

Editorial
Jane C. Blake, Managing Editor
Helen L. I'arrerson, Editor
Kathleen Ail. Stctson. Editor

Circulation
Catherine M. Phillips, Administrator
Dororhea B. Cassady, Sccrcrar!.

Production
Tcrri Autieri, Production Editor
Anne S. Katzeff, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H . Fuller, Chairlnan
lbcliarcl W. Beane
Donald %. Harbcrr
William R. Hawe
llchnrd J . Hollings~\lorth
Willianl A. L i n g
H~ch.lrd F. Lary
Ann G. Nerncrh
Paul~nc A. Ntsr
Robert IM. Supn~k

Cover Design
The "hot" colors on our cover retlect the
kind of performance delivered by 64-bit
Digital UNIX TruCluster systems. A four-
node cluster made up of Alphaserver 8400
5/350 systems interconnected with the
higl-speed MEIMOKY CHANNEL and
running the Oracle Universal Server with
Oracle Parallel Server recently achieved
record TPC-C performance of 30,390
t p n C . The design of the Digital UNIX
TruClustcr system is the opening topic
in rhis issue.

The Digilal Technicul,/oun~al is a refereeu
journal published quarterly by Digital
Equipment Corporation, 30 Porter Road
LJ02/D10, Littleton, ~Massachuserrs 01460
Subscriptions to the foutnal are $40.00
(non-U.S. 560) for four issues and $75.00
(non-U.S. % 11 5) for eight jss~~es and must
be prepaid in U.S. funds. University arid
college professors anci P1i.D. students in
the electrical engineering and cornpurcr
science tields receive complimentary sub-
scriptions upon request. Orders, inquil-ics,
and address changes should bc sent to thc
Iligi~nl Tecbr~ical,/o~iri~al at the publislled-
by address. Inquiries can also be sent clcc-
tronically to drj@digiral.com. Singic copies
and back issucs arc available For $16.00 each
by calling DECdirect at 1-800-DIGITAL
(1 -800-344-4825). Recent issues of the
,/orrrr7nl are also available 011 rlie Internet
at htrp://~n\~\~.digitaIIcom/info/drj.
Conlplete 1)igiral Internet listings can
be obtained by sending an electronic mail
message to info@digital.co~n.

Digital enlployees may order subscriptions
through Readers Choice by entering VTX
PROFILE at the systcni prompt.

Comments on the content of any paper
are welcomed and may be sent to the
managing editor at the published-by or
~lerwork address.

Copyright Q 1996 Digital Equipment
Corporation. Copying without fee is per-
mitted provided that such copies are made
for use in educational institutions by faculty
members and are not distributed for com-
mercial advantage. Abstracting with credit
of Digital Ecluipment Corporation's author-
ship is permitted.

The information in the Jozirnal is subject
to change without notice and should not
be construed as a commitment by Digital
Equipment Corporation or by the conipa-
nits herein represented, Digital Equipme~lt
Corporation assumes n o responsibility for
any errors that ma)! appear in the Journnl.

Documentation Number EY-U025E-TJ

Book production was done by Quantic
Con~munications, Inc.

The followit~g an-c tratlcmarks of Digital
Equipment Corporarion: Alph'iSer\.er,
DECnet, DECsafc, Digital, the DIGITAL
logo, excursion, iManagcWORKS, IMSCP,
OpenViMS, PATHWORKS, TruCluster,
and VAXcluster.

Adobe is a regisrercd rradcmark of Adobe
Systems Incorporarcd.

DCE, OSF, and i\.lorit'arr regisrcred
trademarks and Open Sofnvare
Foundation 1s a rradeniark of Open
Sofnvare Foundation, Inc.

He\\~lctt-Packatd IS a trademark of
Hc\vletr-P.~ckard Conipnny.

M~malaya and Tallde~ll ,\re ~.egistered
tr~dcrnarks ofTandcm C o ~ n p ~ ~ t c r s , Inc.

Illrcl 1s a rradcmark of Intel Corpor~rioll.

IMEMO~U' CHANNEL is a trademark of
Encore Computer Corporarion.

Microsoft, Visual C++, Win32, and
Windows 95 are rcgistcred trademarks
and Windows, Windows for Workgroups,
and Windows N T are trademarks of
Microsoft Corporation.

Netware and Novell are registered
trademarks of Novell, Inc.

POSIX is a registered trademark of The
Institute of Electrical and Electronics
Engineers, Inc.

Oracle7 is a trademark of Oracle
Corporarion.

S3 is a registered trademark of S3
Incorporated.

Sequent is a trademark ofsequent
Computer Systems, Inc.

SPEC is a registered trademark of the
Standard Performance Evaluation
Corporation.

StreetTalk is a trademark of Banyan
Systems, Inc.

Sun Microsysre~ns is a registered trade-
mark of Sun Microsysrems, Inc.

TPC-C is a trademark of thc Tralisaction
Processing I'crformance Council.

UNIS 1s a registered trade~nark in the
United Stares and other cou~itries, licensed
esclusivcly through X/Open Company Ltd.

X Window System is a trademark ofthe
Massachusetts Institute ofTechnology.

The cover was designed by Lucinda O'Neill
of Digital's Design Group.

Contents

Foreword

DIGITAL UNlX CLUSTERS

Design of the TruCluster Multicomputer System for
the Digital UNlX Environment

OBJECT MODIFICATION TOOLS

Delivering Binary Object Modification Tools for
Program Analysis and Optimization

EXCURSION FOR WINDOWS OPERATING SYSTEMS

Design of excursion Version 2 for Windows,
Windows NT, and Windows 95

NETWORK DIRECTORY SERVICES

Integrating Multiple Directory Services

Design of the Common Directory Interface
for DECnetIOSI

Don Harbcrt

Wayne M. Gal-doza, I.'redc~-ick S. Glover, and
Mlilliarn E. Snarnan, Jr.

Linda S. Wilson, Craig A. Ncth, and
Michacl J . Rickabaugh

John T. Frcitas, Jnmcs G. I'ctcrso~i, Scot A. Aurcnz, 32
Charles P. Guldcnsclu~h, and Paul J . h n ~ u r o

Margaret Olson, Laura E. Holly, and Colin Strutt 46

Richard L. Roscnbaum and Stanlcy 1. GoldE~rb 59

Editor's
Introduction

Digital recently announced record-
breaking 30,390 tpmC performance
on a Digital UNIX cluster of 64-bit
RISC AlphaScrver systems. In this
issue, engineers from the UNIX team
describe the key technologies that
enable thcse near supercomputer
performance levels as \vcll as provide
the cluster characteristics of high
availability and scalability. Also pre-
sented in this issue are advanced
UNIX programming tools for masi-
mizing performance, X servcr soft-
ware that supports tlie Microsoft
family of operating systems, and new
network directory serviccs that sim-
plifj management.

First defined by Digital UI the early
1980s, clustcrs are highly available,
scalable multicomputer systems built
with standard parts and offering the
advantages ofsingle-computer systems.
Wayne Cardoza, Fred Glover, and
Sandy Snaman compare clusters with
other types ofmulticoniputer config-
urations and describe the major com-
ponents o f Digital's newest cluster
in~plementation, TruClustcr systems,
for the 64-bit UNIX environment.
The cluster interconnect, called
MEMORY CHANNEL, is critical to
the cluster's outstanding performance.
MEIVORY CHANNEL implements
clusterwide virtual shared memory
and reduces overhead and latency by
two to three orders of magnitude
over conventional interconnects.

AJso developed for the Digital
UNIX environment (version 4.0) are
two program analysis and optimiza-
tion tools-OM and Atom. The tool
technology originated in Digital's
Westcrn Rescarch Laboratory, whcre

2 Digital Technical J o ~ ~ ~ . n a l

rescarchers focused on providing
performance diagnosis and improve-
ments for large customer applications.
Sofnvarc developers Linda Wilson,
Craig Neth, and Mike Rickabaugh
from the UNIX Development Envi-
ronment Group dcscribe the object
modification tools and the flexibility
they provide over traditional tools
that are implcmented in the realm o f
compilers. In addition to demonstrat-
ing practical application of the tools,
the authors cxaminc the process o f
transferring technology from research
to development.

For mixed operating system
environments, Digital developed
Windows-bascd X scrver software,
callcd excursion, to allow the win-
dows of a remote host running UNIX
or OpenVMS to display on a desk-
top running the Microsoft Windows
operating system. The latest version
of excursion, described here by John
Freitas, Jim Peterson, Scot Aurenz,
Chuck Guldenschuh, and Paul
Ranauro, is \vholly rewritten t o masi-
mize graphics performance and t o
support thc k~ll range of Windows
platforms: Windows, Windows 95,
and Windows NT. This ncw version
is based 011 the X Window System
version 11, release 6 protocol from
the X Consortium.

T w o network directory services
that reduce con~plexity and increase
choices for n c ~ v o r k managers are the
subjects of our next papers. The first
is designed for lnultiple networked
environments; Integrated Directory
Services (IDS) software integrates
multiple scrvices into one directory-
service-independent systcm. Margaret

\Jo1. 8 No. 1 1996

Olson, Laura Holly, and Colin Strutt
outline the problems that have lim-
ited thc use ofdirectory serviccs and
the different design approaches the
team considered t o simpliljr directory
services use and make it more attrac-
tive. They then describe the IDS
extensible, object-based framework,
which con~prises an application
programming interface and a ser-
vice provider interface. Nest, Rich
Rosenbaum and Stan Goldfarb
prcsent thc Common Dircctory
Interface (CDI) for DECnet/OSI.
Implemented as shared libraries in
thc Digital UNIX and OpenVMS
operating systems, CDI is designed
to give network managers a choice
of directory serviccs. T h e authors
describe the libraries and thc registra-
tion tool set ofmanagement opera-
tions that is layered on a specialized
API.

Coming up in the./nunznlare
papers about a new log-structured
clusterwide file system called Spiralog,
the 64-bit OpenVMS operating
system, speech rccognition software,
and the UNIX clusters message-
passing system and its use for pro-
gram parallelization.

Jane C. Blakc
Managing Editor

Foreword

Don Harbert
Vice President, lhVIX D~isiness

Digital not only invented clusters but
continues to set the standard by
which all other cluster systems are
measured. T h e VAXcluster success
and that o f Digital's latest UNIX clus-
ter systems derive from superb engi-
neering t h ~ t builds on the system
definition put forth in the early 1980s
by the VAS engineering team: an
available, extcnsiblc, high-performancc
multicomputer system built from
standard processors and a general-
purposc opcraring system, with chal--
actcristics of both loosely and tightl!l
coupled systcn~s.*

We in the UNIX community arc
proud of our VAXcluster lleritage
and have engineered our products
t o provide the sarnc kinds o f bencfi ts
to customers that VAXcluster systems
provide! I n the opening paper for
this issue o f r h c ~ ~ o u r n n l , members
of the Digital UNIX engineering
tcam describc the n~ulticomputer
system for thc Digital UNIX environ-
ment, called TruCluster, which, like
the VAXclustcr system, is designed
for liigh availability, scalability, and
performance.

The technology, ofcourse, is dif-
ferent, and the cnvironmcnt is open.
The fi~ndanicntal concepts are never-
theless the same. The TruCluster
system is a loosely coupled, general-
purpose system connected by a
high-performance interconnect. It
maintains a single security domain
and is managed as a single system.

* Nancy 1'. I(ronclil)crg, Heliry M. LC\.?,
and Willianl 1). Srreckcr, "VAXclusrcrs:
A Closely-CouplcJ Disrriburcd Sysrt.ni,"
AC,M Tr~~n.tcl io~?s or/ <:ompuler .S)sic,n~.s,

\lol. 4, 110. 2 (1L1.ly 1986): 130-146.

t Illgiral has rcn~tncd \'AXclustcr systems
to 0pel1ViMS Cluster sysrcms.

Cluster services rcmaiil available even
wlien other members arc una\~ailablc.
Like VAXcluster systems, TruClustcr
systems implcrncnt a distributed lock
nianager, which provides synchro-
nization for a highly parallelized
distributed database system. T h e
tecluiology for the lock manager,
however, is nc\illy iniplemented for
the UNIX cnvironmcnt. Also com-
pletel!! new is the interconnect tech-
nology tor TruCluster systems.
MEMORY CHANNEL is a rcliablc,
high-speed interconnect based on
a design by Digital partner Encore
Computer Corporation. MEMORY
CHANNEL addresses the unique
needs ofclustcrs by implementing
clustcr\vidc virtual shared memor!l;
the interconnect reduces overhead
and latency by nvo to tliree orders
of magnitude.' Rccai~sc MEMORY
CHANNEL uses the industry-
standard P(:I, dcsigncrs can implc-
mcnt the ncnvorlc at \!cry lo\\; cost.
We believe this interconnect tech-
nology puts Digital pears ahead of
the competition.

The T r ~ ~ C l u s t c r system is the latest
example of Digital's intent t o re~nain
a technology lcadcr in thc UNIX
market. Wc began by developing
the first high-perfbrmance, 64-bit
general-purpose operating system,
L)EC OSF/l, shipping in March
1993. Thc frst Digital UNIX clustcr
rclcasc, DE(:safc Available Server
Environment, Follo\vcd soon there-
afier in April 1994. The an.nouncc-
mcnt in April 1996 o f T r ~ ~ C l u s t e r
systems with MEMOICY CHANNEL

$ Richard 13. Gillctt, "Mcmory Cl la~~~lc l
Nctwo~-k for P(: I ," Il;/k:llio.o

(February 1996): 12-18.

Vol. 8 No. 1 I 3

again places Digital t ir allcad of thc
competition technologically. Tllc
performance of thcsc a\lailable clustcr
systcn~s now approaches that of very
expmsive supcrcomp~ltcrs. System
pcrformance has bccn measured at
the record-breaking rate of 30,390
tpmC o n four AlpliaSer\,cr 8400
systems runlling Digital UNIX and
the Oracle Uni\rcrsal Scrver \vith
0 r ~ c I c Parallel Scrvcr. The pre\~ious
pesfi)rniance record, 20,9 18 tpmC,
was held by the propricrary Tandcni
Himnlaya 1<10000- 112; Digital's
opcn s!lstcm clustcr pcrformance
record is 1 .5 timcs the Tandem
pcrfi)r~~lance record at one-third
the systcm cost.

For Digital, clt~stcrs of high-
pcrk)nnance 64-bit systcms are
to ;I great cstent at the hcart of its
co1nmcrcial3nd technical scrvcr
strategy. Digital UNIS has been
def ncd and engineered for the ser-
\.cr b~~sincss, specifically, for the high-
performance co~nrncrcial and largc-
p~)blcm/scic~ltific cn\'ironmcnt. To
be succcssfi~l in the opcn system mar-
ket, ho\\re\w-, a conipnny must reach
outsiclc itself to joi~itly engineer prod-
~ ~ c t s ivith leading sof tw~rc suppliers
that lin\,e the sohvare customers
~ ~ c c c i to be compctiti\.c. Tllerefol-e,
the first Tri~Clustcr implementation
is designed with Digital's partnew-
11injor s o h ~ ~ a r e companies-to meet
t l ~ c rcq~~iremenrs ti)r high pcrformancc
anci f~~nctionalinr in the commcrci31
d~~tabasc server market.

The conlpetiti\lc challcngc ~io\ \~ is
to mnint,lin Digital's significant lcad
in providing outsrandiug cluster pcr-
ti)rmancc, a\.ailability, and nfhrdabil-
in. From a technological perspecti\,c,
the immediate and achievable goal

is t o increase the n ~ ~ n i b c r of clustcr
nodes h-om 4 to 10 or 2 0 nodes.
Within this mngc, Digital maintains
a simple cluster system n~odc l that
offers thc pcrforlnancc ad\~nntnges
of clusterins and avoids the disadvan-
tages, such as the mviagcJncnt prob-
lc~iis and qu;ilification hcadachcs, of
more complex topologies. Further,
the Digital UNIX organization \\f i l l
focus on ,I ncur cluster tile systcln,
configuration flexibility, ~nanagcment
tools, and a clustcr alias that allo\\.s
a single-system vie\\! for clients and
pccrs. The overall goal of this work
is to c \ ~ o l \ ~ c toward a more general
computing cn\ . i ro~~ment .

The kinds o f tools that both sim-
p l i ~ and cnliancc pcrfor~nancc arc
cxemplifcd by the program a~lalysis
and optimization tools prcscntcci
in this issuc. 11~1ilr on Digital U N l S
version 4.0 and announced in April,
these tools help sofn\rare dc\jclopcrs
extract ~ n a x i r n ~ ~ m pcrfi)r~uancc tiom
the system. The story of the tools
ilc\~elopmcnt is a n excellent csn~nple
of the direct application of research
t o products. Thc po\ver of the O M
objcct ~moditication tool and tllc analy-
sis tool \\it11 objcct rnodifc;ition
(Atom) \\,as rccog~lized by de\,clopcrs
c\xn as research progressed; in hct,
sc~luconductor designers dc\.clopcd
Atoni tools to c\duate nc.\\, Alph;~
clup i~nple~ncntations. The result
of tlus close cooperation b ~ h \ ~ c c l l
research and dc\,elopmcnt is ,id\,;~nced
program~lli~lg tools for c~~s to~l lc r s .

Thcsc efforts in the UNlX organi-
zation arc manifestations of 1)igital's
commitmcot t o open systems. Other
3rcns ofcngi~lccring \\rlicl.c this com-
mitment is apparent are also repre-
sented in this issue. For exa~rlplc,

\'ol. S No. 1 19'16

cXc~~rsion sohvarc is key t o intcgra-
tion bcnvcen microso off's Windows
Eirnily of prodt~cts and Dig~tal's
UNIX and OpenVMS products.
This \\~lioll!l reviscd \icrsion both
adds ncnr fi~nctionnlity and conserves
systcm resources. Another major area
ofstrength for Digital is its networks
products. Networks cngincers
Jcscribc nvo csamplcs ofnenvork
scr\liccs that incrcasc users' choices
and cstcnd system f ~ ~ n c t i o n d i n ,
i.c., the Integrated I>ircctory Scr\.iccs
(IDS) ;lnd the Common 13irectory
Intcrhce.

1)jgital's strate&?) is to co~i t in i~c t o

cnginecr products that provide out-
smnding performance and price/
performance in opcn en\ t ~ ~ - o ~ l ~ ~ ~ c ~ l t ~ . '

In all areas of engi~lccring-systems,
scr\~iccs, nen~rorlting-our goal is
to set the stanciard by \\.hich all othc~-s
arc ~ncasured.

Design of the TruCluster
Multicomputer System
for the Digital UNlX
Environment

The TruCluster product f rom Digital provides
a n available a n d scalable multicomputer sys-
t e m f o r t h e UNlX environment . Al though it was
des igned f o r genera l -purpose computing, t h e
first implementation is directed a t t h e needs
of large d a t a b a s e applications. Services such
as distr ibuted locking, failover management ,
a n d remote s to rage access a r e layered o n a
high-speed cluster interconnect. The initial
implementation uses t h e MEMORY CHANNEL,
a n ext remely reliable, high-performance inter-
connect specially des igned by Digital f o r t h e
cluster system.

I
Wayne M. Cardoza
Frederick S. Glover
William E. Snaman, Jr.

The pri~na-!I goal for the first release of the TruCLuster --- - --
-.-

system For thc Digital U N I S opcrati~ig s!lstcn~ was to
develop a liigli-perforninnce commercial database
server environment running on a cluster of several
nodes. l>at,~basc applications oftcn require computing
power and I/O connecti\lity and band\\lidtli greater
than that provided by niost single systems. In addi-
tion, availability is a key rcqi~irement for cntcrprises
tliat are dependent on database services for nor~iial
operations. These requirenicnts led 11s to implement a
cluster ofconipi~ters that cooperate to provide serviccs
but fail independently. Thus, both performance and
a\gailabilit\. are addressecl .

We chosc an industry-standard benchmark to gauge
our success in meeting performance goals. Tlie
Transaction Processing Performance Council TPC-C
bcnchniark is a \videly accepted measurcmcnt of the
capdbilip of large servers. Our goal \\#;is to achie\~e
industry-leading numbers in excess of 30,000 transac-
tions per miuutc (tpmC) with a four-node TruCluster
system.

Tlie Tri~Cluster version 1.0 product pro\!jdes
reliable, shared access to large amounts of storage,
distributed synchroniziltion for applications, efficient
cluster co~n~niinication, and application fi~ilover. The
focus 011 database servers docs not mean that the
TruClustcr system is not suitable for other applica-
tions, but that the inevitable design decisions and
trade-offs fix the first product \\!ere made \\;it11 this
goal in mind. Although other aspects of pro\liding
a single-system view of a c l ~ ~ s t e r are i~iiportant, they
are secondary objectives and \\ , i l l be phased into the
product o\.er tinie.

This pdper begins \vith a brief coniparison of com-
puter spstclns and presents the advantages of clustered
computing. Next, it introduces the TruCluster prod-
uct and describes the design of its key softcvare cornpo-
nents and thcir relationsliip to database applications.
Tlie paper then disci~sses the design of the MEMORY
CHANNEL interconnect for cluster systems, along
with the design of the low-level sofnvarc foundation
for cluster s)lncliro~iizution and co~iimunication.
Finally, it addresses application failover and hardware
configurations.

Digital Technical Journal Vol. 8 No. 1 1996 5

Brief Comparison of Computing Systems

Contemporary computing systems evolved tiom
centralized, single-node time-sharing systems into s a -
era1 distinct styles of m ~ ~ l t i n o d e computer systelns.
Single-node systems provided uniform nccessibility
to resources and services and a s i~ ig le -~na~ iage~ i i e~ i t
domain. They were li~nited with respect to scalability,
ho\\/ever, and system failures usuaU!~ resulted in a com-
plete loss of service to clients of the systeni.

Multinode computer systems include symnlctrii:
multiprocessing (SMP) systelns and massi\lcly parallel
processors (MPPs). They also include network-based
computing systcms such as the Open Sohitare
Foundation 1)istributcd Computing Environment
(OSF DCE), Sun ~\/Iicrosystenls Inc.'s Open Network
C o ~ n p u t i ~ l g (ONC), and \vorkstation Lir~ns. ' ,2 Each of
these systenls addresses one or more of the benefits
associated with clustered computing.

SM1' configurations provide for tightly coupled,
high-performance resource sharing. In their effective
range, SMP systems provide the highest-perh)rma~lcc
single-system procluct for shared-resource applica-
tions. Outside that range, however, both hard\vare
and sohvare costs increase rapidly as more processors
are added to an SiM1' systcm. In addition, SMP avail-
ability characteristics are more closely associated \\;it11
those ofsingle s!istclns because an SMl'system, by defy
inition, is conlposed of multiple processors b ~ ~ t not
mu1 tiple memories or I/O subsystems.

MPP systems such as the Intel Paragon serics were
developed to support complex, high-performance
parallel applications using systems designed with hun-
dreds of processors. Thc indi\ridual processors of an
M1'1' system \\,ere typically assigned to spccitic tasks,
resulting in fairly special-purpose machines.

The DCE and ONC technologies provide support
for common naming and access capabilities, user
account managcmcnt, nuthcntication, and the rcplicn-
tion of certain ser\!ices for inlpro\ui n\lailability
Worltstation farms S L I C I I as the Watson lksearch Cen-
tral Computer Cluster deliver support for thc pal-allel
execution of applications within multiple computer
en\.ironments typically constructed using off-the-shelf
s o h a r e and hard~vare.' ONC, DCE, and Eirms pro-
vide their services and tools in support of heteroge-
neous, multivendor computing environ~nents with
hundreds of nodcs. They are, lio\ve\,er, much fi~rther
away from realizing the benefits of a single-system vie\\/
associated with clustered computing.

In the continuum of n ~ ~ ~ l t i n o d c coinputcr systcms,
the advantage of the cluster s!lsteni is its ability to
provide the single-system lie\\. and ease of manage-
ment associated with SIMP systems and at the same
time supply the hilure isolation and scalability of dis-
tributed systems.

Cluster systems have clear advantages over large-
scale parallel systems on one side and heterogeneous
distributed systems on the other side. Cluster systems
provide Inany cost and availability advantages over
large parallel systems. They are built ofstandard build-
ing blocl<s nrith no unusual packaging or interconnect
requirements. Their 1/0 band\vidth and storage con-
ncctivity scale well with sta~ldard components. They
are inherently more tolerant of failures due to looser
coupling. 1'~irallel o r rni~ltiprocessor systems should be
thought of as cluster components, not as clustcr
replace~ne~~ts .

Cluster systems have a different set of advantages
over distributed systems. First they arc homogeneous
in nature and more limited in size. Cluster systems can
be more efficient \\/hen operating in more constrained
environments. Data formats arc known; tlicre is a
single-security domain; failure detection is certain; and
topologies are constrained. Cluster systems also are
likely to liavc interconnect performance advantages.
Protocols are more specialized; interconnect charac-
teristics are more lu~~iform; and high perfol-mance can
be gu.lrantecd. Finally, the vendor-spccific nature of
cluster systems allows them to evolve faster than het-
erogeneous distributed systems and \\,ill probably
always al lo\-\, thcm to have advantages.

There arc numerous examples of general-p~~rpost:
clusters supplircl by most computer \!e~~dors, inc l~~ding
ATkT, lljgital, He\vlett-l'ackard, Intcmational Busi-
ness Machines Corporation, Sequent Computer Sys-
tems, Sun Microsystems, and Tandem Computers.
13igitaJ's 0pc1iVMS cluster system is gcncrally acccpted
as the most complete cluster product offering in the
industry, a~lcl it achieves many of tile single-system
managen1cnt attributes.' Much of the fi~nctionality of
the OpenVMS cluster system is retained in Digital's
T r ~ ~ C l ~ s t e r p r o d ~ ~ c t offerings.

Structure of the TruCluster System

Digital's TruCluster mul t icomp~~ter system is a highly
available and scalable structure of UNIX servers that
preserves many of the benefits of a centralized, single
colnputcr system. The TruCluster product is a collec-
tion of loosel!l coupled, general-p~~rposc computer
systerns connected by a high-perforlnance intercon-
nect. I t maintains a single security domain and is man-
aged as a single system. Each cluster node may be
a uniprocessor or a multiprocessor system executing
the Digital UNIX operating system. Figure 1 sho\i~s
a typical cluster configuration.

Each cluster member is isolated ti-om sofnvare and
hard\\,arc fai~lts occurring o n other cluster mcmbers.
Thus, the Tru(:luster system does not have the tightly
coupled, "fail together" characteristics of multiproces-
sor systcms. Cluster services remain n\~ailable even
when individual cluster members are temporarily

6 Lligital '1kc.hnical Journal \ o 8 No. I 1996

NODE 0 NODE 1

MEMORY CHANNEL
INTERCONNECT

NODE 2 4 NODE 3 Q
%?5!& DISKS

Figure 1
Co~lfiguration of a Fournodc Clt~stcr System

i~navailablc. Other important availability objectives of
the TruCluster server include quick detection ofcom-
ponent and member failures, on-line reconfigurations
to accommodate thc loss of a failed component, and
continued service while safe operation is possible.

The TruCluster product supports large, highly
available database systems through several of its key
components. First, tlie distributed remote disk (D m)
facility provides reliable, transparent reliiote access to
all cluster storage from any cluster nodc. Nest, the dis-
tributed lock manager (DLM) enables the elements of
a distributed database system to synchronize activity
011 independent cluster nodes. Finally, elcnients of
Digital's DECsafe Available Server Environment
(ASE) provide application failover.' In support of all
these components is the connection manager, \vhich
controls cluster menibcrship and the transition of
nodes in and out oftlie cluster. Figure 2 is a block dia-
gram showing tlie relationships between components.

Each major component is described in the reniain-
der of this paper. In addition, we describe the high-
performance MEMORY CHANNEL interconnect
that \itas designed specifically for the needs of cluster
systems.

Distributed Remote Disk Subsystem

The distributed remote disk (DRD) subsystem was
developed to support database applications by present-
ing a clusterwide \liew of disks accessed through the
character o r raw device interface. The Oracle l'arallel
Server (OPS), which is a parallelized version of the
Oracle database technology, uses the DRD subsystem.

The D W subs)lstern provides a clusterw~de name-
space and access mechanism for both physical and log-
ical (logical storage manager or LSM) volumes. The
LSM logical device may be a concatenated, a striped,

or a mirrored \,olume. DKD devices are accessible
from any cluster me~nber using the DRD device name.
This location independence allows database sohvare
to treat storage as a u~iifor~nly dccessible cluster
resource and to easily load balance o r h i 1 over activity
between cluster nodes.

Cluster Storage Background
Disk devices on UNIX systems are commonly ~ccessed
through tlie UNIX file slatem and an associated block
device special filc. A disk device may also be accessed
through a character device special file or ra\v device
that provides a direct, unstructured interfice to tlie
device and bypasses the block buffer caclic.

Database management systems and sonic other
high-performance UNIS applications are often
designed to take advantage of tlie character dcvicc spc-
cia1 file interfaces to inipro\~e performance by avoiding
additio~lal code path length associ:lted with the f le sys-
tem cache.".' Thc 1 / 0 profile of these systc~iis is char-
acterized by large files, random access to records,
private data caches, and concurrent read-write sharing.

Overall Design of the DRD
The DRD subsystem consists of four primary conipo-
nents. The remote rant disk (M U) pseudo-driver rcdi-
rects DRD access requests to tlie cluster member
serving the storage device. The server is identified by
information maintained in the D W devicc database
(RRDB). Requests to access local DIID devices are
passed through to local device drivers. The block ship-
ping client (13SC) sends requests for acccss to renlote
1)KD devices to tlie appropriate DIU3 server and
returns responses to the ca.ller. 7Yhe block shipping
server (BSS) accepts requests from 13SC clients, passes
them to its local driver for service, and returns the
results to the calling BSC client. Figure 3 shows the
components of the DM3 s~~bsystem.

The DRI) management component supports DRD
device naming, device creation and deletion, device
relocation, and device status requests. During the
DRD device creation process, the special device file
designating the DRD device is created on each cluster
member. In addition, the D 1 U device nunibcr, its cor-
responding physical device number, the nenvork
address of the serving cluster member, and other con-
figuration parameters are passed to the DRD driver,
which updates its local database and communicates
the information to other cluster nie~iibers. The DRD
driver may be queried for device status and DRD data-
base information.

Clusterwide Disk Access Model
During the design of tlie DRD sitbsystem, \ire consid-
ered botli hared (~nultiported) and served disk ~iiodels.
A multiported disk configuration provides good failure
recovery and load balancing characteristics. 011 the

Digital '1-cchnical] o ~ l ~ . n n l \ / 01 . 8 N o . 1 1996

r - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 ~NOD;----- I NODEA

I I
I

1 DATABASE INSTANCE
I I

I
I

I I
I

I
I I

I
I RAW DISK

INTERFACE MANAGER
I INTERFACE

I I INTERFACE

t A t
I

I A I
I + DECSAFE ASE AVAILABILITY SERVICES I
I I 1 ' I
I

DISTRIBUTED LOCK MANAGER CONFIGURATION
I CONFIGURATION

MANAGER
MANAGER

I DISTRIBUTED DIRECTORY SERVICE
CONNECTION

I

MANAGER
MANAGER I

I AGENT AGENT 1
I

1 AVAILABILITY
AVAILABILITY

I
I MANAGER MANAGER I
I I
I DISTRIBUTED REMOTE DEVICE I
I I
I DRD I10

REDIRECTION
I

I I
I MOVER A

DRD BLOCK DRD BLOCK
I

I SHIPPING 4 I
I SERVER I
I

I 1
-- I

I
MEMORY CHANNEL

I
I LOCAL DEVICE DRIVERS SERVICES OCAL DEVICE DRIVERS I
I

SHARED SCSl BUS
_1

SHARED
STORAGE

NODE C NODE D

Figure 2
Sofi\\;arc Components

DRD CLIENT
1

I

DRD DEVICE REMOTE DlSK DRIVER I I DATABASE I
I

I I ACCESS TO ldevldrdldrd5 I

I I REMOTE DISK DRIVER I I I I

I I DEVICE DRIVER I

-- -

Figure 3
Distril)~~tcii R c ~ ~ i o t e Disk S U ~ S ~ S ~ C I I I

S Digital '1ic.hniznl Journal Vol. 8 No. 1 1996

other hand, I/O b i ~ s contention and Iiard\vare queuing
delays from f ~ ~ l l y connected, shared disk contigurations
can limit scalability. In addition, present standard 1/0
bus technologies limit configuration distance^.^ As a
consequence, wc selected a served disk model for thc
DIU) i~iiplementation. With this model, software
qi~euing alleviates the bus contention and bus queuing
delays. This approach provides i~nprovcd scalability and
fault isolation as well as tlexible storage configura-
t i o n ~ . ~ ' ~ Full corlnectivity is not reqnired, and estencied
machine room cluster configurations can be con-
structed using standard networks and 1/0 buses.

The 1'>1U> implementation supports clusterwide
access to DM'> dcvices using a software-based emnla-
tion of a fully connected disk configuration. Each
device is assigned to a single cluster member at a time.
The membcr rcgistcrs the device into the clustcr-
\vide narnespncc and serves the device data to other
cluster members. Failure recovcrv and load-balancing
support are includcd with the 1)lW device implemen-
tation. The failure of a node or controller is transpur-
ently masked ~vlien another node connected to the
shared bus takes over serving the disk. As an option,
automatic load balancing can move service of the disk
to the node generating the most rcqilests.

In the Tru(:lustcr version 1.0 product, data is
transferred between requesting and serving cluster
members using the high-bandwidth, low-latency
LMEIMORY CHANNEL interconnect, which also sup-
ports direct memory acccss (DIMA) benveen the I /O
adapter of the serving node and the 11i;iin memory of
the requesting node. The overall cluster design, lio\\l-
ever, is not dependent on the MEhllOllY CHANNEL
i~lterconnect, and alternative cluster interconnects will
be supported in ti ~ t u r e sofhvare releases.

DRD Naming
The Digital UNIX operating s!lstcm presently supports
character device special file names fix both physical disk
devices and LSM logical volumes and mainrains a sepa-
rate de\licc namespace for each. An important DlU)
design objective was to develop a clusterwide naming
scheme integrating the physical and logical devices
within thc D l U namespace. We considered defining
J. ne\\; single namespace to support all cluster disk
devices. Our research, however, revealed plans to inuo-
duce significant changes into the physical device nam-
ing scheme in a f i ~ t i ~ r e base system release and the
co~iiplications of licensing the logical disk technology
honi a third party that maintains control over the logi-
cal volume namespace. These issues resulted in defer-
ring a true cli~sterwide device namespace.

As an interim approach, we chose to create a sepa-
rate, clusterwide DRD device naniespace layered on
the existing physical and logical device naming

schemes. Translations from 1)lU) device names into
the underlying physical and logical devices are main-
tained by the I)RD device mapping database on each
cluster node. 1)IW device "scr\licesn are created by
the cluster 'idministrator using the scr\fice registra-
tion facility." Each "add Service" management opera-
tion gencrates a ~lnique service number that is
used in constructing the DlUI dcvice special file name.
This operation also creates the new DRD device
special file on each cluster member. A traditional
UNIX-device-naming con\tention results in the cre-
ation of DRD special device file names in the form of
/de\!/drd/drd{ser\lice number)."

DRD Relocation and Failover
ASE hilover (see the discussion in the section
Application Failover) is used to support D1W failovcr
and is fi~lly integrated within the cluster product. The
device relocation polic!~ defined during the creation of
a DRD d e ~ i c c indicates whcthcr the device rnay be
reassigned to another cluster membcr as a result of
a node or controller failure or a load-balancing opcra-
tion. In the event o f a cluster mcmbcr failure, D m
devices exported by the failed member are reassigned
to an a1tcrn.m server attached to tlie same shared 1 / 0
bus. During reassignment, the 1)LW device databases
are updated on all cluster members and DRD I/O
operations are resumed. Cluster dcvjce services rnay
also be reassigned during a planned relocation, such
as for load balancing or me~iiber removal. Any DRD
operation in progress during a relocation triggered by
a failure \\rill be retried based upon the registered DKD
retry policy. TIic retry mechanism must revalidate tlie
database translation map for the target DRD device
because the scrvcr binding may have been modified.
Failover is thus transparent to database applications
and allo\ia them to ignore configi~ration changes.

Several challenges result fro111 the support of
multiported disk configurations under various failure
scenarios. One of the more difficult problems is distin-
guishing a failed member from a busy member or a
communicatio~~ fault. The ASE hilover mechanism was
designed to maintain data integrity during service
failover, and to ensure that subsequent disk operations
are not lionorcd fi-0111 a member tliat has been declared
"do\vn" by the remaining cluster members. This ASE
mechanism, which makes usc of small computer sys-
tems interbce (SCSI) target mode and device reserva-
tion, \\!as integrated into the TruCluster version 1.0
product. and supports the DRD service guarantees.

Other challenges relate to preserving serialization
guarantees in the case of cluster member failure.
Consider a parallel application tliat uses loclts to serial-
ize access to shared DRD devices. Suppose the applica-
tion is holding a write lock for a given data block and

Iligirnl Technical Journal Vol. 8 No. 1 1996 r

issues an update for tliat block. Before the update
operation is ackno\vledged, ho\vever, the local mcni-
ber fails. The distributed lock manager, \vhich will
have been notified of the member failure, then takes
action t o release the lock. A second cooperating appli-
cation executing on another cluster member now
acquires the write lock for that same data block and
issues an update for that block. If the failure had not
occurred, the second application would have had to
wait to acquire a \\!rite lock for the data block ~ ~ n t i l the
first application rcleascd the lock, presumably aher its
write request had completed. This salne serialization
must be maintained during failure conditions. Thus, it
is imperative that the write issued by the first (now
failed) application partner not be applied aker the
write issued by tlie second application, even in the
prcscnce of a timing or nen\iorl< retransmissio~i anom-
aly tliat delays this first \vrite.

T o avoid the reorderilig scenario just described,
we employed a solution called a sequence barricr in
which the connection manager increments a secluence
number each time it completes a recovery transition
that results in rcleascd locks. The sequence number
is communicated to each DRD server, which uses
the sequence number as a barrier to prevent apply-
ing stale \\(rites. This is similar to the immediate com-
mand feature of thc Mass Storage Control Protocol
(MSCP) used by OpcnV1MS cluster systelns to provide
similar guarantees. Note that n o application changes
are required.

