
I '  
UI* 

I 1  Qi . H  
0 * & ,  h i  1 ,  7 : I 

. - -1 ALPHASERVER 4100 SYSTEM - Digital ' .& . && 
c: " ' ~ e c  h n ica l 
3 Journal i 

. - 
, . i  ;' 

)-? ".,' & I-, 
F ,. ! , 1 4  

1 *,< 

, 
, ' , , I " ' , . ,  

.- 

csa y - p ~  
'*a, iic ,...,- 

- .  ORACLE AND SYBASE DATABASE PRODUCTS - 1 FORVLM *- I 

663***01  INSTRUCTION EXECUTION ON ALPHA PROCESSORS 

ri. i 



Editorial 
Jane C. Blake, Managing Editor 
Kathleen M. Stetson, Editor 
Helen L. Patterson, Editor 

Circulation 
Catherine M. Phillips, Administrator 
Dorothea B. Cassady, Secretary 

Production 
Christa W. Jessico, Production Editor 
Anne S. Katzeff, Typographer 
Peter R. Woodbury, Illustrator 

Advisory Board 
Samuel H. Fuller, Chairman 
Richard W. Beane 
Donald Z. Harbert 
Richard J. Hollingsworth 
William A. Laing 
Richard F. Lary 
Alan G. Nemeth 
Robert M. Supnik 

Cover Design 
The performance advantage of very large 
memory technology for commercial applic 
tions is a major theme in this issue of the 
Journal. The cover is a collage of images 
from the development of the AlphaServer 
4100 four-processor symmetric multipro- 
cessing system, which offers 8 gigabytes 
of memory and indusuy leadership per- 
formance. This four-processor symmetric 

The Digital Technical Journalis a refereed 
journal published quarterly by Digital 
Equipment Corporation, 50 Nagog Park, 
AK02-3/B3, Acton, MA 01720-9843. 

Hard-copy subscriptions can be ordered by 
sending a check in U.S. h d s  (made payable 
to Digital Equipment Corporation) to the 
published-by address. General subscription 
rates are $40.00 (non-U.S. $60) for four 
issues and $75.00 (non-U.S. $115) for 
eight issues. University and college profes- 
sors and Ph.D. students in the electrical 
engineering and computer science fields 
receive complimentary subscriptions upon 
request. DIGITAL'S customers may qualify 
for gift subscriptions and are encouraged 
to contact their account representatives. 

Electronic subscriptions are available at 
no charge by accessing URL 
http://www.digital.corn/info/subseription. 
This service will send an electronic mail 
notification when a new issue is available 
on the Internet. 

Single copies and back issues are available 
for $16.00 (non-U.S. $18) each and can 
be ordered by sending the requested issue's 
volume and number and a check to the 
published-by address. See the Further 
Readings section in the back of this issue 
for a complete listing. Recent issues are 
also available on the Internet at 
http://www.digital.u)rn/iio/dtj. 

DIGITAL employees may order subscrip- 
tions through Readers Choice at URL 
http://webrc.das.dec.com or by entering 
VTX PROFILE at the OpenVMS system 
prompt. 

Inquiries, address changes, and compli- 
mentary subscription orders can be sent 
to the Digital Technical Journalat the 
published-by address or the electronic 
mail address, dtj@digital.com. Inquiries 
can also be made by calling the Journal 
office at 508-264-7549. 

Comments on the content of any paper and 
requests to contact authors are welcomed 
and may be sent to the managing editor at 
the published-by or electronic mail address. 

Copyright O 1997 Digital Equipment 
Corporation. Copying without fee is per- 
mitted provided that such copies are made 
for use in educational institutions by faculty 
members and are not distributed for com- 
mercial advantage. Abstracting with credit 
of Digital Equipment Corporation's author- 
ship is permitted. 

The information in the Journalis subject 
to change without notice and should not 

:a- be construed as a commitment by Digital 
Equipment Corporation or by the compa- 
nies herein represented. Digital Equipment 
Corporation assumes no responsibility for 
any errors that may appear in the Journal. 

ISSN 0898-901X 

Documentation Number EC-N7629-18 
multiprocessing system is not o d y  charac- Book production was done by Quantic 
terized by very large memory but by low Communications, Inc. 
latency, high bandwidth, and 400-megahertz 
microprocessors. 

The following are trademarks of Digital 
Equipment Corporation: AlphaServer, 
Alphastation, DEC, DECnet, DIGITAL, 
the DIGITAL logo, VAX, VMS, and 
ULTRIX. 

AIM is a trademark ofAIM Technology, Inc. 
CCT is a registered trademark of Cooper 
and Chyan Technologies, Inc. CHALLENGE 
and Silicon Graphics are registered trademarks 
and POWER CHALLENGE is a trademark 
of Silicon Graphics, Inc. Compaq is a regis- 
tered trademark and ProLiant is a trademark 
of Compaq Computer Corporation. HP is 
a registered trademark of Hewlett-Packard 
Company. HSPICE is a registered trade- 
mark of Metasoftware Corporation. IBM, 
PowerPC, PowerPC 504, and PowerPC 
604 are registered trademarks and RS/6000 
is a trademark of International Business 
Machines Corporation. Insignia is a trade- 
mark of Insignia Solutions, Inc. Intel and 
Pentiurn are trademarks of Intel Corporation. 
IPX/SPX is a trademark of Novell, Inc. 
ispLSI and Lamce Semiconductor are regis- 
tered trademarks of Lattice Semiconductor 
Corporation. KAP is a trademark of Kuck & 
Associates, Inc. MEMORY CHANNEL is a 
trademark of Encore Computer Corporation. 
Mental Ray is a trademark of Mental Images. 
Metral is a trademark of Berg Technology, Inc. 
Microsoft, MS-DOS, and vsual C++ are 
registered trademarks and Windows and 
Windows NT are trademarks of Microsoft 
Corporation. MIPS and R4400 are trade- 
marks of MIPS Technologies, Inc., a wholly 
owned subsidiary of Silicon Graphics, Inc. 
Motorola is a registered trademark of 
Motorola, Inc. Oracle is a registered trade- 
mark and Orade7, Orade 64 Bit Option, 
and Oracle Parallel Server are trademarks 
of Oracle Corporation. Postscript is a 
registered trademark of Adobe Systems 
Incorporated. Powerview is a registered 
trademark of Viewlogic Corporation. 
SPARCstation is a registered trademark 
and SPARCluster, SPARCserver, and 
UltraSPARC are trademarks of SPARC 
International, Inc.,used under license by 
Sun Microsystems, Inc. SPEC is a registered 
trademark of the Standard Performance 
Evaluation Corporation. SPICE is a trade- 
mark of the University of California at 
Berkeley. SQL Server and System 11 are 
trademarks and Sybase is a registered trade- 
mark of Sybase, Inc. Sun is a registered 
trademark and Ultra is a trademark of Sun 
Microsystems, Inc. Synopsys is a regis- 
tered trademark of Synopsys, Inc. Texas 
Instruments is a registered trademark of 
Texas Instruments Incorporated. Timing 
Designer is a registered trademark of 
Chronology Corporation. TPC-C is a 
registered trademark of the Transaction 
Processing Performance Council. UNIX 
is a registered trademark in the United 
States and in other countries, licensed 
exclusively through X/Open Company 
Ltd. Xilinx is a registered trademark of 
Xilinx, Inc. 

The cover design is by Lucinda O'Neill of 
DIGITAL'S Corporate Design Group. 



Contents 

ALPHASERVER 4100 SYSTEM 

AlphaServer 4100 Performance Characterization 

The AlphaServer 4100 Cached Processor Module 
Architecture and Design 

Z,lrka C\ctano\iic and llarrel 13. Do~ialclson 

Maurice B. Stcinm.ln, George 1. Harris, 
Andrcj Kocrv, Virginia C. Larncrc, and 
Rogcr D. l'annell 

The AlphaServer 4100 Low-cost Clock Distribution System Roger A. l'>i~nie 

Design and Implementation of the AlphaServer 4100 CPU Glcnn A. Herdeg 
and Memory Architecture 

High Performance I10 Design in the AlphaServer 4100 
Symmetric Multiprocessing System 

Samuel H ,  Duncan, Craig 1). Keefer, and 
Thomas A. ~McL~ugh l in  

ORACLE AND SYBASE DATABASE PRODUCTS FOR VLM 

Design of the 64-bit Option for the Oracle7 Relational 
Database Management System 

VLM Capabilities of the Sybase System 11 SQL Server 

INSTRUCTION EXECUTION O N  ALPHA PROCESSORS 

Measured Effects of Adding Byte and Word Instructions 1)avid I? Huntcr and Eric B. llctrs 
to  the Alpha Architecture 

Vol. 8 No. 4 1996 



Editor's 
Introduction 

Just 4 0  years ago, a machine called the 
TX-0-.I successor to  Wlurlwind- 
was built at MIT's Lincoln Laboratory 
t o  find out, among other things, ifa 
core memory as large as 6 4  Icwords 
could be built. Over tlie years mem- 
ory sizes have grown so  large that, 
in the '90s, the industry has felt the 
need to characterize memory in big 
macliincs as iiet-y large. At five orders 
of  magnitude greater in size than the 
TX-0 memory, the AlphaServer 4100 
8-gigabyte memory is indeed very 
large, even by today's standards. Wl~ole 
databases can be designed t o  reside in 
memory. Very large memory technol- 
ogy, or VLM, is a key to tlie system 
and application performance discussed 
in this issue of  the.Journa1, which fea- 
tures the AlphaServer 4100 system, 
database enhancements from Oracle 
Corporation and f?om Sybase, Inc., and 
extensions to  the Alpha architecture. 

The AlphaServer 4100 is a mid- 
range, symnietric multiprocessing 
system designed for industrp-leading 
performance at a low cost. The  sys- 
tem accommodates up t o  four &bit 
Alpha 21 164  microprocessors operat- 
ing at 400 megahertz, four 64-bit PC1 
bus bridges, and 8 gigabytes of  main 
memory. Opening the section about 
die 4100 system, Zark'i Cvetanovic 
and Darrel Donaldson describe the 
project team's performance characteri- 
zarion ofdifferent AlphaServer 4100 
models under teclinical and conimer- 
cia1 workloads. Both the process and 
the findings are ofinterest. As one 
example sct ofdata demonstrates, 
the model 5/300 is not only Faster 
than its DIGITAL predecessors but 
3 0  to  6 0  percent faster than a coni- 
parativc industry platform when run- 
ning memor)l-jntensive cvorkloads 
from the SPECfp95 benchmark. 

The  four papers chat follow exam- 
ine areas of  the system that challenged 
designers to  keep costs low and at the 
same time deliver high performance. 

The ApliaScl.vcr 4 100 cachcd pro- 
cessor 111od~llc design is prcscnted by 
M o  Steinman, George Harris, Andrej 
Kocev, Ginny Lamere, and Roger 
Pannell. Built .lround the Alpha 21 164 
64-bit 1USC microprocessor, t l ~ c  
module is the first kern DIGITAL 
t o  employ a higli-performance, cost- 
effective s y ~ i c h r o n o ~ ~ s  cache rather 
than a traditional asynchronous cache. 
Next, Roger Dame reviclvs the clock 
distribution system, the use of  off- 
the-shelf phasc-locI<ecl loop circuits 
as the basic building block to keep 
costs low, and the signal integrity 
techniques developed t o  optiniize 
performance of tlic clock distribution 
system for a worst-case clock skew of  
2.2 nanoseconds, a goal which the 
team far exceeded. A unique memory 
architect~~re for the model 5/300E is 
the subject of  Glenn Herdeg's paper. 
This memory design incorporates a 
processor module that has n o  external 
cache and instead takes advantage 
of  the multiple-issue feature of thc 
Alpha 2 1 164  microprocessor. Closing 
the section on tlie 4100 design is the 
1 / 0  subsbatem's contribution to the 
system goals of  low latency and high 
nlemory and I/O bandwidth. Sam 
Duncan, Craig Kecfer, and Tom 
McLa~ghlin present sc\fcral innova- 
tive techniclues developed for tlic sys- 
tem bus-to-PC1 bus bridge design, 
including partial cache lint \\.rites, 
pcer-to-pecr transactions dcross 1'CI 
bridges, and support for large bursts 
o f  data. 

All efforts to  make tlie hard\vare 
run faster are for the bcnef t of the 
applications that run on  those sys- 
tems. A papcr from Oracle Corpora- 
tion and another from Sybnse, Inc., 
examine ways in which tlicir rcspec- 
rive databasc systems take advantage 
of  VLIM. Vipin Cokhale describes 
the 6 4  Bit Option i~nplemcntation 
for the Oracle7 relational database 
system. A primar!! project goal \\!as t o  

de~nonstratc a clear perforninncc ben- 
cfit for decision support s)jstems 2nd 
online transaction processing. The  
author summarizes data that show 
a clear benef t for a datnbasc wit11 the 
6 4  Bit Option enitbled running on 

the AlphaServer 8400  with 8 gigabytes 
of  memory; in some cases, the perfor- 
mance increase was 200  rimcs t h a ~  
of rhe  standard configuration. S y b ~  
engineers T . K  Rengarajan, M a s  
Berenson, Ganesan Gopal, Rrucc 
McCread!!, Sapan Panigrahi, Sriknnt 
Su bramaniam, and Marc Sugiyama 
examine the technology of rhc 
System 1 1  S Q L  Server that uJas spc- 
citically designed for VLM systems. 
In addition t o  achieving record results 
144th the S Q L  Server running o n  the 
AlphaServer 8400, the engineers Iiavc 
laid tlie ground\vork for future main 
memory database systcms. 

Recently, byte and word instruc- 
tions were added t o  DIGITAL'S 
64-bit Alpha architecture. l>a\rc 
Hunter  and Eric Betts describc the 
process ofanalyzing how thesc addi- 
tions affect the performance of  a 
com~nercial database. For t e s t i ~ ~ g ,  
the team used prototype hardwarc, 
rebuilt lMicrosoti Corporation's S Q L  
Server to  use rhc new instructions, 
and ran the TPC-R benchmark. 

The editors thank Darrel llo~laldson 
of  the AlphaServer 4 100 team and 
K L I ~  Chung of  the Database Applicn- 
tion Partners group for their ct'lbrrs 
t o  acquire the papers prcscnted in this 
issue. O u r  upcoming issue will feature 
CMOS-6 process technologies. 

Jane C. Blake 
rLfannging Edit01 
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I 
Zarka Cvetanovic 
Darrel  D. Donaldson 

AlphaServer 41 00 
Performance 
Characterization 

The AlphaServer 4100 is the newest four- 
processor symmetric multiprocessing addition 
to DIGITAL'S line of midrange Alpha servers. 
The DIGITAL AlphaServer 4100 family, which 
consists of models 51300E. 51300. and 51400. 
has major platform performance advantages 
as compared to previous-generation Alpha plat- 
forms and leading industry midrange systems. 
The primary performance strengths are low 
memory latency, high bandwidth, low-latency 
110, and very large memory (VLM) technology. 
Evaluating the characteristics of both technical 
and commercial workloads against each family 
member yielded recommendations for the best 
application match for each model. The perfor- 
mance of the model with no module-level cache 
and the advantages of using 2- and 4-megabyte 
module-level caches are quantified. The profiles 
based on the built-in performance monitors are 
used to evaluate cycles per instruction, stall time, 
multiple-issuing benefits, instruction frequen- 
cies, and the effect of cache misses, branch 
mispredictions, and replay traps. The authors 
propose a time allocation-based model for 
evaluating the performance effects of various 
stall components and for predicting future per- 
formance trends. 

The AlphaServer 4100 is DIGITAL'S latest four- 
processor syninietric multiprocessing (SIMP) ~ii idra~lge 
Alpha server. TIiis paper characterizes the perfor~nance 
of the Alphaserver 4100 family, which consists of 
three models:'" 

1. Alphaserver 4100 model 5/300E, which has up to 
four 300-megaher t~  (MHz)  Alpha 21 164 ~iiicro- 
processors, each without a module-level, third- 
level, write-back cache (B-cache) (a design referred 
to  as urzcachecl in this paper) 

2 .  AlphaServer 4100 model 5/300, which has up to 
fo~lr  300-MHz Alpha 2 11  6 4  nlicroprocessors, each 
with a 2-megabyte (MB) B-cache 

3. AlphaServer 4100 model 5/400, which has up to 
four 400-MHz Alpha 2 1  164  microprocessors, each 
with A 4-MB B-cache 

Thc performance analysis undertaken examined 
a number of workloads with different character- 
istics, including the SPEC95 benchmark suites 
(floating-point and integer), the LINPACIC bench 
mark, A I M  Suite VII (UNIX multiuser benchmark), 
the TPC-C transaction processing benchmark, image 
rendering, and memory latency and bandwidth 
tests."-li Note that both com~nercial (AIM and TPC-C) 
and technical/scientific (SPEC, LINPACIC, and image 
rendering) classes of \\rorkloads were included in 
this analysis. 

The results of the analysis indicate that the major 
AlphaServer 4100 performance advantages result 
from the following server features: 

Significantly liighcr ba~idwidth (up to 2 .6  times) 
and lower latency compared to the previous- 
generation midrange Alphaserver platforms and 
leading i~idustry midrange systems. These improve- 
ments benefit the large, multistreani applica- 
tions that d o  not fit in the B-cache. For example, 
the Alphaserver 4100 5/300 is 30 to 6 0  percent 
faster than the HP 9000  K420 server in the 
memory-intensive workloads from the SPECfp95 
benchmark suite. (Note that all competitive per- 
formance data presented in this paper is valid as 
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of the submission of  this paper in July 1996. T l ~ c  
references cited refer the reader to the literature 
and the appropriate Web sites for the latest perfix- 
mance information.) 

An expanded very large memory (VLIM). The mas- 
imum memory size increased from 2 gigabytes 
(GB) to  8 GB without sacrificing CPU slots. This 
increase in memory size benefits primarily the com- 
mercial, n~ultistream applications. For csample, the 
AlphaScrvcr 4100 5/300 server achiei~es approsi- 
mately nvicc the throughput of  the Co~llpac] 
ProLiant 4500 server and 1.4 times the throughput 
of the AIphaServer 2100 on the AIM Suite VJI 
bench~nark tests. 

A 4-1MB B-cache and a clock speed o f 4 0 0  MHz 
in the AlphaScr\fer 4100 5/400 system. The largcr 
B-cache size and 3 3  percent faster clock resulted in 
a 30 to 4 0  perccnt performance impro\,cment over 
the AlphaScr\rer 4100 5/300 system. 

The performance impro\.ement from the largcr 
B-cachc increases with tlie number of CPUs. For 
example, the Alphaserver 4100 5/300 system \\.ith 
its 2-MB R-cache design performs 5 to 20  percent 
faster \\/ith one C P U  and 30 to 50 percent faster 
\\lit11 four CPUs than the uncached 5/300E system. 
The majority of  workloads included in this analysis 
benefit from the B-cache; howevcr, the uncachcd sys- 
tem outperforms the cached implementation by 10 to 
20  pcrccnt for large applications that d o  not fit in 
the 2-MI3 13-cache. 

Thc  performance counter profiles, based on  the 
built-in hardware nlonitors, indicate that the major- 
i t y  of issuing timc is spent 011 single and dual issuing 
and that a small number of floating-point \vorkloads 
take ndv'intagc of  triple and quad issuing. The 
load/store instructions make up 30 to 4 0  percent of 
all instructions issued. The stall timc associated with 
\\,siting for dnta that niissed in the \rarious le\rels of 
cache hierarchy accounts for the most significant por- 
tion of  the time the server spends processing com- 
mercial \\rorltloads. 

Memory Latency 

Memory latcncv and bandwidth have been rccog- 
nized as important perfor~nance factors in tlie early 
Alpha- based implen~cntatlons.'" " Sillce CPU speed is 
increasing at  a much higher rate than memory speed, 
thc "memor)~ \vall" limitation is expected to  become 
cvcn Inore important in the fiturc. Thcreforc, reduc- 
ing nlemory latency and increasing band\\.idth have 
been major design goals for the AlphaScrver 4100 
platfor~n.' The Alpl~aSer\~er 4100 achieved the lo\trcst 
memory latency of  all DIGITAL products based on 

the Alpha 2 1  164 rnicroproccssor and a11 multiproccs- 
sor products by leading i ~ l d ~ ~ s t r y  \renders. The ~iinjor 
bcncfits come fi-om the simpler interface, the use of  
S ~ I I C ~ ~ I - O I I ~ L I S  dynamic random-access memory 
(13liAi\/l) chips (i.e., synchronous nicn~or!r), and tlic 
lo\\jcr f i l l  time.' ' Figure 1 shon,s the measured mcm- 
ory load latency using the Imbench benchmark with 
a 5 12-hytc stride.'" In this benchmarl<, each load 
depends o n  the r e s ~ ~ l r  from the previous loact, and 
therefore latency is not a good mcasurc of pcrfi)r- 
mancc k)r systems that can have multiple o~~ t s t and ing  
loads. (AlphaSer\rcr 4100 systems can have up to  
two o i l t s t a n ~ i i ~ ~ g  requests pel- <:PU o n  the bus.) 
The lmbcncli benchmark data i11dic:ltcs that tlic 
AlphaScrvcr 4100 has the lo\vest memory latency of 
all indt~stry-leading reduced-instructio~~ set comput- 
in3 (RISC) vc~ldors' servers. 

As sho\\~n in Figure 2,  using a sliglitl!~ clilfi.rcnt 
\\.orltlond \vhcrc there is n o  depcndcnc\r bcn\.ccn 
consecutive loads, the AlphaServer 4100 achicvcs c\.cn 
lo\\,cr per-load latency, since the latcnc! for tlic nvo 
consccuti\,c loxis can be overlapped. The plntc.~us 
in Figure 2 she\\ thc load latency at each of tlic folio\\,- 

ing Ic\,cls of  cachc/memory hierarchy: 8-kilobyte 
(ICB) on-chip data cachc (D-cache), 96-K13 on-chip 
secondary instructio~l/data cache (S-cache), 2- and 
4-MB off-chip K-caches (except for model 5/300E), 
and mcmory. The uncachcd AlpliaScr\lcr 4100 
5/300E achicvcs an 8 5  percent lo\\ler memory load 
latcncy than the pre~rious-generatio11 AlplinScr\,cl- 
2 100. The AlpliaScr\~er 4100 5/300, \\~itIi its 2-/\/I13 
K-cache, increases mernorv latency 30 pcrccnt ti)r 
load opuations and 6 perccnt for storc opcl-ntions 
compared to the i111cached 5/300E system bcca~isc of 
thc timc spcnt checking for data in thc 13-cachc. .l'llc 
s!lnclironous menlory sho\\s one c!,clc lo\\.cr I.ltc~ic!~ 
tlla~l tllc ~isy~lchro~lous cstended data out  ( E l X ) )  
I)RAIM (i.c., asynclirono~~s memory), \vhicIi r c s ~ ~ l t s  in 
9 percult faster load operations and 5 pcrccnt hstcr 
storc operations. Note that the caclicd AlpliaScr\,cr 
4100 and NphaScr\rcr 8200 systems, \\diich have 
the snliic clocli spcccis of 300 MHz, ac.liic\~c <om- 
parable K-cache latency, \vhile tlic mcmory latcnc!. 

all AlphaScrver 4100 systems is significantly 
lo\\tcr tlia~l o n  hot11 tlic AlphaScrver 8200 anti tlic 
AlphaScrvcr 2100 systems. The latency to the R-cache 
in this tcst is lower o n  the AlphaScr\,cr 2100 than 
o n  the other AlpliaScrver systems clue to 32-byte 
bloclcs (compared to  64-byte blocks in t l ~ c  4100 ;unJ 
8200 systems). Although not sho\\ln in this tcst, man!, 
applications can benefit from the lalpcl- caclic block 
size. The 400-MHz AlphaServer 4100 systcm uses 
n 33  pcrccnt bstcr <:PU and acl~ic\.cs 11 percent 
rcductio~i i l l  13-cache and memory latency comparcd 
to the 300-MHz AlpllaScrver 4100 systcru. 
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LMBENCH: DEPENDENT LOAD MEMORY LATENCY 
(STRIDE = 512 BYTES) 

ALPHASERVER 4100 
51400 (400 MHz) 

ALPHASERVER 4100 
"00 (300 MH" p! 

ALPHASERVER 4100 
51300E (300 MHz) 

INTEL PENTIUM PRO 
(200 MHz) b 
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(167 MHz) 

SGI POWER CHALLENGE 
R10000 (200 MHz) 

IBM RSl6000 43P 
POWERPC (133 MHz) 

0 200 400 600 800 1,000 1,200 

MEMORY LATENCY 
(NANOSECONDS) 

Figure 1 
Irnbench BenchmarkTest Results Showing Memory Latency for Dependent Loads 

Memory Bandwidth 

The AlphaServer 4100 system bus achieves a peak 
bandwidth of 1.06 gigabytes per second (GB/s). The 
STREAM LMcCalpin benchmark measures sustainable 
memory bandwidth in megabytes per second (MB/s) 
across four vector kernels: Copy, Scale, Sum, and 
SAXPY." Figure 3 sho\.\a nieasured memory band- 
width using the Copy ltcrnel from thc STREAM 
benchmark. Note that the STREAM bandwidth is 
33 percent lower than the actual bandwidth observed 
on the AlphaServer 4100 bus because thc bus data 
cycles are allocated for three transactions: read 
source, read destination, and write destination. The 
AlphaServer 4100 s l i o ~ s  the best memory bandwidth 
of all multiprocessor platforms designed to support up 
to four CPUs. The platforms designed to support 
more than four CPUs (i.e., the AlphaServer 8400, the 
Silicon Graphics POWER CHALLENGE R10000, and 
the Sun Ultra Enterprise 6000 systems) show a higher 
bandwidth for four CPUs than the AlphaServer 4100. 
The STREAM bandwidth on the AlphaServer 4100 
5/300 is 2.2 times higher than on the previous- 
generation Alphaserver 2100 5/250 (2.6 times higher 

with the AlphaServer 4100 5/400). The uncached 
AlphaServer 4100 niodel shows 22 percent higher 
memory bandwidth than the cached model 5/300. 

The Alphaserver 4100 memory bandwidth 
improvement from synchronous memory compared 
to E D 0  ranges fro111 8 to 12 percent. The synchro- 
nous memory benefit increases with the number of 
CPUs, as shown in Table 1.  

Lo\\[ memory latency and high bandwidth have 
a significant effect on the performance of \\~orkloads 
that d o  not fit in 2- to 4-MB B-caches. For esample, 
the majority of the SPEC@95 benchmarks do  not fit 
in the 2-1MB cache. (Figure 20, which appears later in 
this paper, sho\\ls the cache misses.) The SPECfp95 
performance comparison presented in Figure 4 sho\xls 
that the uncached AlphaServer 4100 5/300E system 
outperforms the 2-MB B-cache model 5/300 in tlie 
benchmarlts with tlie highest number of B-cache 
misses (tomcan: s\.vi111, applu, and hydro2d). The per- 
formance of the uncached model 5/300E is compar- 
able to that ofthe 4-MB B-cache model 5/400 for the 
swim benchmark. However, the benchmarks that fit 
better in the 4-MB cache (apsi and \vave5) run signifi- 
cantly slower on the 5/300E than on the 5/400. 
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INDEPENDENT LOAD LATENCY 
(STRIDE = 64 BYTES) 

DATA SET SIZE 
KEY: 

ALPHASERVER 4100 51300E - ALPHASERVER 4100 51300 - ALPHASERVER 4100 51400 - ALPHASERVER 8200 51300 - ALPHASERVER 2100 51300 

Figure 2 
Cache/Memory Latency for Independent L o ~ d s  
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INTELALDER PENTIUM PRO 
SUN ULTRA ENTERPRISE 6000 
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NUMBER OF CPUs 

Figure 3 
STllEAM McCalpin Memory Copy Bandwidth Comparison 
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Table 1 
Bandwidth Improvement from Synchronous Memory 
to Asvnchronous Memorv 

Number of CPUs 

1 2 3 4 

Bandwidth 
improvement 8% 8% 9% 12% 

F ~ g ~ l r c  4 shows that the AlphaScr\lcr 4100 5/300 
systcm has a significant (up to two times) pcrforma~~ce 
advantage over the previous-generation Alphaserver 
2100 systcm in the SPEC$95 benchmark tests with 
the highest number o f  B-cache misses. The SPECFp95 
tests ~nd~cate that the 300 MHz Alpli~ser\,er 4100 i s  
more th,ln 50 pcrccnt faster than thc HP 9000 K420 
scr\w, a n d  thc 400-MHz iUphaSer\ier 4100 1s bv lce  as 
fast CIS the HP 9000 I(420 In the SI'kCfp95 bcnch- 
marks that stress the memory subsystem. 

SPEC95 Benchmarks 

The SPkC95 benchniarl<s provide a meas~lrc o f  pro- 
cessor, mclnory hierarchy, and co~npilcr perform'~ncc. 
Thcsc bc~lchnlarks do not stress gr,~phics, ncnvork, 
or 1 / 0  performance. The integer SPE<;95 suite 

(CINT95) contains eight compute-intensive integer 
benchmarlts \\rritten ill C and includes thc benchmarlts 
slio'i'i~n i n  Table 2.",'! 

The floating-point SPEC95 suite (CFP95) contains 
10 compute-intensi\~e floating-point benchmarks \vrit- 
ten in FORTRAN and includes the benchmarks shown 
in Table 3."'" 

The SPEC Homogeneous Capacity Method 
(SPEC95 rate) measures how bst an SMP system ca l l  
perform multiple CINT95 or CFP95 copies (taslts). 
The SPEC95 rate metric measures the throughput o f  
the system running a ni~mber o f  tasks and is  used for 
evaluating multiprocessor system perfor~llance. 

Table 2 
CINT95 Benchmarks (SPECint95) 

Benchmark Description 

Artificial intelligence, plays the 
game of Go 
A Motorola 88100 microprocessor 
simulator 
A GNU C compiler that generates 
SPARC assembly code 
A pro ram that compresses large 
text ffes (about 16 MB) 
A LISP interpreter 
A program that compressesl 
decompresses an image 
A Perl interpreter that performs 
text and numeric manipulations 
A database program that builds and 
manipulates three interrelatiorlal 
data bases 

Table 3 
CFP95 Benchmarks (SPECfp95) 

101 .TOMCATV - 
0 5 10 15 20 25 30 35 

KEY. 

HP 9000 K420 
ALPHASERVER 2100 51300 
ALPHASERVER 4100 51400 

B ALPHASERVER 4100 51300 
B ALPHASERVER 4100 51300E 

Benchmark 

101 .tomcatv 

102.swim 

103.su2cor 

104.hydro2d 

107.mgrid 

1lO.applu 

125.turb3d 

141 .apsi 

Description 

A fluid dynamics mesh generation 
program 
A weather prediction shallow water 
model 

A quantum physics particle mass 
computation (Monte Carlo) 
An astrophysics hydrodynamical 
Navier-Stokes equation 
A multigrid solver in a 3-D potential 
field (electromagnetism) 
Parabolidelliptic partial differential 
equations (fluid dynamics) 
A program that simulates 
turbulence in a cube 
A program that simulates tempera- 
ture, wind, velocity, and pollutants 
(weather prediction) 
A quantum chemistry program that 
performs multielectron derivatives 
A solver of Maxwell's equations on 
a Cartesian mesh (electromagnetics) Figure 4 

SPECfp95 Benchmarks Pcrbsrnance Comparison 



Figure 5 compares the SPEC95 performance of 
the AlphaServer 4100 systems to  that of  the other 
industr!l-leading vendors using published rcsults as 
of July 1996. Figure 6 sho\vs the same comparison in 
the multistream SPEC95 rates.'? Note that all the 
SPEC95 con~parisons in this paper are based o n  the 
peak results that include extensive compiler optimiza- 
t i o n ~ . ' ~  Figure 5 indicates that even the uncached 
AlphaServer 4100 5/300E performs better than the 
HP 9000 K420 system, and the AlphaServer 4100 
5/400 shows approximately a t ~ ~ o  tinies performance 
advantage over the H P  system. The Alphaserver 4100 
5/300 SPECint95 performance exceeds that of  the 
Intel Pentiurn Pro system, and the AlphaSer\fer 4100 
5/300 SPEC@95 performance is double that of 
the Pentium Pro. The Alphaserver 4100 5/400 is 
1.5 times (SPECint95) and 2.5 tinies (SPECFp95) 
faster than the Pentium Pro system. The multiple- 
processor SPECfp95 on the Alphaserver 4100 is 
obtained by decomposing benchmarks using the KAP 
preprocessor from Kuck i3 Associates. Note that the 
cnchcd four-C1'U AlphaServer 4100 5/300 outper- 
forms the Sun Ultra Enterprise 3000 with sis CPUs in 
thc SPEC+95 parallel test. Thc pcrfor~nancc benefit 
of  the cached versus the i~~lcached AlphaScrvcr 4100 
is greater in multiprocessor configirratio~ls than in uni- 
processor configurations. 

SPEC95 Multistream Petformance Scaling 

Figures 7 and 8 show SPEC95 multistrea~n perfor- 
mance as the number of  CPUs increases. The SIMP 
scaling 011 the AlphaServer 4100 is comparable to  that 

SPEC95 RATES 

SPECINT-RATE95 SPECFP-RATE95 

KEY: 

ALPHASERVER 4100 51300E (4 CPUs) 
ALPHASERVER 4100 51300 (4 CPUs) 
ALPHASERVER 4100 51400 (4 CPUs) 
HP 9000 K420 PA-RISC 7200 120 MHz (4 CPUs) 
SUN ULTRA ENTERPRISE 3000 ULTRASPARC 167 MHZ (4 CPUs) 
INTEL C ALDER PENTIUM PRO 200 MHz (1 CPU) 
IBM RSl6000 J40 POWERPC 604 112 MHZ (6 CPUs) 

Figure 6 
SPEC95 Throughput Results (SPEC95 Rates) 

KEY- 

SPEClNT95 1 CPU SPECFP95 1 CPU SPECFP95 4 CPUs 
(SUN SYSTEM: 6 CPUs) 

ALPHASERVER 4100 51300E 
ALPHASERVER 4100 51300 
ALPHASERVER 41 00 51400 
HP 9000 K420 PA-RISC 7200 (120 MHz) 
SUN ULTRA ENTERPRISE 3000 
ULTRASPARC (167 MHz) 
SGI POWER CHALLENGE R10000 (195 MHz) 
INTEL C ALDER PENTIUM PRO (200 MHz) 
IBM RSl6000 43P POWERPC 604E (166 MHz) 

Figure 5 
SPEC95 Speed Results 
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1 2 3 4 
NUMBER OF CPUs 

KEY: 

+ ALPHASERVER 4100 51300E - ALPHASERVER 4100 51300 - ALPHASERVER 4100 51400 - ALPHASERVER 2100 51300 - HP 9000 K420 
- ,, SUN ULTRA ENTERPRISE 3000 

IBM RSl6000 J40 

Figure 7 
SPECint-rate95 Performance Scaling 

KEY: 

2 3 4 
NUMBER OF CPUs 

ALPHASERVER 4100 51300E 
ALPHASERVER 4100 51300 
ALPHASERVER 4100 51400 
ALPHASERVER 21 00 51300 
HP 9000 K420 
SUN ULTRA ENTERPRISE 3000 
IBM RSl6000 J40 

Figure 8 
SPECfp-rare95 Performance Scaling 

on the AlphaServer 2100 for integer \vorlzloads 
(that fit in the 5/300 2-1YlB B-cache). Note that 
SPECint-rate95 scales proportionally to the number 
of CPUs in the iiiajority of systems, since these work- 
loads do  not stress the memory subsystem. 'Thc SMP 
scaling in SPECfp-rate95 is lower, since the majority 
of these workloads d o  not fit in 1- to 4-MB caches. 

In the majority of applications, the AlphaServer 
4100 5/300 and 5/400 systems improve SMP scaling 
compared to the uncached AlphaServer 4100 5/300E 
by reducing the bus traffic (from fewer B-cache 
misses) and by taking advantage of the duplicate tag 
store (DTAG) to reduce the number of S-cache 
probes. The cached 5/300 scaling, ho\-\lever, is 
lower than the uncached 5/300E scaling in memor!l 
bandwidth-intensive applications (e.g., tomcat\/ and 
swim). The analysis of traces collected by the logic 
analyzer that monitors system bus traffic indicates that 
the lower scaling is caused by (1) SetDirty overhead, 
where SetDirty is a cache coherency operation used to 
mark data as modified in the initiating CPU's cache; 
(2)  stall cycles on the memory bus; and (3) memory 
bank conflicts.2-" 

Symmetric Multiprocessing Performance Scaling 
for Parallel Workloads 

Parallel worldoads have higher data sharing and lower 
meniory bandwidth requirements than multistream 
worldoads. As shown in F ig~~res  9 and 10, the 
AlpliaServer 4100 models with module-lc\~el caches 
improve the SMP scaling co~iipared to the uncached 
Alphaserver 4100 model in the LINPACIC 1000 X 

1000 (million floating-point operations per second 
[MFLOPS]) and the parallel SPECk95 benchmarl<s 
that benefit from 2- and 4-MB B-caches. F i g ~ ~ r e  9 
indicates that tlie AlphaServcr 4100 5/400 outper- 
forms the SGI Origin 2000 system in the LINPA<;I< 
1000 X 1000 benchmark by 40 percent. Figure 10 
indicates that the four-CPU Alphaserver 4100 5/400 
shows better scaling than any other system in its class 
and outperforms the six-CPU Sun Ultra Enterprise 
3000 system by more than 70 percent. 

Very Large Memory Advantage: 
Commercial Performance 

As shown in Figures 11 and 12, the AlphaServer 4100 
performs well in the commercial benchmarks TPC-C 
and AIM Suite VII.I3." In addition to tlie lo\v memory 
and 1/0 latency, the AlphaServer 4100 takes advan- 
tage of the VLM design in these I/O-intensive work- 
loads: with four CPUs, the platform can support up to 
8 GB of memory cornpared to 1 GB of meniory on the 
AlphaServer 2100 system with four CPUs and 2 GB 
with three CPUs. 



PARALLEL SPECFP95 

1 2 3 4 
NUMBER OF CPUs 

KEY: 

ALPHASERVER 4100 51300E - ALPHASERVER 41 00 51300 - ALPHASERVER 4100 51400 
I ALPHASERVER 2100 51300 
+ SGI ORIGIN 2000 RlOOOO (195 MHz) 

IBM ESl9000 VF 
-. HP EXEMPLAR S-CLASS PA 8000 (180 MHz) 

0 1 
1 2 3 4 5 6 

NUMBER OF CPUs 

ALPHASERVER 4100 51300E - ALPHASERVER 4100 51300 - ALPHASERVER 4100 51400 - ALPHASERVER 2100 51300 - HP 9000 K420 -- SUN ULTRA ENTERPRISE 3000 

Figure 9 Figure 10 
LINPACIC 1000 X 1000 I'arallcl Pc~for~i iancc  ScCll~ng I'.II-.~llcl SI'E<:fp95 l'crform'lnce Scaling 

TPC-C THROUGHPUT (TPMC) 

IBM RSl6000 J30 
(8 CPUs) 

COMPAQ PROLIANT 
45OOl166 

SUN SPARCSERVER 
2000E 

ALPHASERVER 
41 00 51400 

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 

THROUGHPUT (TRANSACTIONS PER MINUTE) 

Figure 11 
Transaction Processillg Pcrformancc (TI'<;-(1 Using ;In Ornclc 1)arnb;lsc) 
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AIM SUITE VII THROUGHPUT 

COMPAQ PROLIANT 4500 
PENTIUM (166 MHz) n 

COMPAQ PROLIANT 5000 61200 
PENTIUM PRO (200 MHz) 

ALPHASERVER 4100 51300Eh - 
0 500 1,000 1,500 2,000 2,500 3,000 3,500 

THROUGHPUT (JOBS PER MINUTE) 

'These ~nternally generaled results have not been AIM cert~f~ed. 

Figure 12 
AIM Suite VII iClulciuser/Shnred UNIX iMis l'erformancc 

Figures 11 and 12 show the AlpliaServer 4100 sys- 
tem's TP<:-(: performance (us i~ig  an Oracle database) 
and AIM Suite VII throughput performance as com- 
pared to other industr\~-leading vendors. Note that the 
performance of the uncaclied AlpliaServer 4100 
5/300E is coniparable to that of tlie 300-1MHz 
Alphaserver 2100. (The AlpliaSer\~er 2100 system 
used in this test had three CPUs and 2 GB of ~nemor): 
whereas the AlphaServer 4100 system had four CPUs 
and 2 GB of 111ernor)l.) 

With its 2-MB B-cache, the AlphaServer 4100 
5/300 irnproves tliroughpi~t by 40 percent in tlie 
AIlM Suite VII benchmark tests as compared to 
the uncachcd AlphaScrvcr 4100 5/300E. The 
AlphaServer 4100 5/400, with its 4-IMB B-cache, 
benefits from its 33 percent hster clocl< and nvo times 
larger B-cache and provides 40 percent improvement 
over the Alphaserver 4100 5/300. Note that the 
AlphaServer 4100 5/300 and 5/300E results were 
obtained through internal testing and have not been 
AIiM certified. The AlphaServer 5/400 results have 
AIM certification. 

Compared to the best published ind~lstl-y AIM Suite 
VII performance, the AlpliaSer\rer 4100 5/300 
throughput is almost nvice that of the Compaq 
ProLiant 4500 server, and the Alphaserver 4100 
5/400 throughput is more than 50 percent higher 
than that of the Cornpacl ProLiant 5000 server.14 At 

the October 1996 UNIX Expo, the AlphaScr\rcr 4100 
fa~ii~ly won three AIIM H o t  Iron Awards: for the best 
pcrforniancc on thc W ~ n d o u s  NT operating system 
(for systems pr~ccd at more than $50,000) and for 
thc best price/performance In two UNIX liilxes- 
multiuser sliarcd and filc system (for systems pr~ced at 
more than $150,000).'" 

Cache Improvement on the 
AlphaServer 41 00 System 

Figures 13 and 14 sho\\~ the percentage performance 
improvement provided by tlie 2-MB B-cache in 
the AlphaServer 4100 5/300 as compared to the 
uncached AlphaServer 4100 5/300E. Figure 13 
shows the improvement across a variety of workloads; 
Figure 14 shorvs the improvement in individual 
SPEC95 benchniarlts for one and four CPUs. 

As shown in F i g ~ ~ r e  13, tlie 2-i\/IB R-cache in tlie 
AlpliaServer 4100 5/300 impro\~es tlie performance by 
5 to 20 percent for one CPU and 25 to 40 percent for 
four CPUs as compared to the uncached Alphaserver 
4100 5/300E s!lstem. The benefits derived fi-om having 
larger caches are significantly greater for four CPUs 
compared to one CPU, since large caches help alleviate 
bus traffic in ~n~~ltiprocessor systems. 

The \vorldoads that d o  not fit in tlie 2- to 4-MB 
B-cache (i.e., torncanl, s\vlni, applu) in Figure 14 
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PERFORMANCE IMPROVEMENT FROM 2-MB CACHE 
I 

AIM SUITE VII MAX USERS 
4 CPUs 

AIM SUITE VII JOBSIMIN 
4 CPUs 

LINPACK-1K 4 CPUs 

LINPACK-1K 1 CPU 

SPECFP92 4 CPUs I 
SPECINT92 4 CPUs 7 

SPECFP92 1 CPU 

SPEClNT92 1 CPU 

SPECFP95 4 CPUs 

SPECINT95 4 CPUs 

SPECFP95 1 CPU P 
SPECINT95 1 CPU 

0 5 10 15 20 25 30 35 40 45 

PERCENT IMPROVEMENT 

Figure 13 
Pcrforninnce Improvcmcnt across V~rious \.Vorkloads from a 2-Mi3 R-C.lchc 

run faster on  the uncaclicd AlphaScr\,cr 4100 than 
on the cached AlphaSer\lcr 4100 ( u p  to  10 percent 
Lister o n  one CPU and 20 pcrccnt faster on four 
CPUs) due to the o\lerhcad for probing the 8-cache 
and thc increase in Set13irt)l band\\/idth. The niajorit)l 
of the other worldoads benefit from larger caches. 

The AlphaServcr 4100 5/400 Further improves 
the pcrfbrmance by increasing the size of  the B-cache 
fi-om 2 LMR to 4 1MR. In addition, the CPU clock 
impro\7cnient o f 3 3  percent, B-cache irnpro\~en~ent of 
7 pcrccnt in latency and 11 pcrccnt in band\vidth, and 
the nlcmory bus speed improvcrncnt of 11 percent 
together yield an overall 30  to 4 0  pcrcent inlpro\fc- 
mcnt in the AlphaScr\~cr 4100 model 5/400 perfor- 
nlallcc as compared to that of the Alphaserver 4100 
model 5/300. 

Large Scientific Applications: Sparse LINPACK 

'The Sparse LTNPACIC benchmark solves a large, sparse 
sy~n~nctr ic  system of linear ccl~rations using the con- 
jug~ltr grndient (CG) itcrati\fc method. The bench- 
n1;lrk has threc cases, each \\lit11 3 different type of 
prcconditio~ner. Cases 1 and 2 L I S ~  the incomplete 

Cholcsky (I(:) fi~ctorization as the preconditioner, 
\\,hereas Case 3 uses tlic diagon;ll pl-cconditioner. 

lyl~is \vorldoad is rcprcscntnti\ic of  large scientific 
applications that do not fit in mcgnbytc-size cachcs. 
The \vorltload is important in I;lrgc applications, 
c.g., models of  electrical ncnvorks, economic systems, 
difhsion, radiation, and elasticity. It \%.as decomposed 
to run o n  multiprocessor systems using the IUI' 
preprocessor. 

Figure 15  sho\\rs that thc uncachcd AlphaScrver 
4100 5/300E outperforms thc AlphaScr\,er 8400 by 
4 1 p ~ r c c ~ l t  for one CI'U and by 9 pcrccnt for nvo Cl'Us 
hcc3~1sc of Iiigher ticlivcrctl s!,stcm ~ L I S  band\vidtli. 
Ho\vc\~cr, tlie AlphaSer\,er 4100 5/300E f~l ls  behind 
\\lit11 three and four CPUs, as it docs in thc ~McCalpin 
manory bandwidth tests shown in Figure 3. Note that 
with one CPU, the 300-MHz uncaclied dphaservcr  
4100 pcrfi)rnis at the same level as the 400-MHz 
cachcd AlpliaSer\*er 4100 and perhrms 18 percent 
bcttcr than the 300-MHz cachcd AlpliaScr\~cr 4100. 
This is a n  csamplc of thc t!lpc of application for 
\\~hicli the cache diminishes the performance. Thc 
Alpll~Scr\~cr 4100 5/300F, is a bcttcr match for this 
class ofapplicatio~ls than the cached systcn~s. 



PERFORMANCE IMPROVEMENT FROM 2-MB CACHE IN SPEC95 

Figure 14 
SPEC95 I'erformance Iniprovement from a 2 - M B  B-Cache  

107.MGRID 

Image Rendering 

104.HYDR02D 

103.SUZCOR 

102.SWIM 

101 .TOMCATV 

Tlie Alphaserver 4100 shows significant performance 
advantage in image rendering applications compared to 
the other industry-leading vendors. Figure 16 shows 
that tlie AlphaServer 4100 5/400 system is approxi- 
mately 4 times faster than the SLIII SPARC system that 
was used in the movie To)! Stwyy, as measured in 
Renderhlarks." The NphaServer 4100 js 2.6 times 
faster than the Silicon Graphics POWER CHALLENGE 
system and 2.4 times faster than the HP/Conves 
Exemplar SPP-1200 system on the Mental Ray image 
rendering application fi-om Mental Iniages. These 
image rendering applications take advantage o f  larger 
caches, and the performance impro\ws as the cache size 
increases, partic~~larly with f o ~ ~ r  (:PUS. 

kl 
0 

3, 
KEY: 

1 CPU 
4CPUs 

Performance Counter Profiles 

- 20 0 20 40 60 80 100 120 
PERCENT IMPROVEMENT 

The figures in this section, Figures 1 7  through 22, 
sho\v the p ~ r f o r m ~ ~ u c e  statistics collcctcd using 
the built-in A l p h ~  21 164 pcrformancc counters on the 
AlphaServer 4100 5/400 system. These hardware 
~no~i i to r s  collect various events, including the number 
and type of instructions issued, multiple issues, single 

issues, branch mispredictions, stall components, and 
cache mis~es.". '~. '~ These statistics are usetill for analyz- 
ing the system behavior i~ndcr  various workloads. 
The results of  this analysis can bc irscd by computer 
architects to drive hardware design trade-oft;; in h tu re  
system designs. 

