to translate a 
node name to a synon!lni or  a set of node addresses. 
However, no  search mechanism exists to allow a 
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lookup of tlie node name entry based on the synonym 
or  on an address. For this reason, all filnctions that cre- 
ate, m o d i ~ ,  and delete node name entries (register, 
modifi, addresses, rnodifii synonyni, rename, and 
deregister) must also create, modifj: and delete reverse 
mapping entries. 

lleverse ~iiapping entries are based on a node's syn- 
onym and addresses; they contain pointers to the true 
node name entry. These entries are ilsed by the CDI 
library lookup functions and by the C D K  API  display 
functions (sho\v and enumerate) to  access thc node 
name entry when given a synonym or  address. 

The use of reverse mapping entries recliiires that 
multiple clirectory service entries bc created for each 
registered node. These must be s~~~ichronized by prop- 
erly orclering the creation and deletion ot'the \rarious 
entries \\then registering, moditjliug, or  dcregistering 
a node name. For esample, \\then registering, the node 
name entry is created and its synol1yrn and address val- 
ues arc set before tlie reverse mapping entries are cre- 
ated and set. Similarly, when dcregistering, the reverse 
mapping entries are deleted before the node name 
entry is deleted. This prevents orphaned rcvcrse map- 
ping entries from being created, because they call 
always be found by starting from the information con- 
tained in the node name entry. 

The repair function is provided in case a register or  
deregister operation fails before completion. The 
rcpair fi~nction corrects the reverse mapping cntries by 
re-registering all node name entries that show errors. 
The CDI registration tool (not the C1)RAPI) pro\lidcs 
this higher-level function. 

CDR API Wrapper Routines for the Local Node File 
Under the OpenVMS operating system, the local node 
name file is implemented using a record management 
system (RMS)-indexed file. Under the Digital UNIS 
operating system, a DBM-indesed file is used. On 
both systems, the file content is esscntiall!l the same. 

The local node name file contains a series of  logical 
records, one for each node nanic entry in the directory 
service. Together, these records define each node's 
fillly qualified name, its synonym, and its addrcsscs. 
This logical record may be loolted up using the f ~ ~ l l  
name, the synonym, or  any of the node's addl-esses. 

Each logical record consists of (1) a node definition 
physical record, which contains all infor~nation related 
to the node, and (2) zero o r  more reverse mapping 
ph!rsical records, which contain alternate keys for look- 
ing up the node definition. Each rcvcrsc mapping 
record contains only the node name key in its record 
data. All the data used to describe the node i s  con- 
tained in the node definition record. 

Because multiple records compose a node name 
entry, operations that fail t o  cornplete can r e s ~ ~ l t  in 

inconsistencies in the local node filc. Fortunately, 
diese inconsistencies can be resolved using the same 
synchronization algorithms as used for DECdns. 

CDR API Wrapper Routines for the DECnet Phase IV 
Node Database 
Access to the 1)ECnet Phase IV node database is pro- 
vided primarily to help users migrate their Phase IV 
node name data to DECnet/OSI. N o  access is pro- 
vided to this database by the CDI library for 
DECnet/OSI applications. Because this database con- 
sists of  a simple file, with one record per node name 
entry, none of the ~nultiple record synchronization 
problems exist. 

Conclusion 

The  Common Directory Interface, consisting o f  
the CDI registi-ation tool set and the CDI library, pro- 
vides flexible and extensible directory service access 
for DECnet/OSI. Initial customer acceptance of these 
new capabilities Iias been high and future enhance- 
ments are being studied. 
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