As another esan~ple, client retransmissions of
D1W protocol reclilests that are not ide~iipotent can
cause serious consistency probler~ls. Ilecluest transac-
tion IDS and DRD server duplicate transaction caches
are employed to avoid undesirable effccts of clicnt-
generated retransmissions.';

Cluster member failures are mostly transparent to
applications executing on client mernbcr systen1s.
Nondisuibuted applications may fail, but they can be
autoniatically restarted by ASE facilities. DlU> devices
exported by a serving ~rieniber become unavailable for
a small amount of time when the member fails. Cluster
failover activities that ~ i i ~ l s t O C C L I ~ before the I)RD
service is again a\~ail;~blc include detecting and \fen@-
iug the member failure, purging the disk device SCSI
hardware reservation, assigning an alternate server,
establishing the new reservation, and bringing the
device back on-line. A database application serving
data from the DR1) device at the time of the failure
may also have registered to have a restart script \vitIi
a recovery phase esecuted prior to the restart of tlie
database application. A possible lack of transparency
may result if somc clicnt applications are not desigucd
to accommodate this period of illaccessible DRD ser-
vice. The DRl) retry request policy is configurable
to accommodate applications interacting dircctly wit11
a DRD device.

Distributed Lock Manager

The distributed lock manager (DLM) provides syn-
chronization services appropriate for a highly paral-
Jelized distributed database system. Databases can use
locks to control access to distributed copies of data
buffers (caches) or to limit concurrent access to shared
disk deviccs such as those provided by the DRD sub-
system. Iacks can also be used for controlling applica-
tion instance start-up and for detecting application
instalice failures. In addition, applications can use the
lockillg services for their other synchronization needs.

Eveti though this is a completely new ilnplementa-
tion, the lock manager borrows from the original
design and concepts introduced in 1984 with the
VAXcluster distributed lock manager.'" These concepts
were used in several recent lock manager implementa-
tions for UNIX by other vendors. In addition, the
Oracle Parallel Server uses a locking application pro-
gramming interface (MI) that is co~~ceptually similar
to that offered here.

Usage of the DLM
The Jock manager provides an API for request-
ing, releasing, and altering locks.'^'" These locks are
requested on abstract names chosen by the applica-
tion. The nanics represent resources and may be orga-
nized in a 1iierarcli)r. When a process requests a lock on
a resource, that request is either granted or denied
based on csamination of locks already granted on the
resource. Cooperating components of an application
use this service to achieve mutually exclusive resource
usage. In addition, a mode associatcd with each lock
request allows traditional levels of sharing such as mul-
tiple readers cscluding all \vriters.

The API provides optional as!~nchronous request
completion to allow queuing requests o r overlapping
multiple operations for increased perforn~ance.
Queuing prevents retry delays, eliminates polling
overhead, and provides a first in, first out (FIFO) fair-
ness mechanism. In addition, asynchronous requests
can be i~scd as the basis of a signaling mechanism to
detect component failures in a distributed system. One
component acquires an exclusi\,e lock on a named
resource. Other components queue incompatible
requests \\lit11 as)rnchronous completion specified. If
the lock holder fails or otherwise releases its lock, the
waiting requests are granted. This usage is sometimes
referred to as a "dead man" lock."

A process can request notification when a lock it
holds is blocl<ing another request. This allows elimina-
tion of Inany lock calls by effecti\,ely caching locks.
When resource contention is lo\\.,, a lock is acquired
and held ~ ~ n t i l another process is blocked by that lock.
Up011 receiving blocking notification, tlie lock can be
released. When resource contention is high, the lock
is acquired and released immediately. In addition, this

Vol. 8 No. 1 1996

notification mechanism call be used as the basis of a
general signaling meclianisni. Onc coniponent of thc
application acquires an exclusive lock on a named
resource tvith blocking notification specified. Other
components then acquire illcompatible locks on that
resource, thus triggering the blocking notification.
This usage is hewn as a "doorbell" lock."

The DLlM is often used to coordinate access to
resources such as a distributed cache of database
bloclts. Multiple copies of the d'lta are held under
compatible locks to permit read but not write access.
When a writer \\/ants an incompatible lock, readers are
notified to dourngrade their locks and the writer is
granted tlic lock. The \vriter ~iiodifies the data before
downgrading its lock. The reader's lock requests are
again granted, and the reader fetches the latest copy of
tlie data. A value block can also be associated with each
resource. Its value is obtained when a lock is granted
and can be changed when certain locks are released.
The value block can be used to colnniunicate any use-
fill information, including tlie latest version nuniber of
cached data protected by tlie resource.

Design Goals of the DLM
The overall clesign goal of the lock manager was to
provide services for highly scalablc database systcms.
T ~ ~ L I S correctness, robustness, scaling, and speed were
the overriding subgoals of the project.

C:arefi~l dttcntion to design details, rigorous testing,
internal consistency checking, and years of esperie~lce
\\,orking with tlie VMS distributed lock manager have
all contributed to ensuring the correctness of the
ilnplcmentation for the Digital UNIX system. Because
the lock manager provides guarantees about the state
ofall locks cvhen either a lock holder or thc node upon
which it is running t'ails, it can ensure the internal lock
state is consistent as far as survi\rillg loclc holders are
concerned. This robustness pcr~lmits the design of
applications that can continue operation when a clus-
ter node fails or is rel-noved for scheduled service. The
choice of a I<er~iel-bascd scrvicc and thc use of a mes-
sage protocol also contribute t o robustness as dis-
cussed belo\v.

In terms of performancc and scaling, the lock man-
Jgcr is designed for minimal overhead to its users. The
kernel-based service design pro\fides high perfor-
mance by eliminating the contest switch overhead
associated with server daemons. The lock manager
uses tlie kernel-locking features of the Digital UNIX
operating system for good scaling on SMP systems. A
ker~lel-based service as opposed to a library also allows
the lock manager to make strong guarantees about the
internal consistency statc of locks \ \hen a lock-holding
process fails.

The message protocol contributes to cluster scaling
and perforrnance through a scaling property that
maintains a constant cost as nodes arc added to the

cluster." The message protocol also provides suffi-
ciently loose coupling to allow the lock manager to
maintain internal lock state cvhen a node fails. The use
of messages controls the amount of internal state visi-
ble to other nodes and provides natural checkpoints,
which limit tlie damage resulting from tlie failure of
a cluster node.

DLM Communication Services
The LILM session service is a conimunicatio~i layer
that takes advantage of MEMORY CHANNEL fea-
tures such as guaranteed ordering, low error rate, and
low latency. These features allow the protocol to be
very si~nplc with an associated reduction in CPU over-
head. The service provides connection establishment,
delivery and order guarantees, and buffer manage-
mcnt. The connection manager uses the communi-
cation service to establish a channel for the lock
manager. The lock manager uses the communication
services to communicate between nodes. Because the
service hides the details of the communication meclia-
nis~n, alternative interconliects can be used \vithout
changes to the lock manager's corc routines.

The ilse of the MEMORY CHANNEL interconnect
provides a very low latency communication path for
small messages. This is ideal for the lock nianager since
lock rnessages tend to be very small and the users of
the lock manager are sensitive to latency since they
wait for the lock to be granted before proceeding.
Small rnessages are sent by simply \vriting them into
the receiving node's memory space. No other com-
munication setup needs to be performed. Many net-
work adapters and coniniunication protocols are
biased to\vard providing high throughput only when
rclativcly large packets are used. This means that the
perforrnance drops off as the packet size decreases.
Thus, the iMEMOKY CHANNEL intercolinect pro-
vides a better alternative for communicating small,
latency-sensitive packets.

Connection Manager

The connection manager defines an operating envi-
ronment for the lock manager. The design allows gen-
eralization to other cljentb; but in the TruCli~ster
version 1.0 product, the lock manager is the only con-
sumer of the connection manager services. The envi-
ronment hides the details of dynaniically changing
configurations. From the perspective of the lock man-
ager, the connection manager manages the addition
and removal ofnodes and maintains a communication
path between each node. These services allowed us to
sirnpli@ the lock manager design.

The connection manager treats each node as a niem-
ber of a set of cooperating distributed components.
It maintains the consistency of the set by admitting
and removing members under controlled conditions.

The connection !.lanagel- pro\-ides configuration-
rclatcd event notification and othcr support serviccs
to each mcrnber of a set. It pro\.ides notification \ \hen
members are added 2nd rcmovcci. It nlso maintains 3

list of current members. Tlic connection nlallager also
pro\jides notitication to clients when ~ ~ n s a f e operation
is ~.>ossible as a result of partitioning. Partitioning exists
when a member o f a set is ~1113warc oftlic csistence of
n disjoint set ofsirnilar clients.

The connection m;lnagcr can be extended in
client-specific \\pa!ls to t;?cilit,ltc handling of mcm-
bership change e*ents. Estcnsio~u are integral, \veil-
s!rnchronized parts of tlie me~nbership change
mcclia~~is~ii . The lock Iiianagcr uses an estension to
distribute a globally consistent director!r database and
to coordinate lock database rebuilds.

The connection manager nlaintains a fully con-
nected web of co~nmunic.i t io~~ channels between
members of the set. Menibership in tlie sct is conrin-
gcnt upon bcing able to communicate with all other
~ n c n ~ b e r s of that set. The use of the communication
channels is entirely i~ncicr the control of tlic lock miin-
agcr or any other clicnt that may ~rsc tlie connection
manager in the future. When a client recluests admis-
sion to a set, the connection Inanager establishes a
communicatio~i cha~lncl bct\\iccn the ne\v clicnt nnd
a11 existing clients. I t mo~litors these connections to
ensure they remain f~nctio~li i l . A connection hils
when a commirnication channcl is unusable bctwccn
3 pair of clients or \\rlicn 3 clicnt nt citlicr end o f the
clinnnel fails. The connection nianagcr detects these
conditions and reconfigurcs the set to contain only
fi~lly connected members. -- I lie combination of a IiighI!~ a\railiiblc c o ~ i i ~ i i u ~ i i -
cation channel, togcthcr \\.it11 sct mcrnbersliip and
synchronized membership cliange responses, allo\vs
optimizations in the lock man,~gcr's messdge protocol.
The lock manager can scnd a message to another nodc
and know that either the message will be deli\lered or
tliat the configuration \ \ , i l l he ;iltercd so tliat it does
not matter.

The use of thc conncction rnnn'lger greatly s i n -
plitics the design and implcmcntation of tlie loci<
manager. The connection manager allo\\s most of
tlic logic for handling configurntion changes and com-
~nunication errors to be 111ovcd away from main code
p~t l i s . This illcreases mainline perfi)rmance and sinipli-
tics the logic, allowing 11io1-e e~llphasis 011 correct and
efficient operation.

Memory Channel Interconnect

<:luster performance is cr-iticnlly clepcnderit on tlic
cluster interco~inect. This is d i ~ c both to tlie higli-
band\vidtli recllrirerncnts of bulk data transport for
1)111) and to tlie low Intenc!~ rccji~ircd for DI,M opern-
tions. Although the cluster architecture allo\vs for any
high-spccd interco~incct, the initial implementation
supports only tlie new IMEIMOKY CHANNEL inter-
connect designed specifically for tlie needs of cluster
systcms. This very rcli;~blc, high-spccd interconnect is
based on a pre\.ious interconnect designed by Ellcore
C:ompter Corporation.'" It has been signiticantl!,
cnli.inccd by Digital to impro\'c d'ita integrity and
pro\'ide for higher perfi)rmance in the f i ~ n ~ r e .

Each cluster node has a MEIVORY CHANNEL
intcl-f~cc card tliat connects to n hub. The liub can bc
t l~ought ofas a switch that provides either broadcast or
point-to-point connections benvcen nodes. I t also
provides ordering guarantees and docs a portion of
the crl.or detection. Tlie current implcmentatio~~ is an
eight-node hub, but larger l i ~ ~ b s arc planned.

Tlic MElMORY CHANNEL interconnect pro-
*ides a 100-1~1egaL~yte-pe1--scco1ic1, memory-mapped
connection to other cluster mcmbcrs. As sho\\v in
Figure 4, clustcr members ~nny rnnp transfers fl-om t l ~ c
MEMORY CHANNEL interconnect directly into
tlicil- memory. The effect is of 3 \\?I-ire-only \\,indo\\!
into tlic mcmory of othcr cluster systclns. Transfcrs
;ire done with standard memory ;icccss instructions
rather than special I/<) instructions or device access

MEMORY I CHANNEL 1
TRANSFER MEMORY

CHANNEL
TRANSFER

NORMAL
MEMORY
WRITE

NODE 0
ADDRESS SPACE

MEMORY CHANNEL
BUS ADDRESS SPACE

NODE 1 MEMORY

- -- - -

Figure 4
Transfcrs Pcrformcd by thc MEMORY CHANNEL Intcrconncst

Vol 8 No. I 1906

protocols to a\.oid the o\,erhcad us~~nll!, present \\lith
these techniques. The use of memory store instruc-
tions results in extremely lo\\, latency (nvo microsec-
onds) and lo\v o\~erl ie,~d for a transfcr of any length.

Thc MEMORY CHANNEL interconnect guaran-
tees csscntially no undetected errors (approsiniately
rile salne undetected error ratc as Cl'Us or n ~ e m o r) ~) ,
allowing the elimination of chccksunls and other
rnccha~ljsms that detect software errors. The detected
error rate is also exrremel!~ lo\\, (o n the order of one
crror per year per connection). Since rcco\,ery code
csecutes very infrequently, \\,c are assured t h ~ t rela-
tively simple, brute-force recovery from sofnvare
errors is adecluate. Using hard\\,are crror insertion, \\re
have tested recovery code nt el-ror rates of many per
second. T h i ~ s we are confident there are n o problems
at tlie actual ratcs.

Low-level MEMORY CHANNEL Software
I,ow-level sofnvore interfaces are provided to insi~late
the nest laver of sofnv.1re (e.g., lock Inanager and dis-
tributed disks) from the details of the MElMORY
CHANNEL inipIenicnt.~tion. We have taken the
approach of providing a very thin layer to i~ilpact per-
for~nance as little as possible and allow direct use of the
MEMORY CHANNEL interconnect. Higher-level
sofnva. re then isolates its use oflMEMOl<Y CHANNEL
in a tmnsport layer that can later be modified for addi-
tional clt~stcr interconnects.

The \\,rite-only nature of the MEMORY CHANNEL
i ~ i t e r c o ~ ~ ~ ~ c c t leads to some challenges in designing
and imple~ncnting sohvnrc. The only \\lay to see a
copy of data \vritten to the IMEMORY CHANNEL
intcrconncct is t o niap MEMORY CHANNEL trans-
fers to another region of mclnory o n the same node.
This lends to nvo very visible programming con-
straints. First, data is read and \\/ritten from different
addrcsscs. This is not a natural programming style, and
code must be Ivritten to treat a location as turo vari-
ables, one for read and one for write. Second, the
effect of a \\.rite is delayed by the tra~isfcr latenc!!. At

microseconds, this is short but is enough time to
csccute hi~ndreds of instructions. Hardivare features
nrc pro\.idcd to stall until data has been looped back,
h i ~ t very carefill design is neccss.lry to niinin~ize these
stalls and place them correctly. \iVe have had several
s ~ ~ b t l c problems when an algorithm did not include a
stall ~ i n d proceeded to rend stale darn that was soon
o\~crwritten by data in transit. Finding these problems
is especially difficult becai~sc much cvidcnce is gone by
the time the problem is observed. For example, con-
sider a linked list that is implemented in a region of
mcmor!l mapped t o all clustcr nodes through the
1MEMORY CHANNEL illterconncct. If nvo elelne~lts
are inserted on the list \vithou t inserting proper waits

for the loopback delay, the effect of thc first insert \\,ill
not be visible \vhen the sccond insert is done. This
results in corrupting the list.

The difficulties just described ,Ire most obvious
whcn dealing with distributed shared nicmory. Low-
level software intended to support applications is
instead oriented toward a ~iiessagc-passing model.
This is especially apparent in the features provided for
error detectio~l. The primary mechanisms allow either
thc receiving or the sending nodc to check for any
errors over a bounded period of tinlc. This error check
rcqi~ires 3 special hard\vare transaction with each node
and involves a loopback delay. If an error occurs,
tI1c sc~ider must retransmit all messages and the
receiver must not use any data received in that time.
This mechanism works well with the expected error
ratcs. Howcver, a shared memory model makes it
extremely difficult to bound the data affected by an
error, i~nless each modification of a data element
is separately clwcked for errors. Sincc this involves
a loopback dcla!l, man!! of the perceived efficiencies
of shared memory may disappear. This is not to say
that a shared memory model cannot be used. It is just
that error detection and control of concurrent access
lnust be well-integrated, and node hilures require
carcf~~l recovery. In addition, the write-only nature of
MEMOltY CHANNEL mappings is more suited to
message passing than shared memory due to the
cstrc~ncly carefill programming necessary to handle
delayed loopback at a separate address.

APTs are provided primarily to Inanage resources,
control rnemor!, mappings, and provide synchroniza-
tion. MEMORY C f i W N E L APIs perk)rni the follow-
ing tasks:

Allocation and mapping
- Allocate or deallocate the MElVORY

CHANNEL address space.
- Map the MEMORY CHANNEL, interconnect

For receive or transmit.
- Unmap the MEMORY CHANNEL

interconnect.

Spinlock synchronization
- Create and delete spinlock regions.
- Accluire and release spinlocks.

Other synchronization
- Create and delete n~ritc acknowledgment

regions.
- l t e q ~ ~ e s t write ack~~o\vlcdgmcnt.
- Create and delete sofwarc ~iotification channels.
- Send notification.
- Wait fbr notification.

Error detectioll and rcco\,el-!I
- Get cilrrellt error co i~n t .
- Check for errors.
- Register for callback o n cuor

Higher layers of software are responsible for transfer-
ring data, checking for errors, retrying transfers, and
synchronizing their use of MEMORY CHKilNEL
address space after it is allocated.

Synchronization
Efficient synchronization mechanisms are essential
for high-performance protocols over a cluster inter-
connect. MEMORY CHAi-UNEL Ilardware provides
two important syncl~ronizatio~i niechanisms: first, an
ordering guarantee that alJ writes arc sccn in the same
order on all nodes, including the looped-back write on
the originating node; second, an acknowledgment
request tliat returns the current error state of all other
nodes. Once the acknowledgment operation is com-
plete, all previous \vrites are guaranteed either to Iia\~e
been received by other nodes or rcportcd as a transniit
or receive error 011 some node. We have implemented
clusterwide software spinlocks based on these guaran-
tees. Spinlocks are used for many purposes, including
internode synchronization of other components and
concurrency control for the clusterwide shared-mem-
ory data structures ~ ~ s e d by the lo\v-lcvel MEMORY
CHANNEL sofnvarc.

A spilllock is structured as an array with one element
for each node. To acquire thc spinlock, a node first
bids for it by writing a value to the node's array ele-
ment. A node wins by seeing its bid looped back by the
MEMORY CHANNEL interconnect \vithout seeing
a bid from any other node. The ordering guarantees of
the MEMORY CHANNEL ensure that n o other node
could have concurrently bid and belicved it had won.
Multiple nodes can realize they have lost, but more
than one node cannot win. In case of a conflict, many
different back-off techniques can bc used. The win-
ning node then changes its bid v a l ~ ~ e to an own value.
This last step is not necessary for correctness, but it
does help with resolving contention and \vith various
failure recovery algorithms. All higher-level synchro-
nization is built on combinations of spinloclts, order-
ing guarantees, and error aclu~owlcdgmcnts.

Error Recovery and Node Failures
Most of the difficult problems in the low-level soft-
ware relate to error reco\/ery and node failures. In spite
of its reliability, errors \ \ r i l l occur in tlic MEMORY
CHANNEL interconnect, and they must be handled
as transparently as possible. Transparency is key to s i n -
plifiing the communication model seen by higher-
level sohvarc. I n addition, nodc failures from
hardulare o r sohvare faults are more frequent than
MEMORY CHANNEL errors and must be dealt \\/it11
even in the most inconvenient portions of the low-
level code. The MEMORY CHANNEL intercon~lect
is managed through a collection of distributed data

structures that must be kept consistent. Sofnvare locks
31-c used to s)~nchronizc access to these structures, but
errors may leave them in an inconsistent state.
Guaranteed error detection before the relcase of a lock
allo\vs operations to bc rcdone in case of an error.
Thus, all sequences of MEMORY CHANNEL \\!rites
I T I L I S ~ be idernpotent to take advantage of tliis straight-
forward error-recovery technique.

Ifa node failure occurs, a sur\~i\ling node must make
all data structures consistent before it releases locks
hcld by the failed nodc. To Itecp this a manageable
task, we have written caref~~lly structured algorithms
to handle each inconsistent state. In general, struc-
tures arc changed such that a single atomic write com-
niits a change. If a node fails before this last \\,rite, 110
recovery is necess'lry. As an example, consider n data
structure that is co~llplctely initialized bcforc being
added to a list. A single write is used to acco~nplish the
list addition. If a node (ails, the last \vrite was either
done or not and, in either case, the list is consistent.
Complications arise \vl~en another node has n receive
crror on the last write done by a failing node. In this
case, the failed node ca111iot retry after detecting the
error, so the node cvith the receive error has a different
view of the list than all other surviving nodes. To
rcsolve tlus cvent, OIIC node must propagate its view of
the list to all other nodes before it releases the lock
held by the failed ~ i o d e . An!{ node can d o tliis because
each has a self-consistent vie\\. of the list. If the node
\\it11 the receive error propagates its \vie\\!, the last ele-
ment added by the failed node is lost. This s j t~~at ion is
no different, however, from having thc nodc fail a few
instructions earlier. Thc challenge is to design recoil-
cry for all these cases and maintain our sanity by mini-
mizing the n ~ ~ n l b e r ofsuch cases.

Another interesting problem is maintaining a con-
sistent count of errors across all nodes. This count
is Itcy to the error protocols of both the lo\\,-level
MEMORY CHANNEL software and higher layers
since cornparjsons of a saved and a current \lalue
bou~ld the period ovcr which data is suspect. The
count may bc read o n one node, transferred with
a message, and cornpared to a current value on
another nodc. Thus, a consistent value on all nodes
is critical and must be maintained in tlic presence of
arbitrary combinations of rcceive and transmit errors.
(Although errors arc \!cry infrequent, they may be cor-
related; so algoritlims 111ust work well for crror bursts.)
The write acknowledgment, described earlier, guaran-
tees that other nodes havc received a svritc ~\ i t l iout
error. It is used both to implement a lock protecting
tlic error C O L I I T ~ and to guarantee tliat all nodes have
sccn an ~ ~ p d a t e d count. Updati~ig the count is a slo\\.
operation due to multiple round-trip delays and long
crror time-outs, but it is performed very infrequently.

14 Digital Tcclitiic.~l Jo~trn.il \rol 8 No. I 1996

Future Enhancements to MEMORY CHANNEL
Software
Fully supportcd MEMORY CHANNEL APIs arc
currently available only to other layers in the UNIX
kernel for two important reasons: First, MEMORY
CHANNEL is a new type of interconnect and we want
to better understand its uses and advantages before
committing to a fully functional API for general use.
Second, many difficult issues of security and resollrce
limits will affect the final interface. T o help Digital
and its customers gain the necessary experience, a lim-
ited functionality version of a user-level MEMORY
CHANNELAPI has been implemented in the version
1.0 product. This interface supports allocation and
mapping of MEMORY CHANNEL space along with
spinlock synchronization. I t is oriented toward sup-
port of parallel conlputation 111 a cluster, but we also
expect it will serve the needs of many commercial
applications. Once we have a better understanding of
how high-level applications will use the lMEMORY
CHANNEL interconnect, we will extend the design
and provide additional APIs oriented toward both
commercial applications and technical computing.

Application Failover

Digital's TruCluster multicomputer system is a logical
evolution of the DECsafe Available Server Envi-
ronment (ASE). An ASE system is a rnultinode con-
figuration with all nodes and all highly available
storage connected to shared SCSI storage buses.
Figure 5 shows an ASE configuration. Software on
each node monitors the status of all nodes and of
shared storage. In case of a failure, the storage and
associated applications are failed over to surviving sys-
tems. Planned application failover is accomplished by
stopping the application on one node and restarting
the application on a surviving node with access to any
storage associated with the application. Application-
specific scripts colitrol failover and usually d o not
require applicatio~i changes.

SCSI BUS 1

NODE 0 NODE 1

I I SCSI BUS 2 I I

Figure 5
Typical ASE Contiguration

In addition to supporting the application failover
mechanisms from ASE, the TruCluster system sup-
ports parallel applications running on multiple cluster
nodes. In case of a failure, the application is not
stopped and restarted. Instead, it may continue to cxe-
cute and transparently retain access to storage through
a distributed disk server. I11 rtdd~tion, more general
hardware topologies arc supported.

Hardware Configurations

The TruCluster version 1 .0 product supports a maxi-
mum of four nodes connected by a high-speed
MEMORY CHANNEL interconnect. Thc nodes may
be any Digital UNlX system with a peripheral compo-
nent interconnect (PCI) that supports storage and the
MEMOlZY CHANNEL interconnect. Highly available
storage is on shared SCSI buses connected to at least
two nodes. Thus, a cluster looks like multiple ASE
systems joined by a cluster interconnect.

Although the limitation to four nodes is temporary,
we d o not intend to support large numbers of nodes.
Ten to nventy nodes on a high-speed interconnect is
a reasonable target. A cluster is a component of a dis-
tributed system, not a replacement for one. If very
large numbers of nodes are desired, a distributed
system is built with cluster nodes as servers and other
nodes as clients. This allows maintaining a simple
lnodel of a cluster system \\~ithout having to allou~ for
many conlplex topologies. Aside from sirnpjicity, there
are performance advantages from targeting algorithms
for relatively small and simple cluster systems.
Although the nuniber ofnodes is intended to be snlall,
the individual nodes can be high-end multiprocessor
systems. Thus, the overall computing power and the
I/O bandwidth of a cluster are extremely large.

Conclusions

With the con~pletion of the first release of Digital's
TruCluster product, \ve believe we have met our goal
of providing an environment for high-performance
commercial database servers. Both the distributed loclc
manager and the remote disk services are meeting
expectations and providing reliable, high-performance
services for parallelized applications. The MEMORY
CHANNEL interconnect is proving to be an excellent
cluster interconnect: Its synchronization and failure
detection are especially compatible with many cluster-
aware components, which are enhanced by its low
latencies and simplified by its elimination of conlplex
error handling. The error rates have also proven to be
as predicted. With over 100 units in use over the last
year, we have observed only a very small number of
errors other than those attributable to debugging new
\iersions of thc 11 a~ ad ware.

1)igiril Teclillical Journal Vol. 8 No. 1 1996 15

Detailed component performance measurements
are still in progress, but rough comparisons of DRD
against local 1/0 have shown n o significant penalty in
latency o r throughput. There is of course additional
CPU cost, but it has not proven to be significant for
real applications. DLM costs are comparable to VMS
and thus meet our goals. Audited TPC-C results with
the Oracle database also validated both our design
approach and the implementation details by showing
that database performance and scaling with additional
cluster nodes meet our expectations.

The previous best reported TPC-C numbers were
20,915 tpmC on Tandem Computers' Himalaya
K10000-112 system with the proprietary Nonstop
SQL/MP database software. TIie best reported num-
bers with open database software were 11,456 tpmC
on the Digital Alphaserver 8400 5/350 with Oracle7
version 7.3. A four-node Alphaserver 8400 5/350
cluster with Oracle Parallel Server was recently audited
at 30,390 tprnC. This represents industry-leadership
performance with nonproprietary database sofware.

Future Developments

We will continue to evolve the Tri~Cluster product
toward a Inore scalable, more general computing envi-
ronment. In particular, we will emphasize distributed
file systems, configuration flexibility, management
tools, and a single-system view for both internal and
client applications. Work is under way for a cluster file
system with local node semantics across the cluster sys-
tern. The new cluster file systelii will not replace D 1 D
but will compleme~it it, giving applications the choice
of raw access through DRD or fi~ll, local-file-syste~ii
semantics. We are also lifting tlie four-node limitation
and allowing more flexibility in cluster interconnect
and storage configurations. A single network address
for tlie cluster system is a priority. Finally, further steps
in managing a multinode system as a single system will
become even more important as the scale of cluster
systems increases.

Further in the future is a true single-syste~ii view of
cluster systems that will transparently extend all
process control, communication, and synchronization
mechanisms across the entire cluster. An implicit trans-
parency requirement is performance.

Acknowledgments

In addition t o the authors, the following individuals
contributed directly to the cluster components
described in this paper: Tim Burke, Charlie Briggs,
Dave Cherkus, and Maria Vella for DRD; Joe Amato
and Mitch Condplis for DLM; and Ali Rafieymehr for
IMEMOKY CHANNEL. Hai Huang, Jane Lawler, and

especially project leader Brian Stevens made many
direct and indirect contributions to the project.
Thanlts also to Dick Buttlar for his editing assistance.

References and Notes

1. "Introduction to DCE," OSFDCE Docurnenlalion Set
(Carnbridgc, &lass.: Open Sohvare Foundation, 1991).

2. Internet RFCs 1014, 1057, and 1094 describe ONC
XDR, RPC, and NFS protocols, rcspectivcly.

3. G. Pfister, In Search of Clusten- (Upper Saddle River,
N.J.: Prentice-HJI, Inc., 1995): 19-26.

4. N. ICronenberg, H. Lcvy, and W. Strcckcr, "VAXclustcrs:
A Closely-Coupled Distributed System," AChJ Trans-
actions on Computer Systems, vol. 4, no. 2 (May
1986): 130-146.

5. L. Cohcn and J. Williams, "Technical Dcscription of
the DECsafe Available Server Environment," Digital
7echnical.Jo~~rr~a1, vol. 7, no. 4 (1995): 89-100.

6 . TPC performance numbers for UNIX systems are typi-
cally reportcd for databases ~rsi~lg tlic character devicc
interface.

7. The file system interfaces on the Digital UNIX operat-
ing system arc being extended to support direct 1/0,
which results in bypassing the block buffer caclic and
reducing code path length for those applications that
do not benctit from use oftlic cache.

8. A fast \vide differential (FMID) SCSl bus is limited to
n maximum distance of about 25 meters for example.

9. M. Devarakonda ct al., "Evaluation of Design Altcrna-
tives for a Cluster File System," LISEVIX Conference
Proceed~ngs, USENIX Association, lierkeley, Calif.
(January 1995).

10. J . Gray and A. Reuter, Trans~lclion Processing-
C,o?zc~q/.s and Tecbniqr.les (Sari iMateo, Calif.:
Morgan Kaufinan Publishers, 1993).

11. This mcchanism is inherited fi-om the DECsafc Avail-
able Server management facility, including the asemgr
interface.

12. As an esample, if tlic first DK1) servicc created for a
cluster is 1, the DlW device special file name is
/dev/drd/drd 1 and its minor device number is also 1.

13. C. Juszczak, "Improving the Perfori~iancc and Cor-
rectness of an NFS Server," USE.VIXX Conference Pro-
ceedings, USENIX Association, San Dicgo, Calif.
(\Vinter 1989).

14. W. Snaman, Jr. and D. Thiel, "The VAX/VMS Distrib-
uted Lock Manager," D~~q~lwl Techrzrcal Jo~orlrnnl,
vol. 1,110. 5 (September 1987): 29-44.

15. R. Goldrnbcrg, L. Iknali, and D. Dumas, VAYVMS
Interrzals and Dat~z Stmlclr~res (Bcdford, Mass.:
Digital Prcss, 199 1).

16 Digital Technical J o u m i ~ ~ Vo1.8 No. 1 1996

1 6 . TniC11 I.$/vI. A/)/di~~l/ iol? P~.o,gtzrtnmirig Intrr/ilcc~.s
G ~ t i ~ l c (1\/13!111;11.d, mass.: Digital F.quipnient Corpora-
tion, Order No. AA-QL8PA-TE, 1996).

17. T. Rengarajan, P. Spiro, and W. Wright, "High Avail-
.lbilin Mccha~~isrns of\lAS DBMS Sobvare," Digilul
Tech~lical,/orit~t~nl. vol. 1 , no. 8 (February 1989):
88-98,

18. Encor.c~ 91 .Sct-ics Techrrical Sl~r~rtrzary (For t Laud-
erdalc, F'la.: t.,~icorc Computer Corporation, 1991).

Biographies

Wayne M. Cardoza
LVaync Cardoza is .I senior consulting cngi~iccr in rhc
UNIX Engineering Group. H e joincd 1)igital in 1979
and contributed t o various areas of the VMS kernel prior
to joining thc UNlS (Group t o work on the UNJX clustcr
product. kVaync \\,as also one o f the architects of PRISM,
an early Digital RISC architecturc; lie holds several patents
for tllis ~vork. More ~,cccntly, he participated in the design
of tlie Alplia AXl' ;ircllitecture dnd the Opcn\lMS port to
Alpli'~. 13eforc comi~ig to Digital, LV.iync w ~ s employed hy
Bell Laboratories. Hc received a R.S.t:.F.. from Soi~theastcrn
~ M ~ ~ s s a c h ~ ~ s c t t s Univcrsicy and an M.S.E.E. from IMIT.

Frederick S. Glover
Fred Glo\;cr is 3 sofnvarc consulting cnginccr and the tcch-
nical director of the Digital UNJX Base Operating System
Group. Since joining the Digital UNIX Group in 1985,
Fred has co~itributed to the de\relopnicnt of networking
services, local and remote tile systems, and cluster technol-
ogy. H e has scrvcd JS tile chair o f the 1 EI'F/I'SI(; Trusted
NFS \Vorking Croup, ns the chair ofrlic OSF Llistributed
File S!rsteni Working Group, and as 13iginl's representarivc
to the IEEE I'OSIX 1003.8 Tr.1nspnrelic File Access Work-
ing Group. Prior t o joining Dig~tal , Frcd \\,as employed by
AT&T Bell Laboratories, where his contributions included
co-de\.elopment of the R I M S nenvork communication
subsystem. H e received B.S. and M.S. dcgrees in computer
science from Ohio State University and conducted his
thesis rcscarch in the areas of bult-tolerant distributed
computing and tiara flo\\~ architecturc.

William E. Snanian, Jr.
Sandy Snam;in joincd Digital in 1980. Hc is c~ls~.cntly a
consulting sohvare engineer in lligiral's UNIX Sofnvare
Group, wherc lie contributed to tlie 'I'ruCluster architcc-
ture and design. H e and members of his group designed
and implemented cluster components such as the con-
nection nianagcr, lock manager, and various aspccts of
cluster con~~nunicat ions . Previouslv, in the VMS Enginecr-
ing Group, lie \\{as tlie project lender k)r the port of tlie
VMSclustcr systcnl to thc Alpha platform and tlic technical
supervisor and project leader for the VAXclustcr csccutivc
area. Sandy also teaches MS Windows programming and
C++ at Daniel kvcbster College. H e has a B.S. in computer
science and an 1M.S. in information systems from the
University of Lo\\fcll.

IXgital Technical Journal Vo1. 8 No. 1 1996 17

Delivering Binary Object
Modification Tools for
Program Analysis and
Optimization

Digital has developed two binary object
modification tools for program analysis and
optimization on the Digital UNIX version 4.0
operating system for the Alpha platform. The

technology originated from research performed
at Digital's Western Research Laboratory. The
OM object modification tool is a transforma-
tion tool that focuses on postlink optimizations.
OM can apply powerful intermodule and inter-
language optimizations, even to routines in sys-
tem libraries. Atom, an analysis tool with object
modification, provides a flexible framework for
customizing the transformation process to ana-
lyze a program. With Atom, compilation system
changes are not needed to create both simple
and sophisticated tools to directly diagnose or
debug application-specific performance prob-
lems. The linker and loader are enhanced to sup-
port Atom. The optimizations OM performs can
be driven from performance data generated
with the Atom-based pixie tool. Applying OM
and Atom to commercial applications provided
performance improvements of up to 15 percent.

I
Linda S. Wilson
Craig A. Neth
Michael J. Rickabaugh

Historically on UNIX systems, optimization and pro-
gram analysis tools have been i~npleniented primarily
in the realm of compilers and run-time libraries. Such
implementations have several drac\!baclcs, Iio\vever.
For example, although thc optimizatio~is performed
by compilers are effective, typicall!: they are limited to
those that can be performed \vithin the scope of a sin-
gle source file. At best, the con~piler call optimize the
set of files presented during one compilation run.
Even the most sophisticated systems that save iriterme-
diatc representations usually cannot perform opti-
mizations of calls to routines in system libraries or
other libraries for which no source o r intermediate
forms arc available.'

The traditional UNIX performance anal!rsis tools,
prof and gprof, require compiler support for inserting
calls to predefined run-time library routines at the
entry to each procedure. The monitor routines allow
more user control over prof and gprof profiling capa-
bilities, but their usage requires modifications to the
application source code. Because these capabilities are
implemented as compilation options, users of the tools
must rccornpile or, in the case of the monitor routines,
actually rnodih their applications. For a large applica-
tion, this can be an onerous requirement. Further, if
the application uses libraries for which the source is
~~ua\~ailable, many of the analvsis capabilities are lost or
severely impaired.

Ry comparison, object modification tools can per-
form arbitrary transfor~nations on the exec~~table
program. The OM object modification tool is a trans-
formation tool that focuses on postlink optimizations.
By perhrming transformations after the link step, 0 iM
can apply po\verfill intermodule and interlanguage
optimizations, even to routines in system librar~cs.

Object transformations also have benefits in the area
ofprogram analysis. Atom, an analysis tool with object
modification, provides a tlesible framework for cus-
tomizing the transformation process to analyze a pro-
gram. With Atoni, compilatio~i system changes are not
needed to develop specialized types of debugging o r
performance a~ialysis tools. Application de\lelopcrs can
create both simple and sophisticated tools to directly
diagnose o r debug application-specific performance
problems.

Vol. 8 No. 1 1996

The OM and Atom technologies originated from
rcscarch performed at Digital's Western Rcscarch
Lab (WRL) in Palo Alto, California.' The softwarc
was developed into products by the Digital UNIX
De\~cloprnent Environment (DUDE) group at
Digital's UNIX engineering site in Nashi~a, New
Hampshire. Both technologies are currently shipping
as supported products on Digital UNIX vcrsion 4.0
for the Alpha platform."

This paper first provides tecl~nical overviews for
both OM and Atom. An cxample Atom tool is
presented to demonstrate ho\v to use the Atorn appli-
cation programming interface (API) to develop a CLIS-

tomized program analysis tool. Becausc OM and
Atom can be used together to enhance the effective-
ness of optimizations to application programs, the
paper includes an over\,ic\v regarding the bcncfits of
profiling-directed optimizations.

Subsequent sections discuss the product develop-
mcnt and technology transfer process for O M and
Atom and several design decisions t l ~ a t were made.
The paper describes the working relationship between
WlU, and DUDE, tlic utilization of the technology on
Independent Sohvare Vendor (ISV) applications, and
the factors that drove tlie separate development strate-
g i c ~ for the two products. The paper concludcs with
a discussion about areas for h r t l ~ e r investigation and
plans for fiiture enhancements.

Technology Origins

l<cscarcI~ers at WRL investigating postlink optimiza-
tion techniques created 01M jn 1992.' Unlike compile-
time optirnizers, which operate on a single file, postlink
optirnizers can operate on the entire exccutab.lc pro-
gram. For instance, Oi\/I can remove procedures that
were linked into the executable but were never called,
thcrcby reducing the tcxt space required by thc pro-
gram and potentially in~proving its paging behavior.'