The SPEC95 cyclcs per instruction (CPI) data 
presented in Figure 1 7  shows lower (:PI v a l ~ ~ e s  for 
thc intcgcr benchmarks (CPI values of  0.9 to 1.5) 
than for tlie floating-point benchmarks (CPI valucs 
of  0.9 to 2.2). The CPI in co~nmercial worldoads 
(e.g., TPC-C) is higher than in the SPEC bcnch- 
marks, primarily bccausc commercial \vorldoads have 
a higher stall time, as sJ1o\\r11 in Figure 18. Note 
that the perfor~na~ice counter statistics were collected 
with four Cl'Us running TPC-C (with a Sybase data- 
base), \vhile SPEC95 statistics \ifere collecteci o n  a 
single CTU. 

The Alpha 21 164 has nilo integer and niro floating- 
point pipelines and is capable of issuing up to four 
instructions simultaneously. Thc integer pipeli~ic 0 
esccutcs arithmetic, logical, load/storc, and shift 
operations. The integer pipeline 1 esecutes arithmetic, 
logical, load, and branch/jump operations. The 
floating-point pipeline 0 esecutes add, subtract, 
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1 2 3 4 
NUMBER OF CPUs 

SPARSE LINPACK 

KEY: 

ALPHASERVER 4100 51300E 
ALPHASERVER 41 00 51300 
ALPHASERVER 4100 51400 
ALPHASERVER 8400 

Figure 15 
Spnrsc LINI'ACK I'cl.Fo1.11i3ncc 

IBM RSl6000 390 P 
PlXAR RENDERMARKS 

SGI CHALLENGE R4400 
(200 MHz) 

SUN SPARCSTATION 20 
(1 00 MHz) 

ALPHASERVER 51400 4100 11' 
ALPHASERVER 4100 

51300 

ALPHASERVER 4100 
5MOOE 

I 
0 500 1,000 1,500 2,000 2,500 

RENDERMARKS 

KEY: 

1 CPU 
4 CPUs 

Figure 16 
Image Rendering I'crforniancc 

compare, and  floating-point branch instructions. T h c  and dual issuing. TI-iplc ancl q ~ l a d  issuing is noticcable 
floating-point pipclinc 1 cscc~l tcs  multiply instruc- i l l  sc\rcral floating-point benchmarl<s, but,  on  a\,crapc., 
tions. T h e  timc distribution illustrated in Fig~11.e 18 o111y 3 p c ~ c c l i t  o f  the rimc is spcnt o n  triple and q ~ ~ n c l  
indicates that most o f t h c  issuing time is s p u i t  in single issuing in  the SPEC4795 bcnclima~.lts. 
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Figure 17 
SPEC95 Cycles-per-instruction Comparison 
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Issuing and Stall Time 
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The stall time (dry plus frozen stalls in Figure 18) 
is higher in the floating-point benchmarks than in 
the integer benchmarks and higher in the TPC-C 
benchmarks than in the SPEC95 benchmarks. Dry 
stalls include instruction stream (I-stream) stalls 
caused by the branch mispredictions, progralii counter 
(PC) mispredictions, replay traps, I-stream cache 
misses, and exception drain. Frozen stalls include data 
stream (D-stream) stalls caused by D-stream cache 
misses as well as register conflicts and unit busy. Dry 
stalls are higher in SPECint95 and TPC-C (mainly 
because of I-stream cache misses and replay traps), 
\vliereas frozen stalls are higher in SPEC$95 and 
TPC-C (mainly because of D-stream cache misses). 

The Alpha 21 164 microprocessor reduces the per- 
formance penalty due to cache misses by implement- 
ing a large, 96-KB on-chip S-~ache.~. '  This cache is 
three-\\ray set associative and contains both instruc- 
tions and data. The four-entry prefetch buffer allo\vs 
prefetcliing of the nest four consecutive cache blocks 
on  an instruction cache (I-cache) miss. This reduces 
tlie penalty for I-stream stalls. The six-entry miss 
address file (IMAF) merges loads in the same 32-bytc 
block and allo\\s servicing n~ultiple load misses \\it11 
one data f i l l .  A sis-entry \\)rite buffer is used to reduce 
the storc bus traffic and to aggregate stores into 
32-bytc blocks."' 

F i g ~ ~ r e  19  shows the instruction lnis in SPEC95. 
The Alplla instructions are grouped into the follo\\,ing 

categories: load (both floating-point and integer), 
store (both floating-point and integer), integer (all 
integer instructions, excluding ones ~vitli  only R3 1 or 
literal as operands), branch (all branch instructions 
including unconditional), and floating-point (escept 
floating-point load and store instructions). F i g ~ ~ r e  19 
shows tlie percentage of instructions in each category 
relative to the total number of instructions executed. 
Note that load/store instructions account for 30 to 
40 percent of all instructions issued. Integer instruc- 
tions are present in both integer and floating-point 
benchmarks, but no  floating-point instructions exist in 
the SPECint95 and commercial TPC-C \vorkloads. 
The integer and commercial workloads execute liiore 
branches, while tlie branch instructions make up only 
a fen1 percent of  all instructions issued in the floating- 
point workloads. 

The cache misses shown in F i g ~ ~ r e  20 are higher 
in the floating-point benchmarks t h a ~ l  in the inte- 
ger benchmarks. The I-cache misses arc  lo\\^ in the 
floating-point benchmarks (except for +ppp) and 
higher in tlie SPECint95 benchmarks and tlie T I T - C  
benchmark. The D-cache misses are high in the major- 
ity of'tlie benchmarlzs, which indicates that a larger D- 
caclic \\10~1ld reduce D-stream misses. The TPC-C 
bcnchniark \\IOU Id benefit from a larger S-caclic and 
faster 13-cache, since the number of S-cachc misses is 
high. The R-cache misses are negligible in the 
SI'kCint9S benchmarks and higher in the majority of 
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the SPECFp95 TPC-C benchrnarlzs. This data indicates 
that complex commcrcial worldoads, such as TPC-C, 
are more profoundly affected by the cache design than 
simpler workloads, such as SPEC95. 

The replay traps are generally caused by (1) full 
write-buffer (WB) traps (a full write buffer when a 
store instruction is executed) and full miss address file 
(MAE') traps (a ful l  RIM when a load instruction is 
executed); and (2)  load traps (speculative esecution of 
an instruction that depends on a load instruction, and 
the load misses in the D-cache) and load-after-store 
traps (a load following a store that hits in the D-cache, 
and both access the same l ~ c a t i o n ) . ~  The replay traps 
and branch/PC mispredictions shown in Figure 21  
are not the major reason for the high stall time in the 
commercial worldoads (TPC-C), since traps and mis- 
predictions are higher in some of the SPECint95 
benchmarks than in TPC-C. Instead, a high number of 
cache misses (see Figure 20) correlates well with the 
high stall time and CPI (see Figure 17) in TPC-C. 

Figure 22 shows the estimated stall components 111 
SPEC95 and TPC-C. A time-allocation model is used to 
analyze the performance effect of different stall compo- 
nents. The total esecution time is divided into two com- 
ponents: the compute component (where the CPU is 
issuing instructions) and the stall component (where 

FPPPP 

APSl 

APPLU 

the CPU is not issuing instructions). The stall co~npo- 
nent is further divided into the dry and fi-ozen stalls: 

I-CACHE MISSES 
D-CACHE MISSES 
S-CACHE MISSES 
B-CACHE MISSES 

time = compute + stall 
conlpute = single + dual + triple + quad issuing 
stall = dry + frozen 

0 50 100 150 200 
CACHE MISSES PER 1,000 INSTRUCTIONS 

dry = branch mispredictions + PC mispredictions 
+ replay traps + I-stream cache misses 
+ exception drain stalls 

frozen = D-stream cache misses 
+ register conflicts and unit busy 

The branch and PC mispredictions affect the per- 
formance of SPECint95 wvorkloads (6  percent of the 
time is spent in branch and PC mispredictions in 
SPECint95) and have little effect on the performance 
of SPECFp95 \vorldoads (less than 1 percent of the 
time) and the TPC-C benchmark (1.4 percent of 
the time). The SPECint95 worlcloads are affected pri- 
~narily by the load traps, whereas the SPEC@95 
benchmarks are affected by both load and i'VB/MAF 
traps. Note that the time spent on a load replay trap 
is overlapped with the load-miss time. 

The S-cache and B-cache stalls are high in the 
SPECfp95 and TPC-C benchmarks, where the stall 
time is dominated by the B-cache and memory laten- 
cies. Note the high stall time resulting from waiting for 

Digital Tcchnical Journal 

. , .- - 
Vol. 8 No. 4 1996 



REPLAY TRAPS AND BRANCH MlSPREDlCTlONS 
I 

TPC-C I 

SPECFP95 - 
WAVE5 rn 

TURB3D rn 
TOMCATV rn 

SWIM rn 
SUPCOR rn 

MGRlD - 
HYDROPD - - 

FPPPP = 
APSl 0 

APPLU . - 
0 10 20 30 40 50 ,, 70 80 

REPLAY TRAPS AND BRANCHIPC MlSPREDlCTlONS 
PER 1.000 INSTRUCTIONS 

SPECINT95 

VORTEX 

PERL 

M88KSIM 

KEY. 

LDU REPLAY TRAPS 
WBIMAF REPLAY TRAPS 

W BRANCH MlSPREDlCTlONS 
PC MlSPREDlCTlONS 

LI 

IJPEG 

GO 

Figure 21 
Rcplay Traps and BI.~IICII/PC Mispredictio~~s 

- 

SPEC95 STALLTIME COMPONENTS 

GCC - 
COMPRESS - 

TPC-C c 
SPEClNT95 

VORTEX 

M88KSIM 

LI 

IJPEG PERL GCC GO E 
COMPRESS r 

SPECFP95 - 
WAVE5 - 

TURBBD - 
TOMCATV - I 

SWIM - U 
SU2COR - - 

I 

0 10 20 30 40 50 60 70 80 90 100 
PERCENT OF TOTAL TIME 

KEY: 

1 BRANCH AND PC 
MlSPREDlCTlONS 

W LDU REPLAY TRAPS 
WBIMAF REPLAY TRAPS 

I I-CACHE MlSS TO S-CACHE 
D-CACHE MlSS TO S-CACHE 
S-CACHE MlSS TO 0-CACHE 
B-CACHE MlSS TO MEMORY 
REGISTER CONFLICT AND 
UNIT BUSY 

Figure 22 
Esrirnatcd Stall Tinie Distribution 

18 Dipi l~l  Tcclin~cal Journal 



data from memory (close to 40 percent) in se\ieral of 
the SPECfp95 benchniarlts that d o  not fit in a 4-MU 
cache. Although it contributes to the high SPEC@95 
stall time, the memory component has a negligible 
effect on  SPECint95 performance, since these bench- 
marks generate only a small number of B-cache ~nisses 
(see Figure 20). Figure 2 2  indicates that stalls caused 
by cache misses are the largest component of  the total 
stall time; therefore, reducing cache misses and 
improving cache and memory latencies \vould yield 
the largest performance benefit. 

Once calibrated and validated with measurements, 
this model is an effective tool for evaluating the perfor- 
mance impact of various components on the overall 
system design. System architects can vary parameters, 
like the cache or Ii1emory access times or  cache size, 
and adjust the appropriate stall component to predict 
performance of alternative designs without carrying 
out  detailed and often time-consuming architectural 
simulations. 

Conclusion 

Using several performance rnetrics and a variety of 
workloads, we have demonstrated that the DIGITAL 
AlphaServer 4100 family of  midrange servers provides 
significant p e r f o r ~ ~ ~ a n c e  improvements over the 
pre\/ious-generatio11 AlphaServer platform and pro- 
vides performance leadership compared to the leading 
jndustry vendors' platforms. The ~najor  Alphaserver 
4100 performance strengths are the lo\v memory and 
1/0 latency and high memorp bandwidth, the large- 
memory support (VL,M), and the fist Alpha 21164 
microprocessor. The work described in this paper has 
led to  design changes that are expected to  be imple- 
mented in future versions of the Alphaserver 4100 
platform. The anticipated performance benefits will 
come from a faster CPU, faster and larger caches, faster 
memory, and improved memory bandwidth. 
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The AlphaServer 4100 ~ndrej Icocev 
Virginia C. Lanere  

Cached Processor Module Roger D. Pan~le l l  

Architecture and Design 

'The DIGITAL AlphaServer 4100 processor module 
uses the Alpha 21 164 microprocessor series com- 
bined with a large, module-level backup cache 
(6-cache). The cache uses synchronous cache 
memory chips and includes a duplicate tag store 
that allows CPU modules to monitor the state 
of each other's cache memories with minimal 
disturbance to the microprocessor. The synchro- 
nous 6-cache, which can be easily synchronized 
with the system bus, permits short B-cache 
access times for the DIGITAL AlphaServer 4100 
system. It also provides a smooth transition 
from accessing the 6-cache to transferring data 
to or from main memory, without the need for 
re-synchronization or data buffering. 

The DIGI-rA1,AlphaScrvcr 4100 series ofser\lers reprc- 
scnts thc third gcncration of Alpha ~nicroprocessor- 
based, mid-range computer s!lstcms. Anlong the 
technical goals achic\,cd in the systcln design \\.ere thc 
use offour Cl'U modules, 8 gigabytes (GR) of memory, 
ancl partial block \\,rites to improve I/O performance. 

Unlil<e tlic prc\,ious generation of mid-range scrvc~-s, 
the AlpliaSer\~cr 4100 series can accommodate four 
processor modules, while retaining the maximum 
memory capacity. Using multiple CPUs to share the 
workload is kno\vn '1s symmetric ~nultiproccssing 
(SbIP). As more (:PUS arc added, the perfor~nancc 
of an SMP system incrcascs. This ability to  increase 
performance by adding CPUs is known as scalability. 
To achieve perfect scalability, the pcrfonnance of k)ur 
CPUs ~vould lia\,c to be exactly four timcs that ofa sin- 
gle CPU system. One o f  tlic goals of tlic dcsjg~i .i\,as to 
keep scalability as high as possible yet consistent \\lit11 
low cost. For example, the AlphaServer 4100 system 
achievcs a scalability tiactor of 3.33 on  the Linpack 
1000 x 1000, a Inrgc, parallcl scientific bcncl~mark. 
The salnc benchmarl< achieved 3.05 scalability o n  tlic 
previous-gcncmtio~i platform.' 

The 8-GB memory in the AlphaScr\~er 4100 system 
represents a factor of f i ) ~ ~ r  i~npro\rcment compared with 
the previous generation of mid-range scr\rers.' Thc new 
memory is also bster in tcrnis of tlic data voJu~iic f l o \ \ r -  
i ~ i g  o\'cr the bus (band\vidth) and data access time 
(latency). Again, compared \\fit11 the previous gcnera- 
tion, available Incmor!l bandwidth is impro\,ed by a fac- 
tor of 2.7 and latency is rcduccd by a hctor of 0.6. 

In systems ofthis class, memory is usually addrcsscd 
in large bloclts of  32 to 64 bytcs. This can be incffi- 
cient when one o r  nvo bytes need to be modified 
because the entire block might haw to  be read out  
from nicmory, ~iiodificd, and then \witten back into 
nlemory to achic\lc this minor modification. The abil- 
ity to  modit$ a small 6-action of the blocl< \\/itliout ha\,- 
ing to extract the entire block fiom memory results in 
partial block writes. This capability also represents an  
advancc over tlic pre\~ious gcncration of servers. 

To  take f i l l 1  advantage oftlic Alplia 21164 series of' 
rnicroproccssors, a ncn aystc~ii ~ L I S  \\!as needed. The bua 
used in tlic prc\,ioi~s gcner .~~io~i  of ser\!crs was not bst  



enough, and the cost and size of the bus used in high- 
end servers was not adaptable to  mid-range scrvcrs. 

Three separate teams worlced on the project. One 
team defined thc system architecture and tlie system 
bus, and designed thc bus co~itrol logic and the mem- 
ory ~nodules .~ The second team designed the periph- 
eral interface (I/O), which consists of the Peripheral 
Component Interconnect (PCI) and the Extended 
Industry Standard Architecture (EISA) buses, and its 
interface to the system bus ( V O  bridge).' The third 
team designed the CPU module. The remainder of 
this paper describes the CI'U module design iu detail. 
Bcfore delving into the discussion of the CPU module, 
however, it is necessary to briefly describe how the sys- 
tem bus hnctions. 

The system bus consists of 128 data bits, 1 6  check 
bits with the capability of correcting single-bit errors, 
36 address bits, and somc 30 control signals. As many 
as 4 CPU n~odules, 8 memory modules, and 1 1 / 0  
module plug into the bus. The bus IS 10 inches long 
and, with all nlodules in place, occupies a spacc of 
1 1  by 1 3  by 9 inches. Wid1 power supplies and the 
console, the entire system fits into an enclosure that is 
26 by 12 by 17.5 inches in dimension. 

CPU Module 

Tlie CPU module is built around the Alpha 21 164 
microprocessor. The module's 1iia1n k~nction is to 
provide an extended cache memory for the rnicro- 
processor and to allow it to access the system bus. 

The microprocessor has its ow7n internal cache 
memory consisting of a separate primary data cache 
(D-cache), a primary instruction cache (I-cache), and 
a second level data and instruction cache (S-cache). 
These jnternal caches are relativel~r small, ranging in 
size from S k~lobytes (ICB) for the primary caches to 
9 6  I(R for the secondary cache. Although the internal 
caclie operates at microprocessor speeds in the 400- 
megahertz (MHz) range, its small size would limit 
performance in most applications. To remedy this, the 
microprocessor has the controls for an optional cxter- 
nal cache as large as 6 4  megabytes (MR) in size. As 
implemented 011 tlie CPU module, the external cache, 
also known as the baclcup cache or B-cachc, ranges 
from 2 MB to 4 MD in size, depending on the size 
of the memory clips used. In this paper, all references 
to the cache assume the 4-MB implementation. 

The cache is organized as a physical, direct-mapped, 
write-back cache with a 144-bit-wide data bus consist- 
ing of 128 data bits and 1 6  check bits, which matches 
the system bus. The chcck bits protect data integrity 
by providing a means for single-bit-error correction 
and double-b~t-error detection. Aphysical cache is one 
in which the address used to address the caclie mem- 
ory is translated by a table inside the microprocessor 
that converts sofhvare addresses to physical memory 

locations. Direct-mapped refers to the way the cache 
memory is addrcsscd, in which a subsct of the physical 
address bits is uscd to uniquely place a main memory 
location at a particular location in the cache. When the 
~nicroprocessor modifies data in a write-back cache, it 
only updates its local cache. Main memory is updated 
later, when the cache block needs to be uscd for a dif- 
ferent menlory address. When the microprocessor 
needs to access data not stored in the cache, it perfor~ns 
a system bus transaction (fill) that brings a 64-byte 
block of data from main memory into thc cache. Thus 
the cache is said to havc a 64-byte block size. 

Two types of cache chips are in common use in 
modern computers: synchro~ious and asynchronous. 
The synchronous memory chips accept and deliver 
data at discrete times linked to  an external clock. The 
asynchronous memory elements respond to input 
signals as they arc received, without regard to a clock. 
Cloclted cache memory is easier to interface to tlie 
clock-based system bus. As a result, all transactio~is 
hvolving data flowing from the bus to  the cache (fill 
transactions) and from the cache to the bus (write 
microprocessor-based system transactions) are easier 
to implement and faster to  execute. 

Across the industry, personal computer and server 
vendors havc moved from the traditional asynchro- 
nous caclie designs to the higher-performing synchro- 
nous solutions. Small synchronous caches provide 
a cost-effective performance boost to personal com- 
puter designs. Server vendors push synchronous- 
memory technology to its limit to  achieve data rates 
as high as 200 MHz; that is, the cache provides new 
data to the microprocessor every 5 ~ianoseconds."~ 
The AlpliaServer 4100 server js 1)lGITAL's first prod- 
uct to employ a sy~ichronous module-level cache. 

At power-up, tlie cache contains no uschl data, 
so the first Iiiemory access the microprocessor 
makes results in a miss. In the block diagram shown 
in Figure 1, the microprocessor sends tlie address out 
on nvo sets of lines: the index lines connected to thc 
cache and the address lines connected to tlie system 
bus address transceivers. One ofthe cache chips, called 
the TAG, is not used for data but instead contains 
a table ofvalid cache-block addresses, each ofwhich is 
associated with a valid bit. Whrll tlie microprocessor 
addresses thc cache, a subset of the high-order bits 
addresses tlie tag table. A miss occurs when either of 
the following conditions has been met. 

1. Tlie addressed valid bit is clear, i.e., there is n o  valid 
data at that cache location. 

2. The addressed valid bit is set, but the block address 
storcd at that location does not match the address 
requested by the microprocessor. 

Upon detection of a miss, the microprocessor 
asserts the READ MISS command on a set of four 
command lines. This starts a sequence of events 
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that results in tlie address being sent to the system bus. 
The mcrnory rcccivcs this addrcss and after a delay 
( ~ n c ~ n o r y  latency), it sends the data o n  the system bus. 
L3'1ta transcci\icrs on the C1'U ~nodu lc  rccci\lc the 
data and start a cache f i l l  transaction that results in 
64 bytes (a cache block) being written into the cache 
as bur conseci~tive 128-bit words with their associated 
check bits. 

In an SMP system, two or  more (:PUS may have the 
same data in their cache memories. Such data is known 
as shared, and the shared bit is set in the TAG tbr that 
address. The cache protocol used in tlie AlphaScrvcr 
4100 scrics ofservers allows each <:PU to modi$ entries 
in its o\vn cachc. Such modificd data is known as dirty, 
and the dirty bit is set in the TAG. Ifthc data about to be 
modified is shared, liowc\~cr, the microprocessor rcsets 
the sharcd bit, and other CPUs invalidate tliat data in 
their own caches. The need is thus apparent for a \vay 
to Ict all Cl'Us keep track of data in other caches. This 
is acco~liplislicd b y  the process known as snooping, 
aided by several dedicated bus signals. 

To bcilitatc snooping, a separate copy of thc TAG is 
niaintainccl in a dedicated cache chip, callcd duplicate 
tag o r  DTAG. DTAG is controlled by an application- 
specific integrated circuit (ASIC) cal led VCTY. VCTY 
and 1)TAG arc locatcd nest to each other and in close 
proximity to the address transcci\icrs. 'Their timing is 
ticd to the system bus so that the addrcss associated 
\\11tIi a bus transaction can eas~ly be applied to thc 
DTAG, which is a synchronous memory device, and 
the state of  the cachc at that address can be read out. 
If that cachc location is valid and the address that is 
stored in the DTAG matches that of the system bus 

commalld (a hit in DTAG), tlie signal MC-SHARED 
may be asserted on  the system bus by VCTY. If that 
location has been modified by the microprocessor, 
then MC-DIltTY is asserted. Thus each CPU is aware 
of the state of all the cachcs o n  the system. Other 
actions also take place on  the module as part of this 
proccss, which is explained in greater detail in the sec- 
tion dealing specifically with the VCTY. 

Because of  the write-back cache organization, a spe- 
cial type of miss transaction occurs when new data 
needs to be stored in a cachc location that is occupied 
by dirty data. The old data 11eeds to bc put back into 
the main memory; otherwise, the changes tliat the 
microprocessor madc will be lost. The  process of 
returning that data to memory is called a victim writc- 
back transaction, and the cache location is said to be 
victimized. This process imrolves moving data ou t  of 
the cache, through the system bus, and into the main 
memory, follo~ved by new data mo\ing fro~ii the niain 
memory into the cachc as in an ordinary f i l l  transac- 
tion. Completing this f i l l  quickly reduces the tirnc that 
the microprocessor is waiting for the data. To speed up 
this process, a hardware data buffer on  the module is 
used for storing the old data while the new data is 
being loaded into the cachc. This buffer is physically 
a part oftlic data transceiver since each bit of the trans- 
ceiver is a shift register four bits long. One hundred 
twenty-eight shift registers can hold the entire cachc 
Iblock (512 bits) of victim data while the new data is 
being read in through the bus receiver portion of tlie 
data transceiver cliip. In this manner, the microproces- 
sor does not have to wait until the victim data is trans- 
ferred along the system bus and into the main memory 
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before the fill portion of the transaction can take place. 
When tlie f i l l  is complctcd, tlie \victim data is shifted 
O L I ~  of the ~ic t i ln  buffer 2nd into tlie main nicniory. 
This is 1<1io\~1i 3s 311 c~c l i a~ igc ,  since the victim \\trite- 
buck and f i l l  tra~isactio~is execute o n  the system bus iu 
reverse of  the order that was initiated by the micro- 
processor. The transcci\ler has a signal called BYPASS; 
when asserted, it cairscs three of  tlie four bits of the 
victim shift register to be bypassed. Consequently, ti,r 
ordinary block \\'rite transactions, the transcei\vr opcr- 
atcs \\~ithout in\~olving tllc \,icti~n buffer. 

B-Cache Design 

As previously mentioned, the 13-cache uses syncliro- 
nous random-access memory (RAM) devices. Each 
device requires a clock that loads signal inputs into 
a register. The  RAM operates in the registered input, 
f low-tl iro~~gh o ~ ~ t p ~ ~ t  mocic. Tliis means that an input 
flip-flop captures addrcsscs, write enables, and \\trite 
data, 17~1t the interlial RAM 3rr3y clri\res read o ~ ~ t p u t  
data directly as soon as it becomes available, \vitIiout 
regard to tlie clock. The output enable signal acti\*atcs 
RAM output drivers as!~ncIirooo~~sl!; independently of 
the clock. 

O ~ i e  of the hndarncntal properties of clocked logic 
is tlic requirement fix the data to be prcscnt for s o ~ i ~ c  
defined time (setup ti~iic) lxforc tlic clock cdgc, and to 
remain unchanged for another interval follo\\~i~ig the 
cloclc edge ( l~old  time). Ob\!iousl)~, to meet tlic setup 
tinic, tlie clock must arrive at the RAM some tinic ahcr 
the data or  otlicr signals lwxicd by the RAM. To help 
tlic module designer meet this rccluirement, the micro- 
processor may dclay tbc RAM clock by one internal 
microprocessor cyclc time (;ipproxi~nately 2.5 nanoscc- 
onds). A programmnblc register in the microprocessor 
controls \\~lietlier or not tliis cielay is invoked. 'l'his 
dclay is ~ ~ s c d  in the AlplinScr\~cr 4 100 series Cl'U mod- 
ules, iind it eliminates the nccd ti)r external delay lines. 

For increased data bandwidth, the cache chips used 
on CPU modules are dcsigncd to o\,erlap portions of 
succc.ssi\.e data accesses. The first data block becorncs 
available at the microproccssor input after a delay 
cclnal to tlie BC-READ-SPEED parameter, which is 
preset at p ~ \ \ ~ e r - i ~ p .  Tlic follo\\~ing data bloclts arc 
latclicd after a shol.tcr delay, RC:-1IEAD-SPEED- 
WAVE. Thc HC-l<E,4D-SI'EF.l) is set at 10 micro- 
processor cycles and the WAVI: value is set to 4, so that 
B(:-IWAl>-SI'EED-WAVL is 6. Tlius, after t l ~ c  first 
dclay o f  10 microprocessor cycles, successive data 
blocks are de l i \~ red  every 6 microprocessor cycles. 
Figure 2 illustrates thcsc concepts. 

In F i g ~ ~ r e  2, tlie RAM clock at the ~nicroprocessor is 
dclnycd by one microproccssor cycle. The 1 W  cloclt 
at the RAM dc\rice is f~ r t l i c r  delayed by clock buffer 
and nct\\.ork delays on the modulc. The address at tlic 
microprocessor is drivcn whcrc the clock would have 

occurred liad it not been delayed by one microproces- 
sor cyclc, and the address at thc lWiM is fi~rtlier delayed 
by indcs buffer and nenvork ticlays. Index setup at the 
1<AM satisfies the ~iiinim~um setup time rccluired by the 
chip, and so  does address Iiold. Data is shown as 
appearing after data access time (a chip property), and 
data setup at the microprocessor is also illustrated. 

VCTY 

As cicscribed earlier, a duplic.ltc cop!( of the micro- 
processor's primary TAG is maintained in the 1)TAC; 
RAM. If L3TAG \irerc not present, each OLIS address 
\vould have to be applied by the microprocessor to the 
TAG to decide if the data at tliis address is present in 
the R-cache. This activity would impose a very large 
load on the ~nicroprocessor, tli~rs r c d ~ ~ c i n g  the amount 
of  usefill work it could pcrfonn. Tlie main purpose of 
tlie 1)TAG and its supporting logic contained in the 
V(:TY is to relie\,e the microproccssor fiom having to  

csamine each address prcscntcd by tlie system bus. 
The microprocessor is only interrupted \\,hcn its pri- 
mary TAG ~i ius t  be ~ ~ p d a t c d  or  \\.lien data must be 
pl-ovidcd to satisfi the bus recluest. 

VCTY Operation 
Tlic VCTY contains a system bus interface consisti~ig of 
the system bus co~iimand anci adcircss signals, as well as 
somc system bus control signals rcq~~ired for the VCTY 
to monitor each system bus tr.uisaction. There is also 
an intcrhce to  the microproccssor so  that the VCTY 
can send commands to the microproccssor (system-to- 
< Y U  commands) and monitor tlic co~iimands and 
addrcsscs issued by the microproccssor. Last but not 
least, a bidirectional interface bcnvecn thc VCTY and 
the DTAG allo\vs only tliosc system bus addresses that 
rccluirc action to reach the microproccssor. 

Wliilc monitoring the system bus for commands 
from otlicr nodes, the V<TY cliccks for matches 
bct\-\~ccri the recei\,cd system bus addrcss and the data 
from the DTAG lookup. A 1WAG lookup is initiated 
an!~time a valid system bus addrcss is received by the 
 nodule. Tlie 1)TAG location for the lookup is sclcctcd 
by using s)lsteni bus Addrcssc2 1 :6> as the indcs into 
the DTAG. If thc DTAG locatio~i liad pre\~iously bccu 
marlted \lalid, ancl there is a ~iintcli bet\vccn the 
~.ccci\~cd system bus Addrcss<38:22> and the data 
from the IYTAG lookup, then the block is present in 
the microprocessor's cachc. Tliis sccllario is called a 
cache hit. 

In parallel \vith tliis, the V<:TY decodes the rcceiveo 
system bus command to dctcrminc thc appropriate 
~ ~ p d a t e  to the DTAG and dctcrminc tlic correct system 
b i ~ s  rcsporise and CI'U command nccdcd to mdintain 
s!!stcm-wide cachc coherency. A fe\\~ cases are illus- 
trated here, without any attempt at 3 co~nprehensi\~e 
discussion of all possible transactions. 
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(:3chc I<cad .Cra~~saction Sho\ving Timing 

Assume that the DTAG sharcd bit is fi)und to be set 
at this ;~ddrcss, the dirty bit is not  set, and the bus 
command indicates a write transaction. The DTAG 
valid bit is then reset by the VCTY, and tlie ~iiicro- 
processor is intcl-rupted to d o  the same in thc TAG. 

If thc dirty bit is found to be set, and the command 
is a read, the M<:-DIRTY-EN signal is asserted o n  thc 
system bus to tell the c.)thcr C P U  that tlic locntion it is 
trying to ncccss is in cache and  has bccn modified by 
this C1'U. At tlie s,ume time, a signal is sent to the 
1i1icrop~)ccssor rcc1~1esting it to S I I ~ ~ I ! ,  the modified 
data to tlic bus so tlic other <:1'U can gct nn LIP-to-date 
\~crsion of the clata. 

If the address being csalnincd by tlic V<:TY \\,as 
not sharcci in the DTAG and the trans?.t. c ~ o n  was a 
write, the valid bit is reset in t11c l>TAG, and 110 bus 
signals arc generated. The ~iiicroproccssor is rcqucstcd 
to  reset the valid bit in the TAG. Ho\\lc\fcr, if the trans- 
action \&Ins not a write, then shared is set ill  the DTAG, 
M(:-SHARED is asserted o n  tlic bus, and a signal is 
sent to the microprocessor to set sharcd in the TAG. 

From these examples, it becomes ob\ious that only 
transactioos that change the scate of the valid, shared, or  
dirty TAG bits rcquire any action o n  thc part of the 

microprocessor. Since these transactions are relatively 
infrequent, the DTAG saves a great deal of microproccs- 
sor time and improves ovcrall system performance. 

If the VCTY detects tliiit the command originatccl 
from the microprocessor co-rcsidcnt on tlic ~nodulc,  
then tlie block is not cliccltcd for a hit, but the com- 
mand is decoded so that t l ~ c  DTAG block is i~pclatccl 
(if already valid) or allocated (i.c., marked valid, if not 
already valid). I n  the latter casc, a f i l l  transaction f b -  
lo\\ls ancl tlic V(:TY writes tlic valid bit into the TAG ;it 
that time. The f i l l  transaction is the onl), one for \\,hich 
the VCTY \\,rites directly illto t l ~ c  TAG. 

All cycles of n system bus transilction are ~~i~nlL>ercd, 
with cycle 1 being thc cycle in \\lIiich the system bus 
address and command are valid o n  the bus. The con- 
trollers internal to VCTY rely on tile cycle numbering 
scheme to rcmiiin synchronized with thc system bus. 
By remaining synchronized with thc system bus, all 
accesses to the DTAG and accesses from the VCTY to  
the microprocessor occilr i l l  fixed cycles relativc to the 
system bus transaction in progress. 

The index uscd for lookups to the DTAG is prc- 
sented to the DTAG in cycle 1 of the system bus trans- 
action. In the event of a hit requiring an update of the 

Digid Technical journal Vol. 8 No. 4 1996 



DTAG and primary TAG, the microprocessor interface 
signal, EV-ABUS-RF.Q, is asserted in c2lcles 5 and 6 o f  
that system bus transaction, u~i t l i  the appropriate 
system-to-CPU command being driven in cycle 6. The 
actual update t o  the  DTAG occurs in cycle 7, as does 
the allocation o f  bloclts in tlie 1DTAG. 

Figure 3 shows the timing relationship o f  a system 
bus command t o  thc update o f  the DTAG, including 
tlie sending o f  a system-to-CPU command t o  tlic 
microprocessor. T h e  numbers along the top  o f  the 
diagram indicate the cycle numbering. In  c!lcle 1 ,  
when the signal M<:-(:A-L goes lo\\/, the system bus 
address is valid and is presented t o  the DTAG as the  
DTAG-INDEX bits. By the end o f  cycle 2, the DTAG 
data is valid and is cloclted into tlie VCTY \</here it is 
checltcd for good  parity 'ind a match u~itli  the upper 
received system bus address bits. In the event o f a  hit, as 
is the case in this example, the microprocessor interbcc 
signal EV-ARUSpKEQ is asserted in c)icle 5 t o  jndicdtc 
that tlie VCTY will be driving the microprocessor com- 
mand and address bus in the nest  cycle. I n  c)/cle 6 ,  the 
address that was recei\rcd from the system bus is driven 
t o  the microprocessor along \\lit11 the SETSHARED 
command.  T h e  microprocessor uses this command 
and address to update the  primary tag control bits for 
that block. In cycle 7, the control signals 1lTAG-OE-I, 
and DTAG-\El-L arc asserted low t o  update tlie con-  
trol bits in the DTAG, thus indicating that the block is 
now shared by another module. 

SYSTEM BUS 
CYCLE NUMBER 

DTAG Initialization 
Aliotlier important fedt~~t-c  built into the VC:R design 
is cursory self-test and initialization of ' thc  DTAG. 
Atier s)~stcni reset, the  VCTY \\)rites all locations o f  the 
DTAG wit11 a urlicluc data pattern, and then reads the 
entire llTAG, comparing the ddta read versus \\/hat 
was written and checking the parity. A second write- 
read-compare pass is made  using the  inverted data pat- 
tern. This inversion ensures that all 1ITAG data bits are 
written and checked as both a 1 2nd a 0. 111 addition, 
tlic second pass o f  the initialization lca\,cs each block 
o f  the DTAG marked as invalid ( n o t  present in the 
B-cache) and with g o o d  parity. T11c entire initializa- 
tion sequence takes approximately 1 millisecond per 
megabyte o f  cache and finishes bcfi)rc the  micro- 
processor co~nple tes  its ~ c l ~ t c s t ,  avoiding special han- 
dling by fir~~lcvare. 

Logic Synthesis 
T h e  VCTY ASIC \\/as designed using thc Vcrilog 
Hard\vare Description Language ( H D L ) .  T h e  use o f  
H i I L  enabled the design team t o  begin bcha\rioral 
simulations quickly t o  start tlic d e b u g  process. 

In parallel ~ v i t h  this, the Vcrilog code \vas loaded 
into the Synopsjls Design Compiler,  \vhich synthe- 
sized the behavioral equations into a gate-level clesigl~. 
T h e  irsc o f  H D L  and the Design Compilcr enabled the 
designers t o  maintain a single set o f  bclia\~ioral models 
for the ASIC:, without  the need to ma nu all!^ enter  

AAAA AAAA AAAA 

DTAG_INDEX<15:0> MC-ADDR<21:6>-A1 AAAA 

MC-ADDR<38 22> MC-ADDR<38 22> 

DTAG_DATA<18 2, VALID, 
SHARED, 
NOT DIRTY 

DTAG V S  D VALID 

DTAG-OE-L 

DTAG-WE1 -L 

DTAG-WEO-L 

- 
EV-ABUS-REQ / 

MC-ADDR 

EV_ADDR<39 4> DRIVEN BY MICROPROCESSOR H 
SETSHARED 

H > DRIVEN BY 

EV_CMD<3 0> 
MICRO- 

DRIVEN BY MICROPROCESSOR PROCESSOR 

Figure 3 
LITAG Operation 



schen~atics to represent the gate-Jevel design. The syn- 
thesis process is shown in a flowchart form in Figure 4. 
Logic verification is an integral part of this process, 
and the flowchart depicts both the synthesis and verifi- 
cation, and their interaction. 

Only the synthesis is explained at this time. The ver- 
ification process depicted on the right side of the flow- 
chart is covered in a later section of this paper. 

As shown on the left side of the flowchart, the logic 
synthesis process consists of multiple phases, in which 
the Design Compiler is invoked repeatedly on each 
subblock of the design, feeding back the results from 
the previous phase. The Synopsys Dcsign Compiler 
was supplied with timing, loading, and area constraints 
to s)fnthesjze the VCTY into a physical design that met 
technology and cycle-time req~~irenients. Since the 
ASIC is a small design compared to technology capa- 
bilities, the Design Compiler was run without an area 
constraint to facilitate timing optimization. 

The process requires the desigrler to supply timing 
constraints only to the periphery of the ASIC (i.e., the 

1 / 0  pins). The initial phase of the synthesis process cal- 
culates the timing constraints for internal nenvorks that 
connect between subblocks by invoking the Design 
Compiler with a gross target cycle time of 100 nanosec- 
onds (actual cycle time of the ASIC is 15 nanoseconds). 
At the completion of this phase, the process analyzes 
all paths that traverse multiple hierarchical subblocks 
within the design to deternine the percentage of time 
spent in each block. The process then scales this data 
using the actual cycle time of 15 nanoseconds and 
assigns the timing constraints for internal networks at 
subblock boundaries. Multiple iterations may be 
required to ensure that each subblock is mapped to 
logic gates with the best timing optimization. 

Once the Design Compiler completes the subblock 
optimization phase, an industr)f-standard electronic 
design interchange format (EDIF) file is output. The 
EDIF file is postprocessed by the SPIDER tool to gen- 
crate files that are read into a timing analyzer, Topaz. A 
variety of industry-standard file formats can be input 
into SPIDERto process the data. Output files can then 

Figure 4 
ASIC Design Synthcsis and Verification F l o w  
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Bus Monitor TIic bus monitor is a collection of 
DE(:SIh/I sim~~lation \vatchcs tliat monitor t l ~ c  system 
bus and  the CI'U internal bus. The \vatches also rcport 
\\rhcn various bus signals arc being asserted and 
dcasscrtcd and have tlic ability to halt simulation if 
they cncountcr cache incoherency or  a \riotation. 

Cache incohcrcnc!~ is a data inconsistency, for exam- 
ple, a piccc of nondirty data residing in tlie B-cache 
ancl differing horn data residing in niain memory. 
A data inconsistency can occur among tlie CPU mod- 
ules: for example, n4,o CPU nlodulcs may have difkr-  
cnt data in their caclics at the same memory address. 
Data inconsistcncics are detected by the CPU. Each 
one maintains an exclusive (nonsharcd) copy of its 
data that it i~scs to compare with tlie data it reads horn 
the tcst adcircsscs. If the two copies differ, the <:PU 
signals to the bus monitor to stop the sim~~lation a n d  
report an error. 

The bus  non nit or also detects other \,iolations: 

1. N o  activity on the system bus for 1,000 consccuti\,c 
cycles 

2 .  Stalled s!,stcln ~ L I S  for 100 cycles 

3.  Illcg.ll comm.inds o n  the s!!stem bus and <:PU 
intcr~ial bus 

4. Catfistrophic systcln error (machine check) 

Tlic combination of random <:PU and 1/0 activity 
flooded the systcni bus \\it11 lica\~p traffic. With the 
help oftlic bus monitor, this techniclue esposcd bugs 
quicltlv. 

As ~ncntioncd, a few directed tests were also wl-itten. 
I>ircctcd tcsts \ifcrc used to re-create a situatio~i that 
occurrcd in random tcsts. Ifa bug \\,as i~ncovercd using 
a random tcst tliat ran tlircc d q s ,  a directed tcst \\!as 
\\'rittc11 to re-create tlic same failing scenario. Tlicn, 
aticr tlic bug \\!as tiscd, a quick run of the dircctcti tcst 
confirmed t11.lt thc problem \\,as indeed corrected. 

Functional Checker 
During tlic initial design stages, the verification team 
dc\.clopcd tlic Fu~lctioual Checker (FC) for the fol- 
Io\\!ing purpoxs: 

1-0 f i~nction~~lly vcri% the HDL niodcls of all ASICs 
in the AlphaScrvcr 4100 system 

To asscss the tcst covcmgc 

'Tlic I-'(: tool consists of three applications: the 
parser, the .~nalyzcr, and the report generator. -The 
right-hand side of Figure 4 illustrates lio\v tlic F(: \\!as 
i~scd to aid in tlic f~~nctional \w-ification process. 

Parser Sj~lcc 1)lX:SI M \\!as the cl~~oscn logic simula- 
tor, the first step \\!as to translate all HDL code to 
I31X, a DF.<:SIIM bclia\~ior 1,lnguage. This task \\,as 

performed using a tool called V2BDS. The parser's 
task \\!as to postproccss a BDS file: extract information 
and g c ~ i u - ~ t c  an~odified version of it. Tlic inform,ltion 
extracted \\,as 2 list of co~iti-01 signals and logic statc- 
mcnts (such as logical espressions, if-then-else state- 
~ n c ~ l t s ,  case statements, and loop constructs). This 
information \\.as later s~ipplied to the analyzer. The 
~nodificd RDS \\,as fi~nctionallp equivalent to the origi- 
nal code, but it contained sonic embedded calls to 
r o ~ ~ t i n e s  \\lliose task \\[as to monitor the activity of the 
coiitrol signnls in t l ~ c  contest of the logic statements. 

Analyzer Written in C, the analyzer is a collection of 
nlonitoring routines. Along with the modified B1)S 
code, tlic analyzcr is compiled and linked to h r m  the 
simulation model. During simulation, the analyzer 
is in\~oltcd and the routines begin to monitor the acti\f- 
ity of  the control signals. It keeps a record of all con- 
trol signals that form a logic statement. For example, 
assLlmc the following statement \.\,as recognized by the 
parser 3 one to be monitored. 

(A XOR B)  AND C 

Tlic analyzcr created a table of all possible combina- 
tions of logic values for A, B, and C; it then recorded 
\vhich ones \\ere achieved. At the start of simulation, 
there nfas zero coverage achieved. 

Acliicvcd 
No 
N o  
N o  
N o  
No 
N o  
N 0 

No 

Achieved coverage = 0 pcrccnt 

Further assunlc tliat during one of  the sirnulatio~i 
tcsts generated by the R ~ n d o m  Esercisrr, A assumed 
both 0 ,lnd 1 logic states, \\,Iiile R and C remained con- 
stantly at 0. At the end of simulation, the statc oftlic 
tnblc \vould be the follo\ving: 

ARC 
000 
0 0  1 
010 
01 1 
100 
101 
110 
111 

Acliicvcd 
k s  
N o  
N o  
N o  
Yes 
No  
No 
No 

Acliie\~ed coverage = 25 percent 
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Report Generator The report generator application 
gathered all tables created by the analyzer and gcncr- 
ated a report file indicating \vhich conibinations were 
not achieved. The report file was then reviewed by the 
verification team and by the logic design team. 

The report pointed out  deficiencies in the verifica- 
tion tests. The verification teani created more tests 
that would increase the "yes" count in the "Achieved" 
colunln. For the example shown above, new tests 
might be created that would make signals B and C 
assume both 0 and 1 logic states. 

The report also pointed out  bults in the design, 
such as redundant logic. In  the example shown, the 
logic that produces signal B might be the same as the 
logic that produces signal C, a case of redundant logic. 

The FC tool proved to be an invaluable aid to the 
\rerification process. I t  was a trmsparent addition to the 
simulation environment. With FC, the incurred dcgra- 
dation in compilation and simulation time was negligi- 
ble. I t  performed n1.o types of  coverage analysis: 
esliaustive combinatorial analysis (as \\/as described 
above) 2nd bit-toggle analysis, which was usecl for \cc- 
tored signals such as data and address buses. Perliaps 
the most valuable feature of the  tool was the fact that it 
replaced the time-consuming and compute-intensive 
process o f  fault grading the physical design to verifj, test 
coverage. F C  established a new measure of test covcr- 
Age, the percentage of achieved coverage. In the above 
example, the calculated co\Ierage w o ~ ~ l d  be nvo out of 
eight possible achievable combinations, or  25 pcrccnt. 

For the verification of the cached CPU modulc, tlie 
FC: tool achieved a final test co\!crage of 95.3 percent. 

Module Design Process 

As the first step in the niodule design process, we used 
the Powcrvieur schematic editor, part of the Vie\vlogic 
CAD tool suite, for schematic capture. An internally 
developed tool, V2LD, converted tlie schematic to a 
form that could be simulated by DECSIM. This proccss 
was repeated ~ ~ n t i l  DECSIIM ran \+ithout errors. 

During this time, the printed circuit (PC) layout of 
the module \\!as proceeding independently, i~sing tlie 
ALLEGRO CAD tools. The layout process was partly 
manual and partly automated with the C C T  router, 
which was efkctivc in following the layout engineer's 
design rules contained in the DO files. 

Each \~crsion of the completed layout was translated 
to a format suitable for signal integrity modeling, 
using the internally developed tools ADSconvert and 
IMOI)ULEX. The MODULEX tool was used to estract 
a module's electrical parameters from its physical 
description. Signal integrity modeling was performed 
with the HSPICE analog simulator. We selected 
HSPICE because of  its universal acceptance by the 
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industry. Virti~ally all component vendors will, on 
request, supply HSPICE niodels of  their products. 
Problelns detected by HSPICE were corrected either 
by layout modifications o r  by schematic changes. The 
module design process flow is depicted in Figure 5. 

Software Tools and Models 
Three internally developed tools were of great value. 
One was MSPG, cvhich was used to  display the 
HSPICE plots; another was MODULEX, which auto- 
matically generated HSPICE subcircuits from PC 
layout files and performed cross-talk calculations. 
Cross-talk amplitude violations were reportcd by 
MODULEX, and the offending PC traces were moved 
to reduce coupling. Finally, SALT, a visual PC display 
tool, was used to v e r i ~  that signal routing and branch- 
ing conformed to  tlie design requirements. 

