
IOCRAMMING LANCUAC k TOOL!

Editorial
Jane C. Blake, Managing Editor
Kathleen M. Stetson, Editor
Helen L. Patterson, Editor

Circulation
Kristine M. Lowe, Administrator

Production
Christa W. Jessico, Production Editor
Elizabeth McGrail, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Thomas F. Gannon, Chairman (Acting)
Scott E. Cutler
Donald Z. Harbert
William A. Laing
Richard F. Lary
Alan G. Nemeth
Robert M. Supnik

The Digital TechnicalJournalis a refereed
journal published quarterly by Compaq
Computer Corporation, 550 King Street,
LKG1-2/W7, Littleton, MA 01460-1289.

Hard-copy subscriptions can be ordered by
sending a check in U.S. funds (made payable
to Compaq Computer Corporation) to the
published-by address. General subscription
rates are $40.00 (non-U.S. $60) for four issues
and $75.00 (non-U.S. $115) for eight issues.
University and college professors and Ph.D.
students in the electrical engineering and com-
puter science fields receive complimentary sub-
scriptions upon request. Compaq customers
may q* for & subscriptions and are encour-
aged to contact their sales representatives.

Electronic subscriptions are available at
no charge by accessing URL
http://www.dipital.com/subsuiption.
This service will send an electronic mail
notification when a new issue is available
on the Internet.

Single copies and back issues can be ordered
by sending the requested issue's volume and
number and a check for $16.00 (non-U.S.
$18) each to the published-by address. Recent
issues are also available on the Internet at
http://www..dipital.com/dtj.

Compaq employees may order subscrip-
tions through Readers Choice at URL
http://webrc.das.dec.com.

Inquiries, address changes, and compli-
mentary subscription orders can be sent
to the Digital TechnicalJournalat the
published-by address or the electronic
mail address, ctj@compaq.com. Inquiries
can also be made by calling the Journal
office at 978-506-6858.

Comments on the content of any paper and
requests to contact authors are welcomed
and may be sent to the managing editor at
the published-by or electronic mail address.

Copyright O 1998 Compaq Computer
Corporation. Copying without fee is per-
mitted provided that such copies are made
for use in educational institutions by faculty
members and are not distributed for com-
mercial advantage. Abstracting with credit
of Compaq Computer Corporation's author-
ship is permitted.

The information in the Journal is subject
to change without notice and should not
be construed as a commitment by Compaq
Computer Corporation or by the compa-
nies herein represented. Compaq Computer
Corporation assumes no responsibility for
any errors that may appear in the Journal.

ISSN 0898-901X

Documentation Number EC-P9706-18

Book production was done by Quantic
Communications, Inc.

Cover Design
This special issue of the Journal focuses on
Programming Languages & Tools, specifi-
cally on compiler software. For the cover,
we have chosen the alchemist who trans-
forms common elements into precious gold
to represent the compiler developer who
transforms code to extract the highest per-
formance possible for software applications.

Alphaserver, Compaq, the Compaq logo,
DEC, DIGITAL, the DIGITAL logo,
ULTRIX, VAX, and VMS are registered
in the U.S. Patent and Trademark Office.

DIGITAL UNIX, FX!32, and OpenVMS
are trademarks of Compaq Computer
Corporation.

Intel and Pentium are registered trademarks
of Intel Corporation.

IRIX is a registered trademark of Silicon
Graphics, Inc.

Microsoft, Visual C++, Windows, and
Windows NT are registered trademarks
of Microsoft Corporation.

MIPS is a registered trademark of MIPS
Technologies, Inc.

NULLSTONE is a trademark of Nullstone
Corporation.

Roque Wave and .h++ are registered trade-
marks of Roque Wave Software, Inc.

RS/6000 is a registered trademark of
International Business Machines Corporation.

Solatis is a registered trademark of Sun
Microsystems, Inc.

SPARC is a registered trademark of SPARC
International, Inc.

SPEC and SPECint are registered trademarks
of Standard Performance Evaluation
Corporation.

UNIX is a registered trademark in the United
States and in other countries, licensed exclu-

-

sively through X/Open Company Ltd.

Other product and company names mentioned
herein may be trademarks and/or registered
trademarks of their respective owners.

The cover was designed by Lucinda O'NeiU
of the Compaq Industrial and Graphic
Design Group.

December 1998

A letter to readers of the Digiful Technical Journal

This issue is the last Digitul Technical./ournal to be published. Since 1985, tlie

Journal has been privileged to publish information about significant engineering

accomplishments for DIGITAL, including standards-setting network and storage

teclu~ologies, industry-leading VAX systems, record-breaking Alpha rnicroproces-

sors and semiconductor technologies, and ad\lanced application sohvare and

performance tools. The./out.nul has been rewarded by continual growth in

the number of readers and by their expressions of appreciation for the quality

of content and presentation.

The editors thank the engineers who somehow made tlie time to write, the engi-

neeriig managers who supported them, the consulti~lg engineers and professors

who reviewed manuscripts and made the process a learning experience for all of

us, and, of course, the readers who are the reason the.lozirnal came into existence

1 3 years ago.

With kind regards,

Jane Blake

Managng Editor

Kathleen Stetson

Editor

Helen Patterson

Editor

Digital Technical Journal
Volume 10 Number 1

Contents

Introduction

Foreword

Tracing and Characterization of Windows NT-based
System Workloads

Automatic Template Instantiation in DIGITAL C++

Measurement and Analysis of C and C++ Performance

Alias Analysis in the DEC C and DIGITAL C++ Compilers

Compiler Optimization for Superscalar Systems:
Global Instruction Scheduling without Copies

Maximizing Multiprocessor Performance
with the SUlF Compiler

Debugging Optimized Code: Concepts and
Implementation on DIGITAL Alpha Systems

Differential Testing for S o h a r e

C. Robert Morgan, Guest Editor

William C. Blake

Jason P. Casmira, David P. Hunter,
and David R. ICaeli

Avrum E. Itzkowitz and Lois D. Foltan

Hemant G. Rotithor, I<evin W. Harris,
and Mark W. Davis

August G. Reinig

Philip H. Sweany, Steven M. Carr,
and Brett L. Huber

Mary W. Hall, Jennifer M. Anderson,
Saman P. Amarasinghe, Brian R. Murphy,
Shih-Wei Liao, Eduoard Bugnion, and Monica S. Lam

Ronald F. Brender, Jeffrey E. Nelson,
and Mark E. Arsenault

William M. McKeeman

Introduction

C. Robert Morgan
Senior Coizsctlting Etzgineer and
Technical Program Manager,
Core Technology Group

Tlie complexity of high-performance
systems and the need for ever-uicreased
performance to be gained from those
systerns creates a challenge for engi-
neers, one that requires both experience
and innovation in the development
of s o h ~ a r e tools. The papers in tlis
issue of the.Journal are a few selected
examples of the work performed
within Compaq and by researchers
worldwide to advance the state of the
art. In fact, Compaq supports rele-
vant research in programming lan-
p a g e s and tools.

Compacl has been developing
high-perfor~nance tools for more
than thirty years, starting with tlie
Fortran compiler for the DIGITAL
PDP-10, introduced in 1967. Later
cornpilcrs and tools for VAX coni-
puter systems, introduced in 1977,
made the VAY system one of the most
usable in I%story. The co~npilers and
debugger for VAXflMS are exem-
plary. With the introduction of the
TIAX successor in 1992, the 64-bit
RISC Alpha systems, Compaq has
continued the tradition ofdevelopjllg
advanced tools that accelerate appli-
cation performalice and usability for
system users. Tlie papers, however,
represent not only the work of
Co~npaq engjneers but also that of
researchers and academics wlio are
working on problems a id advanced
techniques ofinterest to Compaq.

The paper on characterization of
system workloads by Casmira, Hunter,
and Kaeli addresses the capture of
basic data needed for the de\relopment
of tools and high-performance appli-
cations. The authors' work focuses
on generating accurate profile and
trace data on machines running the
Windows NT operating system.

Prof Ling describes tlie point in the
program that is most freq~leiltly
executed. Tracing describes the
commonly execi~ted sequence of
instructions. In addition to helping
developers build more efficient
applications, this infornlation assists
designers and implernenters of hture
Windows NT systems.

Every conlpiler consists of two
components: the front end, which
analyzes the specific language, and
the back end, which generates opti-
mized instructions for the target
machine. An efficient compiler is a
balance of both components, As lan-
guages such as C++ evol\rc, the com-
piler front end must also e\~olve to
lteep pace. C++ has now been stan-
dardized, so e\~olutionary changes
wdl lessen. Ho\vever, compiler devel-
opers must continue to irnprove
front-end techniques for implement-
ing the language to ensure ever better
application performance. An impor-
tant feature of C++ compiler develop-
ment is C++ templates. Templates
may be implemented in multiple
ways, with varying effects on appli-
cation programs. The paper by
Itzl<owitz and Foltan describes
Compaq's efficient implcnientation
oftemplates. 011 a related subject,
liotithor, Harris, and Davis describe
a systematic approach Colnpaq has
developed for monitoring and
improving C++ compilcr perfor-
mance to minimize cost and masi-
mize function and reliability.

Improved optimization techniqueb
for compiler back ends are presented
in three papers. In the first of these,
Reinig addresses the requirement in
an optimizing compiler for an accu-
rate description of the variables and

Dlg~tnl Technical Journal Val. 10 No. 1 1998

fields that may be changed by an
assignment operation, and describes
an efficient technique used in the
C/C++ compilers for gathering this
information. Swean): Carr, and Huber
describe techniques for increasing
execution speed in processors like
the Alpha that issue multiple instruc-
tions simultaneously. The technique
reorders the instructions in the pro-
gram to increase the number of
instructions that are simultaneously
issued. Maximizing the performance
of multiprocessor systems is the sub-
ject ofthe paper by Hall et al., which
was previously published in IEEE
Cornp~lter and updated c\iitli an
addendum for this issue. The authors
describe the SUIF compiler, which
represents some of the best research
in this area and has become the basis
of one part of the ARPA compiler
infrastructi~re project. Cornpaq
assistcd researchers bp providing the
DIGITAL Fortran compiler fi-ont end
and an Alphaserver 8400 system.

As compilers become more cffec-
tive in increasing applic~tion program
performance, the ability to debug
the programs becomes more difficult.
The difficulty arises because the
compiler gains efficiency by reorder-
ing and eliminating instructions.
Consequently, the instructions for
xi application program are not easily
identifiable as part ofany particular
statement. The debugger cannot
always report to the application pro-
gram where variables are stored or
what statement is currently being
executed. Application programmers
have nvo choices: Debug an unopti-
mized version of the program or find
some other technique for deternulung
the state ofthe program. The paper

by Brender, Nelson, and Arsenault
reports an advanced development
project at Compaq to provide tech-
niques for the debugger to discover
a more accurate image of the state of
the program. These techniques are
currently being added to Compaq
debuggers.

