ALPHASERVER 4100 SYSTEM

ORACLE AND SYBASE DATABASE PRODUCTS

D|g|ta| FOR VLM

TECh n ical INSTRUCTION EXECUTION ON ALPHA PROCESSORS

Journal

Engﬂnaum

figita)

Volume 8 Number 4
1996

Editorial

Jane C. Blake, Managing Editor
Kathleen M. Stetson, Editor
Helen L. Patterson, Editor

Circulation
Catherine M. Phillips, Administrator
Dorothea B. Cassady, Secretary

Production

Christa W. Jessico, Production Editor
Anne S. Katzett, Typographer

Peter R. Woodbury, Illustrator

Advisory Board

Samuel H. Fuller, Chairman
Richard W. Beane

Donald Z. Harbert

Richard J. Hollingsworth
William A. Laing

Richard F. Lary

Alan G. Nemeth

Robert M. Supnik

Cover Design

The performance advantage of very large
memory technology for commercial applica-
tions is a major theme in this issue of the
Journal. The cover is a collage of images
from the development of the AlphaServer
4100 four-processor symmetric multipro-
cessing system, which offers 8 gigabytes

of memory and industry leadership per-
formance. This four-processor symmetric
multiprocessing system is not only charac-
terized by very large memory but by low
latency, high bandwidth, and 400-megahertz
MICroprocessors.

The cover design is by Lucinda O’Neill of
DIGITAL’s Corporate Design Group.

The Digital Technical Journalis a refereed
journal published quarterly by Digital
Equipment Corporation, 50 Nagog Park,
AKO2-3/B3, Acton, MA 01720-9843.

Hard-copy subscriptions can be ordered by
sending a check in U.S. funds (made payable
to Digital Equipment Corporation) to the
published-by address. General subscription
rates are $40.00 (non-U.S. $60) for four
issues and $75.00 (non-U.S. $115) for
cight issues. University and college profes-
sors and Ph.D. students in the electrical
engineering and computer science fields
receive complimentary subscriptions upon
request. DIGITAL’s customers may qualify
for gift subscriptions and are encouraged
to contact their account representatives.

Electronic subscriptions are available at

no charge by accessing URL

http: //www.digital.com /info/subscription.
This service will send an electronic mail
notification when a new issue is available

on the Internet.

Single copies and back issues are available
for $16.00 (non-U.S. $18) each and can
be ordered by sending the requested issue’s
volume and number and a check to the
published-by address. See the Further
Readings section in the back of this issue
for a complete listing. Recent issues are
also available on the Internet at
http://www.digital.com/info/dtj.

DIGITAL employees may order subscrip-
tions through Readers Choice at URL
http: //webrc.das.dec.com or by entering
VTX PROFILE at the OpenVMS system
prompt.

Inquiries, address changes, and compli-
mentary subscription orders can be sent
to the Digital Technical Journal at the
published-by address or the electronic
mail address, dtj@digital.com. Inquirics
can also be made by calling the Journal
office at 508-264-7549.

Comments on the content of any paper and
requests to contact authors are welcomed
and may be sent to the managing editor at
the published-by or electronic mail address.

Copyright © 1997 Digital Equipment
Corporation. Copying without fee is per-
mitted provided that such copies are made
for use in educational institutions by faculty
members and are not distributed for com-
mercial advantage. Abstracting with credit
of Digital Equipment Corporation’s author-
ship is permitted.

The information in the Journalis subject
to change without notice and should not
be construed as a commitment by Digital
Equipment Corporation or by the compa-
nies herein represented. Digital Equipment
Corporation assumes no responsibility for
any errors that may appear in the Journal.

ISSN 0898-901X
Documentation Number EC-N7629-18

Book production was done by Quantic
Communications, Inc.

The following are trademarks of Digital
Equipment Corporation: AlphaServer,
AlphaStation, DEC, DECnet, DIGITAL,
the DIGITAL logo, VAX, VMS, and
ULTRIX.

AIM is a trademark of AIM Technology, Inc.
CCT is a registered trademark of Cooper
and Chyan Technologies, Inc. CHALLENGE
and Silicon Graphics are registered trademarks
and POWER CHALLENGE is a trademark
of Silicon Graphics, Inc. Compagq is a regis-
tered trademark and ProLiant is a trademark
of Compaq Computer Corporation. HP is
aregistered trademark of Hewlett-Packard
Company. HSPICE is a registered trade-
mark of Metasoftware Corporation. IBM,
PowerPC, PowerPC 504, and PowerPC
604 are registered trademarks and RS /6000
is a trademark of International Business
Machines Corporation. Insignia is a trade-
mark of Insignia Solutions, Inc. Intel and
Pentium are trademarks of Intel Corporation.
IPX/SPX is a trademark of Novell, Inc.
ispLSI and Lattice Semiconductor are regis-
tered trademarks of Lattice Semiconductor
Corporation. KAP is a trademark of Kuck &
Associates, Inc. MEMORY CHANNEL is a
trademark of Encore Computer Corporation.
Mental Ray is a trademark of Mental Images.
Metral is a trademark of Berg Technology, Inc.
Microsoft, MS-DOS, and Visual C++ are
registered trademarks and Windows and
Windows NT are trademarks of Microsoft
Corporation. MIPS and R4400 are trade-
marks of MIPS Technologies, Inc., a wholly
owned subsidiary of Silicon Graphics, Inc.
Motorola is a registered trademark of
Motorola, Inc. Oracle is a registered trade-
mark and Oracle7, Oracle 64 Bit Option,

and Oracle Parallel Server are trademarks

of Oracle Corporation. PostScript is a
registered trademark of Adobe Systems
Incorporated. Powerview is a registered
trademark of Viewlogic Corporation.
SPARCstation is a registered trademark

and SPARCluster, SPARCserver, and
UltraSPARC are trademarks of SPARC
International, Inc., used under license by
Sun Microsystems, Inc. SPEC is a registered
trademark of the Standard Performance
Evaluation Corporation. SPICE is a trade-
mark of the University of California at
Berkeley. SQL Server and System 11 are
trademarks and Sybase is a registered trade-
mark of Sybase, Inc. Sun is a registered
trademark and Ultra is a trademark of Sun
Microsystems, Inc. Synopsys is a regis-

tered trademark of Synopsys, Inc. Texas
Instruments is a registered trademark of
Texas Instruments Incorporated. Timing
Designer is a registered trademark of
Chronology Corporation. TPC-Cis a
registered trademark of the Transaction
Processing Performance Council. UNIX

is a registered trademark in the United
States and in other countries, licensed
exclusively through X/Open Company

Ltd. Xilinx is a registered trademark of
Xilinx, Inc.

Contents

ALPHASERVER 4100 SYSTEM

AlphaServer 4100 Performance Characterization Zarka Cvetanovic and Darrel D. Donaldson 3
The AlphaServer 4100 Cached Processor Module Maurice B. Steinman, George J. Harris, 21
Architecture and Design Andrej Kocev, Virginia C. Lamere, and

Roger D. Pannell
The AlphaServer 4100 Low-cost Clock Distribution System Roger A. Dame 38

Design and Implementation of the AlphaServer 4100 CPU Glenn A. Herdeg 48
and Memory Architecture

High Performance I/0 Design in the AlphaServer 4100 Samuel H. Duncan, Craig D. Keefer, and 61
Symmetric Multiprocessing System Thomas A. McLaughlin
ORACLE AND SYBASE DATABASE PRODUCTS FOR VLM

Design of the 64-bit Option for the Oracle7 Relational Vipin V. Gokhale 76
Database Management System

VLM Capabilities of the Sybase System 11 SQL Server T.K. Rengarajan, Maxwell Berenson, 83
Ganesan Gopal, Bruce McCready, Sapan Panigrahi,
Srikant Subramaniam, and Marc B. Sugivama

INSTRUCTION EXECUTION ON ALPHA PROCESSORS

Measured Effects of Adding Byte and Word Instructions David P. Hunter and Eric B. Betts 89
to the Alpha Architecture

Digital Technieal Journal Vol.8 No.4 1996

Editor’'s
Introduction

Just 40 years ago, a machine called the
TX-0—a successor to Whirlwind—
was built at MIT’s Lincoln Laboratory
to find out, among other things, ifa
core memory as large as 64 Kwords
could be built. Over the years mem-
ory sizes have grown so large that,

in the *90s, the industry has felt the
need to characterize memory in big
machines as very large. At five orders
of magnitude greater in size than the
TX-0 memory, the AlphaServer 4100
8-gigabyte memory is indeed very
large, even by today’s standards. Whole
databases can be designed to reside in
memory. Very farge memory technol-
ogy, or VLM, is a key to the system
and application performance discussed
in this issue of the Journal, which fea-
tures the AlphaServer 4100 system,
database enhancements from Oracle
Corporation and from Sybase, Inc., and
extensions to the Alpha architecture.

The AlphaServer 4100 is a mid-
range, symmetric multiprocessing
system designed for industry-leading
performance at a low cost. The sys-
tem accommodates up to four 64-bit
Alpha 21164 microprocessors operat-
ing at 400 megahertz, tour 64-bit PCI
bus bridges, and 8 gigabytes of main
memory. Opening the section about
the 4100 system, Zarka Cvetanovic
and Darrel Donaldson describe the
project team’s performance characteri-
zation of different AlphaServer 4100
models under technical and commer-
cial workloads. Both the process and
the findings are of interest. As one
example set of data demonstrates,
the model 5,/300 is not only faster
than its DIGITAL predecessors but
30 to 60 percent faster than a com-
parative industry platform when run-
ning memory-intensive workloads
from the SPECtp95 benchmark.

The four papers that follow exam-
ine areas of the system that challenged
designers to keep costs low and at the
same time deliver high performance.

Digital l'echnical Journal

Vol. 8 No. 4

The AlphaServer 4100 cached pro-
cessor module design is presented by
Mo Steinman, George Harris, Andrej
Kocev, Ginny Lamere, and Roger
Pannell. Built around the Alpha 21164
64-bit RISC microprocessor, the
modulc is the first from DIGITAL
to employ a high-performance, cost-
effective synchronous cache rather
than a traditional asynchronous cache.
Next, Roger Dame reviews the clock
distribution system, the use of oft-
the-shelf phase-locked loop circuits
as the basic building block to keep
costs low, and the signal integrity
techniques developed to optimize
performance of the clock distribution
system for a worst-case clock skew of
2.2 nanoseconds, a goal which the
team far exceeded. A unique memory
architecture for the model 5/300E is
the subject of Glenn Herdeg’s paper.
This memory design incorporates a
processor module that has no external
cache and instead takes advantage
of the multiple-issue feature of the
Alpha 21164 microprocessor. Closing
the section on the 4100 design is the
[/O subsystem’s contribution to the
system goals of low latency and high
memory and [/0O bandwidch. Sam
Duncan, Craig Kecfer, and Tom
McLaughlin present several innova-
tive techniques developed for the sys-
tem bus-to- PCI bus bridge design,
including partial cache line writes,
peer-to-pecr transactions across PCI
bridges, and support for large bursts
of data.

All efforts to make t
run faster are for the benefit of the

ve hardware

applications that run on those sys-
tems. A paper from Oracle Corpora-
tion and another from Sybase, Inc.,
examine ways in which their respec-
tive databasc systems take advantage
of VLM. Vipin Gokhale describes
the 64 Bit Option implementation
for the Oracle? relational database
system. A primary project goal was to

1996

demonstrate a clear performance ben-
cfir for decision support systems and
online transaction processing. The
author summarizes data that show

a clear benefit for a darabase with the
64 Bit Option enabled running on
the AlphaServer 8400 with 8 gigabytes
of memory; in some casces, the perfor-
mance increase was 200 times that

of the standard configuration. Sybasc
engineers T.K. Rengarajan, Max
Berenson, Ganesan Gopal, Bruce
McCready, Sapan Panigrahi, Srikant
Subramaniam, and Marc Sugivama
examine the technology of the
System 11 SQL Server rhat was spe-
cifically designed for VLM systems.

In addition to achieving record results
with the SQL Server running on the
AlphaServer 8400, the engincers have
laid the groundwork for future main
memory database systems.

Recently, byte and word instruc-
nons were added to DIGITAL’s
64-bit Alpha architecture, Dave
Hunter and Eric Betts describe the
process of analvzing how these addi-
tions affect the performance of a
commercial database. For testing,
the team used prototype hardware,
rebuilt Microsoft Corporation’s SQL
Server to use the new mstructions,
and ran the TPC-B benchmark.

The editors thank Darrel Donaldson
of the AlphaServer 4100 team and
Kuk Chung of the Database Applica-
tion Partners group for their ¢fforts
to acquire the papers presented m rhis
issue. Qur upcoming issuc will feature
CMOS-6 process technologies.

M

Jane C. Blake
Managing Editor

AlphaServer 4100
Performance
Characterization

The AlphaServer 4100 is the newest four-
processor symmetric multiprocessing addition
to DIGITAL's line of midrange Alpha servers.

The DIGITAL AlphaServer 4100 family, which
consists of models 5/300E, 5/300, and 5/400,

has major platform performance advantages

as compared to previous-generation Alpha plat-
forms and leading industry midrange systems.
The primary performance strengths are low
memory latency, high bandwidth, low-latency
I/0, and very large memory (VLM) technology.
Evaluating the characteristics of both technical
and commercial workloads against each family
member yielded recommendations for the best
application match for each model. The perfor-
mance of the model with no module-level cache
and the advantages of using 2- and 4-megabyte
module-level caches are quantified. The profiles
based on the built-in performance monitors are
used to evaluate cycles per instruction, stall time,
multiple-issuing benefits, instruction frequen-
cies, and the effect of cache misses, branch
mispredictions, and replay traps. The authors
propose a time allocation-based model for
evaluating the performance effects of various
stall components and for predicting future per-
formance trends.

Zarka Cvetanovic
Darrel D. Donaldson

The AlphaServer 4100 is DIGITAL’s latest four-
processor symmetric multiprocessing (SMP) midrange
Alpha server. This paper characterizes the performance
of the AlphaServer 4100 family, which consists of
three models:**

1. AlphaServer 4100 model 5/300E, which has up to
four 300-megahertz (MHz) Alpha 21164 micro-
processors, cach without a module-level, third-
level, write-back cache (B-cache) (a design referred
to as uncached in this paper)

2. AlphaServer 4100 model 5/300, which has up to
four 300-MHz Alpha 21164 microprocessors, each
with a 2-megabyte (MB) B-cache

3. AlphaServer 4100 model 5,/400, which has up to
four 400-MHz Alpha 21164 microprocessors, each
with a 4-MB B-cache

The performance analysis undertaken examined
a number of workloads with different character-
istics, including the SPEC95 benchmark suites
(floating-point and integer), the LINPACK bench-
mark, AIM Suite VIT (UNIX multiuser benchmark),
the TPC-C transaction processing benchmark, image
rendering, and memory latency and bandwidth
tests.” " Note that both commercial (AIM and TPC-C)
and technical /scientific (SPEC, LINPACK, and image
rendering) classes of workloads were included in
this analysis.

The results of the analysis indicate that the major
AlphaServer 4100 performance advantages result
from the following server features:

= Significantly higher bandwidth (up to 2.6 times)
and lower latency compared to the previous-
generation midrange AlphaServer platforms and
leading industry midrange systems. These improve-
ments benefit the large, multstream applica-
tions that do not fit in the B-cache. For example,
the AlphaServer 4100 5/300 is 30 to 60 percent
faster than the HP 9000 K420 server in the
memory-intensive workloads from the SPECfp95
benchmark suite. (Note that all competitive per-
formance data presented in this paper is valid as

Digital Technical Journal Vol.8 No.4 1996

of the submission of this paper in July 1996. The
references cited refer the reader to the literature
and the appropriate Web sites for the latest pertor-
mance information.)

= An expanded very large memory (VLM). The max-
imum memory size increased from 2 gigabytes
(GB) to 8 GB without sacrificing CPU slots. This
increase in memory size benefits primarily the com-
mercial, multistream applications. For example, the
AlphaServer 4100 5,/300 server achieves approxi-
mately twice the throughput of the Compagq
ProLiant 4500 server and 1.4 times the throughput
of the AlphaServer 2100 on the AIM Suite VII
benchmark tests.

= A 4-MB B-cache and a clock speed of 400 MHz
in the AlphaServer 4100 5 /400 system. The larger
B-cache size and 33 percent faster clock resulted in
a 30 to 40 percent performance improvement over
the AlphaScrver 4100 5,/300 system.

The performance improvement from the larger
B-cache increases with the number of CPUs. For
example, the AlphaServer 4100 5/300 system with
its 2-MB B-cache design performs 5 to 20 percent
faster with one CPU and 30 to 50 percent faster
with four CPUs than the uncached 5/300E system.
The majority of workloads included in this analysis
benefit from the B-cache; however, the uncached sys-
tem outperforms the cached implementation by 10 to
20 pereent for large applications that do not fit in
the 2-MB B-cache.

The performance counter profiles, based on the
built-in hardware monitors, indicate that the major-
ity of issuing time is spent on single and dual issuing
and that a small number of floating-point workloads
take advantage of triple and quad issuing. The
load/store instructions make up 30 to 40 percent of
all instructions issued. The stall time associated with
waiting for data that missed in the various levels of
cache hicrarchy accounts for the most significant por-
tion of the time the server spends processing cont-
mercial workloads.

Memory Latency

Memory latency and bandwidth have been recog-
nized as important performance factors in the carly
Alpha-based implementations.'*" Since CPU speed is
increasing at a much higher rate than memory speed,
the “memory wall” limitation is expected to become
even more important in the future. Therefore, reduc-
ing memory latency and increasing bandwidth have
been major design goals for the AlphaServer 4100
platform.' The AlphaServer 4100 achieved the lowest
memory latency of all DIGITAL products based on

Digital Technical Journal Vol.8 No.4 1996

the Alpha 21164 microprocessor and all multiproces-
sor products by leading industry vendors. The major
benetits come from the simpler interface, the use of
synchronous dvnamic random-access memory
(DRAM} chips (i.c., svnchronous memory), and the
lower fill time.” Figure 1 shows the measured mem-
orv load latency using che Imbench benchmark with
a 512-byte stride. In this benchmark, cach load
depends on the result from the previous load, and
thercfore latency 1s not a good measure of perfor-
mance for systems that can have multiple outstanding
loads. (AlphaServer 4100 systems can have up to
two outstanding requests per CPU on the bus.)
The Imbench benchmark data indicates that the
AlphaScrver 4100 has the lowest memory latency of
all industry-leading reduced-instruction set comput-
ing (RISC) vendors’ servers.

As shown in Figure 2, using a slightlv different
workload where there is no dependency benwveen
consceutive loads, the AlphaServer 4100 achieves even
lower per-load latency, since the latencey tor the nwvo
consecutive loads can be overlapped. The platcaus
in Figure 2 show the load lateney at each of the follow-
ing levels of cache/memory hicrarchy: 8-kilobyvee
(KB) on-chip data cache (D-cache), 96-KB on-chip
sccondary instruction/data cache (S-cache), 2- and
4-MB oft-chip B-caches (except for model 5/300E),
and memory. The uncached AlphaScrver 4100
5/300E achieves an 85 percent lower memory load
latency than the previous-generation AlphaScrver
2100. The AlphaScrver 4100 5/300, with its 2-MB
B-cache, increases memory latency 30 percent for
load operations and 6 percent for store operations
compared to the uncached 5/300E system because of
the time spent checking for data in the B-cache. The
svnchronous memory shows one cvele lower lateney
than the asvnchronous extended data out (EDO)
DRAM (i.c., asynchronous memorv), which results in
9 percent faster load operations and 5 percent faster
store operations. Note that the cached AlphaScrver
4100 and AlphaScrver 8200 svstems, which have
the same clock speeds of 300 MHz, achieve com-
parable B-cache latency, while the memory larency
for all AlphaScrver 4100 systems is significantly
lower than on both the AlphaScrver 8200 and the
AlphaScrver 2100 systems. The latency to the B-cache
mn this test is lower on the AlphaScrver 2100 than
on the other AlphaServer systems due to 32-byte
blocks (compared to 64-byte blocks in the 4100 and
8200 systems). Although not shown in this test, many
applications can benefit from the larger cache block
size. The 400-MHz AlphaServer 4100 system uscs
a 33 pereent faster CPU and achieves 11 pereent
reduction in B-cache and memory latency compared
to the 300-MHz AlphaScrver 4100 systen.

LMBENCH: DEPENDENT LOAD MEMORY LATENCY
(STRIDE = 512 BYTES)

ALPHASERVER 8200
(300 MHZ)

ALPHASERVER 4100
5/400 (400 MHZ)

ALPHASERVER 4100
5/300 (300 MHZ)

ALPHASERVER 4100
5/300E (300 MHZ)

INTEL PENTIUM PRO
(200 MHZ)

SUN ULTRASPARC
(167 MHZ)

HP 9000 K210
(119 MHZ)

SGI POWER CHALLENGE
R10000 (200 MHZ)

IBM RS/6000 43P
POWERPC (133 MHZ)

0 200

400 600 800 1,000 1,200

MEMORY LATENCY
(NANOSECONDS)

Figure 1

Imbench Benchmark Test Results Showing Memory Latency for Dependent Loads

Memory Bandwidth

The AlphaServer 4100 system bus achieves a peak
bandwidth of 1.06 gigabytes per second (GB/s). The
STREAM McCalpin benchmark measures sustainable
memory bandwidth in megabytes per second (MB /)
across four vector kernels: Copy, Scale, Sum, and
SAXPY." Figure 3 shows measured memory band-
width using the Copy kernel from the STREAM
benchmark. Note that the STREAM bandwidth is
33 percent lower than the actual bandwidth observed
on the AlphaServer 4100 bus because the bus data
cycles are allocated for three transactions: read
source, read destination, and write destination. The
AlphaServer 4100 shows the best memory bandwidth
of all multiprocessor platforms designed to support up
to four CPUs. The platforms designed to support
more than four CPUs (i.c., the AlphaServer 8400, the
Silicon Graphics POWER CHALLENGE R10000, and
the Sun Ultra Enterprise 6000 systems) show a higher
bandwidth for four CPUs than the AlphaServer 4100.
The STREAM bandwidth on the AlphaServer 4100
5/300 is 2.2 times higher than on the previous-
generation AlphaServer 2100 5,/250 (2.6 times higher

with the AlphaServer 4100 5,/400). The uncached
AlphaServer 4100 model shows 22 percent higher
memory bandwidth than the cached model 5,/300.

The AlphaServer 4100 memory bandwidth
improvement from synchronous memory compared
to EDO ranges from 8 to 12 percent. The synchro-
nous memory benefit increases with the number of
CPUs, as shown in Table 1.

Low memory latency and high bandwidth have
a significant eftect on the performance of workloads
that do not fit in 2- to 4-MB B-caches. For example,
the majority of the SPEC{p95 benchmarks do not fit
in the 2-MB cache. (Figure 20, which appears later in
this paper, shows the cache misses.) The SPEC{p95
performance comparison presented in Figure 4 shows
that the uncached AlphaServer 4100 5/300E system
outperforms the 2-MB B-cache model 5,/300 in the
benchmarks with the highest number of B-cache
misses (tomcatv, swim, applu, and hydro2d). The per-
formance of the uncached model 5,/300E is compar-
able to that of the 4-MB B-cache model 5,/400 for the
swim benchmark. However, the benchmarks that fit
better in the 4-MB cache (apsi and wave5) run signifi-
cantly slower on the 5/300E than on the 5,/400.

Digital Technical Journal Vol.8 No.4 1996

(921

INDEPENDENT LOAD LATENCY

300 L (STRIDE = 64 BYTES)
———o
250 | /
& 200}
pd
&
o A
g |
Z 1501 e —I.*'—/:— —
Z i]ll' /
> /
(2) / ||l.-'
E 100 ¢ f J
- /
ﬁ & ‘-" |Il
4 A
/ -
/:' /—‘_—ﬂ.— = I||
50 / B A — -
/ >
/ v 4
J,f/

o P— i _
4 KB 8KB 16KB 32KB 64KB 128KB 256 KB 512KB 1MB 2MB 4MB 8MB 16MB

DATA SET SIZE

KEY:

—+— ALPHASERVER 4100 5/300E
ALPHASERVER 4100 5/300

~——+— ALPHASERVER 4100 5/400
ALPHASERVER 8200 5/300

—e— ALPHASERVER 2100 5/300

Figure 2
Cache/Memory Latency for Independent Loads

1,000t
900} o
800
700

800

KEY:

—— ALPHASERVER 8400 5/300
= ALPHASERVER 8400 5/350
IBM RS/6000-990
SGI POWER CHALLENGE R10000
ALPHASERVER 4100 5/300E
s ALPHASERVER 4100 5/300
i ALPHASERVER 4100 5/400
—=—— HP 9000 J210
. ALPHASERVER 2100 5/250
—— SUN SPARCSERVER 2000E
INTEL ALDER PENTIUM PRO
SUN ULTRA ENTERPRISE 6000

500

400

300

BANDWIDTH (MEGABYTES PER SECOND)

200

100

NUMBER OF CPUs

Figure 3
STREAM McCalpin Memory Copy Bandwidth Comparison

Digital Technical Journal Vol.§ No.4 1996

Table 1
Bandwidth Improvement from Synchronous Memory
to Asynchronous Memory

Number of CPUs
1 2 3 4
Bandwidth
improvement 8% 8% 9% 12%

Figurc 4 shows that the AlphaScrver 4100 5/300
system has a significant (up to two times) performance
advantage over the previous-generation AlphaServer
2100 system in the SPECHp95 benchmark tests with
the highest number of B-cache misses. The SPEC(p95
tests indicate that the 300-MHz AlphaServer 4100 is
more than 50 pereent faster than the HP 9000 K420
server, and the 400-MHz AlphaServer 4100 is twice as
fast as the HP 9000 K420 in the SPECp95 bench-
marks that stress the memory subsystem.

SPEC95 Benchmarks
The SPECI5 benchmarks provide a measure of pro-
cessor, memory hierarchy, and compiler pertformance.

These benchmarks do not stress graphics, network,
or 1/O performance. The integer SPECIS suite

SPECFP95

SPECFP95

146 WAVES

145 FPPPP

i_

141.APSI

125.TURB3D

110.APPLU

107.MGRID

104 HYDRO2D

103.SU2COR
102.SWiM
| = ——
0 5 10 15 20 25 30 35
KEY:

HP 9000 K420
ALPHASERVER 2100 5/300
ALPHASERVER 4100 5/400
ALPHASERVER 4100 5/300
ALPHASERVER 4100 5/300E

upEl NN

Figure 4
SPECtp95 Benchmarks Performance Comparison

(CINT95) contains cight compute-intensive integer
benchmarks written in C and includes the benchmarks
shown in Table 2.4

The floating-point SPEC95 suite (CFP9I5) contains
10 compute-intensive floating-point benchmarks writ-
ten in FORTRAN and includes the benchmarks shown
in Table 3.4

The SPEC Homogeneous Capacity Method
(SPEC95 rate) measures how fast an SMP system can
perform multiple CINT95 or CFP95 copies (tasks).
The SPEC95 rate metric measures the throughput of
the system running a number of tasks and is used for

evaluating multiprocessor system performance.

Table 2

CINT95 Benchmarks (SPECint95)

Benchmark Description

099.go Artificial intelligence, plays the
game of Go

124.m88ksim A Motorola 88100 microprocessor
simulator

126.gcc A GNU C compiler that generates

129.compress

SPARC assembly code

A program that compresses large
text files (about 16 MB)

130.1i A LISP interpreter

132.ijpeg A program that compresses/
decompresses an image

134.perl A Perl interpreter that performs
text and numeric manipulations

147 vortex A database program that builds and
manipulates three interrelational
databases

Table 3

CFP95 Benchmarks (SPECfp95)

Benchmark

Description

101.tomcatv

A fluid dynamics mesh generation
program

102.swim A weather prediction shallow water
model
103.su2cor A guantum physics particle mass

104.hydro2d

computation (Monte Carlo)

An astrophysics hydrodynamical
Navier-Stokes equation

107.mgrid A multigrid solver in a 3-D potential
field (electromagnetism)

110.applu Parabolic/elliptic partial differential
equations (fluid dynamics)

125.turb3d A program that simulates
turbulence in a cube

141.apsi A program that simulates tempera-
ture, wind, velocity, and pollutants
(weather prediction)

145.fpppp A quantum chemistry program that
performs multielectron derivatives

146.wave5 A solver of Maxwell’s equations on

a Cartesian mesh (electromagnetics)

Digital Technical Journal

Vol.8 No.4 1996

8

Figure 5 compares the SPEC95 performance of
the AlphaServer 4100 systems to that of the other
industry-leading vendors using published results as
of July 1996. Figure 6 shows the same comparison in
the multistream SPEC95 rates.* Note that all the
SPEC95 comparisons in this paper are based on the
peak results that include extensive compiler optimiza-
tions."” Figure 5 indicates that even the uncached
AlphaServer 4100 5/300E performs better than the
HP 9000 K420 system, and the AlphaServer 4100
5,/400 shows approximately a two times performance
advantage over the HP system. The AlphaServer 4100
5/300 SPECint95 performance exceeds that of the
Intel Pentium Pro system, and the AlphaServer 4100
5/300 SPEC{p95 performance is double that of
the Pentium Pro. The AlphaServer 4100 5,/400 is
1.5 times (SPECint95) and 2.5 times (SPECH95)
faster than the Pentium Pro system. The muluple-
processor SPECtp95 on the AlphaServer 4100 is
obtained by decomposing benchmarks using the KAP
preprocessor from Kuck & Associates. Note that the
cached four-CPU AlphaServer 4100 5/300 outper-
forms the Sun Ultra Enterprise 3000 with six CPUs in
the SPECHp95 parallel test. The performance benefit
of the cached versus the uncached AlphaServer 4100
is greater in multiprocessor configurations than in uni-
processor configurations.

SPECY5 Multistream Performance Scaling
Figures 7 and 8 show SPEC95 multistrcam perfor-

mance as the number of CPUs increascs. The SMP
scaling on the AlphaServer 4100 is comparable to that

SPECY5 RATES
450

400

350

300 r

250

200

150

100

50

&
i
(Lo

SPECFP_RATE95

SPECINT_RATE95
KEY:

]
=]
O
|
O
o
O

ALPHASERVER 4100 5/300E (4 CPUs)

ALPHASERVER 4100 5/300 (4 CPUs)

ALPHASERVER 4100 5/400 (4 CPUs)

HP 9000 K420 PA-RISC 7200 120 MHZ (4 CPUs)

SUN ULTRA ENTERPRISE 3000 ULTRASPARC 167 MHZ (4 CPUs)
INTEL C ALDER PENTIUM PRO 200 MHZ (1 CPU)

IBM RS/6000 J40 POWERPC 604 112 MHZ (6 CPUs)

Figure 6
SPEC95 Throughput Results (SPEC95 Rates)

SPEC95
35
30+
25+
20 f
KEY:
15 b B ALPHASERVER 4100 5/300E
B ALPHASERVER 4100 5/300
T O ALPHASERVER 4100 5/400
10 | B HP 9000 K420 PA-RISC 7200 (120 MHZ)
y O SUN ULTRA ENTERPRISE 3000
o ULTRASPARC (167 MHZ)
5t . , @ SGI POWER CHALLENGE R10000 (195 MHZ)
@ INTEL C ALDER PENTIUM PRO (200 MHZ)
O IBM RS/6000 43P POWERPC 604E (166 MHZ)
0 [
SPECINT95 1 CPU SPECFP95 1 CPU SPECFP95 4 CPUs
(SUN SYSTEM: 6 CPUSs)
Figure 5

SPEC95 Speed Results

Digital Technical Journal Vol.8 No.4 1996

SPECINT_RATE95

450

400 1

350

300

250

200

150 |

100

50

1 2 3 4
NUMBER OF CPUs

——+— ALPHASERVER 4100 5/300E
ALPHASERVER 4100 5/300
——=— ALPHASERVER 4100 5/400
»~— ALPHASERVER 2100 5/300
—e— HP 9000 K420
SUN ULTRA ENTERPRISE 3000
IBM RS/6000 J40

Figure 7
SPECint_rate95 Performance Scaling

SPECFP_RATE95

50

0 . . e

1 2 3 4
NUMBER OF CPUs

=——t— ALPHASERVER 4100 5/300E
ALPHASERVER 4100 5/300
= ALPHASERVER 4100 5/400
— ALPHASERVER 2100 5/300
—e— HP 9000 K420
SUN ULTRA ENTERPRISE 3000
IBM RS/6000 J40

Figure 8
SPECfp_rate95 Performance Scaling

on the AlphaServer 2100 for integer workloads
(that fit in the 5/300 2-MB B-cache). Note that
SPECint_rate95 scales proportionally to the number
of CPUs in the majority of systems, since these work-
loads do not stress the memory subsystem. The SMP
scaling in SPECfp_rate95 is lower, since the majority
of these workloads do not fitin 1- to 4-MB caches.

In the majority of applications, the AlphaServer
4100 5/300 and 5,/400 systems improve SMP scaling
compared to the uncached AlphaServer 4100 5/300E
by reducing the bus traffic (from fewer B-cache
misses) and by taking advantage of the duplicate tag
store (DTAG) to reduce the number of S-cache
probes. The cached 5/300 scaling, however, is
lower than the uncached 5,/300E scaling in memory
bandwidth-intensive applications (e.g., tomcatv and
swim). The analysis of traces collected by the logic
analyzer that monitors system bus traffic indicates that
the lower scaling is caused by (1) SetDirty overhead,
where SetDirty is a cache coherency operation used to
mark data as modified in the initating CPU’s cache;
(2) stall cycles on the memory bus; and (3) memory
bank conflicts.>*

Symmetric Multiprocessing Performance Scaling
for Parallel Workloads

Parallel workloads have higher data sharing and lower
memory bandwidth requirements than multistream
workloads. As shown in Figures 9 and 10, the
AlphaServer 4100 models with module-level caches
improve the SMP scaling compared to the uncached
AlphaServer 4100 model in the LINPACK 1000 X
1000 {million floating-point operations per second
[MELOPS]) and the parallel SPEC{p95 benchmarks
that benefit from 2- and 4-MB B-caches. Figure 9
indicates that the AlphaServer 4100 5/400 outper-
forms the SGI Origin 2000 system in the LINPACK
1000 X 1000 benchmark by 40 percent. Figure 10
indicates that the four-CPU AlphaServer 4100 5,/400
shows better scaling than any other system in its class
and outperforms the six-CPU Sun Ultra Enterprise
3000 system by more than 70 percent.

Very Large Memory Advantage:
Commercial Performance

As shown in Figures 11 and 12, the AlphaServer 4100
performs well in the commercial benchmarks TPC-C
and AIM Suite VIL.'*'* In addition to the low memory
and I,/0 latency, the AlphaServer 4100 takes advan-
rage of the VLM design in these [/O-intensive work-
loads: with four CPUs, the platform can support up to
8 GB of memory compared to 1 GB of memory on the
AlphaServer 2100 system with four CPUs and 2 GB
with three CPUs.

Digital Technical Journal Vol.8 No.4 1996

9

LINPACK 1000 x 1000 PARALLEL SPECFP95

2,000 35
1,800
30
1,600
1,400 25 |
1,200
20
1,000
800 15 b
600
10
400 ¥
200 5k
2 3 4 . 1 ;

2 3 4
NUMBER OF CPUs

NUMBER OF CPUs

0

1 0

1

KEY

KEY

——t— ALPHASERVER 4100 5/300E

e ALPHASERVER 4100 5/300 =t ALPHASERVER 4100 5/300E

s ALPHASERVER 4100 5/400 s ALPHASERVER 4100 5/300

S == ALPHASERVER 4100 5/400

— ——— ALPHASERVER 2100 5/300
—— HP 9000 K420

ALPHASERVER 2100 5/300
SGI ORIGIN 2000 R10000 (195 MHZ)
IBM ES/9000 VF

HP EXEMPLAR S-CLASS PA 8000 (180 MHZ) SUN ULTRA ENTERPRISE 3000
Figure 9 Figure10]
LINPACK 1000 x 1000 Parallel Performance Scaling Parallel SPECHp95 Performance Scaling

TPC-C THROUGHPUT (TPMC)

IBM BS/6000 J30
(8 CPUSs)

COMPAQ PROLIANT
4500/166

SUN SPARCSERVER
2000E

ALPHASERVER
4100 5/400

[

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

THROUGHPUT (TRANSACTIONS PER MINUTE)

Figure 11
Transaction Processing Performance (TPC-C Using an Oracle Databasc)

Digital Technical Journal Vol.8 No.4 1996

COMPAQ PROLIANT 4500
PENTIUM (166 MHZ)

COMPAQ PROLIANT 5000 6/200
PENTIUM PRO (200 MHZ)

ALPHASERVER 2100 5/300

ALPHASERVER 4100 5/400

ALPHASERVER 4100 5/300*

ALPHASERVER 4100 5/300E*

AIM SUITE VIl THROUGHPUT

0 500

1,000

1,500 2,000 2,500 3,000 3,500

THROUGHPUT (JOBS PER MINUTE)

“These internally generated results have not been AIM certified.

Figure 12
AIM Suite VII Multiuser/Shared UNIX Mix Performance

Figures 11 and 12 show the AlphaServer 4100 sys-
tem’s TPC-C performance (using an Oracle database)
and AIM Suite VII throughput performance as com-
pared to other industry-leading vendors. Note that the
performance of the uncached AlphaServer 4100
5/300E is comparable to that of the 300-MHz
AlphaServer 2100. (The AlphaServer 2100 system
used in this test had three CPUs and 2 GB of memory,
whereas the AlphaServer 4100 system had four CPUs
and 2 GB of memory.)

With its 2-MB B-cache, the AlphaServer 4100
5/300 improves throughput by 40 percent in the
AIM Suite VII benchmark tests as compared to
the uncached AlphaScrver 4100 5/300E. The
AlphaServer 4100 5/400, with its 4-MB B-cache,
benefits from its 33 percent faster clock and two times
larger B-cache and provides 40 percent improvement
over the AlphaServer 4100 5/300. Note that the
AlphaServer 4100 5,/300 and 5/300FE results were
obtained through internal testing and have not been
AIM certified. The AlphaServer 5/400 results have
AIM certification.

Compared to the best published industry AIM Suite
VII performance, the AlphaServer 4100 5/300
throughput is almost twice that of the Compaq
ProLiant 4500 server, and the AlphaServer 4100
5/400 throughput is more than 50 percent higher
than that of the Compaq ProLiant 5000 server." At

the October 1996 UNIX Expo, the AlphaServer 4100
family won three AIM Hot Iron Awards: for the best
performance on the Windows NT operating system
(for systems priced at more than $50,000) and for
the best price/performance in two UNIX mixes—

multiuser shared and file system (for systems priced at
more than $150,000)."

Cache Improvement on the
AlphaServer 4100 System

Figures 13 and 14 show the percentage performance
improvement provided by the 2-MB B-cache in
the AlphaServer 4100 5/300 as compared to the
uncached AlphaServer 4100 5/300E. Figure 13
shows the improvement across a variety of workloads;
Figure 14 shows the improvement in individual
SPEC95 benchmarks for one and four CPUs.

As shown in Figure 13, the 2-MB B-cache in the
AlphaServer 4100 5 /300 improves the performance by
5 to 20 percent for one CPU and 25 to 40 percent for
four CPUs as compared to the uncached AlphaServer
4100 5/300E system. The benefits derived from having
larger caches are significantly greater for four CPUs
compared to one CPU, since large caches help alleviate
bus tratfic in multiprocessor systems.

The workloads that do not fit in the 2- to 4-MB
B-cache (i.e., tomcatv, swim, applu) in Figure 14
Vol. 8 No. 4

Digital Technical Journal 1996

11

12

PERFORMANCE IMPROVEMENT FROM 2-MB CACHE

AIM SUITE VII MAX USERS
4 CPUs

AIM SUITE VI JOBS/MIN
4 CPUs

LINPACK_1K 4 CPUs

LINPACK_1K 1 CPU

SPECFP92 4 CPUs
SPECINT92 4 CPUs

SPECFP92 1 CPU

SPECINT92 1 CPU

o e =
SPECINTS5 4 CPUs

SPECFP95 1 CPU

SPECINT95 1 CPU

15 20 25 30 35 40 45
PERCENT IMPROVEMENT

Figure 13

Performance Improvement across Various Workloads from a 2-MB B-Cache

run faster on the uncached AlphaServer 4100 than
on the cached AlphaServer 4100 (up to 10 percent
faster on one CPU and 20 percent faster on four
CPUs) due to the overhead for probing the B-cache
and the increase in SetDirty bandwidth. The majority
of the other workloads bencfit from larger caches.

The AlphaServer 4100 5/400 further improves
the performance by increasing the size of the B-cache
from 2 MB to 4 MB. In addition, the CPU clock
improvement of 33 percent, B-cache improvement of
7 percent in latency and 11 percent in bandwidth, and
the memory bus speed improvement of 11 percent
together vield an overall 30 to 40 percent improve-
ment in the AlphaServer 4100 modcl 5,/400 pertor-
mance as compared to that of the AlphaScrver 4100
model 5,/300.

Large Scientific Applications: Sparse LINPACK

The Sparse LINPACK benchmark solves a large, sparsce
symmetric svstem of lincar cquations using the con-
jugate gradient (CG) iterative method. The bench-
mark has three cases, cach with a different tvpe of
preconditioner. Cases 1 and 2 use the incomplete

Digital Technical Journal Vol.8 No.4 1996

Cholesky (1C) factorization as the preconditioner,
whereas Case 3 uses the diagonal preconditioner.

This workload is representative of large scientific
applications that do not fit in megabyte-size caches.
The workload is important in large applications,
¢.g., models of electrical nerworks, economic systems,
diffusion, radiation, and clasticity. It was decomposed
to run on multiprocessor systems using the KAD
Preprocessor.

Figure 15 shows that the uncached AlphaScrver
4100 5/300E outperforms the AlphaScrver 8400 by
41 pereent for one CPU and by 9 percent for two CPUSs
because of higher delivered system bus bandwideh,
However, the AlphaServer 4100 5/300E falis behind
with three and four CPUs, as it does in the McCalpin
memory bandwidth tests shown in Figure 3. Note that
with one CPU; the 300-MHz uncached AlphaServer
4100 performs at the same level as the 400-MHz
cached AlphaServer 4100 and performs 18 percent
betrer than the 300-MHz cached AlphaServer 4100.
This is an cxample of the tvpe of application for
which the cache diminishes the performance. The
AlphaServer 4100 5/300E is a better match for this

class ot applications than the cached systems.

PERFORMANCE IMPROVEMENT FROM 2-MB CACHE IN SPEC95

SPECINT95
147.VORTEX
134 PERL
132.1JPEG
130.L
129.COMPRESS
126.GCC

124. M88KSIM
099.GO

SPECFP95
146 WAVES
145.FPPPP
141.APS|

125. TURB3D
110.APPLU
107.MGRID
104.HYDRO2D

[

103.SU2COR

102.SWIM
101.TOMCATV

LE

KEY:

O 1crPuU
B 4CPUs

]

-20 20 40

6IO 80 100 120

PERCENT IMPROVEMENT

Figure 14
SPEC95 Performance Improvement from a 2-MB B-Cache

Image Rendering

The AlphaServer 4100 shows significant performance
advantage in image rendering applications compared to
the other industry-leading vendors. Figure 16 shows
that the AlphaServer 4100 5/400 system is approxi-
mately 4 times faster than the Sun SPARC system that
was used in the movie 7oy Story, as measured in
RenderMarks.” The AlphaServer 4100 is 2.6 times
faster than the Silicon Graphics POWER CHALLENGE
system and 2.4 times faster than the HP/Convex
Exemplar SPP-1200 system on the Mental Ray image
rendering application from Mental Images. These
image rendering applications take advantage of larger
caches, and the performance improves as the cache size
increases, particularly with four CPUs.

Performance Counter Profiles

The figures in this section, Figures 17 through 22,
show the performance statistics collected using
the built-in Alpha 21164 performance counters on the
AlphaServer 4100 5,/400 system. These hardware
monitors collect various events, including the number
and type of instructions issucd, multiple issues, single

issues, branch mispredictions, stall components, and
cache misses.™*"” These statistics are useful for analyz-
ing the system bchavior under various workloads.
The results of this analysis can be used by computer
architects to drive hardware design trade-ofts in future
system designs.

The SPEC95 cycles per instruction (CPI) data
presented in Figure 17 shows lower CPI values for
the integer benchmarks (CPI values of 0.9 to 1.5)
than for the floating-point benchmarks (CPI valucs
of 0.9 to 2.2). The CPI in commercial workloads
(e.g., TPC-C) 1s higher than in the SPEC bench-
marks, primarily because commercial workloads have
a higher stall time, as shown in Figure 18. Note
that the performance counter statistics were collected
with four CPUs running TPC-C (with a Sybase data-
base), while SPEC95 statistics were collected on a
single CPU.

The Alpha 21164 has two integer and two floating-
point pipelines and is capable of issuing up to four
instructions simultancously. The integer pipeline 0
exccutes arithmetic, logical, load/store, and shift
operations. The integer pipeline 1 executes arichmetic,
logical, load, and branch/jump operations. The
floating-point pipeline 0 executes add, subtract,

Digital Technical Journal Vol.8 No.4 1996

14

SPARSE LINPACK

70
60 [
50
e
o 40 r
s
m
>
30
20
KEY:
10 O ALPHASERVER 4100 5/300E
O ALPHASERVER 4100 5/300
B ALPHASERVER 4100 5/400
B ALPHASERVER 8400
0

1 2 3
NUMBER OF CPUs

Figure 15
Sparse LINPACK Performance

IBM RS/6000 390

HP 9000 735
(125 MHZ)

SGI CHALLENGE R4400
(200 MHZ)

SUN SPARCSTATION 20
(100 MHZ)

ALPHASERVER 4100
5/400

ALPHASERVER 4100

PIXAR RENDERMARKS

5/300
KEY:
ALPHASERVER 4100 0 1cpPu
5/300E B 4CPUs
0 500 1,000 1,500 2,000 2,500
RENDERMARKS

Figure 16
Image Rendering Performance

compare, and floating-point branch instructions. The
floating-point pipeline 1 executes multiply instruc-
tions. The time distribution illustrated in Figure 18
indicates that most of the issuing time is spent in single

Vol. 8 No.4 1996

Digital Technical Journal

and dual issuing. Triple and quad issuing is noticeable
in scveral floating-point benchmarks, but, on average,
only 3 percent of the time is spent on triple and quad
issuing in the SPECtp95 benchmarks.

CPI

TPC-C
SPECINT95
VORTEX
PERL
M8BKSIM
LI
IUPEG
GO
GCC
COMPRESS
SPECFP95
WAVES
TURB3D
TOMCATV
SWIM
SU2COR
MGRID
HYDRO2D
FPPPP
APSI
APPLU
0 05 10 15 20 25 30 35 40
CYCLES PER INSTRUCTION
Figure 17
SPEC95 Cycles-per-instruction Comparison
TIME DISTRIBUTION
TPC-C
SPECINT95
VORTEX
PERL
M8BKSIM
Ll
IUPEG
GO
GCC
COMPRESS
SPECFP95]
WAVES i
TURB3D i
TOMCATV 1
SwiM 5 KEY:
Sl:fg;g '_ B SINGLE ISSUE
BE DUALISSUE
HYDRO2D = O TRIPLE ISSUE
FPPPP — B QUAD ISSUE
APSI a ® DRY STALL
APPLU 1 I FROZEN STALL
0% 20% 0% 80% 80% 100%
TIME

Figure 18
[ssuing and Stall Time

Digital Technical Journal

Vol. 8 No.4 1996

16

The stall time (dry plus frozen stalls in Figure 18)
is higher in the floating-point benchmarks than in
the integer benchmarks and higher in the TPC-C
benchmarks than in the SPEC95 benchmarks. Dry
stalls include instruction stream (I-stream) stalls
caused by the branch mispredictions, program counter
(PC) mispredictions, replay traps, I-stream cache
misses, and exception drain. Frozen stalls include data
stream (D-stream) stalls caused by D-stream cache
misses as well as register conflicts and unit busy. Dry
stalls are higher in SPECint95 and TPC-C (mainly
because of [-stream cache misses and replay traps),
whereas frozen stalls are higher in SPECfp95 and
TPC-C (mainly because of D-stream cache misses).