One of the important successes was in data line 
modcling, where tlie signal lengths from tlie RAMS 
to the microprocessor and the transcei\/ers \\,ere very 
critical. By using tlie HSPICE .ALTER statement and 
M(.>l'>ULEX subcircuit generator command, wc coulci 
configure a single HSPICE deck to simulate as many as 
36  data lines. As a result, the entire data line group 
cc.)~~ld be simulated in only four HSPICE runs. In  an 
csccllcnt esaniplc of synergy benvecn tools, the script 
capability of tlie MSPG plotting tool was used to 
cstract, annotate, and create I'ostScript files of wave- 
form plots directly from the simulation results, \vith- 
out having to manually display each \\/a\ieform o n  the 
screen. A mass printing co111niand was thcn c~scd to 
print all stored Postscript files. 

Another useful HSPJCE statement was .MEASU ICE, 
which measured signal delays at the specified thrcshold 
Ic\rcls and sent the rcsults to a file. From this, a separate 
program extracted clean delay values and calculated the 
~i~axinium and ~ninirnum delays, tabulating the results 
i l l  a scparatc file. Reflections crossing the threshold 
levcls caused incorrect results to  be reportcd by 
the .MEASURE statement, \\rhich \\/ere easily sccn in 
the tabulation. We then simply looked at the \\laveform 
printout to see where the reflections \vel-e occurring. 
The layout engineer was then asked to niodi@ those 
signals by changing the PC trace lengths to cithcr the 
microprocessor or  the transceiver. The modified signals 
were then resimulated to verif)- the changes. 

Timing Verification 
Ovcral l cache timing was verified with the Timing 
Designer timing analyzer from Chronology Corpor- 
ation. liele\rant timing diagrams \\/ere drawn using 
tlie ~vavefornl plotting facility, and delay values and 
controlling parameters such as the microprocessor 
cycle interval, read speed, wave, and other constants 
\\,ere entered into the associated spreadsheet. All 
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delays were expressed in terms of HSI'ICE-simulated 
values and those constants, as appropriate. This 
method siniplificd changing parameters to try various 
"what if" strategies. The timing analyzer w o ~ ~ l d  
instantly recalculate the delays and the resulting mar- 
gins and report all constrailit violations. This tool was 
also used to check timing elsewhere on the module, 
outside of the  cache area, and it provided a reasonable 
level of confidence that the design did not contain any 
timing violations. 

Signal Integrity 
In high-speed designs, where signal propagation timcs 
are a significant portion of  the clock-to-clock interval, 
reflections duc to impedance mismatches can degrade 
the signal quality to such an extent that the system will 
fail. For this reason, signal integrity (SI) analysis is an 
important part of  the design process. Electrical con- 
nections on  a module can be rnade following a direct 

MODULEX 
TOOL * 

point-to-point path, but in high-speed designs, many 
signals must be routed in more complicated patterns. 
The most cornn~on pattern involves bringing a signal 
to a point where it branches out in several directions, 
and each branch is connected to one or more 
receivers. This method is referred to as treeing. 

The SI design of this  nodule was based on the 
principle that coniponent placement and proper sig- 
nal treeing are the two most important elements of 
a good SI design. However, ideal component place- 
nient is not always achievable due to overriding factors 
other than SI. This section describes how successful 
design was achieved in spite of  less than ideal compo- 
nent placemcnt. 

Data Line Length Optimization 
Most of  the SI work was directed to optimizing the 
B-cache, which presented a dimcult challenge because 
of long data paths. The  placement of major module 

HSPICE 
ANALOG SIMULATOR 
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data bus components  (microprocessor and data trans- 
cei\lers) \bras dictated by the enclosure r e q ~ ~ i r c m c n t s  
and tlie need t o  tit four CI'Us and eight memory mod-  
i~ les  illto tlic system box. Rather than allo\\,ing the  
microprocessor hc;it-sink height t o  dictate module 
spacing, the system designers opted for fitting srnallcr 
menior)r rnod~rles nest  t o  tlie C:PUs, filling the space 
that \vo~rld have been left empty if ~ i iodule  spacing 
were i~n i form.  As a consequence, the microprocessor 
and data transcci\rcrs had t o  be placed o n  oppositc 
elids o f  the 11iod~11c) which made the  data bus exceed 
11 inches in length. Figure 6 shows the  placement o f  
the major components. 

Each cache data line is connected t o  four c o ~ n p o -  
ncnts: the microprocessor chip, n v o  RAMS, and tlie 
bus transcci\fcr. 4 s  shown in Table 1, any o n e  o f  these 
components  can ‘let as tlie driver, depending o n  the 
transaction in progress. 

INDEX BUFFERS 
(THREE MORE ON 
THE OTHER SIDE) 

\ 

- 7 

I lie goal o f  data linc design \\,as t o  obtain clean sig- 
nals a t  the recei\~ers. A s s u ~ n i n g  that  the micropl-occs- 
sol-, 1L%R/ls, and tllc transceiver are '111 located in-line 
\vitliout branching, with the  distance between the n\'o 
RAMS near zero, and since the positions o f  the micro- 
processor and tlie transceivers are fixed, the  only vari- 
able is tlie location o f  the n\lo RAh/Is o n  the dat'l linc. 
As shown in the \\la\reform plots o f  Figures 7 ;lnd 8, 
tlic cl~lality o f  the I-ecei~red signals is strongly affected 
by this variable. In Figure 7, the reflectiolls arc so  I ~ r g c  
tliat they exceed threshold levels. Uy contrast, the 
reflections in Figure 8 are very small, and tlicir \ \ ) J \~C-  

fi)rnis slio\\i signs o f  cancellation. From this it can 
1-1c inferred tliat op t imum 1'C trace lengths caLlsc tlic 
reflections t o  cancel. A range o f  acceptable 1 U M  posi- 
tions \\)as found tlirough HSPICE simulation. T h e  
r c s ~ ~ l t s  o f  these simulations arc summarized in Tahle 2. 
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Figure 6 
Placcmcnt of ibl~lol. Components  

Table 1 
Data Line Components 

Transaction Driver Receiver 

Private cache read RAM Microprocessor 

Private cache write 

Cache fill 
Cache miss w i th  victim 

Write block 

Microprocessor 

Transceiver 

RAM 

Microprocessor 

RAM 

RAM and microprocessor 

Transceiver 

RAM and transceiver 
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Figure 7 
l'rivate Cache Rcad Showing hrgc Reflections Due to 
Unfavorable Trace Length Ratios 

In the series of  simulations given in Table 2, the 
threshold levels were set at 1.1 and 1.8 volts. This was 
justified by the use of  perfect transmission lines. The 
lines were lossless, had no vias, and were at the lowest 
impedance level theoretically possible 011 the module 
( 5 5  ohms). The entries labeled SR in Table 2 indicate 
unacceptably large delays caused by signal reflections 
recrossing the threshold levels. Discarding these 
entries leaves only those with niicroprocessor-to- 
RAM distance of 3 or  more inches and the I W -  
to-transceiver distance of at least 6 inches, with the total 
microprocessor-totranscei\rer distance not exceeding 
11 inches. The layout was done within this range, and 
all data lines were then simulated using the network 
subcircuits generated by MODULEX with threshold 
levels set at 0.8 and 2 .0  volts. These subcircuits 
included the effect of vias and 1'C traces run on  several 
signal planes. That simulation showed that all but 
12 of  the 144 data- and check-bit lines had good sig- 
nal integrity and did not recross ally threshold levels. 
The failing lines were recrossing the 0.8-volt thresh- 
old at the transceiver. I~icreasing the length of the 
RAM-to-transceiver segment by 0.5 inches corrected 
this problem and kept signal delays within accept- 
able limits. 

Approaches other than placing the components 
in-line were investigated but discarded. Extra signal 
lengths require additional signal layers and increase 
the cost of the module and its tliickness. 

-2.0 1 
40 45 50 55 60 65 70 75 80 RAM Clock Design 

NANOSECONDS We selected Texas Instruments' CDC2351 clock drivers 
to handle the RAM clock distribution network. The 

Figure 8 
Private Cache Read Showing Reduced l<eflections \\-it11 
Optimized Trace Lengths 

Table 2 
Acceptable RAM Positions Found with HSPICE Simulations 

C D C 2 3 5  1 device has a well-controlled input-to-output 
delay (3.8 to 4.8 nanoseconds) and 10 drivers in each 
package that are controlled from one input. The fairly 

PC Trace Length Write Delay Read Delay 
(Inches) (Nanoseconds) (Nanoseconds) 

Microprocessor RAM to Microprocessor RAM to RAM to 
to RAM Transceiver to RAM Microprocessor Transceiver 

Rise Fall 
0.7 2.3 
0.7 2.7 
0.6 3.1 
0.9 2.1 
0.9 2.4 
0.9 2.9 
1.1 1.8 
1.3 2.2 
1.2 2.6 

1.5 1.7 
1.4 2.1 
1.6 2.4 

Rise Fall 
0.9 S R 
S R S R 
S R SR 
1.2 1.1 
1 .o 1.1 
1 .O 1.3 
1.2 1.4 
1.4 1.4 
1.3 1.4 
1.5 1.7 
1.8 1.7 
1.7 1.4 

Rise Fall 
1.1 1.4 
1.5 1.4 
1.7 1.5 

0.9 1 .O 
1.4 1.3 
1.5 1.3 
0.9 SR 
0.9 1 .O 
1.2 1.2 
S R SR 
S R S R 
0.9 1.2 

Note: Signal reflections recrossing the threshold levels caused unacceptable delays; these entries were discarded. 
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DATA LINE SCALE: 
1 .OO VOLTIDIVISION, 
OFFSET 2.000 VOLTS, 
INPUT DC 50 OHMS 

TIME BASE SCALE: 
10.0 NANOSECONDS/ 
DIVISION 

Figure 11 
Handling of Difficult Wavcfor~ns 

to access the RiUvl without using multiple cycles per 
read operation, and since the f i l l  transfer involving 
memory comprises four of these operations, the 
penalty mounts considerably. Due to pipelining, the 
synchronous cache enables this hlpe of read operation 
to  occur at a rate of  one  per system cycle, which is 
1 5  nanoseconds in the AlphaServer 4100 system, 
greatly increasing the bandwidth for data transfers to 
and from memory. Since tlie synchronous RAh4 is 
a pipeline stage, rather than a delay element, the win- 
dow of valid data available t o  be captured at the bus 
interface is large. By driving the W l s  with a delayed 
copy of  the system clock, delay components 1 and 2 
are hidden, allowing faster cycling of  the B-cache. 

When an asynchronous cache communicates with 
the system bus, all data read out  fiom the cache must 
be synchronized with the bus clock, which call add 
as many as two clock cycles to the transaction. The 
synchronous B-cache avoids this performance penalty 
by cycling at the same rate as the system bus.2 

In addition, the choice of  synchronous RAMS pro- 
vides a strategic benefit; other ~nicroprocessor vendors 
are moving toward synchronous caches. For example, 
numerous Intel Pentium microprocessor-based sys- 
tems employ pipeline-burst,  nodule-level caches using 
synchronous RAM devices. The popularity of thcse 
systems has a large bearing on the RAM i n d ~ s t r y . ~  I t  is 
in DIGITAL'S best interest to follow the syncllronous 
RAM trend of  the industry, even for Alpha-based 
systems, since the vendor base will be larger. These 
vendors will also be likely to put their efforts into 
improving the speeds and densities of the best-selling 
synchronous KAM products, wliich will facilitate 
improving the cache performance in h t u r e  variants of  
the processor modules. 

Effect of Duplicate Tag Store (DTAG) 
As mentioned previously, the DTAG provides a mech- 
anism to filter irrelcvant bus transactions from the 

Alpha 21164 microprocessor. In addition, it provides 
an opportunity to speed up memory writes by the 1 /0  
bridge when they modifj an amount of data that is 
smaller than the cache block size of 6 4  bytes (partial 
block writes). 

The AlphaServer 4100 1 / 0  subsystem consists of 
a PC1 mother board and a bridge. The PC1 mother 
board accepts 1/0 adapters such as network interfaces, 
disk controllers, or  video controllers. The bridge pro- 
vides the interface between PC1 devices and between 
the CPUs and system memory. The 1 /0  bridge reads 
and writes memory in much the same way as the CPUs, 
but special extensions are built into the system bus pro- 
tocol to handle the requirements of  the 1 / 0  bridge. 

Typically, writes by the 1 / 0  bridge that are smaller 
than the cache bloclc size require a read-modifj-write 
sequence 011 the system bus to merge the ne\v data 
with data from main memory or  a processor's cache. 
The AlphaServer 4100 memory system typically trans- 
fers data in 64-byte blocks; however, it has the ability 
to accept writes to aligned 16-byte locations when the 
1 / 0  bridge is sourcing tlie data. Wlien such a partial 
block write occurs, the processor module checks the 
DTAG to  determine if thc address hits in thc Alpha 
21164 cache hierarchy. I f i t  misses, the partial write is 
permitted to complete unhindered. If there is a hit, 
and the processor module contains the most recently 
modified copy of  the data, the I/O bridge is alerted 
to replay the partial write as a read-modify-write 
sequence. This feature enhances DMA write perfor- 
mance for transfers smaller than 6 4  bytes since most of 
these references d o  not hit in the processor cache." 

Conclusions 

The  synchronous B-cache allows the CPU modules 
to  provide high performance with a simple architec- 
ture, achieving the price and performance goals of 
the AlpliaServer 4100 system. The AlphaServer 4100 
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CPU design team pioneered the use of s)lnchronous 9. J. Handy, "Synchronous S W  Iloundup," D~it~iqlies/ 
RAMS in an Alpha ~nicroprocessor-based s)rsteni (Scptcmbcr 11, 1995). 
design, and the knowledge gained in bringing a design 
from conception to volume shipment will benefit General Reference 
f i ~ t i ~ r e  upgrades in the AlphaServer 4100 scrvcr Fa~nily, 
as well as products in other platforms. l i .  Sites, cd., Alpbci Archilccl~irc? Rq/hl-w?ce A//c.~rz/.lal 

(Burlington, Mass.: Digital Press, 1992). 
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I 
Roger A. Danie 

The AlphaServer 4100 
Low-cost Clock 
Distribution System 

High-performance server systems generally 
require expensive custom clock distribution 
systems to meet tight timing constraints. 
These clock systems typically have expensive, 
application-specific integrated circuits for 
the bus interface and require controlled etch 
impedance for the clock distribution on each 
module in the server system. The DIGITAL 
AlphaServer 4100 system utilizes phase-locked 
loop circuits, clock treeing, and termination 
techniques to provide a cost-effective, low- 
skew clock distribution system. This system 
provides multiple copies of the clock, which 
allows off-the-shelf components to be used 
for the bus interface, which in turn results in 
lower costs and a quicker system power-up. 
Component placement and network com- 
pensation eliminated the need for controlled- 
impedance circuit boards. The clock system 
design makes it possible to upgrade servers 
with faster processor options and bus speeds 
without changing components. 

E\rcry digital computcr systcrn licecis a clock distribu- 
tion systcm to synchronize clcctronic co~nmunication. 
The primary metric used to cli~anti+ tlic performance 
of a clock distribution system is clock skc\\: Synch- 
ro1ioi1s SystcIns require multiple copics (outputs) of 
the same clock, and clock ske\v is the un\vanted delay 
ben\,ccn any njZo of the copies. In  general, tlie Ionrel- 
the sltc\\; the better the clocl< systcni. Clock skew is one 
of several parnnlctcrs that affcct bus spccd. Bus length, 
bus loading, ciri\lcr and rcccivcr technology, and bus 
signal voltage s\ving also affect bus spccd. IF problems 
arise that jeopardize meeting timing ~ o a l s ,  though, 
these additional parameters arc difticult to change 
because of physical and architccturnl constr~ints. 

The l>IGITAL AlphaServcr 4100 clock distribution 
systcm is ;I co~lipact, Io\\'-cost S ~ I U T I O I I  for a lligli- 
perforniancc midrange server. The clock systcrn pro- 
vides more copics of the clock than machincs in the 
same class typically need. The distribt~tio~i spstcni 
allo\\a expansion on those m o d ~ ~ l c  dcsigns \+/here 
more copics of the clock are ncccicd \\.it11 niinimal 
skew The system is based o n  a lo\\.-cost, off-the-shelf 
phase-locked loop (PLL) as the basic bi~ilding block. 
The simple application of the PLL, alone \\roi~ld not 
provide lo\\' clock site\\; t h o ~ ~ g l i .  Signal integrity tech- 
niques and trade-offs were nccdcd to m~nag-c skc\\z 
throughout tlic systcm. The technical cliallcngcs were 
t o  dcsign a lo\%.-cost system that would (1) recluire 
only a small area o n  tile printed wiri~lg boarcis (I'WBs), 
(2 )  be adaptable to \,'irious spccd gracics (options) of 
<:I'Us, and ( 3 )  lia\,c good pcrformancc, i.c., lo\\. skew 
This paper cliscusscs the techniques used to  optimize 
the pcrform3ncc of an off-tl~e-shelf PL1,-based clock 
distribution s\Istcm. 

Design Goals 

Based on its cspcricncc \\rich prc\,ious plattbrm designs, 
the design tc3m considered a clock sl<c\\ undcr 10 per- 
cent of the bus cyclc time a rcasonublc target for a 
~iiidra~lgc scrjrcr system. The cyclc time design target of 
tlie AlpliaScr\~cr 4100 systcln \\!as 15 nanoseconds (ns); 
consecl~~cntly, the ske.i\l goal was 1.5 ns or Icss. This 
goal ulould allow a total of 13.5 ns ti)r clock to out- 
put of the transmitting  nodule (Tco) (tlic time the 



transmitting module needs to drive data to  a stable 
state from a clock edge); setup ~ n d  hold timc require 
Inelits for the receiving module (the minimum time 
that data needs to be stable at the recei\,er [tlop] before 
and atier the local clock edge); and bus settling timc. 
The folloc\~i~ig is ,I breakdo\vn of tlie timing based on 
the selection ofcomponents for the ~ L I S  intcrhcc: 

Rus cyclc 
Trans~nitting modulc (Tco) 
Setup and hold time for the 

rcceiving module 
Clock skc\v 
Timc allocated for bus settling 

1.5 JlS 

1.5 JlS 

6.9 ns 

benefits oftlie off-the-shelfsolution, it was paramount 
that we make the off-the-shclfsolutio~i ~vork. 

Bus Trade-offs 

The selection ofcomponents was based on availabil- 
in ,  speed, cost, and size. The goal \\$as to eliminate thc 
need for costly application-specific integrated c i rc~~i ts  
(ASI(:s) and still meet tlic critical timing pcrti)r~nancc. 

The Alphaserver 4100 bus is a simple distributed 
bus, 305 millimeters ( m m )  long, wit11 10 loads (mod- 
ules) and parallel termination at both cnds. The first- 
order csti~natc of bus settling time assumed one full 
retlection o r  twice the loaded velocity of  propagation 
delay end to end. The estimatc took into account bus 
timing optimization, which is discussed later in this 
paper. It was also estimated tliat 25  copies of  the clock 
\vould be rcquircd for tlie processor ~iiodulcs, and 
46 copies of the clock \\rould be rcquircd for certain 
memory modules (synchrono~~s dynamic rnntio~ii- 
access memory [Sl)lW~M]-based clcsigns). Only tlie 
rising edge of the clock could be ~ ~ s e d  for critical tim- 
ing. If the filling edge were used fix latches, then 
clock skew would drarnaticalljl increase because of  tlie 
duty cyclc distortion associated \vith PL1,s. Tlic m e n -  
ory modulc dcsign allowed very little spacc for clock 
circuitry and needed more copies of the clock than any 
other modulc design in the system. Further, the phpsi- 
cal sizc of the memory modulc detcrmincd the actual 
sizc of the server bos. Trade-ofti had to  be ~iiadc in 
the dcsign 2nd timing to makc the off-the-sliclfsolu- 
tion \vork. :l:hc Itey goal \\!as to optimize the solution 
to get tlic \\lorst-case skew as close as possible to the 
1.5 ns estimatccl goal and to find system traclc-offs to  
allow. higher ~nodulc-to-module skew for a 15 11s bus. 

A survey of custom clock circuits available within 7.5 - 
DIGITAL and off-the-shelf, coninicrciallp available ? ,  7.0 - 
PLLs suggested that a custom circuit was recluired. 
Unfortunately, the circuits that would bc available 
within our project schedule were costly, cousunicd far 
too I I I L I C ~  circuit board area, rcquircd emitter-coupled 
logic (E(;l..) or positive cniittcr-couplccl logic (I'ECL) 
inputs, and dissipated substantial power. The best off- 4.0 , 

5.08 12 70 25.40 
the-shelf solution \\>as cost-effective, rccl~~ircd less DISPERSION ETCH LENGTH 

s p x e  tllan c ~ ~ s t o n i  cil-cuits, ~ n d  provided aclccl~~ate (MILLIMETERS) 

fan-out. The skew performance, lio\vcvcr, ranged 
from 2 11s to 4 ns, \vhich exceeded the dcsign goal. Figure 

Givcn the project time constraints and tlic design Bus Settling Timc As a Function of Dispersion Etch 
Length 

The design philosophy of using stock components for 
tlie bus interface allo\\~cd sonic latitude in tlie bus 
design. Typical bus intcrfaccs use large ASICs, each 
handling up to  5 0  percent of  the data bits. Such a 
design results in a relatively long dispersion etch from 
the connector to the ASIC. These devices can range 
in size from 200 to 400 pins and can require up to 
38 mni ofetch from the ASIC to the connector. SPICE 
simulations demonstrated that tlie length of  each 
module's dispersion etch or  bus "stubl3i1ig" had a pro- 
found effect on bus settling time.' Figure 1 sho\ia bus 
settling time (worst-case drj\,er-receiver combination) 
as a hinction of m o d ~ ~ l e  dispersion etch. The bus t r ~ ~ n l t  
length \vas tised at 305 mm. 

The designers used an 18-bit-wide transceiver in 
a low-protile surhcc mount package with a pin pitch 
of 0.5 mm. The location of the I/O pins for the bus 
connections on  the intcrfkx transceiver (located on 
the same side of  the package, which allows tlie device 
to  be placcd very close to  the bus connector) and tlie 
connector pitch thcilitatcd short dispersion etch (less 
than 1 3  nim). Tliis dcsig~i decreased by 1 ns the set- 
tling timc typically ~ L I I I ~  o n  ASIC-based interfi~ccs 
\\,it11 comparable trunk lengths and loading. 

Bus termination is another parameter tliat designers 
can maliipi~latc to fi~rtlier improve settling time. Wc 
used parallel terminators at both cnds of the bus on tlic 
Alphaserver 4100 system. The bus protocol has two 
features tliat allo\v aggressive termination, approaching 
the i~nloaded impcdancc of the trunk. We placed an 
anticontention cycle bct\\~ccn the module tliat relin- 
quishes the bus and the module that begins to drive the 
bus. Tliis arrangement reduces the possibility for driver 
conte~ltion (stress) as well as tllc possibility of generat- 
ing ringing o n  the bus caused by large changes in cur- 
relit afier contcnrio~i. Tlic bus "parking" f ea t~~rc  hrccs 
the last drivi~ig modi~lc to continue driving the bus t o  
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a logic state during long icllc times ~ ~ n t i l  another motiulc 
wants to use tlic bus. IVithout this feature, the bus 
\vould settle at the terminator The\rcnin voltagc if n o  
modules \\!ere dri \~i~ig the bus. Both protocols allow for 
Thcvcnin \wltagc to bc close to tlic tlircsliolcis of the 
receivers. Normally this is avoided if the bus is lcti idle, 
because the receivers can go metastable, i.e., arrive at 
the unstable condition \\,here its input \,oltagr is 
bcn\,ccn its spccilicd logic 0 and logic 1 \,olt.lgc Ic\~cls, 
~ ~ c s i ~ l t i ~ i g  i l l  i~~ico~itrollcci oscillatio~i. Ccntcri~ig the 
Thevenin voltage in the normal full voltagc swing Iiad 
nvo advantages: (1)  it balanced the settling time for 
both transitio~~s, and (2)  it reduced the driver currcnt. 
Tlic reduced drivcr current allo\\tccl for .I lo\vcr 
The\~enin rcsistancc, \vllich brought the tcrmin.1tors - 
closer to the ~ ~ n l o ~ c l c d  ( n o  modules) impedance of the 
bus, thus ensuring that tlie bus \\.ould settle \\,ithin 6 ns. 

The Basic Building Block 

Texas I n s t r ~ ~ ~ ~ i c n t s '  <:1)<:586 clock distribution circuit 
\\pas chosen as the bxic building block for the system 
because of its lo\\i c o s ~  and fi~nctionality. The dc\licc has 
a hn-out of12 outp~rts \vith a single compensation loop 
and a frequency mngc of 25 megahertz (1MHz) to 100 
(MHz, and is n 3.3-\wit (V) bipolar complcmcnrary 
metal-oxide semiconductor (KiC:MOS) part. l'roccss 
sltc\v is 1 ns benvccn any n\.o parts \\lit11 tlic S,IIIIC rcf- 
crcncc input clock, and root mean square (RMS) jitter 
is 25 picoseconds (ps).' The (:L>C586 has a built-in 
loop filter, which r c d ~ ~ c c s  tlie ~ iumber  of support coni- 
poncnts. Unlike custom clock circuits \\lit11 ~nultiplc, 
independent co~npens:ition loops, the simple, single 
loop design recl~~irccl critical attention to the l:~!'out of 
cuch modulc dcsign to ensure the best possible skc\\r 
pa-formancc. Tlic circuit board layout dcsig~icr had 
to determi~lc the maximum etcli length from the l'I.L, 
to the receiver. All copies of the clock had to be prc- 
ciselp matched in length to  the maximum length 
found, and routcci on  the same etch layer with 
0.5 1 Inm (20 mil) spacing to othcr ctcl~cs and mini- 
1iii1111 etch crossovers from other etch layers o n  dual 
strip-line In?-LIPS. Typical strip-line etch in multila)~cr 
PWRs is a signal layer that has reference planes, usually 
assigned to po\ttcr o r  ground, in the Iaycr above and 
the layer belonf. This dcsign allows better impcda~icc 
control and eliminates cross talk from othcr signal 
layers. PWB thickncss and cost constraints o t i c~ i  rcsult 
in ~noditied forms o n  tlic inner layers, ho\vcvcr. l>ual 
strip-line etch is ohcn used in thcse cases. This design 
consists of t\vo signal laycrs sandwiched bctwccn rcfcr- 
encc planes iu the layers abovc and belo\\.. Generally 
the diclcctric thickncss bcnvecn the nvo signal I;i)crs is 
greater than the diclcctric thick~~css benvccn cithcr 
signal la!ler and its related (nearest) rcfcrcncc planc to 
minimize cross talk bcn\lccn the t\vo signal In)rcrs. 
Figure 2 illustrates n typical application. 
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Figure 2 
?'!.pical I'hasc-lockcd Loop Co~lncction 

Etch Layout 
+ \ She I'WI3 lay-ups used on \rarious modi~lcs in the 
AlphaScr\lcr 4100 system contain microstrip etch 
(surhcc ctcli) and dual strip-linc ctcli. Ideally, si~iglc 
strip-linc ctcli would be optimium fbr clock etch; hotv- 
ever, it rcqi~ircs Inore laycrs at higher cost for PWR 
material. One  dm\vback to dual strip-line lay-ups js 
etch crosso\.cr. A crosso\,er is a point along an etch 
trace \\:liere ;~notlicr etch, one on a different la!,cr not 
separated by a reference planc, crosses. The crossover 
forms small capacitance patches, \vhich can load tlie 
clock etch and affect its impedance and velocity of 
propagation. The rcsult is additional skc\v from clock 
etch to clock ctch. Designers avoided crosso\.ers on all 
clock ctcli, anti the dcsign docs not permit parallel 
etch o n  tlic otlicr layer \\,ithin tlic dual strip-line, 
\\,hich c o ~ ~ l d  induce cross t~ l l< .  

F i g ~ ~ r c  2 slio\vs ~natched etcli lengths I.,, Lz, and Ld. 
On some module designs, this ctch can be tairl!l long. 
The layoi~t dcsigncrs \vould generally "scrpcntine" 
o r  "trombone" these long ctch runs to comply with 
the ~lforc~nc~it ioncd layout rulcs. Spacing bch\lceli 
the loops o n  the same ctch ruli in the scrpcntinc or 
trombonc is critical. I f  the spacing is too close, then 
coupling \\ , i l l  occur, t l i~is changing thc \'clocitv of 
propagation as \\,ell as signal q~rality. lksigners used 
simulation to  determine a m i ~ ~ i n i ~ ~ ~ i i  etch-to-ctcI1 
spacing fix c;ich 1'WB lay-up. Thc masimum allo\\lablc 
cross-talk noise Ic\~el for any minimum spacing \\!as 
400 miIli\rolts (mV).  This lc\lcl is \vitl~in the maximum 
transistor-transistol- logic (Tri..) low-state level of  
8 0 0  mV. L ~ r g e r  spacings \\(ere used \\,liere n o  other 
layout rulcs \\,auld be affected. 

The Use of External Series Terminating Resistors 
External scrics tcrmindting resistors ( ~ I s o  culled termi- 
nators), dcnotcd by R, arc ~ ~ s c d  at the source (see 
Figure 2). Althoi~gh Texas Instruments offers another 
version of the I'LL, namely ClX:2586, which has 



built-in series terminators, the AlphaServcr 4100 dcsign- 
ers did not use this variation for thc following reasons: 

Some forms ofclock treeing (a method of connect- 
ing multiple receivers to the same clock output)  
require niultiple source tern~inators. 

The nominal value for the internal series tcnninator 
\\[as not optimum for the target j~npedance of the 
PWBs. 

The tolerance of the internal series ter~ninators 
over the process range of  the part could be as high 
as 20  pcrcent compared to 1 percent for external 
resistors. 

Local Power Decoupling 
I't,Ls are analog components and are susceptible to  
power supply noise. One major point source for noise 
is the PLL itself Most applications require all 12 out-  
puts to drive s~~bstantial loads, which generates local 
noise. Asubstantial number of local decoupling capac- 
itors (one for every four o u t p ~ ~ t  pins) and short, \vide 
dispersion etch on the power and ground pins of 
the PLL were required to  help counter the noise. 
Designers also used tangential vias to minimize para- 
sitic inductancc, which can severely rcdirce the effec- 
tiveness of  the dccoupling capacitors. Typical surhce 
mount components have dispersion etch, which con- 
nects the surface pad to a via. Tangential vias attach 
directly to the pad and eliminate any surface etch that 
can act liltc ind~1cta11ce at high frccli~ency. The 1'LLs 
were also located away from other potential noise 
sources such as the Alpha microprocessor chip. 

Analog Power Supply Filter 
The most important external circuit to the PLL is the 
low-pass filter on tlic analog power pins. Typically, PLL 
designs have separate analog and digital po\ver and 
ground pins. This allo\\s thc use of a low-pass filter to 
prevent local s\vitching noise fi-om entering the analog 
core of the PLL (primarily the voltage-controlled oscil- 
lator [VCO]). Ifa fi ltcr is not used, then large edge-to- 
edge jitter \ \ r i l l  develop and \\!ill greatly increase clock 
skew. Most PI,L vendors suggest filter designs and 
PWB layout patterns to help reduce the noise entering 
the analog corc. The CDCS86 PLL was introduced at 
the beginning of tlie Alphaserver 4100 design, and the 
vendor had not yet specified a filter for the analog 
~xnver inpi~t .  It is inlporta~it to note tlii~t if any neur 
PLI, is considered and preli~ninary vendor specifica- 
tions d o  110t include details about the analog po\ver, 
thc dcsigner s l io~~ ld  contact the vendor for details. 

T\vo forms of Ion-pass filters \\,ere co~lsidered: L-C 
and R-C. The L-C filter consists of  a series inductor L 
from the power source to tlie analog power pins of  
the PLL and a capacitor C fro111 the same power pins 
to ground. Tlie R-C filter consists of  a series resistor 
R from the power source to the analog power pins of  

the PLl, and a capacitor C from the same pocver pins 
to ground. 

Tlie L-C filter can be implemented in nvo \ways: 
(1) by using a surface mount inductor and (2 )  by using 
a length ofetcli for the inductor. In either case, the Q 
of the  circuit has to be kept low to prevent oscillation. 
Q is a dimensionless number referred to as the quality 
factor and is computed from the inductance L and 
resistance R (in this case the inductor's resjstance) of 
a resonant circuit using the formula Q = oL/N. \vherc 
w equals 27r/,' and J is the frequency. A low-value resis- 
tor in series ~ l i t l i  the inductor can help. Es t r c~ne  care 
should be taken ifthe length-of-etch (used to generate 
inductance) implementation is considered. Tlie etch 
must be strip-line-etch isolated from any other adja- 
cent etch o r  etch on  other lavers not separated by 
power or ground planes. A nvo-dimensional (2-D) 
modeling tool sl~ould be used t o  calculate the length 
of etch needed to gct the proper inductance \lalue for 
the filter. Simple rules of t h u n ~ b  for inductance \ \ r i l l  

not work with reference planes (i.c., power and 
ground planes). 

The R-C filter is limited to PLLs with moderately 
lo\\! current draw on the analog po\ver pins. The cur- 
rent generates an IR drop (the voltage drop caused by 
the current through the resistor) across the resistor R. 
Typical PLL analog power inputs requirc less than 
1 ~nil l ia~np (rnA), \\lhicl? u~oilld allow a reasonable 
\ialue resistor R. Two capacitors should be used in the 
R-C type filter: a bulk capacitor For basic filtcr response 
and a radio frequency (RF) capacitor to  filter higher 
frequencies. Bulk capacitors are any clcctrolytic-style 
capacitor 1 microfarad (FF) o r  greater. These capaci- 
tors have intrinsic parasitics that keep them fio111 
responding to high-frequency noise. The benefit of 
tlie L-C filter is that, although a single capacitor can be 
used ( ~ V O  are still suggested \\lit11 this style filter), the 
reactance of the inductor increases with freqi~ency and 
helps bloclc noise. Both filter styles \\lerc used in tlic 
AIphaScrvcr 4100 systeln. 

System Distribution Description 

The AlphaServer n~otlierboard has four CPU slots, 
eight memory slots, and an 1 / 0  bridge 11iodule slot. 
Each module in the system, including the mother- 
board, has at least one PLL. The  starting point of the 
system is the CPU that plugs into CPU slot 0.  Each 
CPU module has an oscillator and a buffer to drive the 
111ain system distribution, but tlie Cl'U that plugs into 
slot 0 actually drives the system distribution. A PLL on 
the motl~erboard receives the clock source generated 
by the CPU in slot 0 and distributes low sl<e\v copies of 
tlie clock to each module slot in tlie system. Each 
module in the system has one  and in some cases two 
PLLs to supply the required copies of the clock locally. 
Figure 3 shows the basic system flow of  clocks. 

1)ipit.ll Tcc.ch~iic.~l Journ, l l  Val, 8 No. 4 1996 4 



MOTHERBOARD 

DISTRIBUTION 

'fq BRIDGE 

Figure 3 
System Clock Flo\\, 1)1~gra1n 

The Alpha microprocessor used on all <:PU options 
for the AlphaSer\ler 4100 system has its ow11 local 
clock circuitry. The microprocessor uses a built-in 
digital PLL that allows it t o  lock to  an external rcfer- 
ence clock at a multiple of its i l~ter~lal  clock.' In  the 
context of the AlphaSer\!cr 4100 system, tlie reference 
clock is generated by the local clock distribution sys- 
tem. The Alph'~Scr\gcr 4100 is hlly s)rnchrono~~s. 

Each CPU 111 the s)~stcni has two clock S O I I ~ C C S :  

one for the bus clistribution (system cycle timc) and 
one for the rnicroproccssor. 'This design niay appear to 
be a costly one, but this approach is extremely cost- 
effective when field upgrades are considered. When 
new, faster \:crsions of the Alpha rnicroproccssor 
become available, nc\v <;PU options \\;ill bc intro- 
duced. To remain s!~~icIironous, the Alpha niicro- 
processor internal clocks need to run at a multiple of 
tlie system cycle time. Although the system cycle time 
goal is 15 JIS, the cyclc timc needs to  be adjc~stcd to tllc 
speed of tlic <:PU option used. Placing the ~ L I S  oscilla- 
tor, c\~hicli drives the primary lSLL for the clock system 
(cycle time), on the <:I'U module and designing the 
clock distribution systcm to hnction over a wide he- 
quency range makes ti eld upgrades as simple as replac- 
ing the CPU modules. The motherboard does not 
nccd to be changed. 
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Skew Management Techniques 

The AlphaScr\lcr 4100 system had fi)ur design teams. 
Each team was assigned a portion of the system. Signal 
integrity tcchniqucs had to be cic\/clopcd to keep tlie 
ske\v across tlic system as lo\v as possible. These tecli- 
n i q ~ ~ e s  were structured into a set of  design rules that 
each team had to apply to their portion of the design. 
To develop these rules, designers explored several 
areas, including impedance rangc, termination, tree- 
ing, PLL placement, and compensqr' ‘ Jon. 

lmpedance Range 
Co~ltrollcd impedance (+/-lo percent from .I target 
impedance) raises the PWR cost by 10 percent to 
20 percent, depending on board sizc. Each raw PWB 
has to be tested and documentcti by tlic PWB sup- 
pliers, \\!hicli r c s~~ l t s  in a fixed cliargc for each PWB, 
regardless of  sizc. Therefore, smaller PWBs have the 
highest cost burden. The Alphaserver 4100 uses rela- 
tively small daughter cards. Since low system cost was 
a primary goal, noncontrolled impednnce 1'WBs had 
to be considered. Unfortunately, allowing the PWB 
impedancc rangc (o\ler process) to spread to  greater 
than +/-I0 percent makes the task of keeping clock 
skc\v low more difficult. Specification of mechanical 
ciimensio~is \\,it11 tolerances \vas tlic only to 
pro\lide s o ~ n e  control of the inipcdance range \\rith 
no additional costs. 

Table 1 contains the results of simulations per- 
formed using SIMPEST, a 2-D modeling tool devel- 
oped by DIGITAL, for a six-layer PWB ilsed o ~ i  one of 
the AlphaSer\.er 4 100 modulcs. The PWR dimensions 
and toJcmnces specified to the \rcndors \\.ere used in 
the sjrnulations. The dielectric constant, tlic only para- 
meter not specified to thc vendor, ranged from 3.8 to 
5.2, \\tliicli overlnps the typjcal industry-published 
mnge o f  4.0 to 5.0 for FR4-type niatcrial (epoqr-glass 
PWR).' Since our PWR material acceptance with the 
vendor is based on  meeting dimension tolerances, we 
used thc 6 0  impedance rangc on all SPICE simula- 
tions, thus ensuring that all acccptablc PWB ~iiaterial 
\ v o ~ ~ l d  \\lark electrically. 

Tablc 2 slio\vs the impedancc rangc for a controlled 
impedance I'WB for tlie target inipcdancc reported in 

Table 1 
Vendor lmpedance Ranges Specifying 
Dimensions Only 

4u Yield 6n Yield 
- 

Mean target 71 ohms 71 ohms 
impedance 
Impedance 62 ohms t o  57 ohms t o  
range 83 ohms 89 ohms 



Table 2 
Vendor lmpedance Range for an lmpedance 
Tolerance of +I- 10 Percent 

+I- 10 Specification Range 

Mean target 71 ohms 
lmpedance 
Impedance range 64 ohms to  78 ohms 

Table 1. The difference in impedance range hetween 
speci+ing dimensions and impedance is -7 ohms to 
11 ohnms. The simulations suggested that tlic range 
differences have a minor impact o n  signal behavior. 

Tlic target impedance was bascci on ~lonminal 
dimensions and dielectric constant. The target of 
71 ol i~ns  \\'as chosen to optiriiizc routing density and 
to Itccp the lnycr count d o ~ \ , n  For most designs. 
Another advantage \vas that keeping the ~ninimum 
inipciiancc above 50 ohms w o ~ ~ l d  minimize loaciing. 
The impcdancc range covers the frll mechanical 
dimensions and dielectric constant ranges. Properly 
implemented, the PLLs would cffecti\lcly elimi~late 
local ctch delay module to module over the till1 
~wocess rangc of the PWUs. The main challenge was 
to acicc1uatcly terminate \\~ithoirt sacrificing ske\v 
pcrformancc at tlic extreme process range (6 tr )  of 
the 1'WIl material. 

Termination 
The dcsigr~ers uscd series termination o n  all cloclts in 
the system. Pilrnllel terminators \ \~oulJ ha\lc exceeded 
the drive capability of the CDC586. Diode claniping 
was not practical when so  many copies of  the clock 
were rccluircd because of PWR surbcc area con- 
straints. Nornmallv, the optimal termination value is 
one that pro\lides critical damping for the case where 
the driver's impedance is thc lo\\lcst and tlic ctch 
impedance is the highest. Designers can then make 
ncijustmcnts at the other extreme corncr (high driver 
impcdancc anci Ions etch jmpcdnncc) to avoid nonmo- 
notonic bcha\~ior such as platcai~s. This gcncrall!l 
introduces slope delay uncertainty at the sloiv corncr 
(high driver irnpcdancc and low etch impedance), 
which can be substantial. To mininiizc this cfkct, 
dcsigncrs selected terminator \~alucs thnt allow over- 
slioot and solnc bounce-away from the tlircshold 
rcgioll at the extreme proccss corncr. O\~crslioot can 
reach the rnasi~mii~ni spccifcd alternating current (AC) 
input of tlic receivers O\~CI-  tlic  orst- st-case proccss 
rmgc. Some rccci\lcrs have built-in ciiodc clamping to 
tlicir po\vcr supply rails as a r c s ~ ~ l t  of ESl> circuits in 
tlicir input structures (ESD circuits arc uscd for static 
discharge protection). In these c.lscs, the clock signal is 
clamped, \vliicli in turn dampens bounce. The jnjec- 
tion currents caused by clamping \\.oulJ be tested in 
SPICE siniulations to be sure tli.~t tlic parts were not 

stressed. If the tests i~ldicatcd stressed parts, designers 
would adjust thc terminator \raluc accordingl\~. 

Treeing 
Treeing is a method o f  distributing clocks from a 
single source driver to many rccei\,crs. This practice, 
\vhicli is \\tell I<no\\l11 to nicrnory designers, \vas used 
on the AlplmaServcr 4 100 memory modules, bus inter- 
face logic, and primary distribution clocl<s on the 
mothcrboard. The designers used two basic forms of 
treeing: the balanccd H tree and the shared output 
tree. The balanced H tree is best suited for fised loads 
(receivers) of the same type (i.e., memories, trans- 
cei\lers, etc.). A single, series-terminated clock output 
feeds a trunk line to a via and then branches to  each 
load. F,:ich branch is cqunl in Icngth. The total corn- 
pensated path includes the pre-terminator stub, the 
main t r ~ ~ n k ,  and tlic branch extending to the load. 
F i ~ u r c  4 illustrates the clock treeing topoloby. The 
shared ou tp~r t  trce w,is i~sed \\lhcrc \~arioirs module 
configurations could alter clock loading. Specifically, 
the distribiitio~l o n  the motherboard is restricted to 
one PLL to keep the clock skew lo\v. Conseq~~e~i t ly ,  
some outpi~ts  needed to drive more than one slot. 
A single output drivcr drove nvo terminators-one 
for each load. The low driver impedance isolated 
retlections from perturbing a module when a module 
slot \*/as Icfi open. 

PLL Placement 
Placement of the 1'1.1.. o n  cnch modulc is critical. Figirrc 
5 is a simplif cd \~ic\v of  the prirnary distribution up to 
and including tlic PLL o n  J module. The AlpliaScr\lcr 
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Figure 4 
Clock Trccing 
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4100  system has nvo  types o f  module connectors: 
a iMctral conncctor (Futurebus+-style con~lcc tor )  is 
~ i sed  o n  thc (:PU modules anci the 1 / 0  bridge module, 
and an Estcndeci Inciustl-\I Standard Architecture 
(EISA) conncctor is used o n  rlic memor!8 modules. 
Intrinsic dclay o n  these connectors could diffcr sub-  
stantially depending o n  pinning and the signal-to- 
return ratio in the application. '1'11~ ~Mctral conncctor is 
a I-ight-angle, nvo-piece conncctor with four ro\J8s o f  
pins: ro\ \s  A, B, C, and 1). l'hc ro\v A pins arc the 
shortest, ~ n d  the ro\v D pins arc the longest. T h e  EISA 
connector is an edge connector \\,it11 n1.o ro1s.s o f  pins 
\vith minor Icngtli diffcrcnccs pin t o  pin o n  e i t l~cr  sick 
o f t h e  conncctor. Designers had t o  balance the pinning 
of thcsc  connectors for the clock circuits in such a way 
that the r n o d ~ ~ l c - t o - m o d ~ ~ l c  sltcw urould not  bc 
affected. T h e  iMctral connector \vas pinned t o  replicate 
the loop i n d u c t ~ n c e  o f  tlic EISA conncctor. 

Dispel-sion etcli is required o n  each m o d ~ ~ l e  t o  con-  
nect the 17L,L, t o  tlie conncctor. This etch can ha\,c ciif- 
fcrent jnipcdance and \lelocity o f  propdgat io~l  fi.0111 

modulc t o  m o d ~ ~ l c  as a r c s ~ ~ l t  o f  P\VB process range, 
\\~liicli translates into additional moclu lc - to -moi i~~lc  
clock skc\\,. Designers C ~ I I  dc,iI \kith this problem in 
h\!o \\'ays. 

First, aticiing the same dispel-sion length 1.:: (scc 
F i g ~ ~ r c  5 )  t o  tlie cornpensation loop L2 I I L I I I S  this cr~.or. 
This becomes ob \~ ious  if ~ O L I  loolt at  the PLL's basic 
function. T h e  insertion delay fi-om the clock-in pin 
o f  the PLL, t o  tlie input  pin o f  the receijler is approxi- 
mately 0 ns if L, = L z ,  o r  

MOTHERBOARD 
PRIMARY 
DISTRIBUTION 

CLOCK IN 
FROM CPU 0 

PHASE- 
LOCKED 

7' .. 
I ( 7 j I  + T L ; )  - 7;>. 

For  - T ,  (cq~131 c t c l ~  lengths), 'l;cI - 7;;. 

Adding Ti,; t o  the co~i ipcnsa t io~i  path !,icltis 

?;<I = u;, + T, ; )  - (y;, + T . ) .  
POI- TI = 7 ; ,  (etch c q ~ ~ , i l  lengths), 7yc, = 0 ns, 

T I  - tlic insertion dcl,l\/ from the conncctor 
pin t o  the rcccivcr input 

7,', = tlic etch dclay horn the PLI. ou tpu t  
t o  tlie rccci\.cr input 

'11', = the etch clcl,i!~ o f  the I'LL 
co~~ipcnsa t ion  loop 

7 the dispersion etch ciclay conncctor 
t o  the  cloclt-in o f  tlic I'LL. 

O n e  drS1\\~baclc t o  this method is tliat the etch Ic~igtlis 
coulci get  Elirly large, \\,hicIi \ \ ,o~ l ld  result in ccigc rate 
dcgraciation. AlpliaScr\~e~- 4 100 ticsigners dici not  use 
this placcmcnt method o n  tlic currcnt set o f m o d ~ ~ l c s ;  
ho\\,cvcr, the), \ \ , i l l  consider using it o n  nc\il dcsigns tliat 
rcquirc a diffcl-cnt location  ti)^. rlic 1'I.L. 

T h e  second ofdeal ing \\'it11 the dispcrsio~i etch 
from tlic module conncctor  t o  the clock-in pin of t l i c  
PLL, is t o  make the dispel-sion etch \.cr!, short  allti t o  
takr <I sltc\\ penalty over tllc I'W13 process. Placcmcnt 
studies o n  tlic \.arious motiulc designs suggest that 
a 25 -mm dispersion etch \ v o ~ ~ l c i  allo\v rcason,ible 
placement o f  PLLs. T h e  addition,il sltc\\ is just under 
5 0  ps, b,iscci o n  a velocit!, o f  propagation n i i g c  o f  
5 . 5 9  ps/mni t o  7.36 ps/mm. 
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compensation 
Some modules have a wide variety of circuits recciving 
clocks tliat, becai~se of  input loading, d o  not balance 
well with the various treeing methods. Designers 
used du1111iiy capacitor loading to help balance the 
treeing. This approach \\!as particularly usehl on  
memory modules, which could be depop~~la ted  to 
provide different options using the same etch. Surface- 
mount pads were added to the etch such that if the 
depopi~lated \~crsion were built, a capacitor could be 
added to  replicate tlie missing load on the tree, thus 
keeping it in balance. The CPU modules have a wide 
variety of  clock needs, which results in nvo forms 
of  skew: (1 )  load-to-load skew at  the module and 
(2) colitrol logic-to-Cl'U skew, for control logic 
located on thc niotherboard. The local load-to- 
load skew is acceptable because only one PLL is 
used and tlic output-to-output skew is only 500 ps. 
R/Iotherboard-to-Cl'U control logic skesv, though, is 
critical because of timing constraints. 