One of the problems that tool
de\relopers face is increasing tool reli-
ability. Tool developers, therefore,
test the code. However, developers
are often biased; they know how their
programs operate, and they test cer-
tain aspects of the code but not oth-
ers. The paper by McICeeman describes
a technique called differential testing
that generates correct random tests of
tools such as compilers. The random
nature of the tests removes the devel-
opers' bias. The tool can be used for
two purposes: to improve existing
tools and to compare the reliability
ofcompetitive tools.

The High Performance Technical
Computing Group and the Core
Technolog)! Group within Compaq
are pleased to help develop this issue
of the.Iournn1. Studying the work
performed within Compaq and by
other researchers worldwide is one
way that we remain at the cutting
edge of technology ofprogramming
language, compiler, and program-
ming tool research.

Digital Technical Journal Jol. 10 No. 1 1998 s

Foreword

William C . Blake
Director; Hfgh Pc =r J' orina~zce

Techn~cul Chi??p/it~i7# aizd
Cbre Technologl~ Group

Iligiral Technical Journal

You might think t l ~ a t the cover o f this
issue of the Digit01 Technical Jout-ncll
is a bit odd. After all, what could be
tlie relevance of tliose ancient alchenlists
in the drawing t o the computer-age
topic o f programming languages and
tools? Certainly, both alchemists and
programmers \vorl< busily on new
tools. An even more interesting
metaphorical connection is the
alchenist and the compiler software
developer as creators of tools that
transforll (transmute, in the strict
sense of alchemy) the base into the
precious. T h e metaphor does, how-
ever, break down. Unlike the mytli
and folklore of alchemy, the science
and technology o f compiler software
development is a real and important
part ofprocessing a new solution or
algorithm into the correct and high-
est performance set ofactual machine
instructions. This issue of theJourml
addresses current, state-of-the-art
work at Conipacl Computer Corp-
oration o n program~ning languages
and tools.

Gone are the days when program-
mers plied tlieir craft "close t o the
macline," that is, \\/orlung in det~i led
macline instructions. Toda), 7 s J rstem
designers and application developers,
driven by the pressures o f tinie t o
market and technical complesity,
must express their solutions in terms
"close to the programmer" because
people think best in ways that are
abstract, language dependent, and
machine independent. Enhancing
the charactcristics of an abstract
high-level language, however, con-
flicts with the need for lower level
optimizations that nialte the code
run fastest. Computers still require
detailed machine instructions, and

Vol. 10 No. l 1998

the Iugh-level programs close t o the
programmer must be correctly com-
piled into those instructions. This
sernantic gap between progralnming
languages and machine instructions is
central t o the evolution of compilers
and t o nlicroprocessor arcliitectures
as well. The colnpiler developer's role
is t o help close the gap by preserving
the correctness o f the compilation
and at the same ti~iie resolving the
trade-offs benvee~i tlie optimizations
needed for impro\~ements "close to
the programmer" and those needed
"close t o the machine."

To put the \vork described in this
Jo~li.lznl into context, it is helpfill to
think about the changes in coinpiler
requirements over tlle past 15 pears.
It was in tlie early 1980s that the direc-
tion of future computer architectt~res
chaiged from iiicreasinglv complex
instruction sets, CISC, that supported
high-level languages t o computer
architectures with much simpler,
reduced instruction sets, RISC. Threc
key research efforts led the way: the
Berkeley RTSC processor, the IBM
SO1 RISC processor, and the Stanford
MIPS processor. All three approaches
dramatically reduced the instruction
set and increased the clock rate. The
RISC approach promised improve-
ments up t o a factor offive compared
with CISC machines using the same
manufacturing technology. Conipaq's
transition from the VAX to the Alpha
64-bit RISC architecture was a direct
result of the new architectural trend.

As a consequence of these major
architectural changes, compilers and
tlieir associated tools became signifi-
cantly more important. New, much
Inore complex compilers for N S C
machines eliminated the need for the

large, microcoded CISC machines.
The complexities of high-level Ian-
guage processing moved from the
petrified sofnvare of CISC micro-
processors to a whole new generation
of optinlizing con~pilers. This move
caused some to claim that RISC really
stands for "Relegate Importa~lt Stuff
to Compilers."

The introduction of the third-gen-
eration Alpha microprocessor, the
21264, demonstrates that the shift to
RISC and Alpha system implementa-
tions and compilers served Compaq
customers well by producing reliable,
accurate, and high-performance com-
puters. I11 fact, Alpha systems, which
have the ability t o process over a bil-
lion 64-bit floating-point numbers
per second, perform at levels formerly
attained only by specialized super-
computers. I t is no t surprisuig that
the Alpha microprocessor is the most
frequently used microprocessor in the
top 500 largest supercomputing sites
in the world.

M e r reading through the papers
in this issue, you may wonder what is
next for compilers and tools. As phys-
ical limits curtail the shrinking ofsili-
con feature sizes, there is not liltely to
be a repeat of the performance gains
at the microprocessor level, so atten-
tion will tllrn to compiler technology
and computer architecture t o deliver
the next thousandfold increase in sus-
tained application performance. The
two principal laws that affect dramatic
application pertbrmance improve-
ments are Moore's Law and Amdahl's
Law. Moore's Law states that perfor-
mance will double each 18 months
due t o semiconductor process scaling;
and Amdahl's Law expresses the
diminishing returns o f various system

speedup enhancements. 111 the next
15 years, Moore's Law may be stopped
by the physical realities ofscaling lini-
its. But Amdahl's Law will be broken
as well, as improvements in parallel
language, tool development, and new
methods of achieving yarallelisln will
positively affect the h t u r e ofcompil-
ers and hence application performance.
As you will see in papers in this issue,
there is a ncw emphasis on increasing
execution speed by exploiting the
multiple instruction issue capability of
Alpha microprocessors. Improvements
in execution speed will accelerate dra-
matically as h t u r e compilers exploit
performance improvement techniques
using new capabilities evolved hi Alpha.
Compilers will deliver new ways of
hiding instruction latency (reducing
the performance gap between vector
processors and MSC superscalar
machines), improved unrolling and
optimization o f loops, instruction
reordering and scheduling, and \\lays
of dcaling with parallel decomposi-
tion and data layout in non~l~l iform
memory architectures. The challenges
t o co~npiler and tool developers will
undoubtedly increase over time.

By not relying on hardware
improvements to deliver all the
increases jn performance, compiler
wizards are making their own conui-
butions - always watchful of correct-
ness first, then run-time performance,
and, finally, speed and efficiency of the
software development process itself.

Dqqtal Technual Journal Vol. 10 No. 1 1998

I
Jason P. Casrnira
David P. Hunter

Tracing and David R. Kaeli

Characterization of
Windows NT-based
System Workloads

To optimize the design of pipelines, branch pre-
dictors, and cache memories, computer archi-
tects study the characteristics of benchmark
programs by examining traces, i.e., samples of
program execution. Since commercial desktop
applications are increasingly dependent on ser-
vices and application programming interfaces
provided by the host operating system, the
authors argue that traces from benchmark exe-
cution must capture operating system execution
in addition to native application execution.
Common benchmark-based workloads, how-
ever, lack operating system execution. This
paper discusses the ongoing joint efforts of the
Northeastern University Computer Architecture
Research Laboratory and Compaq Computer
Corporation's Advanced and Emerging Tech-
nologies Advanced Development Group to cap-
ture operating system-rich traces on Alpha-
based machines running the Windows NT oper-
ating system. The authors describe the latest
PatchWrx software toolset and demonstrate its
trace-generating capabilities by characterizing
numerous applications. Included is a discussion
of the fundamental differences between using
traces captured from common benchmark pro-
grams and using those captured on commercial
desktop applications. The data presented
demonstrates that operating system execution
can dominate the overall execution time of
desktop applications such as Microsoft Word,
Microsoft Visual C/C++, and Microsoft Internet
Explorer and that the characteristics of the
operating system instruction stream can be
quite different from those typically found in
benchmarking workloads.

The computer architecture research community corn-
rnonly uses trace-driven simulation in pursuing
answers to n variety of design issues. AI-chitects spend a
significant amount of time studying the characteristics
of benchmark programs by examining traccs, i.c., sam-
ples taken from program execution. P o p ~ ~ l a r bench-
mark programs include tlie SPEC' and the BYTEln3rIc2
benchmark test suites. Si~ice the underlying assump-
tion is that these programs generate workloads that
represent user applications, today's computer designs
have been optimized based on the characteristics of
these benchmark programs.

Although tlie authors of popular bcnchmarks arc
well intentioned, the resulting workloads lack operat-
ing slatem execution and consccl~~cntly d o not repre-
seut some of the most prevalent desktop applications,
e.g., Microsoft Word, Microsofi Visual C/C++, and
Microsofi Internet Explorer. Such applications make
heavy use of application programming intcrE1ces
(APIs), \vhich in turn csecute many instructions in the
operating system. As a result, the o\rerall pcrfor~nance
of many desktop applications depends on cfficicnt
operating sjatcm interaction. Clearly operating system
overhead can greatly r e d ~ ~ c e the bcncfits of new
computer design feature. Past architectural studies,
however, have generally ignored operating system
interaction because few tools can gencrate operating
system-rich traces.

This paper discusses tlic ongoing joint e fh r t s of
Northeastern University and Conlpaq Computer
Corporation to capture operating system-rich traccs on
DIGITAL Alpha- based machines running thc Microsoft
Wuidows NT operating system. We argue that for u-aces
of today's workloads to be accurate, thcy nmst capture
the operating system execution as cvell as the native appli-
cation execution. This need to capture compf~tc pro-
gram trace information has been 3 driving forcc bcliind
the development and use of sohvare tools such as the
PatchWrs dynamic execution-tracing toolset, which wc
describe in tlis paper.

The PatchWrs toolset was originally developed by
Sites and Per1 at Digital Equipment Corporatio~l's
Systems Research Center. Tlie)~ describcd PatchWrx, as
developed for Wiudo\\,s NT version 3.5, in "Studics of

digital Technicnl Journal 1'01. 10 No. 1 1998

Windows NT Performance Using Dynamic Execution
Traces."" The Northeastern University Computer
Architecture Research Laboratory and Compaq's
Advanced and Emerging Technologies Advanced
Development Group continue to develop the toolset.
We have updated the framework to operate under
Windows NT version 4.0, added the ability to trace
programs that have code sections larger than 4 mega-
bytes (MB), added multiple trace buffer sizes, and
developed additional postprocessing tools.

After briefly discussing related tracing tools, we
describe the PatchWrx toolset and specify the new
features \ve have added. We then analyze PatchWrx
traces captured on Windows NT version 4.0, demon-
strating tlie capabilities of the tool while illustrating
the importa~lce of capturing operating system-rich
traces. In the final section, we su~n~narize the paper,
discuss the current limitations of tlie toolset, and sug-
gest new directions for development and study.