Using the OM technology, tlie researchers f ~ ~ r t h e r
discovered that the samc binary code modif cation
techniques needed for optimizations could also be
applied to the area of program instrunientation. In
fact, the processes of instrumenting an existing pro-
gram and generating a new esecutable could bc
encapsulated and a programmable interface provided
to drive the instrunlentation and analysis proccsscs.
Atom evolved from this work.".'

In 1993, WRI, researchers Amitabh Srivastava and
Alan Eustacc bcgan planning with DUDE engineers
to provide OM and Atom as supported products on
t l ~ c Digital UNIX operating systeni. Different product
dcvelopment and technology transfer stratcgics wcrc
used for delivering the two technologies. The scc-
tion Product Developlncnt Collsiderations discusses
thc methods used and tlic forces that influcnccd
the strategies.

Technical Overview of OM

OM performs tr.~nsformations in three phases. I t pro-
duces an intermediate representation, performs opti-
mizations on that representation, and produces an
executable image.

Intermediate Representation
In the first phase, OM reads a specially linked input
file that is produced by the linker, parses the object
code, and produccs a11 intermcdiatc rcprcsentation
of the instructions in tlie program. The flow informa-
tion and the program structure are maintained in
this reprcscntation.

Optimization
In the optirni~~lriion phasc, OM pcrfornls \various trans-
formations on the intermediate reprcscntation crcatcd
in the first phase. These transformations includc

Text size reductions

Data sizc reductions

Instruction and data reorganization to improve
cache behavior

Instri~ction scheduling and peephole optimization

User-directed procedure inlining

Text Size Reductions One typc of text sizc rcduction
is the elimination of i~nused routines. Starting at the
entry point of the image, OM examines the instruction
stream for transfer-of-control instructions. OM fol-
lows each transfer ofcontrol until it finds all reachable
routines in the image. The remaining routines are
potentially ~lnrcac11'1lslc and are candidates for remo\~al.
Before removing them, OM checks all candidates for
any address references. (Such references will sho\-\~ up
in the relocation entries for the symbols.) If no refer-
ences exist, O M can safely remove the routine. A sec-
ond type of text size reduction is the eliluination of
most GP register reloading sequences.")

Data Size Reductions 13ccause it operates on the entire
program, OM perforn~s opdmizations that con~pilers
are not able to perform. One instance is with the
addressability of global data. The general instruction
sequence for acccssing global data recluircs tlie usc of
a table of address constants (the .lita sectioll) and code
necessary for maintaining the current position in the
table. Each entry in the address constant tablc is relo-
cated by the linker. Because O M knows the location of
all global data, it can potentially remove the address
entry \\!bile inserting and re~ i io \~ i~ ig code to morc effi-
ciently refercncc the data directly. Rernovi~xg as Illany
of the .lita entries as possible leaves more room in the
data cache (D-cache) for the application's global data.

Vol. 8 No. 1 1996 14

5. i-,~ccute the instrumcntatioli tool 011 the target
program, providing t l ~ c linked alialysis codc as an
al-gulncnt.

T h e final step produccs an instrumented program
linlteci with the analysis coclc. Figure 1 slio\\ls thc
chnngcs in memory layout b c n \ ~ c c n tlie original p ro -
gram and the i n s t r ~ ~ m e n t c d prograni.

LOW
MEMORY

HIGH
MEMORY

STACK
-

READ-ONLY DATA
EXCEPTION DATA

PROGRAM TEXT i - TEXT START ---

I INSTRUMENTED
PROGRAM TEXT I

PROGRAM DATA
UNlNlTlALlZED

An Example Atom Tool for Memory Debugging
T h e follo\\ring discussion o f 311 es'lmple Atom tool
demonstrates how t o use the Atoni API t o dc \~e lop a
customized program nnalysis tool.

A c o m m o n dc \~c lopment problern is locating the
source o f a mcmory o\ler\\~rite. Figure 2 shows a con-
t r~\%d example program in \\~hich tlie loop t o initialize
an army exceeds tlie array boundary and ovcr\vrites a

/
INITIALIZED

UNINSTRUMENTED
PROGRAM LAYOUT

NEW DATA
START

ANALYSIS gP 1 ANALYSIS DATA I INITIALIZED I
ANALYSIS DATA
UNlNlTlALlZED
(SET TO 0)

PROGRAM gp --, PROGRAM DATA I INITIALIZED

PROGRAM DATA
UNlNlTlALlZED

INSTRUMENTED
PROGRAM LAYOUT

PROGRAM
TEXT
ADDRESSES
CHANGED

PROGRAM
DATA
ADDRESSES
UNCHANGED

Source: A. Srivaslava and A. Eustace, "ATOM: A System for Buildlng Customized Program Analysis Tools."
Proceedings 01 the SlGPLAN '94 Conference on Programming Language Design and Implementation.
Orlando. Fla. (June 1994). This paper is also available as Digital's Western Research Laboratory
(WRL) Research Report 9412.

Figure 1
Mc~nor!. 1.ayout of Ins t rumc~~tcd Progra~iis

1 l o n g n u m b e r s C 8 1 = C O) ;
2 l o n g * p t r = n u m b e r s ; / * T h i s p o i n t e r i s o v e r w r i t t e n * /
3
4 m a i n 0
5
6 i n t i;
7
8 f o r (i = O ; i < 2 5 ; i + +)
9 n u m b e r s C i 1 = i;

1 0 1

/ * b y t h i s a r r a y i n i t i a l i z a t i o n . * /

Figure 2
E s . ~ ~ n p l c P~.ogram \\.it11 1Vlc111ol-y O\,c~.\\lrirc

LJigital Tech11ic;ll Journ.ll \'()I. S No. 1 1996 21

pointer \~nriable. I n this case, the initialization OF the
numhcrs army defined in li~lc 1 over\vritcs the con-
tents oftlie variableptrdcfined in line 2. This type of
problenl is often diffic~~lt and time-consuming to
locate with tr;lditional debugging tools.

Atom call be used to develop a simple tool to locate
the source of the overu,~-ite. 'The tool \\/auld instru-
Inelit each storc instruction in the program a11d pass
the effective address of tlie store instruction and the
value being stored to an analysis routine. The analysis
routine would determine if the cffcctive addrcss is tlic
address being traced and, if so, generate a diagnostic.

The instrumentation and ilnnlysjs files for tlie
mem-debug tool are sho\\/n in Figurc 3.
InstrumentInitO) registers the analysis routines with
the Atom instrumentation engine and specifies that
calls to the get-args() and open-log() routines be
inserted before the program begins esecuting. A call
to the close-log() routine is dictated when the pro-
gram tcrniinatcs execution. The Atom instrumcnta-
tion cngilie calls InstrumentInit() exactly once.

l 'he Atom instrumentation engine calls the
Instru~ncnt() routine once tbr each executable objcct
in the program. Tlie routine instruments each store
uistruction tliat is not a stack ~ p e r a t i o ~ l with a call to tlie
analysis routinc ~ i i e n i ~ t o r c () . Ench call to tlie routinc
provides the ,~ddress of the storc instruction, the target
address of tllc store instruction, the \!;llue to be stored,
and the file Iianie, p roced~~re name, and linc nu~nbcr.

The ope^^-log() and close-log() analysis routines arc
self-explanatory. The messages could have been \\lrittcn
to tlie standard output, because, in this example, they
would no t hiive interfered *it11 tlie progran~ o~r tput .

Tlie get-args() r o ~ ~ t i n c rc;lds tlic value of thc
il/lE~\~l-DE/~l/~;-tlR~;Senvironnlcnt variable to obtain the
data addrcss to be traced. Tlie tool could hnvc been
written to accept arguments from the comrnanci linc
i~sing the -toolargs s\vitcli. The instrumentation codc
\\rould then pass the arguments to the analysis routine.
In the case of this tool, using the environment \rnrinbIc
to pass tlic arguments is beneficial because thc pro-
gram does not have to be reinstrumented to trncc a
new address.

The mem-store() routinc is called from each storc
instruction site that \\;as instru~~iented. If the target
address of the store operation does not match the
trace addrcss, tlie routine simply returns. If there is a
match, a diagnostic is logged tllat gives information
abo~ l t the location of the storc.

To demonstrate how this tool would be used, sup-
pose one has determined by debugging that the vari-
able ptr is being overwritten. The nm comnlancl is
used to dcter~lline the addrcss ofptr: as follo\\.s:

% nm -B p r o g r a m I g r e p p t r
0 x 0 0 0 0 0 1 4 0 0 0 0 0 c 0 G p t r

Instrument tlie program \\lit11 the mem-debug tool.

% a t o m p r o g r a m m e m - d e b u g . i n s t . c
mem-debug.ana1.c

Set the rMIM-DEBlIG-ARC;.Ten\~ironment variable with
the address to trace.

% s e t e n v MEM-DEBUG-ARGS 1 4 0 0 0 0 0 ~ 0

Run the instrumented program,

and view tlie log file.

% m o r e p r o g r a m . m e m - d e b u g . l o g

T r a c i n g a d d r e s s 0 x 1 4 0 0 0 0 0 c 0

A d d r e s s 0 x 1 4 0 0 0 0 0 c 0 m o d i f i e d w i t h \
v a l u e 0 x 1 6 :

a t : 0 x 1 2 0 0 0 1 1 c 4 P r o c e d u r e : m a i n \
F i l e : p r o g r a m - c L i n e : 9

Using this simple Atom tool, the location ofa meln-
or)' o\vr\\~rite can be detected quickly The instru-
mented progralii executes at nearly normal speed.
Tradition~l debugging methods to detect such errors
are mi~ch more time-consuming.

Other Tools
An arcn in \\~liich Atom capabilities have pro\?ell particu-
la-ly po\verli~I is for liardu~arc modeling and sin1~1l:ation.
Atom has been used as n teaching tool in university
courses to train students o n hardware and operating sys-
tem design. moreo over, Digital hardware designers have
de\.eloped sopllisticated Atom tools to evaluate designs
for nc\v implementations of the Alpha clip.

Thc Atom tool kit contains 10 example tools that
dcmo~lst~.ate the capabilities of this technology. Tlie
examples i~lclude a branch prediction tool, which is
L I S ~ ~ L I ~ for compiler designers, a procedure tracing tool,
\vIiich c;ul be usehl in following the tlo\v of ~~nhnl i l ia r
code, and a simple cache sim~~lation tool.

Atom Tool Environments
Analysis of certain types of progra~iis can require use of
specially designed Atom tools. For instance, to analyze
a program that uses POSIS threads, an Atom tool to
handle threads must also be designed, because the
analysis routines \ \ r i l l be called from the threads in the
~ p p l i c a t i o ~ ~ program. Thercforc, the analysis r o ~ ~ t i n c s
need t o be reentrant. They niay also need to syncliro-
,,izc ,, , cccss to data that is shared alnorlg the threads o r

manage data for individual threads. The thread man-
agement in the analysis routines adds overhead to the
execution time of the ins t r~~mented program; this
o\~crhead is not necessary for a tionthreaded program.
To effecti\cly support both threaded and nontlireadcd
prograins, nvo distinct versions of the same Atom tool
need to coexist. Designers developed the concept of
tool environments to address the issues of providing
~li i~lt iple v~rsions of an Atom tool.

22 Digital 'Tc.chlric.~l]oul.nal

I: mem-debug- i n s t . c - I n s t r u m e n t a t i o n f o r m e m o r y d e b u g g i n g t o o l

* T h i s t o o l i n s t r u m e n t s e v e r y s t o r e o p e r a t i o n i n a n a p p l i c a t i o n a n d
* r e p o r t s w h e n t h e a p p l i c a t i o n w r i t e s t o a u s e r - s p e c i f i e d a d d r e s s .
* T h e a d d r e s s s h o u l d b e a n a d d r e s s i n t h e d a t a s e g m e n t , n o t a
* s t a c k a d d r e s s .
*
* U s a g e : a t o m p r o g r a m m e m - d e b u g . i n s t . c m e m - d e b u g . a n a 1 . c
*

I *
* I n i t i a l i z a t i o n s : r e g i s t e r a n a l y s i s r o u t i n e s
x d e f i n e t h e a n a l y s i s r o u t i n e s t o c a l l b e f o r e a n d a f t e r
* p r o g r a m e x e c u t i o n
*
* g e t - a r g s 0 - r e a d s e n v i r o n m e n t v a r i a b l e MEM-DEBUG-ARGS f o r a d d r e s s t o t r a c e
* o p e n - l o g 0 - o p e n s t h e l o g f i l e t o r e c o r d o v e r w r i t e s t o t h e s p e c i f i e d a d d r e s s
* c l o s e - l o g 0 - c l o s e s t h e l o g f i l e a t p r o g r a m t e r m i n a t i o n
* m e m - s t o r e 0 - c h e c k s i f a s t o r e i n s t r u c t i o n w r i t e s t o t h e s p e c i f i e d a d d r e s s
* I

v o i d I n s t r u m e n t I n i t (i n t a r g c , c h a r * * a r g v)
C

A d d C a l l P r o t o (" g e t - a r g s O V ;
A d d C a l l P r o t o (" o p e n ~ 1 o g ~ c o n s t c h a r *) ") ;
A d d C a l l P r o t o (" c l o s e ~ 1 0 g ~) ' I) ;

A d d C a l l P r o t o (" m e m ~ s t o r e (V A L U E , R E G V , l o n g , c o n s t c h a r * , c o n s t c h a r * , i n t) ") ;

A d d C a l l P r o g r a m (P r o g r a m B e f o r e , " g e t - a r g s ") ;
A d d C a l l P r o g r a m (P r o g r a m B e f o r e , " o p e n - L o g " ,

b a s e n a m e ((c h a r *) G e t O b j N a m e (G e t F i r s t O b j O))) ;
A d d C a l l P r o g r a m (P r o g r a m A f t e r , " c l o s e - L o g ") ;

I f /
I n s t r u m e n t e a c h o b j e c t .

I n s t r u m e n t (i n t a r g c , c h a r * a r g v C I , O b j * o b j)
1

P r o c * p r o c ;
B l o c k * b l o c k ;
I n s t * i n s t ;
i n t b a s e ; / * b a s e r e g i s t e r o f m e m o r y r e f e r e n c e * /

/ *
* S e a r c h f o r a l l o f t h e s t o r e i n s t r u c t i o n s i n t o t h e d a t a a r e a .
* I

f o r (p r o c = G e t F i r s t O b j P r o c (o b j) ; p r o c ; p r o c = G e t N e x t P r o c (p r o c)) C
f o r (b l o c k = G e t F i r s t B L o c k (p r o c) ; b l o c k ; b l o c k = G e t N e x t B L o c k (b l o c k)) t

f o r (i n s t = G e t F i r s t I n s t (b 1 o c k) ; i n s t ; i n s t = G e t N e x t I n s t (i n s t)) t
I *
* I n s t r u m e n t m e m o r y r e f e r e n c e s . S k i p S s p b a s e d r e f e r e n c e s
* b e c a u s e t h e y r e f e r e n c e t h e s t a c k , n o t t h e d a t a a r e a .
* M e m o r y r e f e r e n c e s a r e i n s t r u m e n t e d w i t h a c a l l t o t h e
* m e m - s t o r e a n a l y s i s r o u t i n e . T h e a r g u m e n t s p a s s e d a r e
* t h e t a r g e t a d d r e s s o f t h e s t o r e i n s t r u c t i o n ,
* t h e v a l u e t o b e s t o r e d a t t h e t a r g e t a d d r e s s ,
* t h e PC a d d r e s s o f t h e s t o r e i n s t r u c t i o n i n t h e p r o g r a m ,
* t h e p r o c e d u r e name, f i l e name, a n d s o u r c e l i n e f o r t h e
* PC a d d r e s s .

Figure 3
Instrumcntation and h a l v s i s Codc for the rneni-debug Tool

L>lglt~l Technical Journa l VoI. 8 No. 1 1996 23

/ * O u t p u t f i l e f o r d i a g n o s t i c s *I

I* A d d r e s s t o m o n i t o r *I

i f (I s I n s t T y p e (i n s t , I n s t T y p e S t o r e)) C
b a s e = G e t I n s t I n f o (i n s t , I n s t R B) ;
i f (b a s e ! = REG-SP) C

A d d C a l l I n s t (i n s t , I n s t B e f o r e , " m e m - s t o r e " ,
E f f A d d r V a l u e ,
G e t I n s t R e g E n u m (i n s t , I n s t R A) ,
I n s t P C (i n s t) ,
P r o c N a m e (p r o c) ,
P r o c F i l e N a m e (p r o c) ,
(i n t) I n s t L i n e N o (i n s t)) ;

>
>

/ *
* m e m - d e b u g . a n a 1 . c - a n a l y s i s r o u t i n e s f o r m e m o r y d e b u g g i n g t o o l *
* U s a g e : s e t e n v MEM-DEBUG-ARGS h e x - a d d r e s s b e f o r e r u n n i n g
* t h e p r o g r a m .
* D i a g n o s t i c o u t p u t i s w r i t t e n t o p r o g r a m . m e m - d e b u g . l o g
* 1

i n c l u d e < s t d i o . h >
i n c l u d e < s t d l i b . h >
i n c l u d e < s t r i n g . h >
i n c l u d e < s y s / t y p e s . h >

s t a t i c F I L E * l o g - f i l e ;

s t a t i c c a d d r - t t r a c e - a d d r ;

/ *
* C r e a t e L o g f i l e f o r d i a g n o s t i c s .
* I

v o i d
o p e n - l o g (c o n s t c h a r " p r o g n a m e)
C

c h a r nameC2001 ;

s p r i n t f (n a m e , " % s . m e m - d e b u g - l o g " , p r o g n a m e) ;
l o g - f i l e = f o p e n (n a m e , " w ") ;

i f (! L o g - f i l e) C
f p r i n t f c s t d e r r , "mem-debug: C a n ' t c r e a t e % s \ n " , n a m e) ;
f f l u s h (s t d e r r) ;
e x i t (1) ;

1

f p r i n t f (1 o g - f i l e , " T r a c i n g a d d r e s s O x % p \ n \ n U , t r a c e - a d d r) ;
f f l u s h (1 o g - f i l e) ;

1

/ *
* C l o s e t h e l o g f i l e .
* I

v o i d
c l o s e ~ l o g (v o i d)
C

f c l o s e (1 o g - f i l e) ;
>

1 *
* G e t a d d r e s s t o t r a c e f r o m t h e e n v i r o n m e n t .
* I

v o i d
g e t - a r g s c v o i d)

Figure 3 (con t inued)

c h a r * a d d r ;
i f (! (a d d r = g e t e n v (" M E M - D E B U G - A R G S ")) C

f p r i n t f c s t d e r r , "mem-debug: s e t MEM-DEBUG-ARGS t o h e x a d d r e s s \ n U) ;
f f l u s h c s t d e r r) ;
e x i t (1) ;

>
t r a c e - a d d r = (c a d d r - t) s t r t o u l (a d d r , 0, 1 6) ;

C

1

/ *
* The t a r g e t a d d r e s s i s a b o u t t o b e m o d i f i e d w i t h t h e g i v e n v a l u e .
* I f t h i s i s t h e a d d r e s s b e i n g t r a c e d , r e p o r t t h e m o d i f i c a t i o n .
* /

v o i d
mem-s to re (

c a d d r - t t a r g e t - a d d r , / * A d d r e s s b e i n g s t o r e d i n t o * I
u n s i g n e d l o n g v a l u e , / * V a l u e b e i n g s t o r e d a t t a r g e t - a d d r * /
c a d d r - t PC, / * PC o f t h i s s t o r e i n s t r u c t i o n * /
c o n s t c h a r * p r o c , / * P r o c e d u r e name * /
c o n s t c h a r * f i l e , / * F i l e name * /
u n s i g n e d 1 i n e) I * L i n e n u m b e r * /

C
i f (t a r g e t - a d d r == t r a c e - a d d r) C

f p r i n t f (1 o g - f i l e , " A d d r e s s Ox%p m o d i f i e d w i t h v a l u e O x % L x : \ n " ,
t a r g e t - a d d r , v a l u e) ;

f p r i n t f (1 o g - f i l e , " \ t a t : Ox%p ", p c) ;
i f (p r o c ! = NULL) C

f p r i n t f c l o g - f i l e , " P r o c e d u r e : % s ", p r o c) ;
i f c f i l e ! = NULL)

f p r i n t f (1 o g - f i l e , " F i l e : % s L i n e : %d" , f i l e , L i n e) ;
1
f p r i n t f (L o g - f i l e , " \ n u) ;
f f l u s h (l o g - f i l e) ;

1

Figure 3 (continued)

Tool environments accom~iiodate sea~iiless intcgra-
tion of specialized vcrsions of tools into tlie Atom tool
kit. They pro\ride a mc,lns for extending the Atom Itit.
This facility allo\\rs the addition of specialized Atom
tools by Digital's layered product groups o r by cus-
t o m ~ ~ . ~ , \\.hile maintaining a consistent user interface.

Thc vcrsions of thc At0111 tools hiprof, pixie, and
Third Degree that support POSIX threads are pro-
vided as a separate en\ironnient. hiprof is a perfor-
mancc analysis tool that collects data similar to but
with more precision tllan gprof. pixie is a basic block
profiling tool. Third lkg ree is a meliior!r leak detec-
tion tool.

The follo\\ring command invokes the Atorn-based
pixie tool for use on a nonthreaded program:

% a t o m p r o g r a m - t o o l p i x i e

The follo\ving command invokes the version of the
pixie tool that supports threaded programs:

% a t o m p r o g r a m - t o o l p i x i e - e n v t h r e a d s

Tools for other specialized environments call be
provided by defining a ncw e~~vironnient name. For
example, Atom tools \vritten to work with a language-
specitic run-time environment can be added to the

Atom tool kit by selecting an cnvironmcnt name for
tlie category of tools. Similarly, tools designed to cvork
on the kernel coitld be collected into an environment.

The environ~nent name is used in the namcs of the
tool's instrumentation, analysis, and description files.
The description filc for a tool provides the names
of the instrunicntation and analysis files, as wcll as spe-
cial instructions for conipiljng and linking the tool.
For example, the pixie description file for threaded
programs is named pixie.threads.dcsc. I t identifies
the threaded versions of the pixie instrun~entation and
analysis files. The Atom driver builds the name of
the description filc from the arguments to the -tool and
-env s\vitchcs on the command line. The contents
of the description file then drive the subsequent steps
of the build proccss.

Tool environments can be added \vitliout modifica-
tion to the base Atom technology, thereby providing
estensibility to the tool kit cvhile maintaining a consis-
tent interface.

Compact Relocations
Atom inserts code into the test of the program, thus
changing the location of routines. Atom requires
that relocation information be rctaincd in the

Digital Tcchnic.~l Journal \Iol. 8 No. 1 1996 25

eseci~table image created by the linker. This allows
Atom to properl!. perform relocations o n the instru-
mented executable.

During the normal process of linking, tlie relocation
entries stored in object files are eliminntcd once the!'
ha\~e been resol\led. Beca~~se it cfkcti\,cJy relinlts tlie
cxecutable, Atom must Iiave access to the relocatioli
inforniatio~i.

Consider, for example, an application that invokes a
fi~nction through a statically initialized filnction pointer
\~ariablc, as slio\\~n in the follo\\ing code scgmcnt:

v o i d f o o c i n t a, i n t b)
C

v o i d (* p t r - f o o) (i n t , i n t) = f o o ;

v o i d b a r 0
C . . .

(* p t r _ f o o) (l , 2) ;
J

The address of h ~ ~ c t i o n j i ~ o i s stored in tlie memory
location referenced by the j~/~:,/bo variable. When
Atoni instruments tlus application, the address of
fbo will change, asid Atom needs to knotv to update
the contents of the memory location referenced by
ptt: jix). This is possible only ifthere is a relocation rccord
l~ointj~ig at tlus rnemor!, location. Adding compact relo-
cations to the executable file sol\res this probleni.

Compact relocations are snialler than r c g ~ ~ l a r relo-
cations for nvo reasons. First, the Atoll1 system docs
not require all the information in tlie regular reloca-
tion records in order to instrument an esecutablc.
Atom changes only the layout of tlic tcst segment,
so relocation records that describe the data segments
are not needed. Second, tlie remaining relocations
can often be predicted by analyzing othcr parts of
the esecutable file. This property is used to store a
co~npact for111 of the rer-rlaining relocntion records.
Since compact rclocatio~l records drc rcprcsentcd in a
different forrn than regular relocations, tiicy are stored
in the .cornliient section of the object f lc rather than
in the normal relocation area.

Profiling-directed Optimization

OM and tlie Atom-based pixie tool can interoperate
~ u i n g profiling-directed optimization. The Atom-
based pixie tool is a basic block prof lcr tliat pro\lidcs
execution counts for eacli basic block \\,lie11 the pro-
gmrn is ~ L I I ~ . The execution counts are then used as
input to OM for performing optimizations 011 the ese-
cutable that are driven From actual run-time perfor-
nlwcc data.

As an example, the follo\\,ing steps \\roulcl bc
pwforrned to utilize profiling-directed optimizations
~ l t l i OM:

26 Digital Tcch~~icnl Joul-nit

1. % c c - n o n - s h a r e d - 0 p r o g r a m * . o

2. % a t o m - t o o l p i x i e p r o g r a m

3. % p r o g r a m - p i x i e

4. % c c - n o n - s h a r e d -om

- W L , - o m - i r e o r g - f e e d b a c k , p r o g r a m * . o

In step 1, a nolisharcd \~crsion of the program
is built. In step 2, tlie Atom-based pixie tool instru-
ments the program. Step 2 produces program.pixie
and program.Addrs flcs. Step 3 results i11 the csc-
cution of the instrumented program to generate a
program.Counts file. This file contains an eseci~tion
count for eacli basic block in the program. The last
step pro\.ides the basic block profile as input to OM.
OM rearranges the text segment o f the program such
that the most frequently cxecuted basic blocks and
procedures are placecl in prosi~iiity to each other, thus
improving tlie instruction cache (I-cache) hit rate.

Product Development Considerations

Bringing the OM and At0111 technologies fro111 the lab-
oratory illto use 011 currelit Digital UNIX production
systems required frequent co~iimunication and coordi-
nation benvccn WRL and DUDE engineers working
on opposite coasts of the U.S. The success of both proj-
ects depended upon cstablishi~lg and maintaining an
atmosphere of cooperation among the engineers at tlic
t\\.o locatio~~s. Common goals and criteria for bringing
the technology to product supported the teams during
de\.elopment and planning \vork.

Among the product development considerations
for OM and Atom \\/ere

1. The products must address a business o r customer
requirement.

2. The products must meet customer expectations of
features, usability, quality, and performance.

3. Eng~neering, q u a l ~ q ~ assurance, and doci~mentation
resources must be ~dentified to ensure tliat thc
products coilld be enh,lnced, updated to operate
on nenr platform I-elcases, and supported througli-
out thcir life cyclcs

4. The products nlust be released a t the appropriate
times. lleleasing a product too early could result in
high support costs, perhaps at tlie expense of n e ~ !
de\lelopmeut. Releasing a product too late could
compro~nise 1)igital's ability to le\lerage the new
technology most effccti\lel y.

Product Development and Technology Transfer
Process for OM
As part of thcir research and de\relopment efforts,
WRL engineers applied OM to large applications.
Researchers and Digits engineers at ISV porting labo-
ratories \\,orl<ed together to share information and to
diagnose the performance problems of programs in

i~se on actual production systems, such as relational
database and CAD applications. This cooperative
effort helped engineers determine the types of opti-
miz.ations that would benefit the broadest range of
applications. In addition, the engineers were able to
identi$ thosc optimizations that w o ~ ~ l d be usefill
to specific classes of applications and make them
switch-selectable through the OM interfixe. Tlie per-
for~nance improvements achieved on ISV applications
enabled OM to meet the criteria for addressing CLIS-
tolncr nccds.

Although WRL researchers also applied OM to tlie
S1'l-X benchmark suite to measure performance
improvements, the primary focus of the O M tech-
nology development \\!as to provide performance
impro\~enients for applications currently in \videspread
use by the Digital UNIX customer base. With the
focus of performance improvements on large cus-
tomer applications, OM satisfied a prominent Digital
business need for inclusion in the Digital UNIX devel-
opment environment.

Engineers discussed the limitation that O M did not
s i~ppor t sharcd libraries and thc programs that used
them. In this respect, the technology would not meet
the expectations of all customers. Many ISV applica-
tions and other performance-sensitive programs, how-
ever, are built nonshared to improve execution times.
Engineers determined that the benefits for this class
of application ounveighed this limitation of OM,
and, therefore, the limitation did not prevent nloving
forward to develop the prototype into a product.
llevelopcrs recognized the risks and support costs
associated with shipping the prototype, yet again
decided that tlie proven benefits to existing applica-
tions out~vcighed these factors.

Because of the pressing business and customer
needs for this technology, DUDE and WRL engineer-
ing concurred that O M should be providcd as a fully
supported component in Digital UNIS version 3.0.
FLIII product devclop~nent commitnie~~ts from DUDE
engineering, docurrientation, and quality assurance
could not be made for that release, ho\vever. After
discussion, WRL provided technical support and
extensions to O M to address this necd. DU1)E engi-
neering agreed to provide consulting support to WRL
researchers 011 object file and synibol table formats nlld
on evaluations of text and data optimizations.

The next issue the engineers faced was how to inte-
grate OM into the existing development environment.
They evaluated three approaches.

Tlie first approach was to make OM a separate tool
directly accessible to users as /usr/bin/om. Thus, an
application developer could i~tilizc OM as a separate
step during the build process. This approach offered
two advantages. First, it was similar to the approach
used to achieve the present internal use of 01M and

\vould recl~~ire f e~v additional modifications to the
Digital UNIX de\~elopment en\~ironnient. The second
advantage was that Atom and O M could be more
easily merged into one tool since their usage would be
similar. This merging would provide the potential
efficiencies of a single stream of sources for the object
modification technology

A major disadvantage of this approach was that it
put additional burden on tlie application developer.
O M requires a specially linked input file produced by
the linker. This intermediate input file is not a corn-
plete executable nor is it a pure OMAGIC file.'" This
approach ~ i o u l d require customers to add and debug
additional build steps to usc OM on their applications.
The WRL and DUDE engineers agreed that the user
complexity of this approach would be a significant bar-
rier to user acceptance of OM.

Tlie second approach was to change the conlpiler
driver to invoke OM for linking an executable. With
this approach, a switch would be added to the com-
piler driver. If this switch was given, the driver would
call /usr/lib/cmplrs/cc/om instead of the system
linker to d o the final link.

This approach had the advantage of reducing the
complexity of the user jntesL~ce for building an apylica-
tion with OM. A developer could specify one switch to
tlie compiler driver, and the driver would automatically
invoke OM. This would allow a developer to introduce
feedback-directed opti~nizations into the program by
sinlyly relinking with the profiling information, thus
rnalung OM easier to use and less error-prone.

The disadvantage of this second approach was that
the complex symbol resolution process in the linker
would need to be added to OM. The process of per-
forming symbol resolution on Digital UNIX operating
systems is nontrivial. There are special rules, boundary
conditions, and constraints that the linker must under-
stand. OM was designed to modify an already resolved
executable, and any problems introduced from adding
linker semantics would discourage its use. Also, dupli-
cating linker capabilities in OM \\~ould require addi-
tional overhead in maintaining both components.

The advantages and disadvantages of the second
approach motivated the development of a third
approach. The compiler driver could be changed to
invoke OM during a postlink optiniization step. As
in the second approach, a switch from the developer
\vould trigger the invocation of OM; however, OM
would be run after the linker had perfonned symbol
and library resolution.

The third approach is the one currently used. This
method maintains separation between tlie linking and
optimization phases. When directed by the -om switch,
Id produces a specially linlted object that will be used as
input to OM. The compiler driver supplies this object
as input to O M when the linking is completed.

Digital Technical journ,il Vo1.8 No. 1 1996 27

The WKL anci 1)Ul)E engineers found that this
fi~nctional scpar.~tion also improved the cfficicnc!, of
tlie development efforts ben\~een WRL and 1)UI)E. - [.he separation pcrmittcd concurrent WRL, dc\~clop-
meut on OM and I)Ul>E dcvcloymcnt o n Id, \\lit11
minimal interference. This approach allo\\,cd more
development timc to be dedicated to technical i s s ~ ~ e s
rather than denling \\fit11 source management n ~ i i i intc-
gration issues.

1)UL)E engineers added the OM. soul-ccs into the
1)igital UNIS dc\,clopmcnt pool nod intcgr.~tcd
updates fro~-n WRL. WRL assumed rcsponsi bility for
testing OM prior to projtiding source ~lpdntcs. As pre-
\,iously outlineci, 1)Ul)E cngincers intcgt.ltcd support
h r 01M into the existing dcvelopma~t environment
tools for tlie initial release.

Because of pl-o\cn performance improvcmcllrs o n
ISV applications, committed engineering cfforts b!,
WIG, and testing ncti\.itics nt both I>igir~l sitcs, engi-
nccrs judged the tcchnolop InatLlrc cnougli k)r rclensc
on production systems. Efficient de\.elop~ncnt stl-ntc-
gjes enabled Digital to rapidly turn this leading-cdgc
tcch~iology into a p r o d ~ ~ c t that bcncfits .in important
segment of the l>jgital U N I S c~lstotncr b,lse.

WKL continued engineering s~~ppo l - t f0r O M
through the l>igital UNIS vcrsion 3.0 and 3.2 rclcascs.
Ilesponsi bility k)r the technology grniiuall!, sl~iftcd
fi.0111 W l U to 1)Ul)E o \ ~ r the coilrse of these ~.eIeascs.
C:urrcntly, L)Ul>E ffirlly supports and cnhnnccs 01M

while W l U continues to provide consultintion o n tlie
technology 2nd input for f i ~ t i ~ r c i~npro \~e~nc~ i t s .

Product Development and Technology Transfer
Process for A tom
WKL deploycd c;~rly \,crsions of tllc Atom tool kit at
internal Digital sitcs, ISV porting Inbor;ltorics, and
universities, thus allo\\ling dc\.elopers to cspcl.irnc11r
\\:it11 and evaluate the Atom Al'I. TIic early a\~ailnbiljn!
o f the tool kit promoted use of tlie Atom tcchnology.
User feedback and rcqucsts for features helped the
engineers to ~ilol-c cluickly and effcctivcly develop a
robust technolog\, fro111 tlie prototype.

Engineers tlirougliout 1)igitnl rccognizcil Atoll1 as ;I
uniq~le and ~ ~ s c f i ~ l tccl111ology. Atom's Al'l, \\.it11
instrumentatio~~ nnd an.ilysis capabilities do\\,n to the
instruction level, increased the po*er and di\rcrsity of
tools tliat could bc created for software 2nd Ilard\\jarc
dc\!clopment. Hard\\jarc develop~iient tcnms ~~scci
Atom to simulate the performance of Alpha
implcmentarions. Sofn\.are dc*clopcrs crcntcci .~nd
shared Atom tools for debugging and measuring pro-
grL~lii perf'ol-msi~icc. "l'lic \.al~le of tlie Atom tcclinolog.
in sol\ring application clc\~clopment problems pr.o\.iclcd
tlie business justification for developing the tcchnol-
o ~ y illto a product.

The prototype \,ersion of Atom had several
limitations.

Like O M , the prototype version of Atom \vorkcd
only on nonshared applications. A production
version of Atom would r c q ~ ~ i r c support for call-
shilrcd programs and sharcd libr.lrics, since, by
d e t i ~ ~ l t , programs are built as cnll-sharcci prograliis.
A \,iablc Atom product offering nccded to s ~ l p -
port these t!,llcs of progralns, in addition to non-
shared programs.

Progmms ncedccl to be rclinkccl to retain relocation
i n h r ~ n a t i o ~ i before At0111 coi~ld be L I S C ~ . This addi-
tional build step impaired the usability ofAtom.

Tlie Atom prototype performed poorly because it
consunled a 1;lrgc alnount o f ~ i ~ c m o r y . bIucIi of the
data collcctcd a b o l ~ t an esecr~tnblc h r optimization
p ~ ~ r p o s c s \\.,is 11ot ~iecded for 17rog1'x'n anal!'sis
transk)rm;itions.

TIie A t o ~ n AI'I rcqirired estensi\,c design and de\.el-
o p n c n r to support call-shared progra111s and
sharcd librnrics.

Tlic cngi~iccrs decided to allo\\ the OM and Atom
technologies to diverge so tliat the differing requirc-
ments ti)^- optimization and program anal!rsis could be
~ n o r c cffccti\~cl!r nddrcsscd in cnch component.

Because tlic cost ofsupporting n rclcasc of the Atom
prototylx u-oi~ld lia\re been high, WRI. and 1)Ul)E
cliginccring dc\,clopcd a stratcgy for sim~~lcaneously
releasing the Atom prototype while focusing engincer-
ing efforts o n dc\rcloping tlie pl-odi~ctio~i \u s ion . An
Atom Acl\s,inccci l)c\rclopment Kit (r\l)l<) \\,as rcleascd
~\vith l>igitnl UNIS version 3.0 as the initial stcp of the
strategy. The A1)K provided custonicr ;lccess to the
tcchnology \\.it11 limited support. E~lginecrs \.ic\\-cd
the Inclt ofsupport for sharcd csec~~tablc objects as an
acceprablc l i~i~itntio~i for the Atom Al)K lmt unaccept-
able fix the f nal product.

In iiddition to allowing WRL and 1)UDE engineers
to ~) C L I S OII p r o d ~ ~ c t development, this ti rsr strstegic step
pcrmittcd the engineering teams Inorc timc and f l c~ i -
bilin. to incrcmcntall!~ ;~cld support fix Atom illto otlier
production com~x)~ients, such as the linker and the
londcr. For usabilin purposes, minor cxtc~isions \\.ere

made to the loader to allo\\, it to auto~nnticnlly load
ins t r~~~ncn tcd sI131.cd libruies p r o d ~ ~ c c d by Atom tools.

The scconci stcp of the strategy \\us to provide
updated Atom kits to users as dcvdopmcnt of tlie soft-
ware 1"-ogrcsscd. These kits included the source code
for csnmplc tools, manui~ls, and rcfcrc~lcc pages. The
update liits pcrti)rli~cd t\\.o f i~nctio~is; the!' supported
users nn~t rllc!' pro\,ideci feedbucl< to the clc\.elop~iient
teams. 1)Ul)E and WRL engineers posted information
intcr~lally \\.itliin l>igital \\.lien kits \\,ere a\railable and
developed n m;liling list ofAtom ~~scl-s. Tlie Atom user

community gre\\. t o include uni\.crsiries and several
cstcrnal cLIstoliicrs.