Duniniy capacitor loading at each lightly loaded 
receijcr would have reduced the skew, but to compcn- 
sate for just one  heavily loaded receiver would have 
recli~ired niany capacitors. PWR surface area and the 
requirement of  simplicity dictated the need for an 
alternative. The solution was to keep tlie clock edges 
as hs t  as possible (by adjusting the series terminators) 
and to add a compe~~sation capacitor at the input (the 
feedback [ F B I )  of the I'LL'S compensation loop. This 
effectively reduced the skew froni the slowest load 011 

the CPU to tlie control logic on the motherboard. 
Figlire 6 shows the disparity between light and heavy 
loading from Tl to q. Without feedback compensa- 
tion, the PLL sclf-adjusts to the lightly loaded receiver. 
This adjustnlent results in skcw TI to  $ from the 
heavy load to the control logic 011 the niothcrboard. 
A capacitor on tlic FB input of the PLL split the dif- 
ference benveen to & and & to 7; and minimized 
the puceivcd sltcw. 

Skew Target 

Dcsigncrs generated the worst-case module-to-module 
clock skew specification for the AlphaServer 4100 
from vendor specifications, SPICE simulations, and 
bench tcsts using thc techniques discussed in this 
paper. Tlic worst-case skcw goal is 2.2 ns and is sum 
marizcd in Table 3. 

The reader will note that eight times tlie  endor or's 
specification may appear to be a rather conservative 
spccitication. TIic LISC of tills \laluc \\/as bascd on two 
concerns: ( 1 ) the I'LL. was new at the time, and expesi- 
cncc suggcstccl that the vendor's specification was 
aggressive; and (2) some le\rel of padding was required 
if tlie exception to the r ~ ~ l e s  was needed. A c t ~ ~ a l  system 
testing bore out these concerns. The vendor had 
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Figure 6 
Feedback Loop Con~pellsation 

to relax the jitter specification from 25  ps to 7 0  ps 
RMS, and there were some difficultics gctting good 
load bdance. The specification did not change, how- 
ever. Reassessing the allocated bus settling time yields 
thc follo\ving: 

Bus cycle 
Transmitting module (Tco) 
Setup and hold time for the 

receiving module 
Clock skew 
Time allocated for bus settling 

SPICE simulations for a f ~ l l y  loaded bus with the 
worst possible driver receiver position yielded a bus 
settling time of 5.7 ns. The relaxed skew of 2.2 ns 
maxinluni \vas acceptable for the design. 

Comparative Analysis 

A comparison of  clock distribution systems benveen 
nvo other platforms best summarizes tlie AlphaServer 
4100 system. The AlphaServer 4100 has a price and 
performance target benveen those of  the AlphaServer 
2100 and the Alphaserver 8400 systems. Table 4 com- 
pares the basic differences among these systems relat- 
ing to  clock distribution for a CPU modulc froni each 
platform. 

Both the AlphaServer 2100 and the AlphaServer 
8400 systc~iis have large custom ASICs for their niod- 
ule's bus interface. The AlpliaSer\~er 4100 and the 
Alphaserver 8400 systenis have bus terniination; the 
Alphaserver 2100 system does not. Allowing a bus to  
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Table 3 
Worst-case Clock Skew 

Stage Source Skew Component 

Motherboard Out-to-out skew 500 ps (vendor spe~ification)~ 
Inputs to  modules Load mismatch 100 ps (simulation/bench test) 
Module t o  module PLL process 1,000 ps (vendor specificati~n)~ 
Inputs to  receivers Load mismatch 200 ps (simulation/bench test) 
lnputs to  receivers PLL jitter 400 ps (eight times the  vendor specification)' 

Total clock skew 2,200 ps = 2.2 ns 

Table 4 
Clock Distribution Comparison of Three Platforms 

AlphaServer 2100 System AlphaServer 4100 System AlphaServer 8400 System 

Bus width 128 + ECC 
Bus speed 24 ns 
Clock skew 1.5 ns 
Inputs requiring clocks 10 
Clock drivers used 12 
Number of clock phases 4 

settle naturally (with no termination), as in the case of 
the AlphaServer 2100 system, recli~ires a tighter skew 
budget from the clock systcm. The trade-off is higher 
cost, po\\~cr, andPWPWB area for lower bus speccl. 
Higher performance systems, sucl1 as the AlphaServcr 
8400 and AlpIiaServer 4100 s)~stcms, generally r c q ~ ~ i r c  
hstcr bus speeds with terminators. The AlphaScrvcr 
4100 has shorter bus stubbing   nodule transceiver to 
connector dispersio~l etch) sod slower bus speed than 
the Alphaserver 8400, \\/l~ich allows larger ske\\l (as 
a percentage of the bus spccd). 

Table 5 is a comparison of board area needed and 
cost for the clock system. Dcsig~~ers  analyzed an entry- 
level system consisting ofone CPU n~odule,  one mem- 
ory module, and one 1/0 bridgc or  interface module. 
The board area sho\.vs the spacc rcquired by the active 
components only (the digital phase-locked loops, 
PLLs, drivers, etc.). 

Both Tables 4 and 5 sho\v that the clock system 
design for the AlphaScrvcr 4100 system recluires onlv 
one-third the space of either the AIphaServer 2100 
systcm or the AlphaServcr 8400 system at a fraction of 
tlie cost and distributes more copies of the clock. 

128 + ECC 256 + ECC 
15 ns 10 ns 
2.2 ns (max.) 1.1 ns (max.) 

25 14 
13 11 

1 1 

Conclusions 

An cffccti~re, low-cost, higll-performance clock distri- 
bution systeni can be Jcsigncd  sing sn off-the-shclf 
componcnt as tlie basic building block. l>IGITAL, 
AlpliaSert~er 4100 system designers acco~nplislied this 
by optimizing the bus and de\,cloping sinlple tech- 
niques structilred in the h r m  of  design rules. Tlicse 
rules arc 

Use positive edgcs for critical clocking. 

Match delay throi~gli different connectors using 
appropriate pinning. 

Use a fixed dispersion etch lcngth from the connec- 
tor to the PLI,. 
Route and balance all clock nets o n  the same PWR 
la!.cr. 

~Minirnize adjaccnt-layer crossovers and maximize 
spacings. 

Usc minimum \ ~ ~ I L I c  tcrl~linators. 

Usc tree and loop compcns'~tio~l \\/here ncedcd 

Use conservative local clccoupling and a low-pass 
filter on the I'LL (analog power). 

Table 5 
Board Utilization and Cost Comparison 

AlphaServer 2100 System AlphaServer 4100 System AlphaServer 8400 System 

Board area used* 352.8 square centimeters 11 1.4 square centimeters 371.3 square centimeters 
Normalized cost 1 .OO 0.46 4.40 

*Note that these measurements do not include decoupling capacitors and terminators 



T h e  \\ ,orst-c<~se lab nleasurcmcnt o f  clock ske\v 
benvccn m y  n \~o ~ n o d u l c s  in a fi~lly cont ig~lrcd system 
\\.AS 1 . 1  I ~ S ,  \vhicIi is \\.ell \\,ithin thc 2.2 ns calculated 
I ~ I ~ S ~ I I I L I I I I  site\\*. 
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I 
Glenn A. Herdeg 

Design and Implementation 
of the AlphaServer 4100 CPU 
and Memory Architecture 

The DIGITAL AlphaServer 4100 system is Digital 
Equipment Corporation's newest four-processor 
midrange server product. The server design is 
based on the Alpha 21164 CPU, DIGITAL'S latest 
64-bit microprocessor, operating at speeds of 
up to 400 megahertz and beyond. The memory 
architecture was designed to interconnect up 
to four Alpha 21164 CPU chips and up to four 
64-bit PC1 bus bridges (the AlphaServer 4100 
supports up to two buses) to as much as 8 giga- 
bytes of main memory. The performance goal 
for the AlphaServer 4100 memory interconnect 
was to deliver a four-multiprocessor server with 
the lowest memory latency and highest mem- 
ory bandwidth in the industry by the end of 
June 1996. These goals were met by the time the 
AlphaServer 4100 system was introduced in May 
1996. The memory interconnect design enables 
the server system to achieve a minimum mem- 
ory latency of 120 nanoseconds and a maximum 
memory bandwidth of 1 gigabyte per second by 
using off-the-shelf data path and address com- 
ponents and programmable logic between the 
CPU and the main memory, which is based on 
the new synchronous dynamic random-access 
memory technology. 

?'he DIGITAJ- AlphaScr\,er 4100 sy1stem is a synmet- 
ric multiprocessing (SMP) ~nidrangc server that sup- 
Ix)rts LIP to four All~lla 21164 ~nicroprocessors. 
A single Alpha 21 164  CPU chip may sim~~ltaneously 
issuc ~nultiple external accesses to main memory. The 
AlphaScr\lcr 4100 ~ncrnol-11 interconnect was designed 
to m;lsimizc this multiple-iss~~c feature of the Alpha 
2 1164 (:PU chip 2nd to talw ati\.nntagc oftlie pcrfor- 
mancc benefits of the nc\\, fanlily of memory chips 
c.lllcd synchronous dynamic random-ncccss memorics 
(S~~RAIMS).  To meet the best-in-industry latency and 
band\vidtIi performance goals, 1)IGIT'AL de\.elopcd 
a sinlple memory interconnect ;~rchitecru~-e that com- 
bines the existing Alpha 2 1 164 (:l'U memory intcr- 
k c  wit11 tllc illdust~)!-sta~iilaI-cl SI)IUIM interface. 

T l i r o ~ ~ g l i o ~ ~ t  this paper the term latcnc!! refers to the 
timc rcqi~ired to return data kom the 11icrnor!l chips to 
the <:PU chips-the lo~\rcr the Iiltcncy, the better the 
puhrrnancc.  The AlphaSer\.cr 4100 system achic\,cs 
a minimum latency of 120 nanoseconds (ns) fi-0111 the 
timc the address appears at  the pins of the Alpha 2 1  164 
(1 I'U to the time the CPU intcninl ly rccci\,cs tllc corrc- 
sponding data from any ackircss in main memory. T l ~ c  
tcrln band\\~idtli rcfcrs to tlic amount ofdata, i.e., tlic 
number of bytes, transferred bcn\lccn the memory 
chips and the CI'U chips per unit oftimc-the higlicr 
the bandwidth, the bcttcr the ~~crti)rmance. The 
AlphaScr\ler 4100 deli\,crs a m;isirnum memory band- 
\\kith of 1 gigabyte per second (GR/s). 

Rcforc introducing the I)lC;lTALAlpliaSe~-ver4100 
product in Ma!' 1996, thc tic\~cIopmclit tcam con- 
ciuctcd nn cstcnsi\rc pcrforma~lcc comparison o f  
the top scr\>crs in thc industr!~. 'l'lic bcnch117ark 
tests showed that the AlpliaScr\,cr 4100 dcli\,ered the 
lowest memory latency and the highest McCalpi~i 
memory bandwidth of all tlic f i~~o- to Fo~lr-processor 
systems in the industry. A companion papcr in 
this issuc of the .[orrrilal. "Alpli;~Scrvc~- 4100 l'cr- 
formfincc Char'~cterization," contains the comparati\,c 
informfition.' 

?'his I J ~ P "  f o c ~ ~ s e s o ~ i  tlic nrchitcct~~rc and design of  
tlic tlircc core ITIOJUICS tlii~t \\'ere dc\;cloped concur- 
rently to optimize the pcrfi)rmancc of the critire 
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mcmory architccturc. These tlircc modules-the 
mother-board, the synchronous mclnory modulc, and 
tlic 110-cstcr~inl-cnclle proccssor modulc-circ slio\\m 
in E'ig~~rc 1 .  

Motherboard 

Tlie ~notlicrboard contains connectors for LIP to four 
processor modules, up to  tbur mcmory modulc pairs, 
LIP to two I / O  interface modulcs (fi)i~r pcriplicral 
c o m ~ x > ~ i c n t  interco~lnect [ PC11 bus bridge chips 
total), mcmor!~ address multiplcscrs/drivcrs, and 
logic for mcmory control and arbitration.' All con- 
trol logic on  the motherboard is iniplcmcntcd using 
simple 5-ns 28-pin programmable array logic (PAL) 
dc\,iccs and morc comples 90-mcgalicrtz (MHz)  
44-pin programm:~ble logic de\liccs (I'LI>s) clockcd at 
66 1\4Hz. Sc\lcral motherboards lia\~c bccn p r o d ~ ~ c c d  
to support \ ~ a r i o ~ ~ s  numbers of proccssor modules, 
mcmory modules, and I / O  interhx modulcs. The 
AlpliaScr\~cr 4100 supports one to four proccssor 
modulcs, o n c  to four lncniory modulc pairs (8-GB 
~ n a ~ i ~ i i ~ ~ ~ n  ~ncmory ), and one I/(> intcrhcc mociulc 
(up to t\vo I'CI ~ L I S C S ) . ~  

Synchronous Memory Module 

The s!~nchronous memory modules arc custoni- 
dcsigncd, 72-bit-\vide plug-in carcls installed in 
pairs to  cover the fill1 width of  the 144-bit niemory 
d3r.1 bus. Synchronous menlory modules that provide 
32 mc~ahytcs  ( M E )  to 256  IMR per pair were designed 
 sing 16-megabit (1Mb) SDRAlM chips. These 
mcmory modules contain nine, ciglitccn, thirtysix, 
or  scvcnql-two 100-MHz S1)IIAM chips clocltcd at 
66 MHz, fi)ur 18-bit cloclcd data transceivers, address 
bn-out  l>i~ffCrs, control pro\lidcd by 5-ns 28-pin 
1'Als. To increase tlie maximuni amount of melnor!i 
in rlic system, a thmily of plug-in compatible memory 
modulcs \\,as designed, providing LIP to 2 GR per pair 
 sing 64-Mb extended data out dynamic r.lncion- 
access Incmory ( E D 0  DRAM) chips. Tlicsc modules 
contain 72 or 144 E D 0  131WM chips controlled by 
t\iro custom 3pplicatio11-specific integrated circuits 
(ASI(:s) pro\riding data multiplcsing and control, four 
18-bit clocltcd data transcei\!crs, and address hn -ou t  
bufkrs. Consccli~cntly, the AlpliaScr\~cr 4100 memory 
architecture provides main mcmory capacities of  
32 M11 to 8 GR uritli a mininiuni latency of  120 ns to 
any address. This paper concentrates on tlic imple- 
mentation of the synclironous memory modulcs, 
ultlio~~gli the E1)0 memory modules arc fi~nctionally 
compatible. Tlie reconfigi~rability description later in 
this p q x r  provides morc details of  the implementation 
of the E D 0  mcmory ~iiodi~lcs.  

No-External-Cache Processor Module 

The no-external-cache proccssor module is a plug-in 
card \\zit11 a 144-bit Incmory interfice that contains 
one Alplia 21 164 <:PU chip, eight 1 S-bit clocked data 
transceivers, four 12-bit bidirectional address latches, 
and control provided hy 5-ns 2s-pin P A L  and 
90-MHz 44-pin 1'Ll)s clockcd at 66 MHz. The Alpha 
21164 CPU chip is programmed to operate at a syn- 
clironous memory interface cycle time of  66 MHz 
(15 ns) to  match the speed of the SDRAM chips on  the 
n1ernor)I niodulcs. Althougli there are n o  external 
cache rando~n-access mcmory (RAM) chips on  the 
module, the Alpha 2 1 164 itself co~ltains nvo levels of 
on-chip caclies: a priniary 8-kilobyte (ICB) data caclic 
and a primary 8-I<B instructio~l cache, and a second- 
le\rcl 96-I<B tlircc-\\ray set-associative data and instruc- 
tion cache. The no-cstcrnal-caclic processor module 
was designed to taltc advantage of the mi~ltiple-issue 
feature of the Alpli;~ 21164 CPU. Ry keeping the 
latency to main mcniory low and by issuing nii~ltiplc 
rcfcrcnccs from the Alpha 2 1  164 CPU to main mem- 
ory at the same timc to increase memory band\vidtli, 
the performancc of many applications acti~all!r exceeds 
tlie performance of a proccssor  nodule with a tliird- 
level external caclic.' N u m c r o ~ ~ s  applications perform 
better, however, with n large on-board cache. For this 
reason, the AlphaScr\~cr 4100 offers se\reral variants of  
plug-in compatible proccssor modules containing a 
2-MB, 4-MB, or  greater module-level cache. The paper 
"The AlpliaScrvcr 4100 Cached Processor Module 
Architecture and Design," \vliicli appears in this issue 
oftlie Jou~-rzul, contains morc related information.-' 

The three components of  the core ~nodulc  set wcrc 
designed concurrcntly to address five issues: 

1. Simple design 

2. Quick design timc 

3.  Lo\\) memory I'itcnc!l 

4.  High mcmory b,lncl\\,idth 

5. Reconfig~~rability 

Simple Design 

The Alpha 21 164 (:PU chip is based on  a reduced 
instruction set c o ~ n p i ~ t i n g  (ll.lSC) architecture, \vIiich 
has a small, simple set of instructions operating as fast 
as possible. AlphaScrvcr 4100 designers set the same 
goal of simplicity for the rest of the server system. 

Tlie AlpliaScrvcr 4100 interconnect between the 
CPU and main mcmorp \atas optimized for the Alpha 
2 1  164  cliip and tlic S1)lIAM cliip. To ltecp the design 
simple, only off-the-sliclf data path and address com- 
ponents and rcprogralnmable control logic devices 
\\!ere placed bct\\rccn the Alpha 21 164 and S D M M  





chips. The designers remo\,ed cscess logic and hard- 
ware features, minimized the "glue" logic between the 
CPU chip and main memory, reduced memory laten- 
cies as much as possible, and used custom ASICs only 
when necessary. 

Data Path between the CPU and Memory 
The external interface of the Alpha 21164 chip pro- 
vides 128 bits of  data plus 16 bits of  error-correcting 
code (ECC), thus enabling single-bit error correction 
and multiple-bit error detection over the full width of  
the data path, which is shown in Figure 2. These 144  
signals are connected to cight 1s-bit bidirectional 
transceivers on the processor module. As illustrated 
in Figure 1, the motherboard connects up to four 
processor rnodules and up to four memory mod- 
ule pairs. Each memory module contains 72  bits of 
information; therefore, a pair of memory modules 
is required to  provide the necessary 1 4 4  data sig- 
nals. Each pair of mcmory modules contains eight 
additional 18-bit bidirectional transceivers that are 
connected directly to a number of SDRAM chips. 
The data transceiver used on tlie processor module 
and on  tlie memory  nodule is the 56-pin Philips 
ALVC162601 in a 14-millimeter (rnm)-long pacltagc 
with 0.5-111m pitch pins. Error detection and correc- 
tion using the 1 6  ECC bits is performed inside the 
Alpha 21164 chip on all read transactions. Data path 
errors are checked by the PC1 bridgc chips on all trans- 
actions, including read and write transactions between 
each CPU and rncrnor): and any errors are reported 
to the operating system. 

The data path is clocltcd at each stage by a copy of 
a single-phase cloclt. The clock is provided by a lo\\!- 
sltew clock distribution system built from the 52-pin 
CDC586 phase-locked loop cloclt dri\rer.TThe clock 
cycle is controlled by an oscillator on the processor 
module and runs as fast as 66 MHz (15-ns minilnu111 
cycle time) while delivering less than a 2-11s worst-case 
skew (i.e., the difference in the rising edge of the  clock) 
between any two components, including tlie Alpha 
21164, SDRAMs, and any transceiver on any module. 

Read transaction data is returned from the pins 
of  the SDRAMs to the pins of the Alpha 21164 in 
two clock cycles (30 ns), as shown in Table 1.  The no- 
external-cache processor has n o  module-level data 
cache, so  data is clocked directly into the Alpha 2 1  164 
from the transceiver. In Table 1, read data that corre- 
sponds to transactions Rd l  and Rd2 is returned k o m  
the same set of  SDRAM chips in consecutive cycles. 
Read data that corresponds to transaction Rd3 is 
returned from a different set of  SDRAh4 chips with a 
one-cycle gap to allow the data path drivers from trans- 
action Rd2 to be turned off before the data path drivers 
for transaction Rc13 call be turned on. This process pre- 
vents tri-state overlap. As a result, consecuti\le read 
transactions have address bus commands either four or  
five cycles apart. Note that the Alpha 21 164 data, com- 
mand, and address signals are shoci~n for only one 
processor (CPUl ) ,  which issues transaction Kdl .  The 
other tra~isactio~is are issued by other processors. 

Write transaction data is also transferred from the 
pins of tlie Alpha 21164 CI'U to the pins of the 
SDRAMs in two clock cycles (see Table 2 ) .  Write data 

MOTHERBOARD 
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Figure 2 
Data Path bemeen the CPU and Memory 

Table 1 
CPU Read Memory Data Timinq 
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Table 2 
CPU Write Memory Data Timing 

al\\lays incurs a one-cycle gap between transactions. 
As a result, all but the tirst t\vo consecutive \\trite trans- 
actions have addrcss bus commands  ti\^ cycles apart. 

Since the AlpliaScr\ler 4100 interconnect between 
the CPU and maill memory was optimized fix the 
SDRAIM memory chip, the transaction timing, as 
sho\vn in Tables 1 and 2, was designed to provide data 
in the corrcct cycles for the SDRAiils \\;ithout the nccci 
for custom ASICs to buffer the data bet\\~ccn rlic 
motherboard and SDIWM chips. This dcsign tvorks 
wcll for an infinite stream of  all reads or  all writes 
because of tlie SDRAM pipclined interface; howcver, 
when a write tra~~saction immediately follows a rcad 
transaction, a gap or "bubble" must be inserted in the 
data stream to account for the fact that rcad dat.1 is 
rcturned later in the transaction than write data. As a 
result, e\,er!l \\trite transaction that immediately fi)llo\vs 
a read transaction produces a five-cycle gap in tlie 
command pipeline. Table 3 sho\vs tile rcad/\vritc 
transdction timing. 

Address Path between the CPU and Memory 
The Alpha 21 164 providcs 3 6  address signals (byte 
address <39:4>, i.c., bits 4 through 39),  5 command 
bits, and 1 bit o fp~r i ty  protection. Thcsc 42 signals are 
connected directly to f o ~ ~ r  12-bit bidirectional 1;itchcd 
transceivers on the processor ~ilodulc, as i[l~~stratcd ill 

Figure 3. The motherboard latches tlic fbll address 
alid dri\~cs first the roll1 and then the column portion 
of thc addrcss to the memory modules. Each synch- 
ronous memory module buffers tllc ro \v /colu~~i~i  
address and fans out  a copy to  each of  the S D W  
chips using four 24-bit buffers. Sin~ilar to  traditional 
dynamic mndom-acccss memory (I>IWiM) cliips, 
SL'>lUhlI chips use the ro\\. address o n  their pins to 
access the pagc in their memor!, arrays and rhc colunin 
adciress that appears later o n  the sa~iic pills to I-cad o r  
\vritc the desired location \\,ithi11 tlic pagc. Conse- 
clucntly, thcrc is n o  nccd to provide the entire 36-bit- 
wide addrcss to the memory modules. All address 
c o r n p ~ ~ ~ c n t s t u s c d  for transccivcrs, I;ltchcs, ~ i ~ u l t i -  
plesers, anci dri\,crs o n  the no-external-cnch proces- 
sor niodulc, tlic ~nothcrboard, and the synchronous 
nicmory m o d ~ ~ l c  consist of  the 56-pin At.V(;16260 or 
the ALVCI162260, wliich is the same part \\.ith internal 
output resistors. Address parity is clicckcd by t l ~ e  PCJ 
bridge chips on  all transactions, 2nd nny errors arc 
reported to the operating s!lstcni. 

The addrcss path uses flow-througli latches for the 
first halfofthe addrcss transfer (j.c., tlic ro\v address) 
f r o n ~  the Alpha 21164 to the Sl>lL41Ms. When the 
addrcss 'Ippcars at the pins of the Alpha 21164, 
the latched transcci\,cr on the processor module, the 
~iiultiplcscd row address driver o n  tlic motlicrboarcl, 

Table 3 
CPU Readwrite Memory Data Timing 
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Figure 3 
Address Path benvccn t l ~ c  <:1'U and  Memory 
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and the fan-out bufkrs  o n  the memory  n ~ o d u l e s  are all 
open and t i ~ r n c d  on ,  enabling the address information 
to propagate directly horn the Alpha 2 1  1 6 4  pins t o  
the S D l a M  pins in two cycles. T h e  motherboard then 
switches the multiplcscr and drives the column 
address t o  tlie memory  modules t o  c o n ~ p l e t e  the 
transaction (see Table 4 ) .  Back-to-back rnelnory trans- 
actions are pipelined t o  deliver a new address t o  the 
SDKAM chips every four cycles. T h e  fill1 menlory 
addrcss is driven t o  the motherboard in n v o  cycles 
(c!lclcs 0-1, 4-5, 8-9), ~\ /hcrcas additional informa- 
tion about  the corresponding transaction (\vhich is 
used only by the  processor and the  1 /0  modules) 
follo\\is in a third cycle (cycles 2,  6, 10) .  To avoid tri- 
statc overlap, the  fourth cycle is allocated as a dead 
cycle, \vhich allows the addrcss drivers o f  t h e  current  
transaction t o  be t ~ ~ r n e d  off  before the address drivers 
for the nest  transaction can be turned o n  (c!icles 3 ,  7, 
1 1 ) .  These four cycles constitute the addrcss transfer 
that is repeated every four o r  ti \re cycles for consecuti\~e 
transactions. N o t e  that the one-cycle gap inserted 
bc t \ \~ec~i  transactions R d 3  and R d 4  for reasons indi- 
catcd earlier in the read data timing description causes 
the row addrcss for transaction lXd4 t o  appear a t  the  
pins o f  the SDLWIMS for three cycles instead o f  two.  

Control Path between the CPU and Memory 
T h e  Alpha 21 1 6 4  provides five command bits (four 
Alpha 2 1 1 6 4  CIMD signals plus the Alpha 2 1 1 6 4  
Victin-Pending signal) that indicate tlie operation 
being req~lestcd by tlie Alpha 2 1  164 external inter- 
f'~ce." Thesc f v e  colnmancl bits are included in the 4 2  
command/,~ddress (<:A) signals indicated in Figure 3 

and are driven directly and i~nrnodified through the 
latched address transceivers o n  the processor module 
t o  become the nlothcrboard command/addrcss. Since 
the AlphaSer\~er 4 1 0 0  interconnect benveen the  <:PU 
and main memory was optimized for the Alplia 2 1  1 6 4  
CPU chip, the Alpha 2 1  1 6 4  estcrllal CM1) signals map 
directly into the 6-bi t  encoding o f  the memory  inter- 
connect c o m n ~ a n d  used o n  tlie motherboard, thus 
avoiding t h e  need for  custom ASICs t o  manipulate the 
commands bet\\.een the Cl'U and motherboard. 

Prudently chosen encodings o f  the Alpha 2 1  1 6 4  
external C M D  signals resulted in only t w o  command 
bits ( t o  determine a read o r  a write transaction) and 
o n e  address bit ( t o  determine the  memory bank) 
bcing uscd by a 5 -ns  I'AL, o n  the  processor  nodule t o  
directly assert a Request signal t o  the  motherboard t o  
use the memory  interconnect.  Figure 4 shows the 
control path between the  C P U  and memory. If the 
central arbiter is ready t o  all on^ a nc\v transaction by 
the processor ~ n o d u l c  asserting a Request signal ( i . ~ . ,  if 
the memory intercon~lect  is n o t  in use), then a 5-11s 
l'Al, o n  the  noth her board asserts the control signal 
Row-CS t o  each o f  the  nienlory modules in the  fol- 
Io\vi~ig cycle. At the  samc tinle, another  5-ns PAI, 011 

the motherboard decodes 7 bits o f  the address and 
drives the  Scl<l:O> signal t o  all memory  modules t o  
indicate \\/hich o f  the four memory  module  pairs is 
bcing selected by thc  transaction. Each synchronous 
memory  module uses another  5-ns I'AI., t o  ininicdi- 
ately send the corresponding chip select (<:S) signal t o  
the rccluested SDRAM chips o n  o n e  o f  the CS<3:0> 
signals \vlien the Ko\v-CS control signal is asscrtcd if 
selected by the value encodcd o n  Sel<l:O>, as sho\vn 
in Figure 4 .  

Table 4 
CPU Read Memory Address Timing 
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Cycle (1 5 ns) 
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SDRAM Address 
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Tablc 5 sho\vs the control signals bct\vccn the 
proce~sor modules, the mcmor!, modules, and the 
ccntral arbiter on thc ~~lothcrboarci for rn~dtiple 
processor modules issuing single rcad transactions. 
The central arbiter receives one or  lllorc Kequest<rz> 
signals fi-on1 tlie processor modulcs and asserts a 
unicluc Grant<,?> signal to  the proccssor module tliat 
currently o\irns the bus. The arbitcr then drives a copy 
of the CA signal to every proccssor module along with 
thc identical Rosv-CS signal to every memory r i~oc l~~ lc  
to marl< cycle 1 of a new transaction. Note that tlic 
cycle counter begins at cycle 1 \vitli each ne\v 
C:A/llo\\_<:S assertion and may stall for one o r  more 
cyclcs \\:hen gaps appear on the ii>cmor!r interconncct. 
T\\co transactions may be pipclincd nt tile sumc time. 
For  simplicity of implementation in programrnnble 
logic dc\.ices, tlie cycle counter of each transaction is 
al\\.ays exactly four cycles fi-om the other. 

Tablc 6 shows a single proccssol- modulc issuing 
t\vo consecutive read transactions (dual-issue) t i i -  
lowed hy a third rcad transaction at a later time. 
Normally, the node issuing the transaction o n  the bus 
dcasscrts the l i c q ~ ~ e s t  signal in cycle 2 .  If a nodc con- 
tinues to asscrt the Request signal, the ccntral arhitcr 
continues to  asscrt the Grant signal to  that node to  
allow guaranteed back-to-back transactions to  occur. 
Note that the first CA cycle occurs thrcc cyclcs aficr 
the asscrtion of the R e q ~ ~ e s t  signal bccausc ot'tlic dcla!~ 
~\,itliin the ccntral arbiter to s\vitch the Grant signal 

bcn\,ccn processors. The third CA cycle occurs only 
one c!rcle akcr tlic nodc asserts the Request signal, 
ho\\re\,cr, bccausc o f  bus parking. Bus parking is nn 
arbitration feature that causes tlie central arbitcr to 
assert the Grant signal to the last node to  use thc bus 
wfhen the bus is idle (follo\ving cycle 7 of  transaction 
Rd2). Consequcntlv, if the same processor wishes to 
usc the bus again, the assertion of CA and Ro\v-(:S 
signals occurs n4fo cyclcs earlier than it would without 
tlie bus parking feature. 

Data Transfers between Two CPU Chips 
(Dirty Read Data) 
The Alpha 21 164 (:I'U chips contain internal \\.rite- 
back caches. Wllcn a (:1'U \\,rites to a block ofdatn, tlic 
modifcd data is l~clti locull\, in the \\lrite-back cachc 
until it is \\,rittcn hack to main memory at a later time. 
The modified (dirty) copy of  the block of  data ~i ius t  
be returned in place of the unmodified (stale) copy 
From main mcmory \vlicn anotlier CPU issues a read 
t~u~ i sac t io~ l  011 the mcIi1ory interconnect. The rncm- 
ory modulcs rctllrn the stale data at the normal time 
on  the memory intcl-conncct, and the dirty data is 
returned by the processor modulc containing the 
modified copy in the cyclcs tliat folio\\. The proccssor 
module issuing the rcacl transaction ignores the stale 
data from memory. 

Therefore, to ma in ta i~~  c~c l i c  colierenc!~ bcn\.ccn 
the \\,rite-back caches contained in multiple Alpha 

Table 5 
Multiple CPU Read Memory Control Timing 
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Single CPU Read Memory Control Timing 
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2 1  164 (:PU chips, each read transaction that appears 
on  the memory interconnect causes a cache probe 
(snoop) to  occur at all other CPU chips to  determine if 
a modified (dirty) copy of  the requested data is found 
in one  of the internal caches of  another Alpha 2 1  164 
CPU chip. If it is, then the appropriate processor mod- 
ule asserts thc signal L) i ryEnable<u> for a ~ninimum 
of five cyclcs to allo\\~ the memor)l ~ilodule to finish 
driving the old data. The processor module deasserts 
the signal \\hen the dirty data Iias been fetched f ro~ i l  
one of tlie internal caches and is ready to  be driven 
onto  the motherboard data bus. Table 7 shocvs read 
data corresponding to  transaction R d l  being retur~led 
f r o ~ ~ i  CPU2 to  Cl'Ul fi\7e cycles later than the data 
from memory, which is ignored by CPU1. Note the 
one-cycle gap in cjlcles 10 and 15 to  avoid tri-state 
overlap between the memory module and processor 
modulc data path drivers. 

As discussed earlier in this section, the Alphaserver 
4100 system implements memory address decoding 
and memory co~ltrol without using custom ASICs 
on the motherboard, svnchronous memory, or no- 
external-cache processor modules. Using PALS allo\vs 
the address dccode h n c t i ~ n  and the fan-out buffering 
to thc large nunibcr of SDIiAMs to be performed at 
the same tinie, thus reducing the component count 
and the access time to  main memory. All the necessary 
glue logic between the Alpha 21164 CPU and the 
SDRAMs, including the central arbiter on  the mothcr- 
board, was implemented i~sing 5-11s 28-pin program- 
mable PALS o r  90-MHz 44-pin ispLS1 1016 in-circuit 
reprogrammable PLDs produced by Lattice Semicon- 
ductor. These dcviccs can be reprogrammed directly 
o n  the module using the parallel port of a laptop per- 
sonal computer. Each no-external-cache processor 
module uses five PAL and four PLDs; the mother- 

board (arbiter and memory control) uses eight PALS 
and three PLDs; and each synchronous memory mod- 
ule uses three PALS. 

As shown in Table 1,  the minimum memory read 
latency (read data access time) is eight cycles (120 11s) 
fro111 the time a new co1111nand and address arrive at 
the pins o f the  Alpha 2 1  164 chip to the time thc first 
data arrives back at tlie pins. The S D W s  are pro- 
grarnmed for a burst of four data cycles, so  data is 
returned in four consecutive 15-11s cycles. Two trans- 
actions at a time are interleaved on  the luemorv inter- 
connect (one to  each of the two memory banks), 
which allows data to be continuously driven in every 
bus cycle. This results in the maximum memory read 
bandwidth of 1 GB/s. 

Trade-offs Made to Reduce Complexity 
The Alpha 21164 external interface contains many 
commands required exclusively to support an external 
cache. By not including a module-level cache on thc 
no-external-cache processor modulc, only Read, 
Write, and Fetch com~nands arc generated by the 
Alpha 21164 external interface; tlie Lock, MH, 
SetDirty, WriteBloclcLock, UCacheVictin~, and 
ReadMissModSTC coniniands are not used.k7 This 
design allows the logic on the processor module that is 
asserting the Request signal to the central arbiter to be 
implemented simply in a small 28-pin PAL because 
only nvo of  tlie Alpha 21164 CMD signals are 
required to encode a Read o r  a Write command. 
Similarly, allowing a maximum of  two memory banks 
in the system, independent of  the nuniber of  memory 
nlodules installed, enables the Request logic to  the 
central arbiter to  be implemented in the 28-pin PAL, 
since only one address bit (byte address <6>)  is 
required to determine the memory bank. 

Table 7 
Dirty Read Data Timing 
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To decode memory addrcsscs in 28-pin PALS, the 
AlpliaScr\~cr 4100 systcm uscs the concept of memory 
llolcs. Tlic mcmory intcrconncct arcliitcct~~rc and con- 
sole codc support sc\,cn different sizes of ~ilcmory 
modules 2nd up to ~ L I I -  pairs of nlemory nlodules per 
system for a total systcm memory capacity of 32 1MB to 
8 GB. Any 117is of111crnory ~i iodi~lc  pairs is s~~ppor tcd  as 
long as the largest mcmory pair is pl;lced in the lo\\icst- 
numbcrcd memory slot. Tlic pliysicul memory address 
mnge for each of the h)ur nicmorp slots is assigned as 
if all h i ~ r  memory modr~lc pairs are the same size. 
Conscq~~e~ltl!~, if n\ ,o additional mcmor!, pairs tliat arc 
smaller than the pair in the lo\vcst-ui~mbered slot 
arc installed in the llppcr memory slots, there will be a 
gLlp or  "hole" jn the physical mcmory space between 
the h ~ / o  smaller n~elnory pairs (see Table 8 ) .  Rather 
than rccl~~ire each Incmory ~llodulc to  compare the full 
JilcJliory address to  a base acldrcss and sizc register to 
cicterminc ifit should respond to the mcmory transac- 
tion, the 28-pin 1)Al. driving Scl<l :O> on the motlicr- 
board (scc Figure 4 )  uses the se\.cn address bits 
Adclr<32:26> and the sizc of the memory module in 
the lo\\,cst-numbered slot to encode the niernory slot 
n ~ ~ r n b c r  of the sclcctcd ~ncmory modulc pair. Console 
cocic tictccts any mcmory Iiolcs at power-up and tells 
tlic operating systems that these are unusable physical 
mcmor)l addresses. 

Anotlicl- si~nplification that die AlphaScrver 4100 
systcm uses is to removc 1 / 0  space registers f ro~n  the 
clata path of the proccssor and memory modulcs. 
Kccausc there are no custom ASI(:s on  thcsc modulcs, 
reading and \\,riting co~ltrol registers n.ould have 
rccluircd additional c i~ta  pi~tli components. Sincc ,111 
tlic error checking is pcrformcci by either the 2 1164 
CPU chip or  the PC1 bridge chips and since there arc 
n o  address decoding control rcgistcrs required on tlic 
mcmory modulcs, thcrc \vas n o  nccd for more than 
a Vc\v bits of co~ltrol information to be acccsscci by 
sotiwarc on  the processor or  mcmory rnod~~lcs .  The  
I?<: bus (slo\\~ serial bus) alrcndy prcsc~it in the 1 / 0  
st~bs!~ste~n was l~seil fix transfcrl-ing this small amount 
o f  i ~ l f o r n ~ ~ t i o n .  

Furthermore, in the process of removing the 1 / 0  
s p ~ d a t a  path from the motherboard and proccssor 
modules, the firm\vare (i.c., the console code, Alpha 

21 164 1'AL codc, and diagnostic sofi\va~-e), which is 
often placed in read-only ~iicmorics (ROlMs) on the 
1?rocessor rnodule or ~ilothcrboard, \\,as mo\~cd to the 
1 / 0  subsystem. Only a small 8-K1', single-bit scrial 
KOM (SROM) \+,as placed o n  each processor niodulc 
that woiild initialize the Alpha 2 1 164 d i p  on  pourer- 
up anci instruct the Alplia 21 164 to ncccss the rest of 
the fi rnnvarc codc from the 1 / 0  subsystem. 

Quick Design Time 

To pro\,idc stable (:PU and mcmor!, Iiarcl~vare for I/(> 
su bsystcm liard\\,arc debug and operating systcm soh- 
ware d c b ~ l g  and t l i ~ ~ s  allo\\l the 1)ItiITAL AlpliaServer 
4100 to be introduced o n  schcdulc in May 1996, the 
corc modulc set \\,as dcsig~icd and po\\,crcd on in less 
than six mol~tlis. This primary goal oftlic AlphaScrvcr 
4 100 project was achieved by kccping the dcsign tcxn 
small, by using only progmm~nnblc logic and existing 
data p t ' h  colnponents, and by kccping the al-nount o f  
documentation ofdesign intcrthccs to 3 mini~num. 

The design tcaln for the motherboard, no-ester~lal- 
cache processor modulc, and s~~nc l i rono i~s  Inemory 
modi~lc consisted of one dcsign engineer, one 
schcmatic/layo~~t assistant, one signal integrity engi- 
nccr, and t \ v ~  s i ~ i i ~ ~ l a t i o ~ i  engineers. Thc team also 
enlisted the help of mcmbcrs of the other AlpIlaScrver 
41 0 0  design teams. 

? - I Ilc architccturc and actunl ti nal logic dcsig~l of tlic 
core module set \\,ere dc\,clopcd at the same tiole. Ry 
using progra~n~nablc logic and off-the-shelf addrcss 
and dam path compo~icnts, tlic logic \vas urritten in 
ARL, cocic (a langi~agc uscd to describe tlic logic f i~nc- 
tions of programnzablc dc\iccs) and compiled i ~ n m e -  
diiltcly into the PALS and 1'Ll)s \\rhilc the architecture 
\vns being specified. If the desired f ~nctionality did not 
fit into the programmable dc\~iccs, the architecture 
\\?:IS n~oditicd i~ntil the logic did fit. All three ~nodulcs 
ulcrc dcsig~led by thc sanlc c n g i ~ ~ c c r  at the same time, 
so  thcrc \\'as 110 need for intcrf~cc spccificatio~ls to be 
\\,rittcn for each modulc. F ~ ~ r t l ~ c r m o r c ,  modifications 
2nd cnhanccments c o ~ ~ l d  17c 1ii;1c1e i l l  p.irallcl to each 
dcsign to optimize performance and reduce co~iiplcx- 
ity across a11 three modules. 

Table 8 
Memory Hole Example 

I 1 
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000000000-07FFFFFFF Memory Slot 1 

Memory Slot 3 

Memory Slot 4 

2-GB Module Pair 

080000000-OFFFFFFFF Memory Slot 2 
I 

1-GB Module Pair 1 100000000- 13FFFFFFF 
:, M$*ij H-&', ::. 1 

1-GB Module Pair 1 180000000 - 1 BFFFFFFF 
Unused Memory 

I 

2-GB Module Pair 



Rccai~se the dcsign did not incorporate any custom 
ASICs, the core s)rstcni \\(as po\vcrcd on as soon as the 
modulcs were built. Any last-n~inutc logic changes 
required to fix problems identified by simulation 
could be made directly to  the reprogrammable logic 
devices installed o n  the modulcs in the laboratory. In 
particular, the reset and po\ver sequencing logic o n  the 
 noth her board was not even sj~niilated before power-on 

a1 ware. and was dc\~clopeci directly on actual I1 .d 
Since the 1 / 0  subsystcrn \\.as not available \vhen the 

core module set was first powered on, the soh\iarc that 
ran on the core llard\\/arc \\/as loaded from the serial 
port of a laptop personal coniputer and through the 
Alpha 21 164 serial port, and then ivrittcn directly into 
main memory. 13jagnostic programs that had been 
de\reloped for simulation were loaded into the mcmory 
of act~lal hard\vare and run  to tcst a four- processor, fi~lly 
loaded memory configi~ration. This testing cnabled 
signal integrity fixes to  be made on the Ilard\vare at h~ll  
speed before thc I / O  subsystcn~ was available. When 
the I/O subsystcln was powered on, the core module 
set was operating bug free at full speed, allo\ving the 
AlphaScr\,er 4100 to ship in volume six ~ i ~ o n t h s  later. 

As mentioned in the section Sinlplc Design, the 
central arbiter logic 011 the motherboard was irnple- 
mcnted in progranlmable logic. Consequentl!~, by 
q~~icltly changing to the rep-ogramn~ablc logic on the 
motlicrboard instead of performing a I&ngthy redesign 
of a C I I S ~ O I ~  ASIC, designers were able to avoid several 
logic desjgn bugs that \\(ere found later in the custom 
ASICs ofother AlphaScrvcr 4100 processor and m e n -  
ory modules. 

Low Memory Latency 

Minimizing the access time of data being rcturncd to 
the C1'U o n  a rcad transaction was a major design goal 
for the core module set. The core module set dcsign \\!as 
optimized to deliver the Addr and CS signals to the 
SDRAMs in nvo cycles (30 ns) from the pins of 
the Alpha 2 1  164 CPU and to return the data fro111 the 
S~)KAIMS to the Alpha 21 164 pins in another two cycles 
(30 ns). VVith the SDRAlMs operating at a two-cycle 
internal ro\v acccss and a nvo-cycle internal column 
access to tlie frst data (60 ns total internal SDRAM 
acccss time), the ~iiain mcmory latency is 120 ns. 

The lo\v latency \\,as acco~iiplished in four \\laps: 

1. By rcmo\~ing custo~ii ASICs and error checl<ing 
from the data path benveen the pins of tlie Alplia 
2 1164 CPU chip and main Incmory 

2. By combining thc SDRAM row/column address 
niultiplexcr \vith address fan-out buffering on the 
motherboard 

3. Ry sinipli%ing the memory address decode and 
memory interconnect rcclilcst logic 

Many multiprocessor servers share a common 
command/address bus by issuing a request to use the 
bus in one cycle, by either \\laiting for a grant to bc 
returned kom a central arbiter or  performing local arbi- 
tration in the next cycle, and by driving the command/ 
address on  the bus in the cycle that follows. This 
sequence occurs for all transactions, eve11 when the 
memory bus is not  being used by other nodes. The 
Alphaserver 4100 nic1nor)I interconnect implements 
bus parlung, ~ ~ l i i c l i  allo\vs a modu1.e to turn on its 
acidress dri\lers even though it is not currently using 
the bus. If the Alpha 21 164 on that ~nodclle initiates a 
new transaction, the command/addrcss tlo\vs directly 
to memory in two less cycles than it \vould taltc to pcr- 
form a costly arbitration sequence. Transaction Rd3 in 
Table 6 sho\\rs an example of the cffects of bus parking. 

High Memory Bandwidth 

One of the most important features of the SL>IUM 
chip is that a single chip can provide or  consumc data 
jn every cyclc for long burst lengths. The AlpIiaServer 
4100 operates the SDRAMs with a burst length offour 
cycles for both reads and writes. Each S1)RAM chip 
contains nvo banks dctermined by Addr<6>, \vhich 
selects consecuti\le memory blocks. If accesses are 
made to alternating banks, then a single SDRAM can 
continuously drive rcad data in every cjlclc. Tlic arbi- 
tration of the AlphaServer 4100 Incnior!! intcrconncct 
supports only n4~1 mcnlory banlcs, so tlic smallest 
1ne1nory niodule, Ivhich consists of one set of 
SDRAlMs, can provide the salnc 1-GR/s masimun~ 
rcad bandwidth as a fi~lly populated mcmory configu- 
ration, i.c., a system configured with the minimum 
amount of memory can perform as well as a fully con- 
figured system. 

To incrcasc the single-processor memory bandwidth, 
the arbitration allows two simultaneoi~s rcad trans- 
actions to he i s s~~ed  fiom a single processor module. As 
long as the arbitration nlemory bank restrictions and 
arbitration himess restrictions are obeyed, it is possible 
to issue back-to-back read transactions to ~ ~ i c m o q l  from 
a single CPU with read data being returned to  the Alpha 
2 1  164 CPU in eight consecutive cycles instead of the 
usual h u r  (see Tables 1 and 6).  This dual-issue feati~re 
and the other lo~l  memory latency and high memory 
bandwidth features of the AlphaSer\ie~- 4100 architec- 
ture enabled the AIpliaScr\~cr 4100 system to mect the 
best-in-i~ldust~-y performance goals ror McCalp~n Inem- 
ory bandc\~ith. '  

As discussed In the section Simple Devgn and ~llus- 
tratcd in Figure 3, to avo~d tri-stntc o\lerl'~p,  lieneve ever 
read data is returned by a different set of  SDRAMs 
(on the same rnen1ory module or  on J different mem- 
ory module), a dead cycle is placed benVeen bursts 
of four data cycles to allo\v one driver to turn off 

4. By using bus parking 
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before the nest driver turns o n .  Ry keeping the lo\\~er- 
order address bits connected to nll  S ~ ~ R A I I S ,  i.e., by 
not interlea\~ing additional banks of memory chips o n  
low-order address bits, consccuti\ze accesses to  alter- 
nating memory banks such as large direct memory 
access (1)MA) sequences can potentially achieve tlie 
full 1-GB/s read bandwidth o f the  data bus. With tlie 
dead cycle inserted, tlic rcad bandwidth of  the mem- 
ory interconnect is reduced by 20  percent. 