Trace Generation Tools

Trace-driven sim~~lation has been the method of
choice for evaluating thc merits of various architec-
tural trade-offs.+.j Traces captured from tlie system
under test are recorded and replayed through a model
of thc proposed design. Computer architecture
researchers have proposed methodologies that capture
both application and operating system references.
These tools include hardware-basedc'-lo and software-
based" '' methods. Some of the issues involved in cap-
turing operating system-rich traces are

1. Tracing overhead (system slowdown)

2. Accuracy (perturbation of tlie memory address space)

3. Completeness (capturing all desired information,
e.g., the operating system reference stream)

Table 1 contains a list of 10 tracing tools that have
been developed over the past 10 to 15 years. Altliough

far from complete, this list provides a sample of tlie
tools that have been used to generate input to a variety
of trace-driven simulation studies. We have cliaracter-
ized each tool in terms of the three issues (criteria) pre-
viously mentioned. Table 1 lists the target platform(s)
for each tracing tool.

Note that many of these tools cannot capture oper-
ating system activity. For those that can, their associ-
ated slowdown can significantly affect the accuracy of
the captured trace. Of the tools that provide this capa-
bility, PatchWrx introduces the least amount of slow-
down yet maintains the integrity of the address space.
The next section discusses the PatchWrs toolset.

PatchWrx

PatchWrx is a dynamic execution-tracing toolset
developed for use on the Alpha-based Microsoft
Windows NT operating system. The toolset utilizes
the Privileged Architecture Library (PAL) facility, also
referred to as PALcode, of the Alpha microprocessor
to perform tracing with minimal overhead." PatchWrs
can instrument, i.e., patch, all Windows NT applica-
tion and system binary images, including tlie kernel,
operating system services, drivers, and shared libraries.
The PAL facility is a set of architected functions and
instructions that provides a consistent interface to a set
of complex system functions. These routines provide
primitives for memory management, context switch-
ing, interrupts, and exceptions.

Patch Wrx and the Alpha PAL Routines
The PatchWrx software tool is made possible through
the PAL used by DIGITAL Alpha microprocessors.
PAL routines have access to physical memory and
internal liard\?iare registers and operate with interrupts
disabled. PALcode is loaded from disk at system boot
time. We modified and extended the shrink-wrapped
Alpha PALcode on a DIGITAL Alpha 21064-based
system to support the PatchWrx operations. The mod-

Table 1
Sample of Tracing Tools

Average Address Operating
Name Slowdown Perturbation System Activity Platform

ATOM') 10X to 100X No Yes DIGITAL Alpha UNlX
ATUM16 20X No Yes DIGITAL VAX OpenVMS
E E LI7 1 OX to 100X Yes No SPARC Solaris
Etchy8 3 5X Yes No Intel x86 Microsoft Windows NT V4.0
NT-Atom1= 1 OX to 1 OOX N o N o DIGITAL Alpha Microsoft Windows NT V4.0
PatchWrx3 4X N o Yes DIGITAL Alpha Microsoft Windows NTV4.0
PixieZ0 10X to 100X Yes N o DIGITAL MIPS ULTRIX
QPT12 1OXto 100X Yes N o SPARC Solaris, DIGITAL ULTRIX
Shade2' 6X N o N o SPARC Solaris
SimOS14 1 OX to 50,000X No Yes DIGITAL Alpha UNIX, SGI IRIX, SPARC Solaris

Digital Technical Journal Vol. 10 No. 1 1998

i fed PatchWrs PAL routines serve two major pilr-
poses: (1) to reserve the trace buffcr at system boot
time and (2) to log trace entries at trace time.

One way that PatchWrx maintains a low operating
overhead is to store the c a p t ~ ~ r e d trace in a physical
memory buffer, which is reserved at boot time. The
size of the buffer can be varied depending on the
amount of physical memory installed on the system.
Since we use PAL routines to reserve this memory, the
opcrating system is not aware that the memory exists
because the PPLLcode pcrfor~ns all lo~r-lc\rel system ini-
tialization before the operating system is started.

PatchWrs logs all trace entries in this buffer. Writing
tr'lcc entries directly to physical memory has se\.cral
advantages. First, \\lriting to memory is ~ n ~ ~ c h faster
than writing to disk or to tape. Second, using pliysical
memory allo\vs tracing of the lowest levels of the oper-
ating system (i.e., the page fault handler) \vithout gen-
erating page faults. Third, using physical memory
allows tracing across multiple threads running in niul-
tiple address spaces regardless of which address space is
currently running.

To enable PatchWrx to operate 111ider Windows NT
versions 3.51 and 4.0, we started with the PAL rou-
tines modified by Sites and Perl' and 11iade additional
modifications as required by the opcrating spstern ver-
sions. These modifications \vere conccntratcd in the
process data structures. The PatchWrs-specific PAL
routines are listed in Table 2 . The first three routines
arc used for reading the trace entries from tlie buffer
and for turning tracing on and off. The remaining five
routines are used to log trace entries based o n the type
ofinstruction i~istruniented.

Patch Wrx Image Instrumentation
Next we describe how we use PatchWrx to instrument
Microsok Windows NT images. Patching the operat-
ing s!lstem involves the instrumentation of a11 the
binary images, including applications, operating svs-
tern cxccutables, libraries, and kernel. Once patching
is complete, trace entries are loggcd by means of PAI,
routincs as imagcs execute.

Table 2
PatchWrx-specific PAL Routines

We define a patched instruction as an instruction
\vithin an image's code section that is o \ ~ e r ~ / l i t t e ~ i with
an unconditional branch (BR) to a patch. The target of
the BK contains the putch secfiorz. The patch section
includes the trap (CALL-PAL) to the appropriate I'AL
routine that logs a trace entry corresponding to the
type of instruction patched and the return branch to
the original target.

PatchWrx docs riot modifi, the original binary
images; instead, it generates new images that contain
patches. This operation preserves the original iniagcs
on the system in case they need to be restored.
Ins t rumenta t io~~ in\,olves replncj~lg all branching
instructions o f type ~~nconditional branch, conditional
branch (e.g., branch if equal to zero [BEQ]), branch
to subroutine (13SR), function return (RET), jump
(JLMP), and jump to subroutine (JSR) within an
image's code scction with unconditional branches to
a patch section. If loads and stores are also traced,
PatcbWrx replaces these instructions (e.g., load sign-
extended longword [LDL]) with unconditional
branches to the patch section, where the original load
o r store instruction is copied. A return branch is also
needed to return control flow to the instruction subsc-
q ~ ~ e n t to the original load. When PatchbVrx encoun-
ters this patch, the tool records the register value of the
original load or store instruction in tlie trace log. Thc
patch section con t ins all the patches for the imagc
and is added to the rewritten image. Figure 1 sho\vs
examples of patched instructions. PatchWrx replaces
only branch instructions ulitliin an image to reduce the
type and number of entries logged in the trace buffcr.
Using these traced branches, the tool can later recon-
struct the basic blocks they represent.

As shown in Figure 1, PatchWrx replaces BR and
JMP instructions with BR instructions that transfer
control to the patch scction. The original BR or JMP
instruction is repeated in the patch section for the pur-
pose of recording the value of the target register (if
necessary) illto the trace buffer when the patched
image is executed. This register value is necessary for
reconstructing the traced instrirction stream. PatchCVrs

PAL Routines Function

PWRDENT
PWPEEK
PWCTRL
PWBSR
PWJSR
PWLDST
PWBRT
PWBRF

Read a trace entry from trace memory
Read an arbitrary location (for debug)
Initialize, turn tracing onloff
Record a branch t o subroutine
Record a jumplcalllreturn
Record a loadlstore base register value
Record a conditional branch taken bit
Record a conditional branch fall-through bit

S 111~1t.iI Tcc l ln i ca l Journal

ORIGINAL CODE

EXAMPLE 1 JMP ZERO, (R19)

EXAMPLE 2

EXAMPLE 3

EXAMPLE 4

JSR R26, (R19)

BEQ R3,TAROET.Q03

PATCHED CODE

.
P A T C H . ~ ~ ~ : C A t t P A L PWJSR

JMP ZERO, (R19)

BSR R26,PATCH.002

.
PATCH. 002 : C A L L P A I PWJSR

JMP ZERO, (R19)

BR PATCH.004
BACK. 004

.
PATCH.004: CALL-PAL PWLDST

LDL R20,4 (R16)
BR BACK.004

Figure 1
Instruction Patch Examples

replaces JSR and BSR instructions with BSR patches.
This replacement preserves the return address (RA)
register field value, which contains the return address
for the subroutine. Again, the original instruction is
repeated in the patch section for register value record-
ing during tracing to help ficilitate reconstruction.

Conditional branches have a larger and more com-
plex patch than the other branch types because the
original condition is duplicated and resolved within
the patch. The taken o r fall-through path generates a
bit value when logged within the taken o r fill-through
trace entry. The return branch in the patch section is a
replica of the original conditional branch.

As explained earlier, for all patches, PatchWrs replaces
the original branch with a patch ~~nconditional branch.
Since Alpha jnstructions are equal in size, this replace-
ment process allows patching without iucreasjng the
code size within the image. Although the code size
remains unchanged, the image size will increase in
proportion to the number of patches added. This

image size change becomes an issue for dynamically
linked library (DLL) images.

Patching Dynamic Link Libraries
The Microsoft Windows NT operating system pro-
vides a memory management system that allows shar-
ing between p r o ~ e s s e s . ~ V o r example, two processes
that edit text files can share the text editor application
image that has been mapped into memory When the
first process invokes the editor, the operating system
loads the application into memory and maps the
process's virtual address space to it. When the second
process invokes the editor, rather than load another
editor image, the operating system maps the second
process's virtual address space to the physical pages
that contain the editor. Of course, both processes con-
tain local storage for private data.

DLLs are loaded into memory and shared in this
manner. When patches are added to a DLL, the size of
the image increases. When this image is mapped to

Digital Technical Jour~lal VoL 10 No. 1 1998 9

physical memory (as per its preferred base load
address), the largcr image may overlap with another
image having a base address within tlie new range.
This image overlap can prevent the operating system
from booting propcrly: sornc environliient DLLs will
conflict in memory because they perform calls directly
into other DLLs at fixed offsets. T o resolve this issue,
we rc.baslsc" the preferred base load addresses of the
patched DLLs, which modifies the base load addresses
of each patched DLL to eliminate conflicts. Rebasing
affects the address accuracy of tlie patched system,
though we are able to readjust the addresses during
reconstruction. An increase in the paging activity may
also be observed since thc additional code may cross
page boundaries.

The original version of the PatchWrx toolset was
developed on Microsoft \iVindo\vs NT version 3.5.
When versions 3.5 1 and 4.0 were released, several mod-
ifications were lnade to the i~nage for~nat. In complet-
ing the: 3.5 1- and 4.0-compatible versions ofPatchWrx,
we liad to address this issuc. One change that affected
how we patch was the placement of the Import Address
Table (IAT) into the hont of the initial code section of
executable binary images. This table is used to look up
the addresses of 1)LL procedures used (i t . , imported)
by the executable binary. In developing the current gen-
eration of PatchWrx, we liad to make ~nodifications to
use image header fields that had previously remained
unused or reserved, indicating the executable code sec-
tions that contained data areas.