The Alpha 21164 microprocessor reduces the per-
formance penalty due to cache misses by implement-
ing a large, 96-KB on-chip S-cache.® This cache is
three-way set associative and contains both instruc-
tions and data. The four-entry prefetch buffer allows
prefetching of the next four consecutive cache blocks
on an instruction cache (I-cache) miss. This reduces
the penalty for I-stream stalls. The six-entry miss
address file (MAF) merges loads in the same 32-byte
block and allows servicing multiple load misses with
one data fill. A six-entry write bufter is used to reduce
the store bus traffic and to aggregate stores into
32-byte blocks.*

Figure 19 shows the instruction mix in SPEC95.
The Alpha instructions are grouped into the following

INSTRUCTION STATISTICS

TPC-C

SPECINT95

VORTEX
PERL

M88KSIM

LI]

categories: load (both floating-point and integer),
store (both floating-point and integer), integer (all
integer instructions, excluding ones with only R31 or
literal as operands), branch (all branch instructions
including unconditional), and floating-point (except
floating-point load and store instructions). Figure 19
shows the percentage of instructions in each category
relative to the total number of instructions executed.
Note that load /store instructions account for 30 to
40 percent of all instructions issued. Integer instruc-
tions are present in both integer and floating-point
benchmarks, but no floating-point instructions exist in
the SPECint95 and commercial TPC-C workloads.
The integer and commercial workloads execute more
branches, while the branch instructions make up only
a few percent of all instructions issued in the floating-
point workloads.

The cache misses shown in Figure 20 are higher
in the floating-point benchmarks than in the inte-
ger benchmarks. The I-cache misses are low in the
floating-point benchmarks (except tor fpppp) and
higher in the SPECint95 benchmarks and the TPC-C
benchmark. The D-cache misses are high in the major-
ity of the benchmarks, which indicates that a larger D-
cache would reduce D-stream misses. The TPC-C
benchmark would benefit from a larger S-cache and
faster B-cache, since the number of S-cache misses is
high. The B-cache misses are negligible mn the
SPECInt95 benchmarks and higher in the majority of

IJPEG

GO

GCC

COMPRESS

SPECFP95 I

WAVES I

TURB3D T

TOMCATV T

SWIM I

SU2COR

MGRID

STORES

HYDRO2D I

LOADS

FPPPP L

INTEGER OPERATIONS

APSI I

FLOATING-POINT OPERATIONS

APPLU I

EDO0DEMN

BRANCHES

0% 20% 40% 60%
INSTRUCTIONS

Figure 19
SPEC95 Instruction Profiles

Digital Technical Journal Vol.8 No.4 1996

CACHE MISSES

TPC-C _::-

SPECINT95 [
VORTEX |
PERL /)
M88KSIM
L
1JPEG
GO

GCC
COMPRESS

SPECFP95
WAVE5
TURB3D
TOMCATV
SWIM
SU2COR
MGRID
HYDRO2D
FPPPP
APS
APPLU .

KEY:

|-CACHE MISSES
D-CACHE MISSES
S-CACHE MISSES
B-CACHE MISSES

ECO@E

0 50 100

150 200

CACHE MISSES PER 1,000 INSTRUCTIONS

Figure 20
Cache Misses

the SPEC{p95 TPC-C benchmarks. This data indicates
that complex commercial workloads, such as TPC-C,
are more profoundly affected by the cache design than
simpler workloads, such as SPEC95.

The replay traps are generally caused by (1) full
write-buffer (WB) traps (a full write buffer when a
store instruction is executed) and full miss address file
(MAF) traps (a full MAF when a load instruction is
executed); and (2) load traps (speculative execution of
an instruction that depends on a load instruction, and
the load misses in the D-cache) and load-after-store
traps (a load following a store that hits in the D-cache,
and both access the same location).® The replay traps
and branch/PC mispredictions shown in Figure 21
are not the major reason for the high stall time in the
commercial workloads (TPC-C), since traps and mis-
predictions are higher in some of the SPECint95
benchmarks than in TPC-C. Instead, a high number of
cache misses (see Figure 20) correlates well with the
high stall time and CPI (see Figure 17) in TPC-C.

Figure 22 shows the estimated stall components in
SPECY5 and TPC-C. A time-allocation model is used to
analyze the performance effect of different stall compo-
nents. The total execution time is divided into two com-
ponents: the compute component (where the CPU is
issuing instructions) and the stall component (where

the CPU is not issuing instructions). The stall compo-
nent is further divided into the dry and frozen stalls:

time = compute + stall
compute = single + dual + triple + quad issuing
stall = dry + frozen

dry = branch mispredictions + PC mispredictions
+ replay traps + I-stream cache misses
+ exception drain stalls
frozen = D-stream cache misses
+ register conflicts and unit busy

The branch and PC mispredictions affect the per-
formance of SPECint95 workloads (6 percent of the
time is spent in branch and PC mispredictions in
SPECint95) and have little effect on the performance
of SPEC{p95 workloads (less than 1 percent of the
time) and the TPC-C benchmark (1.4 percent of
the time). The SPECint95 workloads are affected pri-
marily by the load traps, whereas the SPEC{p95
benchmarks are affected by both load and WB /MAF
traps. Note that the time spent on a load replay trap
is overlapped with the load-miss time.

The S-cache and B-cache stalls are high in the
SPECP95 and TPC-C benchmarks, where the stall
time is dominated by the B-cache and memory laten-
cies. Note the high stall time resulting from waiting for

Digital Technical Journal Vol.8 No.4 1996

17

TPC-C

SPECINT95
VORTEX
PERL
M88KSIM

IJPEG

GO

GCC
COMPRESS

SPECFP95
WAVE5
TURB3D
TOMCATY
SWIM
SU2COR
MGRID
HYDRO2D
FPPPP
APS
APPLU

REPLAY TRAPS AND BRANCH MISPREDICTIONS

LI

KEY:

LDU REPLAY TRAPS
WB/MAF REPLAY TRAPS
BRANCH MISPREDICTIONS
PC MISPREDICTIONS

EO0EE

0 10 20 30 40 50 60 70 80
REPLAY TRAPS AND BRANCH/PC MISPREDICTIONS
PER 1,000 INSTRUCTIONS

Figure 21

Replay Traps and Branch/PC Mispredictions

TPC-C

SPECINT95
VORTEX
PERL
MB8BKSIM

LI

IJPEG

GO

GCC
COMPRESS

SPECFP95
WAVES
TURB3D
TOMCATV
SWIM
SU2COR
MGRID
HYDRO2D
FPPPP
APS
APPLU

SPEC95 STALL TIME COMPONENTS

[15 i []
] i — o
1N [———— Il |
o E—
5 E—
]
N |
[] ===l = =0]
[1
I
j=—] [1]
[] [] KEY:
L1 . [] H BRANCHAND PC
] [[1 MISPREDICTIONS
=] LDU REPLAY TRAPS
] WB/MAF REPLAY TRAPS

I-CACHE MISS TO S-CACHE
D-CACHE MISS TO S-CACHE
S-CACHE MISS TO B-CACHE
B-CACHE MISS TO MEMORY
REGISTER CONFLICT AND
UNIT BUSY

OEoDEOoO0O@E

PERCENT OF TOTAL TIME

Figure 22

Estimated Stall Time Distribution

Digital Technical Journal

Vol.8 No.4 1996

data from memory {close to 40 percent) in several of
the SPECfp95 benchmarks that do not fit in a 4-MB
cache. Although it contributes to the high SPEC{p95
stall time, the memory component has a negligible
effect on SPECint95 performance, since these bench-
marks generate only a small number of B-cache misses
(see Figure 20). Figure 22 indicates that stalls caused
by cache misses are the largest component of the total
stall time; therefore, reducing cache misses and
improving cache and memory latencies would yield
the largest performance benefit.

Once calibrated and validated with measurements,
this model is an effective tool for evaluating the perfor-
mance impact of various components on the overall
system design. System architects can vary parameters,
like the cache or memory access times or cache size,
and adjust the appropriate stall component to predict
performance of alternative designs without carrying
out detailed and often time-consuming architectural
simulations.

Conclusion

Using several performance metrics and a variety of
workloads, we have demonstrated that the DIGITAL
AlphaServer 4100 family of midrange servers provides
significant performance improvements over the
previous-generation AlphaServer plattorm and pro-
vides performance leadership compared to the leading
industry vendors’ platforms. The major AlphaServer
4100 performance strengths are the low memory and
1/0 latency and high memory bandwidth, the large-
memory support (VLM), and the fast Alpha 21164
microprocessor. The work described in this paper has
led to design changes that are expected to be imple-
mented in future versions of the AlphaServer 4100
plattorm. The anticipated performance benefits will
come from a faster CPU, faster and larger caches, faster
memory, and improved memory bandwidth.

Acknowledgments

The authors would like to acknowledge the contribu-
tions of John Shakshober, Dave Stanley, Greg Tarsa,
Dave Wilson, Paula Smith, John Henning, Michael
Delaney, and Huy Phan for providing many of the
benchmark measurements. In addition, special thanks
go to Maurice Steinman, Glenn Herdeg, and Ted
Gent for dedicating system resources and to Masood
Heydari for supporting this work.

References

1. G. Herdeg, “Design and Implementation of the
AlphaServer 4100 CPU and Memory Architecture,”
Digital Technical Journal, vol. 8, no. 4 (1996, this
issue): 48-60.

(42}

10.

11.

12.

13.

14.

15.

16.

17.

Digital Technical Journal

M. Steinman, G. Harris, A. Kocev, V. Lamere, and
R. Pannell, “The AlphaServer 4100 Cached Processor
Module Architecture and Design,” Digital Technical

Journal, vol. 8, no. 4 (1996, this issue): 21-37.

Alpha 21164 Microprocessor Hardware Reference
Manual (Maynard, Mass.: Digital Equipment Corpo-
ration, Order No. EC-QAEQA-TE, 1994).

J. Edmondson, P. Rubinfeld, and V. Rajagopalan,
“Superscalar Instruction Execution in the 21164
Alpha Microprocessor,” [EEE Micro, vol. 15, no. 2
(April 1995).

. R. Sites, ed., Alpha Architecture Reference Manial

(Burlingron, Mass.: Digital Press, ISBN 1-55558-098-X,
1992).

. SPEC95 Benchmarks (Manassas, Va.: Standard Perfor-

mance Evaluation Corporation, 1995).

J. Dongarra, “Performance of Various Computers
Using Standard Linear Equation Software” (Oak
Ridge, Tenn.: Oak Ridge National Laboratory, 1996).

UNIX System Price Performance Guide (Menlo Park,
Calif.: AIM Technology, Summer 1996).

. 1. Gray, ed., The Handbook for Dalabase and

Transaction Processing Systems {San Mateo, Calif.:
Morgan Kauftman, 1991).

Information about the Imbench suite of benchmarks
is available at htp://reality.sgi.com/employees/
Im_engr/Imbench /whatis_Imbench.html.

The STREAM benchmark program is described
on-line by the University of Virginia, Department
of Computer Science (Charlottesville, Va.) at
http: / /www.cs.virginia.edu /stream.

The Standard Performance Evaluation Corporation
(SPEC) makes available submitted results, benchmark
descriptions, background information, and tools at
htrp://www.specbench.org.

Information about the Transaction Processing
Performance Council (TPC) is available at http://
WWW.TPC.OTE,

Information about system performance benchmarking
products from AIM Technology, Inc. (Menlo Park,
Calif.) is available at http: //www.aim.com.

Information about Pixar Animation Studio’s
RenderMark benchmark is available at hep://
www.europe.digital.com/info/alphaserver/news/
pixar.heml.

Z. Cvetanovic and D. Bhandarkar, “Characterization
of Alpha AXP Performance Using TP and SPEC Work-
loads,” The 21st Annual International Symposiim
on Computer Architectitre (April 1994): 60-70.

Z. Cvetanovic and D. Bhandarkar, “Performance
Characterization of the Alpha 21164 Microprocessor
Using TP and SPEC Workloads,” The Second
International Symposium on High-Performance
Computer Architectire (February 1996): 270-280.

Vol.8 No.4 1996

19

Biographies

Zarka Cvetanovic

A consulung engineer in DIGITAL's Server Product
Development Group, Zarka Cvetanovic was responsible
for the performance characterization and analvsis of the
AlphaScrver 4100, AlphaServer 8400,/8200, AlphaServer
2100, DEC 7000, VAX 7000, and VAX 6000 systems, and
for the performance modeling and definition of future
AlphaServer plattorms. Since joining DIGITAL in 1986,
she has been involved in the development of fast database
applications and efficient parallel applications for multi-
processor svstems. Zarka received a PhoD. in electrical and
computer engineering from the University of Massachusetts,
Amherst. She has published over a dozen technical papers
at computer architecture conferences and in leading indus-
try journals.

Darrel D. Donaldson

Darrel Donaldson is a senior consulting engineer and

the technical leader and enginecring manager for the
AlphaServer 4100 project. He joined DIGITAL in 1983
and served as the lead technologist tor the VAX 6000,
VAX 7000, AlphaScrver 7000, and AlphaScrver 4100
projects. Darrel has a bachelor’s degree in mathematics/
physics from Miami University and a master’s degree

in electrical enginecring from Cincinnati University,
Cincinnati, Ohio. He holds 12 patents and has 10 patents
pending, all related to protocols, signal integrity, and chip
transcciver design for multiprocessor systems and non-
volarile memory chip design. Darrel maintains member-
ship in the IEEE Electron Devices Society and the
Solid-State Circuits Society.

20 Digital Technical Journal Vol.§8 No.4 1996

The AlphaServer 4100
Cached Processor Module
Architecture and Design

The DIGITAL AlphaServer 4100 processor module
uses the Alpha 21164 microprocessor series com-
bined with a large, module-level backup cache
(B-cache). The cache uses synchronous cache
memory chips and includes a duplicate tag store
that allows CPU modules to monitor the state
of each other’s cache memories with minimal
disturbance to the microprocessor. The synchro-
nous B-cache, which can be easily synchronized
with the system bus, permits short B-cache
access times for the DIGITAL AlphaServer 4100
system. It also provides a smooth transition
from accessing the B-cache to transferring data
to or from main memory, without the need for
re-synchronization or data buffering.

Maurice B. Steinman
George J. Harris
Andrej Kocev
Virginia C. Lamere
Roger D. Pannell

The DIGITAL AlphaScrver 4100 scries of servers repre-
sents the third generation of Alpha microprocessor-
based, mid-range computer systems. Among the
technical goals achieved in the system design were the
usc of four CPU modules, 8 gigabytes (GB) of memory,
and partial block writes to improve 1/0 performance.

Unlike the previous generation of mid-range servers,
the AlphaServer 4100 series can accommodate four
processor modules, while retaining the maximum
memory capacity. Using multiple CPUs to share the
workload is known as symmetric multiprocessing
(SMP). As more CPUs arc added, the performance
of an SMP system increases. This ability to increasc
performance by adding CPUSs is known as scalability.
To achieve perfect scalability, the performance of four
CPUs would have to be exactly four times that of a sin-
gle CPU system. One of the goals of the design was to
keep scalability as high as possible yet consistent with
low cost. For example, the AlphaServer 4100 system
achieves a scalability factor ot 3.33 on the Linpack
1000 X 1000, a large, parallel scientific benchimark.
The same benchmark achieved 3.05 scalability on the
previous-generation platform.!

The 8-GB memory in the AlphaServer 4100 system
represents a factor of four improvement compared with
the previous generation of mid-range servers.” The new
memory is also faster in terms of the dara volume flow-
ing over the bus (bandwidth) and data access time
(latency). Again, compared with the previous genera-
rion, available memory bandwidth is improved bv a tac-
tor of 2.7 and latency is reduced by a factor of 0.6.

In systems of this class, memory is usually addressed
1 Jarge blocks of 32 to 64 bytes. This can be incth-
cient when one or nwo bytes need to be modified
because the entire block might have to be read out
from memory, modified, and then written back into
memory to achicve this minor modification. The abil-
ity to modify a small fraction of the block without hav-
ing to extract the entire block from memory results in
partial block writes. This capability also represents an
advance over the previous gencration of servers.

To take tull advantage of the Alpha 21164 series of

microprocessors, a new system bus was needed. The bus
used in the previous generation of servers was not tast

Digiral Technical Journal Vol.8 No.4 1996

22

enough, and the cost and size of the bus used in high-
end servers was not adaptable to mid-range servers.

Three separate teams worked on the project. One
ream defined the system architecture and the system
bus, and designed the bus control logic and the mem-
ory modules.* The second team designed the periph-
eral interface (I/0), which consists of the Peripheral
Component Interconnect (PCI) and the Extended
Industry Standard Architecture (EISA) buses, and its
interface to the system bus (1/0 bridge).* The third
team designed the CPU module. The remainder of
this paper describes the CPU module design in detail.
Before delving into the discussion of the CPU module,
however, it is necessary to briefly describe how the sys-
tem bus functions.

The system bus consists of 128 data bits, 16 check
bits with the capability of correcting single-bit errors,
36 address bits, and some 30 control signals. As many
as 4 CPU modules, 8 memory modules, and 1 1/0
module plug into the bus. The bus is 10 inches long
and, with all modules in place, occupies a space of
11 by 13 by 9 inches. With power supplies and the
console, the entire system fits into an enclosure that is
26 by 12 by 17.5 inches in dimension.

CPU Module

The CPU module is built around the Alpha 21164
microprocessor. The module’s main function is to
provide an extended cache memory for the micro-
processor and to allow it to access the system bus.

The microprocessor has its own internal cache
memory consisting of a separate primary data cache
(D-cache), a primary instruction cache (I-cache), and
a second-level data and instruction cache (S-cache).
These internal caches are relatively small, ranging in
size from 8 kilobytes (KB) for the primary caches to
96 KB for the secondary cache. Although the internal
cache operates at microprocessor speeds in the 400-
megahertz (MHz) range, its small size would limit
performance in most applications. To remedy this, the
microprocessor has the controls for an optional exter-
nal cache as large as 64 megabytes (MB) in size. As
implemented on the CPU module, the external cache,
also known as the backup cache or B-cache, ranges
from 2 MB to 4 MB in size, depending on the size
of the memory chips used. In this paper, all references
to the cache assume the 4-MB implementation.

The cache is organized as a physical, direct-mapped,
write-back cache with a 144-bit-wide data bus consist-
ing of 128 data bits and 16 check bits, which matches
the system bus. The check bits protect data integrity
by providing a means for single-bit-error correction
and double-bit-error detection. A physical cache is one
in which the address used to address the cache mem-
ory is translated by a table inside the microprocessor
that converts software addresses to physical memory

Digital Technical Journal Vol. 8 No.4 1996

locations. Direct-mapped refers to the way the cache
memory is addressed, in which a subsct of the physical
address bits is used to uniquely place a main memory
location at a particular location in the cache. When the
microprocessor modifies data in a write-back cache, it
only updates its local cache. Main memory is updated
later, when the cache block needs to be uscd for a dif
ferent memory address. When the microprocessor
needs to access data not stored in the cache, it performs
a system bus transaction (fill) that brings a 64-byte
block of data from main memory into the cache. Thus
the cache is said to have a 64-byte block size.

Two types of cache chips are in common use in
modern computers: synchronous and asynchronous.
The synchronous memory chips accept and deliver
data at discrete times linked to an external clock. The
asynchronous memory elements respond to input
signals as they arc received, without regard to a clock.
Clocked cache memory is easier to interface to the
clock-based system bus. As a result, all transactions
involving data flowing from the bus to the cache (fill
transactions) and from the cache to the bus (write
microprocessor-based system transactions) are casier
to implement and faster to execute.

Across the industry, personal computer and server
vendors have moved from the traditional asynchro-
nous cache designs to the higher-performing synchro-
nous solutions. Small synchronous caches provide
a cost-effective performance boost to personal com-
puter designs. Server vendors push synchronous-
memory technology to its limit to achicve data rates
as high as 200 MHz; that is, the cache provides new
data to the microprocessor every 5 nanoseconds.™
The AlphaServer 4100 server is DIGITAL’s first prod-
uct to employ a synchronous module-level cache.

At power-up, the cache contains no useful data,
so the first memory access the microprocessor
makes results in a miss. In the block diagram shown
in Figure 1, the microprocessor sends the address out
on two scts of lines: the index lines connected to the
cache and the address lines connected to the system
bus address transceivers. One of the cache chips, called
the TAG, is not used for data but instead contains
a table of'valid cache-block addresses, each of which is
associated with a valid bit. When the microprocessor
addresses the cache, a subsct of the high-order bits
addresses the tag table. A miss occurs when either of
the following conditions has been met.

1. The addressed valid bit is clear, i.¢., there is no valid
data at that cache location.

2. The addressed valid bit is set, but the block address
stored at that location does not match the address
requested by the microprocessor.

Upon detection of a miss, the microprocessor
asserts the READ MISS command on a set of four
command lincs. This starts a sequence of events

[1 T I
|]
t 1
' TAG RAM ! PROGRAMMABLE
: :‘ INDEX “— Locic
1]
| WRITE ENABLE,
| | _OUTPUT ENABLE | ALPHA21184 4
X DATA RAMS s
' | CLOCK B | asicvery)
| -
S S J
]
]
SYSTEM v
ADDRESS
AND DTAG RAM
144-BIT COMMAND
DATA BUS SNOOP
ADDRESS
y
DATA TRANSCEIVER ADDRESS TRANSCEIVER
I SYSTEM BUS I

—

Figure 1
CPU Module

thar results in the address being sent to the system bus.
The memory receives this address and after a delay
{memory latency), it sends the data on the system bus.
Data transceivers on the CPU module receive the
data and start a cache fill transaction that results in
64 bytes (a cache block) being written into the cache
as four consecutive 128-bit words with their associated
check bits.

In an SMP system, two or more CPUs may have the
same data in their cache memories. Such data is known
as shared, and the shared bit is sct in the TAG for that
address. The cache protocol used in the AlphaScrver
4100 scrics of servers allows each CPU to modify entries
in its own cache. Such modified data is known as dirty,
and the dirty bitis setin the TAG. If the data about to be
modified is shared, however, the microprocessor resets
the shared bit, and other CPUs invalidate that dara in
their own caches. The need is thus apparent for a way
to let all CPUs keep rtrack of data in other caches. This
is accomplished by the process known as snooping,
aided by several dedicated bus signals.

To facilitate snooping, a separate copy of the TAG is
maintained in a dedicated cache chip, called duplicate
tag or DTAG. DTAG is controlled by an application-
specific integrated circuit (ASIC) called VCTY. VCTY
and DTAG are located next to cach other and in close
proximity to the address transceivers. Their iming is
ticd to the system bus so that the address associated
with a bus transaction can easily be applied to the
DTAG, which is a synchronous memory device, and
the state of the cache at that address can be read out.
If that cache location is valid and the address that is
stored in the DTAG matches that of the system bus

command (a hit in DTAG), the signal MC_SHARED
may be asserted on the system bus by VCTY. If that
location has been modified by the microprocessor,
then MC_DIRTY is asserted. Thus each CPU is aware
of the state of all the caches on the system. Other
actions also take place on the module as part of this
process, which is explained in greater detail in the sec-
tion dealing specifically with the VCTY.

Because of the write-back cache organization, a spe-
cial type of miss transaction occurs when new data
needs to be stored in a cache location that is occupicd
by dirty data. The old data needs to be put back into
the main memory; otherwise, the changes that the
microprocessor made will be lost. The process of
returning that data to memory is called a vicnm write-
back transaction, and the cache location is said to be
victimized. This process involves moving data out of
the cache, through the system bus, and into the main
memory, followed by new data moving from the main
memory into the cache as in an ordinary fill transac-
tion. Completing this fill quickly reduces the time that
the microprocessor is waiting for the data. To speed up
this process, a hardware data bufter on the module is
used for storing the old data while the new data is
being loaded into the cache. This bufter is physically
a part of the data transceiver since cach bit of the trans-
ceiver is a shift register four bits long. One hundred
twenty-eight shift registers can hold the entire cache
block (512 bits) of victim data while the new data is
being read in through the bus receiver portion of the
data transceiver chip. In this manner, the microproces-
sor does not have to wait until the vicim data is trans-
ferred along the system bus and into the main memory
Vol. 8 No. 4

Digital Technical Journal 1996

24

betore the fill portion of the transaction can take place.
When the fill is completed, the victim data is shifted
out of the victim butfter and into the main memory.
This is known as an exchange, since the vietim write-
back and fill transactions execute on the system bus in
reverse of the order that was initiated by the micro-
processor. The transceiver has a signal called BYPASS;
when asserted, it causes three of the tour bits of the
victim shift register to be bypassed. Consequently, for
ordinary block write transactions, the transceiver oper-
ates without involving the victim bufter.

B-Cache Design

As previously mentioned, the B-cache uses synchro-
nous random-access memory (RAM) devices. Each
device requires a clock that loads signal inputs into
a register. The RAM operates in the registered input,
flow-through output mode. This means that an input
flip-flop captures addresses, write enables, and write
dara, but the internal RAM array drives read output
data directly as soon as it becomes available, without
regard to the clock. The output enable signal activates
RAM output drivers asynchronously, independently of
the clock.

One of the fundamental propertics of clocked logic
is the requirement for the data to be present for some
defined time (setup time) before the clock edge, and to
remain unchanged tor another interval following the
clock edge (hold time). Obviously, to meet the setup
time, the clock must arrive at the RAM some time after
rhe dara or other signals needed by the RAM. To help
the module designer meet this requirement, the micro-
processor may delay the RAM clock by one internal
microprocessor cycle time (approximately 2.5 nanoscc-
onds). A programmable register in the microprocessor
controls whether or not this delay is invoked. This
delay is used in the AlphaServer 4100 series CPU mod-
ules, and it eliminates the need for external delay lines.

For increased data bandwidth, the cache chips used
on CPU modules are designed to overlap portions of
successive data accesses. The first data block becomes
available at the microprocessor input after a delay
cqual to the BC_READ_SPEED paramcter, which is
preset at power-up. The following data blocks are
latched after a shorter delay, BC_READ_SPEED—
WAVE. The BC_READ_SPEED is set at 10 micro-
processor cycles and the WAVE value is set to 4, so that
BC_READ_SPEED—WAVE is 6. Thus, after the first
delay of 10 microprocessor cycles, successive data
blocks are delivered cevery 6 microprocessor cycles.
Figure 2 illustrates these concepts.

In Figure 2, the RAM clock at the microprocessor is
delayed by one microprocessor cycle. The RAM clock
at the RAM device is further delayed by clock butfer
and ncrwork delays on the module. The address at the
microprocessor is driven where the clock would have

Digital Technical Journal Vol.8 No.4 1996

occurred had it not been delayed by one microproces-
sor ¢ycle, and the address at the RAM is further delayed
by index bufter and network delays. Index setup at the
RAM satisfies the minimum setup time required by the
chip, and so does address hold. Data is shown as
appearing after data access time (a chip property), and
data sctup at the microprocessor is also illustrated.

VCTY

As described earlier; a duplicate copy of the micro-
processor’s primary TAG is maintained in the DTAG
RAM. It DTAG were not present, cach bus address
would have to be applied by the microprocessor to the
TAG to decide if the data at this address is present in
the B-cache. This activity would impose a very large
load on the microprocessor, thus reducing the amount
of usetul work it could perform. The main purpose of
the DTAG and its supporting logic contained in the
VCTY i1s to relieve the microprocessor from having to
examine each address presented by the svstem bus.
The microprocessor is only interrupted when its pri-
mary TAG must be updated or when data must be
provided to satisfv the bus request.

VCTY Operation

The VCTY contains a system bus interface consisting of
the system bus command and address signals, as well as
some system bus control signals required for the VCTY
to monitor each system bus transaction. There is also
an interface to the microprocessor so that the VCTY
can send commands to the microprocessor (systenm-to-
CPU commands) and monitor the commands and
addresses issued by the microprocessor. Last but not
least, a bidirectional interface berween the VCTY and
the DTAG allows only those system bus addresses that
require action to reach the microprocessor.

While monitoring the system bus for commands
from other nodes, the VCTY checks for matches
berween the received system bus address and the data
from the DTAG lookup. A DTAG lookup is initiated
anytime a valid svstem bus address is received by the
module. The DTAG location for the lookup is selected
by using system bus Address<21:6> as the index into
the DTAG. If the DTAG location had previously been
marked valid, and there is a match berween the
received system bus Address<38:22> and the dara
from the DTAG lookup, then the block is present in
the microprocessor’s cache. This scenario is called a
cache hit.

In parallel with this, the VCTY decodes the received
system bus command to determine the appropriate
update to the DTAG and determine the correct system
bus response and CPU command needed to maintain
system-wide cache coherency. A few cases are illus-
trated here, without any attempt at a comprehensive
discussion of all possible transactions.

MICROPROCESSOR 10 .
CYCLES : ;

MICROPROCESSOR
CLOCK

RAM CLOCK AT

2"EEEE,EZ:

MICROPROCESSOR

INDEX AT

X_INDEX 0 X INDEX
MICROPROCESSOR " ——— ' ———

T X INDEX 2 X :INbDI.Ex:3_)00000000000000(

INDEX AT RAM X)OO(INDEXG X I:NDE:XX .)ZF'ND.E“X? X 'NDEX3 WOOO(

INDEX © !
SETUP —'
AT RAM

RAM CLOCK AT RAM

SETUF’ AT MICROPHOCESSOR
: FOR DATA A

DATA ACCESS TIME TO
MICROPROCESSOR

HOLD AT MICROPROCESSOR :
FORDATA; Do

DATA AT

MICROPROCESSORWW DATAO X DATA1 X DATA2 X DATA3E

Figure 2
Cache Read Transaction Showing Timing

Assume that the DTAG shared bit is found to be set
at this address, the dirty bit is not ser, and the bus
The DTAG
valid bit is then reset by the VCTY, and the micro-
processor is interrupted to do the same in the TAG.

If the dirty bit is found to be set, and the command
1s a read, the MC_DIRTY _EN signal is asscrted on the
system bus to tell the other CPU thar the location it is
trving to access is in cache and has been modified by
this CPU. At the same time, a signal is sent to the
microprocessor requesting it to supply the modified

command indicates a write transaction.

data to the bus so the other CPU can getan up-to-date
version of the dara.

If the address being examined by the VCTY was
not shared in the DTAG and the transaction was a
write, the valid bit is reset in the DTAG, and no bus
signals are generated. The microprocessor is requested
to reset the valid bitin the TAG. However, if the trans-
action was not a write, then shared is set in the DTAG,
MC_SHARED is asserted on the bus, and a signal is
sent to the microprocessor to sct shared in the TAG.

From these examples, it becomes obvious that only
rransactions that change the state of the valid, shared, or
dirty TAG bits require any action on the part of the

microprocessor. Since these transactions are relatively
infrequent, the DTAG saves a great deal of microproces-
sor time and improves overall system performance.

If the VCTY derects that the command originated
from the microprocessor co-resident on the module,
then the block is not checked for a hit, but the com-
mand is decoded so that the DTAG block is updated
(if already valid) or allocated (i.c.,
already valid). In the latter case, a fill transaction fol-
lows and the VCTY writes the valid bit into the TAG at
that time. The fill transaction is the only one for which
the VCTY writes directly into the TAG.

All cyeles of a system bus transaction are numbered,
with cycle 1 being the cyele in which the system bus
address and command are valid on the bus. The con-
trollers internal to VCTY rely on the cycle numbering
scheme to remain synchronized with the system bus.
By remaining synchronized with the system bus, all
accesses to the DTAG and accesses from the VCTY to
the microprocessor occur in fixed cycles relative to the
system bus transaction in progress.

The index used for lookups to the DTAG is pre-
sented to the DTAG in cycle 1 of the system bus trans-
action. In the event of a hit requiring an update of the

marked valid, if not

Digital Technical Journal Vol. 8 No.4 1996

[N
wm

26

DTAG and primary TAG, the microprocessor interface
signal, EV_ABUS_REQ), is asserted in cycles 5 and 6 of
that system bus transaction, with the appropriate
system-to-CPU command being driven in cycle 6. The
actual update to the DTAG occurs in cycle 7, as does
the allocation ot blocks in the DTAG.

Figure 3 shows the timing relationship of a system
bus command to the update of the DTAG, including
the sending of a system-to-CPU command to the
microprocessor. The numbers along the top of the
diagram indicate the cycle numbering. In cycle 1,
when the signal MC_CA_L goes low, the system bus
address is valid and is presented to the DTAG as the
DTAG_INDEX bits. By the end of cycle 2, the DTAG
data is valid and is clocked into the VCTY where it is
checked for good parity and a match with the upper
received system bus address bits. In the event of a hit, as
is the case in this example, the microprocessor interface
signal EV_ABUS REQ is asserted in cycle 5 to indicate
that the VCTY will be driving the microprocessor com-
mand and address bus in the next cycle. In cycle 6, the
address that was received from the system bus is driven
to the microprocessor along with the SETSHARED
command. The microprocessor uses this command
and address to update the primary tag control bits tor
that block. In cycle 7, the control signals DTAG_OE_L
and DTAG_WEI_L arc asserted low to update the con-
trol bits in the DTAG, thus indicating that the block is
now shared by another module.

SYSTEM BUS
CYCLE NUMBER 1 2 3

MC_CLK

DTAG Initialization

Another important feature built into the VCTY design
is a cursory self-test and initialization of the DTAG.
After system reset, the VCTY writes all locations of the
DTAG with a unique data pattern, and then reads the
entire DTAG, comparing the data read versus what
was written and checking the parity. A second write-
read-compare pass is made using the inverted darta pat-
tern. This inversion ensures that all DTAG data bits are
written and checked as both a 1 and a 0. In addition,
the second pass of the initialization leaves cach block
of the DTAG marked as invalid (not present in the
B-cache) and with good paritv. The entire initializa-
tion scquence takes approximately 1 millisecond per
megabyte of cache and finishes before the micro-
processor completes its sclf-test, avoiding special han-
dling by firmware.

Logic Synthesis

The VCTY ASIC was designed using the Verilog
Hardware Description Language (HDL). The use of
HDL enabled the design tcam to begin behavioral
simulations quickly to start the debug process.

In parallel with this, the Verilog code was loaded
into the Synopsys Design Compiler, which synthe-
sized the behavioral equations into a gate-level design,
The use of HDL and the Design Compiler enabled the
designers to maintain a single set of behavioral models
for the ASIC, without the nced to manually enter

AAAA AAAA

MC_ADDR<39:4> :X MC_ADDR A1) A2)—(AAAA

MC_CA_L

e

MC _ADDR<21:6>

DTAG_INDEX<15:0>

X MC_ADDR<216>-A1 UAAAA AAAA AAAA)—(- Anaa

MC ADDR<38:22>

| MC_ADDR<38:22>

DTAG_DATA<18:2> X o Y vaup,
r : : : L : g SHARED,
: ; : : : : - NOT DIRTY
DTAGV.SD | 1 VvALD s :
DTAG_OE_L ; ;
DTAG_WE1_L i /
DTAG_WEO_L :
EV_ABUS_REQ [\

MC_ADDR

EV_ADDR<39:4>

. DRIVEN BY MICROPROCESSOR

| SETSHARED

EV_CMD<3:0>

DRIVEN BY MICROPROCESSOR

> DRIVEN BY
MICRO-
PROCESSOR

Figure 3
DTAG Operation

Digital Technical Journal Vol.8 No.4 1996

schematics to represent the gate-level design. The syn-
thesis process is shown in a flowchart form in Figure 4.
Logic verification is an integral part of this process,
and the flowchart depicts both the synthesis and verifi-
cation, and their interaction.

Only the synthesis is explained at this time. The ver-
ification process depicted on the right side of the flow-
chart is covered in a later section of this paper.

As shown on the left side of the flowchart, the logic
synthesis process consists of multiple phases, in which
the Design Compiler is invoked repeatedly on each
subblock of the design, feeding back the results from
the previous phase. The Synopsys Design Compiler
was supplied with timing, loading, and area constraints
to synthesize the VCTY into a physical design that met
technology and cycle-time requirements. Since the
ASIC is a small design compared to technology capa-
bilities, the Design Compiler was run without an area
constraint to facilitate timing optimization.

The process requires the designer to supply timing
constraints only to the periphery of the ASIC (i.e., the

1,/0 pins). The initial phase of the synthesis process cal-
culates the timing constraints for internal networks that
connect between subblocks by invoking the Design
Compiler with a gross target cycle time of 100 nanosec-
onds (actual cycle time of the ASIC is 15 nanoseconds).
At the completion of this phase, the process analyzes
all paths that traverse multiple hierarchical subblocks
within the design to determine the percentage of time
spent in each block. The process then scales this data
using the actual cycle time of 15 nanoseconds and
assigns the timing constraints for internal networks at
subblock boundaries. Multiple iterations may be
required to ensure that each subblock is mapped to
logic gates with the best tming optimization.

Once the Design Compiler completes the subblock
optimization phase, an industry-standard electronic
design interchange format (EDIF) file is output. The
EDIF file is postprocessed by the SPIDER tool to gen-
erate files that are read into a timing analyzer, Topaz. A
variety of industry-standard file formats can be input
into SPTDER to process the data. Output files can then

VERILOG SOURCE FILES |«

100-NS CYCLE-TIME
GROSS SYNTHESIS

!

15-NS CYCLE-TIME
SUBBLOCK
OPTIMIZATION

FIX MINIMUM-DELAY
HOLD-TIME
VIOLATIONS

!

DESIGN COMPILER
OUTPUTS EDIF FILE

!

SPIDER PROCESSES

Vv2BDS

FC PARSE

!

DECSIM: COMPILE
AND LINK

!

DECSIM SIMULATION
RANDOM EXERCISER

FOCUSED TESTS
SYSTEM SIMULATION
FC ANALYZE
WRITE NEW
TESTS i
A
FC REPORT

EDIF FILE
DECSIM
TOPAZ TIMING GATE-LEVEL
ANALYZER SIMULATION
(NO FC)

| .| FIX TIMING VIOLATIONS _
AND/OR LOGIC BUGS -

> FIX TIMING VIOLATIONS

Figure 4

ASIC Design Synthesis and Verification Flow

Digital Technical Journal Vol.8 No.4 1996

27

be generated and ceasily read by internal CAD tools
such as the DECSIM logic simulator and the Topaz
riming analvzer.

Topaz uses information contained in the ASIC tech-
nology library to analyze the timing of the design as it
was mapped by the Design Compiler. This analysis
results in output data files that are used to constrain
the ASIC layout process and obtain the optimal layourt,
Logic paths arc prioritized for placement of the gates
and routing of the connections based on the timing
margins as determined by Topaz. Thosc paths with the
lcast timing margin are given the highest priority in
the lavout process.

Logic Verification

This scction of the paper discusses logic verification
and focuses on the use of behavioral model simulation.
It should also be noted that once the Design Compiler
had mapped the design to gates, SPIDER was also
used to postprocess the EDIF file so that DECSIM
simulation could be run on the structural design. This

process allowed for the verification of the actual gates
as they would be built in the ASIC.

The right-hand side of Figure 4 illustrates the logic
verification process using a behavioral simulation
model. To verifv the logic, the system must be per-
forming transactions that exercise all or most of its
logtc. Idcally, the same software used in phvsical sys-
tems should be run on the design, but this is not prac-
tical because of the long run times that would be
required. Therefore, specialized software tools are used
that can accomplish the task in a shorter time. The ver-
ification team developed two such tools: the Random
Excrciser and the Functional Checker. They are
described in detail in this section.

Random Exerciser

Verification strategy is crucial to the success of the
design. There are two approaches to verification test-
ing, dirccted and random. Directed or focused tests
requite short run times and rarget specific parts of the
design. To fully test a complex design using directed
tests requires a very large number of tests, which rake
along time to write and to run. Morcover, a directed
test strategy assumes that the designer can foresee
¢ system interaction and is able to write

every possib
a test that will adequately excrcise it. For these reasons,
random testing has become the preferred methodol-
ogy in modern logic designs.” Directed tests were not
completely abandoned, but they compose only a small
portion of the test suite,

Random tests relv on a random sequence of events
to create the failing conditions. The goal of the
Random Excrciser was to create a framework that
would allow the verification team to create random

Digital Technical Journal Vol. 8 No.4 1996

tests quickly and cfficiently without sacrificing flexibil -
ity and portability. It consisted of three parts: the test
generator, the exerciser code, and the bus monitor.

Test Generator This collection of DECSIM commands
randomly generates the test data consisting of addresses
(both 1,/0 spacc and memory space) and data patterns.
The user controls the test data generator by setting test
paramcters. For example, to limit the range of working
address space to the uppermost 2 MB of a 4-MB mem-
ory space, the working address space paramcter is
defined as [200000, 400000]. It tells the test gencerator
to choose addresses within that range onlv—grcater
than 2 MB and less than 4 MB.

Exerciser Code This codc is a collection of routines or
sequences of Alpha macrocode instructions to be exe-
cuted by the microprocessors. Each routine performs
a unique task using one of the addresses supplied by
the test generator, For example, routine 1 performs
a read-verify-modity-write sequence. Routine 2 is sim-
ilar to routine 1, but it rcads another address that is
8 MB away from the original address, betore writing
to the cache. Since the B-cache s one-way associative,
the original address is then evicted from the cache.
Lastly, routine 3 performs a lock operation.

Most routines were of the tpe described above;
thev used simple load and store instructions. A few
routines were of a special tvpe: one generated inter-
Processor INterrupts, interrupts,
another routine gencerated errors (using addresses to
nonexistent memory and /0O space) and checked that
the errors were handled properly, and another routine
exercised lock-type instructions more heavily.

The activity on the system bus generated by the
CPUs was not cnough to verify the logic. Two addi-
tional system bus agents (models of system bus devices)
simulating the 1/O were needed to simulate a full
system-level environment. The 1/0 was modeled using
so-called commander modcls. These are not HDL or
DECSIM behavioral models of the logic butare written
in a high-level language, such as C. From the perspec-
tive of the CPU, the commander models behave like
real logic and theretore are adequate for the purpose of
vertfying the CPU module. ‘There were several reasons
for using a commander model instead of a logic/
behavioral model. A complere 1/0 model was not et
available when the CPU module design began. The
commander model was an evolution of a model used in
a previous project, and it offered much needed flexibil-
ity. Tt could be configured to act as cither an 1,/0 inter-
face or a CPU module and was casily programmable to
flood the system bus with even more activity: memory
reads and writes; interrupts to the CPUs by randomly
inserting stall cveles in rhe pipeline; and assertion of

others serviced

svstem bus signals at random times.

Bus Monitor The bus monitor is a collection of
DECSIM simulation watches that monitor the system
bus and the CPU internal bus. The watches also report
when various bus signals are being asserted and
deasserted and have the ability to halt simulation if
they encounter cache incoherency or a violation.

Cache incoherency is a data inconsistency, for exam-
ple, a picce of nondirty data residing in the B-cache
and diftering from data residing in main memory.
A data inconsistency can occur among the CPU mod-
ules: for example, two CPU modules may have differ-
ent data in their caches ar the same memory address.
Data inconsistencics are detected by the CPU. Each
one maintains an exclusive (nonshared) copy of its
data thatit uses to compare with the data it reads from
the test addresses. It the two copies ditter, the CPU
signals to the bus monitor to stop the simulation and
IePOrt an Crror.

The bus monitor also detects other violations:

L. No activity on the system bus for 1,000 consecutive
cveles
2. Stalled system bus tor 100 cvcles

3. Hlegal commands on the system bus and CPU
internal bus

4. Catastrophic system error (machine check)

The combination of random CPU and 1/0 activity
flooded the system bus with heavy traffic. With the
help of the bus monitor, this technique exposed bugs
quickly.

As mentioned, a tew directed tests were also written.
Directed tests were used to re-create a situation that
occurred in random tests. IFa bug was uncovered using
a random test that ran three days, a directed test was
written to re-create the same failing scenario. Then,
after the bug was fixed, a quick run of the dirceted test
confirmed that the problem was indeed corrected.

Functional Checker

During the initial design stages, the verification team
developed the Functional Checker (FC) for the fol-
lowing purposcs:

= To functionally veritv the HDL models ot all ASICs
in the AlphaScrver 4100 system

= Toassess the test coverage

The FC tool consists of three applications: the
parser, the analyzer, and the report gencrator. The
right-hand side ot Figure 4 illustrates how the FC was
used to aid in the functional verification process.

Parser Since DECSIM was the chosen logic simula-
tor, the first step was to translate all HDL code to
BDS, a DECSIM bcehavior language. This rask was

pertormed using a tool called V2BDS. The parser’s
task was to postprocess a BDS file: extract information
and generate a modified version of it. The information
extracted was a list of control signals and logic state-
ments (such as logical expressions, if-then-else state-
ments, case statements, and loop constructs). This
information was later supplied to the analyzer. The
modificd BDS was functionally equivalent to the origi-
nal code, but it contained some embedded calls to
routines whose task was to monitor the activity of the
control signals in the context of the logic statements.

Analyzer Written in C, the analyzer is a collection of
monitoring routines. Along with the modified BDS
code, the analyzer 1s compiled and linked to form the
simulation model. During simulation, the analyzer
is invoked and the routines begin to monitor the activ-
ity of the control signals. It keeps a record of all con-
trol signals that form a Jogic statement. For example,
assumic the following statement was recognized by the
parscr as one to be monitored.

(AXORB)AND C

The analyzer created a rable of all possible combina-
rions of logic values for A, B, and C; it then recorded
which ones were achieved. At the start of simulation,
there was zero coverage achieved.

ABC Achieved
000 No
001 No
010 No
011 No
100 No
101 No
110 No
111 No

Achieved coverage = 0 percent

Further assume that during one of the simulation
tests generated by the Random Exerciser, A assumed
both 0 and 1 logic states, while B and C remained con-
stantly at 0. At the end of simulation, the statc of the
rable would be the following:

ABC Achieved
000 Yes
001 No
010 No
011 No
100 Yes
101 No
110 No
111 No

Achieved coverage = 25 percent

Vol.8 No.4 1996

Digital Technical Journal

29

30

Report Generator The report generator application
gathered all tables created by the analyzer and gener-
ated a report file indicating which combinations were
not achieved. The report file was then reviewed by the
verification team and by the logic design team.

The report pointed out deficiencies in the verifica-
tion tests. The verification team created more tests
that would increase the “yes” count in the “Achieved”
column. For the example shown above, new tests
might be created that would make signals B and C
assume both 0 and 1 logic states.

The report also pointed out faults in the design,
such as redundant logic. In the example shown, the
logic that produces signal B might be the same as the
logic that produces signal C, a case of redundant logic.

The FC tool proved to be an invaluable aid to the
verification process. It was a transparent addition to the
simulation environment. With FC, the incurred degra-
dation in compilation and simulation time was negligi-
ble. It performed two types of coverage analysis:
exhaustive combinatorial analysis (as was described
above) and bit-toggle analysis, which was used for vee-
rored signals such as data and address buses. Perhaps
the most valuable feature of the tool was the fact that it
replaced the time-consuming and compute-intensive
process of fault grading the physical design to verify test
coverage. FC established a new measure of test cover-
age, the percentage of achieved coverage. In the above
example, the calculated coverage would be two out of
cight possible achievable combinations, or 25 percent.

For the verification of the cached CPU module, the
FC tool achieved a final test coverage of 95.3 percent.

Module Design Process

As the first step in the module design process, we used
the Powerview schematic editor, part of the Viewlogic
CAD tool suite, for schematic capture. An internally
developed tool, V2LD, converted the schematic to a
form that could be simulated by DECSIM. This process
was repeated untl DECSIM ran without errors.