The data bus connecting the processor, memory, 
and 1 / 0  modules was iniplcniented as a traditional 
shared 3.3-volt tri-state bus \\,it11 a single-phiisc syn- 
chronous clock at all modulcs. As a result, the bus 
Rcconles saturated as morc processors are added a ~ l d  
bus tsaftic increases. To  Icep tlie design time as short 
us possible, the Alpl~aSer\~c~- 4100 dcsigncrs chosc not 
to esplore tlie concept o f  a switched bus, on \vhicli 
morc than one private ti-ansfcl- map occur at a t i~iie 
bcnvcen multiple pairs of  nodes. Clearly, tlic 
AlpliaServer 4100 system has reached the practical 
upper limit of bus bandwidth using the traditional trj- 
state bus approach. 

Reconfigurability 

The Alphaserver 4100 hard\varc niodules \\/ere 
designed to alloc\~ enhancements to be ~ i ~ a d e  in the 
f ~ ~ t u r c  without having to redesign every element in 
the system. 

Motherboard Options 
The Alphaserver 4100 motherboard contains four 
clcciicated processor slots, eight dedicated memory 
slots ( ~ O L I ~  memory pairs), and one slot fix- an 
I/O module witli nvo PC1 bus bridges. Designed at 
tlic same time but not produced until after the 
AlphaScriler 4100 motherboard \vas available, 
the AJpliaServer 4000 niothcrboi~rd contains only nvo 
processor slots, Four memory slots (t\\io menlory 
pairs), and slots for nvo I / O  modules allo\ving four 
1'(:1 bus bridges. Since module liarci\\rarc verifcation 
in the laboratory is n lengthy process, tlie AlphaSesver 
4000 niothcrboard \\,as designcd to use tlie same logic 
as thc Alphaserver 4100 except fbr the programmable 
arbitration logic, \\~hicli had a clifferent algorithm 
because of the estra 1 / 0  module. Whcn the signals on  
the Alphaserver 4000 motherboard were routed, all 
nets were kept shorter than the corresponding nets on  
the Alphaserver 4100 motherboard so that every sig- 
nal clid not need to be rccsaniincd. Only those signals 
that \\lcrc uniquely differ-cnt \\,crc s ~ ~ b j e c t  to the f~ll 
signal integrity verification proccss. 

Memory Options - .  I'Jic synchronous memory modules a\railable for the 
AlphaScrvcr 4100 arc all based on the 16-Mb SDRAM. 

Using this size chip allon~ccl designers to build syncliro- 
110~1s Jiie1nor!, modules tliat contain 9, 18, 36, anci 
72 S131W1Ms and provide, rcspccti\icl\,, 32 MR, 64  MB, 
128 IUR, and 256 MB of main memory per pair. '1-l~c 
mcmory architecture supports synchronous nielnory 
riiodules tliat contain up to I GB o f  main memory per 
pair (LIP to 4 GB per system) by using the 64-Mb 
S1)RAMs; ho\ve\lcr, whcn the Alphaserver 4100 sys- 
tem was introduced, the pricing and a\railability of the 
64-Mb S D M M  did not allo\\. these larger capacic syn- 
chronous memory modules to be built. 

At tlie same tinic the s!rnchro~io~~s mcmory modulcs 
\\.ere being designed, a fihnily of plug-in cornpatiblc 
mcmory modules built witli El30 13RA1us was 
dcsig~lcd and built. The Iiien~ory arcliitccture supports 
F,130 mcrnory modules containing up to 2 GB of main 
mcmory pcr pair ( L I ~  to 8 GI3 per system) by L I S ~ I ~ ~  thc 
64-Mb E D 0  DRAM. Whcn the AlpliaScr\~er 4100 sys- 
tem \\.as introduced, the 64-1Mb E D 0  DRAM nras 
a\railable and E D 0  memory modulcs containing 72 or  
144 E D 0  DRAMS wcrc built providing 1 GR and 2 GB 
o f  main nicniory per pair. To round out the range of 
memory capacities and to pro\.idc an alternative to the 
synchronous memory moclulcs in case t l~ere was a cost 
or  design problem \vith the nc\xr 16-Mb SDRAM chips, 
a hmily of E D 0  nxmory motiulcs \\/as also built ~ ~ s i ~ i g  
16-lMb and 4 -Mb E l 3 0  OlUl\/ls, pro\iding 6 4  MB, 
256 MR, and 512 AIIR of main memory per pair. 

Although E D 0  DIWh/ls can provide data at a liighcr 
b'lnd\vidth than standard l>lW~Ms, n single E D 0  
1)MlM cannot return data in ti)ur consccuti\.c 15-11s 
c!~clcs likc the single SDlWlM ~15cci o n  tlie synchronous 
mcmory niodules. Therefore, a custoni ASIC was ~ ~ s e d  
o n  the E D 0  memory modulc to access 288 bits of  
data every 30 11s from the E D 0  1)RAMs and multiples 
the data onto  the 144-bit mcmory interconnect cvcry 
15 ns. To imitate the nvo-bank feature of a single 
SI)RAI\/I, a second bank of El30 l)IMl\lls is reql~ired. 
Conscili~cntly, the minimum number of menior!I 
chips pcr El30 memory moclulc is 72 bur-bit-\vide 
El30 DRAM chips, \\,liereas the mini~iiuni number 
o f  liiemor!l chips per synclirono~~s memory ~ O C I L I I C  
is o~i ly  18 four-bit-\\ride SI3KAM cliips 01- as few as 
9 eight-bit-\vide SDRAJM chips. 

When the Alphaserver 4100 system \vas introduced, 
the fastest E D 0  DRAM a\,ailablc tliat met thc prici~lg 
rccluircnicnts was the 60-11s version. When this chip 
is used on the E D 0  mcmory modulc, data cannot 
be returned to the mothcrbonrcl as fast as data can be 
returned from the synchronoi~s mc~nory modules. To  
support tlle 60-11s EI)O l>lUh4s, n one-cycle (15 ns)  
incscnsc in the access time to main Iiicmor!r js required. 
Support h r  this extra c\,clc of latcnc!, \\as designed iuto 
tlic mcmory interconnect by pl~cing J. one-cycle gap 
bct\\,ccn cycles 2 and 3 (scc 'T'nblc 1 ) of any rcad trans- 
action accessing a 60-11s E D 0  mclnor!l module. Con- 
secl~~e~itly, the read memory latency is one c!lcle longer 
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and the niaximu~n read bandwidth is 20  percent less 
\vJien using E D 0  memory modules built witli 60-ns 
E D 0  DRAMS. Note that it is possible to have a misture 
of E D 0  memory modules and synchronous memory 
modules in the same system. In such a case, only tlie 
memory read transactions to tlie 60-ns E D 0  memory 
module would result in a loss of performance. 

New versions of the El30 Iiicmory modules that 
contain 50-ns E D 0  DRAMS providing up to 8 GB of 
total system memory arc scheduled to  be introduced 
within a year aher the introduction o f the  AlphaServer 
4100. These modules will not recluire the additional 
cycle of latency, and as n result they will have identical 
performance to the synchronous memory modules. 

Processor Options 
The no-external-cache processor niodule was designed 
to support either a 300-MHz Alpha 21 164 CPU chip 
with a 60-MHz (16.6-ns) synchronous memory inter- 
connect or n 400-MHz Alp.lia 21164 Cl'U chip with 
a 6 6  MHz ( 1  5-17s) synchronous memory interconnect. 
As previously mentioned, the Alpha 21164 itself 
contains a primary 8-1U$ data cachc, a primary 8-IU3 
instructioli cache, and a second-level 96-IU3 three- 
way set-associative data and instruction cachc. The 
no-external-cache processor module contains no third- 
level cache, but by leeping the latency to main mem- 
ory low and by issuing multiple references from the 
same Alpha 21 164 to main memory at tlie same time 
to increase memory bandwidth, the performance of 
many applications is better than that of a processor 
module containing a third-level external cache.' 

Applications that are small enough to  fit in a largc 
third-level cache perform better with an esternal 
cache, however, so tlie AlpliaServer 4100 offers several 
variants of plug-in compatible processor modules con- 
taining a 2-ME, 4-MB, or  greater module-level cache. 
In addition, cdched processor modules are being 
designed to support Alpha 21 164 CPU chips that run 
f ~ s t e r  than 400 MHz while still maintaining the masi- 
niuni 66-MHz s y ~ i c h r o n o ~ ~ s  memory interconnect. 
The architecture of the cached processor module 
was dcvcloped in parallel with the core module set, 
and several cnhance~nents were niadc to the CPU and 
memory architecture to support the mod~~le-le\iel 
cache. See tlie companion paper AlpliaServer 
4100 Cached Processor  module Arcliitect~~re and 
Design" for more inforniatio~i.~ 

Versions of the Alpha 21164 chip that operate 
at 400 MHz and faster require 2-volt power, while 
slower versions of the Alpha 21164 require only 
3.3 volts. 'l..lie AlpliaServer 4100 motherboard does 
not provide 2 \rolts of  po\vcr to the processor modulc 
connectors; consequently, :a 3.3-to-2-volt converter 
card is used on  the higher-speed processor modules 
to provide this unique voltage. Each new version of 

processor ~iiodule is plug-in compatible, and systcms 
can be upgraded without clia~iging tlie motherboard. 
This is true even if the frequency of the synchronous 
memory interconnect changes, although all processor 
modules in the system must be configured to operate 
at the same speed. The oscillators for both the high- 
speed internal CPU clock and tlie memory intcrcon- 
nect bus clocl< are located on the processor niodulcs 
to allow processor upgrades to be made without mod- 
ifjing the motherboard. 

Summary 

Tlie high-performance DIGITAL AlphaSer\!cr 4100 
SMP server, which supports i ~ p  to four Alpha 21164 
CI'Us, was designed simply and cluicldy using off-thc- 
shelfcomponents and programmable logic. \ i n e n  tlie 
AlphaScrver 4100 system was introduced in May 
1996, the memory interconnect design enabled the 
server to achieve a minimu111 menlory latency of 
120 nanoseconds and a maximum memory band- 
\vidth of 1 gigabyte per sccond. This industr\!-leading 
performance \\[as achieved by using off-the-shelf data 
path and address components and progranimable 
logic behvecn tlie <:PU and the SDIUIM-based main 
memory. The motherboard, the s!~~iclironous memory 
module, and tlie no-esternal-cache processor module 
were developed concurrently to  optimize the perfor- 
mance of the memory architecture. Thcse core ~ n o d -  
ules were operating successfi~lly within six months of 
the start of the design. Tlie AlpliaServer 4100 liard- 
ware  nodules were designed to allow fi~ture enhance- 
ments \vithout redesigning the system. 

Acknowledgments 

Bruce Alford fro111 Revenue Systenis Eng~neering 
ass~sted with the schematic entry, module layout, 
manuhcturing Issues, and po\ver-up log~c des~gn,  and 
succeeded in smootlily transitioning the core module 
set to lin long-term engineering support organization. 
Roger Dame handled s~gnal integrity and timing 
analysis, \vIiile Dale I<eck and Arina Finltelstein 
u~orked 011 s i n i ~ ~ l a t ~ o n  Don Smelscr and Darrcl 
Donaldson prov~ded techn~cal gilldance and moral 
support. 

References and Notes 

1. Z. C\letano\jic and 1). I)onaldson, "AlphaServer 4100 
Pcrfor~~>ance <:hnractcrizatio~~," 13igit~il Techrticctl 
,/ot,lr17nl, vol. 8, no. 4 (1996, this issue): 3-20. 

2 .  S. Duncan, C. Kecfer, and T. ~McLaughlin, "High 
Perforniance 1/0 Design in the AlphnSer\~er 4100 Sym- 
metric Multiprocessing System," Digital Techrzical 
.Jo~~rnnl, vol. 8, no. 4 (1996, this issue): 61-75. 



3. The  .4lpli:iScrver 4000  s!,stcm contllins the same CPU- 
to-mcniory intcrt:lcc ns the AlplinSc~.vc~ 4100 s!.stclii 
but s ~ ~ p p o r t s  half the nu~i ibcr  ofproccs\ors and  mc~nory  
~ ~ l o c i ~ ~ l c s  a~lcl t\\,icc the n ~ ~ n i b c r  of I><:[ bridges. Thc  
AlphaScr\~cr 4000  motherboard \\,.IS iienigrtcd a t  thc 
same time 2s thc AlplinServcr 4100 ~niothcrl~oard but 
\\ .IS ~ i o t  p r o d ~ c c d  ~ ~ n t i l  nftcr the Alph;iScn.cr 4100 
n l o t l ~ c ~ ~ b o ; ~ r d  was a\failnble. 

4 .  iM. Stcinman c t  al., "Tlic AlpliaScr\,cr 4100  Cachrd 
I'roccssor Modu lc Architccturc ;111ti I)csign," Di,qi&c/l 
7i~cbiricol,Jo~/ri1~11, vol. 8, n o .  4 (1996, this issue): 
2 1-37. 

5. R .  I);lmc, "'l'hc AlphaScr\,cr 4100 Lo\\.-cost <:lock Dis- 
tr ibutio~i System," Digilol ' l~chi / ic~r / l . /o /11~11~11.  \,ol. 8, 
n o .  4 ( 1996, this issue): 38-47. 

6 .  A@ha 2 1 164 .Ilici~op~ncc~.s.sot. Hoizlrr.rli.c, NcjL,i-oir~-c~ 
, l l r~ i~ / / a l (M.~ynard ,  Mass.: L>igit;ll 1-quipmcnt Corpora- 
tion, Order No. KC-QAEQA-.I-(:, Scptcmbcr 1994).  

7 .  Tlic Fctcli command is not implcmcntcd on thc 
AlpliaScrver 4100 system, but t l~c rc  is no mcchnnism to 

kccp it from appearing o n  the ClM1) pins o f  thc Alpha 
21 164 (:PI chip. The  Fctch command is simply tcl-mi- 
natcd \vitliout any additional action. 

Biography 

Glenn  A. Herdeg  
Glenn Hcrdcg has been \vorkuig on the design ofcorn- 
putcr n i o d ~ ~ l c s  since joining Digital in 1983. A principnl 
hard\v;~rc rngiliecr in the AIphaServer Platfor111 1)cvclol)- 
mcnt p r o ~ ~ p ,  lie \\..is thc project leader, architect, logic 
dcsig~icr, and module dcsigner for t l ~ c  Alphaserver 4 100 
motherboard, no cstcrnal-cachc processor modules, and 
sy~rchnnious nicmory niodulcs. Hc also led thc design 
of  rlic Alph;lScn.cr 4000  nlotlicrboard. 111 carlicr \ \~ork, 
C;lc~>ri scrvcd as the principal ASIC .uld moduk dcsigncr 
for scvcral 1)EC 7000,  VAX 7000, a11d VAS 6000 p~.ojccts. 
H c  I~olds  :I U.A. ill pliysjcs from Colby <:c~llrge anti nl i  M.S. 
irl c471rlp1rtcr systems from Rcnssrlacr I'olytccl~~~ic I ~ l s t i t ~ ~ t c  
a11d 11~q two p~tc11ts.  Glenn is currently i~~\rol\,cd ill f 11.t1lc1. 

Vol. 8 No. 4 1996 



High Performance I10 
Design in the AlphaServer 
41 00 Symmetric 
Multiprocessing System 

The DIGITAL AlphaServer 4100 symmetric multi- 
processing system is based on the Alpha 64-bit 
RlSC microprocessor and is designed for fast 
CPU performance, low memory latency, and 
high memory and I10 bandwidth. The server's 
I10 subsystem contributes to the achievement 
of these goals by implementing several innova- 
tive design techniques, primarily in the system 
bus-to-PC1 bus bridge. A partial cache line write 
technique for small transactions reduces traffic 
on the system bus and improves memory latency. 
A design for deadlock-free peer-to-peer transac- 
tions across multiple 64-bit PC1 bus bridges reduces 
system bus, PC1 bus, and CPU utilization by as 
much as 70 percent when measured in DIGITAL 
AlphaServer 4100 MEMORY CHANNEL clusters. 
Prefetch logic and buffering supports very large 
bursts of data without stalls, yielding a system 
that can amortize overhead and deliver perfor- 
mance limited only by the PC1 devices used in 
the system. 

I 
Samuel H. Duncan 
Craig D. Keefer 
Thomas A. McLaughlin 

The Alphaserver 4100 is a s)r~iimetric ~nultiprocess- 
ing system based on the Alpha 21 164 64-bit N S C  - 7 microprocessor. .I his midrange system supports one 
to four CPUs, one to four 64-bit-wide peer bridges to 
the peripheral component interconnect (PCI), and 
one to  four logical memory slots. The goals for the 
AlphaServer 4100 system were fast (:PU performance, 
low menlory latency, and high memory and I/O 
bandu~idth. One measure ofsuccess in acliicving these 
goals is the AIM benchmark niultiprocessor perfor- 
mance results. Thc AlpliaSer\ier 4100 system was 
audited at  3,337 peak jobs per minute, with a SLIS- 
tained nu~iiber of  3,018 user loads, and won thc AIlM 
Hot Iron price/performance award in October 1996.' 

The subject of this paper is the contribution of  the 
T/O subs)atem to these high-performance goals. In an 
in-house test, 1/O performance of an AlphaSer\rer 
4100 system based on a 300-megahertz (MHz)  
processor shows a 10 to  19  percent improvement in 
1 / 0  when compared with a previous-generation~eratio~~ 
midrange Alpha system based o n  a 350-1MHz proces- 
sor. Reduction in CPU utilization is particularly bene- 
ficial for applications that use small transfers, e.g., 
transaction processing. 

I10 Subsystem Goals 

The goal tor the AlphaServer 4 100 I/O su bsystcni was 
to increase overall system performance by 

Reducing CPU and system bus utilizdtion for all 
applications 

Deliirering fill1 1/0 bandwidth, specifically, a band- 
\vidtll limited only by the PC1 standard protocol, 
which is 266 nicgabytes per second (MB/s) on 
64-bit option cards and 133  MB/s on 32-bit 
option cards 
Minimizing latency for all direct memory access 
(DMA) and progra~n~ncd 1 / 0  (1'10) transactions 

Our  discussion focuses on scveral innovative 
tecliniclues used in the design of the 1/0 subs)~ste~n 
64-bit-\\ride peer host bus bridges that dran~atically 
reduce CPU and bus utilization and deliver f i l l1  PC1 
bandwidth: 
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A partial cache linc \\.rite technique for coherent 
DMA writes. This technique permits an 1 / 0  device 
to insert data that is smnllcr than a cache line, or  
block, into the cache-colicrent domain without first 
obtaining owncrsliip of the cache block and pcr- 
forming a read-niodilj-write operation. Partial 
cache line writes reduce traffic on  the system bus 
and improve latency, particularly for messages 
passed in a MEMORY CHANNEL cluster.' 

Support for device-initiated transactions that target 
other devices (peers) across niultiple (peer) PC1 
buses. Peer-to-pccr transactions reduce system 
bus utilization, P<:I bus utilization, and CPU uti- 
lization by as niucli as 7 0  percent when measured in 
MEMORY CHANNEI., clusters. In  testing, we ran 
a MEMOI<Y <;HANNEL ;~pplication without pecr- 
to-peer D I W ,  ancl observed 85 percent Cl'U 
~~tilization; running the same application .i.ilitli peer- 
to-peer DiMA enabled, we observed 15 percent 
CPU utilization. 'l'lie pccr-to-peer technique is 
succcssf~~lly jmplelne~lted o n  the Luphascrvcr 4100 
system \vithout causing deadlocks. 

Large bursts of PCI-cie\rice-initiated 13MA data to 
or from system memory. 1 / 0  subsyste~n support 
For large bursts of DMA data enables efficient I'CI 
bus utilization because fixccl bus Idtency call be 
amortized over these large transactiorls. 

Prcfetclied read data anci posted write data buffcr- 
ing designed to keep up \\lit11 the highest perfor- 
mance PC1 devices. When used in combination 
\vith the PC1 delayed-I-caci protocol, the buffering 
and prefetching approach allonrs tlie system to 
avoid PC1 bus stalls introduced by the bridge dur- 
ing P<:I-device-initiated tra~isactions. 

The following overview of  the system colicerltrates 
on the areas in which these tcchniclues are used to 
enhance performance, that is, efficiency in the s)fstcni 
bus and in the PC1 bus bridge. In subsequent sections, 
we describe in greater detail the pcrforniance issues, 
other possible approaches to resolving the issues, and 
tlie techniques developed. We conclude the paper 
\\lit11 pel-forniance results. 

Alphaserver 4100 System Overview 

The AlpliaServer 4100 systcm shown in F i g ~ ~ r c  1 
includes four CPUs conncctcd to the system bus, 
\\!liicli comprises the data and error correction code 
(ECC;) and the comln'lnd .lnd address lincs. Also 
conncctcd to the system bus ,Ire main rncrnor!] u i ~ i  
a single module with h\'o independent peer 1'CI bus 
briclges. T l ~ e  singlc n i o d ~ ~ l c ,  tllc I'CI bridge niodulc, 
pro\~ides tlie physical and the logical bridge bet\vccn 
the s!lstem bus and the I'CI b ~ ~ s c s .  Each independent 
peer P(:I bus bridge is constructed of a set of three 

application-specific intcgratcd circuit (ASIC) chips, 
one control chip, and n\,o sliced data path chips. 

The nvo independent PC1 bus bridges arc the intcr- 
t3ccs between tlie system bus nnd their respective P<;I 
buses. A PC1 bus is 6 4  or  32 bits \vide, transferring 
data at a peak o f 2 6 6  MB/s or  133  MR/s, respectively. 
In tlie Alphaserver 4100 systcm, the PC1 buses arc 
6 4  bits wide. 

Thc PC1 buses connect to a PC1 backplane module 
with a number of  expansion slots and a bridge to  the 
Extended Industry Standard Arcliitccture (EISA) bus. 
In  Figure I ,  each PC1 bus is slio\\.n to support up to 
t i ~ u r  devices in option slots. 

The AlpliaServer 4000 series also supports a config- 
~lration in which nvo of  the CI'U cards are replaced 
with nvo additional indcpcndcnt peer PC1 bus 
bridges. In the quad PC1 bus configuration, there arc 
16 option slots available for P(:I dc\riccs, at the cost 
of bounding the systeni to n masim~im of nvo CPUs 
and nvo logical memor!! slots, l~ l i i s  q ~ ~ a d  1'C[ bus con- 
figuration is shown in F i g ~ ~ r c  2. 

 most of tlie techniques described in this paper arc 
implcmcntcd in the I T 1  bus bridge. The partid cachc 
linc \\?rite technique, presented nest, is also designeil 
into tlic protocol 01-1 the systcni bus ancl into the C P U  
cards. 

Improvements in CPU and System Bus Utilization 
through Use of Partial Cache Line Writes 

Iuet'ficicnt use of system rcsourccs can limit perfor- 
mance on heavily loaded systems. System designers 
must be attentive to  potential pcrh)rmance bottle- 
necks beyond the conlmonly addressed CPU speed, 
caclic loop time, and CPU mcrnory latency. Our  focus 
in the 1 / 0  subsystem design was to balance systelii 
pcrk)rmance in the face of  a \vide range of I /O device 
1~cIi;iviors. We therefore iniplemcntcd technicl~~es that 
minimize the load on the PC1 bus, the spstcnl bus, and 
the (:PUS. The technique dcscribcd in this section- 
partial cache line nlrites-reduces the load 011 the sys- 
tem bus and inipro\~cs ovcmll systcm pcrk)rmancc. 

 many first- and scconci-generation PC1 controller 
devices \\lcrc designed to operate in platk~rnls tliat 
support 32-byte caclic lincs and 16-hytc \\!rite buffers. 
It is common for an older 17(:1 dc\licc to liinit the 
amount of L~IMA data it reads or  writes to match this 
c I 1 .  .. . a! actcristic of coniputcrs tliat  ere 011 the market at 
tllc time those devices \vcrc designed. Some classes of 
devices \\Jill, by tlicir nature, iil\\!a!a liniit tlie amount 
of data ill a burst tra~isactioli. 

As d o  most Alpha platforms, the AlpliaServer 4100 
s!!stc~ii supports a 64-byte cache linc that is n\~icc that 
of other coliimon s!!stcms. When a PC1 device per- 
forms n ~nemory write of less than a complete caclie 
linc, the system must nicrgc the data into a cache line 
while maintaining ;I consistent (coherent) view of 
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D ~ g ~ u l  Tcclinicnl Journal Vol. 8 No. 4 1996 63 



mcmory for all CPUs on the system bus. Tliis merging 
of \vritc data into tlic cache-coherent domain is typi- 
cally done on the PC1 b i ~ s  bridgc, \\~hicIi reads the 
cnclic linc, nlcrgcs the ne\ \  bytcs, and \\!rites tlic caclic 
line back o ~ ~ t  to nienior)l. The rccid-modi%-\\'rite ~iiusr 
be ~.xrfornied as an atoniic operation to maintain 
mcniory consistency. For the duration of the atoniic 
read-niodi+-write operation, the systcm bus is busy. 
Conscqucntly, a write of  less than a cachc linc results 
in a read-~nodifjl-write that takes at least thrcc tinics as 
many cycles o n  tlie systeln bus as a simple 64-byte- 
aligned caclic line \\Trite. 

For example, if we had used an c~r l i c r  DIGITAL 
iniplcnicntation of a s!lstcm b ~ ~ s  protocol o n  the 
AlphaScr\fcr 4100 system, an 1 / 0  dc\~icc opcration 
o n  the L'CI that perfor~ncci a single 16-byte-aligned 
mcmory \\lritc \vould ha\ r  consumed system bus 
bnnci\vidtli that c o ~ ~ l d  ha1.e mo\~ed 256 bytcs of  data, 
or  1 6  timcs the amount of  data. We tlicrcforc had to 
find a Iiiorc efficient approach to writing subblocks 
into the cache-coherent donlain. 

We first examined opportunities for cfficicncy gains 
in the mcmory The AlpliaScr\~cr 4100 mcm- 
ory systcm interface is 16 bytes \vide; a 64- byte cache 
line rc;d or  \\Trite takes four cycles o n  the systcm bus. 
Tlic Iiicmory modules themselves can be dcsig~icd to 
mask one or liiore of the \\,rites and allon, al ig~ic~i 
blocks that arc niultiples of 16  bytes to be \\~rittcn to 
nicniory in n single system bus t rans ,~ct io~~.  Tlic prob- 
lem with permitting a lcss th'ln coniplctc caclic linc 
\\(rite, i.c., lcss tll;l~i 64 bytcs, is that tlic \vritc goes to 
main memor!l, but the only LIP-to-dntc/co~iipIctc 
copy of a caclie line may be in 3 CI'U card's caclic. 

T o  permit the more efficient partial cnclie line 
writc operations, ~ v c  modified tlic systcm bus cache- 
coherency protocoJ. When a PC1 bus bridgc issues 
a partial cachc linc \\/rite on  the system bus, each <:PU 
card performs a cache lookup to scc if the targct of 
the \\!rite is dirty. I n  the event that tlic targct cnclic 
block is dirty, tlie <:PU signals the P(:I bus bridgc 
bck)rc thr end of the partial \\lritc. On ciirty partial 
cnclic linc write trans~ctions, the bricigc simply pcr- 
forms a second transaction as a rend-modi~-write.  If 
the targct caclic block is not dirty, the operation com- 
plctcs in a si~iglc system bus transaction. 

Address traces taken during product dc\clopment 
\verc simulated to determine the f req~~cncy of  dirty 
cache blocks tliat are targets of DMA writcs. Our  sim- 
ulations showed that, for the address trace we used, 
frccli~c~~cy \\pas extremely rare. Mcnsurcmcnt taken 
from several applications and bcnclimnrlts confirmcci 
that a dirty cnclie block is alniost never asserted \\/it11 
a piirtial caclic linc \\!rite. 

'Tlie l>MA transfcr of blocks that arc aligned 
m~~ltiplcs of 16 bytes but less than a c;lclic line is four 
timcs more efficient in tlie 4100 system tlia~i in earlier 
l>IGITAL. implcmcntations. 

i U ~ \ ~ c r n c n t  of blocks o f  lcss than 64 h!,tcs is 
irnport'uit to application performance hccausc thcrc 
are liigli-pcrf~~rmnncc dc\riccs tliat move Its\ tlinn 
64 bytes. One csamplc is DIGITAL'S MI:IUOI<Y 
(;HANNF,l. ncinptcr, \\lliicli moves 32-byte blocks i r ~  a 
burst.'As MEIMOI<Y CHANNEL adapters n ~ o \ ~ c  Inrgc 
numbers of blocks that arc all Jess than a cachc linc of 
data, the 1 / 0  subsystc~n partial cache linc writc feati~rc 
improves systcni ~ L I S  ~~tilization and eliminates the 
systcnl bus as a bottleneck. Message latency across tlic 
fabric of an AlpliaScr\/cr 4100 lMElMORY CHANKliI. 
cluster (version 1.0) is approximately 6 microseconds 
(ps) .  Tlicrc ~l rc  t\\.o I)IMA \\?rites in the mcssagc: the 
first is ;I J I ICSS;I~C,  nnd tlic second is a flag to \ralid,ltc tlic 
lucssagc. Tlicsc l>hllA \\rrjtcs (111 the target Alph,lScr\.cr 
4100 contribute to message Intenc!: 'The jmpro1.c 
nient in latency pro\lidccl by the partial cache line \\.rite 
featurc is approsimntcly 0.5 ~s per \\,rite. Witli t\vo 
\\.rites per message, latcncy is reduced by appl-osi- 
niatcly 1 5  percent over an AlpliaSer\~er 4100 systcm 
\vitIi the partial caclic linc writc feature. Witli version 
1.5 of  MEJ\~ORY CHANNF.1, adapters, net I;ltcncy 
\vill improve by ; ~ l > o ~ ~ t  3 FS, and the eff'ect of partial 
cache linc writcs \ \ J i l l  approach a 30 percent impro\,c- 
nient in message latency. 

I n  sulnmar!,, the cliallc~igc is to efficiently n ~ o \ ~ c  n 
block of d d r ~  of a common size (multiple of 16 h!,tcs) 
that is s~iiallcr tlian ;I caclic linc into the c,lclie-colicrcnt 
domain. Wi t l io~~ t  ally fi~rtlicr impro\rement, the tccli- 
n iqw rcciuccs system bus utilization by as r n ~ ~ c l l  ns 11 

factor of ~ ) L I I - .  Tliis tcclinicluc allows subblocks to bc 
merged \\.ithout i~icurring the overhead of rend-modi$- 
write, yet maintains caclic coherency. Tlie only draw- 
back to the tccli~iiquc is sonic illcreased con~plcxity in 
the CPU cachc controller to support this mode. We 
considered tlie alternative ofadding a small cache to tlic 
PC1 bridge. Writes into the same memory region that 
occur \\,irIiin n short pcriotl of timc could merge dircctly 
into '1 caclic. Tliis npproncli adds significant complexity 
and incrc<~scs performance only if transactions tliat tar- 
get tlic same cachc linc arc \.cry close toget1ic1- in timc. 

Peer-to-Peer Transaction Support 

System bus anti 1'<;1 bus utilization can be optimizccl 
for certain applications by limiting tlie nunibcr of ti~iics 
the sanic block of data moves through the system. 
As noted in the section AlphaScrvcr 4100 Systcm 
Overview, the I'CI si~bs!~stc~ii can contain t\\lo or  b u r  
independent PC1 bus bridges. Our  design al1ou.s cxtcr- 
nal de\riccs connected to tlicsc scparatc pccr I'CI bus 
bridges to slinrc darn \ \ ~ i t l i o ~ ~ t  ,icccssing main mcmor!r 
and by  sing a nii~ii~nal aniollnt ofhost bus L>ancl\\riilrli. 
In other \\,ords, external dc\,iccs can effect direct access 
to clata on 3 peer-to-peer basis. 



111 conventional syste~iis, a data file on  a disk that is 
reqi~ested by a clic~lt node is transferred by DMA from 
the disk, across the PC1 and the system bus, and into 
main memory. Once the data is in ~iiain memory, a net- 
u~ork device can rcad the data directly jn memory and 
send it across the network to the client node. 111 a 4100 
system, device peer-to-peer transaction circumvents 
the transfer to main memory. Ho\vever, peer-to-pwr 
transaction rcquires that the target dc\~ice Iiave certain 
properties. The csscntial property is that the device tar- 
get appear to the source device as if it is main memory. 

The balance of this section explains how conven- 
tional 1)MA reads and \\?rites are performed on the 
AlpliaServer 4100 system, how the infrastructure for 
conventional DMA can be used for pcer-to-pccr trans- 
actions, and ho\v deadlock avoidance is accomplished. 

Conventional DMA 
We extended the features of con\cntional DMA on the 
NphaScrvcr 4100 system to support peer-to-pccr 
transaction. Conventional DA4A in the 4100 systc111 
works as follows. 

Address space 011 the Alpha processor is 2:" o r  1 tera- 
byte; the AIphaServer 4100 system supports up t o  
8 gigabytes (GB) of main memory. To directly address 
a11 of memory without using memory management 
liard\varc, an addrcss must be 33 bits. (Eight GB is 
ecli~ivalent to 2.'.' bytes.) 

Becai~se the amount of memory is large compared to 
address space available on the PCI, some sort of inem- 
or)! management hardware and sohvare is needed to 
mal<e melnory directly addrcssablc by PC1 de\iiccs. 
Most PC1 de\/ices use 32-bit DiMA addresses. To  pro- 
vide direct access for evcry PC1 device to  all of  the sps- 
tern address space, the PC1 bus bridge has melnory 
management hardware similar to that which is i~sed on  

a Ci'U daughter card. Each PC1 bridge to  the system 
bus has a translation look-aside buffer (TLB) that con- 
verts PC1 addresses into system bus addresses. The use 
of  a TLB permits hardware to  make all of  physical 
memory visible through a relatively small region of 
addrcss space that \\re call a DMA \vindow. 

A DMA windo\\/ can be specified as "direct 
mapped" or "scatter-gather mapped." A direct- 
riiapped Db1A wi~ido\il adds an offset to the PC1 
addrcss and passes it on to the system bus. A scatter- 
gather mapped DMA window ilses the TL,B to look up 
the system bus address. 

Figure 3 is an example of how PC1 memory address 
space might be allocated for DMA windo\vs and for 
PC1 device control status registers (CSRs) and memory. 

A PC1 device initiates a DMA writc by driving an 
address on the bus. In Figure 4 ,  data from PC1 dcviccs 
0 and 1 are sent to the scatter-gather 13MA windows; 
data from 1'CI dcvicc 2 are sent to tlie direct-mapped 
DAM n~indo\v. When an address hits in one of the 
DMA windows, the PC1 bus bridge acluiowledges 
the addrcss and immediately begins to accept write 
data. While consu~n i~ lg  write data in a buffer, the PC1 
bus bridge translates the 1'CI address into a system 
address. The bridge then arbitrates for the system bus 
and, using the translated address, completes the write 
transaction. The write transaction completes on the 
1'CI before it completes on the system bus. 

A DIMA rcad transaction has a longer latency than 
a 1)MA write because the PC1 bus bridge niust first 
translate the PC1 address into a syste~ii bus address and 
fetch the data before completing the transaction. :That 
is to say, tlie read transaction completes 011 the systen~ 
bus before it can complete on  the PCI. 

Figure 5 shows the address path through the 1'CI 
bus bridge. All DMA writes and reads are ordered 

SYSTEM ADDRESS SPACE 
(240 BYTES) 

PC1 MEMORY ADDRESS SPACE 
(232 BYTES) 

PC1 DEVICE CSRs 
SCATTER-GATHER WINDOW 0 

112 ME PC1 DEVICE CSRs 

384 MB (UNUSED) 

512 MB SCATTER-GATHER WINDOW 1 a 
PC1 DEVICE PREFETCHABLE 
MEMORY SPACE 

DIRECT-MAPPED WINDOW 2 

Figure 3 
Esamplc oEl'CI Memory Addrcss Space Mnppcd to DMA Windows 
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Diagram o f  Data Paths in a Singlc PC1 1311s Bsidgc 

through the outgoitig queuc (OQ) en route to the sys- Followi~lg is an esatnplc of how a con\~entional 
tern bus. DMA read data is passed through an incom- "bo~~nce"  DMA operation is itscd to move a file from a 
ing queue (IQ) bypass by \vay o fa  DMA fill data buffer local storage device to  a ncnvork device. The cxa~nple 
en route to the PCI. illustrates ho\v data is \\,rittcn inro memory by one 

Note that the IQ  orders Cl'U-initiated P I 0  transac- cic\,icc \\'here it is temporarily storcd. Later thc data is 
tions. I Q  bypass is necessary for correct, dead- read by another DhllA cit.\~icc. This operation is called 
lock-frec operation ofpecr-to-peer transactions, \\lhich a "bounce I/O" because thc data "bou~iccs" off 
are esplaincd in the next section. 
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memory and out a network port, a common operation 
for a network file server application. 

Assume PC1 device A is a storage controller and PC1 
device R is a network device: 

1. Tlie storagc controller, PC1 device A, writes the file 
into a buffer on the PC1 bus bridge using an 
address that hits a DhL4 windo\\. 

2. The PC1 bridge translates the PC1 rncmory address 
into a system bus address and \\{rites the data into 
nlcnlor)l. 

3. 7'11~ CPU passes the network device a PC1 niemory 
space address that corresponds to the system bus 
address of the data in memory. 

4. Thc ncnvorl< controller, PC1 device R,  reads the file 
in main memory using a D I M  window and sends 
the data across the network. 

If both controllers are on the same PC1 bus segment 
and if the storage controller (PC1 device A) could 
write directly to the network controller (PC1 device 
B),  110 traffic '~\iould be introduced on the system bus. 
Traffic on the system bus is reduced by saving one 
DMA write, possibly one copy operation, and one 
DMA read. 011 tlie PC1 bus, traffic is also rcduced 
bccausc there is one transaction rather than two. 
When the target of a transaction is a de\iice other than 
main memory, the transaction is called a peer-to-peer. 
Peer-to-peer transactions on  a single-bus system arc 
simple, borderi~ig on trivial; but deadlock-free support 
on a system with multiple peel- 1'CI b ~ ~ s e s  is quite a bit 
morc difficult. 

This section has presented a high-level description 
of how a PC1 device DMA address is translated into 
a system bus address and data arc moved to or fi-om 
main memory. 111 tlie nest section, we show how tlie 
same mechanism is used to support device peer-to- 
peer transactions 2nd how traffic is managed for dead- 
lock avoidance. 

A Peer-to-Peer Link Mechanism 
For direct peer-to-peer transactions to work, the target 
device must bell;~\le as if it is main memory; that is, 
it must have a targct address in prefetchable PC1 mem- 
ory space? Thc PC1 specification tilrtlier states that 
devices are not allowed to clepend on  completion of 
a transaction as master.' Two devices supported by 
the DIGITAL UNIS operating system meet these 
criteria today with some restrictions; these are the 
MEMORY CHANNEL adapter noted earlier and 
the Prestoser\le N\IRAR/l, a nonvolatile niemory stor- 
age device used as an accelerator for transaction 
processing. The PNVIiAM \\/as part of the configura- 
tion in which the AIM benchmark results cited in the 
introduction were achieved. 

Roth conventional DMA and pccr-to-peer trans- 
actions worlc the samr \yay f r o ~ n  the perspective of 

the PC1 master: The device driver provides the master 
device with a target address, size of tlie transfer, and 
identificatio~i ofdata to be moved. 111 the case in which 
a data file is to be read from a disk, the device dri\ier 
sohvare gives the PC1 device that controls the disl< a 
"handle," \vhich is an identifier for tlie data file and the 
PC1 target address to \vhich the file should be written. 
To reiterate, in a con\~entional DIVA transaction, thc 
target address is in one of tlie PC1 bus bridge DMA 
\\~indo\\~s. -The DMI4 window logic translates the 
address into a main memory address on the system bus. 
In a peer-to-peer transaction, tlie target address is 
translated to a 2  address assigned to another PC1 device. 

Any PC1 device capable of DMA can perfor111 peer- 
to-peer transactions on tlie AIphaSer\rer 4100 s)atem. 
For example, in Figure 6, PC1 dcvice A can transfer 
data to  or from PC1 device R ~ ' i t h o u t  using any 
resources or  facilities in  the system bus bridge. Tlie use 
of a peer-to-pcer transaction is controlled entirely by 
sofm~are: The device driver passes a target address to 
PC1 device A, and device A uses the address as the 
DMA data source or  desti~lation. 

If the target of the transaction is PC1 device C, then 
system services sofis\lare allocates a region in a scatter- 
gather map and specifies a translation that maps the 
scatter-gather-~iiapped address on 1'CI bus 0 to a sys- 
tem bus address that maps to  PC1 device C. This 
address translation is placed in tlic scatter-gather map. 
Wlien PC1 device A initiates a transaction, the address 
matches one of the DMA windows that has been ini- 
tialized for scatter-gather. The PC1 bus bridge accepts 
the transaction, lool<s up the translation in the scatter- 
gather map, and uses a system address that maps 
through PC1 bus bridge 1 to  hit PC1 device C. The 
transaction on the system bus is betwcen the two PC1 
bridges, with no involvenlent by memory or CPUs. In 
this transaction, the system bus is utilized, but thc data 
is not  stored in ~nain  memory. This eliminates the 
intermediate steps and overhead associated \vith con- 
ventional DMA, traditionally done by the "bounce" of 
the data through main memory. 

The features that allo\\l sohvare to make a device on 
one PC1 bus segment visible to a device 011 another are 
all implicit in the scatter-gather mapping TLB. For 
peer-to-peer transaction support, we estended the 
range of translated addresses to include memory space 
on peer I'CI buses. This allows address space o n  one 
independent PC1 bus segment to  appear in a window 
of address space on a second independent peer PC1 
bus segment. O n  tlie system bus, the peer transaction 
hits in the address spacc of tlie other PC1 bridge. 

Deadlock Avoidance in Device Peer-to-Peer Transactions 
The definition of deadlock, as it is sol\red in this 
design, is the state in \vhich no progress can be made 
on any transaction across a bridge because the queues 
are fillcd with transactions that u~ill never complete. 
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A dcadlock situation is allalogous to highway gridlock 
in which two lines of  automobiles face each other o n  
a single-lanc road; there is no  rootn to  pass and no 
to back LIP. liulcs for dcadlock avoidance arc analo- 
gous to the rules for directing vehicle traffic on  n rial-- 

row bridge. 
An cs317iplc o f  peer-to-peer deadlock is one in 

which two 1'CI cic\~ices are dependent ou  the coniplc- 
tion of a \\:rite as masters before they \ \ r i l l  accept \\!rites 
as targets. When tliesc two devices target one another, 
tlic result is dcadlock; each device responds \\?it11 
luTKY to cvcry \\<rite in \\.hich it is the target, and 
each ticvice is i~nablc to complete its current \\<rite 
transaction bcca~~sc  it is being retried. 

A dcvicc that does /zo/ depend on completion of <I 

transaction as master before accepting a transaction as 
target may also cause deadlocks in a bridged environ- 
ment. Situations can occur on  a bridge in which multi- 
ple outstanding posted transactions must be kept in 
order. Carcfitl design is required to avoid the potential 
fo r  deadlock. 

The dcsigli tbl.  dcadlocl<-fiee peer-to-pcer transaction 
support in the AlphaScrvcr 4100 system includes the 

I 
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WRITES BYPASS I 
PENDED PI0 
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I 

Implcmcntation of PC1 delayed-read transactions 

Use of bypass paths in the IQ and in read-return 
data 

This section assumes that the reader is f~milinr with 
the l'(:I protocol and ordcritlg rules.-' 

Figure 6 sliou,s the data paths through two P(:I 
bus hricigcs. Transactions pass through thcsc briiigcs 
as hllo\\rs: 

(:PU sofi\\,arc-initiated P I 0  r e d s  and 1'10 \\)rites 
arc cntrics in the IQ. 
l)c\,icc pccr-to-peer transactions targeting dc\iccs 
o n  p c u  1'CI segments also LISC the IQ. 

P(:I-de\.icc-initiated reads and \\,rites (1')lMA or  
peu-to-peer), interrupts, and P I 0  fill data arc 
cntrics in the OQ. 

Thc m~~ltiplcscr sclcctillg cntrics in tllc IQ allo\vs 
\\/rites ( P I 0  o r  peer-to-peer) to bgpass dclaycd 
(pcndcd) rcads ( P I 0  or  peer-to-pccr). 

The read prcfetch address register permits rcnd- 
return in the OQ data to  bypass PC1 delayed rcads. 

The twro bypass paths around thc 1Q and OQ arc 
rcclttircd to avoid deadlocks that m y  occur during 
dc\~icc peer-to-pccr transactions. All PC1 orclcring ~ L I I C S  
arc sntisficd fi-om thc point of view of any single dcvicc 
in the system. The following example dcrnonstlx~cs 
dcadlock avoidance in a de\.ice peer-to-peer \\'rite and 
a cic\,ice PCCI--t~-peer read, rcfcrencing Figure 7. 



The configuration in the example is an AlphaServcr 
4100 system with four CPUs and two I'CI bits bridges. 
Devices A and C are siniplc master-capable DMA 
controllers, and devices B and D arc simple targets, 
e.g., video RAMS, network controllers, PNVRAiLl, or 
any device with prefetchable memory as defined in the 
PC1 standard. 

Esaniplc ofdevice peer-to-peer write block comple- 
tion of pended PI0  read-return data: 

1. PC1 device A initiates a peer-to-peer burst write 
targeting PC1 devicc D. 

2. Write data enters the O Q  on bridge 0, filling three 
posted write buffers. 

3. The target bridge, bridge 1, writes data froni 
bridge 0. 

4. When the TQ on bridge 1 hits a threshold, it 
uses the system bus flow-control to hold off the 
nest write. 

5. As each 64-byte block ofwrite data is retired out 
of the I Q  on bridge 1, an additional 64-byte 
(cache line size) write of data is allowed to move 
from the OQ on bridge 0 to the IQ on bridge 1. 

6. If  the O Q  on bridge 0 is fi~ll, bridge 0 will discon- 
nect from the current PC1 transaction and will 
retry all transactions on PC1 0 until an O Q  slot 
becomes available. 

7. PC1 device C initiates a peer-to-peer burst write, 
targeting PC1 device B; the same scenario follo\\a 
as steps 1 through 6 above but in the opposite 
direction. 

8. CPU 0 posts a rcad of PC1 memory space on PC1 
device E. 

9. CPU 1 posts a read of PC2 memory space on PC1 
device G. 

10. CPU 2 posts a read of PC1 memory space on PC1 
device F. 

11. CPU 3 posts a read of PC1 memory space on PC1 
device H. 

12. Deadlock: 

-Both OQs are stalled waiting for the corre- 
sponding IQ to complete an earlier posted write. 

-The design has two P I 0  read-return data (fill) 
buffers; each is hill. 

-The P I 0  read-return data must stay behind the 
posted writes to satis6 PCI-specified posted 
write buffer flusl-~ing rules. 

-A third rcad is at the bottom of each IQ, and it 
cannot complete because there is no  fill buffer 
available in which to put the data. 

To avoid this deadlock, posted writes are allowed 
to bypass delayed (pended) reads in the IQ, as 

sho\v~i in Figure 6. In the AlphaSer\~cr 4100 deadlock- 
avoidance design, the IQ will always empty, \vliich in 
turn allows the O Q  to empty. 

Note that the IQ bypass logic implemented for 
deadlock avoidance 011 tlie Alphaserver 4100 spstem 
may appear to violate General Rule 5 froni the PC1 
specification, Appendix E: 

A read transaction must push ahead of it through 
the bridge any posted writes originating on 
the same side of the bridge and posted before the 
read. Before the rcad transaction can complete on 
its originating bus, jt mi~st  pull out of the bridge 
any posted writes that originated on tlie opposite 
side and were posted before the read comnialld 
completes on the read-destination bus.4 

In fact, because of the charactcrist~cs of tlie CPUs 
and the flow-control mechanism on the system bus, all 
rules are followed as observed fiom any single CPU or 
PC1 device in the system. Because reads that target 
a PC1 address are alwa)ls split into separate request and 
response transactions, the appropriate ordering rule 
for this case is PC1 Specification Delayed Transaction 
R L I I ~  7 in Section 3.3.3.3 ofthe PC1 specification: 

Delayed Requests and Delaved Conlpletions 
have no  ordering requirements with respect to 
themselves or each other. Only a Delayed Write 
Completio~l can pass a Posted Memory Write. A 
Posted Memory Write must be given an oppor- 
tunity to pass everything except another Posted 
Memory Write.' 