Another issue that we addressed in tlie recent modi-
fications to PatchWrs was long branches. The original
version of PatcliWrs rcplaccs 311 branch, ju~iip, call,
and return instructions with either BR or BSR instruc-
tions to the patch section. Since the PatchWrs tool has
n o information about machine state during the patch-
ing phase, it is inlpossible to utilize other branching
instructions (e.g., JlMP or JSR instructions) to provide
this branch-to-patch transition. Register and register-
indirect branching instructions would require per-
turbing the machine state. Therefore, the developers
could use only program counter (PC)-based offset
branching jnstructions.

As discussed previously, in replacing a control tl(.)w
instruction with a patch branch, PatchWrs uses a BR
or KSR instruction in which thc ofket field is set to
branch to tlie corresponding patch within the image's
patch section. The Alpha arcliitecture branching
instructions use thc format sho\\w in Figure 2.

The branch target virtual address computation for
this format is newPC = (oldPC + 4) + (4 * sign-
estended(21-bit branch displaccme~lt)). The register
field holds the returli addrcss for BSRs. With this
branch format and target virti~al address computation,
the Alpha architecture provides a branch target range
o f 4 MB from an instruction's current PC.

Several applications that run today on ~Vicrosoti
Windows NT version 4.0 are sufficiently large that the
displacement between a control flow instruction to be
patched and the patch location within the patch section
exceeds this 4-MB limit. (Recall tliat since we \want to
avoid moving code or data sections, thc patch section is
placed at the end of the image.) To address this problem,
we developed nvo new branch instri~ctions for L I S ~ \\~ith
Patch\Vrx. These new branches were not implcmcntcd
in the instruction set architect~~re of thc Alpha architec-
ture. Instead, we ilsed PALcode to imple~nc~it them. The
two new branches are designated long branch (LBR) and
long branch subroutine (1,KSR). Figure 3 illustl-ates the
format of these two instructions.

The computation of the target virtual address is
newPC = (oldPC + 4) + (4 * sign-estended(25-bit
branch displacemcnt)) for LBR branches and newPC: =

(oldPC + 4) + (32 * zero-cxtcndcd(20-bit branch dis-
placement)) for LBSR branches. PatchkVrs uses LBRs
when patching any control flow instruction tliat has
a displacement greater than 4 MR. PatchWrs uses
L B S h similarly for cc)ntrol flow instructiotls that must
preserve the register field \value.

\iWien an LBR or I.,BSR instrilctioll is csecuted
within the image code section, a trap to PA1,codc
occurs. Normall!: CALL-PAI, instructions have onc of
several defined f i~nct io~l fields that cause a correspond-
ing PAL routine to be csccutcd. The nvo long branch
instructions have function fields that d o not belong to
any of the defined CALL-PAL instructions and there-
fore force an illegal instruction exception within the
PALcode. This PALcode flow has been modified to
detect if a long branch has been encountered.

OPCODE 1 000000 ~ 25-BIT DISPLACEMENT

LBR INSTRUCTION FORMAT

OPCODE I 000000 I REG I
OPCODE

20-BIT DISPLACEMENT

LBSR INSTRUCTION FORMAT 31 26 25 21 20 0

REG

Figure 2
AJpha Branch Instruction Format

21-BIT DISPLACEMENT

Figure 3
1'ALcode Long Branch Instl.~lctlo~~ l'orlnnts

As shown in Figure 3, both long branch types have
the same PALcode operation code (opcode) value of
000000. To distinguish between the two types, the least
significant bit in the instruction word is set to 0 for LBRs
and to 1 for LBSRs. bit is not included as a usable
bit for the displacement fields of either branch type.
Consequently, each LBR has a 25-bit displacement field
and each LBSR has a 20-bit field. With a 25-bit usable
displacement field, the PALcode performs the LBR tar-
get address computation, allowing a 264-MB range.

Since each LBSR instruction has a 20-bit displace-
ment field, whereas the original Alpha architecture
branch displacement field is 21 bits, the target instruc-
tion address colnputation for LBSR instructions is per-
formed differently than for standard branches within
the P u o d e . As shown in the address computation
equation, the 20-bit displacement is multiplied by 32
rather than by 4 (as for the LBR branch). Notice that
the 20-bit displacement is always zero extended. The
computation provides the LBSR instruction with a dis-
placement of +32 MB.

This computation procedure has two implications.
First, LBSR instructions can only be used to branch
from an image code section to an image's patch sec-
tion. Second, branches into the patch section are
either BR or BSR instructions (or their long displace-
nlellt counterparts). PatchWrx uses only BR or LBR
instructions to return from the patch section to the
original branch target within a code section; BSR and
LBSRinstructions are never used. Therefore, restrict-
ing LBSR illstructions to use positive displacements
does not present a problem.

The LBSRdisplacement multiplier value of 32 does
present some restrictions, however. The multiplier
value of 4 used in the original Alpha instruction set
architecture represents the instruction word length
of 4 bytes. Thus, norn~al branch instruction target
addresses must be aligned on a 4-byte boundary. By
using the multiplier value of 32 for LBSRinstructions,
LBSR target addresses are restricted to align on a 32-
byte (i.e., eight-instruction) boundary. Since all LBSR
targets reside within the patch section, this restriction
does not pose a problem. If an LBSR is to be inserted
into the image code section and the next available
patch target address is not aligned properly, Patch\Vrx
can insert no operation (NOP) instruction words and
advance the next available patch target address until
the necessary alignment is achieved. PatchWrx never
executes the NOPs; they are inserted for alignment
purposes only. Although inserting these NOP instruc-
tions increases the image size, we have implemented
several optimizations into the instrumentation algo-
rithm to minimize this increase. For example, a queue
is used to hold LBSRs that do not align. As LBR
patches are committed, PatchWrx probes the queue to
determine if any LBSRs align from their origin to the
newly available patch target offiet.

Trace Capture
The PatchbVrx toolset allows the user to turn tracing on
and offand thus capture any portion of workload execu-
tion. The tracing tool is also responsible for copying trace
entries fiom the physical memory buffer to disk. Copying
the trace buffer to disk is performed after tracing has
stopped so that the time required to perform the copy
does not introduce any overhead d e g trace capture.

PatchWrx logs a trace entry for each patch encoun-
tered during program execution. As it executes instruc-
tions within the code section, PatchWrx encounters an
unconditional PatchbVrx branch. Instead of branching to
the original target, the patched branch transfers control
to the image's patch section. W i h the patch section, a
PatchWrx PALcall traps to the PAL routine correspond-
ing to the patch type and logs a trace enuy to the trace
buffer. The PAL routine then returns to the instruction
following the CALLPAL instruction. PatchWrx uses XI

unconditional branch to transfer control fi-om thc patch
section back to the original target within an irnage code
section. During the execution of the PatchWrx PAL rou-
tine, necessary machine state information is recorded
and logged in the trace buffer. This allo~vs for the capture
of register contents, process ID information, etc., whch
are used later during mace reconstruction.

The trace capture facility caphlres the dynamic execu-
tion of a worWoad running on the system. To recon-
struct the trace after it has been captured, the tracing
tool must aJso capture a snapshot of the base load
addresses of all active images on the system. This snap-
shot serves as thc virtual address map used in recon-
structing the trace. Each active process and its associated
libraries is loaded into a separate address space, which
may be different than the preferred load address as spec-
ified statically in the image header. If each image was
loaded into memory at its preferred base address, the
virtual address map cvould not be necessary to perform
reconstruction. Instead, PatchWrx could map target
addresses from the trace buffer using the base address
values contained in the static image headers.

The type of trace record that PatchWrx logs into the
trace buffer depends on the type of branch or low-level
PAL hnction being traced. Figure 4 shows the trace
record formats. The first three trace entry formats
consist of an 8-bit opcode and a 24-bit time stamp.
The time stamp is the low-order 24 bits of the CPU
cycle counter. The 32-bit field of these three formats
depends o n the type of trace entry logged. The first
format is used for target virtual addresses for all
unconditional direct and indirect branches, jumps,
calls, returns, interrupts, and returns from interrupts.
The 32-bit field of the second format is used to record
the base register value for traced load and store
instructions and stack pointer values that are flushed
into the trace buffer during system calls and returns.
The 32-bit field of the third format is used for logging
the current active process ID at a context swap.

Digital Tcclulical Jounlal VoJ. 10 No. 1 1998 11

Figure 4
Trace Entry Formats

OPCODE

The fourth trace entry type is used for tracing con-
ditional branches. I t uses a 3-bit opcode and up to 60
talen/fall-through bits. A start bit is used to deter-
mine how many bits are active. The start bit is set to
1 if a conditional branch is taken and to 0 ifthe branch
is not talcen. This recording scheme allows a compact
encoding of conditional branch trace entries. During
trace reconstruction, PatchkVrx uses conBtional branch
trace entries to reconstruct the correct instruction
flow when conditional branches are encountered and
to provide concise information about when to deliver
interrupts jn loops.

Trace Reconstruction
The reconstructio~~ phase is the final step in generating
a full instruction stream of traced system activity. As
shown in Figure 5, trace reconstruction requires s e v
era1 resources in order to generate an accurate instruc-
tion stream of all traced system activity.

Trace reconstruction reads and initializes the head-
ing of the captured trace, which includes a time stamp,
the name of the user who capturcd the trace, and any
important system configuration information, e.g., the
operating system version number. Next, reconstruc-
tion reads the first four raw trace records, which are
automatically entered whenever tracing is turned on.
These records contain the first target virtual addrcss,
the active process ID, the value of the stack pointer,
and the first taken/L~ll-through record to be used
(such records always precede the branches they repre-
sent). PatchWrx uses this information to initialize the
necessary data structures of the reconstruction process.

TIME STAMP

Using the first target virtual address and process 11)
pair from the captured trace, trace reconstruction con-
sults the virtual address map to determine in which
image the instruction falls (based on its dynamic base
load address) and where that image is physically
located o n the system. The tool cons~~l t s the patched
image to determine the actual instruction at the target
address, records this instruction, and then reads the
next instruction fioin the patched image. T h s process
continues until reconstruction encounters either a
conditional branch o r an unconditional branch. A
conditional branch causes the tool to check the first
active bit of the current taken/fall-through entry to
determine subsequent control flow; the process then
continues at that address. If an unconditional branch is
encountered, reconstruction records the entry and
checks it against the next captured trace entry. If the
two entries match, the tool outputs the recorded
instructions to an instruction stream file, consults the
cap tu rd trace entry for t l ~ e next target instruction vir-
tual address, and repeats the procedure until the entire
captured trace has been processed.

Since PatchWrx captures interrupts and other low-
level system activities (e.g., page faults) in the trace,
these activities must also be reconstructed. When
Patcl~Wrx logs an interrupt into the trace buffer, the
correspo~ldillg target virtual address in the captured
record represents the address of the first instructioil
not executed when the interrupt was taken. PatchWrs
flushes the currently active taken/fall-through entry
to the memory buffer and initializes a new taken/fall-
through entry. This new entry will be responsible for

TARGET PC

8 24 32

12 Digital Technical Journal

OPCODE

Vol. 10 N o . 1 1998

TIME STAMP BASE REGISTER VALUE

8 24 32

OPCODE

8 24 32

OPCODE r START BIT

VECTOR OF 60 TAKENIFALL-THROUGH TWO-WAY BRANCH BITS

3 1 60

TIME STAMP NEW PROCESS ID

+ J. J.