Once the Atom ADK a11d update strategy \\.ere
cstablishcd, 1lUL3E enginccring bcgan to i~mplement
support for At0111 in tlic linlccr. As mentioned carlier,
Atom inserts rest into a program and requires reloca-
tion informution to create a correctly instrumented
csccutnblc. Tlie Atom prototype required a program
to bc linked to retain the relocation intbr~nation, and
this rcquirenient prese~ited a us;ibility problem for
i~scrs. Iclcnll!~, At0111 \\,auld be ~ b l c to instri~mcnt the
cxcc~ltables and shared libraries produced b!, default
by the linker.

I\/lodi+ing thc li~iker to retail1 1111 traditio~ial reloca-
tion information by dehul t \\,;is not acceptable since
the size increase in the csecutablc \vould have been
p~.ol~ibiti\!c. In some cases, 4 0 pcrccnt of the object f le
consists of relocation records. Engineers did not \lie\\/ -

nn increase of that magnitude as 3 vi:lble solution. In
ncldition, tliis soliltion contlictcd \\,it11 tlie goal of
lligiral UNIX version 5.0 to reduce object file size.
As 3 compromise, D U1)E e ~ l g i ~ ~ c e r i n g implemented
c o ~ i i p ~ c t relocation support in the linker. Compact
relocations provided an acceptable solution since they
rcqi~ircd Kir less space than regular relocation records,
typically less than 0 .1 pcrccnt of the total file size.

Anothcr side effect of using compact relocations as a
solution Mas that it introduced a dependency benveen
Aton] nnd Id. All csecutablc objects to bc processed by
Arom needed to ha\~e been generated \\,it11 the linker
that contained compact relocation support. There-
fore, to support Atom, la!,crcd product libraries and
third-party libraries needed to be relinked with tlie
compact relocation support.

In Digital UNIX version 3.0, Id \\Ins modified to
gcllcratc compact relocation information in ese-
curable objects. This aIlo~\~cd At0111 to instrument the
dchult o ~ ~ t p u t of Id. Engineers \jic\\lcd tliis capability
;IS cl-itic;ll to the usability and ultimate success of the
Arom rcchnology. The compact re locat io~~ support in
Id \\.As ~.cfincd ,111d estc~ldcd oircr the course of se\zeral
1)igital UNIX releases as dc\,clopment \\,ark \virh
Atom ~xogrcssed.

(:oncurrcntl!., the \YRL. rcscarcli team expanded
and b c g n development of thc Atom Third Degree
and hiprof tools. WRL engineers also continued \\,it11

additions nnd impro\!cmcnts to .I suitc of exa~nplc
Atom tools.

After the release of Digital UNIX version 3.0,
l)Ul>E began dcsign and dc\celopmcnt of the produc-
tion \.crsion of the core Atom teclinologv and the API.
1)UI)E engineers moditiecl and extended the Atom
Al'l ns tool dc~elopmcnt progrcsscci at W l U . During
peak development periods, engineers disci~ssed design
issi~cs dail!, by telephone and electronic rnail.

The original Atom A D K included the source code
for n nu~iiber of esamplc At0111 tools, Because some
of these tools contained hm-d\\,nre implementation
clcpcndencics, they \\,auld rccli~irc ongoing and long-
term support to remain operntionnl on changing
implementations of the Alpha architecture. For the sec;
ond sh ip~ne~ i t of the Atom A1)K in Iligital UNIX ver-
sion 3.2, thcse l~igll-maintcnancc tools \\<ere remo\cd
and made available through unsupported channels.

Kcr\veen releases of the AI)I< on the lligital UNIX
operating s!,stem, the enginccring teams continued to
dcli\rcr i~pdate kits. Engineers scheduled delivery of
the update kirs to coincide \\,it11 key ~nilestones in the
soft\\,,lrc development process. This strategy ga1.e
them more control o\.er the dc\~elopment schedule
and minimized risk. The update kirs pro\lided irnmedi-
ate field test exposure for the evolving Atom sohvare.
The design, development, and kit process was prac-
ticed iteratively over a year to develop the original
idcns into 3 fill1 product. The Atom updntc ltits \\'ere
provided for Digital UNIX version 3.0 and later sys-
rcms, since most users did not have access to early ver-
sions of l3igitnl U N I S \rcrsion 4.0. 17ro\/iJing Atom
kits for use on pre-version 4.0 systems nllo\\,ed the
sofivare to be exercised in the field on actual applica-
tions prior to its initial rclcasc as a supported product.
Althoi~gh support for earlier operating system versions
added o\.crhead and complexity to the process of pro-
viding the update kits, the engineering tennis \~alued
the ahunciance of user feeclbnck that the process
yielded. The benefits of 11sc.r input to the so%\~are
dc\,cloprncnt process o~~t\ \ ,cighcd the o\,c~.licad costs.

lluring Digital U N I S *ersion 4 .0 de\~elopment,
\YRI. engineers finalized the implementations of the
hiprof and Third Degree tools and transferred the tool
sources to DUDE for further development. The PVRL
developers had added support for threaded applica-
tions o n prc-version 4.0 lligital UNIX systems.
Because the implementation of threads changed in
1-ersion 4.0, DU1)E engineers needed to update tlie
Arom tools accordingl!:

1)UL)E engineers also de\feloped an Ato~ii-based
pixie tool \\.ith support for threaded ;~pplications. In
KICT, the Atom-based pixie tool rcplnccd the original
vc1.sio11 of pixie in Digit.11 UNlS \,usion 4.0. The
Atom-based pixie allo\ved ne\v fcatu~-es s ~ ~ c h as sup-
port for shared libraries and thrcnds to be more
efficiently added into the prociuct offering. Tlie devel-
op~i lcnt of an Atorn-based pixie tool sol\red the exten-
sibility proble~lls that \vc~-c being faccd with the
original version of pixie.

WRL. engineers also began to use Atom for instru-
menting prc-\.ersion 4.0 Digital UNIS Iter~~cls, de\,el-
oping special tools for collecting kernel st'ltistics.
Atom \\,as extended by DUDE engineering as needed
to silpport instrumentation and analysis of the Iternel.

\'()I. 8 No. 1 1996 2'9

The Atom tool kit and example tools were shipped
with Digital UNIX version 4.0. The pixie, hiprof, and
Third Degree tools \\rere shipped with the Sofnvare
Development Environment subset of Digital UNIX
vcrsion 4.0. Research rcgarding LISC ofAtom for ker~icl
instrumentation and analysis continues.

WRL continues to share ideas and consults
with DUDE on the f ~ ~ t u r e directions for the Atom
tecl~nologj/.

Conclusions
Developing OM into a product directly from research
proved to be challenging. Problems and issues that
needed to be addressed had to be handled within the
scliedulc constraints and pressures of a co~nmittcd
relcase plan.

In contrast, the ADK mcthod uscd to deliver thc
Atom product allowed the Atom de\lelopers to spend
more time on product development issues in an envi-
ronment relatively frec from the prcssures associated
\vith daily schedules. The ADI< mechanism, however,
probably limited tlie exposure of Atom technology at
some customer sites.

The close cooperation o f cngi~ieers fro111 both
research and de\lcloprnent was necessary to accom-
plish the goals of the two projects. Wc believe that a
collaborative development paradigm was key to suc-
cessfi~lly bringing research to product.

Future Directions

This paper describcs the c\wlution of the O M and
Atom technologies t l~rough the release of the Digital
UNIX version 4.0 operating system. Digital plans to
investigate many new and improved capabilities, somc
intended for future product releases. Plans are under
way to

Provide support in OM h r call-shared progranls
and shared librarics.

Support the use of At0111 tools on programs opti-
mized \.c,itb OM.

Investigate providing an API to allo\v program-
mable, customized optimizations to be deli~~ercd
through OM.

Investigate reuse of instrumented shared librarics
by multiple call-shared programs that have been
instrumented with the same Atom tool.

Research support for Atom tools that provide sys-
ternwide and per-process analysis of shared libraries.

Extend Atom to iniprovc kernel analysis.

Simplifj, the use of the profiling-directed optilliiza-
tion facilities of Atom 2nd 01M through an
improved interface.

Extend the Atom tool kit to provide de\lelopment
support for thrcad-safc program arialjsis tools.

In addition to enhancements to the Atom product,
original Atom- based tools are expected to become avail-
able through the development activities of students and
educators at universities. Internal Digital developers will
continue to develop and share tools as bvell.

Acknowledgments

Many pcople contributed to the development of the
OM and Atom products. The following list gives
recognition to those most actively involved. Arnitabh
Srivastava led the research and development work at
WRL on OM and Aton1 and mediated many of the
design discussions on the Atom design. Greg Lueck of
DUDE designed and implemented the production
version ofAtom, compact relocations, and the Atom-
based pixie tool. Alan Eustace developed Atom esam-
ple tools, created the first Atom ADK, worked
diligently with users, developed kerncl tools, provided
training and documentation on using Atom, and dis-
played eternal optimism. Kussell I<ao at WRL con-
tributcd the hiprof tool with thread support. Jercmy
1)ion and Louis Monier at WRL developed Third
Degree and an Atom-based code coverage tool called
traclter. John Williams and Chris Clark of DUDE com-
pletcd the process of turning the hiprof, pixie and
Third Degree tools into products. Dick Buttlar pro-
vidcd documentation on cvcry component. Last but
not Icast, the authors \\)is11 to extend a final thanks to
all tlie users who contributed feedback to the OM and
Atom developmcnt teanls.

References

I. F. C:ho\v, M. Hirnelstcin, F,. Killian, and L. Weber,
"Gigineering a 1USC Compiler Systcm," Proceedings
(!/'COMPCOiV San Francisco, Calif. (Mdrch 1986):
132-1 37.

2. Wcstcrn Research Laboratory, locarcd on thc Wcb :*
http://\~~~w.rc~e"'~l~.digitnl.co~~~/~~~rl.

3. I<. Sitcs and R. Wirclc, All,hcr~,YPArchilect~,o~e I\)CJbt.-
once il/latz~,ral. 2d ed. (Ncwto~i, Mass.: Digital Prcss,
1995).

4. A. Srivastavn and D. WiiII, "A Practical System for
Intcrlnodulc Codc Optilriiznrion a t Link-time,"Jo~,~r-
17al 01' Progmnr~nirzg I.at7g1,ta~qe.v. vol. 1 (1993):
1-18. Also available as WIIL l<cscarch Report 92/6
(December 1992).

5 . A . Ssi\zastavn, "Unrc.~clinblc L'roccdurcs in Objcct-
o l -~c~~ted Programmilig," AC;W I.OPIAS vol. 1, no. 4
(1)cccmber 1992): 355-364. Also available as WR1.
Rcscarch Report 93/4 (Aug~~st 1993).

Vo1.8 No. l 1996

". A. Eustace and A. Srj\,asrava, "ATOM: A t'lcsible
Interface for Buildi~ig High Performnncc l'rogram
Analysis Tools," I'r.oc.c~cx/ings oJ' the Winto- 1995
l.:SB,YIX ConJerc~zce. New Orleans, La. (January
1995) . Also availal)lc as WKL Technical Note '1'N-44
(July 1994).

7. A. Srivasta\la and A. Eustace, "ATOM: A System for
Building C ~ ~ s t o m i z c d Program Analysis Tools," I'ro-
ceedir7gs of tbc SIGI'LAN '94 Cbnfe~x???cc 0 1 1 Pro-
grwlnrning L a n g r ~ ~ ~ ~ q e /lesi,q~? and Ir?~ple~ner?lation.
Orlando, Fla. (Junc 1994). Also available as W I U
Research Report 94/2 (March 1994).

8 . A. Srivastava and I). Wall, " I i~lk-Time Optimization o f
Address Calculation on a 64-bit Architecture," Pro-
ccdings of the srG'I"L41v '94 Conjerence or? Pro-
grc~rnn?irTg La~?gria~qc Iksig17 and /n?ple~r~el-llntion.
Orlando, Fla. (J u n c 1994). Also available as W I U
Research Report 94/1 (February 1994).

9 . Digital LBVIX Calling Slarl~lard for Alpha S,atc~lns.
Order No. M-I'YSAC-TE, Digital UNIX vcrsion 4 . 0
o r higher (Maynard, ILIass.: 1)igital Equipment Corpo-
ration, 1996).

10. Digital UNM As.scnrh1~~ J.ongt.iage Pro~rarr?n?ers
Guide, Order No. AA-PS3IC-T€, Digital UNlX vcr-
sion 4 .0 o r higher (Maynard, Mass.: Digital Equip-
ment Corporation, 1996) .

General Reference

J . Larus and E. Schnarr, "EEL: Mdchine-Independent Exc-
cutablc Editing," SI(;I'LAN Corderence on Prograrnm~ng
Lun~lrage Design a r ~ d I1nplc~117erztafion (June 1995).

Biographies

Linda S . Wilson
As a principal soft\varc engineer in the Digital UNIX
1)cvelopmcnr E ~ l \ ~ i r o n ~ n c n r group, Linda Wilson leads
the development o f program analysis tools for the Digital
UNIX operating system. I n prior positions, she \jJas respon-
sible for the deli\,ery of other dc\,clopnient en \ ' ~ ~ r o n m c n t
components, including I)EC FUSE, the dbx dcbuggcr,
and run-time libraries on the ULTRlX and Digital U N I S
operating systems. Linda rccei\.cd a B.S. in COI , I~LI ter sci-
ence from the University ofNebraska-l,incoln. Before
joining Digital in 1989, L ~ n d a held sofnvare engineering
positions at Massco~np in Westford, Massachusetts, and
Texas Instrunlents in Austin, Texas.

Craig A. Neth
Craig Neth is a pri~icipal sofnvare engineer in the Digital
UNIX Devclopnient Environment group, where he is the
technical lcadcr of link-time tools. In prior positions a t
Digital, Crnig has \\iorked o n the OM objcct ~nodification
tool and the VAX and 1)EC COBOL conlpilers, and led
the develop~nent o f DEC COBOL versions 1 and 2. Craig
received a B.S. in computer science from Purdue University
in 1984 and an M.S. in computer science fro111 the
Universin of Illinois in 1986.

Michael J. Rickabaugh
Michael Rickabaugh is a principal sohvare engineer i ~ x
the Digital UNIX De\reloprnent Enviro~lnlent group.
H e started his Digital carecr in 1986 in the SEG/<:AD
Engineering group as a soFn\.are engineer on the DECSIM
logic simulation project. I n 1991, Michael transitioned
to the DEC OSF/1 AXP project and \\.as a ~nernbcr of
the original tcnm responsible for delivering thc UNIX
de\~elopment environrncnt o n the DEC OSF/1 Alpha
platform. H e has since been a technical contributor to
all aspects of the Digital UNIX link-time technology
as \veil as the creator of the ASAXP assembler k)r the
Windows NT operating system. 1MicI1at.l rccci\ui a B.S.
in clecrric,il and computer engineering korn Carncgic
~Mellon University in 1986.

Design of excursion
Version 2 for Windows,
Windows NT, and
Windows 95

Version 2 of the excursion product is a complete
rewrite of the successful Windows-based X
server software package. Based on release 6

of the X Window System version 11 protocol,
the new product runs on Microsoft's Windows,
Windows NT, and Windows 95 operating sys-
tems. The X server is one of several components
that compose this package. The other compo-
nents are X Image Extension, the control panel
(which constitutes the user interface for product
configuration), the error logger, the application
launcher, and the setup program. An interprocess
communication facility enables the excursion
components to communicate in a uniform fash-
ion under all three operating systems. A unique
server design using object-oriented program-
ming techniques integrates the X graphics con-
text with the Windows device context into a
combined state management facility. The result-
ing implementation maximized graphics perfor-
mance while conserving Windows resources,
which are in limited supply under the 16-bit
version of the Windows operating system. The
control panel was coded completely in the C++

programming language, thus making full use
of the Microsoft Foundation Class library to
minimize development time and to ensure
consistency with the Windows user interface
paradigm.

John T. Freitas
James G. Peterson
Scot A. Aurenz
Charles P. Guldenschuh
Paul J. R m a u r o

Digital developed the eXcursion family of display
server products to provide interopcrability between
desktop personal computers (PCs) running the
Microsoft Windo\vs operating s!lstcm and remote
hosts running the X Window Systcm operating system
under the U N I S or OpenVMS operating systems. The
first version of tlie excursion X server was a 16-bit
application written specifically for Microsoft Windo\vs
versio~is 3.0 and 3.1. As the pop~~lari ty of Windows
increased and desktop systems were connected to cor-
poratc nctworlts, the marltet for S interoperability
grew quickly. The 16-bit excursion code, milch of
urhich had been ported from 32- bit U N I S code, \vas
again portccl-this time to Microsoft's Win32 appli-
cation prograinming interface (API) to support the
Windo\vs N.1' operating svstern. Whcn release 6 of
the S Windon) System version 11 protocol (Sl l R 6)
appeared and a new sample implemcntntion source
l i t bcci~nlc available ti-om the X Consortiuni, the
excursion team decided that it \\,as t i ~ n c for a completc
rewrite o f the excursio~l software. Microsoft had
established the \Win32 API as n uniform coding inter-
bcc for all its Windo\vs-based operating systems. Since
development tools such as 32-bit co~npilers and
debuggers of sufficient quality and robustness had
becorne available, it \\.as now possible to implcme~it a
high-qunlity, 32-bit product. p r o d ~ ~ c t \ v o ~ ~ l d sup-
port the entire range of Windows-based platforms,
from notebook PCs running the Windo\vs operating
system to high-end Alpha systems running the
Windo\\;s NT operating s!lstem.

Terminology

This paper incorporates certain conventions to clarify
the distinction b e m ~ e e ~ ~ the two window systems
under consideration. Xiilin~louj refcrs to the collection
of data structures, concepts, and operations that con-
s t i t ~ ~ r e a \\lindo\v, as defined in the X Window System
elivironnient. LL'ir132 il:i~dolll refcrs to 3 \\,indo\\. as
defined in Microsoft's Win32 API.

When referring to a \vindo\v systcni as opposed to
a particular \viildo\\l instance, X IVi/il?~lorr~ S ~ f e t n
is somcti~ncs abbreviated to X. W/irrclorts denotes
tlie Microsoti Windows operating system.

Vol. 8 No. 1 1996

Note that the \\lord h ~ r m ~ ~ p has more than one
meaning. In the X en\.ironment, a bitmap is a nvo-
dimensional array of bits, and a ~) I A ~ I ~ I L I / > is a two-
dimcnsio~ldl array of pixels, \i~lierc eacl~ piscl may
consist of one or more bits. Under the Win32 AI'I, t l ~ c
terln bitmap is used exclusively; that is, no distinction
is ~ n a d c bcnveen an array of depth 1 and nn arra!l of
dcptll 1 1 I n this paper, the term pix~nap is used in
its general scnsc to refel- to X pixel arrays, and tlie
term bitmap refers to the Win32 concept.

Another conllnon point of confi~sion \\~licn dis-
cussing the X Window System en\,ironmcnt is the use
of the terms .scr.oc.r. and clic.rzr. To one familiar \\fit11 filc
anci print scrircrs, the meanings of tl~csc two terms in
tlic S c~l \~i ron~i ient mdy seem to be rcvcrscd. I n the X
cn\~ironnicnt, the serI7er is a display scrvcr, and the
clients arc the applications requesting display scr\,iccs.
The S server and tl.le X client applications may reside
on the s ~ ~ n c PC, b ~ ~ t the po\\!er of the eXcursion soft-
ware is in its ability to bridge tlic gap bchvccn the
Windo\vs desktop and the traditioiial S11 UNIX and
OpcnVMS workstations.

excursion Version 2 Product Goals

The design of cXcursion version 2 \\!as driven primarily
by the Follo\ving product goals:

S t ~ p ~ x) r t X Windo\\, System version 11, release 6.

Sup~mr t the Microsoft \/Vindo\\~s, Windo\\!s NT,
and Windows 95 operating systems.

<;ode tlic single source pool to Microsofi's Win32
API.

Excccd gr.\phics performance ofcXcursion vcrsion
1 ns mcusured with the standard benchmarl< tests
XI lperfand Xbench.

Preserve maintainabiliy by using modular coding
and limiting changes of the saniple implen~entation
fi-om the S <:onsortium.

Mnsimize reliability by performing cstended error
chccking and resource managclnent.

C:orrcct kno\vn protocol co~~formance deticiencies
in \ icrsio~~ 1. For example, in version 1 , pl'inc mask
s ~ ~ p p o r t \\,as iinpleniented For on ly '1 feu) graphics
operations. Version 2 would provide plane mask
support for all graphics operations.

Components of excursion Version 2

In cXc~~rsion ve r s io~~ 1, most of the fi~nctions provjdeci
by the product \ifere combined in a single executable.
T o c o n s ~ r \ ~ c resources and to partition the codc for
easier maintenance, version 2 is di\iidcd into several
separate colnponents or modules. Some of tllese run
as individual proccsscs, and some arc built as dynamic
link libraries (1Il . l~). A DLL is a shared memory

library module that is linked to the calling program at
run time.

eXcursion version 2 is piirtitioned into the follo\\,ing
major components:

X server. l'he X scr\>cr is tlie primary component of
eXcursion version 2. The X scrvcr process is respon-
sible for displaying windows and graphics o n the
Windows desktop and for sending keyboard,
mouse, and other c \ ~ c ~ i t s to the client application.

X Image Extension. X extensions are additions to
the server that support fi~nctionalin~ not addressed
by the core X11 protocol, such as displaying shaped
(nonrectangular) cvindo\\(s, handling large requests,
testing/rccording, and imaging. All estensions
except the X Image Estension (XIE) are implc-
mented internally in the S ser*er. Because of its
size, XIE is iniplcnlwltcd as a pair of DLLs, one for
XIE \,ersion 3 and one for SIE version 5.

C o ~ ~ t r o l pancl. As tllc primary user interface, tlic
control panel provides the user \\lit11 access to tlie
many configuration settings. It is an independent
Win32 application implcmcnted using Microsoft
Vis~ial C++ and the Microsofi Foundation Class
(MFC) l i b~.ary.

I~lterprcxcss aco~nrnunication library. The inter-
process communication (IPC) library is an operar-
ing system-indcpendcnt library used by cooperating
processes or tasks to communicate configuration
a i d status information.

Error logger. The error logger is a simple Win32
application that records error and status informa-
tion from othcr cXcursion components in a win-
dow, a file, or the Windoivs NT event log.

Application launcl~cr. The application lau~ichcr is a
Win32 application that starts X client applications
at the request of the X server o r the control panel.
The application launcher is i~l\isiblc to the user.

1Zegistry interface. The registry interface is an
operating s!!stcm-indcpc~icic~it interface to the
excursion co~lfigi~ration profile. The registry inter-
face is implemented as a Win32 DLL.

X Server

The core of the eXcursio~l product is the X server, a
Win32 application that accepts X reqilcsts from clicnt
applications and transforms them iiito graphics on the
Windo\vs desktop. The device-independent portion of
the server code is ported from the sample implemcnta-
tion provided by the X Consortiuni. The device-
dependent portion treats the Win32 API as the device
interface t h r o ~ ~ g h \ilhich clicnt rcqilests are material-
ized on the screen. ?'he eScursio11 S server is illus-
trated in Figure 1 .

Digital Tecl~~~ic~~l Jo\11~11,1l \lo1 8 No. 1 1990 3.5

I INTERNAL WINDOW MANAGER I
X REQUESTS NETWORK DEVICE-INDEPENDENT DEVICE-DEPENDENT WIN32 FUNCTION CALLS

X EVENTS TRANSPORT CODE I CODE t WIN32 MESSAGES

Figure 1
Tlic cSc~~rsion X Scr\~cr

.. .
l'llc scr\,cr can operate in one oFt\\,o ~nodcs: singlc-

\\<indo\\. ~nocie or rnulti\vindo\\ moric. I n single-
\\.indo\v mode, the server creates one Win32 \\indo\\;
\\,hich reprcscnts the X root \vinclo\\.. All descendant
\\,incio\\rs and their contents re ci1..1\\'11 ill to t l ~ c root
\\,indo\\, i sing Win32 f ~ ~ n c t i o n cnlls. 111 m~~lti \ \ , indo\\ ,
mode, tlie root \vindo\v is a \irtt~aI \\.indo\v; t11at is, it is
never ciraivn on the screen. Each top-lc\vcl child of the
root \\?indo\\, Iias a corl-esponding Win32 indo\ do\\;
\vIiich is created \\+en the X \\!indo\\$ is mnppeci. All
dcsccndants of a top-lc\,cl \\'indo\\! arc drnwn inside
the Win32 \\?indow \\,it11 Win32 cnlls. iMulti\\,indo\v
~ n o d c thereby creates a desktop enviro~lmcnt in \vhich
S ,ipplications are peers of other Win32 npplicntio~~s.

Singlc-\\-indo\v mode is usef~l tbr emulating J com-
plctc \\rorkstation environment including the \\.indo\v
mnrlagcr ;ind the scssio~l or dcsl<top manager. In multi-
\\inclo\\. mode, cirn\\ring to nnd getting input from tlie
root \vindo\\. is restricted b!~ tllc S scr\,cl to p r - ~ \ ~ c n t
conflicts with the Microsoft Windo\\,s system's L I S ~

of the desktop \\,indo\\,. Despite this restriction, tlie
~nnlti\vindo\\, mode, \\,he11 ~ ~ s c d \\,ith rllc llnti\,c \\,in-
do\\, manager, pro\lides the c lca~~cst i~itcgration of the
S and Windo\\~s environments.

Resource Management and Performance
Both tlic S ,ind bVin32 systelns Ii,~\,c \>uilt-in lotions
ofgr~pl i ics state and resource allocation. Tlic scman-
tics and usage of the concept, lio\\c\.cr, arc quite dif-
f t rc~i t i l l the n\,o \ \ x i ndo\ \ systems.

In X, gr~phics state is mnintnincd in n ci.ira 5tr~1ctu1.c
kno*n as a graphics contest (G<:). A (;<: has an indc-
pe~idcnt existence and may be created, destroyed,
[~pdnrcd, q ~ ~ e r i c d , and copied at \\,ill hy the X applica-
tion. During graphics operations, .I G<: is nssociatcti
with the X "drawable" (\vi~tdo\\: or pismnp) being
drawn into, and information in the G(: is used to f ~ l l y
dcf nc the operation. For example, the C ; (: may specie
foreground o r backgroc~nd colors, line snlcs, or font
information.

The Win32 API has a concept cnllcd a dc\.icc co11-
text (I)(:), \vhich also contains state infor~ii.ition but
\\rliosc PLII.POX is niorecI(~seI!~ related to pro\.idirig
device illdependence. Conscq~~cnrly, t\\.o diffcrcnt
t y l x s o f LXs are required under the Win32 API,

depcnciin~ on \\.licrhcr the graphics operation is dl-a\\.-
ing to n \\rincio\\. or to n bitmap. Furthermore, .I \\.in-
do\v DC may be ;~llocated either permanentl!, o r kom
a cache, depending o n its cspccted lifetime. Any dm\\.-
ing operation t11crck)rc rccluires that both the (;(:
uscd in the S grnpliics ~ . c q ~ ~ c s t and tlie DC ~1sei1 in rhc
ulti~natc Win32 call be properly set ~ r p and synclll-o-
nized. The m;lnncr in \\.liicli this is done has a signiti-
cant effect o n the graphics performance of the ser\,er.

Before an X graphics opcrntion can be started, tlic
GC must be \,alidntcti. Validatio~l is a process of
preparing the o u t p ~ l t device to render the gr.lphics
properly. I n the c;lsc of the eScursion server, the out-
p u t dc\.ic.c is n Win32 I)<:. For every graphics com-
mand, the C;<: mllst be cl~cckcd for changes and the
appropriate Win32 objects and state \-ali~es milst bc
selected illto the 1)C:. This process can be very timc-
co~lsr~rni~ig . The kc!, to maximizing performance is to
rccognizc tlint most oper.1tions arc rcpetiti\~e. A typic.ll
stream of S rcqucsts tends to contain man!' comm.lllds
directed nt the same \vindo\v \\lit11 the same (X:.
Therefore, the \\,3y to reduce GC/DC \.alidation timc
is to cncllc the most rcccllt G(:/L'>C pair so that si~bsc-
quent commands t113t use tlie same combination nccti
not trigger 3 validation step. In some cases, graphics
opcrations \\.ill toggle kct\\,ccn two or rnorc GCs. (For
esample, the (:op!:A~.ca opcr~ltion takes a source a n d :I
destination.) The pcrfi)r~nancc jn these cases c'ln be
inipro\,cd b!. simpl!. caching Inore than one recclit
GC/DC pair. Tuning cspcl-ime~lts on the ser\.c.r
re\,ealcci tl1;lt 3 c;~c[lc size bcn\reen 2 and 4 \\-as suffi-
cient to mnsimizc pc~. fornin~~ct . Under tllc WillJo\\.s
and Windo\\.s 95 operating systems, \\,here resources
are limited, n cachc size of 2 is used. Under the
\Vindo\\zs NT opcr,iting system, the cachc size is 4.

In the cScul.sion scl.vcr, the notion of n c~clicd
GC/D(; pair is cncupsulatcd in a C++ class wlled ,I

WSDC. The WSlX: remembers the Win32 objects thnt
have been sclcctcd into the DC and the last GC that \\,as
~lscd \\,it11 it. As long .IS these elements d o not c11,lngc
from one gr;lpliics o p c r ~ t i o ~ i tc) thc ~ ~ e s t , 110 *nlidntion
is necessary. If the clic~lt appliciltion changes the con-
ccnts of the (;<:, any affected objects in the 1)C nrc
tagged and the ~ i c s t glapliics opelation on that WSIX:
\\.ill recluirc nc\\. o0jccrs to be selected into tlic DC.

E\.cnts in the \\,indo\\ system can also c;li~se W X l X
clcmcnts to become in\.alid. For csaniplc, if tlic \\.in-
do\\. is ~no\rcd o n the sc1-cc11 by the \\!indo\\, nianager,
its clip list may lia\lc clinngcd. -1'his causes the WXlX;
to in\rnlidatc the clip rcgion in its 1)C. (Clip list and
rcgion arc defined in tlic fi)llo\ving section.) The nest
graphics operation o n tli;lt \\lindo\\r \ \? i l l rccluire the
clip rcgion to be rccnlcu1;ltcd and reloaded.

Clipping in Single- window Mode
In tlic X Windo\\, Systc~ii cnvironnlent, a11 rlcsccn-
tialits o f the root \vinJo\\, li;i\,c ,I clip list, which is a list
of rectangles that dcfines tlic \iisible area of thc \\,ill-

do\\/. Tlic clip list is equal to the area of tlie child
\vindo\v mini~s any arcas that are occluded by otIic1-
X \\,inclo\\'s. Before dr.l\\.ilig illto a descciidai~t \\.ill-

clo\v, the server mList con\,crt the clip list into ;I Win32
rcgion. 111 the Win32 ,\PI, a region is a polygonal nrca,
iiot ncccssaril!~ ~.ectnngular, thnt 5311 be selected into
;I I)(: for clipping. 13ct?)1.c initiating a gr~pllics o ~ i t -

piit operation, the tilrgct WSD<; checks to see if the
current rcgion for tlic windo\\r is valid. I f i t is not, the
S clip list is con\lct.tcd to a Win32 rcgion and com-
bined \\.it11 the client-supplied clip list in the C<:, if
any. The result is sclcctcd into the output 1)C.

Clipping in Multiwindow Mode
In ~nulti\\.indo\\, ~ n o d c , rhc root \\.indow is invisible.
Each top-lc\~el X \\,indo\\, (first-generation cliilcl of tlic
root) corresponcls to a Win32 \vinclo\\l on the clcsktop.
N o clipping is necessary for thcsc \vindo\\.s, because
Will32 does tliis ,iuromLiticall!~. For \vindo\vs belo\\.
tlie tirst generation, clipping is nccomplishcti in a man-
ner similar to that L I S C ~ i l l s i~iglc-\ \ . i~ldo\~ node, csccpt
t11,lt tlic offset of tlic clip region must be adjusted to be
~.cl,~ti\,c to the top-lc\,el \\,incio\\ instead of relati\,c to
tlic root \vindo\\:

Graphics Rendering
(;I-:lpliics rendering is ;lt the heart of the S scr\Icr. 'S\\~o
of thc core go;lls for tlic eXcursion version 2 projcct
\\,ere to significnntly impro\,c server performclnec o\,cr
tli.it of the eScursion vcrsion 1 senrer and to i~npro\,e
scr\.cr conipliancc to the S protocol specjfcation.
Figure 2 colnpnrcs the performance of the eScursion
\,crsion 2 ser\.er \\'itti tll;lr of the \us ion 1 sc~-\.c~.. Tlic
s ~ i ~ l d a r d benchmark tests S 1 lpcrf and Xbcnch \\'ere
run over a local arcn ~iet\\,ork to eXcursion run~l ing
o n n 66-meg,lIicrtz I ' c~i t i~~rn processor \\gitli ; I I ~ S3
video card.

Tlic sample X scr\,cr ~ ~ p o n \\,liich tlie excursion X
scr\.ci- is based pro\'idcs .I m~cliinc-indepe1ic1c1lt Ia!zcr
that is capable of rcnciering all X graphics t l i ro~~gl i .I

small set of dcvicc-dcpcndcnt fi~nctions. In the
cXcursion S scr\,er, tlic Win32 fi~nctions pro\ridc the
\irtu.ll Iiard\\,arc intcrLicc. For masimuln pcrti)~--
rnnncc, X graphics rcclucsts are passed to the Win32

(I) (I)
W W
z Z e e
B f? z 4
l LL

F x x
X W

PERFORMANCE BENCHMARK

Performance excursion excursion
Benchmark Version 1 Version 2 Improvement

XBench
linestones 135,735 239,740 76.6%
f i l Istones 38,083 74,331 95.2%
blitStones 59,743 88,320 47.8%
arcstones 2,172,720 3,662,770 68.6%
textstones 156,190 214,762 37.5%
complexStones 71,633 71,699 0.1 %
XStones 80,057 126,408 57.9%

XI I perf
Xmark 1.6495 2.5805 56.4%

Notes:
The test machine was a DECpc XL 566.

Since excursion version 1 did not support 16-bit fonts, the version 2
numbers were substituted to obtain the Xmark number.

Figure 2
Co~iipwison o f sXc~~rsion \rcrsion 1 :lnd \krsion 2
Pcrform;lncc

API as early 11s possible \\,ithout compromising the
requested rcnderilig. Many X graphics 1.cc1ucsts]nap
neatly into Win32 calls \\,it11 little or n o data 11ianip~1-
lation. Some complex grapliics rcclucsts, Iio\\,c\.cr,
cannot bc pr,lcticnll!, mapped into liigli-lc\,cl CVin32
calls and acliicvc proper piselization. 111 such cases, the
machinc-indcpc~icic~it f~nc t ions arc callcd as helper
fi~nctions to brcnk tlie recl~lest do\\fn into simpler
graphics rcclucsts.

GDI Context Switching To reduce contest s\\,itcliing,
Windoivs batclics g ~ ~ p l i i c s device il.itc~.Kicc (G1)I)
cnlls. The dcL2ult G1)1 batch size is 20, but this limit
can be ndji~sted per thread. Testins \vitli a mix of all S
requests sl~o\\.cd tliat an o\,erall pcrformancc increase
of about 9 percent c o ~ ~ l d be achieved by increasing the
GDI batch limit to 30. At tliis level, tlicrc is rlo mea-
si~rable latency, a ~ i d , fi~rtliermore, iricrcasing tlic batch
size beyond tliis point had n o mcnsurahlc benefit.

Sonie competing X server products set the batch size
very high (100) at the bcgi~ining ofc\,cry rcqucst and
flush the queue at tlle end. This appro1 c .I i I 13s n o mca-
surable benefit over 0111- simpler method, probably
because the Windows operating system nlrcndy pcr-
forms tinier-based flushing to prevent dra\ving Intc~lcy.

Similarly, ~ \~henevcr possible, Win32 graphics calls
are combined to rcclucc the overhead of contest
s\vitcl~ing. For example, an S PolyLine rcclucst could
be rendered \\.it11 a series of Win32 1,incl'o c,ills,
but it is r n ~ ~ c l i more cfficicnt to render the I'olyLine
recluest with 3 single Win32 PolyLine call. Siniilarl!r, a
I'olyRectangle X request is best rendered wit11 a singlc
Pol!!PolyLine c ~ l l .

Solid Fills Many different Win32 resources s ~ ~ c h as
pens, brt~shcs, fonts, and clip regions ma!, be rcquircd
for any given graphics request. The resources nccdcd
are determined by tlie graphics operation itself nnd the
state of the X GC. As ~iotcd earlier, these resources arc
cre'~ted as needed and ~n'ln.~gcd by the WX1)C objects,
rcmoving significant complexity a ~ l d nearly redundant
code from the ncti~al graphics drawing routines.

Mlindo\vs Pen structures provide color rind dnsh
pattern mihen dra\ving line objects. For Jra\\ring lines,
segments, and arcs, the S scrver creates and LIKS l'ens
that correspond to the GC state. I n some cases, ho\\.-
ever, exact pjsclization cannot be acliie\,ed \vlicn usjng
Windows Pelis. Esamples of this ase dra\\ling \vide
lines with raster operations other than (;>;copy or
\vith long, dash patterns. In these cascs, machine-
independent functions arc ~ ~ s e d to reduce the rcclucst
to a set of spans (single-lvidth horizontal lincs) to be
filled. The use of l'ens is also abandoned in special
cascs \\+en the highly optimized GDI pattcrn block
tmnsfcr (PatBlt) function can be used. PatRlt fills rcc-
tangular regions \\,it11 specified colors or patterns. It is
h e r , for example, to L I S ~ the PatBlt f ~ n c t i o n to dra\v
vertjcal or horizontal lincs than to use tht: Windo\vs
traditional line-clr.i\\jing f~~nctions.

Windows Brush structures provide color and pat-
tern when dracving fillcd rectangles, fillcd polygons,
and filled arcs. Again, for performance I.easons, the
l'atBlt function is often used even \\,hen tlicrc is a
higher-level fi~nction that seems to be a closer 1natc11.
For example, PatRlt can perform the S I'olyPoint
rcquest about 10 pcrccnt faster than Setl'ixclV, the
Windows standard call for setting single pixel values.
Similarly, PatBlt can perform the X PolyFillRect
request a b o ~ ~ t 14 pcrccnt faster than tlie \iVinclo\\a
FillRectangIe call.

Tile and Stipple Fills An X pismap can be specified as a
piittern to be ~~sec l \\,hen performing fi l l operations.
When the pisniap is created, it is realized as n Win32
bitmap. When the pixmap has a depth greater than 1,
it is used as a color tile that will be used for thc till. If

the pismap h;is a depth of 1, it can be used as either a
transparent o r an opaquc stipple. An opaque stipple
dra\\a both tlie (X's foreground and background col-
ors, where tlic stipple is 1 and 0 respectively. A trans-
parent stipple is similar except that it leaves the
destination ~ ~ n t o ~ ~ c h e d \+here thc stipple is 0.