Also note that, as show11 in Figure 6, the DMA fil l  
data buffers bypass the IQ, apparently violating 
General Rule 5. The purpose of General liule 5 is to 
provide a mechanism in a device on one side of a bridge 
to ensure that all posted writes have completed. This 
rule is required because interrupts on I'CI are side- 
band signals that may bypass all posted data and signal 
completion of a transaction before the transaction has 
actually completed. In the AlphaServer 4100 system, 
all writes to or from PC1 devices are strictly ordered, 
and there is no side-band signal notifjling a PC1 device 
of an event. These system characteristics allow the PC1 
bus bridge to permit DMA fill data (in PC1 lexicon, this 
could be a delayed-read completion, or read data in a 
connected transaction) to bypass posted memory 
writes in the IQ. This bypass is necessary to limit PC1 
target latency 011 DMA read transactions. 

We have presented two IQ bypass paths in the 
AlphaServer 4100 design. We describe one IQ bypass 
as a reqilired feature for deadlock avoidance in peer- 
to-peer transactions between devices on different 
buses. The second bypass is required for performance 
reasons and is discussed in the section 1 /0  Bandwidth 
and Efficiency. 
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Required Characteristics for Deadlock-free Peer-to-Peer 
Target Devices 
PC1 devices must follo\\~ all PC1 standard ordering 
r ~ ~ l e s  for deadlock-free peer-to-peer transaction. The 
specific rule relevant to the Alphaserver 4100 design 
For peer-to-peer transaction support is Delayed 
Trans'ictio~i Rule 6, \vhich guarantees that the IQ \ \ , i l l  
al\\,ays cmpn.: 

A target r n ~ ~ s t  accept all memory \\.rites 
addressed to it while completing a request using 
Delayed Transaction terrninatio~i.~ 

Our  design includes a linlc ~nechanisni using scatter- 
gat her TLBs to create a logical connection benveen two 
PC1 devices. It includes a set ofrules for bypassing data 
that ensures deudlock-free operation when all partici- 
pants in a peer-to-peer transaction follow the ordering 
rulcs in the PC1 standard. The link mechanism provides 
a logical path for peer-to-peer transactions and the 
bypassing r ~ ~ l e s  guamntee the IQ \\ill  al\\.~!rs drain. 
The key fcature, then, is a bmarantee that the IQ \\;111 

al\\.iiys dl-ain, thus ensuring deadlock-free operation. 

I10 Bandwidth and Efficiency 

With o\.erall system performance as our  goal, we 
selected nvo design approaches to deli\,cr fill1 PC1 
batid\vidth ~\,ithout bus stalls. These \\;ere support for 
large bursts of PCI-device-initiated DMA, and suffi- 
cient buffering and prefetching logic to keep up \vith 
t l ~ c  PC1 and a\.oid introducing stalls. We open this sec- 
tion with a revie\\. of the bandwidth and latency issues 
\\re exanlined in our efforts to  achieve greater band- 
\vidth efficiency. 

Thc band\~idth  available on a platfor111 is dependent 
on the efficiency of the design and on  the type o f  
transactions performed. Band\vidth is measured in 
millions of bytes per second (MR/s). O n  a 32-bit 
l'C1, the available bandwidth is efficiency ~n~~l t ip l i cd  
by 133 MB/s; on  a 64-bit PCI, available bandwidth is 
efficiency multiplied by 266  MB/s. By efficiency, nJe 
mean the amount of time spent actually transferring 
data as compared \\,it11 total transaction time. 

Both parties in a transaction contribute to  efficiency 
o n  the bus. The Alphaserver 4100 1 / 0  design kecps 
the o\,erhead introduced by the system to a minimum 
and s ~ ~ p p o r t s  large burst sizes o\,er \vhic.Ii thc  pcr- 
tr~nsaction overhead can be amortized. 



Support for Large Burst Sizes 
To predict the etliciency of a given design, one must 
break a transaction into its constituent parts. For exam- 
ple, when an 1 /0  device initiates a transaction it must 

Arbitrate for the bus 

Connect to the bus (by driving the address of the 
transaction target) 

Transfer data (one or more bytes move in one or 
more bus cycles) 

Disconnect from the bus 

Time actually spent in an 1 / 0  transaction is the 
sum of arbitration, connection, data transfer, and 
disconnection. 

The period of time before any data is transferred 
is typically called latency. With small burst sizes, band- 
width is limited regardless of latency. Latency of 
arbitration, connection, and disconnection is fairly 
constant, but the amount of data moved per unit of 
time can increase by making the 1 / 0  bus wider. The 
Alphaserver 4100 PC1 buses are 64 bits wide, yielding 
(etlicienql X 266 MB/s) of available bandwidth. 

As shown in Figure 8, efficiency improves as burst 
size increases and overhead (i.e., latency plus stall 
time) decreases. Overhead introduced by the 
Alphaserver 4100 is fairly constant. As discussed ear- 
lier, a DIMA write can complete on the PC1 before it 
completes on the system bus. As a consequence, we 
were able to keep overhead introduced by the plat- 
form to a minimum for DMA writes. Recognizing that 
efficiency improves with burst size, we used a queuing 
model of the system to predict how many posted write 
buffers were needed to sustain DAM \\/rite bursts with- 
o ~ ~ t  stalling the PC1 bus. Bascd on a sirn~~lation model 
of the configurations shown in Figures 1 and 2, we 
determined that three 64-byte buffers werc sufficient 
to stream DMA writes from the (266 MB/s) 1'CI bus 
to the (1 GB/s) system bus. 

Later in this paper, \ve present measured perfor- 
mance of DMA write bandwidth that matches the sim- 
ulation model results and, with large burst sizes, 
actually exceeds 95 percent efficiency. 

Prefetch Logic 
DMA writes complete on the PC1 before they com- 
plete on the system bus, but DMA reads must wait for 
data fetched from memory or from a peer on another 
PCI. As such, latency for DMA reads is al\vays worse 
than it is for writes. PC? Local B ~ i s  Spec@ccition 
Keuisioi7 2.1 provides a delayed-transaction mechanism 
for devices with latencies that exceed the PC1 initial- 
latency requirement.' The initial-latency requirement 
on host bus bridges is 32 PC1 cycles, ~\/hicli is the max- 
imum overhead that may be introduced before the 
first data cycle. The Alphaserver 4100 initial latency 
for memory DMA reads is between 18 and 20 PC1 
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PC1 Efficiency as a Function of Burst Sizc 2nd Latency 

cycles. Peer-to-peer reads of devices on different bus 
segments are always converted to delayed-read trans- 
actions because the best-case initial latency will be 
longer than 32 PC1 cycles. 

PC1 initial latency for D M  reads on the 
Alphaserver 4100 system is commensurate with 
expectations for current generation quad-processor 
SMP systems. To maximize efficiency, we designed 
prefetching logic to stream data to a 64-bit PC1 device 
~v i t l~ou t  stalls after the initial-latency pe~ialty has been 
paid. To make sure the design could keep up with an 
uninterrupted 64-bit DMA read, we used the qi~euing 
model and analysis of the slatem bus protocol and 
decided that three cache-line-size prefetch buffers 
would be sufficient. The algorithm for prefetching 
uses the advanced PC1 commands as hints to deter- 
mine how far memory data prefetching should stay 
ahead of the PC1 bus: 

Memory Read (MR): Fetch a single 64-byte cache 
line. 

Memory Read Line (MRL): Fetch two 64-byte 
cache lines. 

Memory Read Multiple (MRM): Fetch nvo 
64-byte cache lines, and then fetch one line at 
a time to keep the pipeline full. 

M e r  the PC1 bus bridge responds to an MRM corn- 
mand by fetching two 64-byte cache lines and the scc- 
ond line 1s returned, the bridge posts another read; as 
the oldest buffer is unloaded, new reads arc posted, 
keeping one buffer ahead of the PCI. The third 
prefetch buffer is reserved for the case in which a DMA 
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MRM completes while there arc still prefctcli rcads 
outstanding. Reservation of this buffer accomplishes 
two things: (1) it eliminates a time-delay bi~bble that 
would appear between consec~~tive DNA read trans- 
actions, and (2) it maintains a resource to fetch a 
scatter-gather translation in the event that tlie next 
transaction address is not in the TLR. Measured DMA 
bandwidth is presented later in this paper. 

The point at which the design stops prefetching is on  
page boundaries. As the DlMA window scatter-gather 
map is partitioned into 8-IU3 pages, the jnterface is 
designed to disconnect on 8-IU3-aligned addresscs. 

The advantage of prefetching reads and absorbing 
posted \\?rites on this system is that the burst size can 
be as large as 8 KR. With large burst size, the overliead 
of connecting and disconnecting from the bus is 
amortized and approaches a negligible penalty. 

DMA a n d  PI0 Performance Results 

We haire discussed tlie relationship bct\veen burst size, 
initial latency, and bandwidth and described several 
techniques we used in tlie AlpliaScrver 4100 PC1 bus 
bridge design tcj meet the goals for high-band\vidth 
I/O. This section presents tlie performance delivered 
by the 4100 1 / 0  subsystem design, which has been 
measured using a high-performance PC1 transaction 
generator. 

Wc collected performance data under thc UNIX 
operating system \\it11 a reconfigurable interfilce card 
developed at DIGITAL, called PC1 Pamette. I t  is a 
64-bit PC1 option \vith a Xllinx FPCA interface to 
PCI. The board nras configured as a programmable 
PC1 transaction generator. In this configuration, the 
board can generate burst lengths of  1 to  512 c)rclcs. 
DMA either runs to a fixed count of \vords transferred 
or runs continuous.ly (software selected). 'I'lic DMA 
engine runs at a fised cadence (delay benvecn bursts) 
of 0 to 1 5  cycles in tlie case of a fixed count and at 0 to 
63 cycles when run continuous1)r. 

The source of the DMA is a combination of  a fire- 
running counter that is clocked using the PC1 clock 
and a PC1 transaction count. The free-running counter 
time-stamps successi\lc \vords and dctccts wq' ~t states 
and delays benveen transactions. 'The transaction count 
identifies retries as \ d l  as transaction boundaries. 

As the target of  P I 0  read o r  write, the board can 
accept arbitrarily large bursts ofeither 32 or  6 4  bits. I t  
is a medium decode device and alwaja operates with 
zero wait states. 

DMA Write Efficiency and Performance 
Figure 9 sho\vs the close cornpanson bctwccn the 
AlphaServer 4100 system and a ncarly pcrfcct I'CI 
design In me'~sured DMA ~ ~ 1 - 1 t e  bancl\vidth. As 
explained above, to  sustain large bursts of DlMA 
\vrites, wve implemented thrcc 64-byte posted \\trite 

BURST SIZE (BYTES) 
KEY: 

IDEAL PC1 
MEMORY WRITE (MEASURED) 

Figure 9 
Conlparison of l\/lensured DIMA Write Performance on an 
Idcal 64-bit PC1 3 r d  o n  3n Alph,~Ser\~er 4100 System 

buffers. Si~ni~lntion predicted that this ~ i u ~ n b e r  of 
buffcrs \ v o ~ ~ l d  be sufficient to sustain hll band\vidth 
DIVA writ~s-e\~en \vhen the systern bus is extremely 
busy-because tlie bridges to  the PC1 are on a shared 
system bus that has roughly 1 GB/s available band- 
width. The PC1 bus bridges arbitrate for the shared 
systenl bus at a priority liiglier than the CPUs, but the 
bridges arc permitted to execute only a single transac- 
tion each tinlc t1ie)l \\!in the systcnl bus. Therefore, in 
tlie nrorst case, a PC1 bus bridge \vill wait behind three 
other PC1 bus bridges for a slot on the bus, and each 
bridge \\,ill have at  least one quarter of the available 
system bus band\vidth. With 250 MB/s available but 
with potential delay in accessing the bus, three posted 
\\{rite buffers are sufficient to niaintain f ~ ~ l l  PC1 band- 
\vidth for memory \\?rites. 

The ideal PC1 system is represented by calculates 
performance data for comparison plIlQOSCS. It is a sys- 
tem that has three cycles of  target latency for \vrites. 
Three cycles is the best possible for a medium decode 
device. The goal for DkM writes was to deliver perfor- 
lnance limited only by the PC1 device itself, and this 
goal \\,as achic\led. Figure 9 demonstrates that mea- 
S L I ~ C ~  DMA write performance on the AlpliaSer\ler 
4100 system approaches theoretical masimunis. The 
colnbination o f  optimizations and innovations used 
on this platform yielded an implementation that meets 
the goal for DMA writes. 

DMA Read Efficiency and Performance 
As noted in the section Prefctcll Logic, band\vidth 
performance of DMA rcads nlill be lo\ves than the pcr- 
formancc of  f>MA \vritcs o n  all systelns because thcre 
is delay in fetching the read data from niemory. For 
this reason, we inc l~~ded  three cache-linc-size prefetch 
buffers in the design. 
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Figure 10 compares DA/M read bandwidth mea- 
sured 011 the AlphaServer 4100 system with a PC1 sys- 
tem that has 8 cycles of  initial latency in deli\lering 
DMA read data. This figure shows that delivered 
bandwidth improves on  the AlphaServer 4100 system 
as burst size increases, and that the effect of initial 
latency on measured performance is diminished with 
larger DMA bursts. 

Tlie ideal PC1 system used calculated performalice 
data for co~iiparison, assuming a read target latency of 
8 cycles; 2 cycles are for medium decode of the 
address, and 6 cycles are for memory latency of 180  
nanoseconds (ns). This represents about the best per- 
formance that can be achieved today. 

Figure 10 shows memory read and memory read 
line commands with burst sizes limited to what is 
expected from these commands. As explained else- 
where in this paper, memory read is used for bursts of 
less than a cache line; menzoly read line is used for 
transactions that cross one cache line boundary but are 
less than two cache lines; and mcmory read ~nulk@le 
is for transactions that cross mfo or more cache line 
boundaries. 

Tlie efficiency of nzeinoly read and nze~noly 
read line does not improve with larger bursts because 
there is n o  prefetching beyond the first or  second 
cache line respectively. This sho\.vs that large bursts 
and use of  the appropriate PC1 commands are both 
necessary for efficiency. 

Performance of PI0 Operations 
P I 0  transactions are initiated by a CPU. AlphaServer 
4100 P I 0  performance has been measured 011 a 

system with a single CPU, and the results are pre- 
sented in Figure 11.  The pended protocol for flow 
control o n  the system bus limits the number of  read 
transactions that call be outstanding from a single 
(:PU. A single CPU issuing reads \vill stall waiting for 
read-return data and cannot issue enough reads to 
approach the bandwidth limit of the bridge, LMeasured 
read performance is quite a bit lower than the tlieoret- 
ical limit. A system with multiple CPUs doing P I 0  
reads-or peer-to-peer reads-\\rill deliver P I 0  read 
bandwidth that approaches the predicted performance 
of  the PC1 bus bridge. P I 0  writes are posted and the 
CPU stalls only when the writes reach the IQ thresh- 
old. Figure 11 shows that P I 0  writes approach the 
theoretical limit of the host bus bridge. 

P I 0  bursts are li~iiited by the size of the 1/0 read 
and write merge buffers o n  the CPU. A single 
Alphaserver 4100 CPU is capable of bursts up to 
32 bytes. P I 0  writes are posted; therefore, to avoid 
stalling the slatem with syste11i bus flo\\~ co~itrol, in the 
maximum configuration (see Figure 2) ,  we provide a 
minimum of three posted write buffers that may be 
filled before flow control is used. Configurations with 
fewer than the maximum number of CPUs can post 
more P I 0  writes before encountering flow control. 

Summary 

The DIGITAL AlphaServer 4100 system incorporates 
design innovations in the PC1 bus bridge that provide 
a highly efficient interface to 1 / 0  devices. Partial 
cache line writes improve the efficiency of  small writes 
to memory. The peer link niecha~iisni uses TLBs to 
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Figure 10 
Comparison of D M  Read Bandwidth on the AlphaServer 4100 System and on  an Ideal PC1 System 
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Figure 11 
Comparison ofAlpliaSer\ter 4100 P I 0  Performance \\litli Tlicoretical 32-bvtc Burst Peak Performance 

map dcvicc address space on  independent peer 1'CI 
buses to permit direct peer transactions. Reordering of  
transactions in queues on the PC1 bridge, combined 
with thc use of 1'CI delayed transactions, pro\,ides a 
deadlock-free design for peer transactions. Buffers and 
prefetch logic that support very large bursts without 
stalls yield a s!,stem that can amortize o\,erhead a n d  
deliver performance limited only by the PC1 devices 
used in the system. 

I n  summary, this system meets and exceeds the per- 
formance goals established for the 1/0 subsystem. 
Notably, 1/0 subsystem support for partial cache line 
writes and for direct peer-to-peer transactions signifi- 
cantly improves etficiency of operation in a MEMORY 
CHANNEL cluster system. 
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I 
Viphi V. Gokhale 

Design of the 64-bit 
Option for the Oracle7 
Relational Data base 
Management System 

Like most database management systems, the 
Oracle7 database server uses memory to cache 
data in disk files and improve the performance. 
In general, larger memory caches result in better 
performance. Until recently, the practical limit 
on the amount of memory the Oracle7 server 
could use was well under 3 gigabytes on most 
32-bit system platforms. Digital Equipment 
Corporation's combination of the 64-bit Alpha 
system and the DIGITAL UNlX operating system 
differentiates itself from the rest of the com- 
puter industry by being the first standards- 
compliant UhllX implementation to support 
linear 64-bit memory addressing and 64-bit 
application programming interfaces, allowing 
high-performance applications to directly access 
memory in excess of 4 gigabytes. The Oracle7 
database server is the first commercial data- 
base product in the industry to exploit the per- 
formance potential of the very large memory 
configurations provided by DIGITAL. This paper 
explores aspects of the design and implementa- 
tion of the Oracle 64 Bit Option. 

Introduction 

Historically, the li~uiting factor for the 0riicle7 rela- 
tio~ial database management system (RDBlMS) perfor- 
mance on any given platform has bcen'tlie amount of 
computational and 1 / 0  rcsourccs available on a single 
node. Although CPUs have beconic faster by an order 
of  lnagnitude over the last sc\reral years, 1 / 0  speeds 
ha1.c 11ot irnprojred co1nmcnsur3tcl!,. For instance, the 
Alp11.1 CPU clock speed alone has increased four times 
since its introduction; during the same time period, 
disk access times have improvcd by a factor of nvo at 
bcst. The overall t h r o ~ ~ g h p ~ ~ t  of  database soft\\lare is 
critically depende~lt o n  the spccd of access to data. 

To overcome the I/O speed limitation and to maxi- 
mize performance, the standard Oracle7 database server 
already ~~tilizes and is optimized for various parallelizu- 
tion tcchniclues in soh\,arc (e.g., intelligent caclung, 
data prefetching, and parallel query execution) and in 
hard\vare (e.g., symmetric niultiprocessing [SIMP] sys- 
tems, clusters, and massively parallel processuig [LMPP] 
systems). Given the disparity i l l  latency for data access 
bct\\rcn memory (a fe\v tens of nanoseconds) and disk 
(a fc\v milliseconds), a common technique for maximiz- 
ing perfor~nance is to minimize disk I/O. Our project 
originated as an investigation into possible additio~lal 
performance improvements in tile Oracle7 database 
server in the context of increased memory addressability 
and eseciltion speed pro\rided by the AlphaSenler and 
DIGITAL UNLY system. Work done as part of tl1.i~ proj- 
ect subsequently became the foundation for product 
de\,elopment of the Oracle 64 Bit Option. 

O f  the memory resource that the Oracle7 database 
uses, the largest portion is used to  cache the most fre- 
quently used data blocks. With hardware and operat- 
ing system support for 64-bit memory addresses, new 
possibilities have opened LIP for high-performance 
applicatio~~ software to take advantage of large mem- 
ory configurations. 

Two of the concepts utilized are hardly new in data- 
base development, i.e., impro\.ing database server per- 
formance by caching more data in memory and 
irnpro\ling 1 / 0  subsystem througliput by increasing 
data transfer sizes. Ho\vever, various conflicting fac- 
tors contribute to the practical upper bounds on 
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perforniance impro\~ement. These hctors include 
CPU architectures; memory addressability; operating 
system features; cost; and product requirements for 
portability, compatibility, and time-to-market. An 
additional design challenge for the Oracle 6 4  Bit 
Option project was a requirement for sig~lifica~it per- 
formance increases for a broad class of existing data- 
base applications that use an open, general-purpose 
operating system and database software. 

This paper provides an overview of  the Oracle 6 4  
Bit Option, factors that influenced its design and 
implementation, and performance implications for 
some database applicatio~i areas. In-depth information 
on Oracle7 RDBMS architecture, administrative COIII- 
mands, and tuning guidelines can be found in the 
O I - L L C ~ ~ ~  Se~-ocr Docc~rne~~tn/ion Sel.' Detailed analysis, 
database server, and application-tuning issues arc 
deferred to tlie references cited. Overall observations 
and conclusions from cxpcrimcnts, rather than specific 
details and data points, are i~sed in this paper except 
\+there such data is publicly available. 

Oracle 64 Bit Option Goals 

The goals for the Oracle 64 Bit Option project were as 
follows: 

Demonstrate a clearly identifiable performance 
increase for Oracle7 running on  DIGITAL UNIX 
systems across two commonlp used classes of  data- 
base applications: decision support systems (DSS) 
and online transaction processing (OLTP). 

Ensure that 64-bit addressability and large memory 
configurations are the only two control variabl.es 
that influence o\~crall application perfor~iiance. 

Rrcak tlie 1- to 2-GB barrier 011 tlie a ~ ~ i o u n t  
of directly accessible memory that can practically 
be used for typical Oracle7 database cache 
implemcntations. 

Add scalability and performance features that com- 
plement, rather than replace, current Oracle7 
server SMP and cluster offerings. 

Implement all of  the above goals without signifi- 
cantly rewriting Oracle7 code o r  introducing appli- 
cation incompatibilities across any of the other 
platforms on  which the Oracle7 system runs. 

Oracle 64 Bit Option Components 

Tcvo major components make up the Oracle 6 4  Bit 
Option: big Oracle hloclts ( B O B )  and large shared 
global area (LSGA). They arc briefly described in this 
section. 

The BOB cornponcnt takes advantage of large 
memory by making individual database blocks larger 
than those on  32-bit platforms. A database block is a 

basic unit for I /O and disk space allocation in the 
Oracle7 RDBMS. Large block sizes mean greater den- 
sity in the rows per block for the data and indexes, and 
typically benefit decision-support applications. Large 
blocks are also useful to applications that require long, 
contiguous rows, for example, applicatio~is that store 
multimedia data such as images and sound. Rows that 
span multiple blocks in Oracle7 require proportion- 
ately more I/O transactions to read all the picccs, 
resulting in performance degradation. Most platforms 
that run the Oracle7 system support a maximum data- 
base bloclt size of 8 kilobytes (ICB); the DIGITAL 
UNIX system supports bloclt sizes of up to 32 IU3. 

The shared global area (SGA) is that area of memory 
used by Oracle7 processes to hold critical shared data 
structures such as process state, structured query lan- 
guage (SQL)-level caches, session and tra~lsaction 
states, and redo buffcrs. The bulk of the SGA in terms 
of  size, however, is the database buffer (or  block) 
cache. Use of  the buffer cache means that costly disk 
1/O is avoided; therefore, the performance of the 
Oracle7 database server relates directly to the arnount 
of  data cached in the buffer cache. LSGA seeks to use 
as much memory as possible to cache database blocks. 
Ideally, an entire database can be cached in memory 
(an "in-menior)r" database) and avoid almost all I/O 
during normal operation. 

A transaction whose data request is satisfied fi-om 
the database buffer cache executes an order of rnagni- 
tude faster than a transaction that n3~1st read its data 
from disk. The difference in pcrforniauce is a direct 
consequence of tlie disparity ill access ti~iics for main 
memory and disk storage. A database block found in 
the buffer cache is termed a "cache hit." A caclic miss, 
in contrast, is the single largest contributor to dcgra- 
dation in transaction latency. Both BOB and LSGA use 
memory to  avoid cache misses. The Oracle7 buffer 
cache implementation is the same as that of a typical 
write-back cache. As such, a cache miss, in addition to  
resulting in a costly disk 1/0, can have secondary 
effects. For instance, one o r  more of  thc lcast recently 
used buffers may be evicted from the buffer cache if n o  
free buffers are available, and additional 1 / 0  transac- 
tions may be incurred if the evicted block has been 
modified since the last time it was read fro111 the disk. 
Oracle7 buffer cache management algoritlinis already 
implcment aggressive and intelligent caching sche~ncs 
and seek to  avoid disk I/O. Although cache-miss 
penalties apply with or  \vithout tlie 64-  bit option, 
"cache thrashing" that results from constrained cache 
sizes and large data sets can be reduced wit11 the 
option to the bcnefit of many existing applications. 

:I'lie Oracle7 buffer cache is specifically designed 
and optimized for Oracle's multi-versioning read- 
consistency transactional model. (Oracle7 buffer 
cache is independent of  the DIGITAL UNIX unified 
buffer cache, o r  UBC.) Since Oracle7 can manage its 

Digital Technical Journal Vol. 8 No. 4 1996 7 



o\vn buffer cache more effectively than file system 
but'fer caches, it is ohcn recommended that the filc 
system cache sizc be rcciuccd in favor of a Idrger 
Oracle7 buffcr cache \vhcn the database resides on 
3 file system. Reducing filc systcm caclie size also mini- 
mizes redunda~it caching of data at the file system 
level. For this reason, we rcjcctcci early on the ob i l io~~s  
dcsign solutio~i of i~sing the DIGITAL UNIX file sys- 
tem as a large cache for taking advantage of large 
memory ~01ifig~11-atio1~s-c\~~11 t l ~ o ~ ~ g h  it had tlic 
appeal of complete transparency and no code changes 
to  the Oracle7 s!.stcrn. 

Background and Rationale for Design Decisions 

The primary impeti~s for this projcct was to e\~aluatc 
the i~np lc t  on the Oracle7 database server of emerging 
64-bit platforms, such as tlie Alphaserver system and 
1)IGITAL UNIS operating system. Goals set forth 
for this project and subscclucnt dcsign considerations 
therefore escluded any performance and fi~nctionality 
enhancements in tlie Oracle7 1U)BMS that could not 
bc attributed to  the benefits offercd by a typical 64-bit 
platform or  otherwise encapsulated \\tithin platti)r~n- 
spccific layers of the databasc server code or the oper- 
ating system itself. 

Common arcas of potential benefit for a typical 
64-bit platform (rvhcn compnrcd to  its 32-bit cotrn- 
tcrpart) are (a)  i~~crcascd direct memory addressabilit): 
and (b) the potential ti)r configuring systems with 
greater than 4 GB of  Inemor!.. As noted above, appli- 
cation perfor~iiance of tlic Oracle7 d'ltabasc ser\.er 
clcpc~~ds on \\lllether o r  no t  data are fi)i~nd in the data- 
base buffer cache. A 64-bit platform provides the 
oppor t~~n i ty  to expand the database buffer cache in 
Oracle7 to sizes \vcll beyond those of a 32-bit plat- 
form. BOB and LSGA reflect the o~ i ly  logical dcsign 
choices available in Oracle7 to take advantage of  this 
cstended addressability and meet the project goals. 
Implcmentatio~~ of thcsc components focused on 
ensuring scalability and maximizing the effectiveness 
of avnilable nicmory resources. 

BOB: Decisions Relevant to On-disk Database Size 
Larger database blocks consume proportionately 
largcr amounts of memory \vIicn the data contained in 
those blocks are read from tlie disk into the databasc 
buffcr cache. Consequently, the size of the buther 
cache itself must be increased if an application reqi~ires 
a greater number of thcsc largcr blocks to be cached. 
For an!! given size of databasc buffer cache, Oracle7 
database administrators of 32-bit platforms have 
had to choose benvecn the sizc of each database block 
and tlie number of databasc blocks tliat must be in 
the cache to niini~nize disk I/O, t11c choice depe~lding 
o n  data access patterns of the applications. Memory 
available for the database buffcr cache is f i~rther con- 

strained by the fact tliat this resource is also shared by 
man)! other critical data structures in the SGA besides 
tllc Lx~ffer cache and tllc mcmor!! nccded by the oper- 
ating system. 1311 eliminating the nccd to choose 
bct\vccn the size of the database blocks and bi~ffcr 
caclic, Oracle7 or1 a 64-bit platform can run a greatcr 
nppliciition mix \vitliout sacrificing performance. 

Despite the codependency and the common goal 
of reducing costl!~ disk I/O, 13OB and LSGA address 
nvo different dimensions of ci;lt;ih3se scnlabilin: I30B 
addresses on-disk database sizc, and the LSGA addresscs 
in-memory database sizc. Applicarion developers and 
datab,lsc administrators l~avc complete flesibility to 
hvor one o \ r r  the other o r  to use tlic~n in combination. 

In  Oracle7, the on-disk data structures that locate 
a row of  data in the elatabase L I S ~  a block-address- 
byte-offset tuple. The data block address (DBA) is n 
32-bit cli~antity, \\/hich is f~ r t l i c r  brokcn up into filc 
number and block ofket  within that filc. The byte off- 
set within a block is a 16-bit quantity. Although the 
n ~ ~ l i i b c r  of bits in the DRA i~scd for file nirmber and 
block offsct are platform dcpcndc~it  (10 bits for the filc 
niunbcr and 2 2  bits for tlic block offsct is a common 
ti)rmat), there exists a theoretical ~ ~ p p e r  limit t o  tile 
size of an  Oracle7 databasc. With some cxccptions, 
most 32-bit platfor~us support a masimium data block 
size of  8 KB, with 2 I(R as the dc fa~~ l t .  For example, 
using a 2-KB block sizc, the upper limit for the size 
of tlic database on l>IGITAL. UNIS is slightly undcr 
S terabytes (TB); whereas a 3 2 - 1 3  hlock size raises 
that limit to slightly undcr 128 TI%. The ability to SLIP- 
port buffer cache sizes \\.ell bc!,ond those of 32-bit 
pl'ltforms \\,as a critical prcrcqi~isitc to enabling larger 
sized data blocks and consecli~ently largcr sized data- 
bases. Some 32-bit platforms arc also constrained by 
the tjct tliat each data file cannot cxcecd a size o f 4  G'B 
(especially if the data filc is a file system managed 
object) and therefore may not be able to use all of the 
n\railablc block offset range in the esisting DKA for- 
mat. The largest databasc sizc tliat c,ln be s~ipported in 
such a case is e\.eli smaller. Addressing the perceived 
linlits o n  the size of an Oracle7 databasc \ifas an i~npor-  
tant consideration. Design alternatives that recluired 
changes to the layout or an intcrpl-ctation of DBA h r -  
niat \\'ere rejected, at least in this project, because such 
changes would have introduced incompatibilities in 
on-disk data structures. 

It s l i o ~ ~ l d  be pointed out that o n  current Alplia 
processors using an 8-ICE page sizc, a 32-KB data 
block spans four memory pages, and 1 / 0  code paths 
in the operating systenl 11ccd to Iock /~~n loc [~  ~ O L I K  
times as man11 pages \\,hen pcrtbrming an 1/0 trans- 
action. The larger transfer sizc also adds to  the total 
time taken to perform an I/O. For instance, four 
pages of memory that contain the 32-K13 data block 
may not be physically contiguous, and a scatter-gather 
operation map be recluired. Althoi~gh the Oracle7 
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database supports ro\v-level locliing for maximum 
concurrency in cases where unrelated transactions Ilia)[ 
be acccssirig different rows within a given data block, 
access to the data block is serialized as each individual 
change ( a  transaction-level change is broken down 
into multiple, smaller units ofchange) is applicd to the 
data block. Larger data blocks accommodate more 
rows ofdata and consequently increase the probability 
of  contention at tlie data block level if applications 
change (insert, update, delete) data and have a locality 
ofrcfcrence. Experiments have sho\4~1i, however, that 
this added cost is only marginal relative to the overall 
pcrforrnance gains and can be offset easily by carefully 
tuning the a,pplication. Moreover, applications that 
mostly clucr)~ tlic data rather than niodi5 it (c.g., DSS 
applications) greatly benefit fi-om larger block sizes 
since in this case access to  the data block need not be 
serialized. Subtle costs such as the ones mentioned 
above ne\lertheless help explain \vhp some applications 
may not necessarily see, for example, a fourfold pcr- 
formance increase when tlie change is made from an 
8-IU3 block size to a 32-IUS block size. 

As with Oracle7 iniplcnicntations on other platforms, 
database block sizc \i~itli the 64-bit option is determined 
at database creation time using db-block-size con- 
figuration paranictcr.' It cannot be changed dynan~ically 
at a latcr time. 

LSGA: Decisions Relevant to In-memory Database Size 
The focus for the LSGA effort was to idcnti@ and eli~ii- 
inate any constraints in Oracle7 o n  the sizes to which 
the database buffcr cachc could grow. DIGITAL UNIX 
meinory allocation application progrrunming interfaces 
(APIs) and proccss address space layout rnaltc it fairly 
straightfor\\larcl to allocate and mallage Systcrn V 
shared nmnory scgmcnts. Although tlie sizc of each 
shared mcmory segment is limited to a maximum of  
2 GB (duc to  the requirement to comply with UNIX 
standards), multiplc scgmcnts can be used t o  work 
around this restriction. The memory management 
layer in Oracle7 code therefore \vas the initial area of 
focus. Much of the CIracle7 code is \vrittcn and archi- 
tectcd to make it highly portable across a diverse rangc 
of platforms, i~icluding memory-constrained 16-bit 
desktop platforms. A particularly interesting aspect of 
16-bit platforms with respect to memory management 
is that these platforms cannot support contiguous 
memory allocations bcyond 6 4  KB. Users arc forced 
to resort to a segmented memory model such that 
each individual segment does not  exceed 6 4  1U3 in 
size. Although such restrictions are so~newhat con- 
straining (and perhaps irrelevant) for most 32-bit 
platforms-more so for 64-bit platforms-which can 
easily handle contiguous liiemory allocations well 
in excess of 6 4  1U3, memory nianagcrnent layers in 
Oracle7 code are designed to be sensitive and cautious 
about large co~l t ig i~ous  memory allocations and 

would use segmented allocations if the size of 
the mcniory allocation request exceeds a platform- 
dependent tliresliold. In particular, the size in bytes 
for each nlernory allocation request (a platfor~il- 
dependent value) was assumed to be \veil under 4 GR, 
\vJlich was a correct assumption for all 32-bit plat- 
forms (and even for a 64-bit platform without ISGA). 
Internal data structures i~sed 32-bit integers to  repre- 
sent the size of  a memory allocation rcqucst. 

For each buffer in the buffcr cachc, SGA also 
contains an additional data structure (buffer header) 
to hold all the metadata associated with that buf- 
fer. Although memory for the buffer cache itself \\/as 
allocated using a special interface into the lncniory 
Iiianagcmcrlt layer, rnenior)~ allocation for buffcr 
headers used conventional interfaces. A different 
allocation scheme \\,as needed to allocate meniory 
for buffer headers. The buffer header is the only 
major data structure in Oracle7 code whose size 
requirements are directly dependent on the number of 
buffers in tlie buffer cache. Existing memory man- 
agement interfices and algorithms used prior to LSGA 
work were adequate until the number of buffers in 
the buffer cache exceeded approximately 700,000 
(or bufkr cache size of approximately 6.5 GH).  Minor 
code changes were necessary in memory manage- 
ment algorithms to accommodate bigger allocation 
requests possible with existing high-end and future 
Alphaserver configurations. 

The AlphaServer 8400 platform can support Inem- 
ory config~trations ranging from 2 to 1 4  GB, using 
2-GB memory niodules. Some existing 32-bit plat- 
forms car1 support physical memory configurations 
that exceed thcir 4-GB addressing limit by way ofseg- 
mentation, such that only 4 GB of that meniory is 
directly accessible at any time. Program~ning complex- 
ity associated with such segmented memory models 
precluded any serious consideration in the design 
process to  extend LSGA work to such platforms. 
Significantly rewriting thc Oracle7 code \\!as specifi- 
cally identified as a goal not to be pursued by this proj- 
ect. The Alpha processor and DIGITAL UNIX system 
provides a flat 64-bit virtual address space model to  
the applications. DIGITAL UNIX extends standard 
UNIX APIs into a 64-bit programming en\iironment. 
Our  choice of tlie Alphaserver and DIGITAL UNlX as 
a development platform for this project was a fairly 
simple one from a time-to-market perspective because 
it allowed us to keep code changes to  a minimum. 

Efficiently managing a buffer cache of, for example, 
8 or  10 GB in size was an interesting challenge. More 
than five million buffcrs can be accommodated in a 
10-GB cache, with a 2-KB block size. That number of 
buffers is already an order of magnitude greater than 
what we u7ere able to experiment with prior to the 
LSGA work. The Oracle7 buffer cache is organized as 
an associative write-back cache. The mechanism for 
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locatbig a data block of interest in tliis c ~ c h e  is s~~ppor ted  
by common dgorith~ns and data structures such as hash 
ti~nctio~is m d  li~lked lists. I n  man![ cases, tral~ersing criti- 
cal linked lists is serialized among contending threads of 
cscc~~tion to maintain the integrity ofthc lists tlic~iiscl\~cs 
and secondary data structures managed by these lists. As 
a result, the sizc ofsuch critical lists, fix example, has an 
impact on overall concurrency. The larger buffer count 
no\\. possible in LSGA configi~~it ions had the net effcct 
of reduced concurrency bcca~~sc  the sizc of tlicse lists is 
proportion at el!^ larger. 1SGA pro\'idcd a fi-amc\vork to 
tcst contributions from other unrelated projects that 
addrcssccl such potelitin1 bottlcnccl<s to concurrency, as 
it could realistically simulntc rclntivcly rnorc stringent 
boundary conclitions than bcfbrc. 

Scalability Issues 
Engineering teams at Ornclc have worked \,cry closely 
\\,it11 their coulitcrparts in the 1)IGITAL UNIX operat- 
ing systcni group throughout tliis project. The data 
collcctcd in the course oftlic projcct \\,as ~1sefi11 in ann- 
Iyzing and adcircssing the scalnbility issucs in the bnsc 
opcrnting system 11s \\,ell ns in the Oracle7 product. 
Examples of this \vork arc in the basc operating system 
grani~larity hint regions ancl in the shared page tables.?' 

For every page of physical and virtual lileniory, a11 
opcrxing system niust ~iiaintain various data structurcs 
such as pagc tables, data stl.ucturcs to track regions o F  
mcmory with certain nttributcs (such ns S~~s tem V slixcd 
nicmory regions, or  tczt and data segments), or diit.1 
structures that track processes which lia\.e references to  
these mcniory regions. Ancillary opcr.iting system data 
structures sucli as pagc tnblcs gro\tr in size pro- 
~x)rtion,ltcly to the size ofpli!~sical mcmory. C:hangcs 
to page table managcmcllt associntccl \\'it11 System V 
shared mcmory regions ucrc ~ n a d c  such that processes 
that mapped the sharcd mcmorp regions could share 
page tables in addition to the data pages themsclvcs. 
Prior- to this change, each process mapping the shared 
memory region ~ ~ s e d  a copy of'associnted pagc tables. 
i\ clinngc like this rcduccii physical mcmorjr consump- 
tion by the operating system. For csnniple, on an Alpha 
<:PU supporting an SKI3 page sizc, it would take 8 KH 
in pagc table entries to m;ip 8 MR of physical memory. 
For nn SGA of 8 GB, it \\lould tnkc 1 1Ml3 in page tablc 
entries. I t  is not ~ ~ n c o ~ i i ~ i i o ~ i  in the 01-acle7 systenl for 
l i~~ndreds  of processes to connect to the database, and 
thcrcforc niap tlie 8 GI3 ofSGA. W i t l i o ~ ~ t  shared pagc 
tables, 100 such processes would have consumed 100 
MR of physical mcmor!l by maintaining a per-process 
copy of page tablcs. 

A gran~~larity hint rcgion is n rcgion ofph!aicaJly con- 
tiguous pages of mcmory thnt shnrc \.irtual and physical 
mappi~igs between all the proccsscs tliat map them. 
Such a mcmor!l layout nllows 1)IGITAL UNIX to take 
nd\,antagc of tlie granularity hilit feature supported by 
Alpha processors. Gra~~ularity hilit bits in a page tablc 

cntrp allo\\* the Alpha <:PU to use a single translation 
look-aside buffer (TLB) entry to map a 512K physical 
mcmory space. Using one 1'LR entry to map larger 
ph!lsical memory has the potential to reduce proccsbor 
stalls during 'TLB misses anci ref 11s. Also, beca~~se  of the 
rcquircmcnt that the grani~larity hint rcgion be both 
virtually and physically cont ig~~ous ,  it is allocated at sys- 
tem startup time and is not subject to normal virtu.11 
nicmory management; tbr csamplc, it is never paged in 
or O L I ~ ,  n~id subseq~~cntly the cost o f n  page f a ~ ~ l t  is mini- 
mal. Since pages in g ran~~l ; i~ in ,  liint rcgio~is are pli!rsj- 
cally contiguous, m y  I/() done fiom this rcgion o f  
mcmory is relatively niorc efficient because it need not 
go  througli the scatter-gather phase. 

Summary of Test Results 

One of the project goals \\]as to demonstrate cledr 
pc f i ) r~ i~ancc  bcncfits for t\vo common classes of datn- 
basc applications, DSS and 01,TI'. Tlic Transaction 
Processing C o ~ ~ n c i l  (Tl'C:) pro\.idcs an industry- 
stanclnrd bcnchniark suite fi)r both applications, tliat 
is, TI'(:-(: for OLTP anci *1'1'(:-13 for I>SS, An in dust^-!^- 
sta~ldard bcnchmark \\,auld Iin\'c bccn a logicnl choice 
for a \\lorkload that \\loulci dcmonstratc performance 
bcncf ts. Ho\lre\rcr, the cnor~nous  ti~iic, rcsoLIrccs, and 
c f h r t  rcquircd to  stage an a ~ ~ d i t c d  TlY: benchmark 
and the strict g~~idelincs For nny direct coniparison of 
p~~blisllcd bcnclimark results \\.ere major factors in 
tlic decision to dc\rclop 3 \\rorkloaci for this projcct 
that matched the spirit of the TI'(; benchmark but not 
ncccssarily the letter. 

I n  late 1995, Oraclc Corporation ran a series ofpcr- 
tbrmancc tcsts for a DSS-class \\forkload of the  Oracle7 
systcm, \\lit11 ancl \\zithoL~t the 64-bit option on the 
AlplinSer\~cr 8400 system r u n ~ i i ~ i g  the DIGITAL UNIS 
operating system \\fit11 8 GR of physical mcmory. A 
detailed report o n  this tcst is published and available 
fi-om Oraclc C ~ r p o r a t i o n . ~  Thcsc results, shown in 
F i g ~ ~ r e  1 ,  clcarly demonstrate the benefits of a large 
nmount of physical ~ncmory in ,I config~~ration \\,it11 
the 64-bit option. A sunlmilr!p of thc  tcsts conducted is 
~wcsuitcd here along \\fit11 somc data points and kc! 
observations. 

(1Zcnders interested in pcrfi)rmancc characteristics ot 
nn audited industry-standard O1,Tl' bcnc11nia1-k arc 
referred to the nigital ~ ~ ' c . / ~ I ~ ~ c ~ I / , / o I I I ~ I ~ L I / ,  V~ILIIIIC 8 ,  
Number 3.  T\\,o papers present performance character- 
istics of Oracle7 Par,illcl Scr\lcr rclc.lsc 7.3 using 5.0 GR 
SGA, and a TPC-<: workload o n  a fi)ur-node cl~~stcr.') 

Tlic tcst database co~lsistcd o f f  1.c tables, reprcscnt- 
ing approximately 6 GB of ciata. The tests incl~tdcd 
t\vo separate configurations: 

A "standard" config~~ration \ \ ~ t I l  ,I 128-MI3 SGA 
\vith a 2-KB database block sizc 

A 64-bit option-e~iabled conf guration \\~ith a 7-GI3 
SGA and 32-KB database bloclc sizc 
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PERFORMANCE RATIOS OF LSGA TO SGA 

" .-  
1 2 3 4 5 6 

TRANSACTION TYPE 

Figure 1 
Pcrform'i~~cc I~nprovcrncnt~ for J DSS-class \Vorkload, 
Kat~os of LSGA to SGA 

T h e  e\~aluation inclucled running six separate trans- 
action types ag'iinst these t\lro configurations: 

1 .  Full table scan against a table with 4 2  million rows 
(witliout tlie Parallel Query  Opt ion)  

2 .  Full table scan against a table \\/it11 4 2  million rows 
(with tlie P~rallel Q ~ ~ e r y  Opt ion)  

3. Set  o f  ad lioc queries against a talsle with 
4 2   nill lion rows 

4 .  Set o f  ad hoc clucrics invol\~ing a join against 
three tables with 10.5 million, 1 . 4  million, and 
4 2  million rows, I-cspecti\~clp 

5.  Set  o f  ad hoc q ~ ~ e r i e s  in\rol\~ing a join against four 
tables with 1 million, 10.5 million, 1 . 4  million, and 
4 2  million rows, respectively 

6. Set  o f  ad h o c  qileries involving a join against 
five tables \\,it11 70 ,000 ,  1 million, 10.5 million, 
1 .4 million, and 4 2   nill lion rows, rcspccti\~cly 

Each bar in Figure 1 r e p r e s u ~ t s  a ratio o f  execution 
time (elapsed) benveen a large SGA (64-bi t  op t ion)  
and a slnall SGA ("standard" configuration) for each 
o f  the six transaction types. In  every case, tlie configu- 
ration with the 64-b i t  option enabled consistently o u t -  
pcrfor~i icd a "standard" configuration. I n  some cases, 
tlie pel-for~nance increase with the option enabled was 
over 2 0 0  times tliat o f  the standard configuration. 

T h e  transaction mix chosen for this test represents 
database operations comnionl!~ used in DSS-class 
applications (e.g., fill1 table scans, sort/merge, and 
joins). T h e  tcst also ~ ~ s c s  a characteristically large data 
set. Transaction types 1 and 2 arc identical cxccpt for t l ~ c  
use o f  thc Parallel Query Option.  T h e  Parallel Query  
Option in Oracle7 breaks up  sonic database operations 
such as table scans and sorts/mcrge into smaller \\rork 
~lnits,  and executes tlic~ii co~ic~~rrcn t ly .  Ry default, these 
operations are csccutcd serially, using 01i1y olle thread 
ofexecution. Tlic Parallel Query Opt ion  (independent 

o f  the 64-bit opt ion)  is a standard offering in tlie 
Oracle7 database server product since release 7.1. Use 
o f  parallel query in this tcst illustrates the effcct o f  the 
64-bi t  option enhancements o n  preexisting mecha- 
nisms for database performance i rnprove~~ient .  

All other  things being equal, if tlie only difference 
between a standard configuration and a 64-bit- 
option+nabIcd c o ~ ~ f i g ~ ~ r a t i o n  is that the entire data set 
is cached in memory in the latter configuration and tliat 
typical times for main memory accesses arc a few tens o f  
nanoseconds \\/hereas times for disk accesses arc a fc\v 
milliseconds, only the six t o  seven tinics performance 
increase i ~ i  t ra~lsact io~i  1 \\io~lld seem hr belo\v 
expectation. For a t i l l1 table scan operation, the Oracle7 
server is already optimized t o  use aggressi\ie data 
prefctch. Before tlie server begins processing data in 
a given data bloclc, it launches a read operation for 
the next block. This technique significantly reduces 
application-\iisible disk access latencies by o\,erlapping 
c o n i p ~ ~ t a t i o n  and I/O. Disparity in access time for main 
memory and disk is still largc enough t o  cause the com- 
putation t o  stall while waiting for the read-ahead 1 / 0  t o  
finish. When data is cached in memory, this rc~naining 
stall point in the qllery pl-ocessing is eliminated. 