. RECONSTRUCTION
TOOL

b

t
VIRTUAL
ADDRESS

Figure 5
Instl.~lctio~l Stream Kcconstruction l<eso~~rccs

the conditional branches encountered beginning with
tlie interrupt service routine. The address of the first
instruction within the interrupt service routine is then
logged in the trace.

During reconstruction, the reconstruction tool looks
for the interrupt's first ~~nexecuted instruction address
to Itno\\, which instruction to stop at when recon-
structing the instruction stream. The tool then begins
reconstructing the instruction stream, including the
interrupt handler stream. If the unesecuted instruc-
tion is within a loop, trace reconstruction utilizes the
taken/fall-through entry convention. On taking the
intcrr~~pt, the active taken/fall-d~ro~igl~ record is flushed
and another record is started. This proccss allows the
tool to continue to reconstruct iterations o f t h e loop
until all the taken/fall-through bits are exhausted.

Operating System-Rich Workload
Characterization

As presented in the study by Lee et a.l .:"desktop appli-
cations and benchmarks share some workload charac-
teristics, but applications alone d o not represent fill1
system behavior. To investigate and address system
design issues, computer architects should use operat-
ing systern-rich traces.

'Yo illustrate this point, we present a sample of thc
\ ~ a r i o ~ ~ s \vorlcload characteristics that exist in a set of
benchmark and desktop applications specially sclected
to study the differences in the use of the operating sys-
tem and related services. The first characteristic we dis-
cuss is the amount of time each benchmark o r desktop
application spends within three domains:

1. Application-only domain (e.g., win\vord.c~e and
c\ccl.cxe)

2. DLL domain-Win32 user (e.g., kernel32.dl1,
user32.dl1, and ntdll.dll)

3. Operating system domain-Win32 Iternel, Iternel,
system processes, system idle process (e.g.,
Win32I<.sys, ntoskrnl.ese, drivers, and the spooler)

Examining these times provides insight into a work-
load's use of each domain. \Ye also examine DLL and
system service usage on an image basis for each work-
load. T l i s breakdown helps us more clearly identi+ the
dependence between tlie worldoad and the system ser-
vices provided by the Windows NT operating system.

We also present d ~ e instruction rnix of each workload
with and without tlie inclusion of the operating system
execution. Understanding the differences in instruc-
tion conlposition in the presence of system activity f i~r-
ther hghbghts the behavior lacking in application-only
traces, such as increases in branch and menlor) 1 I I ~ S ~ T L I C - '

tions, when compared to application-only \vor!doads.
We prcsent the average basic block lengths for each
domain ofexecution (application-only, DLL, operating
system) separately and then in combination. This met-
ric reveals which workload domain dominates the
branching behavior. Casmira's work provides a more
complete description of these differences across a wider
set ofworldoad characteristics."

Workload Descriptions
We performed all the experiments reported on in this
paper on a DIGITAL Alpha platform running the
Microsoft Windows NT version 4.0 operating system.
We captured the traccs on a 150-megahertz Alpha
21064 processor. The system configuration incl~ldcd
SO IMB of physical memory. Tablc 3 lists the workloads
we examined.

LXgital Technical Journal Vol. 10 No. 1 1998 1

Table 3
Workload Description

Workload Description

fourier BYTEmark benchmark; a numerical analysis routine for calculating series approximations of waveforms
neural BYTEmark benchmark; a small, functional back-propagation network simulator

90 SPEC95 Go! game benchmark
I i SPEC95 Lisp interpreter benchmark
cdplay Microsoft CD Player playing a music CD
fx!32 DIGITAL FX!32 V1.l interpretingltranslating included OpenGL sample x86 application
ie Microsoft Internet Explorer V2.0 following a series of web page links
vc50 Microsoft Visual UC++ V5.0 compiling a 3,000-line C program
word Microsoft Word97 V7.0, spell-checking a 15-page document

The fourier and neural workloads are from the
BYl'Ernark benchmark test suite: the neural workload
is a s~nall array-based floating-point test; the fouricr
worlcload is designed to measure transcendental and
trigonometric floating-point unit performance.

The go and li workloads arc from tlle SPEC95 integer
benchmark suite: the go workload is a simulation ofthe
game Go!, with the computer playing against itselc the li
workload is a Lisp interpreter. All the worklouds use the
staidu--d inputs provided wid1 the benchmarks and are
compiled with the default optimization level using the
native Alpha version of Microsoft C/C++ version 5.0.

The cdplay workload is the Microsoti C11 Pla)rcr
application included in Microsoft \/Vindows NT vcr-
sion 4.0. The device was traced while playing a nlusic
CD using default playing options (e.g., playing all the
songs in order).

k!32 workload is the DIGITAL FS!32 version 1 .l
ernulntor/tl-anslator provided by Colllpaq's DIGITAL
Alpha Migration Tools Group . 'Ve ran the robot a-m
OpenGL sample Intel-based application in the fore-
ground during trace capture.

l 'he ie workload is the standard Microsofi Internet
Explorer version 2.0 ~~or .k load inclilded in Microsof?
Windo\\.s N T version 4.0. The ie workload was traced
while traversing four links through the S o ~ i y home
web page, arriving finally at the Sony PlayStation Store
web page. The trace was captured on May 4, 1998;
pages niqr have changed since this date. The history
cachc and the web link cache were both empty when
the trace was captured.

The slc50 worlcload is tlie Microsoft C/C++ version
5.0 compiler compiling a 3,000-line C source code file.
We used the command line interface, and we used the
default optimization levels and other parameters, which
best represented the common usage ofthe compiler.

The word \vorldoad is Microsoft Word &om the
Microsoft Office97 desktop application suite for the
Alpha processor used to capture a manila1 spell check
of a 15-page Microsofi Word document. The standard
Microsoft Word dictionary was employed.

To provide a clear and representative comparison
ofworldoad behavior, \ \ ~ c captured several traccs. For
all scenarios, full traccs of cacli worklo,id captured
approximately 5 to 10 seconds of cxcci~tion, filling the
45-MR trace buffer. T o characterizc worldoad behav-
ior, each experiment was run with the bcnch~nark or
application as the only activity o n the system. Each
workload was ru1i in the fo reg ro~~nd .

To ensure that the traces captured were rcprcscnta-
tive of the overall workload behavior, we c ~ p t u r e d
~nultiple traces. We chose different points during exe-
cution for tracing to allow comparison bctwcen differ-
ent portions of the selectcd scenarios. To investigate
the variability present in sclectcd \vorldoads, \trc traced
additional scenarios. A second Microsof? Word trace
aras captured with the application performing an auto-
format operation of the same document used in the
first trace of the spell-check operation, and we cap-
tured a second Microsoft Internet Explorer trace,
repeating the Sony links but \\,it11 the links cached. PVe
capti~red a second trace of F X ! 3 2 using the included
boggle sarnple game (for coniparison against using the
0 p e n ~ ~ application input). Additionally, the F X ! 3 2
translator mas traced while it optimized a native Intel
x86 application's prof lc. To condense tlic number of
memory pages occupied b y an iniagc, Microsof?
designed the new linker to allow data to reside wit-liin
the code regions. Hoolovay and Herdcg'" provide an
explanation of the DIGITAL F X ! 3 2 emulation and
translatio~i/optirnization procedures. Cas~nirn disc~~sses
these scenarios and others ."

Domain Mix
To illustrate the inherent differences between bench-
mark and desktop application behavior, we brealc
do\iln tlic captured trace 111 terms of three m i ~ t ~ ~ a l l y
esclusive domains. The\c domains arc (1) applicat~on,
(2) DLL, and (3) operating system. '17hc application
do~nain represents the set of executed rnstructions that
are within the traced application's executable image.

14 Digital 1i.shnicnl Journal bl. 10 No. 1 1998

The DLL domain represents tlie instructions executed
by the application of interest's process but excludes
the application's executable image. This domain is
made up of the DLLs, system services, a i d drivers that
the application may access during execution. The
operating system domain includes instructions exe-
cuted by the kernel o r other system support service
executable images, and all associated DLL and driver
images. These are the processes, images, and libraries
that are always present and running 011 the system.
Figure 6 displays the breakdown of instructions into
these three domains. The x-axis lists the cvorkloads,
and the y-axis presents the percent composition of the
captured trace. Note that the four benchmarks, i.e.,
fourier, neural, go, li, spend at least 95 percent oftheir
execution within their application image. Both the
fourier and thc neural benchmarks spend about
99 percent of thcir execution within their application
image. The go and li bench~narlci d o eshibit some
operating system activity, but this activity is due to the
I/O gencrated as go displays o u t p i ~ t as it progresses
and as l i reads input from its standard input file.

The operating system dominates the execution in
the cdplay worltload. The Microsoft CD Player appli-
cation is 1 / 0 bound, relying heavily on the necessary
services provided by the operating system and the
DLLs to access the CD hardware. While waiting for
I/Os to complete, the system activity is composed

"
FOURIER NEURI

almost completely of the kernel idle loop performing
busy waiting (recall that each workload investigated is
the only application running on the system, so there is
no other work to be done during these periods).

The &!32 workload spends nearly all its execution
time operating within DLLs. The robot arm Intel x86
OpenGL sample that the DIGITAL FX!32 application
is interpreting heavily exercises the graphics display
libraries and console display services.

The ie worltload is more evenly distxibuted across
the three domains. The moderate amount of operating
system activity is due to the nenvork and screen display
1 /0 and also to tlie Microsoft Internet Explorer's
cachmg of the pages it touches to local disk files. The
DLL activity is gencrated by operating system services
for screen and file 1 / 0 and by nenvork service library
routines. The application image coordinates the usage
of these routines, and network and display I/O, which
is frequently encountered during the operations of
selecting and opening web links. This coordination
accounts for the high percentage of application domain
execution exhibited by ie, as shown in Figure 6.

The vc50 workload spends nearly all its execution
time within its application image. This phase of the
compiler is responsible for performing the parsing and
lexical analysis of the source code file. There is some
use of DLLs through invoking library routines to load
included header filcs. l 'hc operating system activity,

WORD

WORKLOAD

Figure 6
D o m ~ i n Esecution Mix

Digital Technical Journal Val. 10 No. 1 1998 15

although small, is present; all I/O mi~s t be accessed by
means of a system service.

The Microsoft Word spell-checking service is pro-
vided by meals of a DLL included with tlic application.
Thus for the word workload, this DLL handles both die
search through the document and the succcssi\le diction-
ary lookups. Operating system services are required for
accessing portions of the file residing on disk (not in
Inemory pages), for displaying the search and compare
results to thc user, a i d for performing the user-driven
I/O associated with accepting/rejecting word replace-
ment choices (prompted by the spell-checking tool).