When tlie tile or opaque stipple is 8 by 8 or smaller,
a Win32 color brush is created and cached for the
dr,i\\ring. 0 1 1 the Windo\\rs NT systcm, krushcs larger
than 8 b!, S can be created, but our csperience IIJS
shown it to be slo\ver to draw \\pith them than it is to
perform a scries of bit block transfer (BitBlt) opera-
tions from the ti.le/stipple bitmap to tlie destination.

Transparent Stipple Fills There is a Win32 fi~nction,
~MaskKlt, that seems ideally suited fix performing
tmnsparcnt stipplc fills. This function, Iio\\fe\,er, \!,as
not fi~lly implemented on all platforms at the time \ve
designed the cXcursion version 2 soft*a~-e product.
Without this fi~nctjon, there is n o easy \vay in thc
Win32 environment to perform the transparent stip-
ple operations. When the foreground color is either
0 or OsE'FFE', the raster operation can be remapped
to get the proper effect. General rcctiingular fills that
d o not mect the req~~irements oftlic special case previ-
ousl!. mentioned must be accomplished by first con-
verting the stipple bitmap to the depth of the
destination ancl then remapping the raster operation.
In general cascs that are not rectangular fills, machine-
independent fi~nctions are called to break down the
request into sp3m

Image Requests The GetImage and PutImage
I-equests are other examples of X graphics requests
that d o not nlnp \\,ell into tlie Win32 API. onl!,
\tray i l l thr Win32 en\,ironment to put image data o n
the screen is to first create a Win32 bitnlap and initial-
ize it with the image data, and then call thc BitBlr
f i~nct io~l to copy the bitmap to tlic scrcen. X inlage
data al\vays lists tlie top scan lines first, \\/hereas the
b o t t o ~ n scan lines are listed first in Windows bitmap
data. Tlicrcfi)rc, before the bitmap is initialized, the
S imagc c1,ita must be scan-line tlippcti. Similarl!;
the X (;ctI~nagc request requires the use of an inter-
mediate bitmap and also recl~~irrs the scan-line flip.

Plane Mask Support h y graphics opcl-ation ill X can
be modified by setting a plane niask in tlic GC. The
plane mask specjfi cs \vhich bits of the destination pixel
arc allo\\aed to bc changed. Without a plane mask, an
X graphics operation may be defined as

dst t src @ dst,

\\?here @ is one of the 16 binar), raster operations
(e.g., OK, A N D , and XOR). When a plane mask is
given, the following assignment dcfincs the destina-
tion pixel:

dst + ((src @ dst) S: pm) I (dst & -pm)

Most video hardwnl-e de*iccs support plane masking,
and those that d o not support it generally provide List
access to vidco random-.~cccss memory (1lAiM). 'l'hc
Win32 A H , ho\vcvcr, provides neither plane miisking
nor direct vidco lL4M ;icccss. To understand why, you
must realize that Windo\\,s lias virtualized tlic color
hnnclling in an attempt to mediate contlicts bct\\,ecn
npplicntions tliat *auld otlic~~\\~isc \\.ant to nioditj' the
colormap (the pixel-to<olor mapping [able). I n this
\.irtual color environment, the concept of planc masks
lias n o mealiuig because Win32 applications ~ ~ c c d not
I<no\zr the pixel value thnt corresponds to a particular
co.lor. See tlie section Color ltcsoi~rce I\/la~lage~~icnt for
an explanation of lio\\r tlic excursion sohvarc 1nan;lgcs
to assign specif c pixel \.alucs to colors.

In tlic general plane masl< case, it is necessar!, for the
S scr\.cr to first s<i\-c the contents of the dcstiuation in
;I bitmap. The graphics c.in then be temporaril!~ drm\,n
\ \ ' i t I io~~t regard to the planc mask. Those bits i l l the
destination that are specified by die planc mask
as being unaffected cnn then be restored from the sa\cd
bit~nap. This process \\.ill \\rorlc in ever!! case but is inef-
ticicnt since it in\rol\.cs sc\acral graphics operations
behrc achieving the f nal result. Many speci;ll c;iscs can
be reduced to one or n1.o siniple steps b!. rnodieing the
source color and rastcr opcrntion. Table 1 sho*s ho\v
the source color and raster opelation call be set to
acliit.\o the plane niask etEct. The excursion S sc~.\,c~.
i~scs these optimizations for many graphics operations
~ ~ h e ~ i the source till is a solid color.

Internal Window Manager
I n the absence of ;I \ \ ,indo\\ manager, tlie cScursion
server creates a11 \vindo\\rs as pop-up \vindo\\,s. All \\,in-
iio\\,s, including top-lc\.cl \vindo\vs in ~iiulti\vindo\\,
mode, are undecorated. The!! have no Win32 borders,
title bars, o r system menus. To move, size, minimize,
mnximize, or close windo\\/s, the user IniIst r ~ ~ n ;I \\)in-
d o ~ ~ ~nanager.

An cXcursion user nl*ays has the option of using
one of tlic many X-based \vindo\\. managers available,
st~cli as tlie Motif Windo\\. ~Ma~xiger. Ho\\.c\,er, many
users \ \ . i l l \\.ant 3 \\ ' i~iiio\\, mnnager parndigm that is
co~isistcnt \\zit11 Windows so tliat all \\.indo\\,s on tlic
dcsktop have the sanic user interface. T o accomplish
this, a built-in window manager is provided as part of
the excursion scrvcr. This internal window manager
is olxrati\ze only in n i~~l t i \ \~ j~ldo\ \ l mode.

The internal \\,indo\\, mnnagcr, although linl<cd \\zit11
the server, is functionally isolated from the rest of the
code so that it can easily be disabled. Thls allo\vs ester-
nnl \vindo\\. managers to be used and also tici1i~tc-s
ciebugging by nllo\\,ing problems to be isolated. The
\vindo\v Iiianager crcnrcs n "hool<" into the scr\lcr's
wj~ldow procedure, so rliat a11 Win32 messages arc first

examined by the \\,indo\v managcr. This gives the
\\.indo\\, manager the opportunity to act on \vindo\v
nianagenient-relilteci messages such as those tliat indi-
cate a change i l l tlic \\~indow's configuration or state.
If the willdo\\) ~nanagcl- decides to liclndlc a mcssage, it
is removed from tlic queue, and the server never sees
it. If the \vindo\v manager is not interested, tlie mes-
sage is passed on to the normal \vindo\v proccdure.

The p~rrposc of the internal \\,indo\\- ninnager is
t o gi\re S \ \ r i~~do\\ ,s tlle s .me appearance and belia\.ior
as Win32 \\,indows tliat arc created by typical desk-
top applicntions, such as word processors and
spreadsheets. Wlicn an X \.vindo\v is mapped for
tbe first time, tlic intcrnal \\lindow manager receives
a Win32 WM-CItEATE message. Before tlie \\/indo\\)
becomes \risible on the screen, the \\,indo\\r Inan-
agcr alters tlic style of tlie Win32 \\.indo\\, to
WS-0VERLAl'l'El)~VINDOW. Win32 \\.indo\vs with
this style arc autoniatically managed by Windo\vs,
\\hich hnndlcs ~i io \~ing, resizing, iconitjing, maxin~iz-
ing, and closing thr windo\\fs. Each of tliesc actions
causes a corresponding message to be sent to tlie
scr\ler's windo\v procedure. The internal windo\\:
manager intercepts the messages and dispntclies theni
to the appropriate intcrnal fi~nction.

The role of the intcrnal \vindo\\. managcr coniple-
ments the I-ole of tlie server. The server processes client
requests on S \vindo\\.s and translates theni illto opera-
tions on Win32 windou.s. The intcrnal wi~idow man-
ager handles Windo\vs messages tliat indicate changes
to a Win32 window and translates them into con-e-
sponding changes to the u~iderlying X windo\\/. For
example, the no st important message that the win do\\^
manager handles is WMVINDOWPOSCHANGING.
This message is sent just before any change in the \\,in-
do\\.'s position, size, staclung order, o r \,isibilip: If this
message indicates tliat tlie \vindo\v size changed, tlie
\\findo\\/ managcr changes the size of the corrcspond-
ing X \v indo~\~ and sends a Configul-eNotit) event to
tlie client. Si~nilarly, tlie window managcr trnnslates
other uscr-directed events such as focus clinngc, \\)in-
do* stacking, and iconification into changes to the
i~nderlying X data structures. In most cases, tlie \\.in-
do\v manager does this by calling into the device-
incleprndent Iiiycr, rlius sinlulating an S ~.eclucst that
\vot~ld occur froni an external \\lindow manager.

Mouse, Keyboard, and Input Focus
Mouse actions iind keystrokes are received by the
excursion scr\Icr as Win32 niessages. Each mcssage
co~ltnins information about the \\)indo\\ that recei\~ed
tlie inpi~t 2nd the time of the input. For IIIOUSC moves
and clicks, thc scr\,cr uses the \vindo\v information to
locate the corresponding S \\.indo\\, and for\v.lrds an
S event to rliat \vi~ldo\\. Iceyboard input is for\varded
to the u,indoc\l tliat ci~rrcntl!~ lias S focus.

1)igit.d 'l'ccllnical jo~crclnl Vol. 8 No. 1 1 9 9 6 3,

Table 1
Plane Mask Optimizations

Requested X Raster
Operation

src 0 0 1 1 Modified Source Color and
dst 0 1 0 1 Notes Raster Operations

GXclear
GXand

GXandReverse

src t -pm, rop <- and

src + src I -pm
src t -pm, rop c xor

GXcopy src t -pm, rop t and
src t src & pm, rop c or

GXcopy
(src & pm) = pm

GXcopy
(src & pm) = 0
GXandlnverted

GXnoop

GXxor
GXor

GXnor

src t pm, rop t o r

src <-SIC I -pm, rop t and

src t src & prn
src t src & pm

src t src & prn
src t -pm, rop t xor
src t src I -pm

src + pm, rop + xor

GXequiv

GXinvert

GXorReverse src t src & pm
src t -pm, rop + xor
src t -pm, rop +and
src t -src & pm, rop c or
src t src I -pm GXorlnverted

GXnand src t src I -pm
src t -pm, rop t xor

GXset src + prn, rop t or

Notes:
1. dst is unchanged when src equals 1 for these raster operations. Therefore, t o preserve the value of dst when

pm equals 0, set src equal t o 1.

2. dst i s unchanged when src equals 0 for these raster operations. Therefore, to preserve the value of dst when
pm equals 0, set src equal to 0.

3. This operation sets all dst bits t o 1 except where the plane mask equals 0. This can be done simply by ORing
pm into dst.

4. This operation clears all dst bits except where the plane mask equals 0. This can be done simply by ANDing
pm into dst.

5. XORing with 1 has the effect of inverting. To invert only where pm equals 1, XOR pm with dst.

6. These operations are performed in two steps. Note that dst is inverted when src equals 1. First perform the
operation with src set to 1 where pm equals 0. dst is now correct except that i t is inverted where pm equals 0.
The second operation of XORing with the invert of pm corrects this.

7. These operations are performed in two steps. Note that dst is inverted when src equals 0. First perform the
operation with src set t o 0 where pm equals 0. dst is now correct except that i t is inverted where pm equals 0.
The second operation of XORing with the invert of pm corrects this.

8. This operation is performed in two steps. First dst is set t o 0 whenever pm equals 1. Then dst is set t o 1 when-
ever both pm and src equal 1. The two special cases can be reduced t o operations that use GXset and GXclear.

9. This operation is performed in two steps. First dst is set t o 0 whenever pm equals 1. Then dst is set to 1 when-
ever prn equals 1 and src equals 0.

10. dst is unchanged; therefore, no operation is required.

\',>I. 8 No. 1 1996

Tlic S server is n singlc application in thc Win32
c~ i \~ i ron~ i i e~ i t tI1;it L L ~ \ ~ ~ ~ ~ " all tlic X windo\vs it crcntcs.
From the user's pery>ccrivc, tlioi~gh, there may appear
to be Inore than one >(application running, each with
its o \ \ r ~ l collectio~i of \vindows. The user cspccts to
bc nb1.e to shifi the keyboard focus fro111 one \vindow
to another in tlie same fashion that f o c ~ ~ s is shifted
L>ct\\~ccn other applications. When an estcrnal *indo\\,
manager is in use, ~ C L I S c o ~ l t r ~ l is straiglitfor\\~nldird.
.. -
I lie \vincio\v maliagcr, using \\,hatever sc~nantic it

\\.:IS designed for, monitors mouse evcnts and shifts
focus accordingly. Ho\\fcver, tlie semantic modcl for
tliis may or may not br consistent with the Win32
modcl. In cithcr casc, the \\iindo\\~ decorations, c.g.,
bordcrs, title bars, and menus, arc almost guaranteed
to be different. A L I S ~ I . ivlio \\?ants a consisteot uscr
interface moc.lc1 across a11 applications must c~iiplo!~
the inter~ial \\'illdo\\, manager.

At any given rime, one \\.indo\\, o n the screen has
Win32 focus and onc X \vindo\v has X focus. Tlic two
\vil~do\vs 'Ire not necessnrily the same. Since tlie S
server creates and owns all the S \vindo\\~s in i~sc, the
scrvcr rcceives ltcyboard input when any onc of its
\\rindows has Win32 fi)cus. The keystrokes are not
necessnrily sent to [lie undcrl!,ing S \\~indo\\r, ho\\~ever.
Thcy arc sent to tlic \\!indo\\? that has X focus. 'The
internal \\.indo\\, manager assigns X focus to the X \\.in-
do\\, that receives Win32 focus. The client receiires
notification of this eLrcnr and may decide to assign S
focus to sollle other windo\\), perhaps a child \\rindow.

The server must therefore keep track of both the
X \\lindo\v that currently has focus and the state of
Win32 focus. When the scn8cr loses Win32 focus, the
X focus is assigncd to tlic root \\indo\\'. When tlie
scrvcr rccei\.es Win32 focus, X f o c ~ ~ s is assigncd to tlic
X \\!indo\\, that prc\.iously had it. Whenever X focus is
cllangcd by an applic,~tio~i or by the \\/indo\\, nidnager,
tllc current X focus st,~tc is cached so that it can be
restored later, if necessary.

Font Management
Fonts and test f~~nction,ility mnlte up a signif cant por-
tion of any graphics arcliitccture. Both the X and the
Win32 systcms dcfinc a rich set of test-rendering
opcra t io~~s and can proccss sc\reral font formats.

The fonr nlnnagcmcnt library supports both bitniap
and scalablc outline fonts. Bitmap font glyphs arc sim-
ply reformatted and i~sed. Scalable hrmats, such as
Adobe Typel, are rasterized on demancl into the X
font for~iiat.

For masi~num performance, the scsver draws test
\\ith native Win32 fonts using the Win32 Al'I. Win32
fonts are bitmnp fonts in the FON format. Win32
fi~nctionalin co\,ers tlie great majority of test-drawing
operations, but there are a fe\v c,lses in \i,hich it is
either not possiblc or not efficient to use Win32 fonts.

The server can also draw directly \vitli tlie X fonts to
provide f i l l 1 X font support and complctc test-drawing
fi~nctionality. Tliis u~ietl~od uses Win32 BitBlt() opcra-
tions to copy the ch.iracter glyphs to the display as
biunaps. L>ra\\ling speed with this method is accept-
able but not ~nas imum.

Therefore, both S and Win32 fonts are used. The
Win32 fonts may be thought of as optional accclera-
tors: the ser\,cr uses them whenever possible and falls
back to the S h n t s when necessary. The decision to
fall back can be madc on a variety of co~iditions. Tliis
technique has also proved useful in working around
problerns such as test-drawing bugs in individual
video drivers.

Since scalable font outlines arc rastcrized into
bitrnaps at run time, they are generally drawn directly
\vith the internal X font format. The extra \vork of
compiling a companion Win32 font at run time gener-
ally outweighs its \/due as an accelerator.

X bitmap fonts are most commonly distributed in
tlie Bitniap 13istribution Format (BDF), a11 ASCII tcxt
source file. The eXcursion team \\!rote a font compiler
tool that ge~icrarcs n,lti\.e Win32 (FON format) fonts
from the BL)F sources. The fonts created can be used
by any Win32 application.

7'11e co~npiler can Senerate either tlie commo~lly
used version 2 format or the extended \icrsion 3 for-
mat, which is ~~cccssarp for large fbnts that require
more than 64 kilobytes (KR) ofglyph storage. F i g ~ ~ r c 3
illustrates the process of generating cqi~i\~alcnt X and
Win32 fonts fiom ;I common source.

The X font format contains extra information (e.g.,
metrics and properties) tliat cannot be dcrived from

X and Win32 Fonts T11c X font management library is
a modular architecture that defines an API for reading
n~id \\~riting individual fonr formats. The nlodt~lc tliat
implcmcnts the API for a givcn font format is called a
I-endercr. Tliis approncli nllo\\.s X to support sc\~el-al
h n t formats: the library's renderer modules con\,ert
cstcrnal formats to a singlc, internal bitmap format,
\\,liicli is used for all draiving operations. The term
X,/~)III refers to font dam in tliis internal format.

X FONT
LIBRARY

BDF FONT Y ~ ~ ~ R S I O N WINDOWS (FON)

COMPILER FONT

Figure 3
Font Conversion

Digital Tcch~iical Journ.11 Val. 8 No. I 1396 39

tlie Win32 font. Therefore, tlic S and Win32 fonts arc
uscci together; the S infor~nl~tion comes from the
S font and the Win32 h n t is used b\. tlie Win32 API.

Realizing Win32 and X Fonts When the)i server first
opens a font, it involtes the h ~ ~ i c t i o n RealizeFont().
Tliis fi~nction gives the server an o p p o r t ~ ~ ~ ~ i t) ~ to initial-
izc data structures and perform any format-specific
operations necessary to make the font available.

To make a Win32 h n t n\.ailnble for dru\\.inp,
tlic scr\'cr retrie\.es tlic filename of the font from the
scr\zer's look-up table and registers it \\.it11 tlie Win.32
AI'I using the f ~ n c t i o n AddFoutIkso~~rce() . A handlc
to the font is obtained from (:rcatcFontIndircct(), and
tllereaftcr the handle is sclcctcci into the desired 1)C
for drajving operations. If tlic Win32 realization fiiils
k ~ r any reason, the code simply realizes the X font
instead. Failing to realize a Win32 font docs not neces-
s.iril!l imply an error condition. Such failure hnppens in
any case in nlhich tllc ~ c l - \ ~ c r dcciiics that it is best to
use tlie X font directly.

Tlie internal X font format is 3 set ofdata structilres.
The glyphs are storcd in convcntionnl arra!'s in i ~ s c ~ .
niemory. To improi~e pcrformnncc, the ser\,er I-calizcs
an S font by writing all glyphs to a Win32 bitmap in
off-screen memory. CrcatcBitmap() returns a 1i;indlc
For later reference, and the glyphs in the bitmap arc
indesed for use in drawing opcmtions.

Drawing with Win32 and X Fonts The glyphs i l l X test
strings are ofien kerned, tliat is, o\,crlapped for best
typogr~phic appearance. To dra\\r \\.ith Win32 fonts,
tlie scr\.er emulates the \\!A!, X ctl-a\~,s test b!, using
ExtrestOut(), \\lhicIi uses an intcrchnracter spacing
vector to place the indi\.idual glyphs. The font's X met-
r i c ~ are used directly to calculate this \:ector.

Glyphs fi-om S fonts arc dra\\~n by performing
I3itBlts fi-om tlie Win32 bitmap to the target \ v i n d o ~ ~
or bitmap. The server places the glyphs ~lsing the fi~nt's
X nietrics as described in the p r c \ i o ~ ~ s paragraph.

Color Resource Management
Altlioi~gli some X Windo\\. System concepts and struc-
tures map fairly closely to thosc in the Win32 s!.steni,
color resource management is handled differ-
ently. 'l'he difference is most c\~ii ic~it \\!lien dealing
with pse~~docolor video systems. (:onseclucntly, this
paper describes only this case.

The X Windoc\, System environment shares 256 col-
ormap cclls among all applications that use tlie dcfault
colormap (i.e., those th,lt ilo uot h.i\~e a private col-
or~n.ip). Applications can allocntc cclls in the default
color~nap to protect them fro111 ~nodification by otlicr
applications. I n contrast, the Win32 system allo\\'s
eacli application complete access to tile s!!steni palcttc
\vliile tlic application has focus and maps the palettes
of the ~\:indo\ils w i t l i o ~ ~ t focus as best it can.

In thc X Windo\\. System cn\,ironme~lr, \\,lien an
application reserves a colormap cell, it references the
cell \\.it11 a pisel \,iilue. This \,aluc is an indes into tlie
colormap and is used to look i ~ p tlie value that will
;~ctunlly be storcd ill scr-ccn mcriior)l \\,hen that pixel
\~aluc is used in a dra\\~ing oper.ltion.

In tlic Win32 systeni, color manngcnicnt is handled
hy the palette manager through a palcttc structure.
Eiicli ;ipplication lius a logical palctte, and a single sys-
tem pdctte contains the colors currently mapped to
the hard\\~arc colorn~np. Applicatio~is reference colors
rclati\.c to their logical pnlcttc, and tlie palette n u n -
q e r lia~idles the mapping ben\lccn tlie logical palette
2nd thc system palette. M'licn an application is given
focus, tlie palette manager maps a11 tlie colors from the
logical palctte into the systelri palctte. If the system
palette docs not have e ~ ~ o ~ ~ g l i empty cclls, tlie palette
man;igcr frees cells allocated to other applications. If
this occurs, the palette mnnagcr \ \ r i l l attempt to remap
the otlicl. applications' colors into any remaining free
cclls in tlie system coloniiap. I f ~ i o t enough cells are
free, any remaining unmapped colors are mapped to
the system palette colol-s that most closely match.

l3cc;i~1sc ofthis \\,a! of handling color resource man-
aKclnent, an application docs not kno\\r \ \hat value is . .
being stored in screen meliiory For any particular color
2nd the value stored for any color can change over the
lifctinic of the ~pplication. 'Tliis situation presents sig-
nificant difficulties for X operations tliat require exact
kno\vlcdge o f the pixel valucs in screen memory, such
as the GctImage operation and operations in\rol\ring
pl.lnc ~nnslts. Thc scr\,cr \\mrks around the difficulties
b!. crcuting tn.0 Win32 logical palettes.

-The tirst palette, i.e., the \\$orking palette, corre-
spo~lds exactly to thc X dcf ' i~~lt colormap and does not
allo\\i sharing of tlie palettc by Win32 applications.
CVhc~ier~er an S \ \~i~ido\\ / has toci~s, tlie \\!orlting palette
is in use. This causes tlic Win32 palette manager to set
LIP tlic system palettc such that it directly corresponds
to tlie X colormap, and operations that arc pisel based
\\.o~-k properl!,.

.The other palctte, i.e., the identity palette, is set up
to correspond esactly to tlie system palette. The iden-
tity palette is used \vlienc\,cr n o X \\~indo\v has focus.
I lccu~~se of the correspondence, no translation is
in\~ol\reci bcween tlie identity palctte and the system
palcttc, which allows thc X scrvcr to know what piscl
\~alue is stored in screen nicniory.

Tlie X Windo\v System cn\iiron~iient alloria for pri-
\, ,~tc colormaps, \\rliich arc created anci ~lscd by a single
npplication. The server creates a \\lorking palette for
cvcry colorniap created. Wlic~l the colorniap is installed
(normally by the \vindo\v manager \\,hen the X applica-
r iol i is gi\,en focus), the excursion soh\,are installs thc
 or or kin^ pi~lettc associated *it11 the private colormap.

Tlic cXcursion X ser\,cr currently supports the
I'scuclo(:olor \.isual class and the StaticGray depth 1

visual class, \vliicIi is rn~inly used for bitmaps.
cXcursion \rcrsion 1 also supported a StaticColor V ~ S L I ~ I
class h r I (,-color \ d c o graphics array (VGA) displays.
cXcursion version 2 treats VGA devices identically to
Psc~~doColo r dc\iccs and allo\vs the Windo\4.s piilettc
malager to generate ditl~ering patterns for the
i~navailable colors.

Network Interface
With the release of X1 1K6, the S <:onsortiu~n colii-
bined all transport-specific codc into a single place
in the sourcc tree, the S transport interface. The
eXcursion team exte~ided the X transport interface to
include Ncnvork C:omputing l)e\,ice's (NCD's)
Sremote serial line transport. <:o~nbined with the
transmission control protocol/internet protocol
(T<:P/IP) and 1IECnct transports, the eXcursion
product c.111 no\ \ , execute S sessions ojler an!! of tliesc
transports simultaneously. Tlie eXcursion product
supports any T<:P/IP stack tli;lt complies \\-it11 the
Winsock \rcrsio~~ 1 .1 irnplenicntatio~l, PATHWOllI<S
1)ECnet protocol, and NC1)'s Xrcmote protocol for
scrial line.

Tlie X transport interfi2ce pro\sidcs fi~nctions that
are common to all transports, such as pal-sing an
address inro a host and port n ~ ~ n i h e r . Tlic interhcc
does not provide a11 aI>st~-~ctio~i for tlic select() call,
because it assumes that this call is transport indepen-
dent. Unforti~nntcly, the Xrcmotc protocol requires
.In indcpcndcnt select() mechanism, and, thus, it
\\.as necessary to implement a select() abstraction to
conibi~lc rhc transport-indcpc1icIc11t select() \\.it11 the
Srelnote select(). Although somc\\.Jiat co~npromisecl
by this addition, pcrformancc \\..is a problem only
\\,hen the Srcmotc protocol \vas used in conibjnation
with either the .I'(:P/IP or the 1I1-Xnct protocol.

X Image Extension

cXcursion \,crsio~l 2 provides \versions 3 and 5 of the
S Image Extension to support a \vide rangc ofiniaging
applications. 1Sccnuse it is a Iargc body of code, S1E
is implemented as a pair of Win32 I)L,Ls to conser\.c
mclnory on slrstcms tliat \ \ , i l l not be running applic.1-
tio~is that use SIF,.

Normally, access to a DLL is one-\\,a!. Applications
can load 2nd ~nnkc function calls inro a DLL, but
becai~se it is linked dynamically at run time, the DLL
code cannot make fi~nction calls back into the calling
'~pplicntion. SIE, l~o\\,e\~er, must call into the cic\zicc-
dependent layer of tlic set-\-er to perform any required
dra\\-ing after processing its imaging requests. To per-
mit this, a n addition to the intcrhcc \\/as designed.
When the XIE DLL is initialized, the caller supplies a
list of pointcrs to the fi~nctions nccded by the XIE.

7 -
1 he DLI, fills an arra!l witti thcsc pointers dnd then
calls back indirectly through the array. On the
\Vindo\vs operating system, this design could create a
probleni because under Win32 Al'ls, global data in '1
DLL is not instanced; tliat is, the cocic is not rccntr;int.
The approach \\.arks in this case bccai~se there is only
one copy of the DLL loaded. If another app.licntion
\\,as sharing the DLL, the pointers \\,auld be ovcr\\,rit-
ten by the second initialization.

Control Panel

The eXcursion control panel is the primary interface
through \\4iicl1 tlie user confgurcs 2nd controls tlic
product. Some other components create simple \\!in-
dows or icons, but these functions are limited. The
control pancl constitutes 9 0 pcrccnt of the user intcr-
face for the cXcursion application. This fact malces the
control pancl an ideal candidate for the rapid applica-
tion devclopnlcnt feati~res of the microso oft Visual
C++ en\ironn~cnt. The control pancl is a Wj1i32 appli-
cation coded 3lmost entirely in C++ and linked \\lit11
the Microsoft Foundation Class library.

7 7

.I he niflin pilrposc of the colltrol panel is to prc-
sent a managcable interface t l ~ r o i ~ g h \\'hicIi the user
can \fie\\. and ~ n o d i % tlie eXcursion configuration pro-
file. To do tliis in n Inannrl- consistent \\,it11 the ne\\.
Windows 95 shell, the l'ropcrty Sheet MFC objcct
\\/as choscn. Property Shccts arc tabbed dialog boxes
that have the advantage of organizing large amounts
of data settings in a compact space. They arc used
extensi\,cly by the Windo\\.s 95 opcr3ti1ig systc~li and
by the most recent \.ersions of h4icrosoft applic~tions.

Tlie l'ropcl-h Sheet objcct is 3 subclass of the
Windo\\rs ohjcct rind is essentially a containel- for tlic
tabbed pagcs. Each tab, \\!hen cliclted by tlie nser, dis-
plays a dialog box that is subclassed fi-om the MF<:
Property Pngc object. The indi\vidual pagcs can be
visually configured a ~ l d revised i~sjng the class \\tizard
feature of Microsoti Visual C++. The designer simply
selects dinlog box controls such as buttons, drop lists,
o r edit fields and positions them o n the dialog box.
The codc to handle user actions is then f lled in.

Tile cSc~~rs ion control pancl is slio\\.n in Figi11.c 4.
We constructed an initial P I -o to tyc of tlie control
panel application \\,it11 about 6 0 percent of the fnnl
fi~nctionalip in less than one month.

lnterprocess Communication Library

eXcursion \.crsion 2 consists of sc\wal cooper.iting
processes t h ~ t must conin~unicate and synchronize
\vith one anotlicr. \/VIien a rc~iiotc S application is
started by tlic server o r the control panel, the ~pplica-
tion launcher signals when tlie operation is complctc.

Vol. S So. 1 I 4.

I
.- --

I i I XDMCP Extensions Communications Modem

Figure 4
The cXcursion Control Panel

Error and status inforn~ation is sent to the error loggel-
by the othcr components. When tlic user changes
a configuration setting through thc control panel, the
changc tilust be communicated to the S scr\.cr, if it is
running. In some cases, the changc can take effect
immediately; in othcr cnscs, the ser\'el- cannot i~nple-
ment thc change \vithout I-cstarting. The control panel
and the server must e n p g c in a dialog so tliat the user
can he informed as to \vIiat actio11 must be taken, ifany.
P .

Ilie IP<: library is an operating system-independent
API tliat permits cXcursion components to determine
\vhich otlicr components are present and to cschangc
co~nmands and config~~l-ution infor~n;~tio~i.

The Windows N'I' operating system providcs scvcral
built-in IPC mechanisms, but most arc nor n\.ailablc
on the Wi~ldo\vs o r Wil~do\\.s 95 systems. The onl!.
mechanism that is uni*crsal to the three operating
systems is the rncssngc-passing i~iterfacc in tlic Win32
API. This mechanism, while not the most cfticicnt, is
rcJati\lcl!l straightfor\\jard to iniplerncnr. Sincc the pcr-
f o r m a ~ ~ c c dclnands o n tlic IPC library were detel--
mincci to be very light, this mcclianism \\as chosen.

'I'he disadvnntngc of the Win32 niessage-p~ssing
interface is that it is \\111do\v based, not proccss bnscd.
~Mcssages arc I-ccci\.cd by n callback procedure that
must be associatccl nith a \\indo\\, heforc an!* commu-
nication can take place. If an application has not yet

cl-eared a \\,indo\\; o r never creates ,I \\li~ldo\\; ns is tlic
cnsc with the application launclicr, n o comml~nicatio~i
is possible. To rc~iiedy this, the l.I'C: library crc.ltcs its
o\\,n windo\\, \vllcn the calling process initializes. The
IPC \\indo\\. is nc\,cr mappcd to the screen, so it is not
\,isiblc to the user. All intcrp~.occss co~nii iunic;~tio~i
passes t h r o ~ ~ g l i tlic IPC \\,indo\\.

The IPC l ib r~ ry consists of n collection o f u~iiquc
lncssages and an API. The Incssagcs arc registered
\\fitli the Win32 function Registcr\Vindo\~~Mc,u:agc.
'This ensures tliat the messngcs used by the excursion
applicatioll d o not conflict \\?it11 sgstcrn messages o r
Iiicssagcs i~sed by other applications. The eSc~~rs ion
I PC messages arc

i~xC,om~x)1ic1itStartedh4sg, \\rliicl~ the IPC: posts to
;1II ~ O I I I ~ O I I C I I ~ S \vlien a component initializes.

ipcl<estartServerMsg, which the IPC sends to the
server to tell it to restart.

ipcRestartSer\7erStatusMsg, \vhich the IPC posts
with the status of the rcstart rcquest.

ipclnquireMsg, which the IPC sends to retrieve a
data item from a component.

ipcProfileChangedMsg, \\lhich the control panel
scnds when the registry profilc changes.

ipcI,auncl~OneCo~iipleteMsg, which the applica-
tion launcher sends to noti@ the server of launch
completion.

ipcLaunchAIIComplete~Msg, \vhich the application
launcher sends to noti@ tlie servcr of lau~icli coni-
pletion.

ipcHideAIWiridowsMsg, which the server sends to
all components to tell them to hide all their win-
dows. The excursion application uses this messagc
to execute the pause/resume feature.

ipcShowAllWindowsMsg, which the server scnds
to all corilponents to tell them to show all their uin-
dows. Thc excursion application uses this message
to execute the pause/rcsun~c feature.

In addition to sending and rccei\,ing messages,
eXcu~.sion processes can use the IPC library to deter-
mine which other components are running. The IPC
initialization procedurc creates a wi~ldow with a
i ~ n i c l ~ ~ e name that identifies thc calling component. To
determine whether a specific component is present
in the system, the IPC scarchcs all windows 011 the
system until it finds one with the correct name.

Error Logger

'The error logger is a Win32 application that receives
error and informational messages from other compo-
nents and either displays them in a window o r logs
them to a file. O n the Windows NT operating system,
inhrmarion that may help system managers or users
diagnose problems ma)(add~tlonally be recorded In
the Windows NT e\,ent log.

Application Launcher

Thc application launcher is a Win32 application th i~t
handles requests from the control panel o r server to
start X client applications. The clicnt may reside o n
a rcmotc host or on tlie samc machinc.

When the user reclilests the servcr o r control panel
to start an X client application, it starts the excursion
application launchel- in a separate process. The applica-
tion command, host name, account information, net-
work transport, and command shell are passed to tlie
launcher in its command line arguments. The launcher
makes thc connec t io~~ to the rcmotc system, initiates

the command using the selected protocol (resec, rsh,
l)E<:nct object, o r local command), and scnds an IPC
mcssage to the server indicating that a new application
is starting.

Registry Interface

The Windows NT opcrating systcni i ~ l t r o d ~ ~ c c d a ncnf
concept called tlie registry. This is a protected database
maintained by tlie operating system, wherein Win32
applications may store config~~ration and state infor-
mation. The registry has a well-defined API and
a maintenance utility program that is shipped with
the Windows N T operating system. Under the
Windows operating systeln, config~~ration information
is kept in simple text files, which are vulnerable to
accidental or malicious tampering. At the time the
design of excursion versio~i 2 was under way, ~t ' was
unkno\vn which, if ejther, of these two methods would
be available under the Windows 95 opcrating system.
Nevertheless, all three of these operating sjatems had
to be supported.

VVc dcsigned an API for acccssi~lg the configuration
i~lh)r~nation in a manner independent of the operating
system. I(no\vledge of the operating system and its reg-
istry access method is encaps~~latcd in the library. Since
sc\lcral independent processes must access the informa-
tion, the library is built as a l)LI, to conserve memory.
The interface basically resembles that of tlie Windo\vs
NT registry API but eliminates some ofthe complexity.

If the eXcursion software has not been configured
\vhcn thc registry interface first acccsscs the profilc,
default values for all settings arc selectccj to allo\~, the
sofnvare to function normally.

Summary

With computer systems bascd o n the Microsol?
Windows operating system increasing in power and
decreasing in price, Windows-based systems are appear-
ing on desl<tops that once held \+,orltstations running
the UN IX o r OpenVMS operating systems. Windo\vs
systems must be able to access applications on remote
filc and c o ~ i i p ~ ~ t e servers running in the X Windo\v
System environlnent. Version 2 o f tllc cXcursion prod-
uct provides desktop integration of X client applications
with native Win32 applications. Modular coding tech-
niclues, object-oriented programming, and selective use
o f the Microsoft Foundation Class library helped
rcducc development time, and improve performance,
maintainability, and reliability.

General References

1). Giokas , ~ n d A. Lesko\\.itz, "cXcursion for Windows:
Intcgt.,~ting ?'\ \ lo Windo\ving Systcriis," l)/gitrrl Tc~cl7jlical
,Jo~rr-n~~l . vol. 4, no. 1 (Winter 1992): 56-67.

Vol. 8 No. 1 1996 45

X Window System
S . A~igcbrnnrldt ct al., DeJi'//i/ioi/ c!/'/hc l)ol?i/~,g L~i~,c,t.,/i)/'
Il~c) S 1 . 1 1 S ' (I I I I / I /C Sewei. (C,n1l1l>ri~lgc, i\/l.lsb.: S \ ' < :~ I I so I . -
t i ~ ~ ~ i i , I I I ~ . , 1994) .

J . Fulton, 7 % ~ A' Fo17l Scw*ice I'tu/oc'ol. li~t:sio~c 2.0.
A' li>~:~io/r 1 7 . RE/~>LISC 6 (Cnmhrjdgc, i\/lnss.: S Consor-
r i ~ ~ ~ i i , I~ i c . , 1994).

E. Israel and E. Fortilrle, 7hc) A' \V~IIL/O?I~ S)~.S/OIII .So~.i~c~r;
X li.t:iiot/ 1 7 . Kc~le~fse 5 (\%burn, ~M;iss.: lligital Prcss,
1993).

I<. I'acknrd and I). Lemke, 71oc S / i) r / l /.ihrz/t:)~ (Cam-
bridge, h,l.iss.: S (:onsorrium, Inc., 1995) .

I). Ilosc~~rh.ll, / / i /e~1-(~/ i~/7/ C O I I I I I I I I I I I C L I / ~ ~ / I (. ~) I ~ I P I / I ~ O ~ I S

.Ilrrr~~/o/. li,r:iiorr 2.0 (<:ambridge, Mass.: S <:on~ort ium,
Inc., 1994).

I<. Sclicitlcr, .Y \Vi/i,7~lo~i' S I ~ / C I I ~ P~.olocol. ,I' I iJ/sioii 1 I .
Kcl (~ /sc l 6 ((:n~nbridge, blass.: X (:onsorriu~n, Inc., 1994).

R. Schcitlcr and J . Gettys, X l.Vi~rc/oir~ S~:SIWII (Ilcdford,
Mass.: 1)igital l'rcss, 1992) .

Networks
JM. Hall c t nl., "Windo\\.s Sockets: An Opcn Jntcrfncc for
Ncrivork PI-oglumming under Microsoti \Vi~ido\\,s, Ltrsiori
l . I " (l 9 9 . ~) .