I t  is also important  t o  note  that a f~ll table scan 
operation tends t o  access the disk sequentially. It  is 
typical for disk access times t o  be better by a factor o f  
a t  lcast nvo  in sequential access .is compared with rail- 

d o m  access. Icccping block sizc and disk and ~ i i a i ~ i  
memory access times the  sanic as bcforc in this equa-  
tion, '1 faster Alpha Cl'U \ \~ould  yield better ratios in 
this test because it \vould finish c o ~ i ~ p l ~ t a t i o n  propor- 
tionately faster and \\lould \\lait longer for the  read- 
ahead I /O t o  finish. Follo\v-on tests with faster CPUs 
supported this observation. Overlapping computution 
and 1 / 0  as in ;I tablc scan operation may no t  be possi- 
ble in an indcx lool<up operation. T h e  sequence o f  
operations for accessing a roui o f  data using a B-tree 
indcx, in the  best case, in\~oI\~cs a11 1 / 0  t o  read tlie 
indcx block matching the  key value first, follo\ved by 
another 1 / 0  t o  read the data block; a second I /O can- 
no t  be launched until tlie first finishes because thc 
address o f  the data block t o  be read can only bc deter- 
mined by examining the contents o f  the  index bloclc 
I-ead in the previous operation. Unlike table scans, 
thcsc I/Os arc nonscquential.  Latencies o f  the disk 
I /O for an index l o o k ~ ~ p ,  as secn from the  application 
perspecti\/e, are consequentl!~ greater than latcncics for 
3 table scan. Minimizing o r  eliminating I/Os in tlie 
index lookup,  therefore, has the potential for even 
greatcr increases in spccd. Indcs  looltups arc typical in 
OLTP \\lorkloads. 

T h e  test using transaction type 2 illustrates a c u m u -  
lative effect because perfor~iiancc benefits for a single 
thread ofexecution extend t o  all the threads \\then the 
\\iorldoad is parallelized. 
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Unlike fill1 table scans, tlie sort/mergc operation 
gcncrntcs intcrmecliatc r e s ~ ~ l t s .  Depending o n  the size 
o f  thcsc partial rcsults, they may be stored in main 
Iiicmory if an a d e q ~ ~ a t e  amount  o f  menlory is avail- 
able; o r  they may be \vrittcn back t o  temporary storage 
space i l l  the  ci'it,lbase. T h e  latter operatio11 resi~l ts  in 
additional l/Os, proportionately more  in nunibcr  as 
i ~ i p t ~ t s t o  thc sort/mcrgc gro\l1 in size o r  count .  T h e  
64-bi t  option makes it possible t o  eliminate thcsc I/Os 
as well, as illustrated in transaction types 4 t h r o ~ ~ g h  6. 
Pcrformance i m p r o v e ~ n e ~ i t s  are greater as the  conl- 
plexity o f  queries increases. 

Conclusion 

T h e  disparity between memory speeds and disk speeds 
is likely t o  cont inue for the  hrcsccablc future. Ldrgc 
mcmory configurations represent a n  opportuni ty t o  
o\,ercornc this disparity and t o  increase application 
perhl-niancc by caching a large a m o u n t  o f  data in 
memory. Even though  the  Oracle 64 Hit O p t i o n  
impro\,cs database perforn~ance-two orders of mag- 
nitude in so11ic cases-specific application characteris- 
tics must bc cvaluatcd t o  determine tlie best means k)r 
maximizing o\rcrall perfoslilancc and t o  balance thc  
significant increase in hardware cost for tlie largc 
amount  o f  mcmor!,. TIic Oracle 64 Bit Option com-  
plements existing Oracle7 feat i~res  and fi~nctionalin,. 
T h e  cxact cstcnt  o f  t h c  increases in speed with the 
64-bi t  opt ion varies based o n  the type o f  database 
opwruion. Faster (:PUS and denser memory  allow 
for c \ r c ~ ~  morc  pcrforniance improve~-nents than lia\,c 
bccn clcmo~latmtcd. Factors o f  ilnportance t o  nc\v 
o r  existing applications, particularly those sensiti\,e t o  
response time, are an order  o f  magnitude performance 
in terms o f  spced increases and the  ability t o  utilize 
nicmory configurations much larger than p r c \ f i o ~ ~ s l y  
possiblc in Oracle7 o r  fix applications that  use 
n~odcratc-sizc data sets. With sufficient physical mem-  
ory, the d a t ~ b a s e s  ~ ~ s e d  bv these rcsponse-time- 
scnsiti\rc applications can now be  entircl!~ cached in 
memory, cliniinaring \rirtually all disk I/O, \vhicIi is 
oftcn a major constraint t o  response time. In-memory 
( o r  f ~ l l y  caclicd) Oracle7 databases do n o t  conipro-  
niise transactional integrity in any wa),; nor  d o  such 
configurations require special hardware (for  example, 
nonvolatile random access menlory [RAM]).  

I<ccat~sc a 64-bi t  AlpliaServer and DIGITAL UNIX 
operating system transparently extends existing 32-bi t  
APIs into a 64-bi t  prograniniing model, applications 
can tnkc advantage o f  added addressability \ v i t l i o ~ ~ t  
 sing spccializcci Al'ls o r  making significant code 
changes. Pcrformance le\lels equal t o  o r  better than 
pre\~iously possible \\,it11 specialized liard\\lare and s o h -  
\\,arc can no\ \ ,  be achieved \vitIi industry-stanclald, 
open,  gcncr.~l-purpose platforms. 
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VLM Capabilities of 
the Sybase System 1 1 
SQL Server 

Software applications must be enhanced to 
take advantage of very large memory (VLM) 
system capabilities. The System 11 SQL Server 
from Sybase, Inc. has expanded the semantics 
of database tables for better use of memory 
on DIGITAL 64-bit Alpha microprocessor-based 
systems. Database memory management for 
the Sybase System 11 SQL Server includes the 
ability to partition the physical memory avail- 
able to database buffers into multiple caches 
and subdivide the named caches into multiple 
buffer pools for various I10 sizes. The database 
management system can bind a database or 
one table in a database to any cache. A new 
facility on the SQL Server engine provides 
nonintrusive checkpoints in a VLM system. 

T.K. Rengarajan 
Maxwell Berenson 
Ganesan Gopal 
Bruce McCreadp 
Sapan Panigrahi 
Srikant Subramaniam 
lMarc B. Sugiyama 

The advent of  the System 11 SQL Server from Sybase, 
Inc. coincided with the widespread availability and 
use of  very large memory (VLM) technology on 
DIGITAL'S Alpha n~icroprocessor-based computer 
systems. Tccl~nological features of  the System 11  SQL 
Server werc used to achieve record results of 14,176 
transactions-per-minute C ( tpmC) at $198/tpmC 
on the DIGITAL Alpha~erver 8400 server product.' 
One of thcse features, the Logical Memory Manager, 
provides thc ability to fine-tune memory manage- 
ment. I t  is the first step in exploiting the semantics of 
database tables for better use of  memory in VLM sys- 
tems. To partition memory, a database adnlinistrator 
(DBA) creates multiple named buffer caches. The 
1)11A then subdivides each named cache into multiple 
buffer pools for various 1 / 0  sizes. The DBA can bind a 
database o r  one table in a database to any cache. 
A ncw thread in the SQL Server engine, called the 
Houseltccper, uses idle cycles to provide free (non- 
intrusive) checl<points in a large memory system. 

In this paper, we briefly discuss VLM technology. 
Then we describe the capabilities of the Sybasc System 
11  SQL Server that address the issues of  fast access, 
checkpoint, and recovery ofVLM systems, namely, the 
Logical Memory Manager, a VLM query optimizer, 
the Housekeeper, and hzzy checkpoint. 

VLM Technology 

The term very largc rncmor)l is subjective, and its 
widespread meaning changes with time. By VLM, wc 
meall systems with more than 4 gigabytes (GB) of  
memory. In late 1996, perso~lal computer servers with 
4 GB of memory appeared in the marketplace. At $10 
per megabyte (MB), 4 GB of memory becomes afford- 
able ($40,000) at the departmental level for corpora- 
tions. We expect that most of the mid-range and 
high-end systems \ v I I I  be built with more memory in 
1997. Gro\vth in the amount of system memory is 'in 
ongoing trend. Growth beyond 4 GB, ho\vevcr, is a 
significant expansion; 32-bit systcms run out  of  mem- 
ory after 4 GB. 

DIGITAL developed 64-bit computing with its 
Alpha line of  microprocessors. Digital is now 
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\vcll-lxxitioncd t o  facilitate the transition from 32-bi t  
t o  64-hi t  s!,stcms. S!~base, Inc. pro\idcd one o f t h c  f r s t  
relational database ma~iagcmcnt  systcnis t o  LISC V1,iM 
technology. T h e  Sybasc System 11 SQI.  Ser\,er pro- 
\ricics h l l ,  native support  o f  64-b i t  Alplid microproces- 
sors and tlic 64-b i t  1)IGITAL UNlX operating systcni. 
l)IGITAL, U N I S  is the first operating s),stcm t o  provide 
a 64-bi t  .~ddrcss spacc for 311 proccsscs. T h e  System 11 
SQT. Scrvcr uses this large address spacc primarily t o  
caclic large portions o f  the database in mcmory  

VI,i\/l technology is appropriate fix use \\lit11 applica- 
tions that Iia\~c stringent response time rccl~~ircmcnts .  
With thcsc applications, for cs '~mplc,  call-routing, it 
b c c o ~ n c s  necessar!, t o  fit the cntirc databasc in nicm- 
or!!.' ' T l ~ c  use o f  VLiM systcms can also bc bcncfcial 
\\.hen the pricc/pcrfor~mance is impro\,ed by adding 
mor-c r n c ~ n o r y . ~  

Main Memory Database Systems 

, I hc \\~idcsprcad a\~ailability of VLM systcms raises 
tlic possibility o f  building main mcmory  database 
(IMIM~)R) systcms. Se\cral techniques t o  imp-o\rc the 
1>ufi)r1i1.1lice o f  h?i\/11)13 systems have bccn discussed 
in tllc d,ltabase literature. l<cfcrcncc 5 provides ,In 
csccllcnt, d c t ~ i l e d  sur\rc!r. \/Vc provide a brief ciiscus- 
sion in this section. 

Lock contention js low in iMM1)13 systcms since the 
da t ,~  resides in memory. Hence,  the granulnrity o f c o n -  
c~lrrcnc!~ control can be incrcascd t o  minimize the 
o \ ~ r l i c , l d  o f  lock operations. Tlic loclc manager data 
structures can be combined \\,it11 the databasc objects 
t o  rcciucc mcmory usage. Spcciali;/cd, st,iblc memory  
hard\\~arc can be used t o  mini~iiizc latency of logging .  
Eal-ly release of transact ion locks ancl g r o u p  c o m ~ n i t  
during commit  processing can be uscci t o  incrcasc 
c o n c ~ ~ r r c n c y  and t l ~ r o u g l ~ y ~ ~ t .  Since random access is 
tist in IMIMDBs, access mcthocis can be developed \\it11 
n o  Ikcy \ralucs in the index bu t  only p o i ~ i t c r s t o  d,lta 
ro\\.s in m c m o r y . Q ~ ~ e r y  optirnizcrs nccci t o  consider 
<:1'U costs, no t  1/0 costs, \\,hen comparing \ , a r i o ~ ~ s  
,~ltcrnati\rc plans for a query. I n  all 1\/1Ml)l3, clicck- 
pointing and failure recolYer!' arc the orll~, reasons for 
performing disk operations. A chcckpoint process can 
hc made " f ~ ~ z z y "  \\rich lo\\' impact o n  transaction 
r l i rougl ip~~t .  Akcr  a system failure, incrcmcntal rcco\.- 
cry processing allo\\~s transaction ~ ~ o c c s s i ~ i g  t o  resume 
bcti)rc the rcco\{crp is complctc.' 

As memory sizes incrcasc with VLM systcms, dam-  
b,lsc sizes ;1rc also incrrasilig. 111 gc11cra1, \tlc cspcct 
thnt d ~ t ~ [ > a s e s  \ d l  no t  fit in m c m o ~ - \ ~  in the next 
decade. Therefore, for most o f  the databases, i\/Ih41)13 
tccl~niqucs can be exploited only for those p'irts o f  tlic 
dntabasc that cio fit in memor!l.' 

I n  adciition t o  the  capability oFcacliing the cntirc 
database in buffers, the  Sybase System 11 SQI, Scr\,er 

provides technological ,~d\rances that take advantage o f  
VLIM systcms. Thesc Jrc the L,ogical iMcmory 
Manager, VLA4 q ~ ~ c l - y  optiniizatio~i,  the Houscltccpcr 
t h r e ~ d ,  and h z z y  checkpoints. We discuss the  signiti- 
cance o f  tliesc ad\~,lnces in the remaining sections o f  
this paper. 

Logical Memory Manager 

T h e  Sybase SQL, Server consists o f  several I)IC;ITAI, 
UNIX processes, called engines. T h e  DBA confgures  
the number  o f  engines. As sIiol\~n in F i g ~ ~ r c  1, each 
engine is perrnancnrl\, dedicated t o  one  CPU o f  .I sym- 
metric ni~~lt iprocessing (SIMP) machine. T h e  S y b ~ s c  
engines share \'irti~.ll mcmory, \\rliich has bccn sizcci t o  
include the SQL, Scr\rcr csecutable. T h e  virtual mcm-  
or\ ,  is lockcd t o  pliysical Iiicmor!i. As a result, tlicrc is 
never any opclating system paging for the Sybnsc 
memory. This sliarcd mcmor!~  region also uses large 
operating system pages t o  minimize translation look- 
aside buffcr (TLR)  entries for the <:PU.TThc sliarcd 
memory  holds the c l ~ t a b ~ s c  bufkrs ,  stored procedure 
caclic, so r t  buffers, and o thcr  dynamic ~-~icrnor\!. This 
memory is managed csclusi\~cly by the SQI, Scr\u- .  
O n e  S Q L  Server ~ ~ s u a l l y  processes trans1 , ctlons - ' on 

multiple dat '~bascs. l;..icli databdse has its o \ i rn  log. 
Transactions can span datnb'lses using nvo-phase com-  
mit.  For f i~r thcr  cictails o n  the S Q L  Server architec- 
ture, plcasc scc I-ckrcncc 9. 

'l'lie Logical Memory  Manager (Lh4iM) pl-o\,idcs tlic 
ability for a DRA t o  partition the physical memor!r 
available t o  database buffers. T h e  13BA can partition 
the mcmol-!! used 6)l- the dat'lbase buffers into multi- 
ple caclics. Tlic 1713A nccds t o  s p e c i ~  a size and a name 
for each caclic. After all nanicd caches have been 
d c f  ncd, tlic system d c f  ncs the remaining mcmory as 
the d c f a ~ ~ l t  caclic. O n c e  the 1>1',A partitions the nicm- 
ory, it can t l i c~ i  bind databasr entities t o  a particular 
cache. T h e  database entity is o n e  o f  the follo\\,ing: an 
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entire database, onc table in a database, or  one index 
on one table in a database. There is n o  limit to the 
number ofsuch entities that can be bound to a caclie. 
This cache binding directs the SQL Server to use only 
that cache for the pages that belong to the entity. 
Thus, tlie DBA can bind a small database to one cache. 
In a VLM system, if the cache were sized to be larger 
than the database, an MMDB would result. 

Figure 2 shows the table bindings to  named caches 
with the LMM. The procedure cache is used only 
for keeping compiled stored procedures in memory 
and is shown for completeness. The item cache is a 
small cache of 1 GB in size and is used for storing 
a s~iiall read-only table (item) in memory. The default 
cache holds the remaining tables. Figure 2 shows one 
table bound to the item cache and the other tables 
bound to  the default cache. By being able to partition 
the use of memory for the item table separately, the 
SQL Server is now able to take advantage of MMDB 
techniql~es for only the item cache. 

Each named cache can be larger than 4 CB. The size 
is liniited only by the amount of memory present in 
the system. Although we d o  not expect such a need, 
it is also possible to  have hundreds of  named caches; 
64-bit pointers are used throughout the SQL Server 
to address large memory spaces. 

The LMM enables the DBA to fine-tune the use of 
memory. The I,MM also allows for the introduction 
ofspecific MMDB algorithms in the SQL Server based 
on the semantics of database entities and the size of 
named caches. For csample, in tlie f ~ ~ t u r e ,  it becomes 
possible for a DBA to express the fact that most of one 
table fits in one  named cache in memory, so  that SQL 
Server can use clock buffer replacement. 

VLM Query Optimization 

The SQL Servcr q ~ ~ e r y  optimizer co~nputes the cost 
of query plans in terms of CPU as well as I/O. Both 

I PROCEDURE CACHE, 0.5 GB I 
I ITEM CACHE, 1 GB 

DEFAULT CACHE, 

Figure 2 
Table Bindings t o  Named Caches with Logical 
lMe11101.)~ Manager 

costs are reduced to an estimate of  time. Since the 
number of 1/0  operations depends on the amount of 
memory available, the optimizer uses the size of  the 
cache in the cost calculations. With LMM, the opti- 
mizer uses the size of the llamed cache to which a cer- 
tain table is bound. Therefore, in the case ofa  database 
that completely fits in tnemory in a VLM system, the 
optimizer choices are made purely on the basis of  CPU 
cost. In  particular, the 1/0 cost is zero, when a table 
or an index fits in a named cache. 

The Spbase System 11 SQL Server introduced the 
notion of tlie fetch-and-discard buffer replacement 
policy. This strategy indicates that a buffer read from 
disk will not be used in the near klture and hence is 
a good candidate to be replaced fi-om the caclie. The 
buffer management algorithms leave this buffer close 
to the least-recently-used end of the buffer chain. In 
the simplest example, a sequential scan of  a table uses 
this strategy. With VLM, this strategy is turned off 
if the table can be co~npletely cached in memory. The 
fetch-and-discard strategy can also be tiuied by appli- 
cation developers and DBAs if necessary. 

Housekeeper 

One  of the motivations for developing VLM was the 
extremely quick response time requirements for trans- 
actions. These environments also require high avail- 
ability of systems. A key component in achieving high 
availability is the recovery time. Database systems 
write dirty pages to disk primarily for page replace- 
ment. The checkpoint procedure writes dirty pages to 
disk to minimize recovery time. 

The  Sybase System 1 1 SQL Server introduces a new 
thread called the Housekeeper that runs only at idle 
time for the system and does useful work. This thread 
is the basis for lazy processing in the SQL Server for 
now and the k~ tu re .  I11 System 11, the Houselteeper 
writes dirty pages to disk. At first, it writes pages to 
disk from the least-recently-used buffer. In this sense, 
it helps page replacement. In addition to ensuring that 
there are enough clean buffers, the Housekeeper also 
attempts to  minimize both tlie checkpoint time and 
the recovery time. If  the system becomes idle at any 
time during transaction processing, even for a few mil- 
liseconds, tlie Housekeeper keeps the dislts (as Inany as 
possible) busy by writing dirty pages to disk. I t  also 
makes sure that none of the dislts is overloaded, thus 
preventing an undue delay if transaction processing 
resumes. In the best case, the Ho~~sekeeper  automati- 
cally generates a free checkpoint for the system, 
thereby reducing the performance impact of  tlie 
checkpoint during transaction processing. In  steady 
state, the Housekeeper continuously writes dirty pages 
to disk, while minimizing the number of extra writes 
incurred by premature \vrites to disk."' 
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Checkpoint and Recovery 

As thc sizc of memory increases, the following nvo 
hctors increase as well: ( 1 )  thc number of\\.rites to 
disk during the checkpoint and (2) the nu~nbcr  of  
disk I/Os to be done during recovery. The Sybase 
Syste~n 11  SQL Server allo\vs the 1'>13A to tune the 
amount of buffers that will be kept clean ill1 tlic time. 
This is called the wash region. I n  essence, tile \vash 
rcgion represents the amount of memory that is al\\~ays 
clean (or strictly, in the process of  being written to 
disk). For example, if the total amount of mcmory for 
database buffers is 6 GB and the wash rcgion is 2 GB, 
then a t  any time, only 4 GB of  memory can be in an 
~ ~ p d a t e d  state (dirty). The ability to tune the \\rash 
rcgion reduces the load 011 the checkpoint procedure, 
as \vcll as recovery. 

The Sybase System 11 SQL, Server 113s implemented 
a f ~ z z y  clieckpoint that allows transactions to proceed 
even c l~~r ing  a checkpoint operution. Tr;uisactions 
:Ire stalled only when they try to ~ ~ p d a t c  3 database 
page that is being written to disk by the checkpoint. 
Even in that case, the stall lasts only h r  tlie time 
it takes the disk write to complete. I n  addition, in 
the SQL Server, the chcckpoint process can keep mul- 
tiple disks busy by issuing a large number of asynchro- 
nous \vrites one after another. During the timc of 
the checkpoint, the Ho~~sekecpcr  often becomes 
active due to cstra idle time created by the clieckpoint. 
The Ho~~sckeeper is self-pacing; it docs not S \ \ ~ J I I I ~  the 
storage systcm \\lit11 writes. 

Commit Processing 

Thc SQL Server uses the group commit algorithm to 
improve tl~roughput."'~ The group commit algorithm 
collects the log records of  multiple transactions and 
\\!rites them to thc disk in one I/O. This allo\vs higher 
transaction througliput due to the a~nor t i z~ t ion  of 
disk 1 / 0  costs, as \\tell as coniniitting more and more 
transactions in each disk \\!rite to the log file. The SQL 
Scrvcr does not use a timer, however, t o  improve the 
g r o ~ ~ p i n g  of transactions. Instead, the duration of the 
p r ~ \ l i o ~ ~ s  log I/O is used to collect transactions to bc 
committed in the next batch. Thc sizc o f t h c  batch is 
determined by the number of transactions that rcach 
commit processing during one rotation of  the log 
disk. This self-tuning algorithm adapts itself to \ ~ n r i o ~ ~ s  
speeds of disks. For tlie same transaction processing 
systcm, the grouping occurs more often \vith slo\vcr 
disks than with hster disks. 

Consider, for example, a system performing 1,000 
transactions per second. Let LIS assilme the log disk is 
ratcd at 7,200 rpm. Each rotarion of the disk takes 
8 nlilliseconds. Within this duration, we expect (on  
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the average) 8 transactions to complete, assuming m i -  
form arrival rates at commit point. This indicates a nat- 
ural grouping of S transactions per log \\lritc. For the 
same system, if the log dislc is ratcd at 3,600 rpm, the 
same calculation yields 16 transactions per log write. 

The group conimit algorithm used by the SQL 
Server also talccs advantage of disk arrays by initiating 
multiple asyuclironous \\~ritcs to different mcmbcrs of 
the dislc array. 'l'hc SQL Scrvcr is also able to j s s ~ ~ c  up 
to 16 kulobytcs in one write to a single disk. Togetlicr, 
the group commit algorithnl, large writes, and the 
ability to drive multiple disks in a disk array eliminate 
the log bottleneclc k)r high-throughput systems. 

Future Work 

VWien a VLM systcm tails, tlie large number ofclatn- 
base buffers in mcmor!, that are dirty necd to be 
reco\~esed. Thercforc, database rccovery time gro\ils 
with the size of mcmory in the VLM systcm, at least 
for all database systems that irsc log-based recovery. 
In addition, since there are a large number of dirty 
buffers in memory, the pcrfi)rmance impact of clicck- 
point on transactions also increases with memory sizc. 
To minimize tlic recovery timc, one may increase the 
checkpoint frcclucncv. The checkpoints have a higher 
impact, liowe\,cr, anci need to  be done infrecluentl!: 
TIicsc conflicting requirements need to  be acldresscti 
for VLIM s!stcms. 

When a ~i'itab,isc firs in mcmor!l, the buffer replacc- 
1iie1it algorithm can be eliminated. For example, fi)r 
a single table that fits in one named cache, this opti- 
mization can be done with the LMM. In addition, if 
a table is read-only, it is possiblc to minimizc the syn- 
chronization necessary to access tlic buffers in mcm- 
ory. These optimizations require syntax for the DBA 
to speci@ propcrtics (for cxa~nplc, read-only) of tables, 
as well as propcrtics of named caches (for cxamplc, 
buffer rcplaccment ;~Igorithms). 

Tliesc two arcas .is \\lcll as other IMMDK tcchniclucs 
\\!ill be cxplorcd by the SQL Serves developers for 
incorporation in f i ~ t i ~ r c  releases. 

Summary 

The Sybasc System 1 1  SQL Scrver supports VLM 
systems built and  sold by DIGITAL. Tlic SQL Server 
can complctcly c;~chc parts of a database in memory. 
I t  can also cache t l ~ c  entire database in mcnqory if 
tlie datdbasc sizc is smaller than tlie amount of mcnl- 
ory. Svstc~n 11 has hcilitics that address issues of 
fast access, checkpoint, and recovery ofVLM systems; 
these facilities arc tlic Logical ~Mernory Manager, the 
VLM clucry optimizer, the Housekeeper, and fi~zzy 
checkpoint. The SQL Scrvcr product achic\.ed 



SIMP T1'C per fo rmance  o f  14,176 t p m C  a t  
$ 1 9 S / t p m C  o n  a D I G I T A L  VLlCI sys tem.  The t cch -  
n o l o 8 1  de\ielopcci i n  System 11 lays t h e  g round \vork  
for  f ~ ~ r t h e r  implemen ta t ion  o f  MM1)R t cchn iqucs  in 
the  S Q L  Scrvcr.  
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I 
David P. Hunter 
Eric B. Betts 

Measured Effects of 
Adding Byte and Word 
Instructions to the Alpha 
Arch i tect u re 

The performance of an application can be 
expressed as the product of three variables: 
(I) the number of instructions executed, (2) the 
average number of machine cycles required to 
execute a single instruction, and (3) the cycle 
time of the machine. The recent decision to 
add byte and word manipulation instructions 
to the DIGITAL Alpha Architecture has an effect 
upon the first of these variables. The perfor- 
mance of a commercial database running on 
the Windows NT operating system has been 
analyzed to determine the effect of the addition 
of the new byte and word instructions. Static 
and dynamic analysis of the new instructions' 
effect on instruction counts, function calls, and 
instruction distribution have been conducted. 
Test measurements indicate an increase in per- 
formance of 5 percent and a decrease of 4 to 
7 percent in instructions executed. The use of 
prototype Alpha 21 164 microprocessor-based 
hardware and instruction tracing tools showed 
that these two measurements are due to the 
use of the Alpha Architecture's new instructions 
within the application. 

The Alpha Architecture and its initial implementations 
were limited in their ability to manipulate data values 
at the byte and word granularity. Instead of allowing 
single instructions to manipulate byte and word val- 
ues, tlie original Alplla Architecture rcquired as nlall)l 
as sixteen instructions. Recently, DIGITAL extended 
thc Alpha Architecti~re t o  manipulate byte and word 
data values with a single instruction. The second gen- 
eration of the Alpha 2 1164 microprocessor, operating 
at  400 megahertz (MHz) or  greater, is tlie first imple- 
mentation to include the new instructions. 

This paper presents the results of an analysis of 
the effccts that the new instructions in the Alpha 
Architecture have on  the performance, code size, and 
dynamic instruction distribution ofa  consistent esecu- 
tion path through a comnlercial database. To exercise 
tlie database, \ye modified the Transaction Processing 
Performance Council's (TPC) obsolcte Tl'C-I3 bench- 
mark. Although it is n o  longer a valid Tl'C bench- 
mark, the TI'C-B benchmark, along with other TPC 
benchmarl<s, has been widely i~sed to study database 
performance.'-j 

We began our project by rebuilding Microsofi 
Corporation's SQL Server product to use the new 
Alpha instructions. We proceeded to conduct a static 
code analysis of the resulting images and dynamic link 
libraries (DLLs), l:he focus of the st i~dy was to invcsti- 
gate the impact that thc new instructions had up011 a 
large application and not their irnpact upon the oper- 
ating system. To this end, we did not  rebuild the 
Windows NT operating system to use the new byte 
and word instructions. 

We measured tlie dynamic effects by gathering 
instruction and fiunction traces with several profiling 
and image analysis tools. The results indicate that 
the Microsofi SQL Server product bellefits fro111 the 
additional byte and word instr~~ctions to the Alpha 
microprocessor. Oiir nleasiIrenlents of the images and 
DLLs show a decrease in code size, ranging from neg- 
ligible to almost 9 percent. For the cached TPC-B 
transactions, the number of  instructions esecuted 
per transaction decreased from 1 11,255 to  106,521 
(a 4 percent reduction). For tlie scaled TPC-B trans- 
actions, the number of  instructions executed per 
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transaction ciccrcased from 115,895 to  107,854 
( a  7 percent r c ~ i ~ ~ c t i o ~ l ) .  

Tlic rest of this papcr is divided as follo\\~s: \\,c begin 
\\lit11 a brief o \~c r \~ ic \ \~  of the Alplia Architccturc n~lci its 
introduction of tlic new b l ~ c  and \\.ord manip~~la t io~i  
i~istructions. Next, \\,c cicscribe the hardnrare, sob\-arc, 
and tools i~sed in our cspcriments. Lastly, \vc pro\*idc 
an analysis of tlie instruction distribution and coiunt. 

and 12-entry ITB. Tlic chip contains tlircc on-chip 
cachcs. Tlic Ic\~cl one ( L l )  cachcs inclucic an 8-KB, 
ciircct-~nappcd I-caclic and an 8-ICE, du;il-ported, 
clircct-nxlppcd, \\,rite-through D-cache. A tliirci 
on-chip c~c l i c  is a 9 6 - I a ,  three-\\nay set-associnti\,c, 
\\.rite. hack ~iiixed instruction and data cachc. The 
floating-point pipeline was reduced to nine stages, ancl 
tlic <:I'U has t\\.o integer units and turo tloating-point 
cscci~tion 1111its.' 

Alpha Architecture 
The Exclusion of Byte a n d  Word Instructions 

The Alplin Architccturc is a 64-bit, loacl and store, 
rcciuccd instr~~ction sct computcr (RISC) ? ~c . - I  Iltccturc ' 

that was designed \\lit11 high performance and longcv- 
ity in mind. Its major areas of concentration arc 
tlic processor clock spccd, the multiple instruction 
issue, and multiple proccssor implementations. For 11 
detailed account of tlic Alplia Architecture, its major 
dcsign choices, and o\,crall benefits, see the paper 
by 11. Sitcs." l'hc original arcliitect~~re did not dctinc 
tlic capabilit\r to manipulate b!,tc- and \$lord-lc\'cl 
data \\*it11 a singlc instruction. As a result, the first 
three implcmcntatio~is of the Alpha A-chitecturc, tlic 
2 1064, the 2 1064A, and the 2 1 164  microproccssors, 
\vcrc forced to  L I S ~  as many as sistccn additional 
instructions to  accomplish this task. The Alpl~a 
Arcliitcct~rrc \\!as recently cstcnded to include six new 
i~.~structions for manipulating data at byte and \\lord 
boundaries. The sccond implenientation o f  the 21 164 
L ~ ~ i i i l y  of  microproccssors i~lcludes these extensions. 

The f rst i~iiplc~iicntatio~i of the Alpha Arclii- 
tccturc, the 21064 microprocessor, was intro- 
duced in Novc~iibcr 1992. It  was fabricated in a 
0.75-micromctcr (prn) complementary metal-oxide 
se~niconductor ((;IMOS) process and operatcci at 
s p x d s  up to 200 !MHz. It had both an 8-kilobyte 
( I tB) ,  direct-mapped, \\!rite-through, 32-byte line 
instr~~ction cachc (I-cache) and data cache (D-cache). 
Tlic 21064 rnicroproccssor nlas able to  issuc hvo 
instructions per clock cycle to a 7-stage intcgcr 
pipcline or  a 10-stage floating-point pipcli~ie.' The 
sccond implcmcntatio~i of the 21064 generation \\!as 
the Alpha 21064A niicroprocessor, introduced i l l  

October 1993. It was manufactured in a 0 .5 -pm 
CMOS p~)ccss  m ~ i  operated at spceds of 233 MHz to 
275 MHz. This implementation increased the size of 
tlic I-caclic and 1)-cache to  16 1U3. Various other tiif- 
fcrcnccs exist between the two implementations and 
arc outlinccl in tlie product data sheet." 

The Alpha 2 1  164 microprocessor was thc second- 
gcncration implc~ncntation of the Alpha Architecture 
and was introduced in October 1994. I t  was rnanu- 
fac t~~rcd i l l  a 0 . 5 - p ~ i i  C:NIC)S technology and has tlic 
abiliy to issuc f o ~ ~ r  instructions per clock c),clc. It 
contains a 64-cntrp data. translation buffer (l>TB) and 
a 48-entry instruction translation buffer (ITB) co111- 
narcd to the 2 1064A microprocessor's 32-entry DTB 

The original Alpha Architect~~rc intended that opcra- 
tions in\/ol\lcci in loading or storing aligncci bytes and 
\\lords would involve sequences as given in Tables 1 
and 2."' As many as 1 6  additional instructions ure 
rccli~ircd to accomplish these operations o n  unaligned 
darn. Tlicsc same operations in the MIPS Arcliitccturc 
invol\,c only a single instruction: I,R, I.W, SR, and 
SW." Tlic MIl'S Architect~~rc also incl~rdcs singlc 
instructions to d o  the same for ~~nal igncd J a t ~ .  (;i\vn 
n situation in \\~hich all other factors arc consistent, this 
\vould appcw to give the MIPS Architecture an  ad\,an- 
tngc in its ability to  reduce the nunbcr  of instructions 
cxccutcci per \\lorkload. 

Sitcs has prcscntcd several key Alpha Architccturc 
dcsign decisions.' Among them is the decision not to 
includc byte load and store instructions. I k y  dcsign 
nssumptions related to the esclusio~i of tlicsc fcaturcs 
inclutic thc follo\\ling: 

The majority of  operations wo~i ld  involve naturally 
aligned data elements. 

Table 1 
Loading Aligned Bytes and Words on Alpha 

Load and Sign Extend a Byte 

LDL R1, D.lw(Rx) 
EXTBL R1, #D.mod, R 1  

Load and Zero Extend a Byte 

LDL R1, D.lw(Rx) 
SLL R 1 ,  #56-8*D.m0d, R 1  
SRA R 1 ,  #56, R 1  

Load and Sign Extend a Word 

LDL R1, D.lw(Rx) 
EXTWL R1, #D.mod, R1 

Load and Zero Extend a Word 

LDL R1, D.lw(Rx) 
SLL R1, #48-8*D.mod, R 1  

SRA R1, #48, R1 
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Table 2 
Storing Aligned Bytes and Words on Alpha 

Store a Byte 

LDL R1, D.lw(Rx) 
INSBL R5,#D.mod, R3 
MSKBL R1,  #D.mod, R1 
BIS R3, R1, R1 
STL R1, D.lw(Rx) 

Store a Word 

LDL R 1 ,  D.lw(Rx) 
INSWL R5,#D.mod, R3 
MSKWL R 1 ,  #D.mod, R 1  
BIS R3, R1, R1 
STL R1, D.lw(Rx) 

In the best possible scheme for multiple instruction 
issue, single bpte and write instructions to memory 
are not allowed. 

The addition of bytc and write i~istructions would 
require an additional byte shiher in the load and 
store path. 

These factors indicated that tlie exclusion of specific 
instructions to ~nanipulatc bytcs and words would be 
advantageous to  tlie performance of  the Alpha 
Architecture. 

The decision not to include byte and word manipu- 
lation instructions is not without precedents. The  
original MIPS Architecture developed at Stanford 
University did not have bytc instructions." Hennessy 
et al. have disc~isscd a series of hardware and software 
trade-offs for pcrhrma~ice  with respect to the MIPS 
processor.'%~ong those trade-offs are reasons for 
not including the ability to d o  byte addressing opera- 
tions. Hennessy et al, argue that the additional cost 
of including the mechanisms to d o  byte addressing 
was not justified. Their studies showed that word ref- 
erences occur more frequently in applications than d o  
byte references. Hennessy et al. conclude that to make 
a word-addressed nxichine feasible, special instruc- 
tions are required for inserting and extracting bytes. 
These instructions arc available in both the MIPS and 
the Alpha Architectures. 

Reversing t h e  Byte and Word Instructions Decision 

During the dc\~clop~iient of tlie Alpha Architecture, 
DIGITAL supported two operating systems, OpenVMS 
and UL,TIUS. The developers had as a goal the ability 
to maintain both customer bases and to  facilitate their 
transitions to tlie new Alpha microprocessor-based 
machines. In 1991, Microsoft and DIGITAL began 
work on  porting Microsoft's new operating system, 

Windows NT, to the Alpha platform. The Windows 
NT operating system had strong links to the Intel st36 
and the MIPS Architectures, both of which included 
instructions for single byte and word manipulation." 
This strong connection influenced the Microsofi devel- 
opers and independent s o h a r e  vendors (ISVs) to  
favor those architectures ovcr the Alpha design. 

Another factor contributed to this issue: the major- 
ity of code bcing run on the new operating system 
came from the Microsoh Windosvs and MS-DOS en\+ 
ronments. In  designing s o h ~ a r c  applications for these 
two en\~ironments, the n~anipulation of data at the 
byte and word boundary is prevalent. With the Alpha 
n~icroprocessor's inability to accomplish this manipil- 
lation in a single instruction, it suffered an average of 
3: l  and 4:l instructions per workload on load and 
store operations, respectively, compared to those 
architectures with single instructions for byte and 
\\lord manipulation. 

To assist in rilnning the ISV applications ~ ~ n d e r  the 
Windows NT operating system, a new tec.hnolog\~ was 
needed that would allo\v 16-bit applications to run as 
if they cvere on  the older operating system. Microsoft 
developed the Virtual DOS Machine (Vl>M) environ- 
ment for the Intel Architecture and the Windows- 
011-Windows (WOW) environment to allocv 16-bit 
Windows applications to work. For non-Intel architec- 
turcs, Insignia developed a VDM envjronment that 
emulated an Intel 80286 microprocessor-based com- 
puter. Upon examining this emulator more closely, 
DIGITAL found opportunities for improving perfor- 
mance if the Alpha Architecture had single bpte and 
word instructions. 

Rased upon this information and other factors, a 
corporate task force was commissioned in March 1994 
to investigate improving the general performance of 
Windows NT running on Alpha machines. The hr ther  
DIGITAL studied the issues, the more convincing the 
argument became to extend tlie Alpha Architecture to 
include single byte and word instructions. 

This reversal in position on  byte and word instruc- 
tions was also seen in the evolution of  the MIPS 
Architecture. In the original MIPS Architecture devel- 
oped at Stanford University, there were no load o r  
store byte i~istructions. '~ However, for the first com- 
mercially produced chip of the lMIPS Architecture, the 
MIPS R2000 RISC processor, developers added 
instructions for the loading and storing of bytes." One 
reason for this choice stemmed from the challenges 
posed by the UNIX operating system. Many implicit 
byte assumptions inside the UNIS lcernel caused per- 
formance problems. Since the operating system being 
implemented was UNIX, it made sense to  add the bpte 
instructions to the MIPS Architecture.'" 

In  June 1994, one of  the coarchitects of  the Alpha 
Architecture, Richard Sites, submitted an Engineering 
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per e~ilulated instruction. When it is disabled or not 
present, the action taken depends upon the hardware 
support for tlie new instructions. If disabled in hard- 
ware, thc instruction is treated as an illegal instruction; 
if enabled, it is executed like any other instruction. 

Microsoft SQL Server 

To observe the effects of thc new instructions, we 
chose the Microsoh SQL Server, a relational database 
management system (LWBMS) for the Windows NT 
operating system. Microsofi SQL Server \\!as engi- 
neered to bc a scalable, multiplattbrm, multithreaded 
RDBMS, supporting symmetric multiprocessing 
(SMP) systems. I t  nras designed specifically for distrib- 
uted client-server computing, data warehousing, and 
database applications on the Internet. 

In an earlier investigation, Sites and Perl present a 
profile of the mcrosoft SQL Server running the TPC-B 
ben~hmark .~  They identi@ the executables and DLLs 
that are involved in running the benchmark and break 
down the percentage of time that each contributes to 
the benchmark. Their results, summarized in Figure 1, 
show that only a few SQL Server executables and 
DLLs were heavilp exercised during the benchmark. 
M e r  v e r i ~ i n g  these results with the SQL Server devel- 
opment group at Microsofi, we decided to  rebuild 
only the images and DLLs identified in Figure 1 to use 
the new byte and word instri~ctions. 

Table 5 lists thc cxccutables and DLLs that we niodi- 
fied and their correlation to tlie ones identified by Sites 
and Perl. The variations exist because of  lame changes 
of DLLs or the use of a different network protocol. We 
changed nenvork protocols for performance reasons. 

Sites and Perl used an early \u-sio~l of the Microsoft 
SQL Server version 6.0, in which the fastest network 
transport available at that time was Named Pipes. In 
the final release of SQL Server version 6.0 and sub- 
sequent versions of the product, thc Transmission 
Control Protocol/Internet Protocol (TCP/IP) 
replaced Named Pipes in this category. Based upon 
this, we rebiiilt the libraries associated with TCP/11' 
instead of those associated with Named Pipes. Other 
networking libraries, such as those for DECnet and 
Internehvork Packet Exchange/Sequenced Packet 
Exchange (IPX/SPX), were not rebuilt. 

Figure 1 
Images/DLL\ Invol\,ed in a TPC-B Trailsaction for Microsofi SQL Server Based on Sites and l'erl's Pui3l!rsis 

Table 5 
Images and DLLs Modified for the Microsoft SQL 
Server 

Digital Technical lourd  

Sites 
DLLIEXE 

sqlserver.exe 

ntwdblib.dll 

opends50.dll 

dbnmpntw.dll 

ssnmpntw.dll 

NIA 

NIA 
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V6.0 Function 
DLLIEXE 

sqlservr.exe SQL Server Main 
Executable 

ntwdblib.dll Network 
Communications 
Library 

opends60.dll Open Data Services 
Networking Library 

N/A V4.21A Client Side 
Named Pipes Library 

N/A V4.21A Named Pipes 
Library 

dbmssocn.dll V6.5 Client Side 
TCPIIP Library 

ssmsso60.dll V6.5 Netlibs TCPllP 
Library 



Compiling Microsoft SQL Server to 
Use the New Instructions 

Our  goal nras to nicasure o~i ly  the effects introduced 
by using the new instructions and not effccts intro- 
duced by diffcre~it \lersions or  generations of compil- 
ers. Therefore, \ile ~iccdcd to tind a way to use the same 
version of a compiler that diffcrcd only in its use or  
nonuse of the necv instructions. To d o  tliis, \\lc used 
a conipiler option available o n  the Microsok Visual 
C++ conipiler. Tliis switch, available o n  all 1USC plat- 
forms that support Visual C++, allo\~a the gcncmtion 
of opti~nizcd code for a spccifc proccssor within a 
proccssor family while maintaining binary conipatibil- 
ity with all processors in the processor family. Processor 
optimizations are accomplislicd by a combination of 
specific code-pattern selection and codc scl~cduling. 
The default action of the conlpiler is to LISC a blended 
model, resulting in codc that csccutcs ccl~~ally \\,ell 
across all processors within a platkxrn Cimily. 

Using this compiler option, wc built two versions 
of the aforenlentioned images \\jitliin the SQI, 
Server application, varying only their use of  the codc- 
generation switch. The first version, refcrrcd to  as the 
Original build, \\!as built \vitho~lt spcci@ing a11 argil- 
ment for the code-generation switch. The sccond one, 
referred to as Byte/VVord, set the s\iritcl~ to generate 
code patterns  sing the new byte and ~ i ~ o r d  nlanipula- 
tion instructions. All other rccl~lired files came from rlic 
SQL Server \.ersion 6.5 Beta I1 distribution C1)-ROM. 

The Benchmark 
The be~~chmark  we chose was derived fio~rl the TPC-1% 
benchmark. As prc\riously mentioned, the TI'<:-B 
bcnchmark is now obsolete; howe\rer, it is still uscfi~l 
for stressing a database and its interaction with a com- 
puter system. The TPC-B benchmark is relatively 
easy to set u p  and scales readily. It has been used by 
both database vendors and computer ~iianufacturcrs 
to  measure the performance of either the computer 
systeni or  the actual database. We did  lot inclucic all 
the required metrics of tlic TI'<:-B bclich~llark; tlicre- 
fore, it is not in full co~npliance \ilith p~~blislicd g ~ ~ i d e -  
lines of the TPC. We refer to it henceforth sinlply as 
thc application benchmarl<. 

The application benchmark is characterized by sig- 
nificant disk 1 /0  activity, moderate systc1n and applica- 
tion execution t in~e,  and transaction integrity. The 
application benchmark exercises and measures the cffi- 
ciency of the processor, 1 /0  architecture, and RDBMS. 
The results lncasure perforn~ancc by indicating how 
many sinlulated banking transactions can be corn- 
pleted per second. This is defined as transactions per 
second (tps) and is the total n ~ ~ ~ i i b c r  of committed 
transactions that were started and co~npletcd during 
the measurement interval. 

The application benchmark can be run in two dif- 
ferent modes: cached and scaled. Tlic cachcd, or  in- 
menlory n~odc ,  is ~lsed to estimate the svste~n's 
rnaxini~~m perfi)r~nancc in this benchmark en\ '  r ~ r o ~ i -  
mcnt. Tliis is accornplishecl by building a small database 
tliat resides complctcly in tlic databasc cache, which in 
turn tits within the system's physical random-access 
mcmory (RAM). Since the entire databasc resides in 
mcmory, 'dl I/O acti\~ity is eliminated \\it11 the cscep- 
tion of log \\!rites. Consequently, the bcnchmark only 
pertbrms one disk 1 / 0  for cach transaction, once the 
c~ltirc database is rcad otYtlic disk and into the database 
caclic. The result is n representation of the r~iaximum 
number of tps tlint the system is capable of sustaining. 

The scalcd mode is run l ~ s i ~ i g  a bigger database cvith 
a largcr amount of ciisk I/O acti\,ity. The increase in 
clisk I/O is a result of the need to rcad ;wd write data to 
locations tliat arc not \vithin tlic database cache. These 
addition31 rcads and \\,rites acid cstra clisk I/Os. The 
result is nonnall!l characterized as having to d o  one 
read ancl one \\?rite to the database and 3 single write to 
the transaction log for cach transaction. T l ~ e  combina- 
tion of a largcr database and additional 1 /0  activity 
decreases the tps wluc from the cached \.crsion. Rased 
upon our prc \ , io~~s  c ~ p c r i e ~ ~ c c  running this bcnchmark, 
the scalcci bc11cl11na1-k can be cspcctcd to reacli approx- 
imately 80 percent of the cachcd pcrfi)rmance. 

For the scalcd tests, \\re built a datab;ise sizcd to 
accommodate 50 tps. Tliis \\,as less than SO percent 
of the m a s i m ~ ~ m  tps produced by tlie cached results. 
We chose this size because \\re \\!ere concentrating 
o n  isolating n single scalcd tunsaction under a ~nodcr-  
ate load and not under the maximum scaled perfor- 
mance possible. 

Image Tracing and Analysis Tools 
Collecting only static nicas~~remcnts of tlic executables 
and l>I..Ls affcctcd was insufticicnt to determine tlie 
applicability of the new instructions. We collected the 
actual instruction traccs of SQL Server while it exc- 
c~l ted  thc application bcncIi~narl<. Furtliermorc, \llc 
decided tliat thc ~bil i ty to trace the actual instri~ctions 
being cscci~tcd \\pas more desirable than dc\~cloping or  
cstcnding a simulator. To obtain tlie traccs, we needed 
n tool that \ \ f o ~ ~ l d  allow us to 

Collect both system- and user-modc codc. 

C:ollecr f~nc t ion  tr'iccs, \i~liicli \\could allow us to 
align the starting 31id stopping points of different 
benchmark runs. 

Work w i t l i o ~ ~ t  niodi%ing cithcr the application or 
the operating system. 

In  tlic past, tlic only tool that would provide 
instruction traccs ~~nc lc r  tlic Windoiia NT optrating 
system WAS the debugger running in single-step mode. 
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Obtaining traces through either the ntsd o r  tlie 
windbg debugger is quite limited due to the following 
problems: 

The tracing rate is only about 500 instructions per 
second. This is far too slo\v to tracc an)~tliing other 
than isolated pieces of code. 

Thc tracc fiils across spstcln calls. 

The trace loops infinitely in critical section code. 

Register contents arc not easily displayed for each 
instruction. 

Real-time analysis of instruction usage and cache 
niisses are not possible. 

Instruction traces can also be obtained using the 
PatchWrks trace analysis tool.' Although this tool 
operates with near real-time performance and can 
trace instructions execiiting in I<ernel mode, it has tlie 
following limitations: 

I t  operates only on  a DIGITAL Alpha AXP personal 
computer. 