F i p - e 6 shows the consistent pattern of u~struction
domains that the four benchmarks follow in conmast to
thc variability ui tile instruction ~ L Y domain of the desktop
application ~\lorkloads. Even thoudl these is slight operat-
ing system activity for go and li (attributable to 1 /0 ser-
vices), the benclunarks spend practically all their execution
within their application images; no DLL use is visible.
Clearly these benchmarks d o not i~nlize system services to
the level observed in the commercial dcsktop workloads.
Witli t l ~ e exception of the CD player, the commercial
desktop applications esrunincd usc DLLs morc heavily
than they d o operating system services. This is especiallp
true in the k!32 a i d word ~vorkloads, which carry out the
tasks captured in the trace by means of DLL routines.

Characterization of Image Usage

To investigate the domains present in thc tracc at the
image level, we identified the top five most heavily
used images, based on the numbcr of instructions exe-
cutcd in each image. First, an explanation of some of
the more frequently used systcm esecutables and
1'lLLs is in order. Table 4 lists the names o f the coni-
monly used images and a brief description of each.

We present the image usage of the nine traces. Tlus
characterization includes all the images (e.g., executa-
bles, DLLs, services, and drivers) listed in Table 5. The
d a t ~ hclps demonstrate several points. First, commercial
desktop ~\lorkloads spend a lot more tirne in DLLs than
benchmarks do. Consequently, we can project that the

Table 4
Common System Images

Name Description

number of procedure calls in desktop applications will
be higher than the number of calls in benchmarks.
Second, red applications depend not only on system
DLLs but also on their locd L3LLs. We see this beha\ior
esplicitly with t l ~ e A/Iicrosoft Word application.

Instruction Mix
Although understanding the domain mix and image
usage helps identitjr differences behveen benchmarks
and desktop applications, we would like to look deeper
within cach domain to see inherent differences that
affect design decisions. Figure 7 shows the application-
only instruction mix (i.e., the instruction mix for only
the application and application-specific DLLs) for each
workload. Each entry in the legend represents a class
of instructions found \vithin the application domain.
The y-axis dcnotcs the perccnt co~nposition of the
trace; the workloads are displa)led on die x-axis.

Note that the instruction mix for the h!32 workload
is zero. This value is a result of the lack of execution
within the application image itself. Referring back to
Table 5 and the domain instruction mix, note that
nearly all the worlcload execution is ~ithm DLLs (some
execution is within ntoslu-nl.exe). The remaining work-
loads consist mainly of load, store, conditional branch,
and arithmetic and logic unit (ALU) logic operations.
N o overriding characteristic differentiates benchmarks
and desktop applications. Note the significant variabil-
ity in the instruction mix among the different bench-
marks and among the different desktop applications.

Figure 8 shows thc instruction mix of the entire
trace. The first and most noticeable difference between
the application domain and fiill-trace instruction mix
figures is the increase in instruction types prescnt in
the trace. Nine instruction classes were present in thc
application domain instruction mixes, while 17 are
present in thc fi111-system traces. Worth noting is the
presence of 6 CALL-PL4L instruction types (dl ilsc the
same opcode, but invoke 6 different PAL routines)
in the f i l l traces. Since each executed CALL-PAL
instruction causes a trap that takes on the order of tens
of cycles to complete, \ i t can conclude that this is a

Windows NT operating system kernel core
Hardware Abstraction Library (HAL), which is responsible for the underlying hardware interface
Main kernel library
Kernel-mode device driver
Graphics display interface library
Library routines provided t o each client process on the Windows NT system
Microsoft UC++ run-time library
Graphics adapter library for the test platform
Graphics adapter library for the test platform

16 1)igitnl Technical Journal Vol. 10 No. 1 1998

cdplay

fx!32

i e

vc50

word

Table 5
The Five Most Frequently Used Images in Each Application or Benchmark

Image Name
Workload (Percentage of Total Number of Instructions Executed within the Image)

fourier bytecpu.exe winsrv.dll win32k.sys ntoskrnl.exe user32.dll Other
(99.5%) (0.2%) (0.1 %) (0.1 %) (0.02%) (0.08%)

neural bytecpu.exe winsrv.dll ntoskrnl.exe win32k.sys ntdll.dll Other
(99.7%) (0.2%) (0.03%) (0.03%) (0.02%) (0.02%)

go go.exe win32k.sys ntoskrnl.exe hal.dll qv.dll Other
(95.5%) (2.0%) (1 .O%) (0.4%) (0.1 %) (1 .O%)

I i li.exe win32k.sys ntoskrnl.exe user32.dll qv.dll Other
(97.7%) (1 .ON) (0.6%) (0.1 %) (0.1 %) (0.5%)
ntoskrnl.exe hal.dll win32k.sys tcpipsys winsrv.dll Other
(81.8%) (14.7%) (1.1 Yo) (0.4%) (0.3%) (1.7%)
hal.dll s3.dll OPENGL32.DLL MSVCRT.dll GLU32.dll Other
(42.5%) (24.6%) (1 2.2%) (1 1.7%) (2.7%) (6.3%)
iexplore.exe win32k.sys ntoskrnl.exe Fastfat.sys ntdll.dll Other
(37.2%) (19.3%) (17.5%) (6.1 %) (6.0%) (13.9%)
cl .exe ntoskrnl.exe MSVCRT.dll Ntfs.sys win32k.sys Other
(83.1 %) (10.5%) (2.8%) (1.2%) (1.1 %) (1.3%)
MSSP232.DLL MSGREN32.DLL ntoskrnl.exe win32k.sys hal.dll Other
(36.4%) (34.0%) (1 0.2%) (7.7%) (4.0%) (7.7%)

significant insight into the system's inherent run-time
latency, not visible with application-only workloads.

Next note the striking similarities in instruction
mix for the four benchmarks in Figures 7 and 8.
Benchmarks do not interact with the operating system
in any significant manner. The desktop application
workloads, however, show significant differences
between the application domain and the complete
trace instruction mixes.

The number of store instructions for the cdplay
workload decreaies from about 11 percent to approG-
mately 1 percent. The number of BSR u~structions
increases from 1 percent to about 6 percent. Most
interesting for this application is the decrease in the
number of ALU operations fiom almost 30 percent to
about 2 percent, wMe the number of CALL-PAL
instructions increases from 0 to 21 percent. Referring to
Figure 6 , the dom'ain execution mix plots clearly show
why the dfferences for t h ~ s workload are so large when
the system activity is included-more than 95 percent
of the workload trace is operating system execution.

Considering the latency incurred by executing
CALL-PAL instructions, clearly an optimization that
concentrates on improving ALU operations based on
the application domain instruction mhes would have a
much smaller impact on the true system performance.
The measured dfference in instruction mix under-
scores the importance not only of using real workloads
for trace-driven simulations but also of i n c l u h g the
operating system behavior in order to see the full picture.

The fi!32 complete trace instruction mix is, of
course, completely different from the application
instruction mix of Figure 7, in which no instructions

were esecuted within the h!32 application image. Both
the ie and the word workloads introduce CALL-PAL
instructions when includmg the operating system. The
ie instructio~~ mix shows an increase in jumps, calls, and
returns, which most ke ly reflects the increase in sub-
routine calls for system services. The word instruction
mix experiences a reduction in load instructions from
approximately 52 percent to 35 percent. This decrease
can be atwibuted to the increase in ALU operations pre-
sent when operating system activity is included.

The results presented in Figures 7 and 8 reinforce
the points that benchmarlts do not represent true desk-
top worldoads and that the desktop workloads display
signLfica~tly different characteristics when viewed in the
presence of system activity.

Average Basic Block Length
Includmg the operating system activity in our traccs yields
an overall increase in the percentage of control tlow
instructions present. Figure 9 shows a consequence of
thls fact. In this figure, we present the average basic block
length for each worldoad, on a per-domain basis. The
ALL b u is the average basic block length across all
domains; OS denotes the operating system u~sm~ctions
only; DLL denotes the workload's DLL instructions
only; APPDLL denotes the combined application and
DLL instructio~~s; and APP denotes the application
instructions only.

Inspecting the four benchmarks, we notice little dif-
ference between the application-only basic block
length and the overall basic block length. Referring to
our domain instruction mis figure, recall that the
benchmarlts spend about 95 percent oftheir execution

Digital Technical Journal Vol. 10 No. 1 1998 17

KEY:

-ULOG

--
ST
BRXX
B R

FOURIER NEURAL GO LI CUPLAY FX!32 IE VC50 WORD

WORKLOAD

Figure 7
Application-only Instruction Mix

KEY:

ALULOG

PMlSC

SWAPIRQL

RETSYS

RDTHREAD

RDTEB

CALLSYS

MB

TRAPB

BSR
BR

BRXX

ST
LD

RET

JSR
JMP

-
FOURIER NEURAL GO LI CDPLAY FX!32 IE VC50 WORD

WORKLOAD

Figure 8
Complete Trace I~lstruction Mix

18 Digital Technical Journd Vol. 10 No. 1 1998

KEY:

I

APP

FOURIER NEURAL GO LI CDPLAY FX!32 IE VC50 WORD

WORKLOAD

Figure 9
Average Basic Block Length

within their executable images. Therefore, including
any operating system activity into a basic block length
average has a minimal effect.

However, co~lsidering tlie large amount of operat-
ing system execution present in the cdplay trace, the
overall basic block length is significantly less than tlie
application-only length. The overall and operating
system length values are almost the same. Not only
does including the system activity in the trace intlu-
elice the overall basic block length but the ~ I ~ O L I I Z I

ofsysteni activity determines to what degree the length
is affected.

I n a similar fashion, the overall basic block length of
the fx!32 trace tracks that of its DLLs. The length is
directly proportional to the amount of time the work-
load s p e ~ ~ d s in its DLL dornain. 7:he cxecution of the ie
workload is niore evenly distributed among the three
domains, which affects tlie o\~erall basic block length,
producing a niore evenly weighted average of all its
domain basic block lengths (no one domain dominates).

The vc50 workload spends a significant amount of
time within its own executable image, which leads to
an overall average basic block length similar to die
application-only value. The word workload is similar,
but the DLL behavior dominates. The cdplay and ie
workloads experience a 50 percent decrease in average
basic block length. This decrease can be attributed to
an increase in the number of branches in the presence
of operating system activity. With this increase in con-
trol flow instructions, we expect increased pressure to
be placed upon the branch prediction hardware.

As observed in other characteristic categories, the
four benchmarks d o not exhibit noticeable deviations
from application-only behavior when the operating
system activity is introduced. Again this explains why
sin~ulation results using benchmark traces ~~sual ly track
the actual performance when the benchmarks are run
on the real system. In contrast, four of the five desktop
applications exhibit significantly different behavior in
the presence of the operating system.

f>igital Tcchnic~l Jounlal Vol. 10 No. 1 1998 19

Summary

I n this paper nre described the PatchIVrs toolset. We
compared it t o existing tools and de~nons t ra ted the
need for operating system-rich traces by showing tlie
a m o u n t o f t h e total esecution spent in tht: kerncl and
the DLLs. In addition, we s h o ~ v e d that csisting desk-
t o p benchmarks d o n o t exercise the kernel and t h e
D L L sufficiently t o provide nieaninghl indicators of
desktop performance.