W. Src \ , cn , I I I W iV~/ri'o,%? P/.og/'colri~~i/r~ (Englc\\,ood
(Iifti, N.J.: Prcnticc-Hall, I~ l c . , 1990) .

X 'Ii-~~~rs/~ot-l /r//cr~/ace (Dayton, Ohio: N<:R (:orpol-ation,
1993).

Windows Operating Systems
1<. Rlnkc, 0/1/i1~7izir I,C '1Ti17~locis .\'T IL'i~rrlori:\' .\9'lZc..so11/cr
h'il. \,ol. 3 (Redmond, LVash.: 1\4icrosoti I'rcss, 1993).

14. (:11src1., I~tsi~lc \C71i~/ou:s ,\.'I (I<ci in~o~i i i , \,V;lsli.:
hlicrosoft I'rcss, 1993).

A. King, 717sirle \.L~ii,rcloirs9-5(Rcdmond, \.V;lsIi.: Microsoft
I'rcss, 1994).

i . I I I I I ~ I S R L J J ~ I . C ~ ~ C C . vols. 1-5 (Rcdmond,
\.V.lsh.: microso oft Press, 1995).

Windows Programming
I<, (;11risti.111, 117~ ,I!ic/.oso/i C ; I I ~ L ~ > lo &'++ l~ro~rr~r~~rr/iri,q
(I L d ~ n o n J , \,Vash.: Microsoft Prcss, 1992) .

1'. l~iI.;lsci:~, \Yitido~~:~++: \Vi?/i~/g I<cJI/.s(I!)/c~ \V.it/(lo~r:i
(.i)t/o i/i (.++ (Reading, h/lass.: r\ddi.;on-l\lcslc\, I'~1blishi11g
(: ~ I I I ~ ~ I I I ! . , 1992) .

7 1 7 ~ Gi 7 GI/;(/(,, / i i / o i . / / ~ ~ / i o ~ / ~ ~ / 7?~ri//i//(1/og)~,/i)i. tho 11.711-
do/i:i / i / / ~ ~ / ~ / ~ ~ c ~ c ~ (l l cc i~~ lo~ id , b\Ji~sli.: ~ ~ i c s o s o f r Press, 199.3).

S. Mc<:onncll, Ci)t/v Cbl~l/d~/c: A /Jrwc/ical kl~rritll?ook oj'
S?/itrzrrc~ (,i)/~.<t/./iclio/~ (Rcdmond, Wash.: Microsoft
PI-as, 1993) .

C:. I'ctzol~i, l'i.c~y/z~/lr/l/i//~q W'ii/do/c:s, 2d cd. (Rcdrno~id,
Wash.: Microsoft I'rcss, 1990).

Biographies

J o h n T. Freitas
Prcsclirly a soft\\..irc c~ lg i~ icc r at Atria Sofnrarc, John
t'rcitns \\.orkcJ ; ~ t 1)igirnl for 15 years. For the last
!7rars, lie \\,a ~\5oci,ltcd \\.it11 I)iginI1s cScursio~i prodl~cr
.IS a11 indi\,id~~.ll contributor, .in iircllitcct, dnd a designer-.
Previously, lie \\.as in rhc \\'orkstntion g r o ~ ~ p . John rcccivcd
3 B.S.E.E. kom Norrhcnstc~-n I'nivcrsiy in 1967. While
in collcgc, he \\ol.kcd as a co-op scudcnt on rhc Apollo
I'rojcct a t rCIIT1s 1)npcr I.;iborntor!,. During the 1970s,
he \\,o~~licil ti)^- H.ir\':~rii U~li\ ,crsin dcs.cloping and ~na in -
raining 1ncclic31 c o l n l) ~ ~ t i ~ i g facilities at Massachusctrs
C;cncrnl Hospital.

James G . Peters011
Janlcs I'cterson is currcnrly ;i sofr\vnre rngincer a t
DcLomic Mapping. As 3 m c ~ n b e r of 1)igiral's Windo\v>
NT group, Jamcs Icii the ~.clc'~scs of the cScursion soft-
\\,'ire fro111 \ , c ~ - s i o ~ ~ I , I t l i r o ~ ~ g l ~ \,crsio~i 2.1. 111 .~ciiiitio~l,
lie \vorkcd '1s ,1rchitcct anti indi\,idual contributor o n
thc eXcursion project, conccntl-aring o n graphics and
performallcc. E;ulicr, he \vorkcd in the PI\-I'HWOIIKS
2nd Railibo\\ groups. Jnnics \\.,IS employeti b!! Cornpion
Corporation bcforc joi~ling 1)igital in 1984. H c rccci\,ccl
a B.A. (1979) in mathcnlntics from Indiana Uoivcrsin
and an M.S. (198 I) in mathcmnrics ~ n d an X I S . (1 9 8 4)
in computer science, hoth fi-om the Univcrsin of Illi~iois.

Scot A . Aurenz
Scot Aurcnz is a principal sol.i\\,nrc engineer ill tlic
Windo\vs NT group \vhcrc he \vorks o n the develop~ncnr
o f the excursion PC: S scr\,cr. Scot has co~irributcd t o many
projects at Digital, inc l t~di~lg tllc 1-anguage Sensiti\,c Editor
(1)EC:sct LSE) and the SUVAS u.orkstation. Scot ciimc to
1)igirnl ill 1979 as a I'unluc Univcrsin co-op stildcnr nnd
l>cc.lmc n full-ti111c crnplo!,cc .~licr rccci\ '~ng his II.S.F,.E.
in 1982. H c rccei\,cd .In h~1.S.E.k. from rlic Uni\.crsiry of
Illinois in 1986.

Charles P. Guldensclluli
<:h:irlcs Guldc~ischuli is a principal software enginccr in
1)i~iwl's \Yindo\vs N.1- g rou~> . H e is responsible for color
support slid sofi\\arc installation o f the cXcul-sion product.
I'IU iously, lie \\.orkcd in thc ICcnl-Time Sofi\v.~rc,
1'1.ofcssional 300 Soft\\ arc E~iginccring, slid 1<1'- 1 1
F,11g11iccring groups. (:ll.~rlcs joi~iccl Digital r~ticr rccci\.ing
hi5 1i.S. in inforniarion and computer scicnce from the
Georgia Instirutc. o f l ' c c l i o o in 1976.

Paul J. Ranauro
I'aul Ra11;iuro joincii 1)igital in 1987 .inti is n p ~ . i l i ~ i p ~ I
softwarc cnginccr in the \Vindo\vs NT group. I-lc is
rcsponsiblc fix .ipplication failover for the Digital (:lusters
for Windo\\,s NT product. In earlier \\,ark, he parricip;itcd
in tlic dcvclopmcnt of thc excursion sofr\\,arc and the
ACMSsp rrans.~ctioli processing monitor, spccific.iIly,
in the implcmcnratio~i of the RTI protocol. H e ;ilso p;ir-
ticipated in rlic implcmcnt;trio~i of rlic ~Vnnuf,icturing
hlcssaging Scr\ ice OSI application layer protocol Fi)r tlxc
L)ECo~iini product and ;i network perforniancc analyzer.
Prior to coni i~ig to l)igital, lie was a consultant at I~irics
Systcms and a senior software enginccr at Miconi-I~itcrla~l
Paul holds a l3.A. in history fi.om the Uni\lcrsity of
~Massachusctts ;it Bosto~l.

Val. 8 No. 1 9 6 45

I
Margaret Olson
Laura E. Holly
Colin Strutt Integrating Multiple

Directory Services

The Integrated Directory Services (IDS) infra-
structure implements a directory-service-
independent interface. The IDS infrastructure
is used by applications that store and retrieve
information about resources in environments
with either multiple directory services or one
of several directory services. The IDS interface
isolates users and application writers from
the unique requirements of different directory
services by providing a view of a single, logi-
cal directory service through a simple federa-
tion mechanism. To retrieve resources from
the logical directory, IDS determines i ts phys-
ical location and converts the resource from
a directory-specific to a canonical format.
Extensible schema tables represent the canon-
ical format for each resource and allow IDS to
represent resources created using both the IDS
interfaces and the directory-specific interfaces.

1)igital has developed the Integratecl 1)irectory
Scrvices (113s) technology to provide a mcch,~nism for
integr~ting multiple directory services into a single sys-
tem. In this paper, \ve examine the development of the
11)s infi.astructure. We begin by discussing thc prob-
lems hced by net\\lorlc directory applications. Nest \vc
describe our design goals, the IDS infrastructure, and
our initial implementation on the PA-1-HWOlWS
product. Mre conclude \\lit17 a brief discussion of plans
k)r f i ~ t ~ l r e cle\~elopment.

Directory Support in Multiple Environments

Although &rectory services are a powerfill mechanism
ti)r distributing and accessing certain kinds of informa-
tion, relative.ly few applications choose to use them.
Digital's PATHWOIUG application \\/as in need of a
clirectory for printers nnd file shares. PATHWORKS is
;I 11envork operating system (NOS) integration product
tliat gives users ncccss to both Microsoft's LAlU
Manager and Novell's NetWare file and print shares. As
we studied how to incorporate directory support into
PATHWORKS, \ve came to a better undcrstnnding of
t l ~ c problems faced by directory applications in general.

Nenvorks are growing rapidly, as are the amount
and kind ofinformation tliat can be accessed through
the netu/ork. We \ \we certain that f i~turc network
,~pylication p r o d ~ ~ c t s \ v o ~ ~ l d have an even greater need
for a directory, and therefore a general solution was
needed. We then set out to design a system that would
remove the barriers to directory service application
usage a i d deployment. We resolved the tension
between the product deadline and the time required
to implement the general solution by designing a
coniplete solution and implementing whnt \\[as neccs-
sary to prove the design and t o meet the inimediate
needs of the PATHWORKS product.

Existing Directory Services
There are a n ~ ~ m b e r of general-purpose directory ser-
vices. Some of the more familiar include X.500,
Novell's NetWare llircctol-)I Service (NDS), thc Cell
1)irectory Service (CDS), and Banyan Systems'

46 l>igir'~l Technical Jc~ul-n;~

StrcciI'.llk.' ' 111 tlle past, director!(scr\.iccs \\,ere in rcl-
ati\,cl\, li~nitcd llse beca~~se most directory scr\riccs
\\,ere tied to either an operating system or .I tru~isport

r ~ c ~ ~ \\.ere con- o r both. 111 nddition, director!? sen '
ncctcd to n multiti~dc of applicatio~~ ~x-ogl-a~nlning
i n t e ~ - ~ ~ c c s (Al'Is) that \\)ere i~icolnpatiblc and difficult
to ~ ~ s c . iMore ~.ecently, directory services I i ; 7 \ ~ been tied
to nct\vork opcrati~ig systems or applications, ~ l t l i c r
th;ln to Ilost olxrating systems or transports. If any-
thing, tllc numI7er of L'sta~idard" AI'ls 11~1s gro\vIi.

In I.irgc networks, this complcsity has resulted in
the proliferation of directories, often containing over-
lapping intbrmation. This makes the network man-
ager's job ciifficult, \vhich in turn creates resistance to
ciircctol-y npplications. At the same time, nenvork and
NOS technology has developed to a point \vliere an
cvcr-illcreasing amount of information is being shared
o n different machines. To give a silnplc example,
,~lmost every server at l)igitalls Littlcton site has a con-
nection to the lligll-\~olumc printcr in the cop!/ center,
\\lit11 a different name on every server. A dircctory
\vould si~npli$ users' access to tliis singlc pliysic~l
resourcc by presenting a single name for tlic printer,
if only the .~pplication \\triter could figure out \vIiich
dil-cctory scr\icc to use and ho\v to use it.

Other Approaches
As discussed Inter in the Ilesign of t l ~ e 11)s Frame\\.ork
,111ii Sc~.\'icc l'roviders scction, 11)s dcfi ncs both nn hP1
 nil .I service provider interface. Support for a n y dircc-
tory service can be provided by \\,riting a service
provider mociulc. ~Uicrosoft's OLE Directory Services
(OLE 1)s) takes a similar approach to 11)s) \\;it11 a more
limited initial implernentation.Altliougli the current
11)s implcmcntation rutis under Microsoti Windows, it
\\!as designed to port to other systems. OLE 1)s depends
o n features of the Windo\\s operating systems.

The >;/Open Fcderatcd Naming (XFN) specification
\4r.is not complete at the tinie \Ire \\,ere designing IDS,
,111d it tiid not include either a service provider in ter f ie
or n rcfcrcncc implementation." We did cs;lrninc the
XFN d r ~ t i anci designed the 11)s interface to be coln-
p.itiblc \\,it11 SFN, with a vie\\, ro\\,arci supporti~ig the
XFN AI'I in the firti~re. Supporting the SFN interhces
o n top o f 11)s \\,auld be a relati\~cl!) straiglithr\vard
tnsk, ,lnd \\,c lia\re considered doing tliis.

The PATH WORKS Application
In rhc NOS cnvil.on~nent, e:lcli NOS hns its own
ciircctor!. or pseudo-directory. NctWarc version 3
implcmcnrs the Binder!,; NetW;irc 4 implements
N1)S.' The various implementations of Microsoft's
LAN Manager protocols provide a virtunl clircctory
bnscci o n infol-mation niaintained by its cio~nnin con-
trollers. 111 n multiple NOS cn\.iron~ncnt, the user is

presented \\.ith multiple information sources fro111 the
multiple dircctorics. F,\vcn \\lorsc, the user niay be
faced \\,it11 multiple information sources even in a sin-
~ l e NOS environment, sjnce there may be ~nultiplc
NetVVnre l<j~lderics or LAN Mnnager domains.

M~~l t ip l e NOS en\~iro~lme~xts d o not, in and of them-
selves, causc co~nplcxity and confi~sion. I'roblems arise
\\>hen people within n singlc environment want to share
resources XI-oss m~~l t ip lc c1l\~iro111iients. For example,
consider 3 c o ~ n ~ i i o ~ l Ioc:ll area nenvorlc (LAN) configw
ration \\lliere NctWnrc is i~istallccl on tlie clients and
servers for one depart~nent and Microsofi's LAN
Manager (contnincd \\tithin products sucli ns
Microsofi's Windo\vs for Workgroups, Windo\\.s 95,
and Windo\\fs N'T' operating systelns, or the LAN
Server product from International Busi~iess ~Uachines
Corporation) is installed o n the clients and servers for
a1iothe1- departtilent. If c,lch department's resources,
users, and administration personnel are kept distinct,
there is n o problem. Howc\lcr, any desire to allow
users to share resources bct\vccn departments, o r to
have cornmon nd~ninistration o\ler the departme~lts
introduces ~dmi~iistrnti\,c n~lci uscr problems. If a
printer is to he slinrcd by tlie nvo departments, it must
be administered t\\/ice: once i l l thc NetWare environ-
ment rind once in the LAN Malinger en\~ironmcnt.
Users in the tn.0 departments use different names for
the same printer. Later NOS imple~iientations, sucli as
Digytal's PATHCVOl<I<S \.crsion 5.0 or tlic ncnvorlting
sofnvare built into Microsoft's \iVindo\\ls 95 that pro-
vides support for multiple NOS protocols, clo nothing
to manage the rnultiplicjty of names for the same nct-
work resource.

As \ve were contcmplnting the set of capabilities
we needed to design for the next generation of
PATHWORKS client products, we realized that solv-
ing the connectivity proble~li implied in a multiple
NOS e~ivironmcnt was not enough. User access and
administrator control of NOS resources needed to be
considerably simpler.
i\s \\.e looked at the problcms in larger networks,

\\.e saw the need for the ability to provide morc sophis-
ticated mc,lns to locate NOS resources. T!.pically,
NOS client soft\varc pro\,ides the means to bro\\.sc
the ncnvork to l o c ~ t c n resource. Ho\\re\rer, browsing
requircs the user to kno\\l tlic location of the resource,
specifically the name of the server, and to be able to
clloose the r c so~~rcc o n the server by recognizing
something about the resourcc name or a resourcc
description providcd by the adn~inistrator. What \\/as
needed \\,as a design that .~llo\\zs a user to search, as
\\,ell as bro\\rsc, for .I resoi~ r ~ e based on vario~ls attrib-
utes describing the rcsoLlrcc.

Finall!; existing NOS cn\,iron~nents have a fairl!, Iim-
ired vie\\ of the set of resources that can be referenced .

Vol. 8 No. 1 1996 47

l<otli NetWare n~ld \rarioi~s LAN iLI;ln;iger implemen-
tations pro\,ide s ~ ~ p p o r t for pri~itcrs ,ind file shnrcs.
Wc \\,anted to be able to catcnd tile types ofresources
thiit c o ~ ~ l d be referencccl and m;~~lagcd from tlie ~ic\\ ,
clircctory capability tliat \vc \Irere designing.

Thus we embarked on a design for the facility
initiall!~ called IDS, for Integrated 1)ircctory Set-\,ices.
The P A T H W O W \ a s i o n 6.0 iniple~nentatioll was
evcntu~lly called Directory Assistant. \Ve refer to this
technology as 11)s t I i ~ - o ~ ~ ~ l i o ~ ~ t this paper.

Design Goals

As \\'c looked at the rcquircmc~l ts of the I'AAI''HWORI<S
p r o d ~ ~ c t , \\!e ~ O L I I ~ ~ tlinr m.lny of those req~~irenients
c o ~ ~ l d techllicaIl!/ be ~iicr \\~itll ,III!~ dircctory service tliat
\inas integrated illto the 1'ATHWORKS applicatio~is anci
tool sets. PATHWOIWS I-cquil-cd tlie ;ibility to

Give a single name to resources that cnn be acccsscd
by means of multiple ~ c r \ ~ c r s or protocols

I~isi~latc end L I S C ~ S horn changes in the \\.ay
resources are allocarcd among the senrers

1h4;inage resources in Jn NOS-independent manner

We coi~ld not si~nply pick n dircctory ser\licc and
integrate it illto PATH\IVOI<l<S, because \ve could not
rccli~irc tliat all customers deploy a particular dircctor!~
scr\rice at their site. The PATt1WOl<I<S product is
both NOS- and transport-indc~>c~icie~~t; introducing

S L I C I I a d e p c ~ i d c ~ ~ ~ e \\,as i~~iacccpt.~blc. LVc qilicld!' real-
ized that these \Yere tlie requil-cmc~its that kept many
other applications from s sing dircctory services.

C)ur assumption \vas tliat ~ i i a ~ i y ncn\.ork applicn-
tions \ \ ' o ~ ~ l d use directory scr\.iccs if they coi~ld , bur
tli;it fc\v of them could nssumc or require a particular
director!/ service. Working from that assumption, \\,e
sclcctcd the follo\\~ing design rcq~~irements for 113s:

llirectory service incicpcndcncc

Ability to access csisting d ~ t a

Ability to join dispar.lrc nLlmcspnccs into a single,
logical nnmcspacc

l<emo\.al of barriel-s to succcssf~l deploy~iient of
n \\-idc area 11et\\~orIi (\VAN) clircctor!,
Ability to hide directory lialnc synms

Support of scarcli

S ~ ~ p p o r t of application-specific directory entries

Directory Service Independence
(:~lstolncrs must be ~ b l e to clioosc. tlic director!, scr\ ice
ill \\,liic!i the!, store resource infi)rnlation. Some cus-
tomers Ii;~\,c 3 preferred dircctol.!, scr\,ice, \\,Iiich the!.
\\,;i~it to c o ~ i t i n ~ ~ e to IISC. OtIicr c~~sto~i icrs , \\rho arc not
using a particular directory scr\.icc, prefer that Digital

vo1. 8 No. 1 1990

pt-()\,ides the director!, scr\~icc. In 3 fex~, cnses, a cus-
tolncl- might \\,is11 or cvcn need to store information
; I ~ O L I I different resources in diffcrcnt dircctory services.

Ability to Access Existing Data
A great deal of i~ifor~nation currently exists in
application-specitic director!1 services and in NOS-
specific dircctory scr\ficcs. A rclati\,cly large nurnbcr
o f applications also use the niitive interf~ces to store
information in the NOS directories. Allo\\,ing users
to .lcccss tliis information dircctl!, through 113s \\.as
critical. \Ye e~pressl!~ \\,anreti to a\,oid tl?e need to
ciuplic.lte director!, informatio~~ in separate, incolnpat-
iblc s\,stcrns.

Ability to Join Disparate Namespaces into a Single,
Logical Namespace
Many directory services arc ailncd nt a specifi c applica-
tion o r J set of applications. For csample, current
X.500 deployments contain mostly people infonnn-
tion such as narnes, phone numbcrs, and electronic
mail addresses. (Note: S.500 is an extremcl!, flesible
di~-ccto~-\r scr\,ice tliat can be used to store almost an!,
kinti of i n f o r ~ n a t i o ~ ~ , but for Iiistorical reasons most
dcplo!,ments contain peoplc information.) NOS direc-
torics contain infor~iintion abo i~r N O S rcsources such
ns printers. Consecluently, ninny uscl- environments
lin\,c niultiple directory services, each of \\.hich con-
tains critical business i~iformilrion. To access this exist-
ing c1at.1 and present it to the L I S C ~ i l l a ~ i iea~i i~igf i~l \yay,
rlicsc multiple directory namcspnces must be joined
into ;i single, logical naniespncc.

Removal of Barriers to Successful Deployment of
a WAN Directory
Hicr.~rchicnl directory scr\iiccs gcnernll!, require that
tlic n,lming hierarchy be dcs ig~~cd before the directory
is cicplo!!cti. Sincc the hicrarcliy consists of names,
11nd n.1mrs are sensiti\~c nnei political entities, this cnn
be rill cstrcrnely difficult task. Or~nnizations also
c1i.ingc over tirne, t i~rthcr complicating the problem of
cicsigning a n;lme hierarchy."

01-gnnizations that succcssf~~ll!~ cleploy directory ser-
vices d o so from the bottom up. The NOS directories
arc clcploycd precisely because they a\.oid the prob-
Icms i~lhcrcnt in a nanie hieral-chy. An administrator
call set up a No\lcll 3.s Bindery k)r a local organization
\\~itliout \\lorr!ling about ho\v tlic name o f one group
rclntcs to the nalncs of .ill the other groups. The
do\\,nsidc to the NOS directories is tliat they have
,I limitccl nbilit\r to scale bc!,ond a 1.AN. With IDS, \\.c
\\.n~ltcd to p~.o\.ide a fra~iie\\,ork tl~.ir \\,oi~ld gron. \\'it11
tlic user's environment. A user could start with a local
dircctory hilt jncorpornte that ~iircctory illto an enter-
prise o r global directory \\,lien the time \\,as appropri-
ntc, \\.ithout affecting the end usel-s or tlic applicatio~~s.

IDS

FRAMEWORK

SERVICE PROVIDER INTERFACE

NATIVE
DIRECTORY
CLIENT n

SERVICE
PROVIDER

NATIVE
DIRECTORY

NATIVE
DIRECTORY
CLIENT H

SERVER SERVER SERVER

Figure 1
Structure of the Integrated Directory Services

entry; it is a directory scrvice object that represents
some netc\~orl< object. A tpesoL(rct' class is tlie definition
of that type ofdirectory entr)l. For example, the direc-
tory entry that describes a spccific printer is an IDS
resource, and the IDS class that describes every printer
entry is a resource class.

The framework provides extensibility by dcfinu~g
C++ object classes that allow for the creation and
manipulation of resources, attributes, and attribute
values in a type-indcpendent manner. Tlie type inde-
pendence allows both applications and the frame\\~ork
itself to 111anipulate IDS attributes and attribute values
~vithout knowing their types. As long as the new types
are built o n top of existing IDS system types, applica-
tion writers may define new IDS types without nlodi-
fylng the service providers.

The framework dispatches directory operations to
the appropriate service provider and maintains overall
systeni state and integrity. I t maintains a list of the
service providers that are currently available and
shows the errors encountered in any failed loads.
This allows the system to continue to opcrate, albeit
in a degraded state, even though one of the service
providers may be rnalhnctioning.

Before we discuss the design of the SPI, we describc
the framework's objects.

IDS Entry The funda~nental IDS object is the canoni-
cal representation of a directory entry, the IDS entry.

The 11)s entrp is an abstract object. To create a
resource class, applications define a resource type and
derive it from the IDS entry. IDS entry objects are cre-
ated and manipulated through the API and translated
into the appropriate native director!l format by the ser-
vice providers. Derivatives of the IDS entry may define
additional methods, but they may not override the
IDS entry methods. The IDS entrp methods are part
of the framework.

The IDS entry methods h11 into one of nvo
categories: those wl~ich manipulate the attributcs and
values contained in the IDS entry in a type-indepen-
dent manner, and those which perform operations on
the directory. Each IDS entry, each attribute, and each
attribute value contains a type. For convenience, deriv-
atives of the IDS entry may defile additional net hods
that manipulatc certain attributes or values directly.
For example, a derivation that defines a printer might
define a method to set the description attribute. The
implementation of this method would call the general
IDS entry attribute and value manipulation method
to set the value of the appropriate attribute.

As shown in Figure 2, the IDS entry contains identi-
Ging i~lf'or~nation and the attributes and attribute
values that describe the resource. The colltext identi-
fies the service provider that performs directory opera-
tions on this entry and the location \vithin that
directory service in which this entry is stored. The
resource type defines the kind of resource that this
entry represents. The resource name is the name by
which applicatioris and users refer to the entry.

The a t t r ib~~ tes of the entry are contained in a set.
Each attribute in turn contai~ls the value or list of v.11-
ues associated with the attribute.

Contexts Tlie context is an object that uniquely iden-
tifies a partici~Jar location in a particular riamespace.
Thc IDS contest is very similar in concept t o the SF&
c o n t e ~ t . ~ All contexts contain the type identifier fc,r
the directory service and an internal name. The type
identifier is used by the IDS fran~exvork to dispatch
operations to the appropriate service provider. The
internal name is the location within tlie directory ser-
vice described by this contest. The internal name is
represented in the native syntax of the underljring
directory service. The service provider is responsible
for setting and maintaining this internal name. (See
Figure 2 .)

Attributes and Attribute Values The type of an
attribute defines the data type of its value o r values.
The attribute value object is a canonical representation
of an actual attribute value. The attribute value objcct
defi ncs a set of methods for accessing and nianipulat-
ing \lalues. For each data type supported in IDS, there
is a corresponding attribute value derivation in the

vbl. 8 No. 1 1996

CONTEXT SERVICE PROVIDER TYPE: LDAP
LOCATION WITHIN SP: o=dec,ou=lkg

ATTRIBUTE SET

AlTRIBUTE N

ATTRIBUTE 2

ATTRIBUTE 1

IDS-ATTR-MAINTAINER

ATTRIBUTE VALUE LIST

JANE DOE

ATTRIBUTE VALUE

Figure 2
IDS Entry

IDS framework. This allo\vs applications, and the IDS
frame\vork itself, to manipulate 'ittribute \dues with-
O L I ~ kno\\ling their types. The service providers, on the
other hand, use the type information to translate from
the IDS data formats to their native data formats.

Types To allow customers and third parties to identi@
their own IDS resources, the IDS type mechanism
must i~niquely identi* objects. Thc two identifiers we
considered using \\/ere ~~ni\lcrsal uniclue identifiers
(UUIDs) as defi ned by the Open Sohvare Foundation
Distributed Computing Environment (OSF DCE) and
object identifiers (011)s) as defined by the open sys-
tems interconnection (OSI) ~tandards ." , '~ Some direc-
tory ser\tices identil+ attributes witl~ OIDs, while others
use UUIl3s. For applications defining new resources,
we wanted to avoid the necessity to obtain both an
OID and a UUID. It is possible to encode a UUID in
an OID, but the reverse is not ~ I . L I C .

We could encode a UUID in an 0 1 D by registering
an OID prefix. The prefis \vould indicate that the

sequence aker the prefix was a UUID. UUIDs are
fixed-length structures generated fro111 time stamps
and Ethernet addresses, and therefore arbitrary infor-
mation such as an OID cannot be encoded in them.
UUIDs are also easier for npplicatio~~ writers to gener-
ate because numerous systems ship with tools to
generate them.

Certain directory services, for example X.500, have
external type definitions for the directory entries. I t
is possible to define a generic entry and then map
arbitrary \ialues into that entry, but IDS entries would
not be meaningfill when viewed with the native direc-
tory management tools. We felt that this was unac-
ceptable, because it would make the management of
IDS entries in the namespace much Inore difficult.
Some systems use UUIL)s to represent the type infor-
mation. We chose to use UUIDs since they are both
easy to generate and can be used in both UUID and
OID class definition systems. The L I S ~ of OIDs n~ould
require UUIDs to be generated for UUID-based
systems and mappings to be maintained.

Digital Technical Journal Vol. 8 No. 1 1996 51

Communities An 11)s comniunin is both an aci~nillis-
tr;~ti*c srouping mcchnnism and ,I logical location for
IDS resources. When pcoplc interact \\.it11 the TDS sys-
tem, they scc a community .is tllc orpclnizins principle.

;idministrator controls tllc boundaries and nleln-
bership of an 11)s cornmunit\,. Typically, a cornmunit\.
represalts either a partic~113r location sl~cll 3s a build-
ing or .I fi~~ictionnl grouping s ~ ~ c l i as n \\,ark g r o ~ ~ p .

Initi,~lly, \\!c co~lsidcrcd a supcrcol~tcst to join multi-
ple directories into a single logical directory. This
S L I ~ C ~ C O I I ~ C S ~ \ \ 'o~~l t i hn\.c cont.lincd m~~lr ip lc contests,
one for c ~ c l i type o f I-csourcc suppo~.tcd b!, IDS. We
c\.c~iti~,~lly s ~ ~ b s u m c d tlic supcrco~ltcst into 3 cornmu-
n i p and called it a rcsourcc context list. An 11)s com-
munity is stored ;IS :I special object i l l the dircctory.
Each commn~iity's rcsollrcc context list describcs the
dircctorics that makc up the community. The resource
contcst list is the federation ~ncchanism by which IDS
deter~nincs where rcsoilrccs of cacli type are stored.
Each entry in thc rcsourcc contest list is n pair of
resource type and contest. As users and applic;itions
operate o n entries in a co~nrni~nit!~, tlic 11)s fi;~me\\lork

COMMUNITY

DEFAULT
CONTEXT 1

RESOURCE COKlUCT L16T
RESOURCE.
CONTEXT

CONTEXT

OBJECT -
TYPE PRINTERS

FILE SYSTEMS

KEY

n COMMUNITY

-1 RESOURCE CONTEXT LIST

RESOURCE CONTEXT

OBJECT TYPE

CONTEXT

(through IDS entry and c o ~ n m ~ ~ n i t y methods) inspects
the rcsourcc type and the c o n l ~ n ~ ~ n i p to dcter~ninc the
contest. Figl~re 3 illustrates all 11)s community.

One of the prol.>lcms \vc anticipated \\,.is that large
organizatio~ls \\roulci uaturally tend to Ila\.e many 11)s
cornmuniries: Ho\\s \vould tllc uscr identi6 these? We
considered an additional liicrarch!, in \\.llicl~ commLI-
nities \\.auld be nlembcrs of other conimunitics. Our
usability cons~~ltants cmph;isizrd that users should not
have to bro\\.se a hierarchy to ncccss resources. In
response, \Ire dc\reloped the concepts oftlie local nnci
the home c o ~ l l ~ i ~ ~ u i i t y . Tlic local comm~lnit\, is associ-
ated lvith the machine 3 Llscr is c i ~ r r c ~ ~ t l y 11si11g-it
represents a physical location. The home community
is the one \\it11 \ \~ l~ich the uscr is associateti 01- bclongs.
We en\isioned that the home comm~~nit!, \ \ ,o i~I~i Lx
the same as the local community at the user's normal
place of \\:ark, but there is no rccluircmcnt inherent in
the design that things he orsanizcd this \\lii!~. For
esamplc, iEa user is ,~ssociatcd \\iitli t l ~ c c o r n ~ ~ ~ u n i r ! ~ at
her work site and the machi~ic she uses is also located
at that work site, both her local community and

Svc Provider Type = F7801 DB7-F675-1 lCD-A8C2-08002B187DlA (ODBC)

/
External Name = IDS-Group Community
Internal Name = E.\\tuxedo\idsodbc\idsdbdir.mdb
Svc Provider Private = NULL

Svc Provider Type = EFF4B840-EC52-11 CD-9E5E-08002BBA95CA (CDS)
External Name = ids-cell.lkg.dec.com
Internal Name = ids-cell.lkg.dec.com
Svc Provider Private = NULL

Svc Provider Type = C723E850-A1A6-1OAB-A699-08002B361 FC1 (LDAP)

/ External Name = c=us;o=dec;ou=IDS-Group Community
Internal Name = c=us:o=dec;ou=IDS~Group Community
Svc Provider Privale = YUMMY. 386. TCPIIP

Figure 3
111s C:om~n~~nin

her home community represent this \\rork site. If this
user \\,arks at another \vork site and uses a different
~iiaclli~le, her liome c o ~ n ~ n i ~ n i t \ i remains tlie saine, but
her local comrnunity reflects the community where
the ncc\(rnachi~lc resides. The concepts of local and
home communities d o 11ot reduce the number of
communities, but thcy d o pro\!ide a direct method by
\\'llicl~ users can access t l ~ c communities that contain
the resources they most fi.cquently use. The local and
11o1nc communities are n con\,enience; users and appli-
cations are in no \\lay rcstrictcd to those communities.

Search Support Searching is liaudled by the search
objcct. The search objcct contaius a community (or
list of commi~nities), a resource type, and an attribute
filter. l ~ l l e attribute filter supports both eql~ality , ~ n d
comparison matching of attribute \ d u e s and allo\vs
callers to construct co~nplcs requests by concatenating
comparisons together in a series of Boolean opcra-
tions. For examplc, a caller could construct a filtcr
t1i;lt rcturned all printer objccts tliat (((are located
o n Floor2) OR (are located on Floor3)) AN13 (sup-
port color printing)). C:ombi~led with tlie local and
liome comrni~nity support, fi ltcrs allo\v applicatio~ls
and users to express ideas SLICII 3s L'pri~it this at tllc
closcst printer tliat supports color, n\,o-sided printing,
and then transmit it to an!, f.~csimile ~nachine in my
I I O I I I C community." -. 1 he scarch object's dchult tiltcr returns all objects o f
the resource type in the local co~nniunity. The scarch
object resolves the cornmiunity to a contest and pnsscs
it to the servicc pro\,idcr. :The ser\~ice pro\,idcr con-
structs a list of matching 11)s cntr!l objects to return to
the user. In IDS, tllc searcll objcct supports bro\\aing. ,. 1 hc search objcct has ~ncthods that display a dialog
and construct filters based o n user input. When
designing tlie system, \\'c debated \\,herher it \\!as bcr-
tcr fbr the search objcct to contain both the filtcr and
the smrch dialogs or whether the filter construction
belonged in the 113s c11tl.y. We chose to Iteep the
scarcli dialogs separate from the IDS entry. Espcricncc
\\tit11 i~nple~iicnting resources derived from the I I X
cntr! has sho\\!n this to be an error. Currently it is ncc-
cssary to derive ti-om nvo objects, IDS entry and the
sc;ircli object, to implc~ncnt n resource t l i ~ t has n

resource-specific senrcli dialog. We \\rill be modit\ling
the scarcli and 11)s entry objects so that the construc-
tion of tlie filters and the dialog tliat constructs the
filters are IDS entry mcthods.

Schema The service pro\.iders translate bet\vcen the
nati\,e directory objcct and the IDS entry. I n general,
directory scr\,ice entries arc not self-describing. I n
existing directory sel-\,ices, either a schema o r tlic
application is expected to know the director!,-specific
format of the data. The latter is more common tll.un

the former, and in any case the schema mcthoclologies
are unique to CLICII directory servicc.

From tlie point of\ric\\l of the nati\,e directory ser-
vice, IDS is the application. To properly convert the
data, the scr\licc providers must know \\!liar it is. The
scr\~ice pro\lidcrs use the schema to detcr~ninc tlic cor-
rect attribute and value types to use \vlien constructing
thc IDS elltry of n p;irticular ~ p c .

The schenia describes resource types, attribute
types, and nttributc \,slue data types. Logically, the
schema is a set o f tables, one for each scl.vicc provider,
which maps the nnti\lc name or type to tllc 11)s name
or type. Tllesc tahlcs are read by tlie IDS schcma com-
ponent \\/lien 11)s is initializcd. Bccausc tlicsc t;~blcs
are external to the system, they can be modified by
users or applications.

There is one limitation on thc cstcnsjou of the
schenia: Ne\v attribute and resource typcs can be
defined, bur tlic!~ must be composed horn tlic prede-
fined IDS attributc value types that the scr\.ice . .
providers can support. The servicc pro\,idcrs \\,ould
have to be moclificti t o support additional attribute
value data typcs. This limitation is not as scvcre as it
at first appea1.s. A rich set of data types is defined in
the existing directory services, and a relatively small set
is in comnlon LIS~FC. By defining tl.lc 11)s data typcs to
encoliipass tlic set of data nipes dctincd by existing
directory scrviccs, \ire ha\te reduced tliis lilniration to
n tlieoreticnl r;ithcr than a practical problem.

As a conscquencc o f tlie use of schema, ~ipplications
II ILIS~ spec$ tllc resoi~rce type for any 11)s operation.
This is a limitation that in principle docs not exist in
other directory systems. M e r some consideration, \ve
concludcd that fc\v i~scfi~l operations can be performed
on an object \\,hose type is u~lkno\\rn. To pcrfcxm an
operation on ol7jects of all types, the schema can be
interrogated for the list of all supporrcti 113s object
types, and the opcmtion is then iterated over each type.

The System Object Tlie system objcct l o ~ d s 2nd
initializes the servicc pro\riders. O n initialization, the
systenl objcct constructs a list of the a\,nilable service
pro\iders from those defined in a local configuration
tile.

Tlie system objcct constructs and maintnins tlie list
ofluiown commu~litics. The system object obtains tliis
list using tlic follo\ving meclianisnis:

Inspect a \vcll-k~lou~n location (if one exists) to see
ifit contai~ls a cache of luio\\:n con~mu~iitics.

For each ser\,icc pro\,idcr, call tllc disco\,cr method
to ask the ser\.icc prolrider for its list of kno\\tn
conimunitics.

If the system objcct is initializing for the ti 1st time.
prompt the user to create a cornmi~nity.

Application Programming Interface Before constructing the resource in the directory,
As mentioned previousljl, we divided the framework the operation validates the IDS entry against thc
into an API and a service provider interface (SPI). Tlie sche~na to ensure that it does not violate the schema.
APT consists of tlie search object methods, tlie IDS For example, attempting to create a resource ~ ~ i t h o i ~ t
entry methods, the attribute object and value object a recluircd attribute value pair \liolates the schema and
methods, and the system object methods necessary to is flagged as an error. Conversely, the delete operation
access communities. removes the 113s resource frorn the directory.