During this time, the printed circuit (PC) layout of
the module was proceeding independently, using the
ALLEGRO CAD rtools. The layout process was partly
manual and partly automated with the CCT router,
which was effective in following the layout engineer’s
design rules contained in the DO files.

Each version of the completed layout was translated
to a tormat suitable for signal integrity modeling,
using the internally developed tools ADSconvert and
MODULEX. The MODULEX tool was used to extract
a module’s electrical parameters from its physical
description. Signal integrity modeling was performed
with the HSPICE analog simulator. We sclected
HSPICE because of its universal acceptance by the

Digital Technical Jounal Vol.8 No.4 1996

industry. Virtually all component vendors will, on
request, supply HSPICE models of their products.
Problems detected by HSPICE were corrected either
by layout modifications or by schematic changes. The
module design process flow is depicted in Figure 5.

Software Tools and Models

Three internally developed tools were of great value.
Onc was MSPG, which was used to display the
HSPICE plots; another was MODULEX, which auto-
matically generated HSPICE subcircuits from PC
layout files and performed cross-talk calculations.
Cross-talk amplitude violations were reported by
MODULEX, and the offending PC traces were moved
to reduce coupling. Finally, SALT, a visual PC display
tool, was used to verity that signal routing and branch-
ing contormed to the design requirements.

One of the important successes was in data line
modcling, where the signal lengths from the RAMs
to the microprocessor and the transceivers were very
critical. By using the HSPICE .ALTER statement and
MODULEX subcircuit generator command, we could
configure a single HSPICE deck to simulate as many as
36 data lines. As a result, the entire data line group
could be simulated in only four HSPICE runs. In an
excellent example of synergy between tools, the script
capability of the MSPG plotting tool was used to
extract, annotate, and create PostScript files of wave-
form plots directly from the simulation results, with-
out having to manually display each wavetorm on the
screen. A mass printing command was then used to
print all stored PostScript files.

Another useful HSPICE statement was MEASURE,
which measured signal delays at the specified threshold
levels and sent the results to a file. From this, a separarce
program extracted clean delay values and calculated the
maximum and minimum delays, tabulating the results
in a scparate file. Reflections crossing the threshold
levels caused incorrect results to be reported by
the .MEASURE statement, which were casily scen in
the tabulation. We then simply looked at the waveform
printout to see where the reflections were occurring.
The layout engineer was then asked to modify thosc
signals by changing the PC trace lengths to cither the
microprocessor or the transceiver. The modified signals
were then resimulated to verify the changes.

Timing Verification

Overall cache timing was verified with the Timing
Designer timing analyzer from Chronology Corpor-
ation. Relevant timing diagrams were drawn using
the waveform plotting facility, and delay values and
controlling parameters such as the microprocessor
cycle interval, read speed, wave, and other constants
were entered into the associated spreadsheer. All

DECSIM
DIGITAL LOGIC
SIMULATOR

VL2D (CONVERTS
TO DECSIM)

!

POWERVIEW
SCHEMATIC EDITOR

!

VIEWDRAW.NET

ANALYSIS B

!

ALLEGRO
LAYOUT TOOL

!

"DO” FILES
RESTRICTIONS AND
CONSTRAINTS

.RTE

] ALLEGRO.BRD

DSN CCT ROUTER

ADSCONVERT

T T

VLS.ADS _f\[{!é)gtJLEX

FOR MODULEX
COMPATIBILITY

HSPICE
ANALOG SIMULATOR

TIMING DESIGNER
TIMING ANALYZER

L_' MDA FILES

FOR MANUFACTURING

Figure 5
Design Process Flow

delays were expressed in terms of HSPICE-simulated
values and those constants, as appropriate. This
method simplified changing parameters to try various
“what it strategics. The timing analyzer would
instantly recalculate the delays and the resulting mar-
gins and report all constraint violations. This tool was
also used to check timing elsewhere on the module,
outside of the cache area, and it provided a reasonable
level of confidence that the design did not contain any
timing violations.

Signal Integrity

In high-speed designs, where signal propagation times
are a significant portion of the clock-to-clock interval,
reflections due to impedance mismatches can degrade
the signal quality to such an extent that the system will
tail. For this reason, signal integrity (SI) analysis is an
important part of the design process. Electrical con-
nections on a module can be made following a direct

point-to-point path, but in high-speed designs, many
signals must be routed in more complicated patterns.
The most common pattern involves bringing a signal
to a point where it branches out in several directions,
and each branch is connected to one or more
receivers. This method is referred to as treeing.

The SI design of this module was based on the
principle that component placement and proper sig-
nal treeing are the two most important elements of
a good SI design. However, ideal component place-
ment is not always achievable due to overriding factors
other than SI. This section describes how successtul
design was achieved in spite of less than ideal compo-
nent placement.

Data Line Length Optimization

Most of the SI work was directed to optimizing the
B-cache, which presented a difficult challenge because
of long data paths. The placement of major module

Digital Technical Journal Vol.8 No.4 1996

31

32

data bus components (microprocessor and data trans-
ceivers) was dictated by the enclosure requirements
and the need to fit four CPUs and eight memory mod-
ules into the system box. Rather than allowing the
microprocessor heat-sink height to dictare module
spacing, the system designers opted for fitting smaller
memory modules next to the CPUs, filling the space
that would have been left empty if module spacing
were uniform. As a consequence, the microprocessor
and data transceivers had to be placed on opposite
ends of the module, which made the data bus exceed
11 inches in length. Figure 6 shows the placement of
the major components.

Each cache data line is connected to four compo-
nents: the microprocessor chip, two RAMs, and the
bus transcciver. As shown in Table 1) any one of these
components can act as the driver, depending on the
transaction in progress.

INDEX BUFFERS
(THREE MORE ON
THE OTHER SIDE) ~\

The goal of data line design was to obtain clean sig-
nals at the receivers. Assuming that the microproces-
sor, RAMs, and the transceiver are all located in-line
without branching, with the distance between the nwo
RAMSs ncar zero, and since the positions of the micro-
processor and the transceivers are fixed, the only vari-
able is the location of the two RAMs on the data line.
As shown in the waveform plots of Figures 7 and 8,
the quality of the received signals is strongly atfected
by this variable. In Figure 7, the reflections arc so large
that they exceed threshold levels. By contrast, the
reflections in Figure 8 are very small, and their wave-
forms show signs of cancellation. From this it can
be inferred that optimum PC trace lengths cause the
reflections to cancel. A range of acceptable RAM posi-
tions was found through HSPICE simulation. The
results of these simulations are summarized in Table 2.

DATA RAMS
(EIGHT MORE ON
THE OTHER SIDE)

MICRO-
P ESSOR

CﬁggK 880 MICRO-
CIRCUITRY PROCESSOR

[

DTAG AsiIC 7

TAG
RAM

PROGRAMMABLE
LOGIC

DATA TRANSCEIVERS

S —

NN N I e o o o o |

PROGRAMMABLE ADDRESS AND COMMAND SYSTEM BUS
LOGIC TRANSCEIVERS CONNECTOR

Figure 6

Placement of Major Components

Table 1

Data Line Components

Transaction Driver Receiver

Private cache read RAM Microprocessor

Private cache write

Cache fill Transceiver
Cache miss with victim RAM
Write block Microprocessor

Microprocessor

RAM

RAM and microprocessor
Transceiver

RAM and transceiver

Digital Technical Journal Vol.§ No.4 1996

a0k In the series of simulations given in Table 2, the
threshold levels were setat 1.1 and 1.8 volts. This was

3.0t justified by the use of perfect transmission lines. The
lines were lossless, had no vias, and were at the lowest

20 impedance level theoretically possible on the module
0 (55 ohms). The entries labeled SR in Table 2 indicate
§1 0 unacceptably large delays caused by signal reflections

recrossing the threshold levels. Discarding these
entries leaves only those with microprocessor-to-
RAM distance of 3 or more inches and the RAM-
to-transceiver distance of at least 6 inches, with the total
20 microprocessor-to-transceiver distance not exceeding
4 45 50 55 60 65 70 75 8O 11 inches. The layout was done within this range, and
NANOSECONDS all dara lines were then simulated using the network

subcircuits generated by MODULEX with threshold
levels set at 0.8 and 2.0 volts. These subcircuits

Figure 7
Private Cache Read Showing Large Reflections Due to

Unfavorable Trace Length Ratios included the effect of vias and PC traces run on several
signal planes. That simulation showed that all but

40} 12 of the 144 data- and check-bit lines had good sig-
nal integrity and did not recross any threshold levels.

301 The failing lines were recrossing the 0.8-volt thresh-

old at the transceiver. Increasing the length of the

20 RAM-to-transceiver segment by 0.5 inches corrected
0 this problem and kept signal delays within accept-
c:> 10 able limits. .

o.ot Approaches other than placing the components

in-line were investigated but discarded. Extra signal
1ol lengths require additional signal layers and increase
the cost of the module and its thickness.

20 .)
40 45 50 55 60 65 70 75 80 RAM Clock Design
NANOSECONDS We selected Texas Instruments’ CDC2351 clock drivers
- to handle the RAM clock distribution network. The
Figure 8

Private Cache Read Showing Reduced Reflections with CDC2351 device has a well-controlled input-to-output
Optimized Trace Lengths delay (3.8 to 4.8 nanoseconds) and 10 drivers in each
package that are controlled from one input. The fairly

Table 2
Acceptable RAM Positions Found with HSPICE Simulations
PC Trace Length Write Delay Read Delay
(Inches) (Nanoseconds) (Nanoseconds)

Microprocessor RAM to Microprocessor RAM to RAM to

to RAM Transceiver to RAM Microprocessor Transceiver
Rise Fall Rise Fall Rise Fall

2 7 0.7 23 0.9 SR 1.1 1.4

2 8 0.7 2.7 SR SR 1.5 1.4

2 9 0.6 3.1 SR SR 1.7 1.5

3 6 09 2.1 1.2 1.1 0.9 1.0

3 7 0.9 2.4 1.0 1.1 1.4 1.3

3 8 0.9 29 1.0 1.3 1.5 1.3

4 5 1.1 1.8 1.2 1.4 9 SR

4 6 13 2.2 1.4 1.4 0.9 1.0

4 7 1.2 2.6 1.3 1.4 1.2 1.2

5 4 1.5 1.7 1.5 1.7 SR SR

5 5 1.4 2.1 1.8 1.7 SR SR

5 6 1.6 2.4 1.7 1.4 0.9 1.2

Note: Signal reflections recrossing the threshold levels caused unacceptable delays; these entries were discarded.

Digital Technical Journal Vol.8 No.4 1996 33

34

long delay through the part was beneficial because,
as shown in Figure 2, clock delay is needed to achieve
adequate setup times. Two CDC2351 clock drivers,
mounted back to back on both sides of the PC board,
were required to deliver clock signals to the 17 RAMs.

The RAMs were divided into seven groups based on
their physical proximity. As shown in Figure 9, there
are four groups of three, two groups of two, and a sin-
gle RAM. Each of the first six groups was driven by
two clock driver sections connected in parallel through
resistors in series with cach driver to achieve good load
sharing. The seventh group has only onc load, and one
CDC2351 section was suthicient to drive it. HSPICE
simulation showed that multiple drivers were needed
to adequately drive the transmission line and the load.
The load conncctions were made by short cqual
branches of fewer than two inches cach. The length of
the branches was critical for achieving good signal
integrity at the RAMs.

Data Line Damping
In the ideal world, all signals switch only once per clock
interval, allowing plenty of sctup and hold time. In the
rcal world, however, narrow pulses often precede valid
data transitions. These tend to create multiple reflec-
tions superimposed on the edges of valid signals. The
reflections can recross the threshold levels and increase
the effective delay, thus causing data errors.
Anticipating these phenomena, and having seen
their effects in previous designs, designers included

pd
<

30 OHMS RAM

i
I

CLOCK
DRIVER

>

30 OHMS

o) sl | pos)l | s} D
>\ pd pd >
- !! i)

50 OHMS

D
>
<

: 30 OHMS

CPU
30 OHMS
W RAM
CLOCK | 50 OHMS
| DRIVER —w\,—r RAM
30 OHMS
22 OHMS
Figure 9

RAM Clock Distribution

Digital Technical Journal Vol.8 No.4 1996

series-damping resistors in cach cache data line, as
shown in Figure 10. Automatic component placement
machines and availability of resistors in small packages
made mounting 288 resistors on the module a painless
task, and the payoff was huge: nearly perfect signals
even in the presence of spurious data transitions
caused by the microprocessor’s architectural features
and RAM characteristics. Figure 11 illustrates the han-
dling of some of the more difficult wavetorms.

Performance Features

This section discusses the performance of' the
AlphaServer 4100 system derived trom the physical
aspects of the CPU module design and the cffects of
the duplicate TAG store.

Physical Aspects of the Design

As previously mentioned, the synchronous cache was

chosen primarily for performance reasons. The archi-

tecture of the Alpha 21164 microprocessor is such that

its data bus is used for transfers to and from main mem-

ory (fills and writes) as well as its B-cache * As system

cycle times decrease, it becomes a challenge to manage

memory transactions without requiring wait cycles

using asynchronous cache RAM devices. For example,

a transfer from the B-cache to main memory (victim

transaction) has the following dclay components:

1. The microprocessor drives the address oft-chip.

2. The address is fanned out to the RAM devices.

3. The RAMs retrieve data.

4. The RAMs drive data to the bus interface device.

5. The bus interface device requires a sctup time,
Worst-case delay values for the above items might

be the following:

1. 2.6 nanoseconds®

2. 5.0 nanoseconds

3. 9.0 nanoseconds

4. 2.0 nanoseconds

5. 1.0 nanoscconds

Total: 19.6 nanoscconds

Thus, for system cycle times that are significantly
shorter than 20 nanoscconds, it becomes impossible

10 OHMS

10 OHMS

RAM TRANSCEIVER

Figure 10
RAM Driving the Microprocessor and Transceiver through
10-ohm Series Resistors

DATA LINE SCALE:
1.00 VOLT/DIVISION,
OFFSET 2.000 VOLTS,
INPUT DC 50 OHMS

TIME BASE SCALE:
10.0 NANOSECONDS/
DiVISION

Figure 11
Handling of Difficult Wavetorms

to access the RAM without using multiple cycles per
read operation, and since the full transfer involving
memory comprises four of these operations, the
penalty mounts considerably. Due to pipelining, the
synchronous cache enables this type of read operation
to occur at a rate of one per system cycle, which is
15 nanoseconds in the AlphaServer 4100 system,
greatly increasing the bandwidth for data transfers to
and from memory. Since the synchronous RAM is
a pipeline stage, rather than a delay element, the win-
dow of valid data available to be captured at the bus
interface is large. By driving the RAMs with a delayed
copy of the system clock, delay components 1 and 2
are hidden, allowing taster cycling of the B-cache.

When an asynchronous cache communicates with
the system bus, all data read out from the cache must
be synchronized with the bus clock, which can add
as many as two clock cycles to the transaction. The
synchronous B-cache avoids this performance penalty
by cycling at the same rate as the system bus.?

In addition, the choice of synchronous RAMs pro-
vides a strategic benefit; other microprocessor vendors
are moving toward synchronous caches. For example,
numerous Intel Pentium microprocessor-based sys-
tems employ pipeline-burst, module-level caches using
synchronous RAM devices. The popularity of these
systems has a large bearing on the RAM industry.” It is
in DIGITAL’s best interest to follow the synchronous
RAM trend of the industry, even for Alpha-based
systems, since the vendor base will be larger. These
vendors will also be likely to put their efforts into
improving the speeds and densities of the best-selling
synchronous RAM products, which will facilitate
improving the cache performance in future variants of
the processor modules.

Effect of Duplicate Tag Store (DTAG)
As mentioned previously, the DTAG provides a mech-
anism to filter irrelevant bus transactions from the

Alpha 21164 microprocessor. In addition, it provides
an opportunity to speed up memory writes by the /O
bridge when they modify an amount of data that is
smaller than the cache block size of 64 bytes (partial
block writes).

The AlphaServer 4100 1/0 subsystem consists of
a PCI mother board and a bridge. The PCI mother
board accepts I/0 adapters such as network interfaces,
disk controllers, or video controllers. The bridge pro-
vides the interface between PCI devices and between
the CPUs and system memory. The 1/0O bridge reads
and writes memory in much the same way as the CPUs,
but special extensions are built into the system bus pro-
tocol to handle the requirements of the 1,/0 bridge.

Typically, writes by the I /O bridge that are smaller
than the cache block size require a read-modify-write
sequence on the system bus to merge the new data
with data from main memory or a processor’s cache.
The AlphaServer 4100 memory system typically trans-
fers data in 64-byte blocks; however, it has the ability
to accept writes to aligned 16-byte locations when the
I/0 bridge is sourcing the data. When such a partial
block write occurs, the processor module checks the
DTAG to determine if the address hits in the Alpha
21164 cache hierarchy. If it misses, the partial write is
permitted to complete unhindered. If there is a hit,
and the processor module contains the most recently
modified copy of the data, the 1/0 bridge is alerted
to replay the partial write as a read-modify-write
sequence. This feature enhances DMA write perfor-
mance for transters smaller than 64 bytes since most of
these references do not hit in the processor cache.?

Conclusions

The synchronous B-cache allows the CPU modules
to provide high performance with a simple architec-
ture, achieving the price and performance goals of
the AlphaServer 4100 system. The AlphaServer 4100

Digital Technical Journal Vol.8 No.4 1996

36

CPU design team pioneered the use of synchronous
RAMs in an Alpha microprocessor-based system
design, and the knowledge gained in bringing a design
from conception to volume shipment will benefit
future upgrades in the AlphaServer 4100 server family,
as well as products in other plattorms.

Acknowledgments

The development of this processor module would not
have been possible without the support of numerous
individuals. Rick Hetherington performed carly
conceptual design and built the project team. Pete
Bannon implemented the synchronous RAM support
features in the CPU design. Ed Rozman championed
the use of random testing techniques. Norm Plante’s
skill and patience in implementing the often tedious
PC layout requirements contributed in no small mea-
sure to the project’s success. Many others contributed
ro firmware design, system testing, and performance
analysis, and their contributions are gratefully
acknowledged. Special thanks must go to Darrel
Donaldson for supporting this project throughout the
entire development cycle.

References

1. DIGITAL AlphaServer Family DIGITAL UNIX Perfor-
mance Flash (Maynard, Mass.: Digital Equipment
Corporation, 1996), http://wwiw.curope.digital.com/
info/performance /sys /unix-svr-flash-9.abs.html.

2. Z. Cvcranovic and D. Donaldson, “AlphaServer 4100
Performance Characterization,” Digital Technical
Journal, vol. 8, no. 4 (1996, this issue): 3-20.

3. G. Herdeg, “Design and Implementation of the
AlphaServer 4100 CPU and Memory Architecture,”
Digital Technical Journal, vol. 8, no. 4 (1996, this
issuc): 48-60.

4. S. Duncan, C. Keefer, and T. McLaughlin, “High
Performance 1/O Design in the AlphaServer 4100 Sym-
metric Multiprocessing System,” Digital Technical
Journal, vol. 8, no. 4 (1996, this issuc): 61-75.

5. “Microprocessor Report,” MicroDesign Resouirees,
vol. 8, no. 15 (1994).

6. IBM Personal Computer Power Series 800 Perfor-
meance (Armonk, N.Y.: International Business Machines
Corporation, 1995), http://ike.engr.washington.edu/
news/whitep/ps-perf.html.

7. L. Saundcrs and Y. Trivedi, “Testbench Tutorial,” Inte-
grated System Design, vol. 7 (April and May 1995).

8. DIGITAL Semiconductor 21164 (366 MHz Through
433 MHz) Alpha Microprocessor Hardware
Reference Manual (Hudson, Mass.: Digital Equipment
Corporation, 1996).

Digital Technical Journal Vol.8 No.4 1996

9. J. Handy, “Synchronous SRAM Roundup,” Detaguiest
(September 11, 1995).

General Reference

R. Sites, ed., Alpha Archilecture Reference Manual
(Burlingron, Mass.: Digital Press, 1992).

Biographies

;

Maurice B. Steinman

Maurice Steinman is a hardware principal engineer in the
Server Product Development Group and was the leader of
the CPU design team for the DIGITAL AlphaServer 4100
system. In previous projects, he was onc of the designers
of the AlphaServer 8400 CPU module and a designer of
the cache control subsystem for the VAX 9000 computer
system. Maurice reccived a B.S. in computer and systems
cnginecring from Rensselaer Polytechnic Institure in 1986.
He was awarded two patents related to cache control and
coherence and has two patents pending.

George J. Harris

George Harris was responsible for the signal integrity and
cache design of the CPU module in the AlphaServer 4100
series. He joined DIGITAL in 1981 and is a hardwarc prin-
cipal engincer in the Server Product Development Group.
Betore joining DIGITAL, he designed digiral circuits at
the computer divisions of Honeywell, RCA, and Ferranti.
He also designed computer-assisted medical monitoring
systems using PDP-11 computers for the American Optical
Division of Warner Lambert. He received a master’s degree
in clectronic communications from McGill University,
Montreal, Quebee, and was awarded ten patents relating
to computer-assisted medical monitoring and one patent
rclated to work at DIGITAL in the arca of circuit design.

Andrej Kocev

Andrej Kocev joined DIGITAL in 1994 after recciving

a B.S. in compurer science from Renssclaer Polytechnic
Institute. He is a senior hardware engineer in the Server
Product Development Group and a member of the CPU
verification team. He designed the logic verification soft-
ware deseribed in this paper.

Virginia C. Lamere

Virginia Lamerc is a hardware principal engineer in the
Server Product Development Group and was responsible
for CPU module design in the DIGITAL AlphaScrver 4100
series. Ginny was a member of the verification teams tor
the AlphaServer 8400 and AlphaServer 2000 CPU mod-
ules. Prior to those projects, she contributed to the design
of the floating-point processor on the VAX 8600 and the
execution unit on the VAX 9000 computer system. She
recetved a B.S.in clectrical engineering and computer
science from Princeton University in 198 1. Ginny was
awarded two patents in the area of the execution unit
design and is a co-author of the paper “Floating Point
Processor for the VAX 86007 published in this Jorrrieal,

Roger D. Pannell

Roger Pannell was the leader of the VCTY ASIC design
ream for the AlphaServer 4100 svstem. He is a hardware
principal engineer in the Server Product Development
Group. Roger has worked on several projects since join-
ing Digital in 1977 Most recently, he has been a module /
ASIC designer on the AlphaServer 8400 and VAX 7000
1/0 port modules and a bus-to-bus 1,/0 bridge. Roger
reccived a B.S. in clectronic enginecering technology from
the University of Lowell.

Digital Technical Journal

Vol.§ No.4

1996

37

38

The AlphaServer 4100
Low-cost Clock
Distribution System

High-performance server systems generally
require expensive custom clock distribution
systems to meet tight timing constraints.
These clock systems typically have expensive,
application-specific integrated circuits for
the bus interface and require controlled etch
impedance for the clock distribution on each
module in the server system. The DIGITAL
AlphaServer 4100 system utilizes phase-locke
loop circuits, clock treeing, and termination
techniques to provide a cost-effective, low-
skew clock distribution system. This system
provides multiple copies of the clock, which
allows off-the-shelf components to be used
for the bus interface, which in turn results in
lower costs and a quicker system power-up.
Component placement and network com-
pensation eliminated the need for controlled-
impedance circuit boards. The clock system
design makes it possible to upgrade servers
with faster processor options and bus speeds
without changing components.

Digital Technical Journal Vol. 8 No. 4

d

1996

Roger A. Dame

Every digital computer system needs a clock distribu-
tion system to synchronize clectronic communication.
The primary metric used to quantity the performance
of a clodk distribution svstem is clock skew. Svnch-
ronous svstems require multiple copics (outputs) of
the same clock, and clock skew 1s the unwanted delay
berween any nwo of the copies. In gencral, the Jower
the skew, the betrer the clock system. Clock skew is one
of several parameters that affect bus speed. Bus length,
bus loading, driver and recceiver technology, and bus
signal voltage swing also affect bus speed. If problems
arise that jeopardize meeting timing goals, though,
these additional parameters are ditficult to change
because of physical and architectural constraints.

The DIGITAL AlphaServer 4100 clock distribution
system 1s a compact, low-cost solution for a high-
performance midrange server. The clock system pro-
vides more copics of the clock than machines in the
same class typically need. The distribution system
allows expansion on those module designs where
more copics of the clock are needed with minimal
skew. The system is based on a low-cost, oft-the-shelf
phase-locked loop (PLL) as the basic building block.
The simple application of the PLIL alone would not
provide low clock skew, though. Signal integrity tech-
niques and trade-ofts were needed to manage skew
throughout the system. The technical challenges werc
to design a low-cost system that would (1) require
only a small area on the printed wiring boards (PWBs),
(2) be adaptable to various speed grades (options) of
CPUs, and (3) have good performance, 1.c., low skew.
This paper discusses the techniques used to optimize
the performance of an off-the-shelf PLL-based clock
distribution system.

Design Goals

Based on its experience with previous platform designs,
the design team considered a clock skew under 10 per-
cent of the bus cycle time a reasonable target for a
midrange scrver system. The cyele time design target of
the AlphaScrver 4100 system was 15 nanoscconds (ns);
consequently, the skew goal was 1.5 ns or less. This
goal would allow a total of 13.5 ns for clock to out-
put of the transmitting module (Tco) (the time the

transmitting module needs to drive data to a stable
state from a clock edge); setup and hold time require-
ments for the receiving module (the minimum time
that data needs to be stable at the receiver [flop] before
and atter the local clock edge); and bus scttling time.
The following is a breakdown of the timing based on
the sclection of components tor the bus interface:

Bus cycle 15.0 ns
Transmitting module (Tco) 5.1ns
Sctup and hold time for the

receiving module 1.5ns
Clock skew 1.5ns
Time allocated for bus settling 6.9 ns

The sclection of components was based on availabil-
ity, speed, cost, and size. The goal was to climinate the
need for costly application-specific integrated circuits
(ASICs) and still meet the critical timing performance.

The AlphaServer 4100 bus is a simple distributed
bus, 305 millimeters (mm) long, with 10 loads (mod-
ules) and parallel termination at both ends. The tfirst-
order estimate of bus settling time assumed one full
reflection or twice the loaded velocity of propagation
delay end to end. The estimate took into account bus
timing optimization, which is discussed later in this
paper. It was also estimated that 25 copices of the clock
would be required for the processor modules, and
46 copies of the clock would be required for certain
memory modules (synchronous dynamic random-
access memory [SDRAM J-based designs). Only the
rising cdge ot the clock could be used for critical tim-
ing. If the falling edge were used for latches, then
clock skew would dramatically increase because of the
duty cycle distortion associated with PLLs. The mem-
ory module design allowed very little space for clock
circuitry and nceded more copies of the clock than any
other module design 1n the system. Further, the physi-
cal size of the memory module determined the actual
size of the server box. Trade-offs had to be made in
the design and timing to make the oft-the-shelf solu-
tion work. The key goal was to optimize the solution
to get the worst-case skew as closc as possible to the
1.5 ns estimated goal and to find svstem trade-offs to
allow higher module-to-module skew fora 15 ns bus.

A survey of custom clock circuits available within
DIGITAL and off-the-shelf, commercially available
PLLs suggested that a custom circuit was required.
Unfortunately, the circuits that would be available
within our project schedule were costly, consumed far
too much circuit board area, required emitter-coupled
logic (ECL) or positive emitter-coupled logic (PECL)
inputs, and dissipated substantial power. The best off-
the-shelf solution was cost-effective, required less
space than custom circuits, and provided adequate

fan-out. The skew performance, however, ranged
from 2 ns to 4 ns, which exceeded the design goal.

Given the project time constraints and the design

benefits of the oft-the-shelf solution, it was paramount
that we make the off-the-shelt solution work.

Bus Trade-offs

The design philosophy of using stock components for
the bus interface allowed some latitude in the bus
design. Typical bus interfaces use large ASICs, cach
handling up to 50 percent of the data bits. Such a
design results in a relatively long dispersion etch from
the connector to the ASIC. These devices can range
in size from 200 to 400 pins and can require up to
38 mm of etch from the ASIC to the connector. SPICE
simulations demonstrated that the length of cach
module’s dispersion ctch or bus “stubbing” had a pro-
found cftect on bus scrtling ime.” Figure 1 shows bus
settling time {(worst-case driver-receiver combination)
as a function of module dispersion etch. The bus trunk
length was fixed at 305 mm.

The designers used an 18-bit-wide transceiver in
a low-profile surface mount package with a pin pitch
of 0.5 mm. The location of the 1/0 pins for the bus
connections on the interface transceiver (located on
the same side of the package, which allows the device
to be placed very close to the bus connector) and the
connector pitch facilitared short dispersion etch (less
than 13 mm). This design decrcased by 1 ns the set-
tling time typically found on ASIC-based interfaces
with comparable trunk lengths and loading.

Bus termination is another parameter that designers
can manipulate to further improve settling time. We
used parallel terminators at both ends of the bus on the
AlphaServer 4100 system. The bus protocol has two
features that allow aggressive termination, approaching
the unloaded impedance of the trunk. We placed an
anticontention cycle between the module that relin-
quishes the bus and the module that begins to drive the
bus. This arrangement reduces the possibility for driver
contention (stress) as well as the possibility of generat-
ing ringing on the bus caused by large changes in cur-
rent after contention. The bus “parking” feature forces
the last driving module to continue driving the bus to

75F
7.0F
6.5
601
55

45t
4.0 : -

5.08 12.70 25.40

DISPERSION ETCH LENGTH
(MILLIMETERS)

BUS SETTLING TIME
(NANOSECONDS)

Figure 1
Bus Settling Time As a Function of Dispersion Etch
Length

Digital Technical Journal Vol.8 No.4 1996

40

alogic state during long idle times until another module
wants to use the bus. Without this feature, the bus
would settle at the terminator Thevenin voleage it no
modules were driving the bus. Both protocols allow for
Thevenin voltage to be close to the thresholds of the
receivers. Normally this is avoided if the bus is left idle,
because the receivers can go metastable, i.e., arrive at
the unstable condition where its input voltage is
between its specitied logic 0 and logic 1 voltage levels,
resulting in uncontrolled oscillation. Centering the
Thevenin voltage in the normal full voltage swing had
nwo advantages: (1) it balanced the seteling time for
both transitions, and (2) it reduced the driver current.
The reduced driver current allowed for a lower
Thevenin resistance, which brought the terminators
closer to the unloaded (no modules) impedance of the
bus, thus ensuring thart the bus would settle within 6 ns.

The Basic Building Block

Texas Instruments” CDCS86 clock distribution circuit
was chosen as the basic building block for the system
because of its low cost and functionality. The device has
a fan-out of 12 ourpurs with a single compensation loop
and a frequency range of 25 megahertz (MHz) to 100
MHz, and is a 3.3-volt (V) bipolar complementary
metal-oxide semiconducror (BICMOS) part. Process
skew is 1 ns berween any two parts with the same ret-
crence input clock, and root mean square (RMS) jitter
is 25 picoscconds (ps). The CDC586 has a built-in
loop filter, which reduces the number of support com-
ponents. Unlike custom clock circuits with multiple,
independent compensation loops, the simple, sing
loop design required critical attention to the lavout of
cach module design to ensure the best possible skew
performance. The circuit board lavout designer had
to determine the maximum etch length from the PLL
to the receiver. All copies of the clock had to be pre-
cisely matched in length to the maximum length
found, and routed on the same erch layer with
0.51 mm (20 mil) spacing to other ctches and nmini-
mum etch crossovers from other etch layers on dual
strip-line layv-ups. Typical strip-line etch i multilayer
PWRBs is a signal layer that has reference plances, usually
assigned to power or ground, in the layer above and
the layer below. This design allows better impedance
control and climinates cross talk from other signal
layers. PWB thickness and cost constraints often result
in modified forms on the inner layers, however. Dual
strip-line ctch s often used in these cases. This design
consists of two signal layers sandwiched between refer-
ence planes in the lavers above and below. Generally
the diclectric thickness benween the two signal layers is
greater than the diclectric thickness benween cither
signal layer and its related (nearest) reference planc to
minimize cross talk berween the two signal layers.
Figure 2 illustrates a typical application.

C

Digital Technical Journal Vol.8 No. 4 1996

cLocK AL RECEIVER 1
- 1
PHASE-
R L2
LOCKED RECEIVER 2
LOOP
FB R
L
KEY:

FB FEEDBACK LOOP INPUT FOR THE PHASE-LOCKED LOOP
R SERIES TERMINATING RESISTOR
Ly, L, ETCH LENGTHS

AND L,

Figure 2
Typical Phase-locked Loop Connection

Etch Layout

The PWB lay-ups used on various modules in the
AlphaScerver 4100 system contain microstrip etch
(surfacce ctech) and dual strip-line ctch. Ideally, single
strip-line ctch would be optimum for clock etch; how-
ever, it requires more layers at higher cost for PWB

material. One drawback to dual strip-line tav-ups is
etch crossover. A crossover 1s a point along an ctch
trace where another etcl, one on a ditferent laver not
separated by a reference plane, crosses. The crossover
forms small capacitance patches, which can load the
clock etch and affect its impedance and velocity of
propagation. The result is addinional skew from clock
etch to clock eteh. Designers avoided crossovers on all
clock crehy and the design doces not permit parallel
ctch on the other layer within the dual strip-line,
which could induce cross talk.

Figure 2 shows matched etch lengths 7, £,, and Ly
On some module designs, this ctch can be fairly long.
The layout designers would generally “serpentine”
or “trombone” these long ctch runs to comply with
the aforementioned layout rules. Spacing between
the loops on the same ctch run in the serpentine or
trombone is critical. If the spacing is too close, then
coupling will occur, thus changing the velocity of
propagation as well as signal qualitv. Designers used
simulation to determine a minimum ctch-ro-ctch
spacing for cach PWB lay-up. The maximum allowable
cross-talk noise level for any mimimum spacing was
400 millivolts (mV). This level is within the maximum
transistor-transistor logic (TTL) low-state level of
800 mV. Larger spacings were used where no other
¢s would be affected.

lavout ru

The Use of External Series Terminating Resistors

External series terminating resistors (also called termi-
nators), denoted by R, are used at the source (sec
Figure 2). Although Texas Instruments otters another
version of the PLL, namely CDC2586, which has

built-in series terminators, the AlphaServer 4100 design-
ers did not use this variation for the following reasons:

= Some forms of clock trecing (a method of connect-
ing multiple receivers to the same clock output)
require multiple source terminators.

= The nominal value for the internal series terminator
was not optimum for the target impedance of the
PW3Bs.

® The tolerance of the internal series terminators
over the process range of the part could be as high
as 20 percent compared to 1 percent for external
resistors.

Local Power Decoupling

PLLs are analog components and are susceptible to
poser supply noise. One major point source for noise
is the PLL itsclf. Most applications require all 12 out-
puts to drive substantial loads, which generates local
noise. A substantial number of local decoupling capac-
itors (one for every four output pins) and short, wide
dispersion ctch on the power and ground pins of
the PLL were required to help counter the noise.
Designers also used tangential vias to minimize para-
sitic inductance, which can severely reduce the effec-
tiveness of the decoupling capacitors. Typical surtace
mount components have dispersion etch, which con-
nects the surface pad to a via. Tangential vias attach
directly to the pad and eliminate any surface etch that
can act like inductance at high frequency. The PLLs
were also located away from other potential noise
sources such as the Alpha microprocessor chip.

Analog Power Supply Filter
The most important external circuit to the PLL is the
low-pass filter on the analog power pins. Typically, PLL
designs have scparate analog and digital power and
ground pins. This allows the use of a low-pass filter to
prevent local switching noise from entering the analog
core of the PLL (primarily the voltage-controlled oscil-
lator [VCOY]). If a filter is not used, then large edge-to-
edge jitter will develop and will greatly increase clock
skew. Most PLL vendors suggest filter designs and
PWB layout patterns to help reduce the noise entering
the analog core. The CDC586 PLL was introduced at
the beginning of the AlphaServer 4100 design, and the
vendor had not vet specified a filter for the analog
power input. It i1s important to note that if any new
PLL is considered and preliminary vendor specifica-
tions do not include details about the analog power,
the designer should contact the vendor for details.
Two forms of low-pass filters were considered: L-C
and R-C. The L-C filter consists of a series inductor L
from the power source to the analog power pins of
the PLL and a capacitor C from the same power pins
to ground. The R-C filter consists of a series resistor
R from the power source to the analog power pins of

the PLL and a capacitor C from the same power pins
to ground.

The L-C filter can be implemented i two ways:
(1) by using a surface mount inductor and (2) by using
a length of etch for the inductor. In cither case, the Q
of the circuit has to be kept low to prevent oscillation.
Qis a dimensionless number referred to as the quality
factor and is computed from the inductance £ and
resistance R (in this case the inductor’s resistance) of
a resonant circuit using the formula Q = wL/R, where
w equals 27/, and f is the frequency. A low-value resis-
tor in series with the inductor can help. Extreme care
should be taken if the length-of-ctch (used to generate
inductance) implementation is considered. The etch
must be strip-line-etch isolated from any other adja-
cent etch or etch on other layers not separated by
power or ground planes. A two-dimensional (2-D)
modeling tool should be used to calculate the length
of ctch needed to get the proper inductance value for
the filter. Simple rules of thumb for inductance will
not work with reference planes (i.c., power and
ground planes).

The R-C filter is limited to PLLs with moderately
low current draw on the analog power pins. The cur-
rent generates an IR drop (the voltage drop caused by
the current through the resistor) across the resistor R.
Typical PLL analog power inputs require less than
1 milliamp (mA), which would allow a reasonable
value resistor R. Two capacitors should be used in the
R-C type filter: a bulk capacitor for basic filter response
and a radio frequency (RF) capacitor to filter higher
frequencies. Bulk capacitors are any clectrolytic-style
capacitor 1 microfarad (wF) or greater. These capaci-
tors have intrinsic parasitics that keep them from
responding to high-frequency noise. The benefit of
the L-C filter is that, although a single capacitor can be
used (two are still suggested with this style filter), the
reactance of the inductor increases with frequency and
helps block noise. Both filter styles were used in the
AlphaScrver 4100 system.

System Distribution Description

The AlphaServer motherboard has four CPU slots,
eight memory slots, and an /0 bridge module slot.
Each module in the system, including the mother-
board, has at least one PLL. The starting point of the
system is the CPU that plugs into CPU slot 0. Each
CPU module has an oscillator and a buffer to drive the
main system distribution, but the CPU that plugs into
slot 0 actually drives the system distribution. A PLL on
the motherboard receives the clock source generated
by the CPU in slot 0 and distributes low skew copies of
the clock to each module slot in the system. Each
module in the system has one and in some cases nwo
PLLs to supply the required copies of the clock locally.
Figure 3 shows the basic system flow of clocks.

Digital Technical Journal Vol.8 No.4 1996

41

42

MOTHERBOARD
CONTROL
LOGIC
MEMORY 0

MOTHERBOARD
PRIMARY CPUO
DISTRIBUTION i

o)

BRIDGE

Figure 3

Svstem Clock Flow Diagram

The Alpha microprocessor used on all CPU options
for the AlphaServer 4100 system has its own local
clock circuitry. The microprocessor uses a built-in
digital PLL that allows it to lock to an external refer-
ence clock at a multiple of its internal clock.” In the
context of the AlphaServer 4100 system, the reference
clock is generated by the local clock distribution sys-
tem. The AlphaScrver 4100 is fully synchronous.

Each CPU in the system has two clock sources:
one for the bus distribution (system cycle time) and
one for the microprocessor. This design may appear to
be a costly one, but this approach is extremcly cost-
effective when ficld upgrades are considered. When
new, faster versions of the Alpha microprocessor
become available, new CPU options will be intro-
duced. To remain synchronous, the Alpha micro-
processor internal clocks need to run at a multiple of
the system cycle time. Although the system cycle time
goal is 15 ns, the cycle time needs to be adjusted to the
speed of the CPU oprtion used. Placing the bus oscilla-
tor, which drives the primary PLL for the clock system
{cycle time), on the CPU module and designing the
clock distribution system to function over a wide tre-
quency range makes field upgrades as simple as replac-
ing the CPU modules. The motherboard does not
need to be changed.

Digiral Techuical Journal Vol.8 No.4 1996

Skew Management Techniques

The AlphaScrver 4100 svstem had four design teams.
Each team was assigned a portion of the system. Signal
integrity techniques had to be developed to keep the
skew across the system as low as possible. These tech-
niques were structured into a set of design rules that
cach team had to apply to their portion of the design.
To develop these rules, designers explored several
areas, including impedance range, termination, tree-
ing, PLL placement, and compensation.

Impedance Range

Controlled impedance (+/—10 percent from a target
impedance) raises the PWB cost by 10 percent to
20 percent, depending on board size. Each raw PWB
has to be tested and documented by the PWB sup-
pliers, which results in a fixed charge for cach PWB,
regardless of size. Therefore, smaller PWBs have the
highest cost burden. The AlphaScrver 4100 uses rela-
tively small daughter cards. Since low system cost was
a primary goal, noncontrolled impedance PWBs had
to be considered. Unfortunately, allowing the PWB
impedance range (over process) to spread to greater
than +/—=10 percent makes the task ot keeping clock
skew low more difficult. Specification of mechanical
dimensions with tolerances was the only wav to
provide some control of the impedance range with
no additional costs.

Table 1 contains the results of simulations per-
formed using SIMPEST, a 2-D modeling tool devel-
oped by DIGITAL, for a six-layer PWB used on one of
the AlphaServer 4100 modules. The PWB dimensions
and tolerances specified to the vendors were used in
the simulations. The dielectric constant, the only para-
meter not specified to the vendor, ranged from 3.8 to
5.2, which overlaps the tvpical industry-published
range of 4.0 to 5.0 for FR4-type matcerial (epoxy-glass
PWB)." Since our PWB material acceptance with the
vendor is based on meeting dimension tolerances, we
used the 60 impedance range on all SPICE simula-
tions, thus ensuring that all acceptable PWB material
would work clectrically.

Table 2 shows the impedance range for a controlled
impedance PWB for the target impedance reported in

Table 1
Vendor Impedance Ranges Specifying
Dimensions Only

40 Yield 60 Yield
Mean target 71 ohms 71 ohms
impedance
Impedance 62 ohms to 57 ohms to
range 83 ohms 89 ohms

Table 2
Vendor Impedance Range for an Impedance
Tolerance of +/—10 Percent

+/-10 Specification Range

Mean target 71 ohms

Impedance

Impedance range 64 ohms to 78 ohms

Table 1. The difference in impedance range between
specifying dimensions and impedance is —7 ohms to
11 ohms. The simulations suggested that the range
differences have a minor impact on signal behavior.

The rarget impedance was based on nominal
dimensions and diclectric constant. The rtarget of
71 ohms was chosen to optimize routing density and
to keep the laver count down for most designs.
Another advantage was that keeping the minimum
impedance above 50 ohms would minimize loading.
The impedance range covers the full mechanical
dimensions and dielectric constant ranges. Properly
implemented, the PLLs would ctfectively climinate
local ctch delay module to module over the full
process range of the PWBs. The main challenge was
to adequately terminate without sacrificing skew
performance at the extreme process range (6o) of
the PWB material.

Termination

The designers used series termination on all clocks in
the system. Parallel terminators would have exceeded
the drive capability of the CDC586. Diode clamping
was not practical when so many copics of the clock
were required because of PWB surface area con-
straints. Normally, the optimal termination value is
one that provides critical damping for the case where
the driver’s impedance is the lowest and the ctch
impedance is the highest. Designers can then make
adjustments at the other extreme corner (high driver
impedance and low etch impedance) to avoid nonmo-
notonic behavior such as plarcaus. This generally
introduces slope delay uncertainty at the slow corner
(high driver impedance and low crch impedance),
which can be substantial. To minimize this cffect,
designers selected terminator values that allow over-
shoot and some bounce-away from the threshold
region at the extreme process corner. Overshoot can
reach the maximum specified alternating current (AC)
input of the receivers over the worst-case process
range. Some receivers have built-in diode clamping to
their power supply rails as a result of ESD circuits in
their input structures (ESD circuits are used for static
discharge protection). In these cases, the clock signal is
clamped, which in turn dampens bounce. The injec-
tion currents caused by clamping would be tested in
SPICE simulations to be sure that the parts were not

stressed. If the tests indicated stressed parts, designers
would adjust the terminator value accordingly.

Treeing

Treeing is a method of distributing clocks from a
single source driver to many receivers. This practice,
which is well known to memory designers, was used
on the AlphaServer 4100 memory modules, bus inter-
face logic, and primary distribution clocks on the
motherboard. The designers used two basic forms of
treeing: the balanced H tree and the shared output
tree. The balanced H tree is best suited for fixed loads
(receivers) of the same type (i.e., memories, trans-
ceivers, ete.). A single, series-terminated clock outpur
fecds a trunk line to a via and then branches to cach
load. Each branch is cqual in length. The total com-
pensated path includes the pre-terminator stub, the
main trunk, and the branch extending to the load.
Figure 4 illustrates the clock trecing topology. The
shared output tree was used where various module
configurations could alter clock loading. Specitically,
the distribution on the motherboard is restricted to
one PLL to keep the clock skew fow. Consequently,
some outputs necded to drive more than one slot.
A single output driver drove two terminators—one
for cach load. The low driver impedance isolated
reflections from perturbing a module when a module
slot was left open.

PLL Placement

Placement of the PLL on cach module is critical. Figure
5 is a simplified view of the primary distribution up to
and including the PLL on a module. The AlphaServer

RECEIVER RECEIVER
y]
R VIA BALANCED
W | H TREE
RECEIVER RECEIVER
PHASE-
LOCKED
Loop A MODULE
SHARED
R OUTPUT
mopuLe | TREE
FB R

KEY:

FB FEEDBACK LOOP INPUT FOR THE PHASE-LOCKED LOOP
R SERIES TERMINATING RESISTOR

Figure 4
Clock Trecing

Digital Technical Journal Vol.8 No.4 1996

43

4100 system has two types of module connectors:
a Metral connector (Futurebus+-style connector) is
used on the CPU modules and the 1/0 bridge module,
and an Extended Industry Standard Architecture
(EISA) connector is used on the memory modules.
Intrinsic delay on these connectors could differ sub-
stantially depending on pinning and the signal-ro-
return ratio in the applicadon. The Metral connector is
a right-angle, two-picce connector with four rows of
pins: rows A, B, C, and D. The row A pins are the
shortest, and the row D pins are the longest. The EISA
connector is an edge connector with two rows of pins
with minor length differences pin to pin on either side
of the connector. Designers had to balance the pinning
of these connectors for the clock circuits in such a way
that the module-to-module skew would not be
affected. The Metral connector was pinned to replicate
the loop inductance of the EISA connector.

Dispersion ctch is required on each module to con-
nect the PLL to the connector. This etch can have dif-
ferent impedance and velocity of propagation from
module to module as a result of PWB process range,
which translates into additional module-to-modulce
clock skew. Designers can deal with this problem in
WO Wavs.

First, adding the same dispersion length L3 (sce
Figure 5) to the compensation loop £, nulls this crror.
This becomes obvious if you look at the PLL’s basic
function. The insertion delay 7;4 from the clock-in pin
of the PLL to the input pin of the receiver is approxi-
mately Onsif £, = L,, or

Ta = (1,

For 1;, =

L)- 7,

+
7, (cqual ctch lengths), Ly=1..

Adding 7, to the compensation path vields

7 -

id = (1y

L) =, + 7).
For 7, i

+
7, (etch cqual lengths), iy = 0 ns,

where

7.y = the insertion delay from the connector
pin to the receiver input
7;, = theetch delay from the PLL output
to the receiver input
1, = theerch delay of the PLL
© compensation loop
7,, = thedispersion ctch delay connector

to the clock-in of the PLL.

One drawback to this method is that the etch lengths
could get fairly large, which would result in edge rate
degradation. AlphaServer 4100 designers did not use
this placement method on the current set of modules;
however, they will consider using it on new designs that
requirce a different location for the PLL.