These results have reinforced o u r argument that
researchers 11eed t o use traces with both application
and operating system i ~ i f o r ~ n a t i o n , espccially as new
applications spend more time executing within the
operating system. T h e goal is for computer architects
t o use operating system-rich traces o f applications that
dominate the desktop market.

We have recently fi nishcd modificatio~ls t o the PAL
t o enable PatchIVrx t o run o n the Alpha 21 164 plat-
form. Wc plan t o s t ~ ~ d y a wider range o f desktop appli-
cat io~is , including database and server appljcations.
Future plans also include migrating tlie toolset t o tlie
Windows 2000 operating system.

Acknowledgments

Wc would like t o acknowledge the help and advice o f
tlie fo l low~ng pcoplc: hc l ia rd S ~ t e s of Adobc Systenis;
Sharon Smlth, Gcoff Lo\\~ne)r, Joel Emer, Steve
Thierauf, T o m Wenncrs, P'ii~l Dclvy, and D a n
Lambalot, all from Cornpaq Conlpu te r Corporation;
and Robert Davidson from Microsofi Rescarcli. Jason
Casmira and David Kaeli have been supported by a
National Sciencc Foundation CAREER grant.

References and Notes

1. SPEC~\'e~(:sletler(Septem bcr 1995).

2. Information about the BYTEmark benchmark suite is
available fi-om BlTE Mugazine at http://\m\w.byte.
com/bmark/bmark.htm.

3. S. Perl and R. Sitcs, "Studies of Windows NT Perfor-
mancc Using Dynnmic Execution Traccs," Procceci-
ill<q.~ (I/' //'I(' ,~ t '~(, l l ld f LsfiN/,y ~ ~) ~ l l l / l O . ~ l / l 171 012 ~ ~ I ~ ~ ~ / / I I I ~ ~

S:)atc,r~z Desigri aud Ir~~/)/c~rnc~~z/t~/ron (October 1996):
169-183.

4. D. Kaeli, "Issues ill Trace-Driven Simulation," Lect~lre
Nofes in Compuler Science, Ko. 729, Performarzce
Ei?(rlrration o f Computer nrzd Comrnr~rzication
S)a/c,ms. L. Donaticllo and R. Nclson, eds. (Springer-
Verlag, 1993): 224-244.

5. R. Uhlig .lnd T. Mudge, "Tr,tce-Driven Memory Sim-
ulation: A Sur\'cy," LIC'A! C.vtr.~~)lrlirrg S~rnyl)?~, vol. 29,
no. 2 (Junc 1997): 128-170.

6 . J. Emer and D. Clark, "A Characterization of Proces-
sor Performance in the VAX 11 -780," Proceedings of
the Ele~~rz tb Syn-rposirrm or1 Cbmpr~ler Archifecctrire
(June 1994): 126-135.

7. K. Flanagan, J . Archibald, B. Nelson, and I<. Grim-
srud, "BACH: BYU Address Collection Harditrare;
The Collection of Complete Traccs," P I . O C L ~ L ~ L ~ I ~ ~ ~ S 01'
the Shtb Interr~c(tiorzrrl C ~) ~ / ~ ~ J W I I L . C U I I .I/od~lir7g Tech-
liiq~le.7 ar?d Tools ,for Cbrllprrtcv I~~rrlurtliori (1992):
51-65.

8. D. Kaeli, 0. LaMaire, \V. White, P. Hcnnet, and W.
Starke, "Real-Timc Trace Generation," Interri~~lio~lul
, /ot.irria/o~~ C O I ~ ~ ~ L ~ / C ~ I ~ S ~ I I ~ ~ I / ~ I / I V I I , vol. 6 , 11o. 1 (1996):
53-68.

9. D. Kaeli, L. Fong, D. Renfreii: K. I m m i ~ ~ g , a ~ ~ d
R. Booth, "Performance Analysis on a CC-NUMA
Prototype," IBIVI ./orrrnal of Keseurch and Deuelo~~-
ment, Special Iss~le on Per-formance Tools. vol. 41,
no. 3 (May 1997): 205-214.

10. D. Nagle, K. Ulilig, and T. Mudge, "Monstcl-: A Tool
for Analyzing the Interaction Between Operating Sys-
tems and Cornputcr Architect~~res," 'I'cchnical Report,
CSE-TK-147-92, University of ~Michigan, 1992.

11. B. Chen and B. Bershad, "The Impact of Operating
System Structure on Memory System Performa~lce,"
Operutirzg S~lste1n.5 Reitieic: vol. 27, 110. 5 (December
1993): 120-133.

12. J. Larus, "Abstract E,secutio~i: A Technique for Effi-
ciently Tracing l'rograms," Tecli~iical Rcport, CS-TR-
90-912, Uniisrsity of Wisconsi~i-Mndiso~l, 1990.

13. A. Srivastava and A. Eustace, "ATOM: A System
for Building Customized Program Analysis Tools,"
Proceeclir~gs oJ' the ACM SIGPLAN94 Co?~Jcrence or1
Progrumming Lu?rgt{age Desigu and Impk~mrn~lutiorr.
Orir~~,l~lo, Fla. (June 1994): 196-205.

14. M. Rosenblum, S. Hcrrod, E. Witchcl, and A. Gupta,
"Complete Computer System Simulation: The SirnOS
Approach," IEEE./otrrrzal oj'l~ur.ul/c.l arrd I)is/rihll/cd
Tecbr7ology. 1998, forthcoming.

15. M. Rosenblum, E. Eugnion, S. Dcvine, and S. Herrod,
"Using the S I ~ I O S Machine Si~nulator to Study Com-
plex Cornputel- Systems," A(.:M I ~ Z I I ~ S L I C ~ I O I I S O I I .Mod-
elrr7g a ~ z d Si~ntt/nttori, vol. 7, ~ i o . 1 (January 1997).
78-103.

16. A. Agarwal, Ana!l.~.si.s qf Cbchc P ~ ~ I : / V I - I I ~ ~ I I C ~ ' ~ ~ I ~ O/)C,I.-
atirzg Systems a ~ z d ~ W u l t ~ ~ r o g r u m m i ~ ~ g (Klu\ver Acadc-
mic Publisher, 1989).

17. J. Larus and E. Schnarr, "EEL: Rewriting Executable
Files t o Measure Program Behavior," Procccditrgs of
the ACM SIGPLAIV'~~ Ci)r?JZ.r~rrce or1 Prosqrurnmirrg
Larlg~tngeDes~qrr a1~dIn7p/o~~er7/ct/ior~, LA Jolla, Calif.
(Junc 1995): 291-300.

Vol. 10 No. 1 1998

18. D. Lee, P. Crowley, 7.-L. Baer, T. Anderson, and
B. Bershad, "Execution Characteristics of Desktop
Applications on Windows NT," Proceedings qf the
Tulen!)lj!/h I~?tt.r~zalional Symposilrn? on Comnptitc~r
Architc,c-t~irc>. Barcelona, Spain (June 1998).

19. E. Betts, D. Hunter, and S. Smith, "Moving ATOlM to
Windo\vs NT for Alpha," Digital Techrrical Jo~rrnaI,
vol. 10, no 2 , accepted for publication.

20. M. Smith, "Tracing with Pixie," Technical Kcport,
CSL-TR-9 1-497, Stanford University, No\~eniber
1991.

21. R. Crnelik and D. Keppcl, "Shade: A Fast Instruction-
Set Simulator for Execution Profiling," Proceedings of
ACMSigrnetrics (1May 1994): 128-1 37.

22. Alpha AXP Architecture Handbook. Order No. EC-
QD2KA-TE (Maynard, Mass.: Digital Equipment
Corporation, October 1994).

23. H. Custer, Insicle LVi~zdo~i~s NT (Redmond, Wash.:
Microsoft Press, 1993).

24. Microsoft Software Developer's Toolkit. This toolkit is
available at http://msdn.microsoft.corn/developer/
sd k/platforrn.htn~.

25. J . Casmira, "Operating System Rich Workload Char-
acterization," Master's thesis, ECE-CEG-98-018,
Northcastern Univcrsitv, May 1998.

LO. R. Hookway and M. Herdeg, "DIGITAL FX!32:
Combining Elnulation and Binary Translation,"
Digilul T~cbr~ica l~ /ourr~al , vol. 9 , no. 1 (1 997): 3-1 2.

Biographies

Jason P. Casmira
Jason Casmira rcccived B.S. and 1M.S. degrees in electrical
engineering from Northeastern University in 1996 and
1998, respectively, and is pursuing a Ph.D. degree in com-
puter science at the University of Colorado, Boulder. For
the past nvo ycars, Jason was a member of the Northeastern
University Computer Architecture Research Laboratory
(NUCAR), where he focused on developing the current
version of the PatchWrs tracing toolset. He also investi-
gated issues related to studying operating system-rich
traces. While at NUCAR, Jason was supported by a grant
from the National Science Foundation. H c lhas published
seven papers and is a member of the IEEE and the Eta
Kappa Nu honor society.

David P. Hunter
David Hunter is the engineering managcr of Compaq
Computer Corporation's Advanced and Emerging
Technologies Group. Prior to that he was the manager
of DIGITAL'S Software Partner Engineering Advanced
Development Group, where he was involved in performance
investigations of databases and their interactions with the
UNIX and Windows NT operating systems. H e has held
positions in the Alpha Migration Organization, the ISV
Porting Group, and the Government Group's Technical
Program Management Office. David joined DIGITAL'S
Laboratory Data Products Group in 1983, where he devel-
oped the VAXlab User Management System. H e was the
project leader of the advanced development project, ITS, an
executive information system, for which he designed hard-
ware and software components. David has two patent appli-
cations per~ding in the area of sothare engineering. Hc
holds a degree in electrical and computer engineering kern
Northeastern University in Bosto~i, Massachusetts, and a
diploma 111 National Security and Strategic Sn~dics from the
United States Naval War College in Newport, Rhode Island.

David R Kaeli
David Kaeli received Ph.D. (1992) and B.S. (1981) degees in
electrical engineering from Rutgers University and nn M.S.
degree in co~nputer engineering fro111 Syracuse University
in 1985. Hc joined the electrical and compilter engineering
faculty at Northeastern University in 1993 aftcr spending
12 years at IBM, the last 7 ofwhich were at the IBM T. J.
Watson Research Center in Yorktown Heights, Ne\v York.
David is the director of the Northeastern University
Computer Architecture Research Laboratory (NUCAR),
\\.here he investigates the performance and design of high-
performance computer systems and software. His current
research topics include 1 / 0 workload characterization,
branch prediction studies, memory hierarchy dcsign, object-
oriented code esecution performance, 3-D micro;lectronics,
and back-end compiler design. H c freq~~ently gives tutorials
on the subject of trace-driven characterization and simula-
tion. In 1995, David received the prestigious National
Science Foundation CAREER Award. His research has
been supported by the Office of Naval Research, Kopin
Corporation, Digital Equipment C:orporation, EMC, l>at,i
General, Microsofi llesexch, I-Tech Corporation, IEEE
DAC, and IBIM llcsearch. David is a member ofthe ACM,
IEEE, and the Eta ICappa Nu and Sigma Xi honor societies.