The modi6 operation updates the attribute and
Service Provider Interface values associated with the resource in the directory.
The SPI specifies the interface between the 11)s frame- The niodit) operation supports the follo\ving updatc
work and the native directory serviccs. It defines tlie directives:
semantics for aU operations that lnay be performed on
IDS information regardless of which directory service Adda~ ie \va t t r ib~~ tca~ id \ l a lue .

stores the information. The SpI effecti\rely insulates ' Add a new value to an esisting attribute.

both the IDS frame\vork and the IDS applications Replace a value of an esisting attribute.
from the ~ ~ n i q u e syntax and requirements of different , D ~ I ~ ~ ~ an its
directory services. Delete a \,slue frorn an esisting attribute.

A directory-specific modu lc, cal led a scn!iceprol?idcr
lihmq~, provides a directory-service-specific iniplemen-
tation ofall SPI operations and translates resource in for-
mation back and forth between thc 11)s cntry and
the service-provider-specific format. A service provider
library must be implemented for each directory service
to be supported by IDS. Any directory scrvicc or jnfor-
mation repository system that can provide the IDS SPI
semantics may be nn IDS ser\jice pro\lider.

SPI Semantics The IDS SPI defines the following
main operations: create, read, search, modifi: ciisco\,er,
and delete. All SPI operations specifi the namc of the
IDS community upon which to o p c r ~ t c . Each 113.5
co~nmunity maintains a list of contexts that spccifil
in which service provider IDS rcsoilrccs of a partici~lar
type are stored and in what location within the service
provider. The SPI uses this com~.l~unity name to
rctricvc the context information that directs the oper-
ation to the correct service provider library. With the
exception of the delete operation, \\~liicli requires an
cxplicitly set context (to be sure that an cxplicitly
located object is selected for deletion), if the caller
does not set tlie comniunity name, the local con~n iu -
nity is assumed.

The create, delete, niodit), and redd f~nc t ions all
operate on a single IDS resource at a time. Each,
therefore, provides an IDS c l~t ry object t o idcntilj,
and/or describe the resource.

The create operation creates a new 113s resourcc in
the dircctory. The create operation specifics the type of
IDS resource to be created, the resource's name, and
tlic IDS attributes and values associated with the
rcsourcc. O n a successhl create operation, the scrvicc
provider constructs a uniql~e directory-specific nilme for
tlie new IDS resource and stores this namc in the
object's IDS cntry. The scrvicc pro\~idcr subscclucntly
may use this name to find the object morc cluicklv rather
than constructing it from thc name, resourcc e p c , and
contest information contained in the IDS cntry.

Each modi5 directive is verified against tlie scliema
before being applied to the directory.

A read operntion retrieves a i~niquely specjfied
IDS resource from the directory, translates it into
IDS entry format, and rcturns the IDS entry to
the caller. Tlie read f~nc t ion is typically used to com-
pare the directory format of an IDS resource to one
maintained in niclnory by an application, or to process
IDS resources returned from a search operation one
at a time.

The search k~nction identifies and returns 11)s
resources that match the characteristics specified by
the caller. To bound tlie scope of the search, the caller
specifies tlic follo\ving search characteristics: resourcc
type, com~nunity name or namcs to be searched, and
a filter containing attributes and associated values or
valuc ranges.

The discover operation is called by the IDS system
object to find all conimunities kno\vn to a given ser-
vice provider. Scrvicc providers for directory serviccs
that support a server solicitation and advertisement
nenvol-k protocol implement a discover fi~nction. In
these dircctorics, scr\.ers advertise their presencc in
response to nenvork solicitation requests. Tlie dis-
cover method uses the directory's native solicitatio~l
and advertiscmcnt protocol to discover local dircctory
servers and then issues the appropriate operations to
the server to determine if it has defined any IDS com-
munities. Scrvice providers that d o not have a solicit.1-
tion and advertisemcnt protocol can implement an
alternative discovery mechanism such as retrieving the
co~iirnunity information from a file or provide 110 dis-
covery mechanisni.

Construction of the System: Directory, Session, and
IDS Entry Objects rTlic SPI is constructed of three
framc\vork objects: tlic director!! object, tlie session
object, and the directory operntion methods of the
IDS entrv object. The directory object w responsible

54 I)ig~rdl ~ ' C C I I I I I C ; I I Journal

for scrvicc provider initialization and termination,
~nnintcnancc of session objects, and con~munity dis-
covery. Each service provider exports one directory
ohjcct to the IDS frarnc\vork. The sessio~l object
implements all the directory operations o n a servicc
provider. Session objects are obtained from the service
provider by nlcans of the directory object. The 11)s
cntry directory opcmtion methods deterrninc the con-
test if it lias not been set, obtain a session object from
the proper dircctory, and dispatch the operation to the
nssoci;ltcd scl-vice provider tluough the session object.
For cfficicncy, session objects may be cached by the
servicc providers.

lmplementation Considerations

Once \ire had established our basic approach, \vc
t11rncd our attention to implementation decisions.

Client versus Server
Our first consideration was whether to implement this
tcchnolog, as sohvare csecuring on a server system or
as sofn\~nrc cxccuting o n a client system. The server
solution had a num bcr of attractive qi~alities: it \\rould
not be necessary to lia\le all the native directory clients
on all the desktops, and potentially complex pro-
cessing \ \ T ~ L I I C I occur on an appropriate platforni.
Ho\vcvcr, \vc identitied nvo problems with the server
solution. Tlic first concerned security. T o access the
director)! ser\!icc o n hchalf of a partic~llar user, we
wot~ld have to impersonate that client user on the
scrvcr nlachine. Although this can bc done without
exposing security holes, doing so adds another layer of
complexity to the problem. TIlc second probleni \\lit11
tllc scrvcr solution \\.as that it required the custolner
to find ;i machine for and deploy a server prior to get-
ting started \\!it11 tllc sjrsteln. One of the design goals
\\.as to rcmovc barriers to directory deployment, and
\\,e *ere concerned that a server solution \\,auld add
'1 barrier, We sn\v a need for both client- and ser\.er-
based solutions, and since the client solution \\!as s i n -
pler to implement, w chose to start there.

Security
The 11)s interfaces Ienvc security to the underlying
directory scrviccs; \ve did not attempt to abstract a
general-purposc, access control or authcntication
intcrtkc. ?'lie primary reason for this was a conviction
that the vast majority of current directory information
is world read, and thcrcfore a complex access control
intcrhcc \\,as not necessary. An access control and
a ~ ~ t h e n t i c a t i o ~ ~ layer that \vas director!!-service-
independent w o ~ ~ l d lia\!c added significantly to thc
complesity of the project, and \ve chose to postpone
tliis problem. I l>S docs pass requests directly to tlie
native directory-scrvicc client; IDS does not alter
or inipcrso~iate the t~scr's identity. In that sense, it

perfectly presenres the sec~lrity inherent in the under-
lying directory services.

Filter lmplementation
Tlic implementation of the IDS attribute filter is based
o n the string filter as defined in RFC 1777.'; The
Lighnveiglit Directory Access Protocol (LDAP) string
filter provided a convenient internal representation,
and we \\lould be able to reuse the LDAP parsing and
processing code that \ile had developed as part of an
earlier product. We considered using SQL to construct
111s attribute filters, but chose not to do this for imple-
melltation convenience.

Service Provider Considerations
Initi,illy, \ye thought that developing a directory-
ser\~icc-illdependent interface would not be difficult.
Most of the required operations such as read and write
are straiglitfor\\~ard and ob\~ious. The il-nplementatio~i
of such a11 interface, hou~ever, proved to be difficult
bcc;iuse the i~nderlying directory services have, in some
cases, very different native capabilities and semantics.
We cliose to iruplement ser\lice provider libraries for
the k)llo*ing three types ofservice providers:

Open Database Connect (0DRC)-compliant
database

S.500-based directory using the LDAP

1)CEC:DS

These scrvicc providers are reprcsentati\!c of tlic types
of directories that exist today. Table 1 highlights soliie
of tlie differences among the three directories. As
tliis table illustrates, not all directories can nativcly
support the semantics described by the IDS SPI.
In these situations, we have follo\ved three alterna-
tives: (1) thc service provider library iniplcmcnts the
filnctio~iality, (2) the IDS framc\vork iniplemcllts
the f~nctionality, or (3) in a small rlumber ofcases, the
scrvicc provider cannot implement the fi~nctionalinl
and remains less fi~nctional.

Some operations cannot be supported nati\.ely by
only one or a small handful of directory ser\,ices. For
these operations, we require the service provider devel-
opers to ilnplement (or enli~late as best they can) the
fi~nctionality in thc specific servicc provider library for
that directory. For functions that a number of service
providers c;lnnot support or that arc sufficiently difti-
cult to implement, \ve provide a cornliion iniplemcnta-
tion o r emulation in the IDS framework that service
provider libraries can call. For example, CDS does not
natively support an attribute-based search mcchallisrn.
Ilather than attempt to implement a CDS search capa-
bi l i t?: \ve chose to provide an IDS frame\i~orlc "prune"
fi~nction that applies an IDS filter to a list of IDS entries
and returns only those entries that satis6 all conditions
of the fi lter. Service providers such as CI)S call then

Table 1
Differences among the ODBC, X.500, and CDS Directories

Functionality ODBC X.500 CDS

Distributed directory service No Yes Yes
Hierarchical organization of directory information
Attribute-based search
Attribute value-based search
Native schema support
User can extend IDS schema
Transactional semantics
Tolerant of intermittent connectivity

Yes
Yes
Yes
N 0

Yes
No

Yes
Yes
Yes
Yes
Yes
No
Yes

Yes

N 0

N 0

No
Yes

Provides security mechanism on connections N o Yes Yes

emulate the IDS search tinction by enun~eniting all
resources of a particular type and then call the prune
function to pare down the list of resources.

The IDS schema irnplcniclitation is another csaniple
of a common capability we have provided for all service
providers to use. Not all service providers support
object, scliema and, of those that do, fewer still can SLIP-

port user extension o f the schema. We chose to ;illow
user extensibility and implemented a service-provider-
independent sclic~na intcrfiacc and ~iiechanism.

In a few instances, \\re determined that it ~ v o ~ ~ l d be
too expensive in terms of implementatior~ time to pro-
vide a service-pro\lidcr-specjfic or an IDS-franic~/ork
implementation of an SPI-mandated h~nctioo. In
these cases, we allowed the service pro\lider to remain
noncompliant. For example, a call to initiate a session
to a ser\~ice provider specifies user name and password
arguments. For those directories that support user
namc and pass\\~ord security mechanisms, we preserve
that functionality. For directories such as the ODRC
service provider that d o not support thesc security
mechanisms, howcvcr, wc provide n o additio~ial sccu-
rity measures. The cost to implement and deploy such
a security mechanism o ~ ~ ~ v e i g h s the gain ofhaving the
additional features.

In addition, we found that not all directories pro-
vide the same semantics for a particular operation. For
example, when ~ ~ p d n t i n g a resource, service pro\,idcrs
handle existence checking of resource a t t r ib~~tes diffcr-
ently. If requested to add an attribute vnluc to an
attribute that dvrs not yet esist, one servicc provider
returns an error, while another implicitly creates the
attribute. We worked around problems of this type by
carcfiilly speci@ing the semantics and error conditions
of all SPI operations. Service providers that d o not
nnti\rely support tliesc SPI semantics must implenlent
whatever additional firrlctionality is required to d o
so. For example, the CDS service provider required
additional functions that determined and flagged
whether or not a pal-ticular attribute cxistcd.

111 additio~i to ;ill errors that are specific to ser\.ice
pro\jiders, uJc return an error that is iodcpendent
of any 11)s fi-anie\vorlc service provider. This adds
another lc\lcl of consistency across 0111. sewice-
provider iniplcmentations.

Current Applications

As \\,it11 any fo~rndation technolog\,, the proof of its
viability l~cs with the applications t h , ~ c r~~p loy it. I n the
PATHWORIG product, currentl\. I i ~ \ ~ c three nppli-
cations that L I S ~ 11)s:

Network Connect

IDS Adnlinistration

Resource Synchronizer

The Nct\vork Connect application finds and con-
nects L I S C ~ S ' pri~iters and file shares. It pro\,ides '1 user
interface that allo\\ls users to bro\\.sc o r search for file
shares or printers. Through Net\\,ork Connect, ~lscrs
call refer to resources by their logical name or their
attributes. A single physical prilitcr, ~vitli queues on
several ~iiachincs or several NOS spstc~iis, is presented
to users as a single printer. Network Connect uses the
IDS API to access the IDS search capabilities and
to translate a printer or file share's 113s name to its
network-specific name to connect to the resource.
Nenvork Connect may be acccsscd through the
Windo\\,s version 3.1 Print Manager anti File i ianager
utilities and through the PATHWORKS Nenuork
Connect utility.

Tlic IDS Administration utility (11)s Admin) allows
a nebvorlt adn2inistrator to man.igc 11)s resources
and communities. IDS Admin is integrated into the
Digital iManagcWO1US \Vorkgroup Administrator
for Windo\\a sohvare product." Admin creates, mod-
ifies, and deletes resources and communities. I t
also allo\vs Llscrs to browse IDS resources and comrnLr -
nities in the ~\/lanageWORI<S hicrarch!l and to search
for IDS resources.

56 Digital Technical Journ..,

An adnli~ustrator can manage IDS resources manu-
J I I ~ through the lMc~nagck\iON<S user intercicc o r can
rely o n information pro\!ided through the semiauto-
mntic resource collection utilities called the R e s o ~ u c c
Gatherer and Resource Synchronizer. T h e l<esourcc
G a t l ~ r r e r periodic:illy collects informntion a b o ~ ~ t
nenvork LAN Manager and Netware printers 2nd file
sharcs. T h e Resource Synchronizer utility processes
the gathered information, updating the directory. It
also eliminates duplicate entries and discards informa-
tion the administrator islie lies t o ignore. T h e gatherer
:lnd synchronizer allouj tlie dircctory t o be kept up-to-
date, even if resources arc added o r removed t h r o ~ ~ g l l
the native NOS intcrfaccs.

Future Work

111 the f i ~ t i ~ r e , we plan t o improve the IDS estensibjlity
mechanisms. Curl-eotly, a local copy o f the schema
exists o n every client. Propagating the changes t o cach
client will become a p r o b l e ~ n as users and applications
cstcnd the schema. We are considering storing either
tlic schcma o r a pointer t o tlic schcma in the dircctory.

T h e current 113s implc~nentat ion runs o n bo th
the Wilido\\,s versioli 3 . I and \,ersion 3.1 1 opern t i~ ig
S!~S~CI-J~S. We are currently p o r t i ~ i g it t o Mlindo\\,s 95
anti in\,estigating ports to otlicr operating systems,
such as U N I S .

TIic implementation docs ~ i o t support t l ~ c entire
113s design: Nt l iough resource contest lists arc i~nplc -
mcnted, tliel-e is n o reasonable \\ray for a L I S ~ I o r
ndnlinistrator t o crcatc tlicm. T h e Llscr interface \\lorl<
ti)r these features in the 11)s Admin application has no t
!let bee11 completed.

Summary

11)s provides a mechanism for integrating mi~ltiple
di~.cctor!! services into 3 single system. I t is predicated
on tlie ability t o define a c o m m o n set ofdirectory opcr-
ntions and o n the type j~lformation. T h e implc~nc~i tn -
tion o f three very ciiffcrcnt service pro\liders-<:I)S,
S.500, dnd ODI3C-i1idicates that we succecdcd in
def ning the dircctory opcratiol~s. T h e L I S ~ o f IDS in the
PATHWORKS product s l~o\vs that it does address tlie
p r ~ t i c a l aspects of the problem o f integrating multiple
directories into a single, logical dircctory scrvicc.

Acknowledgments

\Ve \ V O L I ~ ~ Ijke t o th.inlc the Inany past and prese i~ t
~ n c m b e r s o f the IDS team \\.ho c o n t r i b ~ ~ t c d to the
design and i m p l c n i c ~ ~ t a t i o ~ i o f the product . Spccial
thanks t o Konsnntinos Baryianies, Anthony
H i l ~ s m a n , David Magid, Tracy Teng, and Talnnr

L\lesler. We \vould also lilce t o thank the members o f
the Director!, Task Force, Dah iMing Cliiu, Dennis
Giokas, and Willia~n Nichols.

References

1. CCITi /?oco111117c11clntio17 X. 501 (1992) and
//7/~~1~117L~/i017 7?C-/?lloIogl~- ope11 , S) ! ~ / C ~ / I l . S In/l?r-
c o ~ ~ ~ t ~ c / i o ~ / - T / ~ ~ ~ Dit~ecto~j~: ,l/otlc/.s. ISO/IEC
9594-2: 1992 (Geneva: Incernarionnl Organization
for St.qnd.l~.tiization/Inrernation.ll Elccrrotcclinical
Commission, 1992).

2. "Naming <:onccpts" in LJsir?g 1\i,/ U'i11.c~ ,%>/.l~icc.s J ~ I .
i\il.!bL%~(l'ro\,o, Utah: N o \ ~ l l , Inc., 1993).

5. "Microsot't Directory Services Str.ltcgy," a \vhitc
paper from the l3usiness Systems Tccllnolog)~ Scries
(Redmond, kviish.: blicrosoft C:orporarion, 1995).

6 . ,VOpo7 Cil I:' .5~)cc~t/icc7/i01~, t7~~/rrzr/ctl I \(/ 11lii7g. The
A%\; .Ij)cc!/i'critio17 (Reading, U. I<.: X/Opcn Corn-
px1y Ltd., 1995).

". S. Radicati, "I~i~plcrncllting the 13I'l'" in A'. 500 1)irc.c-
to/;) ' .So~~ric(,.s. 7i~c/111o/qy)~ 6 1 ~ 1 ~ 1 / I c ~ / (!) ~ I I I [J I I / (Nc\\f
York: \J\ln Nosr~und Reinhold, 1994).

9. P. h.lock.ipcrris, "l)ol~~ain Names-(:onccprs .111d
Facilities," lnrcrncr Engineering -F.lsk Force, RF<:
1034 (No\ ,cn ibc~ 1987).

10. P. ~Mockapctris, "l)oniai~l Na~ncs-Implc~iicnration
and Spccif c,~tion," I ~ ~ t e r n c t Enginccrillg T ~ s k 1401-ce,
liFC 1035 (Novcnibcr 1987).

1 1 . AES/lli.st~~/i?/~/c~~/ C , ~ ~ I ~ I ~ > I I / ~ I ~ < ~ - / ? (> I ? I O / O / ' I . O C O ~ / L I Y ~
C'nll. Al$)c,~rrli.~ A ((:am bridge, Mass.: Open Sofn\.are
Foundation, (99.7).

12. C C l T l ? ~ ~ c . o ~ r ~ ~ ~ ~ c ~ r ~ c l r r / i o , r 208 (1992) and 11?/i)t.i11u-
li011 7 ' ~ ~ c ~ / 7 l t o / o < ~ ~ ~ - o p ~ ~ / l s]'st~/ll.s l / 7 / C ~ / ~ ~ ~ o l t / l ~ ~ c / ~ o / / -

A/x/~zict . S I V ~ / [~ . Y ;\:ot~l/io~z 0) ~ (,/J.S,\, 1) lSO/lE(:
8824-2:1992 (C;cnc\a: I~ircrnationnl Organiz'ition for
Sra1ld.~1~diznrio1i/I11rcr1ii1rional F.lcctrotcsli1~ic.31 Corn-
mission, 1992).

13. W. Ycong, 'I'. Ho\\cs, ;lrld S . Hariic'~stle-I<illc, "S.500
Lighn\.cighc I>irccrory Access Protocol," lntcrncr
Engineering T.lsk Force, RFC 1777 (h/l;lrch 1995).

14. D. Giokx and J . ILokicki, "The 1)csib.n of Manage-
M'ORIG: A I ' \cr Intcl.f~lce F~-a~llc\i,ork," lIi~i,il~~l 7i)c.h-
~~ical.Jo/r/ .r~~il . \vl. 6, no. 4 (Fall 1994): 63-74,

Biographies

Margaret O l s o r ~
iblargarcr Olson is A consulting sofnvarc criginccr in the
Ncnvork Sofnvare Group. She was the projcct and tech-
nical leader for the IDS de\relopnlcnt project. For the fast
S I X years, slic has had technical leadcrsliip roles in Digital's
Directory Scrvices Group. Beforc joining Digital in 1989,
slic \vorkcd in tlie nenvorking and distributed c o m p ~ ~ t i n g
arcns at Apollo Coniputer. She recci\,cd n U.A. (Sigma Xi)
kom Wcllcslcy College in 1981. She published a paper on
ncnvork licensing in 1988.

Laura E . Hol ly
I .aura Holly js a principal cnginccr wit11 thc Ncnvork
SoFt\\larc G r o ~ ~ p . Shc was a key technical conrril)u~-or ro
tlic I I)S dcvclop~ncnt effort. Laura has previously con-
tributed to the areas of DCE, distributed system, and
kriowlcdgc-bascd system de\~elop~ncnt . Sllc joilicd Digital
In 1985 akcr rccci\,ing an A.B. (high holiors) fro111 Sniith
<:ollcgc. Laura holds a patent and has published sc\.cral
pa~)crs in the area of kno\\,ledgc-based systems.

Colin Strutt
Colin Strutt is a consulting sofrware engineer and technical
director for Tcalriing Sofn\iarc in tlie Network Sofhvarc
Group, where lie is helping to dcfine new PC-based soft-
ware products. Prc\,iously, he has hcld technical leadership
roles in directories, nenvork management, and terminal
server de\.elopnient, and before that led product develop-
menrs in Ethernet servers and DECnet. He joined Digical
in 1980 from British Airivnys in the U.IZ. H e recciveci a
B.A. (horiours) in 1972 nnd a 1'Ii.D. ill 1978, both in corn-
puter science ftom the University o f Esses, U.K. H e is a
member of BCS and ACM. He has hvo patents issued and
scveral parents p c ~ ~ d i ~ i g and has published cstensivcly, pnr-
titularly o n management technology.

58 1)igiral '1.cchnical Journal Vol. 8 No. 1 1996

Digital has developed the Common Directory
lnterface (CDI) as the means by which DECnetl
OSI can now access and manage node name and
address information in multiple directory ser-
vices. CDI comprises libraries for node name-to-
address translation and a tool set for managing
and migrating node information among differ-
ent directory services. The Common Directory
Registration API is layered on top of a set of
directory service wrapper routines to provide an
extensible mechanism for adding new directory
services. CDI gives customers greater flexibility
in choosing a directory service and supports the
new multiprotocol capabilities in DECnetIOSI,
which support the open systems interconnec-
tion (OSI) standards.

I
Richard L. Rosenbaiun
Stanley I. Goldfarb

Design of the Common
Directory lnterface for
DECnetIOSI

The Common Directory Interface (CDI) provides tlie
ability to store and rctricvc DECnet node information
from a variety of directory ser\lices. I t consjsts of the
CDI library, nrhich enables multiple directory access,
and the CDI registration tool sct, \vhich creates and
maintains node/addressing information in multiple
directory services. CI>I was developed for tlie DECnet/
OSI for OpenVMS opcrating system version 6.0 and
for the DECnet/OSl For Digital UNIX operating sys-
tem version 3.0.

This paper begins by presenting the product goals
and the background of the CDI design. It then dis-
cusses the structure oftlie CDI components, the CDI
library, and the CDI registration tool sct.

Design Goals

As the interface to I)E(:nct node information from
multiple directory serviccs, CDI was designed to meet
the following goals:

Give DECnct ncnilo~-k administrators and users
a dioice of directory ser\lices.

Provide systcm administrators with an easy-to-usc
node registration tool.

Enablc easy and tlcsiblc configuration of directory
choices.

Pro\lide dcvelopcrs of thc 1)ECnct protocol soh-
\\,are with a simple internal interface that hides the
complesities and diffizrences between the various
directory ser\,iccs.

Provide a common design for both DECnct/OSI
platforms: the OpcnVMS and the Digital UNIX
operating systems.

Intcropcrate with older, non-CDI systems.

Background

In 1991, Digital upddtcd ~ t s DECnet nenvorl<~ng
products to include the use of the D E C ~ I I S distribi~ted
director!/ service.' 1)ECdns providcd a highly scalable,
distributed information source for translating node
names to addresses and addresses to node nanics.

Vol. 8 No. 1 1996 59

I~iiti:ill!; customci- acccptmce of this ndlnc scr\,icc \\.ha

lo\v for a number ofrcasons:

1 Adoption of this 11c\r, technology reqilircd 3 signifi-
cant learning cur\fe.

Sigl~ificant planning cvas required before the
DECdns service could be deployed.

Users of sm~11 nct\\forlis did not need thc fc'itures of
a distributed naming sel-\.ice--the costs o ~ ~ t -
\\rcighed the I7elicfits. Thcsc cLrstomcrs rccl~~cstcd
a narrling scr\,icc based on local files similar to
the Phase IV DECnct prodirct.

Customers were deploying a number of other
directory services-in particular the I>omain
Name System-for storing host ~nformation for
transmission control protocol/internct protocol
(TCl'/IP) neb\ orl<s.'

A ne\v comprchc~lsive ser\.icc, S.500, had the
ad\,antage of being an international stun cia^-d:'

These reasons, togethel- with the need to directly sup-
port TCP/IP host namcs ,und addresses, pronipted
Dlgital to incorporate new directory service cl~oiccs
in a ne\v release o f l>bCnet/OSI sofn\rnre.

CDI: Basic Design

Supporting multiple name serrrices requircri decisions
to he made concerning naming syntax, n~i~l t ip lc
address formats, ;ilid Ioc.lI file support. Tlicse decisions
affected the design of both tlie C131 librnry and the
CDI registration tool set.

Client-based versus Server-based Design
TIie earliest and most h~nda~nental clesign ciccision \\,as
choosing bcn\,eeli ,I client-based 01. a scr~cr-bnseci solu-
tion. With a client-based design, support for the \ x i -
~ L I S directory scrviccs \ \ lo~~ld bc accornplisl~cd through
a val-iety of client-bascd programniing librarics. With
a set-\let--based design, a single client libmry \ \ , o ~ ~ l d
c o ~ n n l ~ ~ ~ l i c a t c \vitIi a nc\v "multihcadcd" scr\,cr that
\ \ , o~~ ld fan out to the directory servers.

Since clients outnumber sel-vcrs, a client-based
approach .~fti-cts more systems during the ~lpgrade
process. In spite of this drawback, L\IC chose a client-
based solution for the following reasons:

Iolplernentation of the client-based design would
be lcss complex than tlie server dcsign.

A client-b.lsed design did not Jiave tlie syntax and
protocol traoslation i s s~~es of a scr\rcr-based design.

With a scr\,cr-based solution, client ch.inges \r.ould
still be rccluired to support nc\v native naming
syllt'lses.

For s~nall installations, n o server would be needed
if node information \vas stored in n local file: local
file support \\Ins not possible \\litti a scrver-only
appro.1ch.

Naming Syntax
One of t l ~ c most \,isible complications when support-
ing multiple naming services is the need to recognize
diffcrcnt name syntaxes. Tablc 1 gives the different
syntases fix tlircc lvidely used directory services.

A fi~rtlicr coniplication ofsupporting different name
syntaxes \\,as rhc use of an internal 1)ECdns name
format by nct\\.ork management. One of the goals of
the CDI dcsigri \\,as to allo\\r management requests
to be exchanged \vitli older, non-C1)I systems.

For the initial implementation, (:1)I continues to
support tlie internal DECdns for~nat, rather than use
;I 11c \ \~ r , no11-1)ECdns specific f i) r ~ ~ ~ ' i t alongside
the existing one. As a result, CI)I is rccluircd to map
non-I)F,(:dns names onto the 1)EC:dns format. For
esan~plc, rllc nalnc hq.~:\:,z.c.o~~i fioln the 1)omain
Name Sysrcm maps onto the 1)ECdns name
DO.11. I/.\:. .11q . \ : l ~ . c o / l i (actually o n to the internal
DECdns form of this name).

Multiple Address Support
Along with the introduction of <:Dl, a major inno-
\.ation in this rclcase of DEC:nct/<)SI \\/as direct sup-
port for I'<:l'/IP transports in addition to the existinp

Table 1
Naming Syntax

Directory Service Example Name

DECdns XYZ:.hq.sales.systeml
Domain Name System system 1 .sales.hq.xyz.com

Notes.

The X.500 service is not supported by the first release of CDI

The syntax shown for X.500 is commonly used but is not part of a standard

s ~ ~ p ~ x) r t for 1)ECnet Phase 1V al.ld OSI. To simpli%, the
initial implcn1cntatiol1, IP addrcsscs arc rct~-ic\.cci o~ll!'
frotn the l>otnain Name System (nor from 1IECdns).
Ho\\.c\.cr, rhc design of Cl>I allo\\.s tlic rctrie\-al of
botli kinds of addresses fiom any supported directory;
for cxnmplc, OSI addresses can be obtained from the
l) o t n ~ i ~ i N ,me S)atetii.i,i

Suptwrt ofnlultiple protocols crcarcd anotlicr nam-
ing issue. Many customers already have ;I 1)omain
Name System in place in their networks. O h n 1)EC:net
systems ;1rc i11so running TCP/IP protocols and arc reg-
istered in tlic l>omain Name System, yet thcse systems
arc 11ot running 1)ECnet sohvare o\.cr 'I'CI'/IP. For
csamplc, a syste111 registered as l1cl.syz.com may be
dircctly I-eachable \\.it11 TCP/IP but not \\.it11 l>ECnct
over 'I'Cl'/IP. In this case, it is possible that <:Dl may
rctric\sc a valid IP address for a remote system thnt is
unrcnch,~ble by tlic DECnet protocol.

For tliesc reasons, \vlien CDI dctcrmines tllar botli
tlic 1)omain Name System and the l>E<:Jns naming
service (o r a local file) are specified in the scnrch path,
it docs not stop processitlg the search path until both
t l ~ c 11' addl-css and the OSI address liavc been
obtained, or until the e ~ l d of the list has bccn rcnched.
I n this \\lay, ifthe desired remote systcm is not running
l)E(:nct o*cr TCI'/IP, an attempt to connect \\,ill be
made through the DECnet protocol, ~tsing a conncc-
tionlcss ~ien\.ork ser\,ice (CLNS) OSI nddrcss.

Local File Support
Early \,ersions of the DECner nenvorking product
offcrcd only .I local file for node-to-address informa-
tion. The first release of DECnet/OSI rcplaced tlic

local file \\,it11 the 1)EC:dns naming service. Unfor-
tunately, administrators of small- and medium-sizcci
networks found that the bcncfi ts of 13ECdns (scaling
and centralized managet~lcnt) \\.ere ounveighed by its
additional complcsity.

A subsecluent version of l>ECnet/OSI introduced
tlie Local Naming Option. This allowed approsi-
mately 150 nodes to bc stored in a local file, but many
customers found this number to be too small.

CDI supports a very large local file: the supported
limit is 100,000 nodes, but tl~cl-c is 110 tixed internal
limit. In addition, tl~rougli the use of the search
patli, customers c'in conf ig~~rc tlie local file either as
a backup to a distributed scr\jice, or as a \\fay to prc)\,idc
greater performance. Note that both of these q~~ali t ies
are also pro\,idcd in ;I more nutomated \\lay by tlie CL>I
cache (see the CDI Library Cache section for more
infor~nation).

Security Considerations
CDI relies upon the security provided by the underlying
directory services (or in the case of the local file, the f le
spstcm). Security of its remote management featurcs
depends on the ncn\,orlc tnanngement securinl system.

CDI Libraries: Basic Design

CDI is implemented as sIi3red libraries on both the
Digital UNIS and the OpcnVlMS operating systems.
At tlie highest le\,cl, tlie design is identical o n both s!.s-
tems, as sllo\\/n in Figure 1 . Nanic-to-address transla-
tion requests from the scssio~l control layer are passed
through a single entry point in each CDI library.

DECNETIOSI DECNETIOSI ... I APPLICATION I 1 APPLICATION 1

-7

CDI SHARED LIBRARY I
COMMON DIRECTORY
INTERFACE LIBRARY

I
I
I

INTERFACE INTERFACE . . .

mr&l SERVER

Figure 1
Block l>iagram of the CDI Library

Diairnl 'Tc.cl,~lical Jout.n.~l Vo1. 8 N o . 1 6 6 i

Depending upon the search path (described belo\\.),
the Cl3I libraries transl'ltc and forward the request to
one o r liiore directory services (or they look LIP the
inforn~ation in a local file).

The CDI implcmcntation was considerably more
cornplex on the OpenVMS operating system than on
the Digital UNIX operating systern due to the dif-
fering design of l>E<:nct/OSI 011 each system. On
the Digital UNIX operating system, the DECnet/OSI
session control layer consists of a shared library that
is linked with each ncnvork application. Namc
resolution requests arc processed synchronously. 0 1 7

tlie OpenVMS operating system, session control is a
component of the NET$ACP process. Since all name
resolution requests arc channeled through this single
process, ope ra t io~~s II ILIS~ be asynchrono~~s (r e q ~ ~ c s t s
must block concurrcnt operations). I n addition, sincc
multiple requests may be sin~ultaneously outstancling,
tlie library is ~n~~l t i th rcadcd . Asynchronous, ~nult i-
threuded operations on thc OpenVlMS operuting
system are implemented ~ ~ s i r ~ g the asynchrono~~s sys-
tem trap (AST) mechanism. For these reasons, the
CDI implementatio~l on OpenVMS was much largcr
and more complex.

CDI Search Path
h i o t h e r goal was to permit flexibility in detern~ining
a configuration of directory services. The C1)I design
achieves this goal in nvo ways. First, it allo~\ts iidmin-
istrators to select their service(s) of choice and to use
them in any order. The search path is normally cre;ired
during nen\~orl< config~~rntion and can be subsc-
cluently managed either locally or remotely. Second, it
gives network users thc ability to use short, abbrevi-
ated names instead of potentially cunibe~.somc fill1
names. For example, they can use "system 1" instcad of
"systernl .sales.hq.xpz.com."

A single mechanism in tlie CDI library-the C1)I
search patli-provides these nvo capabilities. The
search path consists of a series of directory
service/name template pairs, as sho\vn in F i g ~ ~ r e 22.
When tlie CDI library is given a name to process, it
scans the search path, replacing the "*" in the name
template with rhc supplied name. For example, if the
library was searcliing for the name,fi.oc/u, it \vould use
tlie directory services identified from the names gener-
ated shown in Figure 2b.

During network configuration, a defiiult search
patli is autoniatically configured based upon the local
node name and the administrator-specified director!l
services. This search patli behavior is similar to a
number of existing T(:P/IP host name/address
lookup imnplementations.

CDI Library Cache
Occasionally, name service lookups can take a long
time to complete (fbr example, if requests .ire travers-

DECdns '
DECdns XYZ:.hq.sales.'
DECdns XYZ:.DNA-Node-synonym.'
Domain
Domain '.sales hq.xyz.com

(a) Oircctory Service/Namc Tcrnplntc I'airs

frodo (DECdns)
XYZ:.hq.sales.frodo (DECdns)
XYZ:.DNA-Node-synonym.frodo (DECdns)
lrodo (Domain)
frodo.sales.hq.xyz.com (Domain)

(b) Address I nokup for Name ,/i-o~lo

Figure 2
Using the ClDI Search Path

ing a slow net\\~ork link, a lookup could take several
seconds). To improve performance, the CDT library
incorporates a single cache that accum~~lates node
information from all the directory services. Usually,
the cachc is consulted before sending 3 request to
a remote service. However, if session control deter-
mines that cached information is stale-for example,
if connection t o a node at a cached address reaches
a node with a different name-it will reissue the call,
requesting that the cache be bypassed.

Each entry in the cache has a creation tiriie stored
with it. The cache itselfhas a "time-to-live" value that
can be modified by the administrator. If a cache
lookup fi~tds an entry whose lifetime (rime since it was
created) is greater than the time-to-live value, the
cache entry is p ~ ~ r g e d .

T o prevent a period of low performance imlnedi-
ately atier system start-up, the cachc is preserved
across system reboots by periodically checkpointing
it to a disk file. The checkpoint interval is adjustable
by tlie administrator.

CDI Registration Tool: Basic Design

The CDI registration tool provides fi~nctions to create,
modifi: rename, display, and delete node name and
address information in any of the supported directory
services. It runs on the major DECnet/OSI platforms,
the OpenVlMS and the Digital UNIX operating systems.

The bdsic requirements for tlie ClDI registration
tool were the same as those for the C1)I library. These
three requirements were the need to:

Support different director!r services for storing
node information

Access each directory service using tlie appropriate
application programming interfaces (APIs)

Store data in each directory service using the
appropriate data types

In addition, the following requirements wcrc spc-
cifc to the CDI registration tool:

Both a forms and console user interface had to
be provided. These had to \vork identically on all
l>ECnct/OSI operating system platfor~ns.

Functions to transfer node information benveen
the various directory services had to be provided.

Other applications such as the DECnet/OSI
nenvork control languagc (NCL) utility and othcr
namespace nianagernent tools had to bc able to
access node name man'igelnent functions.

The directory services supported by tlie CDI regis-
tration tool are slightly different from those supported
by the CDI library. The CDI registration tool supports
the l>ECdns, tlie local f le, and the DECnet Phase IV
database services.

Tlie DECnet Phase IV database is supported by the
CI>I registration tool to allow administrators to use
old Phase IV node information when populating
the node names and addresses for DECnet/OSI. The
l'hase IV database is not supported for node name-to-
address lookup by the CDI library.

Due to its lack of a remote update capability, the
llomain Name System is not supported by the CDI
registration tool. Node name-to-address information
in the Domain Name System is managed i~sing its
native tools. Dynamic updating of the Domain Name
System servers is currently under study by the Internet
Engineering Task Force (IETF) Domain Name
Svstem Working Group.

Application Design
The design of the CDI registration tool uses a client-
based, multilayer approach. It is layered 011 top of a
specialized API, called the Common Directory
Ixegistration (CDR) API. The CDR API differs from
the API provided by the CDI library in that it presents
a fill1 set of management operations, rather than just
the lookup operations required by DECnet/OSI.

In this design, the CDI registration tool provides
fornis and console user i~iterfaces for node informa-
tion management. I t also provides functions beyond
the basic ones provided by tlie CDR API, such as
exporting from and importing to a directory service.
The fi~nction of the CDR API is to perforrn all under-
lying node name management operations in a stan-
dardized manner. This layered approach was adopted
to make node name management functions available
to applications other than the CDI registration tool.

The CDRAPI defi nes a node definition object. This
contains all the information that is exchanged between
the CDR API and the application and is a canonical,

directory-service-independent data representation of
all information needed by the CDR API to manage
node names and addresses.

To provide an extensible mechanism for adding new
directory services, the CDR API is layered on top of
a set of directory service wrapper routines, one per
supported directory service. Access to these \\(rapper
routines is proviclcd by a set of cntry point t ~ b l c s that
can be extended to support neiv directory services.
The CDR API is responsible for accepting application
requests and dispatching them to the correct directory
service by means of the appropriate wrapper routine.
The CDR APT wrapper routines are described later in
this section.