The sccond way of dealing with the dispersion ctch
from the module connector to the clock-in pin of the
PLL is to make the dispersion ctch very short and to
take a skew penalty over the PWB process. Placement
studies on the various module designs suggest that
a 25-mm dispersion ctch would allow reasonable
placement of PLLs. The additional skew is just under
50 ps, based on a velocity of propagation range of
5.59 ps/mm to 7.36 ps/mm.

MOTHERBOARD
PRIMARY TYPICAL MODULE
DISTRIBUTION LOCAL DISTRIBUTION
DISPERSION R L
ETCH Ly IV
CLOCK IN :
FROM CPU 0 R :
B ———— ———————— N
. T0
CLOCK IN :
PHASE- \ PHASE- i RECEIVERS
LOCKED LOCKED :
LOOP CONNECTOR LOOP :
—W——
R
FB R FB R
— —»
COMPENSATION /
LOOPS Ly
KEY:
FB FEEDBACK LOOP INPUT FOR THE PHASE-LOCKED LOOP
R SERIES TERMINATING RESISTOR

Ly, Ly, ETCH LENGTHS
AND L,

Figure 5

Primary Distribution

44 Digiral Technical Journal Vol.8 No.4 1996

Compensation

Some modules have a wide variety of circuits recciving
clocks that, because of input loading, do not balance
well with the various treeing methods. Designers
used dummy capacitor loading to help balance the
treeing. This approach was particularly useful on
memory modules, which could be depopulated to
provide different options using the same etch. Surface-
mount pads were added to the etch such that if the
depopulated version were built, a capacitor could be
added to replicate the missing load on the tree, thus
keeping it in balance. The CPU modules have a wide
variety of clock needs, which results in two forms
of skew: (1) load-to-load skew at the module and
(2) control logic—to-CPU skew, for control logic
located on the motherboard. The local load-to-
load skew is acceptable because only one PLL is
used and the output-to-output skew is only 500 ps.
Motherboard-to-CPU control logic skew, though, is
critical because of timing constraints.

Dummy capacitor loading at each lightly loaded
receiver would have reduced the skew, but to compen-
sate for just one heavily loaded receiver would have
required many capacitors. PWB surface area and the
requirement of simplicity dictated the need for an
alternative. The solution was to keep the clock edges
as fast as possible (by adjusting the series terminators)
and to add a compensation capacitor at the input (the
feedback [FB]) of the PLL’s compensation loop. This
effectively reduced the skew from the slowest load on
the CPU to the control logic on the motherboard.
Figure 6 shows the disparity between light and heavy
loading from 7} to T,. Without feedback compensa-
tion, the PLL sclf-adjusts to the lightly loaded receiver.
This adjustment results in skew 7} to 7, from the
heavy load to the control logic on the motherboard.
A capacitor on the FB input of the PLL split the dif-
ference between 73 to 7; and 73 to 7; and minimized
the perceived skew.

Skew Target

Designers generated the worst-case module-to-module
clock skew specification tor the AlphaServer 4100
from vendor specifications, SPICE simulations, and
bench tests using the techniques discussed in this
paper. The worst-case skew goal is 2.2 ns and is sum-
marized in Table 3.

The reader will note that eight times the vendor’s
specitication may appear to be a rather conservative
specification. The use of this value was based on two
concerns: (1) the PLL was new at the time, and experi-
cnce suggested that the vendor’s specification was
aggressive; and (2) some level of padding was required
if the exception to the rules was needed. Actual system
testing bore out these concerns. The vendor had

LIGHTLY LOADED [\
RECEIVER

HEAVILY LOADED
RECEIVER _ {

COMPENSATION LOOP /\
FB INPUT (PLL) WITH I
NO CAPACITOR

COMPENSATION LOOP | 13
FB INPUT (PLL) WITH

CAPACITOR /

KEY:

T, LIGHTLY LOADED RECEIVER CLOCK EDGE TIME
(REFERENCE)

T, HEAVILY LOADED RECEIVER CLOCK EDGE TIME

Ts COMPENSATION LOOP FB INPUT EDGE TIME WITH
CAPACITOR

FB FEEDBACK LOOP INPUT FOR THE PHASE-LOCKED LOOP

Figure 6
Feedback Loop Compensation

to relax the jitter specification from 25 ps to 70 ps
RMS, and there were some difficultics getting good
load balance. The specification did not change, how-
ever. Reassessing the allocated bus settling time yields
the following:

Bus cycle 15.0 ns
Transmitting module (Tco) 5.1ns
Setup and hold time for the

receiving module 1.5 ns
Clock skew 22 ns
Time allocated for bus settling 6.2 ns

SPICE simulations for a fully loaded bus with the
worst possible driver receiver position yielded a bus
settling time of 5.7 ns. The relaxed skew of 2.2 ns
maximum was acceptable for the design.

Comparative Analysis

A comparison of clock distribution systems berween
two other platforms best summarizes the AlphaServer
4100 system. The AlphaServer 4100 has a price and
performance target berween those of the AlphaServer
2100 and the AlphaServer 8400 systems. Table 4 com-
pares the basic differences among thesc systems relat-
ing to clock distribution for a CPU module from cach
platform.

Both the AlphaServer 2100 and the AlphaServer
8400 systems have large custom ASICs for their mod-
ule’s bus interface. The AlphaServer 4100 and the
AlphaServer 8400 systems have bus termination; the
AlphaServer 2100 system does not. Allowing a bus to

Digital Technical Journal Vol.8 No.4 1996

45

46

Table 3
Worst-case Clock Skew

Stage Source

Skew Component

Motherboard

Inputs to modules
Module to module
Inputs to receivers
Inputs to receivers

Out-to-out skew
Load mismatch
PLL process
Load mismatch
PLL jitter

Total clock skew

500 ps (vendor specification)?
100 ps (simulation/bench test)
1,000 ps (vendor specification)?
200 ps (simulation/bench test)
400 ps (eight times the vendor specification)?

2,200 ps =2.2ns

Table 4
Clock Distribution Comparison of Three Platforms

AlphaServer 2100 System

AlphaServer 4100 System

AlphaServer 8400 System

Bus width 128 + ECC 128 + ECC 256 + ECC

Bus speed 24 ns 15ns 10 ns

Clock skew 1.5ns 2.2 ns (max.) 1.1 ns (max.)
Inputs requiring clocks 10 25 14

Clock drivers used 12 13 11

Number of clock phases 4 1 1

scttle naturally (with no termination), as in the case of Conclusions

the AlphaServer 2100 system, requires a tighter skew
budget from the clock system. The trade-oft'is higher
cost, power, and PWB area for lower bus speed.
Higher performance systems, such as the AlphaServer
8400 and AlphaServer 4100 systems, generally require
taster bus speeds with terminators. The AlphaServer
4100 has shorter bus stubbing (module transceiver to
connector dispersion etch) and slower bus speed than
the AlphaServer 8400, which allows larger skew (as
a percentage of the bus speed).

Table 5 is a comparison of board area needed and
cost for the clock system. Designers analyzed an entry-
level system consisting of one CPU module, one mem-
ory module, and one 1,/0 bridge or interface module.
The board area shows the space required by the active
components only (the digital phase-locked loops,
PLLs, drivers, etc.).

Both Tables 4 and 5 show that the clock system
design for the AlphaServer 4100 system requires only
one-third the space of cither the AlphaServer 2100
system or the AlphaServer 8400 system at a fraction of
the cost and distributes more copics of the clock.

Table 5
Board Utilization and Cost Comparison

An effective, low-cost, high-performance clock distri-

bution system can be designed using an oft-the-shelf

component as the basic building block. DIGITAL

AlphaServer 4100 system designers accomplished this

by optimizing the bus and devcloping simple tech-

niques structured in the form of design rules. These

rules are

= Use positive edges for critical clocking.

= Match delay through different connectors using
appropriate pinning,.

s Usc a fixed dispersion cteh length from the connec-
tor to the PLIL..

= Route and balance all clock nets on the same PWB
laver.

= Minimize adjacent-layer crossovers and maximize
spacings.

= Use minimum value terminators.

= Usc wree and loop compensation where nceded.

» Usc conservative local decoupling and a low-pass
filter on the PLL (analog power).

AlphaServer 2100 System

AlphaServer 4100 System

AlphaServer 8400 System

Board area used* 352.8 square centimeters
Normalized cost 1.00

111.4 square centimeters
0.46 4.40

371.3 square centimeters

*Note that these measurements do not include decoupling capacitors and terminators.

Digital Technical Journal Vol.8 No.4 1996

The worst-case lab measurement of clock skew
between any nwo modules in a fully configured system
was 1.1 ns, which is well within the 2.2 ns calculated
maximum skew.

Acknowledgments

Terry Skrypek and Bruce Alford assisted with the
prototyping and measurements. Cheryl Preston,
Andy Koning, Steve Coe, George Harris, and
Larry Derenne worked with the designers to
ensure compliance with the signal integrity rules.
Darrel Donaldson, Don Smelser, Glenn Herdeg, and
Dan Wisscll provided invaluable technical guidance.

Note and References

1. SPICE is a general-purpose circuit simulator program
developed by Lawrence Nagel and Ellis Cohen of the
Department of Electrical Enginecring and Computer
Sciences, University of California at Berkeley.

2. COC—Clock Distribution Circuits, Data Book
(Dallas, Tex.: Texas Instruments Incorporated, 1994).

3. Alpha 211064 Microprocessor Hardweare Reference
Manual (Mavnard, Mass.: Digital Equipment Corpora-
tion, Scprember 1994).

4. C. Guiles, Everything You Ever Wanted to Know
About Laminates. . . But Were Afraid 10 Ask, 4th ed.
(Maitland, Fla.: Arlon, Inc., January 1989).

Biography

Roger A. Dame

A principal signal integrity engineer in the Midrange
Servers group, Roger Dame is currently working on the
AlphaServer 4100 project. During the 10 years he has been
with this group, he has also contributed to the VAX 6000,
VAX 5800, VAX 7000, DEC 7000, and DEC 10000 proj-
ccts. In carlier work at DIGITAL, in the Industrial Products
group, he developed analog-to-digital process control sys-
rem interfaces. Roger joined DIGITAL in 1971, He holds
an AS.E.ET. degree from Springtield Technical Commu-
nitv College and a B.S.E.E.T. (summa cum laude) from
Central New England College. Roger is coinventor of the
lascr bus used in the DEC 7000 and DEC 10000 systems.

Digital Technical Journal

Vol. 8 No. 4

1996

47

48

Design and Implementation
of the AlphaServer 4100 CPU
and Memory Architecture

The DIGITAL AlphaServer 4100 system is Digital
Equipment Corporation’s newest four-processor
midrange server product. The server design is
based on the Alpha 21164 CPU, DIGITAL's latest
64-bit microprocessor, operating at speeds of

up to 400 megahertz and beyond. The memory
architecture was designed to interconnect up

to four Alpha 21164 CPU chips and up to four
64-bit PCl bus bridges (the AlphaServer 4100
supports up to two buses) to as much as 8 giga-
bytes of main memory. The performance goal
for the AlphaServer 4100 memory interconnect
was to deliver a four-multiprocessor server with
the lowest memory latency and highest mem-
ory bandwidth in the industry by the end of
June 1996. These goals were met by the time the
AlphaServer 4100 system was introduced in May
1996. The memory interconnect design enables
the server system to achieve a minimum mem-
ory latency of 120 nanoseconds and a maximum
memory bandwidth of 1 gigabyte per second by
using off-the-shelf data path and address com-
ponents and programmable logic between the
CPU and the main memory, which is based on
the new synchronous dynamic random-access
memory technology.

Digital Technical Journal Vol.§ No.4 1996

Glenn A. Herdeg

The DIGITAL AlphaScrver 4100 svstem is a symmet-
ric multiprocessing (SMP) midrange server that sup-
ports up to four Alpha 21164 microprocessors.
A single Alpha 21164 CPU chip may simultancously
1ssue multiple external accesses to main memory. The
AlphaScrver 4100 memory interconnect was designed
to maximize this multiple-issue teature of the Alpha
21164 CPU chip and to rake advantage of the perfor-
mance benefits of the new family of memorv chips
called synchronous dvnamic random-access memorics
(SDRAMs). To meert the best-in-industry latency and
bandwidrh performance goals, DIGITAL developed
a simple memory interconnect architecrure that com-
bines the existing Alpha 21164 CPU memory inter-
face with the industry-standard SDRAM interface.

Throughout this paper the term latency refers to the
time required to rerurn data from the memory chips to
the CPU chips—the lower the latency, the better the
pertormance. The AlphaScrver 4100 svstem achiceves
a minimum lateney of 120 nanoscconds (ns) from the
time the address appears at the pins of the Alpha 21164
CPU to the time the CPU internally receives the corre-
sponding data from any address in main memory. The
term bandwidth refers to the amount of data, i.e., the
number of bytes, transferred berween the memory
chips and the CPU chips per unit of time—the higher
the bandwideh, the berter the pertformance. The
AlphaServer 4100 delivers a maximum memory band-
width of 1 gigabvte per second (GB/s).

Betore introducing the DIGITAL AlphaServer 4100
product in May 1996, the development team con-
ducted an extensive performance comparison of
the top scrvers in the industry. 'The benchmark
tests showed that the AlphaScrver 4100 delivered the
lowest memory latency and the highest McCalpin
memory bandwidth of all the two- to four-processor
systems in the industry. A companion paper in
this issuc of the Journal, “AlphaScrver 4100 Per-
formance Characterization,” contains the comparative
information.!

This paper focuses on the architecture and design of
the three core modules that were developed concur-
rently to optimize the performance of the entire

memory architecture. These three modules—the
motherboard, the synchronous memory module, and
the no-cxternal-cache processor module—are shown
n Figure 1.

Motherboard

The motherboard contains connectors tor up to four
processor modules, up to tour memory module pairs,
up to two /O interface modules (four peripheral
component interconnect [PCI] bus bridge chips
total), memory address multiplexers /drivers, and
logic for memory control and arbitration.” All con-
trol logic on the motherboard i1s implemented using
simple 5-ns 28-pin programmable array logic (PAL)
devices and more complex 90-megahertz (MHz)
44-pin programmable logic devices (PLDs) clocked at
66 MHz. Several motherboards have been produced
to support various numbers of processor modules,
memory modules, and 1/0 interface modules. The
AlphaServer 4100 supports onc to four processor
modules, one to four memory module pairs (8-GB
maximum memory), and onc [/O interface module
{(up to two PCI buses).*

Synchronous Memory Module

The synchronous memory modules are custom-
designed, 72-bit-wide plug-in cards installed in
pairs to cover the full width of the 144-bit memory
data bus. Synchronous memory modules that provide
32 megabytes (MB) to 256 MB per pair were designed
using 16-megabit (Mb) SDRAM chips. These
memory modules contain nine, cighteen, thirty-six,
or seventy-two 100-MHz SDRAM chips clocked at
66 MHz, four 18-bit clocked data transceivers, address
fan-out bufters, and control provided by 5-ns 28-pin
PALs. To increase the maximum amount of memory
in the system, a tamily of plug-in compatible memory
modules was designed, providing up to 2 GB per pair
using 064-Mb extended data out dynamic random-
access memory (EDO DRAM) chips. These modules
contain 72 or 144 EDO DRAM chips controlled by
nwo custom application-specific integrated circuits
(ASICs) providing data multiplexing and control, four
18-bit clocked data transceivers, and address fan-out
bufters. Consequently, the AlphaScerver 4100 memory
architecture provides main memory capacitics of
32 MB to 8 GB with a minimum latency of 120 ns to
any address. This paper concentrates on the imple-
mentation of the synchronous memory modules,
although the EDO memory modules are functionally
compatible. The reconfigurability description later in
this paper provides more details of the implementation
of the EDO memory modulces.

No-External-Cache Processor Module

The no-external-cache processor module is a plug-in
card with a 144-bit memory interface that contains
one Alpha 21164 CPU chip, cight 18-bit clocked dara
transceivers, four 12-bit bidirectional address latches,
and control provided by 5-ns 28-pin PALs and
90-MHz 44-pin PLDs clocked at 66 MHz. The Alpha
21164 CPU chip is programmed to operate at a syn-
chronous memory interface cycle time of 66 MHz
(15 ns) to match the speed of the SDRAM chips on the
memory modules. Although there are no external
cache random-access memory (RAM) chips on the
module, the Alpha 21164 itself contains two levels of
on-chip caches: a primary 8-kilobvte (KB) data cache
and a primary 8-KB instruction cache, and a second-
level 96-KB three-way set-associative data and instruc-
tion cache. The no-external-cache processor module
was designed to take advantage of the multiple-issue
feature of the Alpha 21164 CPU. By keeping the
latency to main memory low and by issuing multiple
references from the Alpha 21164 CPU to main mem-
ory at the same time to increase memory bandwidth,
the performance of many applications actually exceeds
the performance of a processor module with a third-
level external cache." Numecrous applications perform
better, however, with a large on-board cache. For this
reason, the AlphaScrver 4100 ofters several variants of
plug-in compauble processor modules containing a
2-MB, 4-MB, or greater module-level cache. The paper
“The AlphaScrver 4100 Cached Processor Module
Architecture and Design,” which appears in this issuc
of the Journal, contains more related information.*

The three components of the core module set were
designed concurrently to address five issues:

. Simple design
. Quick design time

1

2

3. Low memory latency

4. High memory bandwidth
5

. Reconfigurability
Simple Design

The Alpha 21164 CPU chip is based on a reduced
instruction sct computing { RISC) architecture, which
has a small, simple sct of instructions operating as fast
as possible. AlphaScrver 4100 designers set the same
goal of simplicity for the rest of the server system.

The AlphaServer 4100 interconnect berween the
CPU and main memory was optimized for the Alpha
21164 chip and the SDRAM chip. To keep the design
simple, only oft-the-shelf data path and address com-
ponents and reprogrammable control logic devices
were placed berween the Alpha 21164 and SDRAM

Digital Technical Journal Vol.8 No.4 1996

49

MOTHERBOARD

MEMORY PAIR 4 - 32 MB TO 2 GB
(ALPHASERVER 4100 ONLY)

MEMORY PAIR 3-32 MB TO 2 GB
(ALPHASERVER 4100 ONLY)

MEMORY PAIR 2 - 32 MB TO 2 GB

MEMORY PAIR 1 - 32 MB TO 2 GB
<AL Rop |

DA ADORESS |
B | k DRAM COLUMN ADDRESS

v

r DRAM ROW ADDRESS 4

T
CONTROL | MEMORY CONTROL !

I N N --+-1 AND CENTRAL -——
| ARBITRATION)

ALPHA | CMD/ADDR :
21164 LATCH :
cPU DATA :

FLOP :
L] L= |

PROCESSOR CARD 2

21164

CPU
DATA
FLOP
L foP |

ALPHA | CMD/ADDR |—|LATCH
L=

PROCESSOR CARD 3 (ALPHASERVER 4100 ONLY) : 42

Lm- - B : 144
ALPHA | CMD/ADDR :

[Laten |
LATCH
21164 C

e DATA FLOP
L |

PROCESSOR CARD 4 (ALPHASERVER 4100 ONLY)

DATA BUS

ALPHA CMD/ADDR

21164 LATCH

CcPU
DATA [
FLOP
L= |

COMMAND/ADDRESS| BUS

11O MODULE 1 ——————.....b .ot :

P LOTS 1 T
CISLOTS1TO 4 PCIBRIDGE 1

PCISLOTS5TO 8 PCI BRIDGE 2

/O MODULE 2 (ALPHASERVER :
40000ONLY) 1 oofeeinnns :

T T
PCISLOTS 9TO 12 PCI BRIDGE 3

PCISLOTS 1370 16 PCI BRIDGE 4

v A4

Note that the AlphaServer 4000 system contains the same CPU-to-memory interface as the AlphaServer 4100
but supports half the number of processors and memory modules and twice the number of PCI bridges. The
AlphaServer 4000 motherboard was designed at the same time as the AlphaServer 4100 motherboard but was
not produced until after the AlphaServer 4100 motherboard was available.

Figure 1
AlphaServer 4100 Memory Interconnect

50 Digital Technical Journal Vol.8 No.4 1996

chips. The designers removed cxcess logic and hard-
ware featurcs, minimized the “glue” logic between the
CPU chip and main memory, reduced memory laten-
cies as much as possible, and used custom ASICs only
when necessary.

Data Path between the CPU and Memory

The external interface of the Alpha 21164 chip pro-
vides 128 bits of data plus 16 bits of error-correcting
code (ECC), thus enabling single-bit error correction
and multiple-bit error detection over the full width of
the data path, which is shown in Figure 2. These 144
signals are connected to cight 18-bit bidirectional
transceivers on the processor module. As illustrated
in Figure 1, the motherboard connects up to four
processor modules and up to four memory mod-
ule pairs. Each memory module contains 72 bits of
information; therefore, a pair of memory modules
1s required to provide the necessary 144 data sig-
nals. Each pair of memory modules contains eight
additional 18-bit bidirectional transceivers that are
connected directly to a number of SDRAM chips.
The data transceiver used on the processor module
and on the memory module is the 56-pin Philips
ALVC162601 in a 14-millimeter (mm)-long package
with 0.5-mm pitch pins. Error detection and correc-
tion using the 16 ECC bits is performed inside the
Alpha 21164 chip on all read transactions. Data path
errors are checked by the PCI bridge chips on all trans-
actions, including read and write transactions between
each CPU and memory, and any errors are reported
to the operating system.

The data path is clocked at each stage by a copy of
a single-phase clock. The clock 1s provided by a low-
skew clock distribution system built from the 52-pin
CDC586 phase-locked loop clock driver.* The clock
cycle is controlled by an oscillator on the processor
module and runs as fast as 66 MHz (15-ns minimum
cycle time) while delivering less than a 2-ns worst-case
skew (i.e., the difterence in the rising edge of the clock)
between any two components, including the Alpha
21164, SDRAMSs, and any transceiver on any module.

Read transaction data is returned from the pins
of the SDRAMs to the pins of the Alpha 21164 in
two clock cycles (30 ns), as shown in Table 1. The no-
external-cache processor has no module-level data
cache, so data is clocked directly into the Alpha 21164
from the transceiver. In Table 1, read data that corre-
sponds to transactions Rdl and Rd2 is returned from
the same set of SDRAM chips in consecutive cycles.
Read data that corresponds to transaction Rd3 is
returned from a different set of SDRAM chips with a
one-cycle gap to allow the data path drivers from trans-
action Rd2 to be turned oft before the data path drivers
for transaction Rd3 can be turned on. This process pre-
vents tri-state overlap. As a result, consecutive read
transactions have address bus commands either four or
five cycles apart. Note that the Alpha 21164 data, com-
mand, and address signals are shown for only one
processor (CPU1), which issues transaction Rd1. The
other transactions are issued by other processors.

Write transaction data is also transferred from the
pins of the Alpha 21164 CPU to the pins of the
SDRAMs in two clock cycles (see Table 2). Write data

MOTHERBOARD
e -

_________________________] WY

I NO-EXTERNAL-CACHE PROCESSOR ! | | SYNCHRONOUS MEMORY !

| MODULE (1 TO 4) : #: ! (17O 4 PAIRS) !

' 1 v |

E ALPHA : DATA AND ECC : i ﬁDTngS |

21164 |~ . L

i | cru 144 FLoP RGP 72 Frop 72 | SETSPER [|

) ! L PAIR) !

| . b PaN .

| | | 1

e e e e 1 b e e e e e e e e)
Figure 2
Darta Path between the CPU and Memory
Table 1
CPU Read Memory Data Timing
Cycle (15 ns) 0 1123 (4|5 |6 |7 (8|9 (1011 [12[13|14|15|16 |17
Address Bus Command Rd1 Rd2 Rd3 Rd4
SDRAM Data 1 T 1111 2 (22]2 3131313
Motherboard Data 111 1 2 122 31313
CPU1: Alpha 21164 Data 1T (1|1
CPU1: Alpha 21164 Command | Rd1
CPU1: Alpha 21164 Address Addr1

Digital Technical Journal Vol.8 No.4 1996

51

N

Table 2
CPU Write Memory Data Timing

Cycle (15 ns) 1 2| 3 4 5 6 |7 8 9 10 (11 (12 (13 (14| 15 |16 |17 |18
Address Bus Command Wri1 Wr2 Wr3 Wr4

SDRAM Data 1 1 1 1 2 2 2 2 3 3 3 3 4
Motherboard Data 111 1 1 2 2 |2 2 3 3 3 4 |4
Alpha 21164 Data 1 111 1 2|2 2 2 3 3 3 3 4 |4 |4

always incurs a one-cycle gap berween transactions.
As a result, all but the first two consecutive write trans-
actions have address bus commands five cycles apart.

Since the AlphaServer 4100 interconnect between
the CPU and mam memory was optimized for the
SDRAM memory chip, the transaction timing, as
shown in Tables 1 and 2, was designed to provide data
in the correct cycles for the SDRAMs without the need
for custom ASICs to bufter the data between the
motherboard and SDRAM chips. This design works
well for an infinite strecam of all reads or all writes
because of the SDRAM pipclined interface; however,
when a write transaction immediately follows a read
rransaction, a gap or “bubble” must be inserted in the
data stream to account for the fact that read dara is
returned later in the transaction than write dara. As a
result, everv write transaction that immediatelv tollows
a read transaction produces a five-cycle gap in the
command pipeline. Table 3 shows the read/write
transaction timing,.

Address Path between the CPU and Memory

The Alpha 21164 provides 36 address signals (byte
address <39:4>, i.c., bits 4 through 39), 5 command
bits, and | bit of parity protection. These 42 signals are
connected directly to tour 12-bit bidirectional larched
transceivers on the processor module, as illustrated in

Figure 3. The motherboard latches the full address
and drives first the row and then the column portion
of the address to the memory modules. Each synch-
ronous memory module buffers the row/column
address and fans out a copy to cach of the SDRAM
chips using four 24-bit buffers. Similar to traditional
dynamic random-access memory (DRAM) chips,
SDRAM chips usc the row address on their pins to
access the page in their memory arravs and rhe column
address that appears later on the same pins to read or
write the desired location within the page. Conse-
quently, there 1s no need to provide the entire 36-bit-
wide address to the memory modules. All address
components used for transceivers, latches, multi-
plexers, and drivers on the no-external-cache proces-
sor module, the motherboard, and the synchronous
memory module consist of the 56-pin ALVC16260 or
the ALVC162260, which is the same part with internal
output resistors. Address parity s checked by the PCI
bridge chips on all transactions, and any errors arc
reported to the operating systen.

The address path uses flow-through latches tor the
first half ot the address transter (i.c., the row address)
from the Alpha 21164 to the SDRAMs. When the
address appears at the pins of the Alpha 21164,
the latched transceiver on the processor module, the
multiplexed row address driver on the motherboard,

Table 3
CPU Read/Write Memory Data Timing
Cycle (15 ns) 1123|4567 [8]9 [10]11{12 13|14 15|16 |17 |18
Address Bus Command Rd1 Wr2 Wr3
SDRAM Data 1 111 1 2 |22 |2 3 |13
Motherboard Data 11 111 2 2 3 3
MOTHERBOARD

| NO-EXTERNAL-CACHE PROCESSOR | | SYNCHRONOUS MEMORY !

) MODULE (1 TO 4)) ROW | (1TO 4 PAIRS) |

|) | |

1 CMD/ ! | SDRAM [

| SDRAMs !

: é\ﬁng ADDR o | ADDRESS LATCH ! ADDRESS REAY :

| <+> t

! CcPU 42 ! MUX 121 12 EEJ:(S) PER| 1

X : coL : BUFFER :

S ; T i
Figure 3
Address Path between the CPU and Memory
Digital Technical Journal Vol.§ No.4 1996

and the fan-out buffers on the memory modules are all
open and turned on, enabling the address information
to propagate directly from the Alpha 21164 pins to
the SDRAM pins in two cycles. The motherboard then
switches the multiplexer and drives the column
address to the memory modules to complete the
transaction (see Table 4). Back-to-back memory trans-
actions are pipelined to deliver a new address to the
SDRAM chips every four cycles. The full memory
address is driven to the motherboard in two cycles
(cycles 0-1, 4-5, 8-9), whereas additional informa-
tion about the corresponding transaction (which is
used only by the processor and the 1/0 modules)
follows in a third cycle (cycles 2, 6, 10). To avoid tri-
state overlap, the fourth cycle is allocated as a dead
cycle, which allows the address drivers of the current
transaction to be turned off before the address drivers
for the next transaction can be turned on (cycles 3, 7,
11). These four cycles constitute the address transter
that is repeated every four or five cycles for consecutive
transactions. Note that the one-cycle gap inserted
between transactions Rd3 and Rd4 tor reasons indi-
cated carlier in the read data timing description causes
the row address for transaction Rd4 to appear at the
pins of the SDRAMs for three cycles instead of two.

Control Path between the CPU and Memory

The Alpha 21164 provides five command bits (tour
Alpha 21164 CMD signals plus the Alpha 21164
Victim_Pending signal) that indicate the operation
being requested by the Alpha 21164 external inter-
face.® These five command bits are included in the 42
command /address (CA) signals indicated in Figure 3

and arc driven directly and unmoditied through the
latched address transceivers on the processor module
to become the motherboard command /address. Since
the AlphaServer 4100 interconnect between the CPU
and main memory was optimized for the Alpha 21164
CPU chip, the Alpha 21164 external CMD signals map
directly into the 6-bit encoding of the memory inter-
connect command used on the motherboard, thus
avoiding the need for custom ASICs to manipulate the
commands between the CPU and motherboard.
Prudently chosen encodings of the Alpha 21164
external CMD signals resulted in only two command
bits (to determine a read or a write transaction) and
one address bit (to determine the memory bank)
being used by a 5-ns PAL on the processor module to
directly assert a Request signal to the motherboard to
use the memory interconnect. Figure 4 shows the
control path between the CPU and memory. If the
central arbiter is ready to allow a new transaction by

the processor module asserting a Request signal (i.c.,if
o

the memory interconnect is not in usc), then a 5-ns
PAL on the motherboard asserts the control signal
Row_CS to each of the memory modules in the tol-
lowing cycle. At the same time, another 5-ns PAL on
the motherboard decodes 7 bits of the address and
drives the Scl<1:0> signal to all memory modules to
indicate which of the four memory module pairs is
being selected by the transaction. Each synchronous
memory module uses another 5-ns PAL to immedi-
ately send the corresponding chip select (CS) signal to
the requested SDRAM chips on one of the CS<3:0>

signals when the Row_CS control signal is asserted if

selected by the value encoded on Sel<1:0>, as shown

in Figure 4.

Table 4
CPU Read Memory Address Timing
Cycle (15 ns) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |16
Address Bus Command Rd1 Rd2 Rd3 Rd4
SDRAM Address Row Addr1| Col Addr1 |Row Addr2 | Col Addr2 |Row Addr3| Col Addr3 Row Addr4 | Col Addr4
Motherboard Address Mem Addr1|Info1 Mem Addr2 |Info2 Mem Addr3|Info3 Mem Addr4 |Info4
Alpha 21164 Address Addr1 Addr2 Addr3 Addrd Addr5
MOTHERBOARD

Rt oo [AODRESS | s " Sicmonous ewomy 1

I NO-EXTERNAL-CACHE PROCESSOR 'ﬁ;» y I t

| MODULE (170 4 : - PAL —‘ | (17O 4 PAIRS) |

| ! SEL<1: !

| CMD/ ; <10 Cs<30- | SDRAMs | i

! ALPHA ADDR | REQUEST ! 5-NS ' (1TO 4 '

! 21164 5-NS . ! PAL 7 SETSPER | |

| CPU 3 PAL ! 5-NS ROW_CS | PAIR) [

! | PAL [!

. AN ! : |

L _________________________ 1 b e e e e - J
Figure 4
Control Path between the CPU and Memory

Digital Technical Journal Vol.8 No.4 1996

53

54

Table 5 shows the control signals between the
processor modules, the memory modules, and the
central arbiter on the motherboard for multiple
processor modules issuing single read rtransactions.
The central arbiter receives one or more Request< >
signals from the processor modules and asserts a
unique Grant<e> signal to the processor module that
currently owns the bus. The arbiter then drives a copy
of'the CA signal to every processor module along with
the identical Row_CS signal to every memory module
to mark cycle 1 of a new transaction. Note that the
cycle counter begins at cycle 1 with cach new
CA/Row_CS assertion and may stall for one or more
cycles when gaps appear on the memory interconnect.
Two transactions may be pipelined at the same time.
For simplicity of implementation in programmable
logic devices, the cyele counter of cach transaction is
always exactly four cycles from the other.

Table 6 shows a single processor module issuing
two consccutive read transactions (dual-issuc) fol-
lowed by a third read transaction at a later time.
Normally, the node issuing the transaction on the bus
deasserts the Request signal in cycle 2. It a node con-
tinucs to assert the Request signal, the central arbiter
continues to assert the Grant signal to that node to
allow guaranteed back-to-back transactions to oceur.
Note that the first CA cycle occurs three cyeles after
the assertion of the Request signal because of the delay
within the central arbiter to switch the Grant signal

berween processors. The third CA cvele occurs only
one cvcle after the node asserts the Request signal,
however, because of bus parking. Bus parking is an
arbitration ftearure that causes the central arbiter to
assert the Grant signal to the last node to use the bus
when the bus is idle (following cvcle 7 of transaction
Rd2). Consequently, it the same processor wishes to
use the bus again, the assertion of CA and Row_CS
signals occurs two cycles carlier than it would without
the bus parking feature.

Data Transfers between Two CPU Chips
(Dirty Read Data)
The Alpha 21164 CPU chips contain internal write-
back caches. When a CPU writes to a block of data, the
modificd data is held locally in the write-back cache
until it is written back to main memory at a Jater time.
The moditied (dirty) copy of the block of data must
be rerurned in place of the unmodified (stale) copy
from main memory when another CPU issucs a read
transaction on the memory interconnect. The mem-
ory modules return the stale data at the normal time
on the memory interconnect, and the dirty data is
returned by the processor module containing, the
moditied copy in the cveles that follow. The processor
module issuing the read transaction ignores the stale
data from memory.

Therefore, to maintain cache coherency between
the write-back caches contained in multiple Alpha

Table 5

Multiple CPU Read Memory Control Timing

Cycle Counter 1 2 3 4 5 6 7 - 1 2 |13 |3 4 5 6 |7
(15-ns cycle) 1 2 3 4 5 6 | (7) | 7 - 1 2 |3
Request<n> 1234 1234] 24 24 24 24 | 3 3 3 3 | 4 4 4 4

Grant<n> 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 4
CA, Row_CS (New transaction) LX LX LX L { X
Address/Command Bus Addr/Rd1 |Info1 Addr/Rd2 |Info2 Addr/Rd3 |Info3 . Addr/Rd4 |Infod
SDRAM CMD (RAS,CAS,WE) ACT1 Read 1 ACT 2 Read 2 ACT 3 Read 3 ACT 4 Read 4
SDRAM CS | x | X | X | x | X I x [x X
Table 6

Single CPU Read Memory Control Timing

Cycle Counter 1 2 31|14 5 6 7 |- 1 2
(15-ns cycle) 1 2 3 4 5 6 7 -

Request<n> 1 1 1 1 1 1 1 1 T 1
Grant<n> 2 21 1 o1 11 1 11 1 1
CA, Row CS (New transaction) L l X) r X | X _)
Address/Command Bus | Addr/Rd1 |Info1 Addr/Rd2 (Info2 Addr/Rd3 Inf03_
CPUT: Alpha 21164 Data [] | 1 11 | 1] |2 |2 2]2 7
Digial Technical Journal Vol.8 No.4 1996

21164 CPU chips, cach read transaction that appears
on the memory intecrconnect causes a cache probe

(snoop) to occur at all other CPU chips to determine if

a modified (dirty) copy of the requested data is found
in one of the internal caches of another Alpha 21164
CPU chip. Ifit s, then the appropriate processor mod-
ule asserts the signal Dirty_Enable< x> for a minimum
of five cycles to allow the memory module to finish
driving the old data. The processor module deasserts
the signal when the dirty data has been fetched from
onc of the internal caches and is ready to be driven
onto the motherboard data bus. Table 7 shows read
data corresponding to transaction Rdl being returned
from CPU2 to CPUI five cycles later than the data
from memory, which is ignored by CPUL. Note the
one-cycle gap in cvcles 10 and 15 to avoid tri-state
overlap between the memory module and processor
module data path drivers.

As discussed carlier in this section, the AlphaServer
4100 system implements memory address decoding
and memory control without using custom ASICs
on the motherboard, synchronous memory, or no-
external-cache processor modules. Using PALs allows
the address decode function and the fan-out buffering
to the large number of SDRAMs to be performed at
the same time, thus reducing the component count
and the access time to main memory. All the necessary
glue logic between the Alpha 21164 CPU and the
SDRAMs, including the central arbiter on the mother-
board, was implemented using 5-ns 28-pin program-
mable PALs or 90-MHz 44-pin ispLSI 1016 in-circuit
reprogrammable PLDs produced by Lattice Semicon-
ductor. These devices can be reprogrammed directly
on the module using the parallel port of a laptop per-
sonal computer. Each no-external-cache processor
module uses five PALs and four PLDs; the mother-

Table 7
Dirty Read Data Timing

board (arbiter and memory control) uses eight PALs
and three PLDs; and each synchronous memory mod-
ule uses three PALs.

As shown in Table 1, the minimum memory read
latency (read dara access time) is eight cycles (120 ns)
from the time a new command and address arrive at
the pins of the Alpha 21164 chip to the time the first
data arrives back at the pins. The SDRAMs are pro-
grammed for a burst of four data cycles, so data is
returned in four consecutive 15-ns cycles. Two trans-
actions at a time are interleaved on the memory inter-
connect (one to cach of the two memory banks),
which allows data to be continuously driven in every
bus cycle. This results in the maximum memory read
bandwidth of 1 GB/s.

Trade-offs Made to Reduce Complexity

The Alpha 21164 external interface contains many
commands required exclusively to support an external
cache. By not including a module-level cache on the
no-external-cache processor module, only Read,
Write, and Fetch commands are generated by the
Alpha 21164 external interface; the Lock, MB,
SetDirty, WriteBlockLock, BCacheVictim, and
ReadMissModSTC commands are not used.*” This
design allows the logic on the processor module that is
asserting the Request signal to the central arbiter to be
implemented simply in a small 28-pin PAL because
only two of the Alpha 21164 CMD signals arc
required to encode a Read or a Write command.
Similarly, allowing a maximum of two memory banks
in the system, independent of the number ot memory
modules installed, enables the Request logic to the
central arbiter to be implemented in the 28-pin PAL,
since only one address bit (byte address <6>) is
required to determine the memory bank.

Cycle (15 ns) 0 1 2 3 4 5

Address Bus Command Rd1 Rd2

Rd3

SDRAM CS X X X

SDRAM CMD (RAS,CAS,WE) ACT1 Read1 ACT2

ACT3

SDRAM Data 1

Motherboard Data

Dirty1 Dirty? 2 | 2

CPU1: Alpha 21164 Command | Rd1 Rd3

Snp2

Rd5

CPU1: Alpha 21164 Address Addr1 Addr3

Addr2

Addr5

CPU1: Alpha 21164 Response

Miss2

CPU1: Alpha 21164 Data

(1) Dirty [Dirty1 |Dirty? |Dirty1

CPU2: Alpha 21164 Command Rd2 |Snp1 Rd4

Snp3

CPU2: Alpha 21164 Address Addr2 |Addr Addrd

IAddr3

CPU2: Alpha 21164 Response Dirty!

CPU2: Alpha 21164 Data

Dirty1|Dirty1 |Dirty1 |Dirty1 2

Dirty_Enable<n>

Dirty

Dirty Dirty Dirty Dirty

Digital Technical Journal Vol.8 No.4 1996

55

To decode memory addresses in 28-pin PALs, the
AlphaServer 4100 system uses the concept of memory
holes. The memory interconneer architecture and con-
sole code support seven difterent sizes of memory
modules and up to four pairs of memory modules per
system for a total system memory capacity of 32 MB to
8 GB. Any mix of memory module pairs is supported as
long as the largest memory pair is placed in the lowest-
numbcered memory slot. The physical memory address
range for each of the tour memory slots is assigned as
it all four memory modu
Conscquently, if two additional memoryv pairs that are
smaller than the pair in the lowest-numbered slot

¢ pairs are the same size.

are installed in the upper memory slots, there will be a
gap or “hole” in the physical memory space between
the two smaller memory pairs (sce Table 8). Rather
than require each memory module to compare the full
memory address to a base address and size register to

determine ifit should respond to the memory transac-
tion, the 28-pin PAL driving Scl<1:0> on the mother-
board (sce Figure 4) uscs the seven address birs
Addr<32:26> and the size of the memoryv module in
the lowest-numbered slot to encode the memory slot
number of the selected memory module pair. Console
code detects any memory holes at power-up and tells
the operating systems that these are unusable physical
memory addresses.

Another simplification that the AlphaScrver 4100
system uses is to remove 1/ space registers from the
data path of the processor and memory modules.
Because there are no custom ASICs on these modules,
reading and writing control registers would have
required additional data path components. Since all
the error checking is performed by either the 21164
CPU chip or the PCI bridge chips and since there are
no address decoding control registers required on the
memory modules, there was no need for more than
a few bits of control information to be accessed by
software on the processor or memory modules. The
[2C bus (slow scrial bus) alrcady present in che 1/0
subsystem was used for transferring this small amount
of information.

Furthermore, in the process of removing the 1/0
space data path from the motherboard and processor
modules, the firmware (i.c., the console code, Alpha

Table 8
Memory Hole Example

21164 PAL code, and diagnostic sofrware), which is
often placed in read-only memorics (ROMs) on the
processor module or motherboard, was moved to the
1/0 subsystem. Only a small 8-KB single-bit scrial
ROM (SROM) was placed on cach processor modulce
thar would initialize the Alpha 21164 chip on power-
up and instruct the Alpha 21164 to access the rest of
the firmware code from the 1/0 subsystem.

Quick Design Time

To provide stable CPU and memory hardware for 1,/0
subsystem hardware debug and operating system soft-
ware debug and thus allow the DIGITAL AlphaServer
4100 to be introduced on schedule in May 1996, the
core module set was designed and powered on in less
than six months. This primary goal of the AlphaServer
4100 project was achieved by keeping the design team
small, by using only programmable logic and existing
dara path components, and by keeping the amount of
documentation of design intertaces to a minimum.

The design team for the motherboard, no-external-
cache processor module, and synchronous memory
module consisted of onc design engineer;, onc
schematic /layout assistant, once signal integrity engi-
neer, and two simulation engineers. The team also
cnlisted the help of memibers of the other AlphaServer
4100 design teams.

The architecture and actual final logic design of the
core module set were developed at the same time. By
using programmable logic and ott-the-shelf address
and dara path components, the logic was written in
ABL code (a language used to deseribe the logic func-
tions of programmable devices) and compiled imme-
diately into the PALs and PLDs while the architecture
was being specified. If the desired functionality did not
fit into the programmable devices, the architecture
was modified until the logic did fir. All three modules
were designed by the same engineer at the same time,
so there was no need for interface specitications to be
written for each module. Furthermore, modifications
and cnhancements could be made in parallel to each
design to optimize performance and reduce complex-
itv across all three modules.

Memory Slot 1

2-GB Module Pair

000000000 — 07FFFFFFF

Memory Slot 2

2-GB Module Pair

080000000 — OFFFFFFFF

1-GB Module Pair

100000000 - 13FFFFFFF

Memory Slot 3
Memory Hole

140000000 — 17FFFFFFF

Memory Slot 4

1-GB Module Pair

180000000 — 1BFFFFFFF

Unused Memory

1C0000000 — 1FFFFFFFF

Digital Technical Journal Vol.8 No.4 1996

Because the design did not incorporate any custom
ASICs, the core system was powered on as soon as the
modules were built. Any last-minute logic changes
required to fix problems identified by simulation
could be made directly to the reprogrammable logic
devices installed on the modules in the laboratory. In
particular, the reset and power sequencing logic on the
motherboard was not even simulated before power-on
and was developed directly on actual hardware.

Since the /0 subsystem was not available when the
core module set was first powered on, the software that
ran on the core hardware was loaded from the serial
port of a laptop personal computer and through the
Alpha 21164 serial port, and then written directly into
main memory. Diagnostic programs that had been
developed for simulation were loaded into the memory
of actual hardware and run to test a four-processor, fully
loaded memory configuration. This testing cnabled
signal integrity fixes to be made on the hardware at full
speed before the 1/0 subsystem was available. When
the 1/0 subsystem was powered on, the core module
set was operating bug free at tull speed, allowing the
AlphaServer 4100 to ship in volume six months later.

As mentioned in the section Simple Design, the
central arbiter logic on the motherboard was imple-
mented in programmable logic. Consequently, by
quickly changing to the reprogrammable logic on the
motherboard instead of performing a lengthy redesign
of a custom ASIC, designers were able to avoid several
Jogic design bugs that were found later in the custom
ASICs of other AlphaScrver 4100 processor and mem-
ory modules.

Low Memory Latency

Minimizing the access time of data being returned to
the CPU on a read transaction was a major design goal
for the core module set. The core module set design was
optimized to deliver the Addr and CS signals to the
SDRAMs in two cycles (30 ns) from the pins of
the Alpha 21164 CPU and to return the data from the
SDRAMs to the Alpha 21164 pins in another two cycles
(30 ns). With the SDRAMs operating at a two-cycle
internal row access and a two-cycle internal column
access to the first data (60 ns total internal SDRAM
access time), the main memory latency is 120 ns.

The low latency was accomplished in four ways:
L. By removing custom ASICs and error checking

from the data path between the pins of the Alpha

21164 CPU chip and main memory

2. By combining the SDRAM row/column address
multiplexer with address fan-out buffering on the
motherboard

3. By simplitying the memory address decode and
memory interconnect request logic

4. By using bus parking

Many multiprocessor servers sharc a common
command /address bus by issuing a request to use the
bus in one cycle, by either waiting for a grant to be
returned from a central arbiter or pertorming local arbi-
tration in the next cycle, and by driving the command/
address on the bus in the cycle that follows. This
sequence occurs for all transactions, even when the
memory bus is not being used by other nodes. The
AlphaServer 4100 memory interconnect implements
bus parking, which allows a module to turn on its
address drivers even though it is not currently using
the bus. If the Alpha 21164 on that module initiates a
new transaction, the command /address flows directly
to memory in two less cycles than it would take to per-
form a costly arbitration sequence. Transaction Rd3 in
Table 6 shows an example of the ctfects of bus parking,.

High Memory Bandwidth

One of the most important features of the SDRAM
chip is that a single chip can provide or consume data
in every cycle for long burst lengths. The AlphaServer
4100 operates the SDRAMs with a burst length of four
cycles for both reads and writes. Each SDRAM chip
contains two banks dctermined by Addr<6>, which
sclects consecutive memory blocks. If accesses are
made to alternating banks, then a single SDRAM can
continuously drive rcad data in every cycle. The arbi-
tration of the AlphaServer 4100 memory interconnect
supports only two memory banks, so the smallest
memory module, which consists of one set of
SDRAMs, can provide the same 1-GB/s maximum
read bandwidth as a fully populated memory configu-
ration, i.c., a system configured with the minimum
amount of memory can perform as well as a fully con-
figured system.

To increase the single-processor memory bandwidth,
the arbitration allows two simultaneous read trans-
actions to be issued from a single processor module. As
long as the arbitration memory bank restrictions and
arbitration fairness restrictions are obeyed, it is possible
to issue back-to-back read transactions to memory from
asingle CPU with read data being returned to the Alpha
21164 CPU in eight consceutive cycles instead of the
usual four (see Tables 1 and 6). This dual-issue feature
and the other low memory latency and high memory
bandwidth features of the AlphaServer 4100 architec-
ture enabled the AlphaServer 4100 system to meet the
best-in-industry performance goals tor McCalpin mem-
ory bandwidth.'