I t  requires an extra 4 0  MB of  memory. 

All images to be traced must be patched, thus 
slightly distorting text addresses and function sizes. 

Successivc runs of applicatio~i code arc not repeat- 
able duc to unpredict'~blc kcrliel interrupt bchavior 
(the traces are too accurate). 

The solution was Ntstep, a tool that can trace user- 
mode instruction execution of  any image in the 
Windows NT/Alpha environment through an innov- 
ative combination of  breakpointing and "Alpha-on- 
Alpha" emulation. I t  has the ability to trace a 
program's execution at ratcs approaching a million 
instructions per second. Ntstep can trace individual 
instructions, loads, stores, f t~nct io~i  calls, I-cache and 
D-cache misses, unaligned data acccsscs, and anything 
else that can be observed when given access to each 
instruction as it is being executed. I t  produces sum- 
mary rcports of the i~~struction distribution, cache linc 
usage, page usage (working set), and cache simulation 
statistics for a variety ofAlpha systems. 

Ntstep acts like a debugger that can exccute single- 
step instructions except that it executes instructions 
using emulation instead of  single-step breakpoints 
whenevcr possible. In practicc, emulation accounts for 
the majority of  instructions executed within Ntstep. 
Sincc a single-step execution of an instruction with 
breakpoints takes approxirnatcly 2 ~nilliseconds and 
elnulation of a11 Alpha instruction requires only 1 or 2 
microseconds, Ntstep can trace approximately 1,000 
times faster than a debugger. Unlike most emulators, 
the applicatio~i executes normally in its own address 
space and environment. 

Results 

We collected data on three different experiments. I n  
the first investigation, we loolted at the relative perfor- 
mance of the three different versions of the Microsofi 
SQL Server o ~ ~ t l i n e d  in Table 4. \Ye conipared the 
three variations using the cached version of tlie appli- 
cation benchmark. 

I11 tlie secolid experiment, we observed how tlie 
new instructions affect the instruction distribution in 
the static images and DLLs that we rebuilt. We com- 
pared the Byte/Word versions to the Original \lersio~is 
of  the images and DL,Ls. We also attenlpted to link tlie 
differences in instruction counts to tlie use of the new 
instri~ctions. 

Lastly, we in\estigated the variation benveen the 
Original and tlie Uyte/\'Vord versions with respect to 
instruction distribution on  the scaled version of the 
benchmark. This colnparison was based upon the code 
path executed by a single transaction. 

Cached Performance 
In the first experiments, we compared the relative per- 
formance inipact of  using the new instri~ctions. We 
chose to  measure performance of only the cached ver- 
sion of thc application benchmark because the 1 / 0  
subsystem available on the prototype of the 
Alphastation 500 was not adequate for a full-scaled 
measurement. We ensured that the database was hlly 
cached by using a ramp-up period of 6 0  seconds and a 
ramp-down period of  3 0  seconds. This was verified as 
steady state by observing that the SQL Server buffer 
cache hit ratio remained at o r  above 9 5  percent. The 
measurement period for the benchmark was 6 0  sec- 
onds. We ran the benchmark several times and took 
the average tps for each of the three variations outlined 
in Table 4 .  

The results of the three schemes are as follows: 444 
tps for the Original version, 460 tps for tlic Ryte/ 
Word version, and 116 tps for the Emulation ver- 
sion. The new instructions contributed a 3.5 percent 
gain in performance. The impact of emulating the 
instructions is a loss of 73.9 percent of  the potential 
performance. 

Static Instruction Counts 
To analyze thc mixture of instructions i l l  the images 
and DLLs, ive disasscniblcd each image and 13LL in 
the Original and Byte/Word versions. We then looked 
at only those instructions that exhibited a difference 
between the t\vo versions within the images or  DL.Is. 
The variations in instruction counts ofthese are shown 
in Table 6. 

To examine the images more closely, we disassem- 
bled each image and DLL and collected counts ofcode 
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Ida 
ldah 
Idl 

Idq 
Idq-l 
Idq-u 
st1 
stb 

Table 6 
lnstruction Deltas (Normal Minus ByteIWord) for the SQL Server Images and DLLs 

stw 

stq 
s1q-c 
beq 

Instrutlion dbmrsocn.dll ntwdblib.dll opendr60.dll rqlse~r.exe rrmsso60.dll 

bge 
bgt 
blbc 
blbs 
blt 
bne 
br 
bsr 

Instruction dbmrrocn.dll ntwdblib.dll o~ends60.dll ralservr.exe srmsso60.dll 

ret 

cmpeq 
crnplt 
crnple 
cmpult 
crnpule 
and 
bic 
bis 
ornot 

xor 
511 

sra 
srl 
cmpbge 
mskbl 
rnskwl 
zapnot 
addl 
addq 
s4addl 
crnovge 
crnovne 
crnovlt 
cmovlbc 
callsys 
extqh 
ldwu 
ldbu 
mull 
sub1 
subq 
insll 
inswl 
call-pal 
extlh 
insbl 
extll 
extbl 
extwl 

size, tlie nunibcr of fi~nctions, the number and type of 
nc\v byte and \vord instructions, and lastly, nop and 
11-apb instr~~ctions.  The results are presented in Tablcs 
7 through 10. 

We expected that the instructions used to ~iianipulatc 
bytes and \\lords in the original Alpha Arcliitccturc 
(Tables 1 and 2 )  ~\~oulcl decrease proportionally to the 
usage of the nc\v instructions. Thcse assumptions hcld 
true fix all the images ancl DLLs that llsccl the new 
instr~~ctions. For example, in the original Alpha 
Architecture, the illstructions MSKBL and MSKWI, arc 
used to store a byre and ivord, respccti\,cly. I n  tlic 
sqlser\~r.exc imagc, tlicsc two instructions sho\\.cti a 
dccrcase of 3,647 and 1,604 instructions, rcspccti\,clv. 
Compare this \\rich the corresponding addition of 3,969 
STB and 2,798 STW instructions in the s,lmc inl.~gc. 
Looking furtiicr into the sqlservr.cse imagc, wc also saw 
t11at 10,231 L1>13U instl-uctions \vcre ~~scci  and tlic 
usage ofthc EXTB1,instruction was reduced hy 10,656. 
Although these numbers d o  not correlate on a one-tbr- 
one basis, \vc bclic\c this is clue to other ~~s ' igc  of  thcsc 
instructions. Other usagc might includc the compiler 
S C ~ C I I I C  for introducing the I I ~ L \ ~  instructions in plilccs 
\\~licre it uscd an I .l)L, or nn Ll3Q in tlie Original image. 

O f  the rebuilt iniages and Dl,J.s, sqlscr\~r.cse alia 
opc11ds60.dll sho\\cd the most \,ariations, \\,it11 the fie\\, 
instructions making 3.73 percent ;lnd 3.9 percent 
of these tiles. The most frcqlrcntly occul-ring nc\v 
instruction was Idbu, follo\vcd b!l Id\\,~r. Thc least- 
used instructions \ \we  sextb and scsnv. The size of 
the imagcs \\,as rcduccd in thrcc out of  tivc images. 
The image size r cd~~c t ion  ranged from negligible to 
just over 4 pcrccnt. In all cascs, the size of the code 
section \\,as ~.cduccd and rangcci from insig~iificant 
to  approximately 8.5 percent. There \\,as no change in 
the number of fi~nctions in any of the tiles. 

Dynamic Instruction Counts 
We gathered dntn f r o n ~  the application benchmark 
running in both cached and scaled ~nocics. M7c ran at 
least ouc iteration o f  the benchmark tcst prior to gath- 
ering trace data to  allo\\! both the Winclo\vs NT oper- 
ating systcm ancl tlic Microsofi SQl. Scr\cr ciat~basc to 
reach a stcady stntc o f o p c r a t i o ~ ~  on  the system u~lder  
tcst (SL"I'). Stci~ci!~ st.ttc \\,as acliic\,cci \\,hen the SQL 
Server caclic-hit ratio reached 9 5  percent o r  greater, 
the n~unbcr  of transactio~is per sccond \vas constant, 
2nd the <:1'U utilization \\pas as close to 100 pcrccnt JS 
possible. The traces were gathered over a sufficient 



Table 7 
ByteIWord Images and DLLs 

ImageIDLL Total Total Total Number Total 
File Text Code of Byte1 % Byte1 LDBU LDBU LDWU LDWU STB STB STW STW SEXTB SEXTB SEXTW SEXTW Total Total 
Bytes Bytes Bytes Functions Word Word Count 9b Count % Count % Count % Count % Count 9b NOPs TRAPB 

sqlservrexe 8053624 2981148 2884776 3364 
dbrnssocn.dll 13824 5884 5520 13 
ntwdblib.dll 318464 246316 231688 429 
opends60.dll 212992 104204 97240 243 
ssrnsso60.dll 70760 9884 9128 19 

Table 8 
Original Build of  Images and DLLs 

ImageIDLL Total Total Total Number Total 
File Text Code of Byte1 %Byte/ LDBU LDBU LDWU LDWU STB STB STW STW SEXTB SEXTB SEXTW SEXTW Total Total 
Bytes Bytes Bytes Fundions Word Word Count % Count % Count % Count % Count % Count % NOPs TRAPB 

sqlservrexe 8337248 3264108 3153480 3364 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6207 2252 
dbmssocn.dll 13824 6012 5656 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 
ntwdblib.dl1 318464 246620 231904 429 0 0 0 0 0 0 0 0 0 0 0 0 0 0 770 10 
openddO.dll 222720 114012 105536 243 0 0 0 0 0 0 0 0 0 0 0 0 0 0 405 128 
ssmsso60.dll 71284 10300 9424 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 

Table 9 
Numerical Differences of Original Minus ByteIWord Images and DLLs 

ImagelDLL Total Total Total Number Total 
File Text Code of Byte1 %Byte/ LDBU LDBU LDWU LDWU STB STB STW STW SEXTB SEXTB SEXTW SEXTW Total Total 
Bytes Bytes Bytes Fundlons Word Word Count % Count % Count % Count % Count % Count % NOPs TRAPB 

lsqlservrexe -283624 -282960 -268704 0 t26869 * 4 +I0231 -38 +6320 t 2 4  +3969 +15 +2798 ~ 1 0  +I39 +1 +3412 +13 2 7 8  -33 
dbrnssocn dl1 0 -128 -136 0 -18 +1 t 9  +SO -4  t 2 2  .-3 t 1 7  -2 +ll 0 0 0 0 +5 0 
ntwdbl~b dl1 0 -304 -216 0 +9 0 + 3  -33 0 0 - 1  +ll -5 A-56 0 0 0 0 3 0 
opcnds60dll 9 7 2 8  -9808 -8296 0 +948 +4 +464 +49 +I93 +20 2216 +23 +59  16 -9 - 1  +7 +1 1 4  0 
ssmsso60.dll -524 --416 -296 0 +67 I 3  +18 +27 -35 +52 +7 +10 +3 +4 - 4  .-6 + 7 0 0 0 

Table 10 
Percentage Variation of Original Minus ByteIWord Images and DLLs 

ImagelDLL Total Total Total Number Total 
File Text Code o f  Byte1 % Byte/ LDBU LDBU LDWU LDWU STB STB STW STW SEXTB SEXTB SEXTW SEXTW Total Total 
Bytes Bytes Bytes Functions Word Word Count h Count % Count % Count % Count % Count % NOPs TRAPB 

sqlservrexe 3 402% -8.669% -8.521% 0 000% NIA NIA N/A NIA NIA NIA NIA NIA NIA NIA N/A N/A NIA NIA 4 .479% - 1.465% 
dbmssocn dl1 0 000% -2.129% -2.405% 0 000% N/A NIA N/A NIA NIA N/A N/A NIA NIA N/A N/A N/A NIA NIA +31.250% N/A 
ntwdblib dl1 0 000% -0.123% -0.093% 0 000% NIA N/A NIA NIA NIA N/A N/A NIA NIA NIA N/A NIA NIA NIA -0.390% 0.000% 
opends60.dll 4 368% -8.603% -7.861% 0 000% N/A NIA NIA N/A NIA NIA N/A N/A NIA N/A N/A NIA NIA N/A -3.457% 0.000% 
ssrnsso60 dl1 -0 735% -4.039% -3.141% 0 000% NIA NIA N/A NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA +38.889% NIA 



period o f  time t o  ensure that we capt~rred sc\icral 
transactions. T h e  traces were then cclitcd into separate 
individual transactions. T h e  gcomctr-ic mean was 
talcen from the  resulting traces and used for all subse- 
quent  analysis. 

We used Ntstcp t o  gather cornpletc instruction and 
hnc t ion  traces o f  both versions o f t h e  S Q L  Server data- 
base while it executed the application benchmarl<. 
Figure 2 shows an example o ~ ~ t p u t  for an insrl-~lction 

t r ~ c e ,  ancl F i g ~ ~ r c  3 sIio\vs an example ou tpu t  for a 
hrnction tracc from Ntstcp. Since Ntstcp can attach t o  
3 r ~ ~ n n i n g  process, \vc al lowed the application bencli- 
mark t o  achieve steady state prior t o  data collection. 
1 his :lpproach ensured that did no t  scc the effects of 
\\)arming ~ r p  cithcr the machine caclics o r  the S Q L  
Server database c ~ c l i c .  Each instruction tracc consisted 
o f  approxim,ltcIy one  n~illion instr~rctions, \vliich \\,as 
s~rfficiclit t o  cover rii~rltib>lc t r~risact io~is .  The data \\,as 

* *  B r e a k p o i n t  ( P i d  O x d l ,  T i d  O x b 2 )  SQLSERVR.EXE p c  7 7 f 3 9 b 3 4  
* *  T r a c e  b e g i n s  a t  2 4 2 6 9 8  
o p e n d s 6 0 ! F e t c h N e x t C o m m a n d  
0 0 2 4 2 6 9 8 :  2 3 d e f f b O  I d a  sp, - 5 O ( s p )  I /  s p  now 7 2 b f f 0 0  
0 0 2 4 2 6 9 ~ :  b 5 3 e 0 0 0 0  s t q  S O ,  O ( s p )  I /  3 0 7 2 b f f 0 0  = 1 4 8 4 4 0  
0 0 2 4 2 6 a O :  b 5 5 e 0 0 0 8  s t q  s l ,  8 ( s p )  / I  @ 0 7 2 b f f 0 8  = 0  
0 0 2 4 2 6 a 4 :  b 5 7 e 0 0 1 0  s t q  s2, I O ( s p )  I /  @ 0 7 2 b f f 1 0  = 5  
0 0 2 4 2 6 a 8 :  b 5 9 e 0 0 1 8  s t q  s3, 1 8 ( s p )  / /  @ 0 7 2 b f f 1 8  = 1 4 7 6 a 8  
0 0 2 4 2 6 a c :  b 5 b e 0 0 2 0  s t q  s4, 2 0 ( s p )  / I  @ 0 7 2 b f f 2 0  = 2 c 4  
0 0 2 4 2 6 b O :  b 5 d e 0 0 2 8  s t q  s5, 2 8 ( s p )  / I  3 0 7 2 b f f 2 8  = 41 
0 0 2 4 2 6 b 4 :  b 5 f e 0 0 3 0  s t q  f p ,  3 0 ( s p )  / I  3 0 7 2 b f f 3 0  = 0  
0 0 2 4 2 6 b 8 :  b 7 5 e 0 0 3 8  s t q  r a ,  3 8 ( s p )  I /  @ 0 7 2 b f f 3 8  = 2 4 2 3 9 8  
0 0 2 4 2 6 b c :  4 7 f 0 0 4 0 9  b i s  z e r o ,  aO, S O  / I  S O  now 1 4 8 4 4 0  
0 0 2 4 2 6 ~ 0 :  4 7 f 1 0 4 0 a  b i s  z e r o ,  a l ,  s l  / I  s l  now 7 2 b f f a 0  
0 0 2 4 2 6 ~ 4 :  4 7 f 2 0 4 0 b  b i s  z e r o ,  a2, s 2  / I  s 2  now 7 2 b f f a 8  
0 0 2 4 2 6 ~ 8 :  d 3 4 0 4 e 6 7  b s r  r a ,  0 0 2 5 6 0 6 8  I /  r a  now 2 4 2 6 c c  
o p e n d s 6 0 ! n e t I O R e a d D a t a  
0 0 2 5 6 0 6 8 :  2 3 d e f f a 0  Lda sp, - 6 O ( s p )  / I  s p  now 7 2 b f e a 0  
0 0 2 5 6 0 6 ~ :  4 3 f  1 0 0 0 2  a d d 1  z e r o ,  a l ,  t l  / I  t l  now 7 2 b f f a 0  
0 0 2 5 6 0 7 0 :  b 5 3 e 0 0 0 0  s t q  S O ,  O ( s p )  / I  @ 0 7 2 b f e a 0  = 1 4 8 4 4 0  
0 0 2 5 6 0 7 4 :  b 5 5 e 0 0 0 8  s t q  s l ,  8 ( s p )  / I  @ 0 7 2 b f e a 8  = 7 2 b f f a 0  
0 0 2 5 6 0 7 8 :  b 5 7 e 0 0 1 0  s t q  s2, I O ( s p )  / I  @ 0 7 2 b f e b 0  = 7 2 b f f a 8  
0 0 2 5 6 0 7 ~ :  b 5 9 e 0 0 1 8  s t q  53, 1 8 ( s p )  / I  @ 0 7 2 b f e b 8  = 1 4 7 6 a 8  
0 0 2 5 6 0 8 0 :  b 5 b e 0 0 2 0  s t q  s4, 2 0 ( s p )  / I  @ 0 7 2 b f e c 0  = 2 c 4  
0 0 2 5 6 0 8 4 :  b 5 d e 0 0 2 8  s t q  s5, 2 8 ( s p )  / /  @ 0 7 2 b f e c 8  = 41  
0 0 2 5 6 0 8 8 :  b 5 f e 0 0 3 0  s t q  f p ,  3 0 ( s p )  / /  @ 0 7 2 b f e d 0  = 0  
0 0 2 5 6 0 8 ~ :  b 7 5 e 0 0 3 8  s t q  r a ,  3 8 ( s p )  / I  @ 0 7 2 b f e d 8  = 2 4 2 6 c c  
0 0 2 5 6 0 9 0 :  a l d 0 1 1 4 0  I d 1  s5, 1 1 4 0 ( a 0 )  I /  @ 0 0 1 4 9 5 8 0  1 4 7 9 e 8  
0 0 2 5 6 0 9 4 :  4 7 f 0 0 4 0 9  b i s  z e r o ,  aO, S O  / I  S O  now 1 4 8 4 4 0  
0 0 2 5 6 0 9 8 :  a l f O O l d O  I d 1  f p ,  l d O ( a 0 )  / I  @ 0 0 1 4 8 6 1 0  dbbaO 
0 0 2 5 6 0 9 ~ :  4 7 e 0 3 4 0 d  b i s  z e r o ,  # I ,  s 4  / I  s 4  now 1  
0 0 2 5 6 0 a O :  a 0 6 2 0 0 0 0  I d 1  t 2 ,  O ( t 1 )  I /  @ 0 7 2 b f f a 0  1 5 5 ~ 5 8  
0 0 2 5 6 0 a 4 :  b 2 3 e 0 0 4 c  s t 1  a l ,  4 c ( s p )  / I  @ 0 7 2 b f e e c  = 7 2 b f f a 0  
0 0 2 5 6 0 a 8 :  b 2 5 e 0 0 5 0  s t 1  a2, 5 0 ( s p )  / I  @ 0 7 2 b f e f 0  = 7 2 b f f a 8  
0 0 2 5 6 0 a c :  b 2 7 e 0 0 5 4  s t 1  a3, 5 4 ( s p )  I /  @ 0 7 2 b f e f 4  = 1 4 7 6 a 8  
0 0 2 5 6 0 b O :  e 4 6 0 0 0 1 d  b e q  t 2 ,  0 0 2 5 6 1 2 8  / /  ( t 2  i s  1 5 5 ~ 5 8 )  
0 0 2 5 6 0 b 4 :  2 2 0 3 0 3 e 0  I d a  aO, 3 e O ( t 2 )  I /  a 0  now 1 5 6 0 3 8  
0 0 2 5 6 0 b 8 :  4 7 f 0 0 4 0 4  b i s  z e r o ,  aO, t 3  I /  t 3  now 1 5 6 0 3 8  
0 0 2 5 6 0 b c :  6 3 f f 4 0 0 0  mb I  1 
0 0 2 5 6 0 ~ 0 :  4 7 e 0 3 4 0 0  b i s  z e r o ,  # I ,  vO I /  vO now 1  
0 0 2 5 6 0 ~ 4 :  a 8 2 4 0 0 0 0  l d l - L  t o ,  O ( t 3 )  I /  @ 0 0 1 5 6 0 3 8  0  
0 0 2 5 6 0 ~ 8 :  b 8 0 4 0 0 0 0  s t l - c  vO, O ( t 3 )  / I  @ 0 0 1 5 6 0 3 8  = 1  
0 0 2 5 6 0 c c :  e 4 0 0 0 0 b 6  b e q  vO, 0 0 2 5 6 3 a 8  / I  ( v 0  i s  1 )  
0 0 2 5 6 0 d O :  6 3 f f 4 0 0 0  mb I  / 
0 0 2 5 6 0 d 4 :  e 4 2 0 0 0 0 1  b e q  t o ,  0 0 2 5 6 0 d c  / I  ( t o  i s  0 )  
o p e n d s 6 0 ! n e t I O R e a d D a t a + O x 7 4 :  
0 0 2 5 6 0 d c :  a l b e 0 0 4 c  I d 1  s4, 4 c ( s p )  / I  @ 0 7 2 b f e e c  7 2 b f f a 0  
0 0 2 5 6 0 e O :  aOOdOOOO I d 1  v0, O ( s 4 )  / I  3 0 7 2 b f f a O  1 5 5 ~ 5 8  
0 0 2 5 6 0 e 4 :  a 0 4 0 0 3 d c  I d 1  t l ,  3 d c ( v 0 )  / I  @ 0 0 1 5 6 0 3 4  0  
0 0 2 5 6 0 e 8 :  2 0 8 0 0 4 0 4  I d a  t 3 ,  4 0 4 ( v 0 )  / I  t 3  now 1 5 6 0 5 c  
0 0 2 5 6 0 e c :  4 0 5 f 0 5 a 2  cmpeq t l ,  z e r o ,  t l  I /  t l  now 1  
0 0 2 5 6 0 f O :  e 4 4 0 0 0 0 3  b e q  t l ,  0 0 2 5 6 1 0 0  / /  ( t l  i s  1 )  
0 0 2 5 6 0 f 4 :  a 0 6 0 0 4 0 4  I d 1  t 2 ,  4 0 4 ( v 0 )  / I  @ 0 0 1 5 6 0 5 c  1 5 6 0 5 c  
0 0 2 5 6 0 f 8 :  4 0 6 4 0 5 a 3  cmpeq t 2 ,  t 3 ,  t 2  / /  t 2  now 1  
0 0 2 5 6 0 f c :  4 7 e 3 0 4 0 2  b i s  z e r o ,  t 2 ,  t l  / I  t l  now 1  
0 0 2 5 6 1 0 0 :  4 7 e 2 0 4 0 d  b i s  z e r o ,  t l ,  s 4  / I  s 4  now 1  

Figure 2 
Examplc of I n s t r u c t i o n  T r a c e  O u t p u t  fro111 Ntstcp 

98 Digiral Tcchnrcill ]our11:1l Vol. 8 No. 4 1990 



0 0 2 5 6 1 0 4 :  e 4 4 0 0 0 0 5  b e q  t l ,  0 0 2 5 6 1 1 ~  
0 0 2 5 6 1 0 8 :  aOaOOOOO L d l  t 4 ,  O ( v 0 )  
0 0 2 5 6 1 0 ~ :  2 4 d f 0 0 8 0  L d a h  t5 ,  8 0 ( z e r o )  
0 0 2 5 6 1 1 0 :  4 8 a 0 7 6 2 5  z a p n o t  t 4 ,  #3, t 4  
0 0 2 5 6 1 1 4 :  4 0 a 6 0 0 0 5  a d d 1  t 4 ,  t 5 ,  t 4  
0 0 2 5 6 1 1 8 :  bOaOOOOO s t 1  t 4 ,  O ( v 0 )  
0 0 2 5 6 1  1  c :  a O f e 0 0 4 c  L d l  t 6 ,  4 c ( s p )  
0 0 2 5 6 1 2 0 :  aOe70000 L d l  t 6 ,  O ( t 6 )  
0 0 2 5 6 1 2 4 :  b 3 e 7 0 3 e 0  s t 1  z e r o ,  3 e O ( t 6 )  
0 0 2 5 6 1 2 8 :  e 5 a 0 0 0 6 1  b e q  s4, 0 0 2 5 6 2 b 0  
0 0 2 5 6 1 2 ~ :  2 5 7 f 0 0 2 6  Ldah  s2, 2 6 c z e r o )  
0 0 2 5 6 1 3 0 :  2 1 6 b 6 2 f 8  Lda s2, 6 2 f 8 C s 2 )  
0 0 2 5 6 1 3 4 :  5 f f f 0 4 1 f  c p y s  f 3 1 ,  f 3 1 ,  f 3 1  
0 0 2 5 6 1 3 8 :  a 2 l e 0 0 5 4  L d l  aO, 5 4 ( s p )  
0 0 2 5 6 1 3 ~ :  2 2 5 e 0 0 4 0  Lda a2, 4 0 ( s p )  
0 0 2 5 6 1  4 0 :  aOObOOOO L d l  v0, O ( s 2 )  
0 0 2 5 6 1 4 4 :  2 2 7 e 0 0 4 8  I d a  a3, 4 8 ( s p )  
0 0 2 5 6 1 4 8 :  a 2 3 e 0 0 5 0  I d 1  a l ,  5 0 ( s p )  
0 0 2 5 6 1 4 ~ :  4 7 e f 0 4 1 4  b i s  z e r o ,  f p ,  a 4  
0 0 2 5 6 1  5 0 :  a 2 1 0 0 0 0 0  L d l  aO, O ( a 0 )  
0 0 2 5 6 1 5 4 :  6 b 4 0 4 0 0 0  j s r  ra ,  (vO),O 
K E R N E L 3 2 ! G e t Q u e u e d C o m p L e t i o n S t a t u s :  
7 7 e 9 8 5 a O :  2 3 d e f f c 0  Lda sp, - 4 O ( s p )  
7 7 e 9 8 5 a 4 :  b 5 3 e 0 0 0 0  s t q  SO, O ( s p )  
7 7 e 9 8 5 a 8 :  b 5 5 e 0 0 0 8  s t q  s l ,  8 ( s p )  
7 7 e 9 8 5 a c :  b 5 7 e 0 0 1 0  s t q  s2, I O ( s p )  
7 7 e 9 8 5 b 0 :  b 5 9 e 0 0 1 8  s t q  s3, 1 8 ( s p )  
7 7 e 9 8 5 b 4 :  b 7 5 e 0 0 2 0  s t q  r a ,  2 O ( s p )  
7 7 e 9 8 5 b 8 :  4 7 f 0 0 4 0 9  b i s  z e r o ,  aO, S O  
7 7 e 9 8 5 b c  : 4 7 f  1 0 4 0 a  b i  s  z e r o ,  a l ,  s 1  
7 7 e 9 8 5 c O :  4 7 f 2 0 4 0 b  b i s  z e r o ,  a2, s 2  
7 7 e 9 8 5 c 4 :  4 7 f 3 0 4 0 c  b i s  z e r o ,  a3, s 3  
7 7 e 9 8 5 c 8 :  4 7 f 4 0 4 1 1  b i s  z e r o ,  a4, a 1  
7 7 e 9 8 5 c c :  2 2 1  e 0 0 3 8  Lda aO, 3 8 ( s p )  
7 7 e 9 8 5 d 0 :  d 3 4 0 5 8 9 3  b s r  ra ,  7 7 e a e 8 2 0  

I 1  ( t l  i s  I) 
/I @ 0 0 1 5 5 c 5 8  2 0 4 2 0 0  
I 1  t 5  now 8 0 0 0 0 0  
/I t 4  now 4 2 0 0  
/I t 4  now 8 0 4 2 0 0  
11 @ 0 0 1 5 5 c 5 8  = 8 0 4 2 0 0  
/I @ 0 7 2 b f e e c  7 2 b f f a 0  
/ I  @ 0 7 2 b f f a 0  1 5 5 ~ 5 8  
I /  @ 0 0 1 5 6 0 3 8  = 0  
/I ( s 4  i s  1 )  
I 1  s 2  now 2 6 0 0 0 0  
/I s 2  now 2 6 6 2 f 8  
I 1  
/I @ 0 7 2 b f e f 4  1 4 7 6 a 8  
/I a 2  now 7 2 b f e e 0  
I 1  3 0 0 2 6 6 2 f 8  7 7 e 9 8 5 a 0  
/ I  a 3  now 7 2 b f e e 8  
I /  3 0 7 2 b f e f O  7 2 b f f a 8  
/ /  a4 now dbbaO 
/I @ 0 0 1 4 7 6 a 8  2cO 
I 1  r a  now 2 5 6 1 5 8  

11 s p  now 7 2 b f e 6 0  
I 1  @ 0 7 2 b f e 6 0  = 1 4 8 4 4 0  
/ / @ 0 7 2 b f e 6 8  = 7 2 b f f a 0  
I 1  i i1072b fe70  = 2 6 6 2 f 8  
11 @ 0 7 2 b f e 7 8  = 1 4 7 6 a 8  
/I @ 0 7 2 b f e 8 0  = 2 5 6 1 5 8  
/ /  S O  now 2cO 
/ /  s l  now 7 2 b f f a 8  
11 s 2  now 7 2 b f e e 0  
/I s 3  now 7 2 b f e e 8  
I 1  a 1  now dbbaO 
I 1  a 0  now 7 2 b f e 9 8  
/I r a  now 7 7 e 9 8 5 d 4  

Figure 2 (continued) 
Example of Instruction Trace Output from Ntstep 

then reduced to a series of single transactions and ana- 
lyzed for instruction distribution. For both the caclied- 
and the scaled-transaction instruction counts, we com- 
bined at .least three separate transactions and took the 
geometric mean of the instructions executed, which 
caused slight variations in the instruction counts. All 
resulting instruction counts were within an acceptable 
standard deviation as cornpared to individual transac- 
tion instruction counts. 

We collccted the fiulction traces in a similar fashion. 
Once the application benchmark was at  a steady state, 
we began collecting thc tiinction call tree. Based on 
previous work with the SQL Scrvcr database and con- 
sultation \vitl~ ~Microsofi cnginccrs, we could pinpoint 
thc beginning of  a single transaction. \Ve then began 
collecting samples for both traces at the same instant, 
using an Ntstep feature that allowed us to start o r  stop 
sample collection bascd upon a particular address. 

The dynamic instruction counts for both the scaled 
and the cached transactions are given in Tables 11 and 
12. We also show thc \lariation and percentage \{aria- 
ti011 between the Original and the Ryte/Word versions 
of the SQL Server. Two of the six new instructio~ls, 
sextb and sexbv, are not present in the Ryte/Word 

trace. The remaining four instructions combine to 
makc up 2.6 percent and 2.7 percent of  the instruc- 
tions executed per scaled and cached transaction, 
respecti\~ely. Other observations include the following: 

The number of instructions executed decreased 
7 percent for scaled and 4 percent for cached 
transactions. 

The number of ldl-l/stl-c scquenccs decreased 
3 percent for scaled transactions. 

All the instructions that are identified in Tables 1 
and 2 show a decrease in usage. No t  surprisingly, 
the instructions mskwl and niskbl coniplctely disap- 
peared. The ins~\~I and insbl instructions decreased 
by 47 percent and 90 percent, respectively. The sll 
instruction decreased by 38 percent, and the sra 
instruction usage decreased by 53 percent. These 
reductions hold true within 1 to 2 percent for both 
scaled and cached transactions. 

The instructions Jdq-u and Ida, which are used 
in unaligned load and store operations, show a 
dccrcase in the range o f 2 0  to 22 percent and 15 to 
16 percent, respectively. 
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0  * *  B r e a k p o i n t  ( P i d  Oxd7, l i d  Oxdb )  SQLSERVR.EXE p c  7 7 f 3 9 b 3 4  
0  **  T r a c e  b e g i n s  a t  0 0 2 4 2 6 9 8  
0  * *  . o p e n d s 6 0 ! F e t c h N e x t C o m m a n d  

1 3  * *  . . o p e n d s 6 0 ! n e t I O R e a d D a t a  
72  * * . . .  K E R N E L 3 2 ! G e t Q u e u e d C o m p l e t i o n S t a t u s  
85 * * . . . .  K E R N E L 3 2 ! B a s e F o r m a t T i m e O u t  
9 9  * * . . . .  n t d l l ! N t R e m o v e I o C o m p l e t i o n  

1 2 9  * * . . .  o p e n d s 6 0 ! n e t I 0 C o m p l e t i o n R o u t i n e  
2 7 2  **  . . o p e n d s 6 0 ! n e t I O R e q u e s t R e a d  
2 8 5  * * . . .  K E R N E L 3 2 ! R e s e t E v e n t  
2 9 0  * * . . . .  n t d l l ! N t C L e a r E v e n t  
3 1 8  * * . . .  SSNMPN60 ! *0x06a131 f0 *  
3 4 8  * * . . . .  K E R N E L 3 2 ! R e a d F i l e  
3 9 9  * * . . . . .  n t d L l ! N t R e a d F i L e  
412 * * . . . . .  K E R N E L 3 2 ! B a s e S e t L a s t N T E r r o r  . . . . . . . .  417  n t d l l ! R t l N t S t a t u s T o D o s E r r o r  
423  k * . . . . . . .  n t d l l ! R t l N t S t a t u s T o D o s E r r o r N o T e b  
509  * * . . . .  K E R N E L 3 2 ! G e t L a s t E r r o r  
560  * *  . o p e n d s 6 0 ! g e t - c l i e n t - e v e n t  
6 6 5  * *  . . o p e n d s 6 0 ! p r o c e s s R P C  
6 8 2  * * . . .  o p e n d s 6 0 ! u n p a c k - r p c  
7 4 9  * *  . o p e n d s 6 0 ! e x e c u t e - e v e n t  
762  * *  . . o p e n d s 6 0 ! e x e c u t e ~ s q L s e r v e r ~ e v e n t  
8 0 2  * * . . .  o p e n d s 6 0 ! u n p a c k - r p c  
8 6 4  * * . . .  SQLSERVR!execrpc  

. . . . . .  9 1 1  K E R N E L 3 2 ! W a i t F o r S i n g l e O b j e c t E x  . . . . . . .  9 3 7  K E R N E L 3 2 ! B a s e F o r m a t T i m e O u t  
9 5 0  * * . . . . .  n t d l l ! N t W a i t F o r S i n g l e O b j e c t  

1 0 2 4  * * . . . .  S Q L S E R V R ! U s e r P e r f S t a t s  
1 0 3 8  * *  . . . . K E R N E L 3 2 ! G e t T h r e a d T i m e s  

. . .  1 0 5 5  * *  . . n t d l l ! N t Q u e r y I n f o r m a t i o n T h r e a d  
1 1 7 3  * *  . . . S Q L S E R V R ! i n i t - r e c v b u f  
1 2 0 8  * *  . . . S Q L S E R V R ! i n i t - s e n d b u f  
1 2 2 7  * *  . . . SQLSERVR!po r t -ex -hand le  
1 2 6 3  * *  . . . SQLSERVR! -O tsse t jmp3  
1 3 1 3  * * . . . .  SQLSERVR!memalLoc 
1 3 6 5  X * . . . . .  SQLSERVR!-OtsZero  
1 4 0 5  * * . . . .  S Q L S E R V R ! r e c v h o s t  

. . . . . . .  1 4 3 7  SQLSERVR!-OtsMove 
1 5 0 0  * * . . . .  SQLSERVR!rnemal loc  
1 5 7 7  * *  . . . SQLSERVR! rn -cha r  
1 5 8 0  * *  . . . . S Q L S E R V R ! r e c v h o s t  

. . .  1 6 1 2  * *  . . SQLSERVR!-OtsMove 
1 7 7 7  * *  . . . SQLSERVR!parse-name 
1 8 0 8  * *  . . . . SQLSERVR!dbcs -s t rnch r  
2 1 1 5  * *  . . . S Q L S E R V R ! r p c p r o t  
2 1 3 1  * *  . . . . SQLSERVR!mema l l oc  

. . .  2 1 8 3  **  . . SQLSERVR!-OtsZero  
2 2 5 2  **  . . . . S Q L S E R V R ! g e t p r o c i d  

. . .  2 3 1 9  * *  . . S Q L S E R V R ! p r o c r e l i n k + O x 1 2 5 0  
. . .  2 5 4 6  * *  . . S Q L S E R V R ! - O t s R e m a i n d e r 3 2  

. . . . . . . . .  2 5 5 9  S Q L S E R V R ! - O t s D i v i d e 3 2 + 0 x 9 4  

. . . . . . . .  2 5 9 7  S Q L S E R V R ! o p e n t a b l e  

. . . . . . . . .  2 6 4 2  SQLSERVR!parse-name 

. . . . . . . . . .  2 6 7 3  S Q L S E R V R ! d b c s - s t r n c h r  . . . . . . . . .  2 9 7 9  SQLSERVR!parse-name 

. . . . . . . . . .  3 0 1 0  S Q L S E R V R ! d b c s - s t r n c h r  

. . . . . . . . .  3 3 2 3  S Q L S E R V R ! o p e n t a b i d  

. . . . . . . . . .  3 3 6 3  S Q L S E R V R ! g e t d e s  

. . . . . . . . . .  3 4 9 3  S Q L S E R V R ! G e t R u n i d F r o m D e f i d + 0 ~ 4 0  

. . . . . . . . . . .  3 5 1 0  SQLSERVR!-OtsZero 

. . . . . . . . .  3 6 5 8  S Q L S E R V R ! i n i t a r g  
3 6 6 8  * * . . . . . . .  S Q L S E R V R ! s e t a r g  

. . . .  3 7 0 3  * *  . . S Q L S E R V R ! - O t s F i e L d I n s e r t  
. . . .  3764  * *  . . S Q L S E R V R ! s e t a r g  
. . . . .  3 7 9 9  * *  . . S Q L S E R V R ! - O t s F i e l d I n s e r t  
. . . .  3 8 5 7  * *  . . S Q L S E R V R ! s t a r t s c a n  
. . . . .  3 9 0 1  * *  . . SQLSERVR!ge t i ndexZ  

. . . . . . . . . . .  3 9 7 8  S Q L S E R V R ! g e t k e e p s l o t  

. . . . . . . . . . .  4064  S Q L S E R V R ! r o w o f f s e t  

. . . . . . . . . . .  4 1 0 9  S Q L S E R V R ! r o u o f f s e t  

. . . . . . . . . . .  4 1 7 0  SQLSERVR!-OtsMove 

. . . . . . . . . . .  4 3 3 1  SQLSERVR!memcmp 

. . . . . . . . . . .  5323  S Q L S E R V R ! b u f u n h o l d  

. . . . . . . . . .  5 4 3 6  S Q L S E R V R ! p r e p s c a n  . . . . . . . . . . .  5 5 5 0  S Q L S E R V R ! m a t c h - s a r g s - t o - i n d e x  

Figure 3 
Es.uiiplc of Function l'rncc Outpilt from Ntstep 
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Figure 3 (continued) 
Example of Function Trace Output from Ntstcp 
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Table 11 
lnstruction Count and Variations for Scaled Transaction 

lnstruction Original ByteIWord Delta % Delta I Instruction Original ByteIWord Delta % Delta 

stb 
stw 
ldwu 
ldbu 
cmpbge 
cmovlbs 
addt 
cmovl bc 
cmovle 
insqh 
cmovgt 
callsys 
mulq 
s8subq 
cmovlt 
Idt 
zap 
umulh 
mull 
ornot 
cmpeq 
insql 
bl bs 
s8addl 
mskwl 
jsr 
CPYS 
rnskqh 
cmovne 
mskbl 
crnoveq 
insbl 
extwh 
trapb 
mskql 
jmp 
cmovge 
bl bc 
bgt 
Idl-l 
stl-c 
extql 

s t t  
cmple 
inswl 
srl 
extqh 
cmpule 
cmpult 
cmplt 
rdteb 
extwl 
stq-u 
blt 
bic 
extll 
extlh 
bge 
mb 
511 

subl 
br 
sra 
bsr 
s4addl 
ret 
zapnot 
addq 
subq 
ldah 
extbl 
xor 
and 
bne 
addl 
Idq-u 
st1 
Ida 
stq 
1% 
beq 
bis 
Idl 
Totals 

For the scaled transaction, a dccrcasc in 58 out of instructions pcr trilnsaction mcasurcd in Table 13. I f  
81 instructions types occurred. Of the remaining 25 this correlation holtis truc, \vc ~ \ ~ o u l d  cspcct to see an 
instructions, 21 had no change and on ly  4 instructions, increase in pcrformancc of  approsimatcly 7 percent 
mull, s8addl, trapb, and subl, showed an increase. For for scaled transactions runs. 
cached transactions, 22 instruction counts decrcascd, 
29 increased, and 22 remained unchanged. Dynamic Instruction Distribution - - 1 he performalice gain o f  3.5 perccnt mcasurcd For Tlic pcrfor~i~ancc o f  thc Alpli;l microproccssor ~lsing 
the cached version of the application benchmark cor- technical ancl comrncrcial \\/o~-1tlo;lds has bccn evalu- 
relates closely to the dccreasc in the number OF ntcd.' The commercial workload ~ ~ s e d  L V ~ S  clrl7it- 

102 Digiral Technical Journal Vol. 8 No. 4 1996 



Table 12 
lnstruction Count and Variations for Cached Transaction 

lnstruction Original ByteIWord Delta % Delta I lnstruction Original ByteIWord Delta % Delta 

s t  b 
stw 
ldwu 
ldbu 
cmpbge 
cmovlbs 
addt 
cmovl bc 
cmovle 
insqh 
cmovgt 
callsys 
mulq 
s8subq 
cmovlt 
Idt 
za P 
umulh 
mull 
ornot 
cmpeq 
insql 
blbs 
s8addl 
mskwl 
jsr 
CPYS 
mskqh 
cmovne 
mskbl 
cmoveq 
insbl 
extwh 
trapb 
mskql 
jmp 
cmovge 
blbc 
bgt 
ldl-l 
stl-c 
extql 

s t t  
cmple 
inswl 
srl 
extq h 
cmpule 
cmpult 
cmplt 
rdteb 
extwl 
stq-u 
blt 
bic 
extll 
ext l h 
bge 
mb 
sII 
sub1 
b r 
sra 
bsr 
s4addl 
ret 
zapnot 
addq 
subq 
Ida h 
extbl 
xor 
and 
bne 
addl 
Idq-u 
st1 
Ida 
stq 
Idq 
beq 
bis 
Idl 
Totals 

credit, which is similar t o  the  Tl'C-A benchniark. T h e  
TI'C-B benchmark is similar t o  the TPC:-A, differing 
only in its method o f  execution. Cvetanovic and 
Bhandarltar presented an instruction distribution 
matrix for the debit-credit \vorldoad. T h e  Alpha 
instruction type mix is dominated by the integer class, 
followed by other, load, branch, and store instructions, 
in descending order." We took a similar .~pproach 
bu t  divided the instructions into more  groups t o  
achieve a finer detailed distribution. Table 13 gives the 

instruction maltcup o f  each group.  Figure 4 sho\\ls the 
percentage o f  instructions in  each g r o u p  for t h e  four  
alternatives we  studied. In  all four cases, INTEGER 
LOADS make up  32 percent o f  the instructions exe- 
cuted.  In the scaled Byte/Word category, the new 
ldbu and I d ~ w  instructions cornpose 1 percent o f  the 
integer instructions, and t h e  new s tb  and stw instruc- 
tions accounted for 18 percent o f  the  integer store 
instructions executed. 



Table 13 
Instruction Groupings 

Instruction 
Group Group Members 
- 

Integer loads Idwu, Idbu, Idl-I, Idah, Idq-u, 
Ida, ldq, ldl 

lnteger stores 

lnteger control 
stb, stw, stl-c, stq-u, stl, stq 
blbs, jsr, jmp, blbc, bgt, blt, bge, 
br, bsr, ret, bne, beg 

lnteger arithmetic cmpbge, s8subq, umulh, mull, 
cmpeq, sgaddl, cmple, cmpule, 
cmpult, cmplt, subl, s4addl, 
addq, subq, addl 

Logical shift cmovl bs, cmovl bc, cmovle, 
cmovgt, cmovlt, ornot, cmovne, 
cmoveq, cmovge, srl, bic, sll, sra, 
xor, and, bis 

Byte manipulation insll, inslh, mskll, mskhl, insqh, 
zap, insql, mskwl, mskqh, mskbl, 
insbl, extwh, insbl, extwh, mskql, 
extql, inswl, extqh, extwl, extll, 
extlh, zapnot, extbl 

Other addt, Idt, stt ,  mulq, callsys, cpys, 
trapb, rdteb, mb 

During the scaled transactions, each instruction 
group showed a decrease in the numbcr o f  instruc- 
tions csccutcd, ranging fro111 ncgligiblc to as m u c h  as 
54 p u x n t .  I n  acidition, the number o f  byte ~nanipula- 
tion and logical shift instructions decreascci, because 

the method of loading 01- storing bytes and \vords 
o n  the originlil Alpha Architecture made hca\,y use o f  
thcsc n,pcs of  instructions. 

I n  our Inst esnniination, nre lool<cci at the instl-uc- 
tion \*.iriation bcn\,een a sc.llcd and a caclicd t l .~~is-  
action. The major difference ben\cccn the nvo 
tmnsactions i s  the additional I /O rcquircd b!, the 
scalcd version o f  the benchmark. Table 14 gives the 
results. The Original version o f  the SQL Server data- 
base c\ccuted an extra 4,596 instructions during the 
caclicd tmnsaction as compared to thc scalcd trJns- 
action. For the Ryte/Wo~-d version, only an additional 
1,334 instructions \yere executed. 

Conclusions 

The introduction o f  the ne\\ singlc byte and \vord 
manipulation instructions in the Alpha Arcliitccturc 
improved the perfornlance of the Microsoti SQI, 
Scrvc~. d,ltabasc. Wc obser\.ed a dccrcasc in the n u n -  
bcr of instr~~ctions cscc~~ted pcr transaction, the 
elimination o f  sonie instructions in the \\,orklonil, .I 

redistribution o f  the instruction nlis, and an increase 
in rclati\*c performance. The results arc in line \\:it11 
cspcctntions \\.lien the addition o f  the nc\\. instruc- 
tions \\,as proposed. 

We limited OLII- investigation to 3 singlc commercial 
\\rorltload and operating system. l'csting n \\lo~.ltloaci 
\\)it11 more I/O, such as the Tl'C-C: bc~~cllmark, \\)auld 
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Table 14 
lnstruction Variations (Scaled Minus Cached Transactions) 

lnstruction Original 

s tw 
ldwu 
ldbu 
cmovl bc 
callsys 
s8su bq 
za P 
umulh 
mull 
ornot  
cmpeq 
bl bs 
s8addl 
mskwl 
jsr 
CPYS 
mskqh 
cmovne 
cmoveq 
extwh 
t r a p b  
mskql 
jmp 

lnstruction Original 

cmplt 
rd teb  
extwl 
stq-u 
blt 
bic 
extll 
extlh 
bge 
m b  
sII 
cmovge 
bl bc 
bgt  
Idl-l 
stl-c 
extql 
cmple 
inswl 
srl 
extqh 
cmpule 
cmpult 

produce a different set o f  results and \vo~lld ~l icr i t  
investigation. T h c  use o f  another ciatabasc, such as the 
Ornclc IIl)BMS, \\,hich makes greater L I S ~  of byte opcr- 
ations, \\tould possibl!! result i l l  21.1 cvcn greater pcrfor- 
m'incc impact. Lastly, rebuilding tlic cntirc operating 
system t o  use the lie\\, instructions \ i~ould mnltc an 
interesting and \\,orthwhile study. 
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lnstruction Original ByteIWord 

sub1 
br 
sra 
bsr 
s4addl 
ret 
zapnot  
addq  
su bq 
ldah 
extbl 
xor 
a n d  
b n e  
addl  
Idq-u 
st1 
Ida 
stq 
Idq 
beq 
bis 
Idl 
Totals 
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