Figure 3 shows the design of the Cl>I registration
tool and tlie C1)RAPI.

CDI Registration Tool User Interface
The forms and the console user interhccs had to
present exactly the same characteristics o n both the
OpenVMS and the Digital UNIX operating systems.
Becaiise no high-level software pacltages at the time
could provide this level of user intertice portability, we
developed the111 for this application.

The console user interface parses commands and
dispatches them to the appropriate user request pro-
cessing routine, using a portable command parser.

The for~iis user interface obtains input from task-
specific forms and dispatches the function o r f~nct ions
associated with the form to the appropriate user
request processing routine. Tlie forms processor
was written specifically for this application because
n o existing libraries could provide tlie required level
of portability.

CDI Registration Tool User Request Processing
Each user recluest lndps into a specific request process-
ing function as follows:

Register. Create a new node name cntry in tlie
directory service.

Add address. Add address information to a node
name en try.

Remove address. Remove address information
kern a node name entry.

Modi6 address. Replace the addrcss information in
a node name entry.

Update address. Replace the address information in
one o r more node name entries, using illformation
obtained from the nodes themselves (if possible).

Modifjl synonym. Replace the node synonym in a
llode name entry.

Rename. Change the name of a node name entry.

Show. Display the information containcd in one or
more node nanie entries.

Digital Technical Journ.11 Vol. 8 No. 1 1996 63

Figure 3
I3loc.k l>iagr.i~ii of thc CDI licgistmtioi~ Tool ;uid the CDR M'I

cDI REGlsTRATloNTOOL ;---------------------,
I

I I
I

1)crcgister. Dcletc one or niorc nodc nnmc cntries
by name, synonym, or address.

FORMS USER INTERFACE
FORMS DEFINITIONS

1Xcp"ir. Fix any detected problcn~s or inconsistcn-
cics in tlic directory ser\lice for one or more nodc

CONSOLE USER INTERFACE
COMMAND TABLES

nnmc entries.

Export. <:opy the information h r one or more node
nalnc entries from die dircctory scl-\,ice into a text fjle
that can be copied benveen systems, cditccl if 11eccs-
snr!; and imported into an!, otlicr dircctor!~ scl-\,ice.

REQUEST DISPATCHER

Import. Use an esport test file to rcgistcr, moditi; or
dcrcgistcr node name entries in a directory scr\.icc.

SHOW
PROCESSING

CDR APl CALLS

Tlir requcst processing ro~rtilies perform a n y rccl~~ired
\~nlicintion of the user request and tl.nr~sl,ltc those
recILlests to calls into the CDR API. Each request may
map into one or Inore CDK MI calls, dependins on tlie
complcsity of the rcquest. For csa~nplc, register and
dcregistcr reqilcsts both map illto single (:l')R APT calls,
and export and import requests map into sc\~eral calls.

Most rcqucsts arc straiglitfor\\.nrd in their pro-
cessing rccluiremcnts. For example, a rcgistcr rccl~~est
simpl!, c3lls the CDR A P I register entry point. ?'he
(:Dl< API tnkcs care of any complications in pl-occssing
the recluest.

Some reclucsts can opel-ate o \ t r ~iiultiple node n;inic
entries. For csamplc, the sIio\\l request enumcratcs
the nodc name entries, retrieves the information con-
tained in each nodc name cntr!r, ancl displays tlie infor-
mation to the user.

Ai esport request is similar to a show request,
except that tlic resulting information is ~ r i t t e n to a
test file in a standard format jnste3d of being displ'~\~cd
to tlie user. The i~iiport request, ho\ve\.er, is more
coniplicated. This reclilcst Ini1st enumerate and she\\,

the contents of the directory scr\,ice, and the11 com-
pare the results \\~itli tlic contents of the test file. Rased
on the specific form of the import request, it may then
register new nodc namc cntries, update the informa-
tion in existing nocie Ilnnle entl-ics, o r deregister listed
node name cntries.

The export and import rcqucsts make use of a text
file to pro\,ide masim~rm flexibility. The use of a test
file allo\\.s the information to be copied between dis-
similar platforms such as the OpenVlMS and the
Digital UNIS operating systems, and allo\\rs the infor-
ination to be lna~iip~~lutcd sing standard tools such as
batch filcs, grep, awk, ;lncl test editors. This is particu-
larly usetill \\.hen applying a cIi;lnge to all node entries.

REGISTER
PROCESSING

64 1)igiral '1i.chnical Journal

I I I I I
I I I I I
I I I I I
I I I
I r - - - - - - - - - t I

I I I
CDRApl ; I -------------I ---------- J I

I I I I
I l l I I
I l l I I

\ J f .) l . 8 No. 1 1996

DELETE
PROCESSING

ENTRY POINT

SHOW
PROCESSING

WRAPPER CALLS

CDR API CALLS

...
CDR API CALLS

ENTRY POINT

. ..
WRAPPER CALLS

ENTRY POINT

REGISTER
PROCESSING

WRAPPER CALLS

DIRECTORY SERVICE WRAPPER ROUTINE DISPATCHER

CDR API CALLS

ENTRY POINT

DELETE
PROCESSING

WRAPPER CALLS

DECDNS
WRAPPER ROUTINES

I I I
I I I
1, I I

I I

-

LOCAL FILE
WRAPPER ROUTINES

PHASE IV DATABASE
WRAPPER ROUTINES

For example, the contents of a directory service could
be csportcd to a text file, the addresses in the test file
changed to reflect a new routing area, ,lnd the results
in2lx)rted back into tlie directory to update the esist-
ing information.

Tlie repair fi~nction performs a s l i o ~ \ ~ operation on
all specified node names to determine if any consis-
tency crrors arc found. This type ofcrror can occur in
directory services that Iwep multiple physical records
for cach logical node name entry. 13ECdns is one
csaniplc of this Idnd of directory service, because it
mes soft linlts to map node s!lnonyrns and addresses
back to their respective node name entries. If this type
of error is found, thc repair fi~nction rc-registers the
~ ~ o d c s!,nonym and address informatio~i to correct
these inconsistencies.

The most complicated request is the update request.
This performs a sho\v request for the specified node
n;lmes and attempts to use the current addressing
informntion contained in the node name entry to make
3 network management connection to tlie node itself.
For each node name entry, it steps through the com-
plctc set of registered addresses and tries each address
i l l turn, ~1si11g both a DECnet Phase IV connect and a
l)ECnet/OSI connect. If a connect attempt is success-
fill, it i~scs the appropriate network management
requests t o read the true addressing data. It then coni-
pJres this ,~ddressing data to what it found in the direc-
tor!, scr\~icc ,~nd makes any necessary corrections to the
node name entry. Tlie update operation does not oper-
ate on I I' addresses due to the lack of dynamic update
cap3hilitics in tlie Domain Name Systcm servers.

Before making the C D R M I calls, all recluest process-
ing routines convert the user request data into a node
clefinition objcct, which is discussed in thc ncst section.

CDR API Node Definition Object
The nodc definition object is the only input data pro-
vided to any of the CDRAPI entry points. It stores the
neccss'lry data for any directory service operation,
using a canonical representatioll. Thc nodc definition
object contains tlie following:

1. Type oftiircctory service to access

2 Name of the node entry to access (depending on the
opcratlon be~ng performed, ~t may allow a full\; qud-
16ed namc, a synonym, an address, or wldcards)

3. Syno~iynl name (for DECnet Phase IV access)

4. l)E(:nct l'hase IV network servicc acccss point
(NSAP) prefix (for use when a Phase IV address is
specified)

5. Aclclrcss information

6. L)irectory narnes used for reverse mapping of
synonym Iianles and addresses back to the fi~lly
qildlified node name

The CDRAPI controls all access to elements within the
node definition object, which further isolates the call-
ing application from the lower-level data structures.

CDR API Entry Points
Each CDR API entry point provides one logical fiinc-
tion to the calling application. Each user request can
translate into one o r more CDR API functions. The
functions are

Register. Create a new node name entry in the
directory service.

Add address. Add address information to a node
name entry.

Remove address. Remove address information
from a node name entry.

Modify address. Replace tlie address information in
a node name entry.

Modify synonym. Replace the node synonym in a
node name entry.

Rename. Change the name of a node name entry.

Show. Return the information contained in one or
more node name entries.

Deregister. Delete one o r more node name entries
by name, synonym, or address.

Enumerate. Return a series of node name entries,
one at a time, based 011 a wildcard specification.

All node information passed to and from the CDR
API is in the form of a node definition object, as
described previously. The CDR API functions validate
the ca~~onical information contained in the node defi-
nition object and dispatch a directory-service-specific
function to handle the request.

CDR API Directory Service Wrapper Routines
Each directory service supported by the CDRAPI has
an associated set of directory service management
wrapper routines. These routines provide entry points
that are functionally identical to those provided by
the CDR API. The CDR API does the initial input
argument validation, and the directory service wrap-
per routines perform the data manipulation in the
underlying directory service.

The CDR API dispatches the appropriate directory
service wrapper routine using a set of entry point tables.
This provides a means to easily extend the CDR API to
include additional directory services in h tu re versions.

CDR API Wrapper Routines for DECdns
In the DECdns name service, each node name entry
contains all the information required to translate a
node name to a synon!lni or a set of node addresses.
However, no search mechanism exists to allow a

L>iginl Technic11 Journal Vol. 8 No. 1 1996 65

I

I

lookup of tlie node name entry based on the synonym
or on an address. For this reason, all filnctions that cre-
ate, m o d i ~ , and delete node name entries (register,
modifi, addresses, rnodifii synonyni, rename, and
deregister) must also create, modifj: and delete reverse
mapping entries.

lleverse ~iiapping entries are based on a node's syn-
onym and addresses; they contain pointers to the true
node name entry. These entries are ilsed by the CDI
library lookup functions and by the C D K API display
functions (sho\v and enumerate) to access thc node
name entry when given a synonym or address.

The use of reverse mapping entries recliiires that
multiple clirectory service entries bc created for each
registered node. These must be s~~~ichronized by prop-
erly orclering the creation and deletion ot'the \rarious
entries \\then registering, moditjliug, or dcregistering
a node name. For esample, \\then registering, the node
name entry is created and its synol1yrn and address val-
ues arc set before tlie reverse mapping entries are cre-
ated and set. Similarly, when dcregistering, the reverse
mapping entries are deleted before the node name
entry is deleted. This prevents orphaned rcvcrse map-
ping entries from being created, because they call
always be found by starting from the information con-
tained in the node name entry.

The repair function is provided in case a register or
deregister operation fails before completion. The
rcpair fi~nction corrects the reverse mapping cntries by
re-registering all node name entries that show errors.
The CDI registration tool (not the C1)RAPI) pro\lidcs
this higher-level function.

CDR API Wrapper Routines for the Local Node File
Under the OpenVMS operating system, the local node
name file is implemented using a record management
system (RMS)-indexed file. Under the Digital UNIS
operating system, a DBM-indesed file is used. On
both systems, the file content is esscntiall!l the same.

The local node name file contains a series of logical
records, one for each node nanic entry in the directory
service. Together, these records define each node's
fillly qualified name, its synonym, and its addrcsscs.
This logical record may be loolted up using the f ~ ~ l l
name, the synonym, or any of the node's addl-esses.

Each logical record consists of (1) a node definition
physical record, which contains all infor~nation related
to the node, and (2) zero o r more reverse mapping
ph!rsical records, which contain alternate keys for look-
ing up the node definition. Each rcvcrsc mapping
record contains only the node name key in its record
data. All the data used to describe the node i s con-
tained in the node definition record.

Because multiple records compose a node name
entry, operations that fail t o cornplete can r e s ~ ~ l t in

inconsistencies in the local node filc. Fortunately,
diese inconsistencies can be resolved using the same
synchronization algorithms as used for DECdns.

CDR API Wrapper Routines for the DECnet Phase IV
Node Database
Access to the 1)ECnet Phase IV node database is pro-
vided primarily to help users migrate their Phase IV
node name data to DECnet/OSI. N o access is pro-
vided to this database by the CDI library for
DECnet/OSI applications. Because this database con-
sists of a simple file, with one record per node name
entry, none of the ~nultiple record synchronization
problems exist.

Conclusion

The Common Directory Interface, consisting o f
the CDI registi-ation tool set and the CDI library, pro-
vides flexible and extensible directory service access
for DECnet/OSI. Initial customer acceptance of these
new capabilities Iias been high and future enhance-
ments are being studied.

Acknowledgments

The design and development of the Common
Directory Interface involved the contributions of the
entire directory services and DECnet engineering
teams. We extend our thanks to all the team members,
as \\/ell as to product and engineering management for
supporting this project.

References

1. S. Martin, J. klcCann, and D. Oran, "Development of
thc VAX Distributed N ~ m e Service," Digilal Tech~iical
.Jo~lrwnl. vol. 1, no. 9 (June 1989): 9-15.

2. 1'. Mockapetris, "1)ornain Names-lrnplementation anu
Specification," 1W(: 1035, Intcrnec Document (No\rcni-
ber 1987).

3. CCITT Sixth Plenary Asscnibly, "The Director!--
O\rer\~ie\v of Conccpts, Models and Services," Reco1?7-
rnen~ l~~t io iz X.500 and IS0 9594- 1. Dutu
Cornnzr./nicatio~zs Netujorks Directory: Recomtnc~r?-
~l~rtio17.s S. 500 to X. 52 7 , CC1'T.f Blue Book> vol . xiii.8
(Genev;l: International "~eleconi~nunications Union,
1989).

4. R. Rosenba~~m, "Using the Domain Nalnc Systcm to
Store Arbitrary String Attributes," RFC 1464, Intcrnec
Docu~nent (Mav 1993).

5. B. manning and R. Colclla, "Thc Dolllain Name Systcm
NSAP Resource Records," RFC 1706, Internet Docu-
ment (Octobcr 1994).

Biographies

Richard L. R o s e n b a u n ~
Rich l<c)scnbaum is a sofi\\.are engineering consultant in
the Inrcrnct Sofr\\are Business Unit, \vlierc Iic is focusing
on the application of indexing and collaboration rechnolo-
gies to rhc World Wide Web. I n his 1 7 years with Digital,
hc Iias worked o n networking products operating o n
1)igital'b 16-, 32-, 36-, and 64-bit platforms. H c is tlic
co-nuthor of several patents on network so f~ \ f a re . IGch
obtained a B.S. from the State University o f New York
at Stony Brook.

Stanley I. Goldfarb
Stan Goldhrb is n principal sofn\tare cnginccr with tlic
Intcr~lct Sohvarc Business Unit. Since joining Digital
in 1976, he has contributed to several ~ie twork and net-
\vorlc man.lgcnicnt projects, including DEC:net/RSX,
1)ECnct-PKO, DECnet-DOS, DECmcc, l)F,Cnct/OSl,
and PATHWORKS, and Ihe has co-authored several parents
on net\vork Iiianagement sofnvare. H e is currently work-
ing o n a Workgroup Web Forum application to providc
clccrronic mail subscription and distribution services.
Stan holds R.S. and 1h4.S. degrces in computer scicncc
kom Worccstcr Polytechnic Illstirutc arid an b1.S. in
Inanagcnlenr from Lesley College.

Recent Digital
U.S. Patents

?'he following patents \\!ere recently issucd t o Digital
E q ~ ~ i p m e n t Corpora t ion . Titles and names s ~ ~ p p l i e d
to us by the U.S. Patent and Trademark Office are
reproduced exactly as the! appear o n t h c original
published patent .

S. K. Morgan alld M. 1,. HctficIJ
S. K. Morgan and M. L. Hcrticld
S. I<. Morgan and iM. L. tlcrfclti
R. Veno, I<. Palumbo, 1'. Roncli, P. R.irron,
and IM. Freeman
S. K. Morgan and M . 1 .. Hctfcld
IM. Falkner, LM. Good, rind M. Wicsc~lhahn
S. K . Allorgan and M. L. Hcrficld
L. Spcnccr and (:. llctsilc.15
R . Faranda
S. I(, klorgan and JM. 1,. Hctficld
S. I<. &lorgall and iL1. L.. Hctfcld
M. I.. Herticld and S. K. Morgan
W. ~McCarth!; R . Hcll\\,cg, K. iV13srcrs,
iLI. Freeman, C. L\lilliams, <:. I3rcncli,
I(. Palumbo, D. Snow, and 1'. Rarron
C. E. V ~ i l l ~ ~ n t , J . D . licati, ,lnd C;. J . N o r q ~ ~ ~ y
M. J. Falkncr and 1M. W. Klce~nn~l
C . Landry
I<. Sullivan and P. Cninc
S. Lipncr, iM. Gasser, and 1%. W. Lampson
M. Kindervater nnd F. Zandvcld

D. Widder
R . Stroud and K. Vo~ihrnncit

1'. Hearn, A. Prentakis, W. Lewis, 2nd
F. Zayas
1'. IM. Goodwin, 1). W. Smclscr, and
D. A. Tatosian
11. Brown

J. Palczynski
K. Pa\rlak

R . Curtis and 1). Skc~liizic

5,223,996 (:. E. Vaillant and J. 17. R c ~ d

5,224,235 P. Lison and W. Haincs

Electronic 13evicc Module
Electronic Device Module
Enclosure h r F,lccrronic M o c i ~ ~ l c
Power Supply Door

Electronic 1)cvic.c Module
Positioning Dcvicc
Pouser Supply iMociulc
Face Platc
Central Processing Unit Enclosure
Cover for \Ydll-mounted Electronic Ecluipmcnt
Electronic L)c\,icc Modi~ lc
Network ~Multiplesor for an Office En\.ironment
C ~ r d Cage Enclosure

Rcmovnble lGgid Disk l>ri\~c
Desktop Audio Enclosure
Display Monitor
Soldcr Pump Kushi~lg Seal
Secure User Aurhcnricntio~i from I'ersonal Computer
Cornpi~ter System Comprising a Main Bus and an
Additio~ial < ; o m ~ n u ~ ~ i c a t i o ~ ~ iblcans Directly Co~~nccrcci
bet\\,een Processor and Main Memory
Merhoti and Appnratus for Testing Inner Lead Bonds
Composition and iblcthod for Bonding Elecrl.ical
Componcnrs
Method and Appar.ltus ti)r Surhce Reallocation for
Irnpso\~cd ~Mn~lu'lcruring Process Margin
Parallel Diagnostic ~Modc For Testing Computer ~Mcniory

l'lcnum for Air-i~npingc~ncnt Cooling of Electronic
Components
Cross I<cgulator for a Multiple O i ~ t p u t Pou,e~- Supply
Optical Angular Position Sensing Systcn~ for Use \vith

Galvanomctcr
Method ; u ~ d Apparatus k)r Reducing Electromagnetic
Intcrfcrcnce n~ id F'rnission Associated with (:ompurer
Ncr\vork lnterfnccs
Combincd Shock Mount Frame and Seal for a Rigid
Disk Drive
Electronic Componcnr Cleaning Apparatus

W. H;l~nburgc~l
11. Noguchi, 1. Rinaldis, and P. Esling
K. <:lien
13. Rrogdcn, I,, Bro\vn, and S. Husain
1). J. Vclasco, J. P. '.<:opeland, D. C. Robinson,
and l i . 1,. Fcrnnndcz
G . Ir'rccclma~l

Gentle Package Extraction Tool Mcrhoc~
Tunablc Wideband Active Filrcr
Method and Apparatus for Lxarning in a Ncural Ncnvork
Dr!l Contact Electroplaring Appa~..lrus
Video Amplifier Assembly [Mount

Atmospheric Pressure Gaseous-flus-nssistcd Lnscr
Rctlo\v Soldering
System and Method for Measuring <:ompurer Sysrc~n
Time Intervals
Side-by-Side Rcad/Writc Heads \virh Rot;~r! Positio~icr
Cooling Device tlinr Crc;lres Longir~1di1l~11 Vortices

M. 1Mallal-y
1). 13;iiIc\,
1). 1). I>o~laldson and D. Wissell
J . Benson, I). Alessandrini, and W. l<ett
W. Haincs, R . K.lyniond, C. Ryun, E. Johns,
1). Kavipari, Q. Ng, and G. Ri~uch
W. Mallard
E. PVobhcr, M. Abadi, A . Rirrcll, and
R. W. 1.anipso11

Po\\~cr Supply Inrerlock for Disrributcd I'o\vcr Systcnis
Appararus for Sec~rr i~ig Shielding o r the Like
N~trogen-containing M~rerials for Wear Protection and
Friction Reduction
TI-ansmission Media Driving System
Access Control Subsystc~n and Mctllod for l>isrriburcd
Computer System Using Locally Cached Authe~iticarion
Credentials

I). Widdcr and 1). Icngleb
K. Chi

Semiconductor Probe and Alignment Sysrcni
Voltage-conrrolled Ring Oscillator Using <:oniplcn~cnrary
Differential Buffers for Generating M~~l t ip l c Phase Signals
Fixture and Method for Atr~cl?ing (;oniponents
Progranimable Priority Arbiter
~Merhod for Updating Modified I>an fi.o~n '1 <;ache

W. Hanlburgcn and 1. Fitch
T. (;reedon, I). Smith, and A. O'Connell
F. Fcl(lbruggc

Address Location t o Mnin Memory and Maintaining
the Cache Address in Registration Memory
Combined Differe~~tinl-mode 2nd <:o~llrnon-motic
Noise Filter
Re~no\fablc Enclosure Housing a Rigid Disk 1)rivc
Integrated Circuit r r o t c c r i o ~ ~ b y Liquici Enc.lpsulnrio~~
Semiconductor Heat Rcrnoval Appararus \\,irh
Non-uniform Conductance

<:. F.. V~illant, J. I). licad, and (;. Norquay
\.\I. H ~ ~ i i h u r g e ~ ~ nnd J . Fitch
W. H a ~ n b u r g c ~ i and 1. Firch

A. I'liilipossian and E. (:ullcy
P. Anick .ind R. FIynn

Thermal Processing F ~ ~ r ~ l a c e \\,it11 lrnprovcd Plug Flo\v
Method and Apparatus for Integrating a I>ynaniic Lexicon
into a Full-rest 1nform;ition Rctric\.;il Systcrn
Fault Detector for a P l u r ~ l i p oERatrcrics in Bartcry
Backup Systems
Transceiver Appararus nud Mctl~ods
High Performalice Interface bcnvecn an Asynchronous
Bus and O n e o r Morc Processors o r the Like

I>. (:. D;l\'ics, I>. G. VOII ' I~J , and R . A. Curtis
N. Crook, I? Bruce, and 11. Gilluszka

r\. I'hilipossinn n~ld E. Culle!)
R . Mcllitz and E. Srcarns

Reducing Gas Rccirci~l;lrion in "l'licrnlal I'roccssi~lg F ~ ~ r n n c c
Manually Operared <:ontinuin/Shorrs Test Probe For Rarc
lnterconnccrion Packages
Confgurablc In\lertcr for 120 VAC or 240 VAC Ourput J . S imo~~cl l i and %. Al-ban.1~

A. Jain, N. Lcc, anti E. Kcppclcr
T. I .. Rodchcffcr

Apparatus and Method for Fabricating a Lcns/Mirror TOMW
Intermittent <:o~nponent Failure Manngcr and Mctlioci For
Minimizing 13isruption of Disr~.iburcd <:o~iiputer Systcm
Filters in License Management Systeni
~Mctliod of Issuance and Revocation of <:errif cntcs
ofAuthenticit!~ Used in Public I<cy Nctulorks and
Other Systems
Method and Appararus for Encoding I h r a for Storage 1'. S. Ihrkcr, a11d E. W. Ertcl
on [Magnetic Tape

R. I'ortcr, (:. A. Mcga, and R. L. Myers Computcr System Operation \virIi <:orrccrcd Kcad
Data Funcrion
Sharing o f Bus Access among Mulriplc State Maclii~lcs \\lit11
Minimal Wait Tinic and Prioritization of Like Cycle Types

D. E. William

(:. I! Murphy, .I'. (:reedon, ~ n c i (:. D. Crc~nin
A. Nasr

High-performance Asynchronous 13us 111rcrfncc
 methods of Forming a Local Interconnect and a High
Resisror Pol\lsilicon Lnad by Rcacting <:obalt \vith Pol!lsilicon

Vol. 8 No. 1 1996 6~

S. Batra, S. Ramaswamy, and M. Mallarp Thin Film Kcad/\Yritc Head for Minimizing Erase
Fringing and Method o f Making the Sarnc
Apparatus for S i ~ n ~ ~ l r a ~ ~ e o u s Writc Access to a Single
Bit Memory
Mcthod and Apparatus for Resource Arbitration
Collision lk tect ion and Signaling Circuit
Packagc for Multiplc Rcmo\~ablc Intcgratcd Circuits
Robotics Workstation
<:o~nputcr Nct\vork with Motfificd I-Iost-to-Host
Encryption Keys
Adaptive Memory Maniigcmenr Method for Coupled
Mc~nor)! Multiprocessor Systems
Mcthod and Apparatus for Clock Skew Reduction t h r o ~ ~ g h
Absolute Delay Regulation
Resis t~~icc Tester Urilizi~ig Regulator Circuits
Torsion Bar Connector
laser Bonding Highly Rctlecti\.e Surhces
On-the-fly Splitting of Disk Lhta Blocks Using Tirncd
Sampling of a Data I'osition Indicator
~\/lultisignal Synchronizer with Shared L ~ s t Stage
Spindlc (:ontroller \vith Startup Correction of Disk Position
Co~lcurrcncy and Kccovcry fbr Index Trees \\.it11 Nodal
Updates Using multiple Atomic Actions by Which
the Trccs Integrity is I'rcscrved d~rr ing Undesired
S!~srcni Intcrsuptions
Embedded Servo Bandcd F o r ~ n a t for magnetic Disks for
Use ui th a Data Processing System
Fast Arc.1-'fficicnt h4ulti-bit Rinar): Acides \\fith Lo\\!
Fan-out Signals
High Throughput Intcrle\,cl Dielectric Gap Filling I'rocess
S t r u c r ~ ~ r e <ind Method for 1)ircct Calibration o f
Registration Mcasurcmcnt Systems to Actual
Semiconductor W ~ f e r Process Topogmpliy
Programmable Stall (:yclcs

R . J . Galuszka, A . J. Walton, and C . Clioi

C. P. Thacker
A. T. Townley
F. Aghadel and C . W. H o
M . Saylor
M. Abadi, M. Burru\vs, and 13. W. Lampson

K. D. Abramson, H. B. Butts, and
D. A. Orbits
H. A. Collins, R . B. Watson, and R. Iknaian

S. G. Lloyd and H. Partovi
L. MacLellan
G. Freedman, P. Elmgren, and M. Brodcur
B. D. Buch

N. D. Godiwala and K. M. Thallcr
W. F. Even
D. B. Lornet and B. J . Salzbcrg

5,278,703 B. Rub, J . E. Deroo, S. R. Skraly, A. Solli,
and R. Frame

5,278,783 J. Edrnondson

5,279,865 R . P. Chebi and S. Mitral
5,280,437 D. A. Corliss

A. J . Bcverson, T. E,. Hunt , and
G. P. Lidington
J. R . Lundbcrg
J. F. Bartlett

Rcduccd Voltage NIMOS Output Driver
<:oniputer Systcni and Method for 13isplaying I m ~ g c s \\.ith
Supcrimposcd Partially Transparent Menus
Systcm for Ileducing the Emission of High Frcquency
Elcctromagnctic bV:~cs from Computer Systems
C o m p ~ ~ t c r Cable Management System
Inrush <:ur~-c~lt (:ontrol Circuit
Synchronous I>ccodcr for Self-clocking Signals
Systcni For Allocating Storage Spaces Rascd upon Required
and Optional Service Attributes Having Assigned Priorities
Multilevel l'r.insactio11 Rccovcr)r in a Databnsc Systcm
Which 1 ~ 5 s I'arcnt Transaction Undo Operation upon
Commit of Child Transaction
Self-compensating Voltage I,cvcl Shifting <:irc~rit
I'owes <:on\icrtcr \\lit11 C o ~ ~ t r o l l c s for Switching bctwecn
Primary and Battery I'owcr Sourccs
Mcthod and Apparatus I-i)r Variable I)c~)sity Kcad-after-
writing on Magnetic Tape
F.nclosurc h r Electronic Modules

A. E. Deluca, J. M. Lewis, C. L. Leo,
T. ,I. Orr, D. T. Symrncs, and R. A. Barker
J. W. Benson and D. T. Statliere
M. Shilo
W. Engelse
P. Stoppani

D. B. Lomet

B. A. Maskas, J. A. Metzgcr, and G. J. Harris
J . A. Daly, J . M . Gregorich, and G. J . Rr'uld

G. Saliba

W. F. McCarthy, D. M. Snow, and
C. E. Brench
N. A. Crook, P. L. Brucc, and R . J . Gnluszlta
M. A. Jordan and D. J. Donnelly
A. P. Russo, S. L. Regc, M. F. Kcmpf, and
E. T. Sulli\ian

Sy~ichronizat io~~ Scllc~nc
1)ctcrnlinistic h/Icrliod for Allocation o f a Shared llesource
Nc t~ to rk Adaptcr with High Thro~lghl>ur Data Transfcr
<:ircuir t o Optimize Nct\vork Data Tra~~sfcrs , \vith Host
Rcccivc King Resource Monitoring and Reporting
PVI' Updatc Synchronizer R . Iknaian and R. B. Watson

70 Digital Technical Journal Vol. 8 No. 1 1996

1). C. Robinson, 1. 1'. Copeland, D. J. Velasco, Integrated Computer Assembly
R. L. Fcrnandcz, and S. D. Vcnditti
J. A. Mctzger and P. J. Graffam lnterconnect Arrangement for Electronic Con~ponen t s

Disposed on a Circuit Board
1). L. Murphy System for Linking Program Units by Binding Symbol

Vector Index in the Symbol Table into Calling Imngc
to Obtain Current Value of the Target Image

D. Railcy, P. Martino, and R. Arsenault Method and Apparatus tbr Liquid Spill Cont?' , ~ n m e n t
A. Bcavcrson and <:. 1. Dcvanc A General Process for Finding Patterns in L.argc L.ogic

Traces (o r Other Large Binary Arrays) Using Multiplc
Concurrent Finite Automata with <:ross-corii~n~~~iication

I<. Galuszka, A. bvalton, and S. Bryant High Speed Transmission Line Interface
(:. P. Thacker and D. Harn\;cll Dynamic Arbitration for System Bus Control in

Multiprocessor Data Processing System
P. J . Cerqua, S. M. Kenncdy, J. D. McAtee, Workflow Management and Contl-01 System
and P.J. Piccolomini
T. R . Renson Use ofs tack Depth to Identi+ Architecture and Calling

Standard Dependencies in Machinc Code
P. Rocrs multi-element Susceptibility Room
M. Burrows NetIvork Packet Recei\sr with Buffcr Logic for

Reassembling Interleaved Data Packets
S. L. Rcgc and D. A. Gagnc Attribute Based Multiple Data Structures in Host for

Net\vork Received Traffic
D. <:. Davics Tracking Peak Detector
V. Saniarov, 1, l>cCarolis, R. Patcl, G. l'ichc, Coplanar Heatsink and Electronics Asscmbly
G. Skutt, and S. Norris
N. 13. Godiwala and K . M . Thaller Aborting Synchronizer
M. I,. Palmcr Predictive Cache for Improved Perforrn;~ncc in Retrieving

Cached Data
L. Supino Automatic Phase Margin C o ~ n p e n s ~ t i o n Control C i r c ~ ~ i t

and Method for Disk Drives
G. A. Salib;~ I\Iilgnetic Head for Very High Track Density Magnetic

Recording
R . Silvcl-stein Trickle Charge Circuit for an Off-linc S\\sitchi~lg

Power Supply
N. K. Lcc, A. lain, E. Keppclcr, and multi-disk Optical Storage Systcm
M. Rouchard
S.-T. Bcn-Michael and P. Lozowick [Method and Apparatus for Cut-through Data Packet

Transfer in a Bridge Dcvice
T. K. Bcnson Mapping Assembly Language Argument List Rcfc~.cnccs

in Translating Code for Different Machine Architectl~res
S. 1. Rradlc!, Systenl for Bonding a Heatsink t o a Semiconductor

Chip Package
H . Collins, R . Watson, and R . Iknaian method and Apparatus for Clock Skew Reduction through

Absolute Delay Regulation
13. <:alialan Method and Circuitry to Provide Truc Voltage Rias to

a Magnetoresistive Head
E. S. Noya, M . N . Rosich, and R. M . Arnott Data and Parity Prefetching for Redr~nclant Arrays of

Disk Drives
N. A. Warchol Self-conf guring Bus Termination Component
13. D. Donaldson, R . A. f>anlc, and Data Bus Using Opcn Drain Drii~crs and I>iffcrcntinl
R. K. Nikcl Receivers Together with Distributed Termination

Impedances
M. Lcwis, L. Trcsedcr, K. Martinez, ana Reduced Tolerance lntcrconncct System
R . Tuslcr
C:. P. Thackcr Method and Apparatus for Dcskcwing I>igitnl l3at.1
K. Mcincrth, C. Case, R . Gamache, Translation o f Virtual Addressing in a Computcr
B . Fanning, and <:. Franklin Graphics System
1\11. Lcwis rind R . Ravep Automatic Signal Termination S)lstcm for a <:omputer Bus
W. (:. Mallard and H . S. Yang Method and Means for Autoniarically 13ctccting and

Correcting a Polarity Error in Twisted-pair Media

D~gital l'echnicnl Journa l

R. 1M. Arnott, E. S. Noya, and M. N. Rosich Optimized Stripe Detection for Redundant Arrays of
Disk Drives
Graphics Command Processing Method in a Con~puter
Graphics System
Method and Apparatus for Varying Command Lcngth
in a Co~nputcr Graphics Syste~n
Multiprocessor Buffer System
Oscillation Device for Plating System
Method of Decreasing the Field Oxidc Etch Rate IJI

Isolation Technology
Leading One/Zero Bit Detector for Floating Point
Operation
Computer Peripheral Device Nctwork with Peripheral
Address Resetting Capabilities
Quadrant-based Binding of Pointer Device Buttons
Clocking System for Asynchronous Operations
Intelligent and Compact Bucketing Method for Region
Queries in Two-dimensional Space
Translation Buffer for Virtual Machines with Address
Space Match
Duplicate 'rag Store without Valid Indicator

K. Mcinerth, C. Case, B. Fanning,
and J. Irwin
K. Meinerth, C. Case, J. Irwin,
and B. Fanning
S. Bryant and M. Seaman
D. Young, S. Randall, S. Shaw, and A. Wylde
A. Philipossian, H. Soleimani, and B. Doyle

S. Britton, R. Allmon, and S. Samudrala

J.-C. E. Cuenod, and P. A. Sichel

F. Fernando
S. H o and N. Darcy
S. Dutm, A. Roy, and N. Rao

A. H. Mason, P. T. Robinson, R . Witek,
and J. S. Hall
B.A. Maskas, J. A. Metzger, N. D. Godiwala,
and I<. M. Thaller
K. M. Thaller Polling of 1 / 0 Device Status Compar~son Performed

in the Polled I/O Device
Cornbined Differential-rnode and Common- node
Noise Filter
Multicast Address in a Local Area Nenvork Where
thc Local Area Nenvork has Inadequate Multicast
Addressing Capabil~ty
Data Recovery aker Error Correction Failure
Residuc Buffer for Graph~cs Systcm

R . Curtis and B. Shusterman

R. Perlrnan

L.-J. Weng
K. Meinerth, C. Case, J. Irwin, A. Masucci,
S. l(rishnaswami, and A. Moezzi
K. Meinerth, C. Case, J. Irwin, and
B. Fa~lning
E. McLellan
J . IUein

Address ~Mcthod for Computer Graphics Systenl

Reducing Branch Delay in Pipeli~~ed Cornp~~ter S\~stem
Distributed Computation Recovery Managemcnc System
and Method
Surface Selection Mechanism for Optical Storagc System
Automatically Configuring Parallel Bridge N ~ ~ m b e r s
Method for Testing a Processor Module in a Computer
Systcm
Clip-on Heat Sink
Method of Controlli~lg Gate Oxide Thich~ess in the
Fabrication of Semiconductor Devices
Thin Film Magnetic Transduccr \\lit11 a Multitude of
Mag~netic Flux Interactions
Method and Plating Apparatus
Disk Drive Holder and Interconnection System
Apparatus for Storing S t o r ~ g e Dcviccs

L. Neville, A. Jain, and A. L. Gutierrrz
R. Perlman
N. Warchol

A. Villani
A. Philipossian, B. Doyle, and H. Soleimani

S. Batra and A. Wu

D. Young, S. Randall, S. Shaw, and A. \Vylde
G. Christensen and J. Marceca
A. E. Deluca, S. W. Stcfanick, C. L. Leo,
T. J. Orr, D. T. Symmes, and H. Wright
R. Ulichney
R . Ulichney

Imaging System with Multile\~el Dithering Using Bit Shiftcr
lmaging System with Multilevel Dithcring Using Two
Memories
Data Storage System and Method with Dcvicc
Independent File Directories
Modular Equipment Support Systcm

P. Stoppani and C. Saether

R.-A. Locicero, S. Morgan, M. Romrn,
E. Mangan, and M. Bantly
G. Dvorak and L. Wolfe
R . A. Willian~s

Test Fisturc for Electronic Components
Communications System with Reliable Collision Lletecrion
Method and Apparatus
FIFO: Based Parity Generator (FBPG)

72 Digirnl Tcchnlcal Journal

Call for Authors
from Digital Press

Digital Press is an imprint of Butterworth-Hcinemann, a major intcmational pub-
lisher of professional boolcs and a member of thc Reed Elsevier group. Digital
Press is the a~~tliorized publisher for Digital Equipment Corporation: The nvo
companies are working in partncrship to idcntify and publish new books under the
Digital Press imprint and create opportunities for authors to publish their work.

Digital Press is cornrnitted to publishing high-quality books on a wide variety
of subjects. We would like to hear from you if you are writing or thinking about
writing a book.

Contact: Mike Cash, Digital Press Manager, or
Liz McCarthy, Assistant Editor

DIGITAL PRESS
31 3 Washington Street
Newton, MA 02158-1626
U.S.A.
Tel: (617) 928-2649, Fax: (617) 928-2640
E-mail: Mike.Cash@BHein.rel.co.uk or
LizMc@cvorld.std .com

	Front cover
	Contents
	Editor's introduction
	Foreword
	Design of the TruCluster Multicomputer System for the Digital UNIX Environment
	Delivering Binary Object Modification Tools for Program Analysis and Optimization
	Design of eXcursion Version 2 for Windows, Windows NT, and Windows 95
	Integrating Multiple Directory Services
	Design of the Common Directory lnterface for DECnet/OSI
	Recent Digital U.S. Patents
	Call for Authors from Digital Press
	Back cover