As discussed in the section Simple Design and illus-
rrated in Figure 3, to avoid tri-state overlap, whenever
read data is returned by a different set of SDRAMs
(on the same memory module or on a different mem-
ory module), a dead cycle is placed between bursts
of four data cycles to allow one driver to turn off

Digital Technical Journal Vol.§ No.4 1996

57

58

before the next driver turns on. By keeping the lower-
order address bits connected to all SDRAMs, i.e., by
not interleaving additional banks of memory chips on
tow-order address bits, consecutive accesses to alter-
nating memory banks such as large direct memory
access (DMA) sequences can potentially achieve the
full 1-GB /s read bandwidth of the data bus. With the
dead cycle inserted, the read bandwidth of the mem-
ory interconnect is reduced by 20 percent.

The dara bus connecting the processor, memory,
and 1/0 modules was implemented as a traditional
shared 3.3-volt tri-state bus with a single-phase syn-
chronous clock at all modules. As a result, the bus
becomes saturated as more processors are added and
bus traftic increases. To keep the design time as short
as possible, the AlphaServer 4100 designers chose not
to explore the concept of a switched bus, on which
more than one private transter may occur at a time
berween multiple pairs of nodes. Clearly, the
AlphaServer 4100 system has rcached the practical
upper limit of bus bandwidth using the traditional tri-
state bus approach.

Reconfigurability

The AlphaServer 4100 hardware modules were
designed to allow enhancements to be made in the
future without having to redesign every element in
the system.

Motherboard Options

The AlphaServer 4100 motherboard contains tour
dedicated processor slots, cight dedicated memory
slots (four memory pairs), and one slot for an
1/0 module with nwo PCI bus bridges. Designed at
the same time but not produced until after the
AlphaServer 4100 motherboard was available,
the AlphaServer 4000 motherboard contains only two
processor slots, four memory slots (two memory
pairs), and slots for two 1/0 modules allowing four
PCY bus bridges. Since module hardware verification
in the laboratory is a lengthy process, the AlphaServer
4000 motherboard was designed to use the same logic
as the AlphaServer 4100 except tor the programmable
arbitration logic, which had a different algorithm
because of the extra 1/0 module. When the signals on
the AlphaServer 4000 motherboard were routed, all
nets were kept shorter than the corresponding nets on
the AlphaServer 4100 motherboard so that every sig-
nal did not need to be reexamined. Only those signals
that were uniquely different were subject to the full
signal integrity verification process.

Memory Options
The synchronous memory modules available for the

AlphaServer 4100 are all based on the 16-Mb SDRAM.

Digiral Technical Journal Vol.§ No.4 1996

Using this size chip allowed designers to build synchro-
nous memory modules thar contain 9, 18, 36, and
72 SDRAMs and provide, respectively, 32 MB, 64 MB,
128 MB, and 256 MB of main memory per pair. The
memory architecture supports synchronous memory
modules that contain up to | GB of main memory per
pair (up to 4 GB per system) by using the 64-Mb
SDRAMs; however, when the AlphaScrver 4100 sys-
tem was introduced, the pricing and availability of the
64-Mb SDRAM did not allow these larger capacity syn-
chronous memory modules to be builr.

At the same time the svnchronous memory modules
were being designed, a family of plug-in compatible
memory modules buile with EDO DRAMs was
designed and built. The memory architecture supports
EDO memory modules containing up to 2 GB of main
memory per pair (up to 8 GB per system) by using the
64-Mb EDO DRAM. When the AlphaServer 4100 sys-
tem was introduced, the 64-Mb EDO DRAM was
available and EDO memory modules containing 72 or
144 EDO DRAMs were buile providing 1 GB and 2 GB
of main memory per pair. To round out the range of
memory capacities and to provide an alternative to the
synchronous memory modules in case there was a cost
or design problem with the new 16-Mb SDRAM chips,
a family of EDO memory modules was also built using
16-Mb and 4-Mb EDO DRAMs, providing 64 MB,
256 MB, and 512 MB of main memory per pair.

Although EDO DRAMs can provide data at a higher
bandwidth than standard DRAMs, a single EDO
DRAM cannot return data in four consccutive 15-ns
cveles like the single SDRAM used on the svnchronous
memory modules. Therefore, a custom ASTC was used
on the EDO memory module to access 288 bits of
data every 30 ns from the EDO DRAMs and multiplex
the data onto the 144-bit memory interconnect every
15 ns. To imitate the two-bank teature of a single
SDRAM, a second bank of EDO DRAMs is required.
Conscquently, the mmimum number of memory
chips per EDO memory module is 72 four-bit-wide
EDO DRAM chips, whereas the minimum number
of memory chips per synchronous memory module
is only 18 four-bit-wide SDRAM chips or as few as
9 cight-bit-wide SDRAM chips.

When the AlphaServer 4100 system was introduced,
the fastest EDO DRAM available thar met the pricing
requirements was the 60-ns version. When this chip
is used on the EDO memory module, data cannot
be returned to the motherboard as fast as data can be
rcturned from the synchronous memory modules. To
support the 60-ns EDO DRAMs, a onc-cvcle (15 ns)
merease in the access time to main memory is required.
Support for this extra cvcle of Tatency was designed into
the memory interconnect by placing a one-cvele gap
between eyeles 2 and 3 (see Table 1) of any read trans-
action accessing a 60-ns EDO memory module. Con-
sequently, the read memory latency is one cycle longer

and the maximum read bandwidth is 20 percent less
when using EDO memory modules built with 60-ns
EDO DRAMs. Note thatit is possible to have a mixture
of EDO memory modules and synchronous memory
modules in the same system. In such a case, only the
memory read transactions to the 60-ns EDO memory
module would result in a Joss of performance.

New versions of the EDO memory modules that
contain 50-ns EDO DRAMs providing up to 8 GB of
total system memory arc scheduled to be introduced
within a year after the introduction of the AlphaServer
4100. These modules will not require the additional
cycle of latency, and as a result they will have identical
performance to the synchronous memory modules.

Processor Options

The no-external-cache processor module was designed
to support either a 300-MHz Alpha 21164 CPU chip
with a 60-MHz (16.6-ns) synchronous memory inter-
connect or a 400-MHz Alpha 21164 CPU chip with
a 66 MHz (15-ns) synchronous memory interconnect.
As previously mentioned, the Alpha 21164 itself
contains a primary 8-KB data cache, a primary 8-KB
instruction cache; and a second-level 96-KB three-
way sct-associative data and instruction cache. The
no-external-cache processor module contains no third-
level cache, but by keeping the latency to main mem-
ory low and by issuing multiple references from the
same Alpha 21164 to main memory at the same time
to increase memory bandwidth, the performance of
many applications is better than that of a processor
module containing a third-level external cache.’

Applications that are small enough to fit in a large
third-level cache perform better with an external
cache, however, so the AlphaServer 4100 ofters scveral
variants of plug-in compatible processor modules con-
taining a 2-MB, 4-MB, or greater module-level cache.
In additon, cached processor modules are being
designed to support Alpha 21164 CPU chips that run
faster than 400 MHz whilc still maintaining the maxi-
mum 66-MHz synchronous memory interconnect.
The architecture of the cached processor module
was developed in parallel with the core module set,
and several enhancements were made to the CPU and
memory architecture to support the module-level
cache. See the companion paper “The AlphaServer
4100 Cached Processor Module Architecture and
Design” tor more information.*

Versions of the Alpha 21164 chip that operate
at 400 MHz and faster require 2-volt power, while
slower versions ot the Alpha 21164 require only
3.3 volts. The AlphaServer 4100 motherboard does
not provide 2 volts ot power to the processor module
connectors; consequently, a 3.3-to-2-volt converter
card is used on the higher-speed processor modules
to provide this unique voltage. Each new version of

processor module is plug-in compatible, and systems
can be upgraded without changing the motherboard.
This is true even if the frequency of the synchronous
memory interconnect changes, although all processor
modules in the system must be configured to operate
at the same speed. The oscillators for both the high-
speed internal CPU clock and the memory intercon-
nect bus clock are located on the processor modules
to allow processor upgrades to be made without mod-
ifying the motherboard.

Summary

The high-performance DIGITAL AlphaServer 4100
SMP server, which supports up to four Alpha 21164
CPUs, was designed simply and quickly using oft-the-
shelf components and programmable logic. When the
AlphaScrver 4100 system was introduced in May
1996, the memory interconnect design enabled the
server to achieve a minimum memory latency of
120 nanoseconds and a maximum memory band-
width of 1 gigabyte per second. This industry-leading
performance was achieved by using oft-the-shelf data
path and address components and programmable
logic between the CPU and the SDRAM-based main
memory. The motherboard, the synchronous memory
module, and the no-external-cache processor module
were developed concurrently to optimize the perfor-
mance of the memory architecture. These core mod-
ules were operating successtully within six months of
the start of the design. The AlphaServer 4100 hard-
ware modules were designed to allow future enhance-
ments without redesigning the system.

Acknowledgments

Bruce Alford from Revenue Systems Engineering
assisted with the schematic entry, module layout,
manufacturing issues, and power-up logic design, and
succeeded in smoothly transitioning the core module
set to his long-term engineering support organization.
Roger Dame handled signal integrity and timing
analysis, while Dale Keck and Arina Finkelstein
worked on simulation. Don Smelser and Darrel
Donaldson provided technical guidance and moral
support.

References and Notes

1. Z. Cvetanovic and D. Donaldson, “AlphaServer 4100
Performance Characterization,” Digital Technical
Journal, vol. 8, no. 4 (1996, this issue): 3-20.

2. S. Duncan, C. Keefer, and T. McLaughlin, “High
Performance 1,/0 Design in the AlphaServer 4100 Sym-
metric Multiprocessing System,” Digital Technical
Journal, vol. 8, no. 4 (1996, this issue): 61-75.

Digital Technical Journal Vol.8 No.4 1996

59

60

3.

6.

The AlphaServer 4000 system contains the same CPU-
to-memory interface as the AlphaScerver 4100 system
but supports half the number of processors and memory
modules and twice the number of PCI bridges. The
AlphaServer 4000 motherboard was designed at the
same time as the AlphaServer 4100 motherboard but
was not produced until atter the AlphaScrver 4100
motherboard was available.

M. Stcinman ct al., “The AlphaScrver 4100 Cached
Processor Module Architecture and Design,” Digital
Techuical Journal, vol. 8, no. 4 (1996, this issuc):
21-37.

R. Dame, “The AlphaServer 4100 Low-cost Clock Dis-
tribution Svstem,” Digital Technical Joirnal vol. 8,
n0. 4 (1996, this issuc): 38-47.

Alpha 21164 Microprocessor Havdware Reference
Mernal (Mavnard, Mass.: Digital Lquipment Corpora-
tion, Order No. EC-QAEQA-TL, Scprember 1994).

. The Fereh command is not implemented on the

AlphaServer 4100 system, but there is no mechanism to
keep it from appearing on the CMD pins of the Alpha
21164 CPI chip. The Ferch command s simply termi-
nated wirhout any additional action.

Biography

Glenn A. Herdeg

Glenn Herdeg has been working on the design of com-
puter modules since joining Digital in 1983. A principal
hardware engineer in the AlphaServer Platform Develop-
ment group, he was the project leader, architect, logic
designer, and module designer for the AlphaServer 4100
motherboard, no- external-cache processor modules, and
synchronous memory modules. Fle also led the design

of the AlphaServer 4000 motherboard. In carlier work,
Glenn served as the principal ASIC and module designer
for several DEC 7000, VAX 7000, and VAX 6000 projects.
He holds a B.A. in physics from Colby College and an M.S.
in computer systems from Rensselacr Polytechnic Institute
and has two patents. Glenn is currently involved in further
Alpha-based server system development.

Digital Technical Journal Vol.8 No.4 1996

High Performance 110
Design in the AlphaServer
4100 Symmetric
Multiprocessing System

The DIGITAL AlphaServer 4100 symmetric multi-
processing system is based on the Alpha 64-bit
RISC microprocessor and is designed for fast
CPU performance, low memory latency, and
high memory and I/0 bandwidth. The server’s
I/0 subsystem contributes to the achievement
of these goals by implementing several innova-
tive design techniques, primarily in the system
bus-to-PCl bus bridge. A partial cache line write
technique for small transactions reduces traffic
on the system bus and improves memory latency.
A design for deadlock-free peer-to-peer transac-
tions across multiple 64-bit PCl bus bridges reduces
system bus, PCl bus, and CPU utilization by as
much as 70 percent when measured in DIGITAL
AlphaServer 4100 MEMORY CHANNEL clusters.
Prefetch logic and buffering supports very large
bursts of data without stalls, yielding a system
that can amortize overhead and deliver perfor-
mance limited only by the PCl devices used in
the system.

Samuel H. Duncan
Craig D. Keefer
Thomas A. McLaughlin

The AlphaServer 4100 is a symmetric multiprocess-
ing system based on the Alpha 21164 64-bit RISC
microprocessor. This midrange system supports one
to four CPUs, one to four 64-bit-wide peer bridges to
the peripheral component interconnect (PCI), and
one to four logical memory slots. The goals for the
AlphaServer 4100 system were fast CPU pertormance,
fow memory latency, and high memory and 1/0
bandwidth. One measure of success in achieving these
goals is the AIM benchmark multiprocessor pertfor-
mance results. The AlphaServer 4100 system was
audited at 3,337 peak jobs per minute, with a sus-
tained number of 3,018 user loads, and won the AIM
Hort Iron price /performance award in October 1996

The subject of this paper is the contribution of the
T/0 subsystem to these high-performance goals. In an
in-house test, /0 performance of an AlphaServer
4100 system based on a 300-mcgahertz (MHz)
processor shows a 10 to 19 percent improvement in
[/O when compared with a previous-generation
midrange Alpha system based on a 350-MHz proces-
sor. Reduction in CPU utilization is particularly bene-
ficial for applications that use small transfers, e.g.,
transaction processing.

I/0 Subsystem Goals

The goal for the AlphaServer 4100 1/0 subsystem was
to increase overall system performance by

= Reducing CPU and system bus utilization for all
applications

= Delivering full 1/0 bandwidth, specifically, a band-
width limited only by the PCI standard protocol,
which is 266 megabytes per second (MB/s) on
64-bit option cards and 133 MB/s on 32-bit
option cards

= Minimizing latency for all direct memory access
(DMA) and programmed 1/0 (PIO) transactions

Our discussion focuses on scveral innovative
techniques used in the design of the /0 subsystem
64-bit-wide peer host bus bridges that dramatically
reduce CPU and bus utilization and deliver full PCI
bandwidth:

Digital Technical Journal Vol.8 No.4 1996

61

62

= A partial cache line write technique for coherent
DMA writes. This technique permits an 1/0 device
to insert data that is smaller than a cache line, or
block, into the cache-coherent domain without first
obtaining ownership of the cache block and per-
forming a read-modity-write operation. Partial
cache line writes reduce traffic on the system bus
and improve latency, particularly for messages
passed in a MEMORY CHANNEL cluster.?

= Support for device-initiated transactions that target
other devices (peers) across multiple (peer) PCI
buses. Peer-to-peer transactions reduce svstem
bus utilization, PCI bus utilization, and CPU uti-
lization by as much as 70 percent when measured in
MEMORY CHANNEL clusters. In testing, we ran
a MEMORY CHANNEL application without pecr-
to-peer DMA, and obscrved 85 percent CPU
utilization; running the same application with peer-
to-peer DMA cnabled, we observed 15 percent
CPU utilization. The peer-to-peer technique s
stuceessfully implemented on the AlphaServer 4100
system without causing deadlocks.

= Large bursts of PCI-device-initiated DMA dara to
or from system memory. 1/0 subsystem support
for large bursts of DMA data enables efficient PCI
bus utilization because fixed bus latency can be
amortized over these large transactions.

» Prefetched read data and posted write data bufter-
ing designed to keep up with the highest perfor-
mance PCI devices. When used in combination
with the PCI delayed-read protocol, the buftering
and prefetching approach allows the system to
avoid PCI bus stalls introduced by the bridge dur-
ing PCI-device-initiated transactions.

The following overview of the system concentrates
on the areas in which these techniques are used to
enhance performance, that is, etheiency in the system
bus and in the PCI bus bridge. In subsequent sections,
we describe in greater detail the performance issucs,
other possible approaches to resolving the issues, and
the techniques we developed. We conclude the paper
with performance results.

AlphaServer 4100 System Overview

The AlphaServer 4100 system shown in Figure]
includes four CPUs connected to the system bus,
which comprises the data and error correction code
(ECC) and the command and address lines. Also
connected to the system bus are main memory and
a single module with two independent peer PCI bus
bridges. The single module, the PCI bridge module,
provides the physical and the logical bridge berween
the system bus and the PCI buses. Each independent
pcer PCI bus bridge is constructed of a set of three

Digital Technical Journal Vol.8 No.4 1996

application-specific integrated circuit (ASIC) chips,
one control chip, and two shiced data path chips.

The rwo independent PCI bus bridges are the inter-
faces between the svstem bus and their respective PCI
buscs. A PCI bus is 64 or 32 bits wide, transferring
data ata peak ot 266 MB/s or 133 MB /s, respectively.
In the AlphaServer 4100 system, the PCI busces are
64 bits wide.

The PCI buses connect to a PCI backplane module
with a number of expansion slots and a bridge to the
Extended Industry Standard Architecrure (EISA) bus.
In Figure 1, each PCI bus is shown to support up to
four devices in option slots.

The AlphaServer 4000 scries also supports a config-
uration in which two of the CPU cards are replaced
with two additional independent peer PCI bus
bridges. In the quad PCI bus configuration, there arc
16 option slots available for PCI devices, at the cost
ot bounding the system to a maximum of two CPUs
and two logical memory slots. This quad PCI bus con-
figuration is shown in Figure 2.

Most of the techniques described in this paper are
implemented in the PCI bus bridge. The partial cache
line write technique, presented next, is also designed
into the protocol on the system bus and into the CPU
cards.

Improvements in CPU and System Bus Utilization
through Use of Partial Cache Line Writes

[nefficient use of system resources can limit perfor-
mance on heavily Joaded svstems. Svstem designers
must be attentive to potential performance bottle-
necks bevond the commonly addressed CPU speed,
cache loop time, and CPU memory latency. Our focus
in the 1/0 subsystem design was to balance system
performance in the face of'a wide range of 1/0 device
behaviors. We therefore implemented techniques that
minimize the load on the PCI bus, the system bus, and
the CPUs. The technique described in this section—
partial cache line writes—reduces the load on the sys-
tem bus and improves overall system pertormance.

Many first- and sccond-gencration PCI controller
devices were designed to operate in platforms that
support 32-byte cache lines and 16-byte write butfers.
[t is common for an older PCI device to limit the
amount of DMA data it reads or writes to match this
characteristic of computers that were on the markert at
the time those devices were designed. Some classes of
devices will, by their nature, always limit the amount
of dara in a burst transaction.

As do most Alpha plattorms, the AlphaServer 4100
system supports a 64-bvte cache line that is nwice that
of other common systems. When a PCI device per-
forms a memory write of less than a complete cache
line, the system must merge the data into a cache line
while maintaining a consistent (coherent) view of

| PCI BACKPLANE MODULE
| STANDARD 1/O PORTS | I

N i

A %/ﬁ% s ||
sLots gESTF}SED PCI/EISA :
(17 TiT e |

% N A

CD-ROM EISA
- BRIDGE
64-BIT PCI 1 g 64-BIT PCI 0
U U Sy S S U S U SO SO S 1
| S 1
! PCI BRIDGE MODULE !
! i
' | PCIBUS BRIDGE | | PCIBUS BRIDGE | ! MEMORY
1 A
R R N A
Y
COMMAND/ADDRESS 4 A /
DATA AND ECC SYSTEM BUS
CPU CARD CPU CARD CPU CARD CPU CARD

Figure 1
AlphaServer 4100 System with Four CPUs, Two 64-bit Buses

STANDARD I/O PORTS I I

| |
| I .
| I
| 1
! FOUR PCI % / / ONE DEDICATED :
) EXPANSION PCI AND THREE |
' SLOTS SHARED PCIEISA | |
X SLOTS)
| I I I :
| 1
I p !
|)
) 1
) 1

I

) I I I I EISA
CD-ROM [¢ < > BF%DGE
64-BIT PCI 1 I Ir 64-BIT PCI 0
L e e e e e e ettt e e e e e 1
! PCI BRIDGE MODULE i
I
| 1
''| PCIBUS BRIDGE | | PCIBUS BRIDGE | MEMORY
|
1 | A
[, M 1 __________________ i
y
COMMAND/ADDRESS A
DATA AND ECC L \ SYSTEM BUS
I Y
Y Yy 1 ~——f——"|~~"77"""fF~-777" "~~~ =~— = --
!] -
|)
CPUCARD | 1| pciBus BRIDGE | | PciBUS BRIDGE |1 | OPY CARD
]
[|
! PCI BRIDGE MODULE !
____________________________ S
64-BIT PCI 3 R 64-BIT PCI 2
< >

I
i
I
1 v N
= Pl !
1
! FOUR PC| FOUR PCI
, EXPANSION EXPANSION
: SLOTS SLOTS
|
Figure 2

AlphaServer 4000 System with Two CPUs, Four 64-bit Buses

Digital Technical Journal Vol.8 No.4 1996 63

64

memory tor all CPUs on the system bus. This merging
of write data into the cache-coherent domain is typi-
cally done on the PCI bus bridge, which reads the
cache line, merges the new bytes, and writes the cache
line back out to memory. The read-modity-write must
be performed as an atomic operation to maintain
memory consistency. For the duration of the atomic
read-modify-write operation, the system bus is busy.
Conscquently, a write of less than a cache line resules
in a rcad-modify-write that takes at lcast three times as
many cycles on the system bus as a simple 64-byte-
aligned cache line write.

For example, if we had used an carlier DIGITAL
implementation of a system bus protocol on the
AlphaServer 4100 svstem, an 1/0 device operation
on the PCI that performed a single 16-byte-aligned
memory write would have consumed system bus
bandwidth that could have moved 256 bytes of data,
or 16 times the amount of data. We rhercfore had to
find a more cfficient approach to writing subblocks
into the cache-coherent domain.

We first examined opportunities for efficiency gains
in the memory system.? The AlphaServer 4100 mem-
ory system interface is 16 bytes wide; a 64-byte cache
line read or write takes four cycles on the system bus.
The memory modules themselves can be designed to
mask onc or more of the writes and allow aligned
blocks that are multiples of 16 bytes to be written to
memory in a single system bus transaction. The prob-
Jem with permitting a Jess than complete cache line
write, i.¢., fess than 64 bytes, is that the write goes to
main memory, but the only up-to-date/complete
copy of a cache line may be ina CPU card’s cache.

To permit the more efficient partial cache line
write operations, we modified the system bus cache-
coherencey protocol. When a PCI bus bridge issucs
a partial cache line write on the system bus, cach CPU
card performs a cache lookup to sce if the rarger of
the write is dirty. In the event that the target cache
block 1s dirty, the CPU signals the PCI bus bridge
before the end of the partial write. On dirty partial
cache line write transactions, the bridge simply per-
forms a sccond transaction as a read-moditv-write. If
the target cache block is not dirty, the operation com-
pletes in a single system bus transaction.

Address traces taken during product development
were simulated to determine the frequency of dirty
cache blocks that are targets of DMA writes. Our sim-
ulations showed that, for the address trace we used,
frequency was extremely rare. Mceasurement taken
from scveral applications and benchmarks confirmed
that a dirty cache block is almost never asserted with
a partial cache line write.

The DMA rransfer of blocks that are aligned
multiples of 16 bytes but less than a cache line is four
times more efficient in the 4100 system than in carlier
DIGITAL implementations.

Digital Technical Journal Vol.8 No.4 1996

Movement of blocks of less than 64 bvres s
important to application performance because there
are high-performance devices that move less than
64 bvtes. One example is DIGITAL’s MEMORY
CHANNEL adapter, which moves 32-byte blocks in a
burst.? As MEMORY CHANNEL adapters move large
numbers of blocks that arc all less than a cache linc of
data, the I/O subsystem partial cache line write feature
improves system bus utilization and eliminares the
system bus as a bottleneck. Message latency across the
fabric of'an AlphaScrver 4100 MEMORY CHANNLEL
cluster (version 1.0) is approximately 6 microseconds
(us). There are owvo DMA writes in the message: the
first is a message, and the second is a flag to validare the
message. These DMA writes on the target AlphaServer
4100 contribute to message latency. The improve-
ment in lateney provided by the partial cache line write
feature s approximately 0.5 ws per write. With two

writes per message, latency is reduced by approxi-
mately 15 percent over an AlphaServer 4100 system
with the partial cache line write feature. With version
1.5 of MEMORY CHANNEL adapters, net latency
will improve by abour 3 ps, and the effect of partial
cache line writes will approach a 30 percent improve-
ment in message latency.

In summary, the challenge is to efficiently move a
block of data of a common size (multiple of 16 bvtes)
that is smaller than a cache line into the cache-coherent
domain. Without anv further improvement, the tech-
nique reduces system bus utilization by as much as a
factor of four. This technique allows subblocks to be
merged without incurring the overhead of read-modify-
write, yet maintains cache coherency. The only draw-
back to the technique is some increased complexity in
the CPU cache controller to support this mode. We
considered the alternative of adding a small cache to the
PCI bridge. Writes into the same memory region that
occur within ashort period of time could merge directly
into a cache. This approach adds significant complexity
and increases performance onlv if transactions that tar-
get the same cache line are very close together in time.

Peer-to-Peer Transaction Support

System bus and PCI bus utilization can be optimized
for certain applications by limiting the number of timies
the same block of data moves through the system.
As noted in the section AlphaServer 4100 System
Overview, the PCI subsystem can contain two or four
independent PCI bus bridges. Our design allows exter-
nal devices connected to these separate peer PCI bus
bridges to share data without accessing main memory
and by using a minimal amount of host bus bandwidth.
In other words, external devices can effect direct access
to data on a peer-to-peer basis.

In conventional systems, a data file on a disk that is
requested by a client node is transterred by DMA from
the disk, across the PCI and the system bus, and into
main memory. Once the data is in main memory, a net-
work device can read the data directly in memory and
send it across the network to the client node. In a 4100
system, device peer-to-peer transaction circumvents
the transfer to main memory. However, peer-to-peer
transaction requires that the target device have certain
properties. The essential property is that the device tar-
get appear to the source device as if it is main memory.

The balance of this section explains how conven-
tional DMA reads and writes are performed on the
AlphaServer 4100 system, how the infrastructure for
conventional DMA can be used for peer-to-pecr trans-
actions, and how deadlock avoidance is accomplished.

Conventional DMA

We extended the features of conventional DMA on the
AlphaScrver 4100 system to support pecr-to-peer
transaction. Conventional DMA in the 4100 system
works as follows.

Address space on the Alpha processor is 23° or 1 tera-
byte; the AlphaScrver 4100 system supports up to
8 gigabytes (GB) of main memory. To directly address
all of memory without using memory management
hardware, an address must be 33 bits. (Eight GB is
equivalent to 2% bytes.)

Because the amount of memory is large compared to
address space available on the PCI, some sort of mem-
ory management hardware and software is needed to
make memory directly addressable by PCI devices.
Most PCI devices use 32-bit DMA addresses. To pro-
vide dircct access for every PCI device to all of the sys-
rem address space, the PCI bus bridge has memory
management hardware similar to that which is used on

SYSTEM ADDRESS SPACE
(240 BYTES)

a CPU daughter card. Each PCI bridge to the system
bus has a translation look-aside bufter (TLB) that con-
verts PCI addresses into system bus addresses. The use
of a TLB permits hardware to make all of physical
memory visible through a relatively small region of
address space that we call a DMA window.

A DMA window can be specified as “direct
mapped” or “scatter-gather mapped.” A direct-
mapped DMA window adds an offset to the PCI
address and passes it on to the system bus. A scatter-
gather mapped DMA window uses the TLB to look up
the system bus address.

Figure 3 is an example of how PCI memory address
space might be allocated for DMA windows and for
PCI device control status registers (CSRs) and memory.

A PCI device initiates a DMA write by driving an
address on the bus. In Figure 4, data from PCI devices
0 and 1 are sent to the scatter-gather DMA windows;
data from PCI device 2 are sent to the direct-mapped
DMA window. When an address hits in one of the
DMA windows, the PCI bus bridge acknowledges
the address and immediately begins to accept write
data. While consuming write data in a bufter, the PCI
bus bridge translates the PCT address into a system
address. The bridge then arbitrates for the system bus
and, using the translated address, completes the write
transaction. The write transaction completes on the
PCI before it completes on the system bus.

A DMA read transaction has a longer latency than
a DMA write becausce the PCI bus bridge must first
translate the PCI address into a system bus address and
fetch the data before completing the transaction. That
is to say, the read transaction completes on the system
bus before it can complete on the PCI.

Figure 5 shows the address path through the PCI
bus bridge. All DMA writes and reads are ordered

PCI MEMORY ADDRESS SPACE
(232 BYTES)

8 MB PCI DEVICE CSRs

8 MB SCATTER-GATHER WINDOW 0

112 MB PCI DEVICE CSRs

384 MB (UNUSED)

512 MB SCATTER-GATHER WINDOW 1
1 GB PCI DEVICE PREFETCHABLE

MEMORY SPACE

1 GB DIRECT-MAPPED WINDOW 2

1 GB SCATTER-GATHER WINDOW 3

Figure 3

Example of PCI Memory Address Space Mapped to DMA Windows

Digital Technical Journal Vol.8 No.4 1996

65

66

DIRECT-

MAPPED
-1 oma PCI DEVICE 2

WINDOW

.

SYSTEM ADDRESS

.

SCATTER-GATHER

SPACE DMA WINDOWS ADDRESS SPACE |
Figure 4
Example of PCI Device Reads or Writes to DMA Windows and Address Translation to Svstem Bus Addresses
SYSTEM BUS
| PCI BUS !
| BRIDGE |
|) |
I
| DMA READ - !
PREFETCH - |
| ADDRESS - |
| | - |
| o Q
—1 '
| DMA bu |
0Q
| FILL <] |
| DATA - |
I 1 |
| Z AN |
| A 4 4 POSTED PIO :
WRITES BYPASS
' 8"4‘%‘9’:‘[';5 PIOFILL || INTERRUPTS| | PENDED PIO |
I READS |
\
| t 1 |
: 4 3 |
____________ 1
64-BIT PCI

Figure 5
Diagram of Data Paths in a Single PCI Bus Bridge

through the outgoing queuce (OQ) en route to the sys-
tem bus. DMA read data is passed through an incom-
ing queue (IQ) bypass by wav ot'a DMA fill data buffer
en route to the PCIL

Norte that the IQ orders CPU-ininated PIO transac-
tions. The 1Q bypass is necessary for correct, dead-
lock-frec operation of pecr-to-peet transactions, which
are explained in the next section.
1996

Digital Technical Journal Vol.8 No. 4

Following is an example of how a conventional
“bounce” DMA operation is used to move a file froma
Jocal storage device to a network device. The example
illustrates how data is written into memory by one
device where it is temporarily stored. Later the data is
rcad by another DMA device. This operation is called
a “bounce 1/0” because the data “bounces” off

memory and out a network port, a common operation
for a network file server application.

Assume PCI device A is a storage controller and PCI
device B is a network device:

1. The storage controller, PCI device A, writes the file
into a buffer on the PCI bus bridge using an
address that hits a DMA window.

2. The PCI bridge translates the PCI memory address
into a system bus address and writes the data into
memory.

3. The CPU passes the network device a PCI memory
space address that corresponds to the system bus
address of the dara in memory.

4. The neework controller, PCI device B, reads the file
in main memory using a DMA window and sends
the data across the network.

If both controllers are on the same PCI bus segment
and it the storage controller (PCI device A) could
write directly to the network controller (PCT device
B), no traffic would be introduced on the system bus.
Tratfic on the system bus is reduced by saving one
DMA write, possibly one copy operation, and one
DMA read. On the PCI bus, traffic is also reduced
because there is one transaction rather than two.
When the target of a transaction is a device other than
main memory, the transaction is called a peer-to-peer.
Peer-to-peer transactions on a single-bus system arc
simple, bordering on trivial; but deadlock-free support
on a system with multiple peer PCI buses is quite a bit
more difficult.

This section has presented a high-level description
of how a PCI device DMA address is translated into
a system bus address and data are moved to or from
main memory. In the next section, we show how the
same mechanism is used to support device peer-to-
peer transactions and how traffic is managed for dead-
lock avoidance.

A Peer-to-Peer Link Mechanism
For direct peer-to-peer transactions to work, the target
device must behave as if it is main memory; that is,
it must have a target address in prefetchable PCI mem-
ory space.! The PCI specification further states that
devices are not allowed to depend on completion of
a transaction as master.” Two devices supported by
the DIGITAL UNIX operating system meet these
criteria today with some restrictions; these are the
MEMORY CHANNEL adapter noted earlier and
the Prestoserve NVRAM, a nonvolatile memory stor-
age device used as an accelerator for transaction
processing. The PNVRAM was part of the configura-
tion in which the AIM benchmark results cited in the
introduction were achieved.

Both conventional DMA and peer-to-peer trans-
actions work the same way from the perspective of

the PCI master: The device driver provides the master
device with a target address, size of the transfer, and
identification of data to be moved. In the case in which
a dara file is to be read from a disk, the device driver
software gives the PCI device that controls the disk a
“handle,” which is an identifier for the data file and the
PCI target address to which the file should be written.
To reiterate, in a conventional DMA transaction, the
target address is in one of the PCI bus bridge DMA
windows. The DMA window logic translates the
address into a main memory address on the system bus.
In a peer-to-peer transaction, the target address is
translated to an address assigned to another PCI device.

Any PCI device capable of DMA can perform peer-
to-peer transactions on the AlphaServer 4100 system.
For example, in Figure 6, PCI device A can transfer
data to or from PCI device B without using any
resources or facilities in the system bus bridge. The use
of a peer-to-peer transaction is controlled entirely by
software: The device driver passes a target address to
PCI device A, and device A uses the address as the
DMA data source or destination.

If the target of the transaction is PCI device C, then
system services software allocates a region in a scatter-
gather map and specifies a translation that maps the
scatter-gather-mapped address on PCI bus O to a sys-
tem bus address that maps to PCI device C. This
address translation is placed in the scatter-gather map.
When PCI device A initiates a transaction, the address
matches one of the DMA windows that has been ini-
tialized for scatter-gather. The PCI bus bridge accepts
the transaction, looks up the translation in the scatter-
gather map, and uses a system address that maps
through PCI bus bridge 1 to hit PCI device C. The
transaction on the system bus is between the two PCI
bridges, with no involvement by memory or CPUs. In
this transaction, the system bus is utilized, but the data
is not stored in main memory. This eliminates the
intermediate steps and overhead associated with con-
ventional DMA, traditionally done by the “bounce” of
the data through main memory.

The features that allow software to make a device on
one PCI bus segment visible to a device on another are
all implicit in the scatter-gather mapping TLB. For
peer-to-peer transaction support, we extended the
range of translated addresses to include memory space
on peer PCI buses. This allows address space on one
independent PCI bus segment to appear in a window
of address space on a second independent peer PCI
bus segment. On the system bus, the peer transaction
hits in the address space of the other PCI bridge.

Deadlock Avoidance in Device Peer-to-Peer Transactions
The definition of deadlock, as it is solved in this
design, is the state in which no progress can be made
on any transaction across a bridge because the queues
are filled with transactions that will never complete.

Digital Technical Journal Vol.8 No.4 1996

67

68

MAIN
MEMORY

COMMAND/ADDRESS
DATA AND ECC SYSTEMBUS

o b4] b A o
| BRIDGE 0 | | BRIDGE 1 |
! |
| T | |

I] I]
DMA READ b | DMA READ P |

| PREFETCH < ! PREFETCH <
| ADDRESS b ! | ADDRESS o '

- ~—p
I) b= I | I}] |
ol Q- b Q|

I DMA ba | DMA <]
0a FILL - I 0a FILL] |

| I

DATA pm DATA -]

| pa | T b= |
I I
| Z N\ | I AN |
| 4 A A POSTED PIO | | 4 4 POSTED PIO |
WRITES BYPASS WRITES BYPASS
| ggg\éﬁ?e piofriL || interrupTs| | PENDED PIO ' | 8";‘%‘2’:‘55 PIOFILL || INTERRUPTS| | PENDED PIO !
| READS | | READS |
T N — |
| t h t |
- I B L - — — — — _ _ _|
PCIO PCI 4
PCI DEVICE A =—»| |<— PC! DEVICE B PCI DEVICE C <—>| |« PCI DEVICE D
PCI DEVICE E <—>| |«—» PC} DEVICE F PCI DEVICE G <—>| |<— PCI DEVICE H
Figure 6

AlphaScrver 4100 System Diagram Showing Data Paths through PCI Bus Bridges

A deadlock situation 1s analogous to highway gridlock
in which two lines of automobiles face each other on
a single-lanc road; there is no room to pass and no way
to back up. Rules for deadlock avoidance are analo-
gous to the rules for directing vehicle tratfic on a nar-
row bridge.

An example of peer-to-peer deadlock is one in
which two PCT devices are dependent on the comple-
tion of a write as masters before they will accepr writes
as targets. When these nwo devices target onc another,
the result s deadlock; cach device responds with
RETRY to cvery write in which it is the targer, and
cach device i1s unable to complete its current write
transaction becausc it is being retried.

A device that does nzot depend on completion of a
transaction as master before accepting a transaction as
target may also cause deadlocks in a bridged environ-
ment. Situations can occur on a bridge in which multi-
ple outstanding posted transactions must be kept in
order. Carcful design is required to avoid the potential
for deadlock.

The design for deadlock-free pecr-to-peer transaction
support in the AlphaScrver 4100 system includes the

v Implementation of PCI delayed-read transactions

» Usc of bypass paths in the IQ and in read-rerurn
data

Digital Technical Journal Vol.8 No.4 1996

This section assumes that the reader is familiar with
the PCI protocol and ordering rules.?

Figure 6 shows the data paths through two PCI
bus bridges. Transactions pass through these bridges
as follows:

= CPU softwarc-initiated PIO reads and PIO writes
are entries in the 1Q.

= Device peer-to-peer transactions targeting deviees
on peer PCIsegments also use the 1Q.

® PCl-device—initiated reads and writes (DMA or
peer-to-peer), interrupts, and PIO All dara are
entrics in the OQ.

s The multiplexcer selecting entries in the 1Q allows
writes (PTO or peer-to-peer) to bypass delayed
(pended) reads (P1O or peer-to-pecer).

= The read prefetch address register permits read-
return in the OQ data to bypass PCI delayed reads.

The two bypass paths around the 1Q and OQ arc
required to avoid deadlocks that may occur during
device peer-to-pecr transactions. All PCI ordering rules
are satisfied from the point of view of any single device
in the system. The following example demonstrates
deadlock avoidance in a device peer-to-peer write and
a device peer-to-peer read, referencing Figure 7.

The configuration in the example is an AlphaServer
4100 system with four CPUs and two PCI bus bridges.
Devices A and C are simple master-capable DMA
controllers, and devices B and D are simple targets,
¢.g., video RAMs, network controllers, PNVRAM, or
any device with prefetchable memory as defined in the
PCI standard.

Example of device peer-to-peer write block comple-
tion of pended PIO read-return data:

1. PCI device A initates a peer-to-peer burst write
targeting PCI device D.

2. Write data enters the OQ on bridge 0, filling three
posted write butfers.

3. The target bridge, bridge 1, writes data from
bridge 0.

4. When the IQ on bridge 1 hits a threshold, it

uscs the system bus flow-control to hold oft the
next write.

5. As each 64-byte block of write data is retired out
of the IQ on bridge 1, an additional 64-byte
(cache line size) write of darta is allowed to move
from the OQ on bridge 0 to the IQ on bridge 1.

6. If'the OQ on bridge 0 is full, bridge 0 will discon-

nect from the current PCI transaction and will

retry all transactions on PCI 0 until an OQ slot
becomes available.

7. PCI device C initiates a peer-to-peer burst write,
targeting PCI device B; the same scenario follows
as steps 1 through 6 above but in the opposite
direction.

8. CPU 0 posts a read of PCI memory space on PCI
device E.

9. CPU 1 posts a read of PCI memory space on PCI
device G.

10. CPU 2 posts a read of PCI memory space on PCI
device F.

11. CPU 3 posts a read of PCI memory space on PCI
device H.

12. Deadlock:
—Both OQs are stalled waiting for the corre-
sponding IQ to complete an earlier posted write.
—The design has two PIO read-return data (fill)
buffers; each is full.

- The PIO read-return data must stay behind the
posted writes to satisfy PCl-specified posted
write bufter flushing rules.

— A third read is at the bottom of each 1Q, and it
cannot complete because there is no fill buffer
available in which to put the data.

To avoid this deadlock, posted writes are allowed
to bypass delayed (pended) reads in the IQ, as

shown in Figure 6. In the AlphaServer 4100 deadlock-
avoidance design, the IQ will always empty, which in
turn allows the OQ to empty.

Note that the IQ bypass logic implemented for
deadlock avoidance on the AlphaServer 4100 system
may appear to violate General Rule 5 from the PCI
specification, Appendix E:

A read transaction must push ahead of it through
the bridge any posted writes originating on
the same side of the bridge and posted before the
read. Before the read transaction can complete on
its originating bus, it must pull out of the bridge
any posted writes that originated on the opposite
side and were posted before the read command
completes on the read-destination bus.*

In fact, because of the characteristics of the CPUs
and the flow-control mechanism on the system bus, all
rules are followed as observed from any single CPU or
PCI device in the system. Because reads that target
a PCI address are always split into separate request and
response transactions, the appropriate ordering rule
for this case is PCI Specification Delayed Transaction
Rule 7 in Section 3.3.3.3 of the PCI specification:

Delayed Requests and Delaved Completions
have no ordering requirements with respect to
themselves or each other. Only a Delayed Write
Completion can pass a Posted Memory Write. A
Posted Memory Write must be given an oppor-
tunity to pass everything except another Posted
Memory Write *

Also note that, as shown in Figure 6, the DMA fill
data buffers bypass the IQ, apparently violating
General Rule 5. The purpose of General Rule 5 is to
provide a mechanism in a device on one side of a bridge
to ensure that all posted writes have completed. This
rule is required because interrupts on PCI are side-
band signals that may bypass all posted data and signal
completion of a transaction before the transaction has
actually completed. In the AlphaServer 4100 system,
all writes to or from PCI devices are strictly ordered,
and there is no side-band signal notitying a PCI device
of an event. These system characteristics allow the PCI
bus bridge to permit DMA fill data (in PCI lexicon, this
could be a delayed-read completion, or read data in a
connected transaction) to bypass posted memory
writes in the 1Q. This bypass is necessary to limit PCI
target latency on DMA read transactions.

We have presented two 1Q bypass paths in the
AlphaServer 4100 design. We describe one 1Q bypass
as a required feature for deadlock avoidance in peer-
to-peer transactions between devices on different
buses. The second bypass is required for performance
reasons and is discussed in the section 1/0 Bandwidth
and Efficiency.

Digiral Technical Journal Vol.8 No.4 1996

69

70

COMMAND/ADDRESS SYSTEM BUS
DATAAND ECC
l___—____-—_jT’;"—___"—__ll—_—__ —————— __‘—“"\'___“__l
BRIDGE 0 : | , BRIDGE1 : |
I ' o | j Q-
| 4 , | |
| DMA READ J/ | DMA READ : '
| PREFETCH) | PREFETCH : |
ADDRESS ; | ' ADDRESS \ |
|) : | 1 |
| .__0Q PEER WRITE I L_oq PEER WRITE |
| PEER WRITE PEER WRITE L PEER WRITE PEER WRITE [
PEER WRITE Em PEER WRITE | PEER WRITE EI’\C‘C\ PEER WRITE |
| PEER WRITE DTA PEER WRITE | PEER WRITE DATA PEER WRITE
| PIO READ FILL SRR WRITE L PIO READ FILL SEER WRITE [
| PIO READ FILL PIO READ REQUEST] | | PIOREAD FILL PIO READ REQUEST | |
| by Y — '
| ! 1 ! || | 1 { t ['
| | omawrire [| omawrTE
R PIOFILL || INTERRUPTS || LoeheR PIOFILL || INTERRUPTS :
| t - | t - !
L 0 lbe - - _ AL _______ !
PCI O PCI1
PCI DEVICE A PCI DEVICE B PCI DEVICE C PCI DEVICE D
MASTER OF <—>| [« TARGET OF MASTER OF ~<—>| <> TARGET OF
PEER WRITES PEER WRITE PEER WRITES PEER WRITE
PCI DEVICE E PCI DEVICE F PCI DEVICE G PCI DEVICE H
TARGET OF ~—»| |<—> TARGET OF PIO TARGET OF _ <—»| |<—> TARGET OF PIO
PIO READ d} READREQUEST PIO READ 4 READ
Figure 7

Block Diagram Showing Deadlock Case without IQ Bypass Path

Required Characteristics for Deadlock-free Peer-to-Peer
Target Devices

PCI devices must ftollow all PCI standard ordering
rules for deadlock-free peer-to-peer transaction. The
specific rule relevant to the AlphaServer 4100 design
for peer-to-peer transaction support is Delayed
Transaction Rule 6, which guarantees that the 1Q will
always empry:

A target must accept all memory writes
addressed to it while completing a request using
Delayed Transaction termination.*

Our design includes a link mechanism using scatter-
gather TLBs to create a logical connection between two
PCI devices. It includes a set of rules for bypassing data
that ensures deadlock-free operation when all partici-
pants in a peer-to-peer transaction follow the ordering
rules in the PCI standard. The link mechanism provides
a logical path for peer-to-peer transactions and the
byvpassing rules guarantee the IQ will abwavs drain.
The key feature, then, is a guarantee that the 1Q will
always drain, thus ensuring deadlock-free operation.

Digiral Technical Journal Vol.8 No.4 1996

170 Bandwidth and Efficiency

With overall system performance as our goal, we
selected two design approaches to deliver full PCI
bandwidth without bus stalls. These were support for
large bursts of PCI-device-initiated DMA, and sufh-
cient buffering and prefetching logic to keep up with
the PCI and avoid introducing stalls. We open this sec-
tion with a review of the bandwidth and latency issues
we examined in our efforts to achieve greater band-
width efficiency.

The bandwidth available on a platform is dependent
on the efficiency of the design and on the type of
transactions performed. Bandwidth is measured in
millions of bytes per second (MB/s). On a 32-bit
PCI, the available bandwidth is efficiency multiplied
by 133 MB/s; on a 64-bit PCI, available bandwidth is
cfficiency multiplied by 266 MB/s. By efficiency, we
mean the amount of time spent actually transterring
darta as compared with total transaction time.

Both parties in a wansaction contribute to efficicncy
on the bus. The AlphaServer 4100 1/0 design keeps
the overhead introduced by the svstem to a minimum
and supports large burst sizes over which the per-
rransaction overhead can be amortized.

Support for Large Burst Sizes

To predict the etficiency of a given design, one must
break a transaction into its constituent parts. For exam-
ple, when an /0 device initiates a transaction it must

s Arbitrate for the bus

= Connect to the bus (by driving the address of the
transaction target)

= Transfer data (one or more bytes move in one or
more bus cycles)

s Disconnect from the bus

Time actually spent in an I/O transaction is the
sum of arbitration, connection, data transfer, and
disconnection.

The period of time before any data is transferred
is typically called latency. With small burst sizes, band-

width is limited regardless of latency. Latency of

arbitration, connection, and disconnection is fairly

constant, but the amount of data moved per unit of

time can increase by making the 1/0 bus wider. The
AlphaServer 4100 PCI buses are 64 bits wide, yielding
(efficiency X 266 MB/s) of available bandwidth.

As shown in Figure 8, efficiency improves as burst
size increases and overhead (i.e., latency plus stall
time) decreases. Overhead introduced by the
AlphaServer 4100 is fairly constant. As discussed ear-
lier, a DMA write can complete on the PCI before it
completes on the system bus. As a consequence, we
were able to kecp overhead introduced by the plat-
form to a minimum for DMA writes. Recognizing that
cfficiency improves with burst size, we used a queuing
model of the system to predict how many posted write
bufters were needed to sustain DMA write bursts with-
out stalling the PCI bus. Based on a simulation model
of the configurations shown in Figures 1 and 2, we
determined that three 64-byte bufters were sufficient
to stream DMA writes from the (266 MB/s) PCI bus
to the (1 GB/s) system bus.

Later in this paper, we present measured perfor-
mance of DMA write bandwidth that matches the sim-
ulation model results and, with large burst sizes,
actually exceeds 95 percent efficiency.

Prefetch Logic

DMA writes complete on the PCI before they com-
plete on the system bus, but DMA reads must wait for
data fetched from memory or from a peer on another
PCI. As such, latency for DMA reads is always worse
than it is for writes. PCT Local Bus Specification
Revision 2.1 provides a delayed-transaction mechanism
tor devices with latencies that exceed the PCI inital-
latency requirement.* The initial-latency requirement
on host bus bridges is 32 PCI cycles, which is the max-
imum overhead that may be introduced before the
first data cycle. The AlphaServer 4100 initial latency
for memory DMA reads is between 18 and 20 PCI

PERCENT
AVAILABLE
CYCLES
SPENT
MOVING
DATA
(EFFICIENCY)

OVERHEAD CYCLES
(LATENCY PLUS STALLS)

KEY:

W 90% — 100% B 40% - 50%
M 80% — 90% O 30% -40%
W 70% - 80% O 20% - 30%
60% — 70% [10% - 20%
W 50% - 60% B 0%-10%

Figure 8
PCI Efficiency as a Function of Burst Size and Latency

cycles. Peer-to-peer reads of devices on different bus
segments are always converted to delayed-read trans-
actions because the best-case imital latency will be
longer than 32 PCI cycles.

PCI initial latency for DMA reads on the
AlphaServer 4100 system is commensurate with
expectations for current generation quad-processor
SMP systems. To maximize efficiency, we designed
prefetching logic to stream data to a 64-bit PCI device
without stalls after the initial-latency penalty has been
paid. To make sure the design could keep up with an
uninterrupted 64-bit DMA read, we used the queuing
model and analysis of the system bus protocol and
decided that three cache-line-size prefetch bufters
would be sufficient. The algorithm for prefetching
uses the advanced PCI commands as hints to deter-
mine how far memory data prefetching should stay
ahead of the PCI bus:

= Memory Read (MR): Fetch a single 64-byte cache
line.

» Memory Read Line (MRL): Fetch two 64-byte
cache lines.

» Memory Read Multiple (MRM): Fetch two
64-byte cache lines, and then fetch one line at
a time to keep the pipeline full.

After the PCI bus bridge responds to an MRM com-
mand by fetching two 64-byte cache lines and the sec-
ond line is returned, the bridge posts another read; as
the oldest buffer is unloaded, new reads are posted,
keeping one buffer ahead of the PCI. The third
prefetch bufter is reserved for the case in which a DMA

Digital Technical Journal Vol.8 No.4 1996

71

72

MRM completes while there are still preferch reads
outstanding. Reservation of this buffer accomplishes
two things: (1) it eliminates a time-delay bubble that
would appear between consecutive DMA read trans-
actions, and (2) it maintains a resource to fetch a
scatter-gather translation in the event that the next
transaction address is not in the TLB. Measured DMA
bandwidth is presented later in this paper.

The point at which the design stops prefetching is on
page boundaries. As the DMA window scatter-gather
map is partitioned into 8-KB pages, the interface is
designed to disconnect on 8-KB—aligned addressces.

The advantage of prefetching reads and absorbing
posted writes on this system is that the burst size can
be as large as 8 KB. With large burst size, the overhead
of connecting and disconnecting from the bus is
amortized and approaches a negligible penalty.

DMA and PIO Performance Results

We have discussed the relationship between burst size,
initial latency, and bandwidth and described several
techniques we used in the AlphaScrver 4100 PCI bus
bridge design to meet the goals for high-bandwidth
1/0. This section presents the performance delivered
by the 4100 1/0 subsystem design, which has been
measured using a high-performance PCI transaction
generator.

We collected performance data under the UNIX
operating system with a reconfigurable interface card
developed at DIGITAL, called PCI Pamette. It 15 a
64-bit PCI option with a Xiliny FPGA interface to
PCI. The board was configured as a programmable
PCI transaction generator. In this configuration, the
board can generate burst lengths of 1 to 512 cycles.
DMA either runs to a fixed count ot words transferred
or runs continuously (software selected). The DMA
engine runs at a fixed cadence (delay between bursts)
of 0 to 15 cycles in the case of a fixed countand at 0 to
63 cycles when run continuously.

The source of the DMA is a combination of a free-
running counter that is clocked using the PCI clock
and a PCI transaction count. The free-running counter
time-stamps successive words and detects wait states
and delays between transactions. The transaction count
identifies retries as well as transaction boundaries.

As the target of PIO read or write, the board can
accept arbitrarily large bursts of cither 32 or 64 bits. It
is a medium decode device and always operates with
zero wait statcs.

DMA Write Efficiency and Performance

Figure 9 shows the close comparison between the
AlphaServer 4100 system and a nearly perfect PCI
design in measured DMA write bandwidth. As
explained above, to sustain large bursts of DMA
writes, we implemented three 64-byte posted write

Digital Technical Journal Vol.8 No.4 1996

300

250 1 =

200 —

iy

wn

[=}
T

100 -

MEGABYTES PER SECOND

w
[}
T

0 32 64 128 256 512 1024 2048 4096

BURST SIZE (BYTES)
KEY:

] IDEAL PCI
O MEMORY WRITE (MEASURED)

Figure 9
Comparison of Mecasured DMA Write Performance on an
Ideal 64-bit PCland on an AlphaServer 4100 Svstem

buffers. Simulation predicted that this number of
butters would be sufficient to sustain full bandwidth
DMA writes—cven when the system bus is extremely
busy—Dbecause the bridges to the PCI are on a shared
system bus that has roughly 1 GB/s available band-
width. The PCl bus bridges arbitrate for the shared
system bus at a priority higher than the CPUs, but the
bridges arc permitted to execute only a single transac-
tion cach time they win the system bus. Therefore, in
the worst case, a PCI bus bridge will wait behind three
other PCI bus bridges for a slot on the bus, and cach
bridge will have ar least one quarter of the available
system bus bandwidth. Wicth 250 MB /s available but
with potential delay in accessing the bus, three posted
write buffers are sufficient to maintain full PCI band-
width for memory writes.

The ideal PCI system is represented by calculated
performance data for comparison purposes. It is a sys-
tem that has three cycles of target latency for writes.
Three cycles is the best possible for a medium decode
device. The goal for DMA writes was to deliver perfor-
mance limited only by the PCI device itself, and this
goal was achieved. Figure 9 demonstrates that mea-
sured DMA write performance on the AlphaServer
4100 system approaches theoretical maximums. The
combination of optimizations and innovations used
on this platform yielded an implementation that meets
the goal for DMA writes.

DMA Read Efficiency and Performance

As noted in the section Prefetch Logie, bandwidth
performance of DMA reads will be lower than the per-
formance of DMA writes on all systems because there
is delay in fetching the read data from memory. For
this reason, we included three cache-line—sjze prefetch
buffers in the design.

Figure 10 compares DMA read bandwidth mea-
sured on the AlphaServer 4100 system with a PCI sys-
tem that has 8 cycles of inital latency in delivering
DMA read data. This figure shows that delivered
bandwidth improves on the AlphaServer 4100 system
as burst size increases, and that the effect of initial
latency on measured performance is diminished with
larger DMA bursts.

The ideal PCI system used calculated performance
data for comparison, assuming a read target latency of
8 cycles; 2 cycles are for medium decode of the
address, and 6 cycles are for memory latency of 180
nanoseconds (ns). This represents about the best per-
formance that can be achieved today.

Figure 10 shows memory read and memory read
line commands with burst sizes limited to what is
expected from these commands. As explained else-
where in this paper, memory read is used for bursts of
less than a cache line; memory read line is used for
transactions that cross one cache line boundary but are
less than two cache lines; and memory read multiple
is for transactions that cross two or more cache line
boundaries.

The efficiency of memory read and memory
read line does not improve with larger bursts because
there is no prefetching beyond the first or second
cache line respectively. This shows that large bursts
and use of the appropriate PCI commands are both
necessary for efficiency.

Performance of PIO Operations
PIO transactions are initiated by a CPU. AlphaServer
4100 PIO performance has been measured on a

300
2501

2001

MEGABYTES PER SECOND

32 64 128 256

system with a single CPU, and the results are pre-
sented in Figure 11. The pended protocol for flow
control on the system bus limits the number of read
transactions that can be outstanding from a single
CPU. A single CPU issuing reads will stall waiting for
read-return data and cannot issue enough reads to
approach the bandwidth limit of the bridge. Measured
read performance is quite a bit lower than the theoret-
ical limit. A system with muluple CPUs doing PIO
reads—or peer-to-peer reads—will deliver PIO read
bandwidth that approaches the predicted performance
of the PCI bus bridge. PIO writes are posted and the
CPU stalls only when the writes reach the IQ thresh-
old. Figure 11 shows that PIO writes approach the
theoretical limit of the host bus bridge.

PIO bursts are limited by the size of the I/0 read
and write merge buffers on the CPU. A single
AlphaServer 4100 CPU is capable of bursts up to
32 bytes. PIO writes are posted; therefore, to avoid
stalling the system with system bus flow control, in the
maximum configuration (sce Figure 2), we provide a
minimum of three posted write buftfers that may be
filled before flow control is used. Configurations with
fewer than the maximum number of CPUs can post
more PIO writes before encountering flow control.

Summary

The DIGITAL AlphaServer 4100 system incorporates
design innovations in the PCI bus bridge that provide
a highly efficient interface to 1/0 devices. Partial
cache line writes improve the efficiency of small writes
to memory. The peer link mechanism uses TLBs to

512 1024 2048 4096

BURST SIZE (BYTES)

KEY:

] IDEAL PCI (8 CYCLES TARGET LATENCY)
Il MEMORY READ MULTIPLE (MEASURED)

O MEMORY READ LINE (MEASURED)
O MEMORY READ (MEASURED)

Figure 10

Comparison of DMA Read Bandwidth on the AlphaServer 4100 System and on an Ideal PCI System

Digital Technical Journal

Vol.8 No.4 1996

73

74

160
1401
120+
100+

80
60
40t

[

gl B

MEGABYTES PER SECOND
o

PIO WRITE, 32-BIT PCI

KEY:

[0 MEASURED PERFORMANCE
[d THEORETICAL PEAK PERFORMANCE

PIO READ, 32-BIT PCI

PIO WRITE, 64-BIT PCI PIO READ, 64-BIT PCI

Figure 11

Comparison of AlphaServer 4100 PIO Pertormance with Theoretical 32-byte Burst Peak Performance

map device address space on independent peer PCI
buses to permit direct peer transactions. Reordering of
rransactions in queues on the PCI bridge, combined
with the use of PCI delayed transactions, provides a
deadlock-free design for peer transactions. Bufters and
preferch logic that support very large bursts without
stalls vield a system that can amortize overhead and
deliver performance limited only by the PCI devices
used in the system.

In summary, this system meets and exceeds the per-
formance goals established for the 1/0 subsystem.
Notably, I /O subsystem support for partial cache line
writes and for direct peer-to-peer transactions signifi-
cantly improves etficiency of operation in a MEMORY
CHANNEL cluster system.

Acknowledgments

The DIGITAL AlphaServer 4100 1/0 design tcam
was responsible for the 1/0 subsystem implementa-
tion. The design team included Bill Bruce, Steve Coc,
Dennis Haves, Cralg Keefer, Andy Koning, Tom
McLaughlin, and John Lynch. The 1/0 design verifi-
cation tecam was also key to delivering this product:
Dick Beaven, Dmetro Kormeluk, Art Singer, and
Hitesh Vyas, with CAD support from Mark Matulatis
and Dick Lombard.

Several system team members contributed to inven-
tons that improved product performance; most notable
were Paul Guglielmi, Rick Hetherington, Glen Herdeg,
and Maurice Steinman. We also extend thanks to our
performance partners Zarka Cveranovic and Susan
Carr, who developed and ran the queuing models.

Mark Shand designed the PCI Pamette and pro-
vided the performance measurements used in this
paper. Many thanks for the nights and weckends spent
remotely connected to the system in our lab to gather
this data.

Digital lechnical Journal Vol.8 No.4 1996

References and Note

L. Winter UNIX Hot Iron Awards, UNIX EXPO Plus,
October 9, 1996, htrp://www.aim.com (Menlo Park,
Calit.: AIM Technology).

2. R. Gillett, “MEMORY CHANNEL Network for PCI,”
IEEE Micro (February 1996): 12-18.

3. G. Herdeg, “Design and Implementation ot the
AlphaServer 4100 CPU and Memorv Architecture,”
Digital Technical Journal, vol. 8, no. 4 (1996, this
issuc): 48-60.

4. PCI Local Bus Specification, Revision 2.1 (Portland,
Oreg.: PCI Special Interest Group, 1995).

. In PCI terminology, a master is any device that arbitrates
for the bus and iniriates transactions on the PCI (i.e.,
performs DMA) before accepting a transaction as target.

wl

Biographies

Samuel H. Duncan

A consultant engineer and the archirect for the AlphaServer
4100 1/0 subsystem design, Sam Duncan is currently
working on core logic design and architecture for the next
generation of Alpha servers and workstations. Since join-
ing DIGITAL in 1979, he has been part of Alpha and VAX
svstem cngineering teams and has represenced DIGITAL
on several industry standards bodies, including the PCI
Special Tnterest Group. He also chaired the group that
developed the IEEE Standard for Communicating Among
Processors and Peripherals Using Shared Mcemory. He has
been awarded one patent and has four patents filed for
inventions in the AlphaServer 4100 system. Sam received
a B.S.E.E. from Tufts University.

Craig D. Keefer

Craig Keefer is a principal hardware engincer whose engi-
neering expertise is designing gate arrays. He was the gate
array designer for one of the two 235K CMOS gate arrays
in the AlphaServer 8200 system and the team Jeader for the
command and address gate array in the AlphaServer 8400
1/0 module. A member of the Server Product Development
Group, he is now responsible for designing gate arrays for
hierarchical switch hubs. Craig joined DIGITAL in 1977
and holds a B.S.E.E from the University of Lowell.

Thomas A. McLaughlin

Tom McLaughlin is a principal hardware engineer work-
ing in DIGITAL’s Server Product Development Group.
He is currently involved with the next generation of high-
end server platforms and is focusing on logic synthesis
and ASIC design processes. For the AlphaServer 4100
project, he was responsible for the logic design of the 1/O
subsystem, including ASIC design, logic synthesis, logic
verification, and timing verification. Prior to joining the
AlphaServer 4100 project, he was a member of Design
and Applications Engineering within DIGITAL’s External
Semiconductor Technology Group. Tom joined DIGITAL
in 1986 after receiving a B.T.E.E.T. from the Rochester
Institute of Technology; he also holds an M.S.C.S. degree
from the Worcester Polytechnic Institute.

Digital Technical Journal

Vol. 8 No. 4

1996

75

76

Design of the 64-bit
Option for the Oracle7
Relational Database
Management System

Like most database management systems, the
Oracle7 database server uses memory to cache
data in disk files and improve the performance.
In general, larger memory caches result in better
performance. Until recently, the practical limit
on the amount of memory the Oracle? server
could use was well under 3 gigabytes on most
32-bit system platforms. Digital Equipment
Corporation’s combination of the 64-bit Alpha
system and the DIGITAL UNIX operating system
differentiates itself from the rest of the com-
puter industry by being the first standards-
compliant UNIX implementation to support
linear 64-bit memory addressing and 64-bit
application programming interfaces, allowing
high-performance applications to directly access
memory in excess of 4 gigabytes. The Oracle7
database server is the first commercial data-
base product in the industry to exploit the per-
formance potential of the very large memory
configurations provided by DIGITAL. This paper
explores aspects of the design and implementa-
tion of the Oracle 64 Bit Option.

Digital Technical Journal Vol.8 No.4 1996

Vipin V. Gokhale

Introduction

Historically, the limiting factor for the Oracle? rela-
tional database management system (RDBMS) pertor-
mance on any given platform has been'the amount of
computational and I/0 resources available on a single
node. Although CPUs have become taster by an order
of magnitude over the last several years, 1/0 speeds
have not improved commensurately. For instance, the
Alpha CPU clock speed alone has increased four times
since its introduction; during the same time period,
disk access times have improved by a factor of two at
best. The overall throughput of database software is
critically dependent on the speed ofaccess to data.

To overcome the 1/0 speed limitation and to maxi-
mize pertformance, the standard Oracle7 database server
alrcady utilizes and is optimized for various paralleliza-
tion techniques in software (e.g., intelligent caching,
data prefetching, and parallel query execution) and in
hardware (e.g., symmetric multiprocessing [SMP] sys-
tems, clusters, and massively parallel processing [MPP]
systems). Given the disparity in latency for data access
between memory (a few tens of nanoseconds) and disk
(a few milliseconds), a common technique for maximiz-
ing performance is to minimize disk 1/0. Our project
originated as an investigation into possible additional
performance improvements in the Oracle7 database
server in the context of increased memory addressability
and execution speed provided by the AlphaServer and
DIGITAL UNIX system. Work done as part of this proj-
ect subsequently became the foundation for product
development of the Oracle 64 Bit Option.

Of the memory resource that the Oracle7 database
uscs, the largest portion is used to cache the most fre-
quently used data blocks. With hardware and operat-
ing system support for 64-bit memory addresses, new
possibilities have opened up for high-performance
application software to take advantage of large mem-
ory configurations.

Two of the concepts utilized are hardly new in data-
base development, i.¢., improving database server per-
formance by caching more data in memory and
improving 1/0 subsystem throughput by increasing
data transfer sizes. However, various conflicting fac-
tors contribute to the practical upper bounds on

performance improvement. These factors include
CPU architectures; memory addressability; operating,
system features; cost; and product requirements for
portability, compatibility, and time-to-market. An
additional design challenge for the Oracle 64 Bit
Option project was a requirement for significant per-
formance increases for a broad class of existing data-
base applications that use an open, general-purpose
operating systermn and database software.

This paper provides an overview of the Oracle 64
Bit Option, factors that influenced its design and
implementation, and performance implications for
some database application areas. In-depth information
on Oracle7 RDBMS architecture; administrative com-
mands, and tuning guidelines can be found in the
Oracle7 Server Documentation Sel.! Dertailed analysis,
database server, and application-tuning issues are
deferred to the references cited. Overall observations
and conclusions from experiments, rather than specific
details and data points, are used in this paper except
where such darta is publicly available.

Oracle 64 Bit Option Goals

The goals for the Oracle 64 Bit Option project were as
follows:

= Demonstrate a clearly identifiable performance
ncrease for Oracle? running on DIGITAL UNIX
systems across two commonly used classes of dara-
base applications: decision support systems (DSS)
and online transaction processing (OLTP).

= Ensure that 64-bit addressability and large memory
configurations are the only two control variables
that influcnce overall application performance.

= Break the 1- to 2-GB barrier on the amount
of directly accessible memory that can practically
be used for typical Oracle7 database cache
umplementations.

» Add scalability and performance features that com-
plement, rather than replace, current Oracle?
server SMP and cluster offerings.

» Implement all of the above goals without signifi-
cantly rewriting Oracle?7 code or introducing appli-
cation incompatibilities across any of the other
platforms on which the Oracle7 system runs.

Oracle 64 Bit Option Components

Two major components make up the Oracle 64 Bir
Option: big Oracle blocks (BOB) and large shared
global areca (LSGA). They are briefly described in this
section.

The BOB component takes advantage of large
memory by making individual database blocks larger
than those on 32-bit platforms. A database block is a

basic unit for 1/0 and disk space allocation in the
Oracle7 RDBMS. Large block sizes mean greater den-
sity in the rows per block for the data and indexes, and
typically benefit decision-support applications. Large
blocks are also useful to applications that require long,
contiguous rows, for example, applications that store
multimedia data such as images and sound. Rows that
span multiple blocks in Oracle7 require proportion-
ately more 1/0 transactions to read all the picces,
resulting in performance degradation. Most platforms
that run the Oracle7 system support a maximum data-
base block size of 8 kilobytes (KB); the DIGITAL
UNIX system supports block sizes of up to 32 KB.

The shared global area (SGA) is that area of memory
used by Oracle7 processes to hold critical shared data
structures such as process state, structured query lan-
guage (SQL)-level caches, scssion and transaction
states, and redo buffers. The bulk of the SGA in terms
of size, however, is the database buffer (or block)
cache. Use of the buffer cache means that costly disk
1/0 is avoided; thercfore, the performance of the
Oracle7 database server relates directly to the amount
of data cached in the bufter cache. LSGA secks to use
as much memory as possible to cache database blocks.
Ideally, an entire darabase can be cached in memory
(an “in-memory” database) and avoid almost all I/O
during normal operation.

A transaction whose dara request is satisfied from
the database bufter cache executes an order of magni-
tude faster than a transaction that must read its data
from disk. The difference in performance is a direct
consequence of the disparity in access times for main
memory and disk storage. A database block found in
the buftfer cache is termed a “cache hit.” A cache miss,
in contrast, is the single largest contributor to degra-
dation in transaction latency. Both BOB and LSGA use
memory to avoid cache misses. The Oracle7 bufter
cache implementation is the same as that of a typical
write-back cache. As such, a cache miss, in addition to
resulting in a costly disk 1/0, can have secondary
cffects. For instance, one or more of the least recently
uscd butfers may be evicted from the buffer cache if no
trec bufters are available, and additional 1/0 transac-
tions may be incurred if the evicted block has been
modified since the last time it was read from the disk.
Oracle? buffer cache management algorithms already
implement aggressive and intelligent caching schemes
and scek to avoid disk 1/0. Although cache-miss
penalties apply with or without the 64-bit option,
“cache thrashing” that results from constrained cache
sizes and large data sets can be reduced with the
option to the benefit of many existing applications.

The Oracle7 buffer cache is specifically designed
and optimized for Oracle’s multi-versioning read-
consistency transactional model. (Oracle7 buffer
cache is independent of the DIGITAL UNIX unified
buffer cache, or UBC.) Since Oracle7 can manage its

Digital Technical Journal Vol.8 No.4 1996

77

78

own buffer cache more effectively than file system
butfer caches, it is often recommended that the file
system cache size be reduced in favor of a larger
Oracle7 bufter cache when the database resides on
a file system. Reducing file system cache size also mini-
mizes redundant caching of data at the file system
fevel. For this reason, we rejected carly on the obvious
design solution of using the DIGITAL UNIX file sys-
tem as a large cache tor taking advantage of large
memory configurations—even though it had the
appeal of complete transparency and no code changes
to the Oracle7 system.

Background and Rationale for Design Decisions

The primary impetus for this project was to evaluate
the impact on the Oracle7 database server of emerging
64-bit platforms, such as the AlphaServer system and
DIGITAL UNIX operating system. Goals set forth
tor this project and subscquent design considerations
therefore excluded any pertormance and functionality
enhancements in the Oracle7 RDDBMS that could not
be attributed to the benefits offered by a typical 64-bit
plattorm or otherwise encapsulated within platform-
specific lavers of the database server code or the oper-
ating system itself.

Common arcas of potential benefit for a typical
64-bit platform (when compared to its 32-bit coun-
terpart) are (a) increased direct memory addressability,
and (b) the potential for configuring systems with
greater than 4 GB of memory. As noted above, appli-
cation performance of the Oracle7 database server
depends on whether or not data are found in the data-
basc buffer cache. A 64-bit platform provides the
opportunity to expand the database buffer cache in
Oracle?7 to sizes well beyond those of a 32-bit plat-
form. BOB and LSGA reflect the only logical design
choices available in Oracle7 to take advantage of this
extended addressability and meet the project goals.
Implementation of these components focused on
ensuring scalability and maximizing the effectivencss
ot available memory resources.

BOB: Decisions Relevant to On-disk Database Size

Larger database blocks consume proportionately
larger amounts of memory when the data contained in
those blocks are read from the disk into the database
bufter cache. Consequently, the size of the bufter
cache itself must be increased if an application requires
a greater number of these larger blocks to be cached.
For any given size of database butter cache, Oracle7
database administrators of 32-bit platforms have
had to choose berween the size of cach database block
and the number of databasc blocks that must be in
the cache to minimize disk [/0, the choice depending
on data access patrerns of the applications. Memory
available for the database bufter cache is further con-

Digital Technical Journal Vol.8 No.4 1996

strained by the fact that this resource is also shared by
many other critical data structures in the SGA besides
the bufter cache and the memory needed by the oper-
ating system. By climinating the need to choose
berween the size of the database blocks and bufter
cache, Oracle7 on a 64-bit platform can run a greater
application mix without sacrificing performance.

Despite the codependency and the common goal
of reducing costly disk 1/0, BOB and LSGA address
rwo difterent dimensions of database scalability: BOB
addresses on-disk database size, and the LSGA addresscs
in-memory database size. Application developers and
database administrators have complete flexibility to
favor one over the other or to use them in combination.

In Oracle?, the on-disk dara structures that locate
a row of data in the database use a block-address—
byte-offscet tuple. The data block address (DBA) is a
32-bit quantity, which is further broken up into file
number and block oftser within that file. The byte oft-
sct within a block is a 16-bit quantitv. Although the
number of bits in the DBA used for file number and
block oftset are plattorm dependent (10 bits for the file
number and 22 bits tor the block offscr is a common
format), there exists a theorcetical upper limit to the
size of an Oracle7 database. With some exceptions,
most 32-bit platforms support a maximum data block
size of 8 KB, with 2 KB as the default. For example,
using a 2-KB block size, the upper limit for the size
of the database on DIGITAL UNIX is slightlv under
8 terabytes (TB); whercas a 32-KB block size raiscs
that limit to slightly under 128 TB. The ability to sup-
port buffer cache sizes well bevond those of 32-bit
platforms was a critical prerequisite to enabling larger
sized dara blocks and consequently larger sized dara-
bases. Some 32-bit platforms are also constrained by
the tact that each data file cannot exceed a size of 4 GB
(especially it the data file is a file system managed
object) and therefore may not be able to use all of the
available block offset range in the existing DBA for-
mat. The largest database size that can be supported in
such a case is even smaller. Addressing the perceived
limits on the size of an Oracle7 database was an impor-
tant consideration. Design alternarnives that required
changes to the lavout or an interpretation of DBA for-
mat were rejected, at least in this project, because such
changes would have introduced incompatibilities in
on-disk data structures.

It should be pointed out that on current Alpha
processors using an 8-KB page size, a 32-KB dara
block spans four memory pages, and 1/0 code paths
in the operating system need to lock/unlock four
times as many pages when performing an 1/0 trans-
action. The larger transfer size also adds to the total
time taken to perform an 1/0. For instance, four
pages of memory that contain the 32-KB data block
may not be physically contiguous, and a scatter-gather
operation may be required. Although the Oracle”

database supports row-level locking for maximum
concurrency in cases where unrelated transactions may
be accessing different rows within a given data block,
access to the data block is serialized as each individual
change (a transaction-level change is broken down
into multiple, smaller units of change) is applied to the
data block. Larger data blocks accommodate more
rows of data and consequently increase the probability
of contention at the data block level if applications
change (insert, update, delete) data and have a localiry
of reference. Experiments have shown, however, that
this added cost is only marginal relative to the overall
performance gains and can be offset easily by carefully
tuning the application. Moreover, applications that
mostly query the data rather than modify it (c.g., DSS
applications) greatly benefit from larger block sizes
since in this case access to the data block need not be
serialized. Subtle costs such as the ones mentioned
above nevertheless help explain why some applications
may not necessarily see, tor example, a fourfold per-
formance increase when the change is made from an
8-KB block size to a 32-KB block size.

As with Oracle7 implementations on other platforms,
database block size with the 64-bit option is determined
at database creation time using db_block_size con-
figuration parameter.' It cannot be changed dynamically
at a later time.

LSGA: Decisions Relevant to In-memory Database Size

The focus for the LSGA eftort was to identify and elim-
inate any constraints in Oracle7 on the sizes to which
the database bufter cache could grow. DIGITAL UNIX
memory allocation application programming interfaces
(APIs) and process address space layout make it fairly
straightforward to allocate and manage System V
shared memory scgments. Although the size of cach
shared memory segment is limited to 2 maximum of
2 GB (due to the requirement to comply with UNIX
standards), multiple scgments can be used to work
around this restriction. The memory management
layer in Oracle7 code therefore was the initial area of
focus. Much of the Oracle7 code is written and archi-
tected to make it highly portable across a diverse range
of platforms, including memory-constrained 16-bit
desktop platforms. A particularly interesting aspect of
16-bit plattorms with respect to memory management
is that these platforms cannot support contiguous
memory allocations beyond 64 KB. Users arc forced
to resort to a segmented memory model such that
each individual segment does not exceed 64 KB in
size. Although such restrictions are somewhat con-
straining (and perhaps irrelevant) for most 32-bit
platforms—more so for 64-bit plattorms—which can
easily handle contiguous memory allocations well
in excess of 64 KB, memory management layers in
Oracle” code are designed to be sensitive and cautious
about large contiguous memory allocations and

would use segmented allocations if the size of
the memory allocation request exceeds a platform-
dependent threshold. In particular, the size in bytes
for each memory allocation request (a platform-
dependent value) was assumed to be well under 4 GB,
which was a correct assumption for all 32-bit plat-
forms (and even for a 64-bit platform without LSGA).
Internal data structures used 32-bit integers to repre-
sent the size of'a memory allocation request.

For cach buffer in the buffer cache, SGA also
contains an additional data structure (bufter header)
to hold all the metadata associated with that buf-
fer. Although memory for the buffer cache itself was
allocated using a special interface into the memory
management layer, memory allocation for bufter
headers used conventional interfaces. A different
allocation scheme was needed to allocate memory
for buffer headers. The bufter header is the only
major data structure in Oracle7 code whose size
requirements are directly dependent on the number of
butters in the buffer cache. Existing memory man-
agement interfaces and algorithms used priot to LSGA
work were adequate until the number of buffers in
the buffer cache exceeded approximately 700,000
(or buffer cache size of approximately 6.5 GB). Minor
code changes were necessary in memory manage-
ment algorithms to accommodate bigger allocation
requests possible with existing high-end and future
AlphaServer configurations.

The AlphaServer 8400 platform can support mem-
ory configurations ranging from 2 to 14 GB, using
2-GB memory modules. Some existing 32-bit plat-
torms can support physical memory configurations
that exceed their 4-GB addressing limit by way of seg-
mentation, such that only 4 GB of that memory is
directly accessible at any time. Programming complex-
ity associated with such segmented memory models
precluded any serious consideration in the design
process to extend LSGA work to such platforms.
Significantly rewriting the Oracle7 code was specifi-
cally identified as a goal not to be pursued by this proj-
ect. The Alpha processor and DIGITAL UNIX system
provides a flat 64-bit virtual address space model to
the applications. DIGITAL UNIX extends standard
UNIX APIs into a 64-bit programming environment.
Our choice of the AlphaServer and DIGITAL UNIX as
a development platform for this project was a fairly
simple one from a time-to-market perspective because
it allowed us to keep code changes to a minimum.

Efficiently managing a bufter cache of, for example,
8 or 10 GB in size was an interesting challenge. More
than five million buffers can be accommodated in a
10-GB cache, with a 2-KB block size. That number of
buffers is already an order of magnitude greater than
what we were able to experiment with prior to the
LSGA work. The Oracle7 bufter cache is organized as
an associative write-back cache. The mechanism tor

Digital Technical Journal Vol.8 No.4 1996

79

80

locating a data block of interest in this cache is supported
by common algorithms and data structures such as hash
functions and linked lists. In many cases, traversing criti-
cal hinked lists is serialized among contending threads of
exceution to maintain the integrity of the lists themse
and sccondary data structures managed by these lists. As
aresult, the size of such critical lists; for example, has an
impact on overall concurrency. The larger buffer count
now possible in LSGA configurations had the net eftect
of reduced concurrency because the size of these lists is
proportionately larger. LSGA provided a framework to
test contributions from other unrelated projects that
addressed such potential bottlenecks to concurrency, as
it could realistically simulate refatively more stringent
boundary conditions than betore.

VCS

Scalability Issues

Engincering teams at Oracle have worked very closely
with their counterparts in the DIGITAL UNIX operat-
ing system group throughout this project. The data
collected in the course of the project was usetul in ana-
lvzing and addressing the scalability issues in the basc
operating svstem as well as in the Oracle7 product.
Examples of this work are in the base operating system
granularity hint regions and in the shared page tables.”

For every page of physical and virtual memory, an
operating system must maintain various data structures
such as page tables, dara structures to track regions of
memory with certain attributes (such as System V shared
memory regions, or text and data segments), or data
structures that track processes which have references to
these memory regions. Ancillary operating system data
structures such as page tables grow in size pro-
portionately to the size of physical memory. Changes
to page table management associated with System V
shared memory regions were made such that processes
that mapped the shared memory regions could share
page tables in addition to the data pages themsclves.
Prior to this change, cach process mapping the shared
memory region used a copy of assoctated page tables.
A changge like this reduced physical memory consump-
tion by the operating system. For example, on an Alpha
CPU supporting an 8-KB page size, it would take 8 KB
in page table entries to map § MB of physical memory.
For an SGA of 8 GB, it would take 1 MB in page table
entries. It is notr uncommon in the Oracle? system tor
hundreds of processes to connect to the database, and
theretore map the 8 GB of SGA. Without shared page
tables, 100 such processes would have consumed 100
MB of physical memory by maintaining a per-process
copy of page tables.

A granularity hint region is a region of physically con-
tiguous pages of memory that share virtual and physical
mappings between all the processes that map them.
Such a memory layout allows DIGITAL UNIX to take
advantage of the granularity hinr feature supported by
Alpha processors. Granularity hint bits in a page table

Digital 'T'echnical Journal Vol.8 No.4 1996

entry allow the Alpha CPU to use a single translation
look-aside bufter (TLB) entry to map a 512K physical
memory space. Using one TLB entry to map larger
physical memory has the potential to reduce processor
stalls during TLB misses and refills. Also, because of the
requirement that the granularity hint region be both
virtually and physically contiguous, it is allocated at sys-
tem startup time and 1s not subject to normal virtual
memory management; for example, it is never paged in
or out, and subsequently the cost of a page fault is mini-
mal. Since pages in granularity hint regions are physi-
cally conriguous, anv 1/0 done tfrom this region of
memory is relativelv more etficient because it need not
go through the scatter-gather phase.

Summary of Test Results

One of the project goals was to demonstrate clear
performance benefits for two common classes of data-
basc applications, DSS and OLTP. The Transaction
Processing Council (TPC) provides an industry-
standard benchmark suite for both applications, that
is, TPC-C for OLTP and TPC-D for DSS. An industrv-
standard benchmark would have been a logical choice
for a workload that would demonstrate performance
benefits. However, the enormous time, resources, and
cttort required to stage an audited TPC benchmark
and the strict guidelines for any direct comparison of
published benchmark results were major factors in
the decision to develop a workload for this project
that matched the spirit of the TPC benchmark but not
necessarily the letrer.

In late 1995, Oracle Corporation ran a series of per-
formance tests for a DSS-class workload of the Oracle?
system, with and without the 64-bit option on the
AlphaServer 8400 system running the DIGITAL UNIX
operating system with 8 GB of physical memory. A
detailed report on this test is published and available
from Oracle Corporation.” These results, shown in
Figure 1, clearly demonstrate the benefits of a large
amount of physical memory in a configuration with
the 64-bit option. A summary of the tests conducted is
presented here along with some data points and key
obscrvations.

(Readers interested in performance characteristics of
an audited industry-standard OLTP benchmark are
reterred to the Digital Technical Journal, Volume 8,
Number 3. Two papers present performance character-
istics of Oracle? Parallel Server release 7.3 using 5.0 GB
SGA, and a TPC-C workload on a four-node cluster.?)

The test database consisted of five tables, represent-
ing approximately 6 GB of data. The tests included
nwvo separate configurations:
= A “standard” configuration with a 128-MB SGA

with a 2-KB database block size

= A 64-bit option-enabled configuration with a 7-GB
SGA and 32-KB databasc block size

PERFORMANCE RATIOS OF LSGA TO SGA

251.9
250.0 T
226.2 2008
O 200.0f
T
o
W
o 1500
4
S
o F 95.4
5 100.0
.
[ia
i
o 500F
8.7 17.3
OO i 1 I 1 1 i
1 2 3 4 5 6
TRANSACTION TYPE
Figure 1

Performance Improvements for a DSS-class Workload,
Ratios of LSGA to SGA

The evaluation included running six separate trans-
action types against these two configurations:

1. Full rable scan against a table with 42 millon rows
(without the Parallel Query Option)

2. Full table scan against a table with 42 million rows
(with the Parallel Query Option)

3. Set of ad hoc queries against a rtable with
42 million rows

4. Set of ad hoc querics involving a join against
three tables with 10.5 million, 1.4 million, and
42 million rows, respectively

5. Sct of ad hoc queries involving a join against four
tables with 1 million; 10.5 million, 1.4 million; and
42 million rows, respectively

6. Set of ad hoc queries involving a join against
five tables with 70,000, 1 million, 10.5 million,
1.4 million, and 42 million rows, respectively

Each bar in Figure 1 represents a ratio of execution
time (elapsed) berween a large SGA (64-bit option)
and a small SGA (“standard” conhguration) for each
of the six ransaction types. In every case, the configu-
ration with the 64-bit option cnabled consistently out-
performed a “standard” configuration. In some cases,
the performance increase with the option enabled was
over 200 times that of the standard configuration.

The transaction mix chosen for this test represents
database operations commonly used in DSS-class
applications (¢.g., full table scans, sort/merge, and
joins). The test also uscs a characteristically large data
set. Transaction types 1 and 2 are identical except for the
use of the Parallel Query Option. The Paralle) Query
Option in Oracle7 breaks up some database operations
such as table scans and sorts/merge into smaller work
units, and executes them concurrently. By default, these
operations are exccuted serially, using only one thread
of execution. The Parallel Query Option (independent

of the 64-bit option) is a standard oftering in the
Oracle7 database server product since release 7.1. Use
of parallel query in this test illustrates the effect of the
64-bit option enhancements on preexisting mecha-
nisms for database performance improvement.

All other things being equal, if the only difterence
between a standard configuration and a 64-bit-
option—enabled configuration is that the entire data set
is cached in memory in the latter confguranion and that
typical times for main memory accesses are a few tens of
nanoscconds whereas times for disk accesses are a few
milliscconds, only the six to seven times performance
increase in transaction type 1 would seem far below
expectation. For a full table scan operation, the Oracle7
scrver is already optimized to use aggressive data
prefetch. Before the server begins processing data in
a given data block, it launches a read operation for
the next block. This technique significantly reduces
application-visible disk access latencies by overlapping
computation and I/0. Disparity in access time for main
memory and disk is still large enough to cause the com-
putation to stall while waiting for the read-ahead 1/0 to
finish. When data is cached in memory, this remaining
stall point in the query processing is eliminated.

It is also important to note that a full table scan
operation tends to access the disk sequentially. Tt is
typical for disk access times to be better by a factor of
at least two in sequential access as compared with ran-
dom access. Keeping block size and disk and main
memory access times the same as before in this equa-
tion, a faster Alpha CPU would yield better ratios in
this test because it would finish computation propor-
tionately faster and would wait longer for the read-
ahead 1/0 to finish. Follow-on tests with faster CPUSs
supported this observation. Overlapping computation
and 1/0 as in a table scan operation may not be possi-
ble in an index lookup operation. The sequence of
operations for accessing a row of data using a B-tree
indcex, in the best case, involves an 1/0 to read the
index block matching the key value first, followed by
another I /0 to read the data block; a second 1,/0 can-
not be launched until the first finishes because the
address of the data block to be read can only be deter-
mined by examining the contents of the index block
read in the previous operation. Unlike table scans,
these 1/0s are nonscquential. Latencies of the disk
1,/0 for an index lookup, as secen from the application
perspective, are consequently greater than latencics for
a table scan. Minimizing or eliminating 1/0s in the
index lookup, therefore, has the potential for even
greater increascs in speed. Index lookups are typical in
OLTP workloads.

The test using transaction type 2 illustrates a cumu-
lative effect because performance benefits for a single
thread of execution extend to all the threads when the
workload is parallelized.

Digital Technical Journal Vol. 8 No.4 1996

[oe)

82

Unlike full table scans, the sort/merge operation
generates intermediate results. Depending on the size
of these partial results, they mav be stored in main
memory if an adequate amount of memory is avail-
able; or they may be written back to temporary storage
space in the database. The latter operation results in
additional 1/0s, proportionately more in number as
mputs to the sort/merge grow in size or count. The
64-bit option makes it possible to eliminate these 1,/0s
as well, as illustrated in transaction types 4 through 6.
Performance improvements are greater as the com-
plexity of querics increases.

Conclusion

The disparity between memory speeds and disk speeds
is likelv to continue tor the foresceeable future. Large
memory configurations represent an opportunity to
overcome this disparity and to increase application
pertormance by caching a large amount of data in
memory. Even though the Oracle 64 Bit Option
improves database performance—two orders of mag-
nitude tn some cases—specific application characteris-
tics must be evaluated to determine the best means for
maximizing overall performance and to balance the
significant increase in hardware cost for the large
amount of memory. The Oracle 64 Bit Option com-
plements existing Oracle?7 features and functionality.
The exact extent of the increases in speed with the
64-bit option varies based on the type of databasc
operation. Faster CPUs and denser memory allow
tor even more performance improvements than have
been demonstrated. Facrors of importance to new
or existing applications, particularly those sensitive to
response time, are an order of magnitude performance
in terms of speed increases and the ability to utilize
memory configurations much larger than previously
possible in Oracle7 or tfor applications that use
moderate-size data sets. With sufficient physical mem-
ory, the darabases used by these response-time—
sensitive applications can now be entirely cached in
memory, climinaring virtually all disk 1,/0, which is
often a major constraint to response time. In-memory
{or fully cached) Oracle7 databases do not compro-
misc transactional integrity in any way; nor do such
configurations require special hardware (for example,
nonvolatile random access memory [RAM).

Because a 64-bit AlphaServer and DIGITAL UNIX
operating system transparently extends existing 32-bit
APls into a 64-bit programming model, applications
can rtake advantage of added addressability without
using specialized APIs or making significant code
changes. Performance levels equal to or better than
previously possible with specialized hardware and soft-
ware can now be achieved with industry-standard,
open, general-purpose platforms.

Digital Technical Journal Vol.8 No.4 1996

Acknowledgments

Many people within several groups and disciplines at both
Oracle and DIGITAL have contributed to the success of this
project. Twould like ro thank the following individuals trom
Oracle: Walter Barustella, Saar Maoz, Jet Kennedy and
David Irwin of the DIGITAL Svstem Business Unit;
and from DIGITAL: Jim Woodward, Paula Long, Darrcll
Dunnuck, and Dave Winchell of the DIGITAL UNIX
Engincering group. Members of the Computer Svstems
Division’s Performance Group at DIGITAL have also con-
tributed ro this project.

References

L. Oracle7 Server Documentation Set (Redwood Shores,
Calit.: Oracle Corporation).

2. DIGIAL UNIN V4.0 Release Nofes (Mavnard, Mass.:
Digital Equipment Corporation, 1996).

3. R. Sites and R. Witek, eds., Alpha Architectitre Refer-
ence Manual (Newron, Mass.: Digital Press, 1995).

4. Orucle 64 Bit Option Performance Report o Digital
{NIX (Redwood Shores, Calif.: Oracle Corporation,
part number C10430, 1996).

5. J. Piantedosi, A. Sathave, and D. Shakshober, “Pertor-
mance Measurement of TruCluster Systems under the
TPC-C Benchmark,” and T. Kawaf] . Shakshober, and
D. Stanley, “Performance Analvsis Using Very Large
Mcemory on the 64-bit AlphaServer System,” Digital
Technical Jorrnal, vol. 8, no. 3 (1996): 46-65.

Biography

Vipin V. Gokhale

Vipin Gokhale is a Consulting Software Engincer ar Oracle
Corporation in the DTGITAL Svstem Business Unir where
lie has contributed to porting, optinvization, and platform-
specific features and functionality extensions to Oracle’s
database server on DIGITAL’s operating systems and ser
vers. He was responsible tor delivering the first Oracle7
port to the DIGITAT UNIX platform. Prior to joining
Oracle in 1990, Vipin was a Senior Software Engineer

in India, developing telecommunications software. He
received a B.'Tech. in Electronics and Telecommunica-
tions from the Institute of Technology, Banaras Hindu
University, India, in 1985,

VLM Capabilities of
the Sybase System 11
SQL Server

Software applications must be enhanced to
take advantage of very large memory (VLM)
system capabilities. The System 11 SQL Server
from Sybase, Inc. has expanded the semantics
of database tables for better use of memory
on DIGITAL 64-bit Alpha microprocessor-based
systems. Database memory management for
the Sybase System 11 SQL Server includes the
ability to partition the physical memory avail-
able to database buffers into multiple caches
and subdivide the named caches into multiple
buffer pools for various 1/0 sizes. The database
management system can bind a database or
one table in a database to any cache. A new
facility on the SQL Server engine provides
nonintrusive checkpoints in a VLM system.

T.K. Rengarajan
Maxwell Berenson
Ganesan Gopal
Bruce McCready
Sapan Panigrahi
Srikant Subramaniam
Marc B. Sugiyama

The advent of the System 11 SQL Server from Sybase,
Inc. coincided with the widespread availability and
use of very large memory (VLM) technology on
DIGITAL’s Alpha microprocessor-based computer
systems. Technological features of the System 11 SQL
Server werc used to achieve record results of 14,176
transactions-per-minute C (tpmC) at $198/tpmC
on the DIGITAL AlphaServer 8400 server product.’
One of these features, the Logical Memory Manager,
provides the ability to fine-tune memory manage-
ment. Itis the first step in exploiting the semantics of
database tables for better use of memory in VLM sys-
tems. To partition memory, a database administrator
(DBA) creates multiple named buffer caches. The
DBA then subdivides each named cache into multiple
buffer pools for various I/0 sizes. The DBA can bind a
database or one table in a database to any cache.
A new thread in the SQL Server engine, called the
Housekeeper, uses idle cycles to provide free (non-
intrusive) checkpoints in a large memory system.

In this paper, we briefly discuss VLM technology.
Then we describe the capabilities of the Sybase System
11 SQL Server that address the issues of fast access,
checkpoint, and recovery of VLM systems, namely, the
Logical Memory Manager, a VLM query optimizer,
the Housckeeper, and fuzzy checkpoint.

VLM Technology

The term very large memory is subjective, and its
widespread meaning changes with time. By VLM, we
mean systems with more than 4 gigabytes (GB) of
memory. In late 1996, personal computer servers with
4 GB of memory appeared in the marketplace. At $10
per megabyte (MB), 4 GB of memory becomes afford-
able ($40,000) at the departmental level for corpora-
tions. We expect that most of the mid-range and
high-end systems will be built with more memory in
1997. Growth in the amount of system memory is an
ongoing trend. Growth beyond 4 GB, however, is a
significant expansion; 32-bit systems run out of mem-
ory atter 4 GB.

DIGITAL developed 64-bit computing with its
Alpha line of microprocessors. Digital is now

Digital Technical Journal Vol.8 No.4 1996

83

84

well-positioned to tacilitate the transition trom 32-bit
to 64-bit systems. Sybase, Inc. provided one of the first
rclational darabase management svstems to use VLM
rechnology. The Sybase Svstem 11 SQL Server pro-
vides full, native support of 64-bit Alpha microproces-
sors and the 64-bit DIGITAL UNIX operating system.
DIGITAL UNIX s the first operating system to provide
a 64-bit address spacce for all processes. The System 11
SQI. Scrver uses this large address space primarily to
cache large portions of the database in memory.

VLM technology is appropriate for use with applica-
trions that have stringent response time requirements.
With these applications, for example, call-routing, it
becomes necessary to fit the entire database in mem-
orv.™* The use of VLM systems can also be beneficial
when the price/performance is improved by adding
more memory.?

Main Memory Database Systems

The widespread availability of VLM systems raises
the possibility of building main memory database
(MMDB) systems. Several techniques to improve the
performance of MMDB systems have been discussed
in the database literature. Reference 5 provides an
excellent, detailed survev. We provide a brief discus-
sion in this section.

Lock contention is low in MMDB svstems since the
data resides in memory. Hence, the granularity of con-
currency control can be increased to minimize the
overhead of lock operations. The lock manager data
structures can be combined with the database objects
to reduce memory usage. Specialized, stable memory
hardware can be used to minimize latency of logging.
Early release of transaction locks and group commit
during commit processing can be used to increase
concurrency and throughput. Since random access is
fastin MMDBs, access methods can be developed with
no key values in the index but only pointers to data
rows in memory.® Query optimizers need to consider
CPU costs, not [/O costs, when comparing various
alternative plans for a querv. In an MMDB, check-
pointing and failure recovery are the only reasons for
performing disk operations. A checkpoint process can
be made “fuzzy” with low impact on transaction
throughput. After a system failure, incremental recov-
cry processing allows transaction processing to resume
betore the recovery 1s complete.”

As memory sizes increase with VLM systems, data-
basc sizes are also increasing. In general, we expect
that databases will not fit in memory in the next
decade. Therefore, for most of the databases, MMDB
technigues can be exploited only for those parts of the
darabasce that do fit in memory.”

In addition to the capability of caching the entire
databasc in buffers, the Sybase System 11 SQL Server

Digital Techmcal Journal Vol.8 No.4 1996

provides technological advances that take advantage of
VLM systems. These arc the Logical Memory
Manager, VLM query optimization, the Housckeeper
thread, and fuzzy checkpoints. We discuss the signifi-
cance of these advances in the remaining sections of
this paper.

Logical Memory Manager

The Sybase SQL Scrver consists of several DIGITAL
UNIX processes, called engines. The DBA configures
the number of engines. As shown in Figure 1, cach
engine is permanently dedicated to one CPU of a sym-
metric multiprocessing (SMP) machine. The Svbase
engines share virtual memory, which has been sized to
include the SQIL Server executable. The virtual mem-
ory is locked to phyvsical memorv. As a result, there is
never any operating system paging for the Svbase
memory. This shared memory region also uses large
operating system pages to minimize translation look-
aside bufter (TLB) entries for the CPU.* The shared
memory holds the database bufters, stored procedure
cache, sort bufters, and other dynamic memory. This
memory is managed exclusively by the SQL Server.
One SQL Scrver usually processes transactions on
multiple databascs. Each database has its own log.
Transactions can span databases using two-phase com-
mit. For further details on the SQL Server architec-
ture, please sce reference 9.

The Logical Memory Manager (LMM) provides the
ability tor a DBA to partition the physical memory
available to database bufters. The DBA can partition
the memory used for the database bufters into multi-
ple caches. The DBA needs to specity a size and a name
for each cache. After all named caches have been
defined, the system defines the remaining memory as
the default cache. Once the DBA partitions the mem-
ory, it can then bind database entities to a particular
cache. The darabasce entity is one of the following: an

CPU CPU

SYBASE
ENGINE

SYBASE
ENGINE

SECOND-LEVEL
CACHE

SECOND-LEVEL
CACHE

BUS

MEMORY

Figure 1
SQL Server on an SMP System

entire database, one table in a database, or one index
on one table in a database. There is no limit to the
number of such entities that can be bound to a cache.
This cache binding directs the SQL Server to use only
that cache for the pages that belong to the entity.
Thus, the DBA can bind a small database to one cache.
In a VLM system, it the cache were sized to be larger
than the database, an MMDB would result.

Figure 2 shows the table bindings to named caches
with the LMM. The procedure cache is used only
for keeping compiled stored procedures in memory
and is shown for completeness. The item cache is a
small cache of 1 GB in size and is used for storing
a small read-only table (item) in memory. The default
cache holds the remaining tables. Figure 2 shows one
table bound to the item cache and the other rables
bound to the detault cache. By being able to partition
the use of memory for the item table separately, the
SQL Server is now able to take advantage of MMDB
techniques for only the item cache.

Each named cache can be larger than 4 GB. The size
is limited only by the amount of memory present in
the system. Although we do not expect such a need,
it is also possible to have hundreds of named caches;
64-bit pointers are used throughout the SQL Server
to address large memory spaces.

The LMM enables the DBA to fine-tunc the use of
memory. The LMM also allows for the introduction
of specific MMDB algorithms in the SQL Server based
on the semantics of database entities and the size of
named caches. For example, in the future, it becomes
possible for a DBA to express the fact that most of one
table fits in one named cache in memory, so that SQL
Server can use clock buffer replacement.

VLM Query Optimization

The SQL Server query optimizer computes the cost
of query plans in terms of CPU as well as 1/0. Both

PROCEDURE CACHE, 0.5 GB

% ITEM CACHE, 1 GB

DEFAULT CACHE,
45 GB

Figure 2
Table Bindings to Named Caches with Logical
Memory Manager

costs are reduced to an estimate of time. Since the
number of [/O operations depends on the amount of
memory available, the optimizer uses the size of the
cache in the cost calculations. With LMM, the opti-
mizer uses the size of the named cache to which a cer-
tain table is bound. Therefore, in the case of a database
that completely fits in memory in a VLM system, the
optimizer choices are made purely on the basis of CPU
cost. In particular, the 1/O cost is zero, when a table
or an index fits in a named cache.

The Sybase System 11 SQL Server introduced the
notion of the fetch-and-discard buffer replacement
policy. This strategy indicates that a buffer read from
disk will not be used in the near future and hence is
a good candidate to be replaced from the cache. The
buffer management algorithms leave this buffer close
to the least-recently-used end of the buffer chain. In
the simplest example, a sequential scan of a table uses
this strategy. With VLM, this strategy is turned off
if the table can be completely cached in memory. The
fetch-and-discard strategy can also be tuned by appli-
cation developers and DBAs if necessary.

Housekeeper

One of the motivatons for developing VLM was the
extremely quick response time requirements for trans-
actions. These environments also require high avail-
ability of systems. A key componentin achieving high
availability is the recovery time. Dartabase systems
write dirty pages to disk primarily for page replace-
ment. The checkpoint procedure writes dirty pages to
disk to minimize recovery time.

The Sybase System 11 SQL Server introduces a new
thread called the Housekeeper that runs only at idle
time for the system and does useful work. This thread
is the basis for lazy processing in the SQL Server for
now and the future. In System 11, the Housekeeper
writes dirty pages to disk. At first, it writes pages to
disk from the least-recently-used buffer. In this sense,
it helps page replacement. In addition to ensuring that
there are enough clean buffers, the Housekeeper also
attempts to minimize both the checkpoint time and
the recovery time. If the system becomes idle at any
time during transaction processing, even for a few mil-
liseconds, the Housekeeper keeps the disks (as many as
possible) busy by writing dirty pages to disk. It also
makes sure that none of the disks is overloaded, thus
preventing an undue delay if transaction processing
resumes. In the best case, the Housekeeper automati-
cally generates a free checkpoint for the system,
thereby reducing the performance impact of the
checkpoint during transaction processing. In steady
state, the Housekeeper continuously writes dirty pages
to disk, while minimizing the number of extra writes
incurred by premature writes to disk."

Digital Technical Journal Vol.8 No.4 1996

85

86

Checkpoint and Recovery

As the size of memory increases, the following two
facrors increase as well: (1) the number of wrires to
disk during the checkpoint and (2) the number of
disk I/0s to be done during recovery. The Sybase
System 11 SQL Server allows the DBA to tune the
amount of buffers that will be kept clean all the time.
This is called the wash region. In essence, the wash
region represents the amount of memory thatis always
clean (or strictly, in the process of being written to
disk). For example, if the total amount of memory tor
databasc butters is 6 GB and the wash region is 2 GB,
then ar any time, only 4 GB of memory can be in an
updated state (dirty). The ability to tune the wash
region reduces the load on the checkpoint procedure,
as well as recovery.

The Sybase System 11 SQL Server has implemented
a tuzzy checkpoint that allows transactions to proceed
even during a checkpoint operation. Transactions
are stalled only when they try to update a database
page that is being written to disk by the checkpoint.
Even in that case, the stall Jasts only for the time
it rakes the disk write to complere. In addition, in
the SQL Server, the checkpoint process can keep mul-
tiple disks busy by issuing a large number of asynchro-
nous writes one after another. During the time of
the checkpoint, the Housckeeper often becomes
active due to extra idle time created by the checkpoint.
The Housekeeper is selt-pacing; it does not swamp the
storage system with writes.

Commit Processing

The SQL Server uses the group commit algorithm to
improve throughput.*" The group commir algorithm
collects the log records of multiple transactions and
writes them to the disk in one 1/0. This allows higher
rransaction throughput due to the amortization of
disk 1/0 costs, as well as committing more and more
transactions in each disk write to the Jog file. The SQL
Server does not use a timer, however, to improve the
grouping of transactions. Instead, the duration of the
previous log 1/0 is used to collect transactions to be
committed in the next batch. The size of the batch is
determined by the number of transactions that reach
commit processing during one rotation of the log
disk. This self-tuning algorithm adapts itsclt to various
speeds of disks. For the same transaction processing
system, the grouping occurs more often with slower
disks than with faster disks.

Consider, for example, a system performing 1,000
transactions per second. Let us assume the log disk is
rated atr 7,200 rpm. Each rotation of the disk takes
8 milliseconds. Within this duration, we expect (on

Digiral Technical Journal Vol.8 No. 4 1996

the average) 8 transactions to complete, assuming uni-
form arrival rates at commit point. This indicates a nat-
ural grouping of 8 transactions per log write. For the
same system, if the log disk is rated at 3,600 rpm, the
same calculation viclds 16 transactions per log write.

The group commit algorithm used by the SQL
Server also takes advantage of disk arrays by initating
multiple asynchronous writes to different members of
the disk array. The SQL Server is also able to issue up
to 16 kilobytes in one write to a single disk. Together,
the group commit algorithm, large writes, and the
ability to drive multiple disks in a disk array climinate
the log bottlencck for high-throughput systems.

Future Work

When a VLM svstem fails, the large number of data-
base bufters in memory that are dirty need to be
recovered. Thercfore, database recovery time grows
with the size of memory in the VLM system, at least
for all database systems that use log-based recovery.
In addition, since there are a large number of dirty
bufters in memory, the performance impact of check-
point on transactions also mcreases with memory size.
To minimize the recovery time, one may increase the
checkpoint frequency. The checkpoints have a higher
impact, however, and need to be done infrequently.
These conflicting requirements need to be addressed
for VLM systems.

When a database fits in memory, the butter replace-
ment algorithm can be climinared. For example, for
a single rable that fits in one named cache, this opti-
mization can be done with the LMM. In addition; if
a table is rcad-only, it is possible to minimize the syn-
chronization necessary to access the buffers in mem-
ory. These optimizations require syntax for the DBA
to specify propertics (for example, read-only) of tables,
as well as propertics of named caches (for example,
bufter replacement algorithms).

These nwo arcas as well as other MMDB techniquces
will be explored by the SQL Server developers for
incorporation in future releasces.

Summary

The Sybase System 11 SQL Server supports VLM
systems built and sold by DIGITAL. The SQL Scrver
can completely cache parts of a darabase in memory.
It can also cache the entire database in memory if
the database size is smaller than the amount of mem-
ory. System 11 has facilitics that address issues of
fast access, checkpoint, and recovery of VLM systems;
these facilities are the Logical Memory Manager, the
VLM query optimizer, the Housckeeper, and fuzzy
checkpoint. The SQL Scrver product achieved

SMP TPC performance of 14,176 tpmC at
$198 /tpmC on a DIGITAL VLM system. The tech-
nology developed in System 11 lays the groundwork
for further implementation of MMDB techniques in
the SQL Scrver.

Acknowledgments

We gratefully acknowledge the various members of
the SQL Server development team who contributed to
the VLM capabilities described in this paper.

References and Notes

1. For more information about audited tpmC measure-
ments, see the Transaction Processing Performance
Council home page on the World Wide Web,

http://www.tpc.org.

2. S.-O. Hvasshovd, O. Torbjornsen, S. Bratsberg, and
P. Holager, “The ClustRa Telecom Database: High
Availability, High Throughput, and Real-Time
Response,” Procecdings of the 21st Very Large
Database Conference, Zurich, Switzerland, 1995.

3. H.Jagadish, D. Licuwen, R. Rastogi, A. Silberschatz,
and S. Sudharshan, “Dali: A High Performance Main
Memory Storage Manager,” Proceeclings of the 20th
Very Large Database Conference Conference,
Santiago, Chile, 1994. :

4. M. Hevtens, S. Listgarten, M.-A. Neimat, and
K. Wilkinson, “Smallbasc: A Main-Memory DBMS
for High-Pcrformance Applications” (1995).

5. H. Garcia-Molina and K. Salem, “Main Memory
Database Systems: An Overview,” TEEE Transactions
on Knowledyge and Data Engineering, vol. 4, no. 6
(1992): 509-516.

6. D. Gawlick and D. Kinkade, “Varictics of Concurrency
Control in IMS/VS Fast Path,” Database Engineer-
ing Bulletin, vol. 8, no. 2 (1985): 3-10.

7. E. Levy and A. Silberschatz, Tincrementeal Recovery
in Main Memory Database Systems {University of
Texas at Austin, Technical Report TR-92-01, January
1992).

8. |. Hennessy and D. Patterson, Compuiter Architec-
ture: A Quantitative Approach, Second Edition (San
Francisco: Morgan Kaufinann Publishers, Inc., 1995).

9. S§. Roy and M. Sugivama, Sybase Performance
Triing (Upper Saddle River, N.J.: Prenrice Hall
Professional Technical Reference, 1996).

10. Sybase System 11 SQL Server Docrimentation Set
(Emeryville, Calif.: Sybase, Inc., 1996).

11. P. Spiro, A. Joshi, and T. Rengarajan, “Designing
an Optimized Transaction Commit Protocol,” Digital
Technical Journal, vol. 3, no. 1 (Winter 1991):
70-78.

Biographies

T.K. Rengarajan

T. K. Rengarajan has been building high-performance
databasc systems for the past 10 years. He now leads the
Server Performance Engineering and Development (SPeeD)
Group in SQL Server Engineering at Sybase, Inc. His most
rceent focus has been System 11 scalability and self-tuning
algorithms. Prior to joining Sybasc, he contributed to the
DEC Rdb system at DIGITAL in the areas of buffer man-
agement, high availability, OLTP performance on Alpha
systems, and multimedia databases. He holds M.S. degrees
in computer-aided design and computer science from the
University of Kentucky and the University of Wisconsin,
respectively.

Maxwell Berenson

Max Berenson is a staff software engineer in the Server
Performance Engincering and Development Group in SQL
Server Engineering at Sybase, Inc. During his four vears at
Sybase, Max has developed the Logical Memory Manager
for System 11 and has made many butfer manager modifi-
cations to improve SMP scalability. Prior to joining Sybase,
Max worked at DIGITAL, where he developed a relational
databasc cngine.

Ganesan Gopal

Ganesan Gopal is a senior member of the Server Perform-
ance Engineering and Development Group at Sybase, Inc.
He was a member of the team that implemented the House-
keeper in System 11. In addition, he has worked on a num-
ber of projects that have enhanced the performance and
scaling of the Sybase SQL Server. At present, he is working
on a performance feature for an upcoming release. He
holds bachelor degrees in advanced physics and in elec-
tronics and communication engineering from the Indian
Institute of Science, Bangalore, India.

Digiral Technical Journal Vol.8 No.4 1996

87

Bruce McCready

Bruce McCreadv is an SQL Scrver performance engineer
in the Server Performance Engineering and Development
Group at Sybase, Inc. Bruce received a B.S. in computer
science from the University of California at Berkeley in 1989.

Sapan Panigrahi

A senior performance enginceer, Sapan Panigrahi works in
the Server Performance Engineering and Development
Group at Sybase, Inc. He was responsible for TPC bench-
marks and performance analvsis for the Sybase SQL Scrver.

Srikant Subramaniam

A member of the Server Performance Engineering and
Development Group at Sybase, Inc., Srikant Subramaniam
was involved in the design and implementation of the VLM
support in the Sybase SQL Server. He was a member of
the ream that implemented the Logical Memory Manager
in System 11. In addition, he has worked on projects that
have enhanced the performance and scaling of the Sybase
SQL Server. At present, he is working on performance
optimizations for an upcoming rclease. He holds an M.S.
in computer science from the University ot Saskatchewan,
Canada. His specialty arca was the performance of shared-
memory multiprocessor systens.

Marc B. Sugiyama

Marc Sugivama is a staft software engineer in the SQL
Server Performance Engineering and Development Group
at Sybase, Inc. He was the technical lead for the original
port of Sybase SQL Server to the DIGITAL Alpha OSE/1
svstem. He is coauthor of Sybase Performance Tuning.
published by Prentice Hall, 1996.

88 Digital Technical Journal Vol.8 No. 4 1996

Measured Effects of
Adding Byte and Word
Instructions to the Alpha
Architecture

The performance of an application can be
expressed as the product of three variables:

(1) the number of instructions executed, (2) the
average number of machine cycles required to
execute a single instruction, and (3) the cycle
time of the machine. The recent decision to
add byte and word manipulation instructions
to the DIGITAL Alpha Architecture has an effect
upon the first of these variables. The perfor-
mance of a commercial database running on
the Windows NT operating system has been
analyzed to determine the effect of the addition
of the new byte and word instructions. Static
and dynamic analysis of the new instructions’
effect on instruction counts, function calls, and
instruction distribution have been conducted.
Test measurements indicate an increase in per-
formance of 5 percent and a decrease of 4 to

7 percent in instructions executed. The use of
prototype Alpha 21164 microprocessor-based
hardware and instruction tracing tools showed
that these two measurements are due to the
use of the Alpha Architecture’s new instructions
within the application.

David P. Hunter
Eric B. Betts

The Alpha Architecture and its initial implementations
were limited in their ability to manipulate data values
at the byte and word granularity. Instead of allowing
single instructions to manipulate byte and word val-
ues, the original Alpha Architecture required as many
as sixteen instructions. Recently, DIGITAL extended
the Alpha Architecture to manipulate byte and word
data values with a single instruction. The second gen-
eration of the Alpha 21164 microprocessor, operating
at 400 megahertz (MHz) or greater, is the first imple-
mentation to include the new instructions.

This paper presents the results of an analysis of
the effects that the new instructions in the Alpha
Architecture have on the performance, code size, and
dynamic instruction distribution of a consistent execu-
tion path through a commercial database. To exercise
the databasc, we modified the Transaction Processing
Performance Council’s (TPC) obsolete TPC-B bench-
mark. Although it is no longer a valid TPC bench-
mark, the TPC-B benchmark, along with other TPC
benchmarks, has been widely used to study database
performance.'”

We began our project by rebuilding Microsoft
Corporation’s SQL Server product to use the new
Alpha instructions. We proceeded to conduct a static
code analysis of the resulting images and dynamic link
libraries (DLLs). The focus of the study was to investi-
gate the impact that the new instructions had upon a
large application and not their impact upon the oper-
ating system. To this end, we did not rebuild the
Windows NT operating system to use the new byte
and word instructions.

We measured the dynamic effects by gathering
instruction and function traces with several profiling
and image analysis tools. The results indicate that
the Microsoft SQL Server product benefits from the
additional byte and word instructions to the Alpha
microprocessor. Our measurements of the images and
DLLs show a decrease in code size, ranging from neg-
ligible to almost 9 percent. For the cached TPC-B
transactions, the number of instructions executed
per transaction decreased from 111,288 to 106,521
(a 4 percent reduction). For the scaled TPC-B trans-
actions, the number of instructions executed per

Digiral Technical Journal Vol.8 No.4 1996

89

90

transaction decrcased from 115,895 to 107,854
(a 7 pereent reduction).

The rest of this paper is divided as tollows: we begin
with a brict overview of the Alpha Architecture and its
mtroduction of the new byre and word manipulation
instructions. Next, we desceribe the hardware, software,
and tools used m our experiments. Lastly, we provide
an analysis of the instruction distribution and count.

Alpha Architecture

The Alpha Architecture is a 64-bit, load and store,
reduced instruction sct computer (RISC) architecture
that was designed with high performance and longev-
iy in mind. Its major arcas of concentration arc
the processor clock speed, the multiple instruction
issue, and multiple processor implementations. For a
detailed account of the Alpha Architecture, its major
design choices, and overall benefits, sec the paper
by R. Sites.” The original architecture did not detine
the capability to manipulate bvte- and word-level
dara with a single instruction. As a result, the first
three implementations of the Alpha Architecture, the
21064, the 21064A, and the 21164 microprocessors,
were forced to use as many as sixteen additional
instructions to accomplish this task. The Alpha
Architecture was recently extended to include six new
mstructions for manipulating data at byte and word
boundarics. The second implementation of the 21164
tamily of microprocessors includes these extensions.

The first implementation of the Alpha Archi-
tecture, the 21064 microprocessor, was intro-
duced in November 1992, It was fabricated in a
0.75-micrometer (wm) complementary metal-oxide
semiconductor (CMOS) process and operated at
speeds up to 200 MHz. It had both an 8-kilobvte
(KB), direct-mapped, write-through, 32-byte line
instruction cache (I-cache) and data cache (D-cache).
The 21064 microprocessor was able to issuc two
instructions per clock cvele to a 7-stage nteger
pipcline or a 10-stage Hoating-point pipcline.” The
sccond implementation of the 21064 generation was
the Alpha 21064A microprocessor, introduced in
Ocrober 1993, It was manufactured in a 0.5-pm
CMOS process and operated at speeds of 233 MHz to
275 MHz. This implementartion increased the size of
the [-cache and D-cache to 16 KB. Various other dif-
ferences exist between the two implementations and
arc outlined in the product data sheet.”

The Alpha 21164 microprocessor was the second-
generation implementation of the Alpha Architecture
and was introduced in October 1994. It was manu-
facturcd in a 0.5-pum CMOS technology and has the
ability to issuc four instructions per clock cycle. It
contains a 64-cntry data translation buffer (DTB) and
a 48-entry instruction translation bufter (ITB) com-
parcd to the 21064A microprocessor’s 32-entry DTB

Digital Technical Journal Vol.8 No.4 1996

and 12-entry ITB. The chip contains three on-chip
caches. The fevel one (L1) caches include an 8-KB,
direct-mapped I-cache and an 8-KB, dual-ported,
direct-mapped, write-through D-cache. A third
on-chip cache is a 96-KB, three-way sct-associative,
write back mixed nstruction and data cache. The
floating-point pipeline was reduced to nine stages, and
the CPU has nwo integer units and owo Hoating-point
execution units.’

The Exclusion of Byte and Word Instructions

The original Alpha Architecture intended that opera-
tions involved in loading or storing aligned bytes and
words would involve sequences as given in Tables 1
and 2. As many as 16 additional instructions are
required to acconiplish these operations on unaligned
data. These same operations in the MIPS Architecturce
mvolve only a single mstruction: LB, LW, SB, and
SW The MIPS Architecture also wcludes single
instructions to do the same for unaligned data. Given
a situation in which all other factors arc consistent, this
would appear to give the MIPS Architecture an advan-
rage in its ability to reduce the number of instructions
executed per workload.

Sites has presented several kev Alpha Architecture
destgn decisions.® Among them is the dedision not to
include byte load and store instructions. Key design
assumptions related to the exclusion of these features
include the following:

= The majority of operations would involve naturally
aligned data clements.

Table 1
Loading Aligned Bytes and Words on Alpha

Load and Sign Extend a Byte

LDL R1, D.Ilw(Rx)
EXTBL R1, #D.mod, R1

Load and Zero Extend a Byte

LDL R1, D.Iw(Rx)
SLL R1, #56-8*D.mod, R1
SRA R1, #56, R1

Load and Sign Extend a Word

LDL R1, D.Iw(Rx)
EXTWL R1, #D.mod, R1
Load and Zero Extend a Word
LDL R1, D.Iw(Rx)
SLL R1, #48-8*D.mod, R1

SRA R1, #48, R1

Table 2
Storing Aligned Bytes and Words on Alpha

Store a Byte

LDL R1, D.lw(Rx)
INSBL R5,#D.mod, R3
MSKBL R1, #D.mod, R1
BIS R3, R1, R1

STL R1, D.1w(Rx)
Store a Word

LDL R1, D.Iw(Rx)
INSWL R5,#D.mod, R3
MSKWL R1, #D.mod, R1
BIS R3, R1, R1

STL R1, D.1w(Rx)

» [n the best possible scheme for multiple instruction
issue, single byte and write instructions to memory
are not allowed.

= The addition of byte and write instructions would
require an additional byte shifter in the load and
store path.

These factors indicated that the exclusion of specific
instructions to manipulate bytes and words would be
advantageous to the performance of the Alpha
Architecture.

The decision not to include byte and word manipu-
lation instructions is not without precedents. The
original MIPS Architecture developed at Stanford
University did not have byte instructions.'” Hennessy
et al. have discussed a series of hardware and software
trade-offs for performance with respect to the MIPS
processor.” Among those trade-offs are reasons for
not including the ability to do byte addressing opera-
rions. Hennessy et al. argue that the additional cost
of including the mechanisms to do byte addressing
was not justified. Their studies showed that word ref-
crences occut more frequently in applications than do
byte references. Hennessy ctal. conclude that to make
a word-addressed machine feasible, special instruc-
tions are required for inserting and extracting bytes.
These instructions arc available in both the MIPS and
the Alpha Architectures.

Reversing the Byte and Word Instructions Decision

During the development of the Alpha Architecture,
DIGITAL supported two operating systems, OpenVMS
and ULTRIX. The developers had as a goal the ability
to maintain both customer bases and to facilitate their
transitions to the new Alpha microprocessor-based
machines. In 1991, Microsoft and DIGITAL began
work on porting Microsoft’s new operating system,

Windows NT, to the Alpha platform. The Windows
NT operating system had strong links to the Intel x86
and the MIPS Architectures, both of which included
instructions for single byte and word manipulation.™
This strong connection influenced the Microsoft devel-
opers and independent software vendors (ISVs) to
favor those architectures over the Alpha design.

Another factor contributed to this issue: the major-
ity of code being run on the new operating system
came trom the Microsoft Windows and MS-DOS envi-
ronments. In designing software applications for these
two environments, the manipulation of data at the
byte and word boundary is prevalent. With the Alpha
microprocessor’s inability to accomplish this manipu-
lation in a single instruction, it suffered an average of
3:1 and 4:1 instructions per workload on load and
store operations, respectively, compared to those
architectures with single instructions for byte and
word manipulation.

To assist in running the ISV applications under the
Windows NT operating system, a new technology was
needed that would allow 16-bit applications to run as
if they were on the older operating system. Microsoft
developed the Virtual DOS Machine (VDM) environ-
ment for the Intel Architecture and the Windows-
on-Windows (WOW) environment to allow 16-bit
Windows applications to work. For non-Intel architec-
tures, Insignia developed a VDM environment that
emulared an Intel 80286 microprocessor-based com-
puter. Upon examining this emulator more closely,
DIGITAL found opportunities for improving perfor-
mance if the Alpha Architecture had single byte and
word instructions.

Based upon this information and other factors, a
corporate task force was commissioned in March 1994
to investigate improving the general performance of
Windows NT running on Alpha machines. The further
DIGITAL studied the issues, the more convincing the
argument became to extend the Alpha Architecture to
include single byte and word instructions.

This reversal in position on byte and word instruc-
tions was also seen in the evolution of the MIPS
Architecture. In the original MIPS Architecture devel-
oped at Stanford University, there were no load or
store byte instructions.'? However, for the first com-
mercially produced chip of the MIPS Architecture, the
MIPS R2000 RISC processor, developers added
instructions for the loading and storing of bytes." One
reason for this choice stemmed from the challenges
posed by the UNIX operating system. Many implicit
byte assumptions inside the UNIX kernel caused per-
formance problems. Since the operating system being
implemented was UNIX, it made sense to add the byte
instructions to the MIPS Architecture.'®

In June 1994, one of the coarchitects of the Alpha
Architecture, Richard Sites, submitted an Enginecring

Digital Technical Journal Vol.8 No.4 1996

91

92

Change Order (ECO) tor the extension of the archi-
tecture to include byte and word instructions. It was
speculated at the time that an increase of as much as
4 percent in overall performance would be achieved
using the new instructions. In June 1995, six new
instructions were added to the Alpha Architecture.
The new instructions are outlined in Table 3. The first
implementation to include support for the new
mstructions was the seccond generation of the Alpha
21164 microprocessor series. This reimplementation
of the first Alpha 21164 design was manufactured
in a 0.35-pm CMOS process and was introduced in
October 1995.

Testing Environment

We set up tests to measure the performance of equip-
ment with and without the new instructions. To con-
duct our experiments, we used prototype hardware
that included the second-generation Alpha 21164
microprocessor, and we devised a method to enable
and disable the new instructions in hardwarc. At the
same time, we investigated the projected performance
of the software emulation mechanism to execute the
new instructions on older processors. Finally, we built
two separate versions of the Microsoft SQL Server
application, one that used the new instructions and
one that did not. For the purposes of discussing the
different scenarios under study, we summarize the
three execution schemes in Table 4. We use the associ-
ated nomenclature given there in the rest of this paper.
In the remainder of this section, we describe each of
the hardware, software, compiler, and analysis tools.

Prototype Hardware

As previously mentioned, our machine was capable
of operating with and without the new instructions.
By using the same machine, we were able to mini-
mize eftects that could be introduced from variations
in machine designs or processor families that could
causc an increase in the executed code path through
the operating system. All experiments were run

Table 3

New Byte and Word Manipulation Instructions

Mnemonic Opcode Function

stb OE Store byte from register
to memory

stw 0D Store word from register
to memory

Idbu 0A Load zero-extended byte
from memory to register

Idwu 0C Load zero-extended word
from memory to register

sextb 1C.0000 Sign extend byte

sextw 1C.0001 Sign extend word

Digital Technical Journal Vol.8 No.4 1996

Table 4

Three Methods for Execution of the New Instructions

Nomenclature Description

Original Compiled with instructions
that can execute on all Alpha
implementations

Byte/Word Compiled using the new
instructions that will execute
on second-generation 21164
implementations at full speed

Emulation Compiled with new instructions

and emulated through software

on a prototype of the AlphaStation 500 work-
station that was based upon the second-gencration
21164 microprocessor operating at 400 MHz. (The
AlphaStation 500 is a family of high-performance,
mid-range graphics workstations.) The prototype was
configured with 128 megabytes (MB) of memory and
asingle, 4-gigabyte (GB) fast-wide-differential (FWD)
small computer systems interface (SCSI-2) disk.

New firmware allowed us to alternate berween
dircct hardware execution and software emulation of
the new byte and word instructions. We modified the
Advanced RISC Consortium (ARC) code to allow us
to switch between the two firmware versions through
a simple power-cycle utility, called the fail-safe loader.'®
When the machine is powered on, it loads code from
a scrial read-only memory (SROM) storage device.
This code then loads the ARC firmware from non-
volatile flash ROM. The fail-safe loader allowed the
ARC firmware to be loaded into physical memory and
not into the flash ROM. The new firmware was initial-
ized by a reset of the processor and was executed as
if it were loaded from the flash ROM. When the
machine was turned oft and then back on, the version
of irmware that was stored in nonvolatile memory was
loaded and executed.

Operating System

We used a beta copy of the Microsoft Windows NT
version 4.0 operating system. We chose rhis operaning
system for its capability to allow us to examine the
impact of emulating the new byte and word instruc-
tions in the operating system.

By default, version 4.0 of the Windows NT operat-
ing system disables the trap and emutation capability
for the new instructions. This approach is similar to
the one Windows NT provides for the Alpha micro-
processor to handle unaligned data references. For
testing purposes, we enabled and disabled the trap and
emulation capability of the new instructions. When
this option is enabled, the operating system treats cach
new instruction listed in Table 3 as an illegal instruc-
tion and emulates the instruction. The trap and emu-
late strategy rakes approximately 5 to 7 microscconds

per emulated instruction. When it is disabled or not
present, the action taken depends upon the hardware
support tor the new instructions. It disabled in hard-
ware, the instruction is treated as an illegal instruction;
it enabled, it is exccuted like any other instruction.

Microsoft SQL Server

To observe the effects of the new instructions, we
chose the Microsoft SQL. Server, a relational database
management system (RDBMS) for the Windows NT
operating system. Microsoft SQL Server was engi-
neered to be a scalable, multiplatform, multithreaded
RDBMS, supporting symmetric multiprocessing
(SMP) systems. It was designed specifically for distrib-
uted client-server computing, data warehousing, and
database applications on the Internet.

In an earlier investigation, Sites and Perl present a
profile of the Microsoft SQL Server running the TPC-B
benchmark.* They identify the executables and DLLs
that are involved in running the benchmark and break
down the percentage of time that each contributes to
the benchmark. Their results, summarized in Figure 1,
show thar only a few SQL Server executables and
DLLs were heavily exercised during the benchmark.
After verifying these results with the SQL Server devel-
opment group at Microsoft, we decided to rebuild
only the images and DLLs identified in Figure 1 to use
the new byte and word instructions.

Table 5 lists the executables and DLLs that we modi-
fied and their correlation to the ones identified by Sites
and Perl. The variations exist because of name changes
of DLLs or the use of a difterent network protocol. We
changed network protocols for performance reasons.

SQLSERVER.EXE
NTOSKRNL.EXE
- NTDLL.DLL
- NTWDBLIB.DLL
- NTFS.8YS
- OPENDS50.DLL
- KERNEL32.DLL
SCSIPORT.SYS
- NPFS.85YS
- HAL.DLL
- CRTDLL.DLL
- WINSRV.DLL
Qv.DLL

100.00

10.00

1.00

0.10

TIME SPENT IN ROUTINE, PERCENT

0.01 ‘

TCPIP.SYS

Sites and Perl used an carly version of the Microsoft
SQL Server version 6.0, in which the fastest network
transport avallable at that time was Named Pipes. In
the final relcase of SQL Server version 6.0 and sub-
sequent versions of the product, the Transmission
Control Protocol/Internet Protocol (TCP/IP)
replaced Named Pipes in this category. Based upon
this, we rebuilt the libraries associated with TCP/IP
instcad of those associated with Named Pipes. Other
networking libraries, such as those for DECnet and
Internetwork Packet Exchange/Sequenced Packet
Exchange (IPX/SPX), were not rebuilt.

Table 5
Images and DLLs Modified for the Microsoft SQL
Server

Sites V6.0 Function

DLL/EXE DLL/EXE

sqlserver.exe sqlservr.exe SQL Server Main
Executable

ntwdblib.dll ntwdblib.dll Network
Communications
Library

opends50.dii opends60.dll Open Data Services
Networking Library

dbnmpntw.dil | N/A V4.21A Client Side
Named Pipes Library

ssnmpntw.dll | N/A V4.21A Named Pipes
Library

N/A dbmssocn.dll V6.5 Client Side
TCP/IP Library

N/A ssmsso60.dll V6.5 Netlibs TCP/IP
Library

] > 3

o3 Do & o

6o2wEs O 24 o

A S R E S S R I

-=385 m N0 o s =Er Yo

<O FUzZzEEads 2 ZHd 2

I O oW oC Yo QoOonono

TP200zz2<=22zwv>553

| |

Figure 1

Images/DLLs Involved in a TPC-B Transaction for Microsoft SQL Server Based on Sites and Perl’s Analysis

Digital Technical Journal Vol.8 No.4 1996

93

94

Compiling Microsoft SQL Server to
Use the New Instructions

Our goal was to measure only the eftects introduced
by using the new instructions and not effects intro-
duced by different versions or generations of compil-
ers. Therefore, we needed to find a way to use the same
version of a compiler that diftered only in its use or
nonuse of the new instructions. To do this, we used
a compiler option available on the Microsoft Visual
C++ compiler. This switch, available on all RISC plat-
forms that support Visual C++, allows the generation
of optimized code for a specific processor within a
processor family while maintaining binary compatibil-
ity with all processors in the processor tamily. Processor
optimizations are accomplished by a combination of
specific code-pattern selection and code scheduling.
The defaule action of the compiler is to usc a blended
model, resulting in codc that exccutes cqually well
across all processors within a platforny family.

Using this compiler option, we built two versions
of the aforementioned images within the SQL
Server application, varying only their use of the code-
generation switch. The first version, referred to as the
Onginal build, was built without specitying an argu-
ment for the code-generation switch. The second one,
referred to as Byte/Word, set the switch to generate
code patterns using the new byte and word manipula-
tion instructions. All other required files came from the
SQL Server version 6.5 Beta I distribution CD-ROM.

The Benchmark

The benchmark we chose was derived from the TPC-B
benchmark. As previously mentioned, the TPC-B
benchmark is now obsolete; however, it is still usctul
for stressing a database and its interaction with a com-
puter system. The TPC-B benchmark is refatively
easy to set up and scales readily. It has been used by
both database vendors and computer manufacturers
to measure the performance of either the computer
system or the actual database. We did not include all
the required metrics of the TPC-B benchmark; there-
fore, it is not in full compliance with published guide-
lines of the TPC. We reter to it henceforth simply as
the application benchmark.

The application benchmark is characterized by sig-
nificant disk 1/0 activity, modcrate system and applica-
tion cxecution time, and transaction integrity. The
application benchmark exercises and measures the effi-
ciency of the processor, I /0 architecture, and RDBMS.
The results measure performance by indicating how
many simulated banking transactions can be com-
pleted per sccond. This is defined as transactions per
sccond (tps) and is the total number of committed
transactions that were started and completed during
the measurement interval.

Digital Technical Journal Vol. 8 Nao.4 1996

The application benchmark can be run in two dif-
ferent modes: cached and scaled. The cached, or in-
memory mode, is used to estimate the system’s
maximum performance in this benchmark environ-
ment. This is accomplished by building a small darabasc
that resides completely in the database cache, which in
turn fies within the system’s physical random-access
memory (RAM). Since the entire database resides in
memory, all 1/0 activity is climinated with the excep-
tion of log writes. Consequently, the benchmark only
pertorms one disk 1/0 for cach transaction, once the
entire database is read off the disk and into the database
cache. The result is a representation of the maximum
number of tps that the system is capable of sustaining.

The scaled mode is run using a bigger database with
a larger amount of disk 1/0 activity. The increase in
disk [/O is a result of the need to read and write data to
locations that are not within the database cache. These
additional reads and writes add extra disk 1/0s. The
result is normally characterized as having to do one
read and one write to the database and a single write to
the transaction log for cach transaction. The combina-
rion of a larger darabase and additional 1,/0 acrivity
decreases the tps value from the cached version. Based
upon our previous experience running this benchmark,
the scaled benchmark can be expected to reach approx-
imately 80 percent of the cached performance.

For the scaled tests, we built a database sized to
accommodate 50 tps. This was less than 80 percent
of the maximum tps produced by the cached results.
We chose this size because we were concentrating
on isolating a single scaled transaction under a modet-
ate load and not under the maximum scaled pertor-
mance possible.

Image Tracing and Analysis Tools

Collecting only static measurements of the executables
and DLLs aftected was insufficient to determine the
applicability of the new instructions. We collected the
actual instruction traces of SQL Scerver while it exc-
cuted the application benechmark. Furthermore, we
decided that the ability to rrace the actual instructions
being executed was more desirable than developing or
extending a simulator. To obrain the traces, we needed
a tool that would allow us to

= Collect both system- and user-modce code.

» Collect function traces, which would allow us to
align the starting and stopping points of different
benchmark runs.

= Work without modifying cither the application or
the operating system.

In the past, the only tool that would provide
instruction traces under the Windows NT operating
system was the debugger running in single-step mode.

Obtaining traces through cither the ntsd or the
windbg debugger is quite limited due to the following
problems:

= The tracing rate is only about 500 instructions per
second. This is far too slow to trace anything other
than isolated pieces of code.

w The trace fails across system calls.

= The trace loops infinitcly in critical section code.

= Register contents arc not casily displayed for each
instruction.

= Real-time analysis of instruction usage and cache
misses are not possible.

Instruction traces can also be obtained using the
PatchWrks trace analysis tool.” Although this tool
operates with near real-time performance and can
trace instructions executing in kernel mode, it has the
tollowing limitations:

= It operates only on a DIGITAL Alpha AXP personal
computer.

= Jtrequires an extra 40 MB of memory.

» All images to be traced must be patched, thus
shightly distorting text addresses and function sizes.

= Successive runs of application code are not repeat-
able duc to unpredictable kernel interrupt behavior
(the traces are too accurate).

The solution was Ntstep, a tool that can trace user-
mode instruction exccution of any image in the
Windows NT /Alpha environment through an innov-
ative combination of breakpointing and “Alpha-on-
Alpha” emulation. It has the ability to trace a
program’s exccution at rates approaching a million
instructions per second. Ntstep can trace individual
instructions, loads, stores, function calls, I-cache and
D-cache misses, unaligned data accesses, and anything
else that can be observed when given access to each
instruction as it is being executed. It produces sum-
mary rcports of the instruction distribution, cache line
usage, page usage (working set), and cache simulation
statistics for a variety of Alpha systems.

Ntstep acts Jike a debugger that can exccute single-
step instructions except that it executes instructions
using emulation instead of single-step breakpoints
whenever possible. In practice, emulation accounts for
the majority of instructions executed within Ntstep.
Since a single-step execution of an instruction with
breakpoints takes approximately 2 milliseconds and
emulation of an Alpha instruction requires only 1 or 2
microscconds, Ntstep can trace approximately 1,000
times faster than a debugger. Unlike most emulators,
the application executes normally in its own address
space and environment.

Results

We collected data on three different experiments. In
the first investigation, we looked at the relative perfor-
mance of the three different versions of the Microsoft
SQL Server outlined in Table 4. We compared the
three variations using the cached version of the appli-
cation benchmark.

In the second experiment, we observed how the
new instructions atfect the instruction distribution in
the static images and DLLs that we rebuilt. We com-
pared the Byte/ Word versions to the Original versions
of the images and DLLs. We also attempted to link the
differences in instruction counts to the use of the new
nstructions.

Lastly, we investigated the variation between the
Original and the Byte/Word versions with respect to
instruction distribution on the scaled version of the
benchmark. This comparison was based upon the code
path executed by a single transaction.

Cached Performance

In the first experiments, we compared the relative per-
formance impact of using the new instructions. We
chose to measure performance of only the cached ver-
sion of the application benchmark because the 1/0
subsystem available on the prototype of the
AlphaStation 500 was not adequate for a full-scaled
measurement. We ensured that the database was fully
cached by using a ramp-up period ot 60 seconds and a
ramp-down period of 30 seconds. This was verified as
steady state by observing that the SQL Server butfer
cache hit ratio remained at or above 95 percent. The
measurement period for the benchmark was 60 scc-
onds. We ran the benchmark several times and took
the average tps for each of the three variations outlined
in Table 4.

The results of the three schemes are as follows: 444
tps for the Original version, 460 tps for the Byte/
Word version, and 116 tps for the Emulation ver-
sion. The new instructions contributed a 3.5 percent
gain in performance. The impact of emulating the
instructions is a loss of 73.9 percent of the potential
performance.

Static Instruction Counts
To analyze the mixture of instructions in the images
and DLLs, we disassembled each image and DLL in
the Original and Byte,/Word versions. We then looked
at only those instructions that exhibited a difference
between the two versions within the images or DLLs.
The variations in instruction counts of these are shown
in Table 6.

To examine the images more closely, we disassem-
bled each image and DLL and collected counts of code

Vol.8 No.4 1996

Digital Technical Journal

96

Table 6

Instruction Deltas (Normal Minus Byte/Word) for the SQL Server Images and DLLs

Instruction dbmssocn.dll ntwdblib.dll opends60.dll sqlservr.exe ssmsso60.dll Instruction dbmssocn.dll ntwdblib.dll opends60.dll sqlservrexe ssmsso60.dll
Ida 0 -3 —247 —8524 —4 | xor 0 0 =2 +119 0
Idah 0 0 =27 18-18 0 | sl 0 0 +2 —2359 0
Idl -9 -1 -597 -13133 -46 | sra 0 0 =15 —3534 ~4
Idq 0 0 -29 —2980 0 | srl 0 0 0 -295 0
Idg_| 0 0 0 -9 0 | cmpbge 0 0 -1 -18 0
Ildg_u ~10 -2 -311 —8529 —-18 | mskbl -3 -1 -196 —3647 -8
stl -5 -1 -278 -7932 =11 | mskwl 0 5 —41 -1604 0
stb +3 -1 +216 +3969 +7 | zapnot -5 0 -115 -2135 -33
stw +2 -5 +59 12798 +3 | addl 0 0 0 -8 0
stq 0 0 -4 =53 0 | addq 0 0 0 +3 0
stq_¢ 0 0 0 -9 0 | sd4addl 0 0 0 -4 0
beq 0 5 +1 -1236 0 | cmovge 0 0 0 +1 0
bge 0 0 0 +8 0 | cmovne 0 0 0 +2 0
bgt 0 0 0 +3 0 | cmovlt 0 0 0 -1 0
blbc 0 0 -1 -19 0 | cmovlbc 0 0 0 -2 0
blbs 0 0 0 -4 0 | callsys 0 0 0 0 0
blt 0 0 0 0 0 | extgh 0 0 -14 -426 -4
bne 0 0 + +24 0 | ldwu +4 0 +193 +6320 +35
br 0 -4 +1 -1120 0 | Idbu +9 +3 +464 +10231 +18
bsr 0 0 0 -6 0 | mull 0 0 0 +1 0
ret 0 0 +4 +15 0 | subl 0 0 +1 +6 0
cmpeq 0 0 0 +9 0 | subqg 0 0 0 +3 0
cmplt 0 0 0 +15 0 | insll 0 0 0 1-1 0
cmple 0 0 0 +5 0 | inswl -2 -3 —54 —2647 -3
cmpult 0 0 -1 1-1 0 | call_pal +2 +1 +1 +161 0
cmpule 0 -5 -2 1183-1183 0 | extlh 0 0 0 -14 0
and -2 -6 -364 —6435 -8 | insbl -2 -1 -135 -3163 -6
bic -3 -1 —287 -7242 -8 | extll 0 0 0 -20 0
bis -4 -7 -208 -7097 -9 | extbl =10 -6 -367 —10656 -14
ornot 0 0 0 +4 0 | extwl -1 0 -84 324 -1

size, the number of functions, the number and type of
new byte and word instructions, and lastly, nop and
rrapb instructions. The results are presented in Tables
7 through 10.

We expected that the mstructons used to manipulate
bytes and words in the original Alpha Architecrure
(Tables 1 and 2) would decrease proportionally to the
usage of the new instructions. These assumptions held
true for all the images and DLLs that used the new
mstructions. For example, 1 the orginal Alpha
Architecture, the mstructions MSKBL and MSKWL. are
used to store a bvre and word, respectively. In the
sqlservrexe image, these nwo instructions showed a
decrease of 3,647 and 1,604 instructions, respectively.
Compare this with the corresponding addition of 3,969
STB and 2,798 STW instructions in the same image,
Looking further into the sqlservr.exe image, we also saw
that 10,231 LDBU instructions were used and the
usage of the EXTBL instruction was reduced by 10,656.
Although these numbers do not correlate on & one-for-
one basis, we believe this is due to other usage of these
instructions. Other usage might include the compiler
scheme for introducing the new instructions in places
where it used an LDL or an LDQ in the Original image.

Digital Technical Journal Vol. 8 Na.4 1996

Of the rebuilt images and DLLs, sqlservrexe and
opends60.dil showed the most variations, with the new
mnstructions making up 3.73 percent and 3.9 percent
of these files. The most frequently occurring new
instruction was ldbu, followed by Idwu. The least-
used instructions were sextb and sextw. The size of
the images was reduced in three our of five images.
The image size reduction ranged from negligible to
just over 4 pereent. In all cases, the size of the code
section was reduced and ranged from insignificant
to approximately 8.5 percent. There was no change in
the number of functions in any of the files.

Dynamic Instruction Counts

We gathered data from the applicarion benchmark
running in both cached and scaled modes. We ran at
least onc Ireration of the benchmark test prior to gath-
ering trace dara to allow both the Windows NT oper-

reach a steady state of operation on the svstem under
test (SUT). Sready stare was achicved when the SQL
Server cache-hit ratio reached 95 percent or greater,
the number of transactions per sccond was constant,
and the CPU utilization was as close to 100 percent as
possible. The traces were gathered over a suthicient

[0 [ety dd] eadi(]

8 '1OA

¥ ON

9661

L6

Table 7

Byte/Word Images and DLLs

Image/DLL Total Total Total Number Total
File Text Code of Byte/ % Byte/ LDBU LDBU LDWU LDWU STB ST8 STW STW SEXTB SEXTB SEXTW SEXTW Jotal Total
Bytes Bytes Bytes Functions Word Word Count % Count % Count % Count % Count % Count % NOPs TRAPB
sqlservr.exe 8053624 2981148 2884776 3364 26869 373 10231 38.077 6320 23.5215 3969 14.7717 2798 10.4135 139 0.517325 3412 12.6986 5929 2219
dbmssocn.dlil 13824 5884 5520 13 18 13 9 50 4 222222 3 16.6667 2 11.1111 0 0 4] 0 21 0
ntwdblib.dll 318464 246316 231688 429 9 0.02 3 33.333 0 0 1 11111 5 55.5556 0 0 o} o] 767 10
opends60.dll 212992 104204 97240 243 948 39 464 48.945 193 20.3586 216 22.7848 59 6.22363 9 0.949367 7 0.738397 391 128
ssmsso60.dll 70760 9884 9128 19 67 2.94 18 26.866 35 52.2388 7 10.4478 3 4.47761 4 5.97015 0 0 25 0
Table 8
Original Build of Images and DLLs
Image/DLL Total Total Total Number Total
File Text Code of Byte/ % Byte/ LDBU LDBU LOWU LDWU ST8 STB STW STW SEXTB SEXTB SEXTW SEXTW Total Total
Bytes Bytes Bytes Functions Word Word Count % Count % Count % Count % Count % Count % NOPs TRAPB
sqlservr.exe 8337248 3264108 3153480 3364 [} 0 0 0 0 0 0 0 0 0 0 0 0 0 6207 2252
dbmssocn.dll 13824 6012 5656 13 0 0 0 1] o} 0 0 0 0 0 0 0 0 0 16 0
ntwdblib.dli 318464 246620 231904 429 o] 0 0 0 0 0 0 0 0 0 0 0 0 0 770 10
opends60.dll 222720 114012 105536 243 Q 0 0 0 1] 0 0 0 0 0 0 0 0 0 405 128
ssmss060.dll 71284 10300 9424 19 0 0 0 0 4] 0 0 0 0 0 0 0 0 0 18 0
Table 9
Numerical Differences of Original Minus Byte/Word Images and DLLs
Image/DLL Total Total Total Number Total
File Text Code of Byte/ % Byte/ LDBU LDBU Lbwu LDWU STB STB STW STW SEXTB SEXTB SEXTW SEXTW Total Total
Bytes Bytes Bytes Functions Word Word Count % Count % Count % Count % Count % Count % NOPs TRAPB
Isqlservr.exe ~283624 —282960 —268704 0 +26869 +4 +10231 +38 +6320 +24 +3969 +15 +2798 10 +139 +1 +3412 +13 -278 -33
dbmssocn.dll 0 —-128 -136 0 +18 +1 +9 +50 -4 +22 +3 +17 t+2 =11 0 0 0 0 +5 0
ntwdblib.dlf 0 —304 -216 0 +9 0 +3 +33 0 0 | +11 -5 +56 0 0 0 0 -3 0
opends60.dif —9728 —-9808 —8296 0 +948 +4 +464 +49 +193 +20 +216 +23 +59 +6 +8 “1 +7 +1 —14 0
ssmss060.dll —-524 -416 —-296 0 +67 +3 +18 +27 +35 +52 +7 +10 +3 +4 -4 6 0 0 +7 0
Table 10
Percentage Variation of Original Minus Byte/Word Images and DLLs
Image/DLL Total Total Total Number Total
File Text Code of Byte/ % Byte/ LDBU LDBY LDWU LDWU STB STB STW STW SEXTB SEXTB SEXTW SEXTW Total Total
Bytes Bytes Bytes Functions Word Word Count % Count % Count Y% Count % Count % Count % NOPs TRAPE
sqlservr.exe —3.402% —8.669% -8.521% 0.000% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A —4.479% —1.465%
dbmssocn.dll 0.000% —2.129% —2.405% 0.000% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A +31.250% N/A
ntwdblib.dll 0.000% -0.123% —-0.093% 0.000% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A -0.390% 0.000%
opends60.dl -4.368% ~8.603% ~7.861% 0.000% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A —3.457% 0.000%
ssmisso60.dll -0.735% ~4.039% -3.141% 0.000% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A +38.88%9% N/A

period of time to cnsure that we captured several
transactions. The traces were then edited into separate
individual transactions. The geometric mean was
taken from the resulting traces and used for all subse-
quent analysis.

We used Nrstep to gather complete instruction and
function traces of both versions of the SQL Server data-
base while it executed the application benchmark.
Figure 2 shows an example output for an instruction

trace, and Figure 3 shows an example output for a
function trace from Ntstep. Since Ntstep can attach to
a running process, we allowed the application bench-
mark to achieve steady state prior to data collection.
This approach cnsured that we did not see the ettects of
warming up cither the machine caches or the SQL
Server database cache. Each instruction trace consisted
of approximately one million instructions, which was
sufficient to cover multiple transactions. The darta was

0 ** Breakpoint (Pid Oxd1, Tid Oxb2) SQLSERVR.EXE pc 77f39b34

0 ** Trace begins at 242698
opends60!FetchNextCommand

1 00242698: 23deffb0 lda sp, -50(sp) // sp now 72bff00

2 0024269c: b53e0000 stq s0, 0(sp) // a072bff00 = 148440

3 002426a0: b55e0008 stqg s1, 8(sp) // ?072bff08 = 0

4 002426ab4: b57e0010 stq s2, 10(sp) // 2072bff10 = 5

5 002426a8: b59e0018 stq s3, 18(sp) // 2072bff18 = 1476a8

6 002426ac: b5be0020 stq s4, 20(sp) // a072bff20 = 2c4

7 002426b0: b5de0028 stq s5, 28(sp) /7 2072bff28 = 41

8 002426b4: b5fe0030 stq fp, 30(sp) // 8072bff30 = 0O

9 002426b8: b75e0038 stq ra, 38(sp) // d072bff38 = 242398

10 002426bc: 47f00409 bis zero, a0, sO // s0 now 148440

11 002426c0: 47f1040a bis zero, al, s // s1 now 72bffal

12 002426c4: 47f2040b bis zero, a2, s2 // s2 now 72bffa8

13 002426c8: d3404e67 bsr ra, 00256068 // ra now 2426cc
opendsé0'netIOReadData

14 00256068: 23deffal lda sp, -60(sp) // sp now 72bfeal

15 0025606c¢: 43110002 addl zero, al, t1 // t1 now 72bffal

16 00256070: b53e0000 stq s0, 0Csp) // a072bfeal = 148440

17 00256074: b55e0008 stq s1, 8(sp) // 8a072bfea8 = 72bffal

18 00256078: b57e0010 stq s2, 10Csp) // ?a072bfeb0 = 72bffa8

19 0025607c: b59e0018 stq s3, 18(sp) // a072bfeb8 = 1476a8

20 00256080: b5be0020 stq s4, 20(sp) // a072bfec0 = 2c4

21 00256084: b5de0028 stq s5, 28(sp) // a072bfec8 = 41

22 00256088: b5fe0030 stq fp, 30(sp> // ?072bfed0 = O

23 0025608c: b75e0038 stq ra, 38(sp) // a072bfed8 = 2426cc

24 00256090: a1d01140 LdlL s5, 1140Ca0) // 200149580 1479e8

25 00256094: 47100409 bis zero, a0, sO // s0 now 148440

26 00256098: a1f001d0 Ldlt fp, 1d0¢a0)> // 200148610 dbbal

27 0025609c: 47e0340d bis zero, #1, sb // s4 now 1

28 002560a0: a0620000 Ldl t2, 0Ct1) // a072bffal 155c¢58

29 002560a4: b23e004c stl al, 4c(sp) // @a072bfeec = 72bffal

30 002560a8: b25e0050 stl a2, 50(sp> // 2072bfef0 = 72bffa8

31 002560ac: b27e0054 stl a3, S54(sp) // 2072bfef4 = 1476a8

32 002560b0: e460001d beg t2, 00256128 // (t2 is 155c¢58)>

33 002560b4: 220303e0 Lda a0, 3e0(t2) // a0 now 156038

34 002560b8: 47100404 bis zero, a0, t3 // t3 now 156038

35 002560bc: 63ff4000 mb //

36 002560c0: 47e03400 bis zero, #1, vO // v0 now 1

37 002560c4: a8240000 LdL_t t0, 0¢(t3) // 200156038 0O

38 002560c8: b804000CO stl_c v0, 0Ct3 // 200156038 = 1

39 002560cc: e40000b6 beq v0, 002563a8 // (v0 is 1)

40 002560d0: 63ff4000 mb //

41 002560d4: 4200001 beqg t0, 002560dc // (t0 9s 0)
opends60!'netlOReadData+0x74:

42 002560dc: atbe004c LdtL sh, 4c(sp) // a072bfeec 72bffal

43 002560e0: a00d0000 Ldl v0, 0(sé4) // a072bffal 155c¢58

44 002560e4: al4003dc Ldl t1, 3dc(v0) // 200156034 O

45 002560e8: 20800404 Lda t3, 404(v0) // t3 now 15605¢c

46 002560ec: 405f05a2 cmpeq t1, zero, t1 // t1 now 1

47 002560f0: e4400003 beq t1, 00256100 /1 Ct1 dis 1)

48 002560f4: a0600404 Ldl t2, 404(v0) // a0015605c 15605¢c

49 002560f8: 406405a3 cmpeq t2, t3, t2 // t2 now 1

50 002560fc: 47e30402 bis zero, t2, t1 /7 t1 now 1

51 00256100: 47e2040d bis zero, t1, sh // s& now 1

Figure 2
Example of Instruction Trace Output from Nrstep
98 Digiral Technical Journal Vol. 8§ No.4 1996

52 00256104: e4400005 beq t1, 0025611¢ /7 (t1 9s 1)

53 00256108: a0a00000 Ldlt t4, 0Cv0) // @a00155c58 204200
54 0025610c: 24df0080 Ldah t5, 80(zero) // t5 now 800000

55 00256110: 48a07625 zapnot t4, #3, t4 // t& now 4200

56 00256114: 40a60005 addl t4, t5, téh // t4 now 804200

57 00256118: b0a00000 stl t4, 0C(v0) // @00155c¢58 = 804200
58 0025611c: a0fe0Q04c Ldt té6, 4Lc(sp) // a072bfeec 72bffal
59 00256120: a0e70000 Ldt té6, 0C(té) // 8072bffal 155¢58
60 00256124: b3e703e0 stl zero, 3e0(té) // 300156038 = 0

61 00256128: e5a00061 beq s4, 002562b0 // (sh is 1)

62 0025612c: 2570026 ldah s2, 26(zero) // s2 now 260000

63 00256130: 216b62f8 Lda s2, 62f8(s2) // 82 now 2662f8

64 00256134: 5fff041f cpys f31, 31, 31 //

65 00256138: a21e0054 Ldlt a0, 54(sp)> // 2072bfef4 1476a8
66 0025613c: 225e0040 Lda a2, 40Csp) // a2 now 72bfeel

67 00256140: a00bO0OOO Ldt v0, 0(s2> // 9002662f8 77e985a0
68 002561464: 227e0048 lLda a3, 48(sp> // a3 now 72bfee8

69 00256148: a23e0050 Ldlt al, 50(sp> // a072bfefQ 72bffa8
70 0025614c: 47ef0414 bis zero, fp, aéb // a4 now dbbal

71 00256150: a2100000 Ldl a0, 0Cal> // 2001476a8 2¢O

72 00256154: 6b404000 jsr ra, (v0)>,0 // ra now 256158

KERNEL32'GetQueuedCompletionStatus:
73 77e985a0: 23deffcO Lda sp, -40Csp) // sp now 72bfeb0
74 77e985a4: b53e0000 stq s0, 0C(sp) // ?072bfeéb0 = 148440
75 77e985a8: b55e0008 stq s1, 8(sp) //a072bfe68 = 72bffal
76 77e985ac: b57e0010 stq s2, 10(sp) // 2072bfe70 = 2662f8
77 77e985b0: b59e0018 stq s3, 18(sp) // ?072bfe78 = 1476a8
78 77e985b4: b75e0020 stqg ra, 20(sp) // 29072bfe80 = 256158
79 77e985b8: 47100409 bis zero, a0, sO // s0 now 2¢O
80 77e985bc: 47f1040a bis zero, al, s1 // s1 now 72bffa8
81 77e985c0: 47f2040b bis zero, a2, s2 // s2 now 72bfeel
82 77e985c4: 47f3040c¢ bis zero, a3, s3 // s3 now 72bfee8
83 77e985c8: 47140411 bis zero, a4, al // a1l now dbbaO
84 77e985cc: 221e0038 Lda a0, 38(sp) // a0 now 72bfe98
85 77e985d0: d3405893 bsr ra, 77eae820 // ra now 77e985d4

Figure 2 (continued)
Example of Instruction Trace Output from Nistep

then reduced to a series of single transactions and ana-
lyzed for instruction distribution. For both the cached-
and the scaled-transaction instruction counts, we com-
bined at least three separate transactions and took the
geometric mean of the instructions executed, which
caused slight variations in the instruction counts. All
resulting instruction counts were within an acceptable
standard deviation as compared to individual transac-
tion Instruction counts.

We collected the function traces in a similar fashion.
Once the application benchmark was at a steady state,
we began collecting the function call tree. Based on
previous work with the SQL Server database and con-
sultation with Microsoft enginecers, we could pinpoint
the beginning of a single transaction. We then began
collecting samples tor both traces at the same instant,
using an Nrstep feature that allowed us to start or stop
sample collection based upon a particular address.

The dynamic instruction counts for both the scaled
and the cached transactions are given in Tables 11 and
12. We also show the variation and percentage varia-
tion between the Original and the Byte/Word versions
of the SQL Server. Two of the six new instructions,
sextb and sextw, are not present in the Byte/Word

trace. The remaining four instructions combine to
make up 2.6 percent and 2.7 percent of the instruc-
tions executed per scaled and cached transaction,
respectively. Other observations include the following:

s The number of instructions executed decreased
7 percent for scaled and 4 percent for cached
transactions.

= The number of IdI_I/stl_c¢ sequences decreased
3 percent for scaled transactions.

= All the instructions that are identified in Tables 1
and 2 show a decrease in usage. Not surprisingly,
the instructions mskwl and mskbl completely disap-
peared. The inswl and insbl instructions decreased
by 47 percent and 90 percent, respectively. The sll
instruction decreased by 38 percent, and the sra
instruction usage decreased by 53 percent. These
reductions hold true within 1 to 2 percent for both
scaled and cached transactions.

= The instructions Idq_u and Ida, which are used
in unaligned load and store operations, show a
decrease in the range of 20 to 22 percent and 15 to
16 percent, respectively.

Digital Technical Journal Vol.8 No.4 1996

99

-~ =
NWOOO

99
129
272
285
290
318
348
399
412
417
423
509
560
665
682
749
762
802
864
911
937
950

1024
1038
1055
1173
1208
1227
1263
1313
1365
1405
1437
1500
1577
1580
1612
1777
1808
2115
2131
2183
2252
2319
2546
2559
2597
2642
2673
2979
3010
3323
3363
3493
3510
3658
3668
3703
3764
3799
3857
3901
3978
4064
4109
4170
4331
5323
5436
5550

* %k
* %
% *
* %
* K
* Kk
* *
* %
* %
* %
* *
* Kk
* *
*)
* %
* K
* %
* *
* %
* K
* %
* k
* Kk
* %
* *
* %
* %
* %
* k
* %k
* %
* k)
* %
* %k
* *
* %
* %
* *
* Kk
* *
* %
* *
* *
* *
* %
* *
* *
* %
* %
* %
**
* %
* *
* %
* *
* *
* %*
* Kk
* %k
* Kk
* %
*)
* %
* %
* %
* *
* %
* *
* *
* %
* %
* *
* Kk
* K
* k
* K

Breakpoint (Pid Oxd7, Tid Oxdb) SQLSERVR.EXE pc
Trace begins at 00242698
opends60!FetchNextCommand
opends60!netIOReadData
KERNEL32'!'GetQueuedCompletionStatus
KERNEL32!BaseFormatTimeOut
ntdlLU!NtRemoveIoCompletion
opends60!'netIOCompletionRoutine
opendsé0!netIORequestRead
KERNEL32!ResetEvent
. ntdlt!NtClearEvent
SSNMPN60'*0x06a131f0*
KERNEL32'ReadFile
ntdlLl!'NtReadFile
KERNEL32!BaseSetLastNTError
ntdlLL!'RtILNtStatusToDosError
. ntdlLl!'RtLNtStatusToDosErrorNoTeb
KERNEL32!GetLastError
opendsé0!get_client_event
opends60!processRPC
opendsé0!unpack_rpc
opends60lexecute_event
opendsé60!execute_sqlserver_event
opendsé60!unpack_rpc
SQLSERVR!execrpc
KERNEL32!WaitfForSingleObjectEx
KERNEL32!'BaseFormatTimeOut
. ntdll!NtWaitForSingleObject
SALSERVR!UserPerfStats
KERNEL32!GetThreadTimes
. . ntdllU!'NtQueryInformationThread
SQLSERVR!init_recvbuf
SALSERVR!init_sendbuf
SQLSERVR!'port_ex_handle
SQLSERVR!'_Otssetjmp3
SQLSERVR'memalloc
. SQLSERVR!_Otslero
SQLSERVR!'recvhost
. SQLSERVR!_OtsMove
SQLSERVR!'memalloc
SQLSERVR!rn_char
SALSERVR'recvhost
. . SQLSERVR!'_OtsMove
SQLSERVR!parse_name
. SQALSERVR!dbcs_strnchr
SQALSERVR!rpcprot
SALSERVR!memalloc
. SQLSERVR!_OtsZero
SQLSERVR!getprocid
SQLSERVR!'procrelink+0x1250
SQLSERVR!_OtsRemainder32
. SQLSERVR! OtsDivide32+0x94
SQLSERVR!opentable
SQLSERVR!parse_name
. SQLSERVR!dbcs_strnchr
SQLSERVR!parse_name
. SQLSERVR'dbcs_strnchr
SQLSERVR!opentabid
SQLSERVR!getdes
SQLSERVR!GetRunidFrombDefid+0x40
. . SQLSERVR'_ OtsZero
SQLSERVR!initarg
SQLSERVR!setarg
. SQLSERVR!_OtsFieldlInsert
SQLSERVR'!setarg
. SQLSERVR! _OtsFieldInsert
SQLSERVR!startscan
SQLSERVR'get1ndex2
SQLSERVR'!getkeepslot
SQLSERVR!rowoffset
SQLSERVR'rowoffset
SQLSERVR!_OtsMove
SQLSERVR!memcmp
SQLSERVR!'bufunhold
SQLSERVR'prepscan
SQLSERVR!match_sargs_to_index

77f39b34

Figure 3

Example of Function Trace Output from Ntstep

100 Digital Technical Journal

Vol.8 No.4 1996

5828 *x*
5895 *x
5942 *x*
5976 **
5985 **
6090 *x
6356 *x*
6539 *xx*
6720 **
6912 **
7309 *x*
7728 **
8125 *x*
8522 **
8919 *x
9410 **
9465 **
9641 **
9661 *x
9809 **
10212 **
10616 **
10702 **
10769 **
10822 **
10838 **
10885 **
10919 **
10928 **
11033 **
11359 *x
11489 **
11557 **
11675 **
11853 **
11907 **
12044 **
12103 **
12138 **
12291 **
12464 **
12524 **
12661 **
12729 **
12756 **
12792 **
12845 **
12887 **
12958 **
13025 **
13077 **
13127 **
13179 **
13263 **
13267 *x*
13299 **
13369 *x*
13401 **
13477 **
13509 **
13562 **
13594 **
13670 **
13702 **
13755 *x*
13787 **
13847 **
13895 **
13921 **
14046 **
14098 **
14157 **
16161 **
14193 **

SQALSERVR!srchindex
SQLSERVR!getpage
SQLSERVR'bufget
SQLSERVR!'_OtsDivide
SQLSERVR!_OtsDivide32+0x94
. . SQLSERVR'getkeepslot
SAQLSERVR'bufrlockwait
SQLSERVR'srchpage
SQLSERVR!'nc_ sqlhilo+0x8b0
SQLSERVR'n¢c_ _sqlhilo+0x8b0
SQLSERVR!nc__sglhilo+0x8b0
SALSERVR!nc__sqlthilo+0x8b0
SQLSERVR!nc__sqlhito+0x8b0
SQLSERVR'nc_ _sqlhilo+0x8b0
SQLSERVR'nc_ _sglhilo+0x8b0
SQLSERVR‘1ndex _beforesleep+0x100
. . SQLSERVR!bufrunlock
SQLSERVR'tr1m _sqoff+0xf0
SQALSERVR'qualpage
SAQLSERVR!nc__sqlhilo+0x8b0
SQLSERVR!'nc__sqlhilo+0x8b0
. . SQLSERVR'rowoffset
SALSERVR'getnext
SQLSERVR!_OtsFieldInsert
SRLSERVR'!'getrow2
SQLSERVR'!getpage
SQLSERVR'bufget
SQLSERVR!_OtsDivide
SQLSERVR!_OtsDivide32+0x94
.. SQLSERVR'getkeepsLot
SQLSERVR' _OtsMove
SQLSERVR!endscan
SQLSERVR'bufunkeep
. SQLSERVR'bufunkeep
SALSERVR!closetable
SALSERVR!endscan
. SQLSERVR'!'get_spinlock
SQLSERVR'opentabid
SQLSERVR'getdes
. . SQLSERVR!_OtsZero
SQLSERVR'closetable
SQLSERVR!endscan
. . SQLSERVR!get_spinlock
SQLSERVR!protect
SQLSERVR!'port_ex_handle
SQLSERVR!_Otssetjmp3
SALSERVR!prot_search
. SQLSERVR!dbtblfind
. . SQLSERVR!check_protect
SALSERVR!'memalloc
. SQLSERVR!_OtsZero
SQLSERVR!memalloc
. SQLSERVR!_OtsZero
SQLSERVR!rn_i2
SQLSERVR'recvhost
. . SQLSERVR!_OtsMove
SQLSERVR'recvhost
. SQLSERVR!_OtsMove
SQLSERVR!recvhost
. SQLSERVR!_OtsMove
SQLSERVR!recvhost
. SQLSERVR!_OtsMove
SQLSERVR!'recvhost
. SQLSERVR!_OtsMove
SQLSERVR'recvhost
. SQALSERVR!_OtsMove
SQLSERVR!bconst
SQLSERVR!mkconstant
SRLSERVR'memalloc
. SQLSERVR'memalloc
. . SQLSERVR'_OtsZero
SQLSERVR!rn_i4
SALSERVR!'recvhost
SQLSERVR'_OtsMove

Figure 3 (continued)

Example of Function Trace Output from Ntstep

Digiral Technical Journal

Vol. 8 No. 4

1996

101

Table 11
Instruction Count and Variations for Scaled Transaction

Instruction Original Byte/Word Delta % Delta | Instruction Original Byte/Word Delta % Delta
stb 0 174 +174 N/A | stt 334 334 0 0%
stw 0 219 +219 N/A | cmple 368 358 10 —3%
Idwu 0 1215 +1215 N/A | inswl 390 207 183 ~47%
Idbu 0 1216 +1216 N/A | srl 457 398 59 —=13%
cmpbge 2 0 -2 —100% | extgh 441 317 124 —28%
cmovlbs 2 2 0 0% | cmpule 468 450 18 4%
addt 3 3 0 0% | cmpult 563 518 45 —8%
cmovlbc 5 4 -1 -20% | cmplt 565 534 31 5%
cmovle 5 5 0 0% | rdteb 604 597 7 -1%
insgh 6 6 0 0% | extwl 660 345 315 —48%
cmovgt 13 13 0 0% | stg_u 688 688 0 0%
callsys 18 14 -4 —22% | blt 784 771 13 —-2%
mulqg 13 13 0 0% | bic 771 347 424 —55%
s8subq 17 17 0 0% | extll 789 761 28 —4%
cmovlt 16 16 0 0% | extlh 789 761 28 4%
Idt 25 25 0 0% | bge 828 819 9 -1%
zap 34 33 —~1 -3% | mb 961 941 20 -2%
umulh 35 35 0 0% | sll 949 590 359 —38%
mull 60 62 +2 +3% | subl 1052 1061 (9) +1%
ornot 52 52 0 0% | br 1160 1080 80 7%
cmpeq 64 61 -3 —5% | sra 1211 562 649 —54%
insql 61 61 0 0% | bsr 1203 1191 12 -1%
blbs 69 69 0 0% | sd4addl 1176 1166 10 -1%
s8add! 71 74 +3 +4% | ret 1282 1264 18 -1%
mskwi 74 0 -74 —100% | zapnot 1262 910 352 —28%
jsr 98 89 -9 -9% | addq 1704 1685 19 -1%
cpys 104 41 -63 -61% | subg 2159 2140 19 1%
mskgh 155 153 -2 1% | Idah 2793 2746 47 —2%
cmovne 147 141 -6 —4% | extbl 2902 1668 1234 —43%
mskbl 163 0 —-163 —100% | xor 3426 3380 46 -1%
cmoveq 183 173 -10 -5% | and 3402 2969 433 -13%
insbl 182 19 -163 —-90% | bne 4537 4440 97 —2%
extwh 196 196 0 0% | addl 4897 4855 42 1%
trapb 203 215 +12 +6% | Idq_u 5046 3933 1113 —22%
mskq| 204 202 -2 1% | stl 5753 5301 452 —8%
jmp 208 200 -8 —4% | Ida 6496 5435 1061 -16%
cmovge 291 287 -4 -1% | stq 6778 6713 65 -1%
blbc 249 249 0 0% | Idq 7018 6519 —499 +7%
bgt 331 328 -3 -1% | beq 7607 7455 152 —-2%
Idl_| 344 335 -9 -3% | bis 11284 10707 577 —5%
stl_c 344 335 -9 —-3% | IdI 15962 14260 1702 -11%
extql 329 327 -2 —1% | Totals 115895 107854 8042 7%

For the scaled transaction, a dccrease in 58 out of
81 instructions types occurred. Of the remaining 25
instructions, 21 had no change and only 4 instructions,
mull, s8addl, trapb, and subl, showed an increase. For
cached transactions, 22 instruction counts decreased,
29 increased, and 22 remained unchanged.

The performance gain of 3.5 percent measured ftor
the cached version of the application benchmark cor-
relates closely to the decrease in the number of

Digital Technical Journal Vol.8 No.4 1996

instructions per transaction measured in Table 13. If
this correlation holds true, we would expect to see an
increase in performance of approximately 7 percent
for scaled transactions runs.

Dynamic Instruction Distribution

The performance of the Alpha microprocessor using
technical and commercial workloads has been evalu-
ated.! The commercial workload used was debit-

Table 12
Instruction Count and Variations for Cached Transaction

Instruction Original Byte/Word Delta % Delta | Instruction Original Byte/Word Delta % Delta
stb 0 174 +174 N/A | stt 334 334 0 0%
stw 0 217 +217 N/A | cmple 367 374 +7 +2%
ldwu 0 1189 +1189 N/A | inswl 381 203 -—-178 —47%
Idbu 0 1333 +1333 N/A | srl 433 383 =50 -12%
cmpbge 2 0 -2 —100% | extgh 434 314 -120 —28%
cmovlbs 2 2 0 0% | cmpule 450 440 -10 —2%
addt 3 3 0 0% | cmpult 550 572 +22 +4%
cmovlbc 4 5 +1 +25% | cmplt 561 585 +24 +4%
cmovle 5 5 0 0% | rdteb 587 590 +3 +1%
insgh 6 6 0 0% | extwl 654 340 -314 —48%
cmovgt 13 13 0 0% | stq_u 689 687 =2 0%
callsys 15 16 +1 +7% | blt 751 770 +19 +3%
mulqg 13 13 0 0% | bic 759 346 —-413 —54%
s8subq 13 14 +1 +8% | extll 784 805 +21 +3%
cmovlt 16 16 0 0% | extlh 784 805 +21 +3%
Idt 25 25 0 0% | bge 813 831 +18 +2%
zap 26 27 +1 +4% | mb 883 901 +18 +2%
umulh 32 32 0 0% | sli 899 569 —330 -37%
mull 46 48 +2 +4% | subl 983 995 +12 +1%
ornot 46 46 0 0% | br 1130 1100 -30 -3%
cmpeq 53 53 0 0% | sra 1134 528 —606 —53%
insql 61 61 0 0% | bsr 1158 1165 +7 +1%
blbs 63 63 0 0% | sd4addl 1160 1170 +10 +1%
s8add| 69 70 +1 +1% | ret 1232 1239 +7 +1%
mskwl 73 0 -73 —-100% | zapnot 1247 911 -336 -27%
jsr 90 92 +2 +2% | addq 1589 1631 +42 +3%
cpys 87 41 -46 -53% | subqg 1994 2046 +52 +3%
mskgh 152 157 +5 +3% | Idah 2684 2691 +7 +0%
cmovne 160 165 +5 +3% | extbl 2921 1682 —1239 —42%
mskbl 163 0 -163 —100% | xor 3278 3332 +54 +2%
cmoveq 182 190 +8 +4% | and 3361 2990 371 -1%
insbl 182 19 -163 -90% | bne 4328 4376 +48 +1%
extwh 195 196 +1 +1% | addl 4734 4856 +122 +3%
trapb 210 211 +1 0% | Idg_u 5061 4046 1015 —-20%
mskgl 201 203 +2 +1% | stl 5418 5052 —366 7%
jmp 209 215 +6 +3% | Ida 6289 5344 945 ~15%
cmovge 226 236 +10 +4% | stq 6464 6588 +124 +2%
blbc 238 238 0 0% | Idg 6685 6359 —326 —5%
bgt 292 302 +10 +3% | beq 7355 7466 +111 +2%
Idl_I 314 320 +6 +2% | bis 10890 10668 —222 -2%
stl_c 314 320 +6 +2% | Idl 14964 13772 —1192 —-8%
extql 326 329 +3 +1% | Totals 111288 106521 4767 —4%

credit, which is similar to the TPC-A benchmark. The
TPC-B benchmark is similar to the TPC-A, diftering
only in its method of exccution. Cvetanovic and
Bhandarkar presented an instruction distribution
matrix for the debit-credit workload. The Alpha
instruction type mix is dominated by the integer class,
followed by other, load, branch, and store instructions,
in descending order.”” We took a similar approach
but divided the instructions into more groups to
achieve a finer derailed distribution. Table 13 gives the

instruction makeup of cach group. Figure 4 shows the
percentage of instructions in cach group for the four
alternatives we studied. In all four cases, INTEGER
LOADs make up 32 percent of the instructions exe-
cuted. In the scaled Byte/Word category, the new
ldbu and Idwu instructions compose 1 percent of the
integer instructions, and the new stb and stw instruc-
tions accounted for 18 percent of the integer store
instructions executed.

Digital Technical Journal Vol.8 No.4 1996

103

Table 13

Instruction Groupings

Instruction

Group Group Members

Idwu, Idbu, Idl_], Idah, Idg_u,
Ida, Idqg, Idl

stb, stw, stl_c, stq_u, stl, stq

bibs, jsr, jmp, blbc, bgt, blt, bge,
br, bsr, ret, bne, beg

cmpbge, s8subg, umulh, mull,
cmpeq, s8addl, cmple, cmpule,
cmpult, cmplt, subl, s4addl,
addq, subgq, addl

cmovlbs, cmovlbc, cmovle,
cmovgt, cmovlt, ornot, cmovne,
cmoveq, cmovge, srl, big, sll, sra,
xor, and, bis

insll, inslh, mskll, mskhl, insgh,
zap, insgl, mskwl, mskgh, mskbl,
insbl, extwh, insbl, extwh, mskg|,
extql, inswl, extgh, extwl, extll,
extlh, zapnot, extbl

addt, Idt, stt, mulq, callsys, cpys,
trapb, rdteb, mb

Integer loads

Integer stores
Integer control

Integer arithmetic

Logical shift

Byte manipulation

Other

During the scaled transactions, each instruction
group showed a decrease in the number of instruc-
tions executed, ranging from negligible to as much as
54 percent. In addition, the number of byte manipula-
tion and logical shift instructions decreased, because

the method of loading or storing bytes and words
on the original Alpha Architecture made heavy use of
these nypes of instructions.

In our last examination, we looked at the instruc-
tion variation berween a scaled and a cached trans-
action. The major difference benwveen the two
rransactions 1s the additional 1/0 required by the
scaled version of the benchmark. Table 14 gives the
results. The Original version of the SQL Scrver dara-
base exccured an extra 4,596 instructions during the
cached transaction as compared to the scaled trans-
action. For the Byte/Word version, only an additional
1,334 instructions were executed.

Conclusions

The introduction of the new single byte and word
manipulation instructions in the Alpba Architecture
improved the performance of the Microsoft SQL
Server database. We observed a decrease in the num-
ber of instructions exccuted per transaction, the
climination of some instructions in the workload, a
redistribution of the instruction mix, and an increase
in relative performance. The results are in line with
expectations when the addition of the new instruc-
tions was proposed.

We limited our investigation to a single commerctal
workload and operating system. Testing a workload
with more T/0, such as the TPC-C benchmark, would

CACHED
BYTE/WORD

CACHED
ORIGINAL

AN

NN

N

SCALED
BYTE/WORD

NN

SCALED
ORIGINAL

//f // 7 B

1

20 30

(o)
-
[}

KEY:

|
L

INTEGER LOAD
INTEGER STORE
INTEGER CONTROL
INTEGER ARITHMETIC
LOGICAL SHIFT

BYTE MANIPULATION
OTHER

OB

Figure 4
Instruction Group Distribution

Digital Technical Journal Vol. 8§ No. 4

40

1996

50 60 70 80 90

PERCENT

Table 14
instruction Variations (Scaled Minus Cached Transactions)

Instruction Original Byte/Word | Instruction Original Byte/Word | Instruction Original Byte/Word
stw 0 -2 | cmplt -4 +51 | subl -69 —-66
Idwu 0 —26 | rdteb =17 =7 | br -30 +20
Idbu 0 +117 | extwl -6 -5 sra =77 -34
cmovlbc -1 +1 | stg_u +1 =1 | bsr —45 —26
callsys -3 +2 | blt -33 —1 | sdaddl -16 +4
s8subqg -4 -3 | bic -12 =1 ret -50 =25
zap -8 -6 | extll -5 +44 | zapnot =15 +1
umulh -3 -3 | extlh -5 +44 | addq -115 -54
mull -14 -14 | bge =15 +12 | subg —165 -94
ornot -6 -6 | mb -78 =40 | |dah -109 =55
cmpeq -11 -8 | sll =50 ~21 | extbl +19 +14
blbs -6 -6 | cmovge —65 =51 | xor -148 —48
s8addl -2 -4 | blbc -1 -11 | and -41 +21
mskwl -1 0 | bgt -39 —26 | bne —209 —64
jsr -8 +3 | IdI_| -30 =15 | addi -163 +1
cpys -17 0 | stl ¢ -30 —15 | Idq_u +15 +113
mskqh -3 +4 | extql -3 +2 | stl —335 —249
cmovne +13 +24 | cmple -1 +16 | Ida -207 -9
cmoveq —1 +17 | inswl -9 —4 | stq -314 —-125
extwh -1 0 | srl —24 -15 | Idq -333 —160
trapb +7 —4 | extgh -7 -3 | beq —252 +11
mskql -3 +1 | cmpule -18 —10 | bis —394 -39
jmp +1 +15 | cmpult -13 +54 | Idl —998 —488

Totals —4596 -1334

produce a different set of results and would merit
investigation. The use of another database, such as the
Oracle RDBMS, which makes greater usc of byte oper-
ations, would possibly result in an even greater pertfor-
mance impact. Lastly, rebuilding the entire operating
system to use the new instructions would make an
teresting and worthwhile study.

Acknowledgments

As with any project, many people were instrumental in
this ctfort. Wim Colgate, Miche Baker-Harvey, and
Steve Jenness gave us numerous insights into the
Windows NT operating system. Tom Van Baak pro-
vided several analysis and tracing/simulation tools for
the Windows NT environment. Rich Grove provided
access to carly builds of the GEM compiler back end
that contained byte and word support. Stan Gazaway
built the SQL Server application with the modifica-
rions. Vehbi Tasar provided encouragement and sanity
checking. John Shakshober lent insight into the world
of TPC. Peter Bannon provided the early prototype
machine. Contributors from Microsoft Corporation
mncluded Todd Ragland, who helped rebuild the SQL
Scrver; Rick Vicik, who provided detailed insights into
the operation of the SQL Server; and Damien
Lindauer, who helped set up and run the TPC bench-
mark. Finally, we thank Dick Sites tor encouraging
us to undertake this eftort.

References and Notes

1. Z. Cveranovic and D. Bhandarkar, “Characterization
of Alpha AXP Performance Using TP and SPEC Work-
loads,” 27st Annual International Symposiium on
Computer Architectitre, Chicago (1994).

2. W. Kohler ctal., “Performance Evaluation of Transac-
tion Processing,” Digital Technical Journal, vol. 3,
no. 1 (Winter 1991): 45-57.

3. S. Leutencgger and D. Dias, “A Modeling Study of the
TPC-C Benchmark,” Proceedings of the 1993 ACM
SIGMOD International Conference on Manage-
ment of Data, SIGMOD Record 22 (2), (June 1993).

4. R. Sites and k. Perl, PatchWrks—A Dynamic
Execution Tracing Tool (Palo Alto, Calif.: Digiral
Equipment Corporation, Svstems Research Center,
1995).

5. W. Kohler, A. Shah, and F. Raab, Overview of TPC
Benchmark C: The Order-Entry Benchmerk (San
Jose, Calif.: Transaction Processing Performance
Council Technical Report, 1991).

6. R. Sires, “Alpha AXP Architecture,” Digital Techni-
cal Journal vol. 4, no. 4 (Special Issue 1992): 19-34.

7. Alpha AXP Systems Handbook (Maynard, Mass.:
Digital Equipment Corporation, 1993).

8. DECchip 21064A4-233. -275 Alpha AXP Micro-

processor Data Sheet (Maynard, Mass.: Digiral
Equipment Corporation, 1994).

Digital Technical Journal Vol.8 No.4 1996

106

9. Alpha 21164 Microprocessor Hardware Refer-
ence Manal (Maynard, Mass.: Digital Equipment
Corporation, 1994).

10. R.Sites and R. Witek, Alpha AXP Architectitre Refer-
ence Mainal, 2d ed. (Newton, Mass.: Digiral Press,
1995).

11, G. Kane, MIP°S R2000 RISC Architectinre (Englewood
Clifts, N.J.: Prentice Hall, 1987).

12. J. Hennessy, N. Jouppi, F. Baskett, and J. Gill, 3/7Ps:
A VLSI Processor Architectiire (Stanford, Calif:
Compurter Systems Laboratory, Stanford Universiry,
Technical Report No. 223, 1981).

13. J. Hennessy, N. Jouppi, F. Basketr, T. Gross, J. Gill,
and S. Przybylski, Hurdware/Softwere Tradeoffs for
Increased Performeiice (Stanford, Calif.: Compurer
Svstems Laboratory, Sranford University, Technical
Report No. 228, 1983).

14. The original MIPS Architecture at Stantord University
did not contain single byte manipulation instructions;
this decision was reversed for the first commercially
produced MIPS R2000 processor. The Intel x86
Architecture has always included these instructions.

15. C. Cole and L. Crudele, personal correspondence,
December 1996.

16. Microsoft Corporation developed the ARC firmware
for the MIPS platform. During the carlv davs of the
port of Windows N'T to Alpha, DIGITAL’s engincers
ported the ARC firmware to the Alpha plarform.

17. The Alpha instruction type mix included PALcode
calls, barriers, and other implementation-specific
PALcode instructions.

Biographies

David P. Hunter

David Hunter is the engineering manager of the DIGITAL
Software Partners Enginecring Advanced Development
Group, where he has been involved in performance investi-
gations of databases and their interactions with UNIX and
Windows NT. Prior to this work, he held positions in the
Alpha Migration Organization, the ISV Porting Group,

and the Government Group’s Technical Program Manage-
ment Office. He joined DIGITAL in the Laboratory Data
Products Group in 1983, where he developed the VAXIab
User Management System. He was the project leader of the
advanced development project, I'TS, an executive informa-
tion system, for which he designed hardware and software
components. David has two patent applications pending in
the arca of software engineering. He holds a degree in clectri-
cal and computer engineering from Northeastern University.

Digital Technical Journal Vol. 8 No.4 1996

Eric B. Betts

Eric Betrs is a principal software engineer in the DIGITAL
Software Parmers Engineering Group, where he has been
involved with performance enginecring, project manage-
ment, and benchmarking for the Microsoft SQI. Server
and Windows NT products. Previously with the Federal
Government Region, Eric was a member of the technical
support group and a technical lead on several government
programs. Betore joining DIGITAL in 1990, he worked
in many difterent software development arcas at Martin
Marictra and the Defense Information Svstems Ageney.
kric received a B.S. in computer science from North
Carolina Central Universitv.

Further Readings

The Digital Technical Journal is a refereed, quarterly
publication of papers that explore the foundations

of DIGITAL’s products and technologies. Jouirnal
content is selected by the Journal Advisory Board,
and papers are written by DIGITAL’s engineers

and engincering partners. Engineers who would

like to contribute a paper to the Jorrnal should
contact the managing cditor, Jane Blake, at
Jane.Blake@ljo.dec.com.

Topics covered in previous issues of the Digital
Technical Journal are as follows:

Internet Protocol V.6 /Preservation of Historical
Computer Systems/Fortran for Parallel Computing/
Server Performance Evaluation and Optimization/
Internet Collaboration Software

Vol. 8, No. 3, 1996, EC-N7285-18

Spiralog Log-structured File System/

OpenVMS for 64-bit Addressable Virtual Memory/
High-performance Message Passing for Clusters/
Speech Recognition Software

Vol. 8, No. 2, 1996, EY-N6992-18

Digital UNIX Clusters/Object Modification Tools/
eXcursion for Windows Operating Systems/
Network Directory Services

Vol. 8, No. 1, 1996, EY-U025E-T]

Audio and Video Technologies/ UNIX Available
Servers/Real-time Debugging Tools
Vol. 7, No. 4, 1995, EY-UO02E-T17J

High Performance Fortran in Parallel Environments/
Sequoia 2000 Research

Vol. 7, No. 3, 1995, EY-T838E-T]

(Available only on the Internet)

Graphical Software Development/Systems Engineering
Vol. 7, No. 2, 1995, EY-UOOLE-TJ

Database Integration /Alpha Servers & Workstations/
Alpha 21164 CPU

Vol. 7, No. 1, 1995, EY-T135E-T]

(Available only on the Internet)

RAID Array Controllers/Workflow Models/
PC LAN and System Management Tools
Vol. 6, No. 4, Fall 1994, EY-T118E-T]

AlphaServer Multiprocessing Systems/ DEC OSE/1
Symmetric Multiprocessing/ Scientific Computing
Optimization for Alpha

Vol. 6, No. 3, Summer 1994, EY-S799L-T]

Alpha AXP Partners—Cray, Raytheon, Kubota/
DECchip 21071 /21072 PCI Chip Sets/
DLT2000 Tape Drive

Vol. 6, No. 2, Spring 1994, EY-FO47E-T]

High-performance Networking/OpenVMS AXP
System Software/Alpha AXP PC Hardware
Vol. 6, No. 1, Winter 1994, EY-QO11E-T]

Software Process and Quality
Vol. 5, No. 4, Fall 1993, EY-P920E-DP

Product Internationalization
Vol. 5, No. 3, Summer 1993, EY-P98GE-DP

Multimedia/Application Control
Vol. 5, No. 2, Spring 1993, EY-P963E-DP

DECnet Open Networking
Vol. 5, No. 1, Winter 1993, EY-M770E-DD

Alpha AXP Architecture and Systems
Vol. 4, No. 4, Spcaial Issue 1992, EY-J886E-DP

NVAX-microprocessor VAX Systems
Vol. 4, No. 3, Summer 1992, EY-J884E-DP

Semiconductor Technologies
Vol. 4, No. 2, Spring 1992, EY-L521E-DP

PATHWORKS: PC Integration Software
Vol. 4, No. 1, Winter 1992, EY-J825E-DD

Image Processing, Video Terminals, and
Printer Technologies
Vol. 3, No. 4, Fall 1991, EY-H889E-DP

Availability in VAXcluster Systems/
Network Performance and Adapters
Vol. 3, No. 3, Summer 1991, EY-H890E-DP

Fiber Distributed Data Interface
Vol. 3, No. 2, Spring 1991, EY-H876E-DP

Transaction Processing, Databases, and
Fault-tolerant Systems
Vol. 3, No. 1, Winter 1991, EY-F588E-DP

VAX 9000 Series
Vol. 2, No. 4, Fall 1990, EY-E762E-DP

DECwindows Program
Vol. 2, No. 3, Summer 1990, EY-E756E-DD

VAX 6000 Model 400 System
Vol. 2, No. 2, Spring 1990, EY-C197E-DP

Compound Document Architecture
Vol. 2, No. 1, Winter 1990, EY-C196E-DP

Digital Technical Journal Vol.8 No.4 1996

107

Call for Authors
from Digital Press

Digital Press is an imprint of Butterworth-Heinemann, a major international pub-
lisher of professional books and a member of the Reed Elsevier group. Digital
Press is the authorized publisher for Digital Equipment Corporation: The two
companies are working in partnership to identify and publish new books under the
Digital Press imprint and create opportunities for authors to publish their work.

Digital Press is committed to publishing high-quality books on a wide variety of
subjects. We would like to hear from you if you are writing or thinking about writ-
ing a book.

Contact: Liz McCarthy, Associate Acquisitions Editor, or
Mike Cash, Digital Press Manager

DIGITAL PRESS

313 Washington Street

Newton, MA 02158-1626

U.SA.

Tel: (617)928-2649, Fax: (617) 928-2640
E-mail: Liz.McCarthy@repp.com or
Mike.Cash@BHein.rel.co.uk

ISSN 0898-901X

Printed in U.S.A. EC-N7629-18/97 04 %20

g ~

	Front cover
	Contents
	Editor's Introduction
	AlphaServer 4100 Performance Characterization
	The AlphaServer 4100 Cached Processor Module Architecture and Design
	The AlphaServer 4100 Low-cost Clock Distribution System
	Design and Implementation of the AlphaServer 4100 CPU and Memory Architecture
	High Performance I/O Design in the AlphaServer 4100 Symmetric Multiprocessing System
	Design of the 64-bit Option for the Oracle7 Relational Database Management System
	VLM Capabilities of the Sybase System 11 SQL Server
	Measured Effects of Adding Byte and Word Instructions to the Alpha Architecture
	Further Readings
	Call for Authors from Digital Press
	Back cover