Vol. 10 No. 1 1998

I
Avrum E. Itzkowitz
Lois D. Foltan

Automatic Template
Instantiation In
DIGITAL C++

Automatic template instantiation in DIGITAL C++
version 6.0 employs a compile-time scheme that
generates instantiation object files into a reposi-
tory. This paper provides an overview of the C++

template facility and the template instantiation
process, including manual and automatic instan-
tiation techniques. It reviews the features of
template instantiation in DIGITAL C++ and
focuses on the development and implemen-
tation of automatic template instantiation in
DIGITAL C++ version 6.0.

The template facility within the C++ language allo\\fs
the tlser to provide a template for a class or function
and then apply specific arguments to the template
to specify a type: or f~nc t ion . The process of applying
arguments to a template, referred to as template instnn-
tiation, causes specific code to be generated to imple-
ment the functions and static data ~nembers of the
instantiated template as needed by the program.
Automatic template instantiation relieves the user of
determining \\/liicli template entities need to bc ins t~n-
tiated and \\,here: tlie)l should be instantiated.

In this paper, we review the C++ template facility and
describe approaches to implementing automatic t e ~ n -
plate instantiation. We f o l l o ~ ~ that with a discussion of
the facilities, rationale, and esperience of the DIGITAL
C++ nutomatic template instanti'~tion support. \;Vc

then describe thc design of the DIGITAL C++ version
6.0 automatic tcmplate instantiation facility and indi-
cate areas to be explored for further improvement.

C++ Template Facility

The C++ language provides a template facility that
allows thc user to create a family ofclnsses o r filnctions
that are parameterized by For example, a user
may pro\kie 3 Stnck tc~iiplate, \vhich defines a stack
class for its argulncnt type. Consider the f~ l lo \ \~ ing
template dcclaratio~i:

template <class T > class Stack (
T *top-of-stack;

public :
void p u s h (T arg 1 ;
void pop(T & arg 1 ;

1 ;

The act of applying the arguments to the template
is referred to as tc~nplatc instantiation. An instantia-
tlon of a template crcatcs a new type or f i ~ n c t ~ o n that
is defined for the specified types. Stackcint> crcatcs
a class that provides a stack of the type int.
Stack<user-class> creates a class that provides a stack
ofuser-class. The types int and user-class are the arg11-
ments for the template Stack.

22 1)lgitnl Technical Journa l Vol. 10 No. 1 199F

In general, a ternplate needs to be instantiated \+/hen
it is referenced. When a class template is instantiated,
only those nieniber fi~nctions and static data members
tliat are referenced are also instantiated. In the Stack
exa~nplc, thc member function Push of tlie class
Stackcint> needs to be instantiated only if it is used.
Ternplate functions and static data ~ n e ~ n b c r s have
global scope; therefore, only one instantiation of each
should be in a user's application. Since source files are
co~npiled separately and combined later at link time to
1.7roducc an executable, the compiler alone is not able
to ensure tliat one and only one instance of a specific
template is efficiently generated for any gi\/en exe-
cutable. That is, the compiler by itself is not able to
kno\v \-vhether the function or variable definition for a
specific template is satisfied by code generated in
another object ~nodulc.

The C++ Standard provides facilities for the user to
specify where a te~nplate entityshould be instantiated.'
When the user explicitly specifies template instantia-
tion, the user then becomes responsible for ensuring
that there is only one instantiation of the template
function o r static data member per application. This
responsibility can necessitate a considerable amount of
work. However, the compiler and linlter working
together can provide effective template instantiation
w i t h o ~ ~ t specific user direction.

In the following section, \ve present tlie various
approaches that can be used for teniplatc instantiation.

Template lnstantiation Techniques

Template insta~~tiat ion techniques call be broadly cat-
egorized ,IS either manual or automatic. \I\'ith manual
instantiation, the co~-r~pilation system responds to user
directives to instantiate template entities. These direc-
tives can be in tlie source program, o r they may be
command-line options. With automatic instantiation,
the compilation system, including the linker, decides
\vhich instantiations are required and attempts to pro-
vide thcm for the user's application.

Manual lnstantiation
Manual template instantiation is the act of manually
speci+ing that a template should be instantiated in the
file that is bcing con~piled. This instantiation is given
global external linkage, so that references to tlie
instantiation that are made in other filcs resolve to this
templatc instantiation. Manual te~nplate instantiation
includes explicit instantiation requests and pragmas as
well as command-line options.

Explicit lnstantiation Requests and Pragmas :The
conipilation systcni instantiates those template entities
that the user specifies for inst~ntiation. The specification
can be made using the C++ explicit template instantia-
tion syntax o r may be made using implementation-

defincd directives o r pragmas. Since instantiations arc
given global external linkage, the user must ensure
that the specified template instantiations appear only
once throughout all the modules that compose the
program. When only this mode of instantiation is
used, the user also must ensure that all required tem-
plate instantiations are specified to avoid unresolved
symbols at link time.

Command-line lnstantiation Command-line options
can be used to specifi template instantiation. They are
similar in operation to tlie explicit instantiation requests,
except they indicate groups of templates that should be
instantiated, rather than naming specific templates to be
instantiated. The command-line options include

Instantiate All Templates. A command-line option
can direct the compiler to instantiate all te~nplate
entities whose definitions are Izno\vn during conipi-
lation and whose argument types are specified. This
has the advantage of specifying many template
instantiations at once. The user must still ensure
that 110 template instantiation happens more than
once in the program and that all required instantia-
tions are satisfied. Due to these requirements, the
user cannot usually specify this option on more than
one source-file compilation in the program. This
option can also cause the instantiation of templates
that are not used by tlie program.

Instantiate Used Tc~nplates. Aco~n~i ia id- l ine option
can be used to direct the compiler to instantiate
only those template entities that are used by tlie
source code and whose definitions are known at
compilation. As in tlie previous technique, the user
must ensure that no template instantiation happens
more than once in the program and tliat all required
instantiations arc satisfied. Due to these require-
ments, the user cannot usually specify this option
on more than one source-file co~npilation in the
program.

Instantiate Used Teniplates Lmcally. This c o ~ n ~ n a n d -
line option \vorl<s like the instantiate used templates
option, escept that it defines each ternplate instan-
tiation locally in the current compilation. This option
has the advantage of providing complete te~nplate
instantiation coverage for the program, as long as
the definitions of thc used templates are available in
each module. Since all teniplate i~lstantiations arc
given local scope, there is n o potential problen~
with ~nultiply defined instantiations when the
program is linked. The major problem with this
technique is that the user's application can be
unnecessarily large, since tlie sanie template instan-
tiations could appcar within multiple object files
used to link the application. This technique will fail
if the instantiations must have global scope such as
a class's static data members.

Digtal Technical Journal Vol 10 No. 1 1998 23

Figure 1 shows an example o f a template function,
template-f~~nc, that contains a locally defined static
variable. As shown in the figure, the object files o f both
A and B contain local copies o f template-func instanti-
ated with int. Each instance of template-hnc<int>
defines its own \iersion o f static variable x. In this case,
directing the compiler t o instantiate used templates
locally yields a different result than instantiating all o r
used templates globally.

I f w e give the static data members global scope and
ensure that they are properly defined and initialized by
executable code rather than by static initialization, we
can solve the static data nienibers problem. T h e appli-
cation, however, remains unnecessarily large, because
multiple copies o f the instantiated templates can be
present in the executable.

Automatic lnstantiation
Automatic template instantiation relieves the user of
tlie burden o f determining which templates must be
instantiated and where i n the applicatiol~ those instanti-
ations should tdte place. Automatic template instantia-
tion can be divided into two categories: compilc-time
instantiation, whereby the decision about what should
be instantiated is made at compile time, and link-time
instantiation, whereby decisions about template instan-
tiation are rnade when the user's application is linlted.
In both cases, specific link-time support is needed t o
select the required instantiations for the executable.

Compile-time Instantiation T w o major techniques
can be used t o perform automatic template instantia-
tion at compile tinie. T h e choice between the two
depends upon the facilities available in the linker.
Microsof? Visual C++ instantiates templates at compile
time using a strategy similar t o the instantiate used
templates coniniand-line opt ion described previously.'

Each instantiation is placed in the comniunal data sec-
tion (COMDAT) o f the current compilation's object
file. Each object file contains a copy o f every template
instantiation needed by that compilation unit.
COMDATs are sections that have an attribute that tells
the linker t o accept, without issuing a warning, multi-
ple definitions o f a symbol defined in the section.' If
more than o n e object file defines that symbol, only the
section from o n e object file is linked into the image
and the rest are discarded, a long with all symbols i l l

t he symbol table defined in the discarded section con-
tribution. At link tinie, the linlter resol\res an instantia-
tion reference by choosing o n e o f the instantiations
defined in an indi\~idual object file's COIMDAT. T h e
resulting user's application executable has a single
copy o f each recl~~ested instantiation.

When such linker support is not a\railable, another
mechanism must be used t o control con~pi le - t ime
instantiation. O n e such approach is to use a repositor)/
to contain the generated instantiations. T h e compiler
creates the instantiations in the repository instead o f
the current compilation's object file. At link time, the
linker includes any recli~ested instantiatio~ls from the
repository. As a performance improvement , the c o m -
piler can also decide whether an instantiation needs t o
be generated from the state o f the repository. If the
requested instantiation is in the repository and can be
determined t o be up t o date, the compiler does no t
need t o regenerate tlie instantiation.

Link-time lnstantiation The decision t o instantiate can
be lef? until link time. T h e linlter can find the instantia-
tions that are needed and direct die compiler t o generate
those instantiations. McCluskey describes one linlt-time
i~istaitiation schemc.'~" 'The compiler logs every class,
union, struct, or cnum in a name-mapping file in a repos-
itory. Every declared template is also logged in the name-

/ / ternplate. hxx
#include <iostream.h>
template <class 'I5 v a ~ d template-func iT pl
I

static T x = 0 ,
c o u t << x + p ,
Y + + ,

/ / A . C x x
#include *template. h x x "
extern v o ~ d b-funcl) ;
int main()
I

template-func(10) i
b-f unc (1 ;
return 01

//B.cxx
%include ' template. hux"
void b-func (void)
<

/ / . 4 0

templa te-f unc (20 1 ;

Figure 1
Tc~nplatc Function Containing n Locally Dctincd Static Variable

24 Digirnl T;.chn~cnl Journal Vol 10 No. 1 1998

mapping We. At Link time, a prehlker determines vl~luch
template instantiations are req~ured. The prelinker builds
temporary instantiation source files in the repository to
satisfy the referenced instantiations, compiles them, and
adds the resulting object files to the linker input.
Consider the example in Figure 2.

During the compilation of main.cxx, a name-
mapping file is built in the repository and the location
of the user-defined class C and the function template,
perform-some-hnction, are recorded. From the infor-
mation stored in the name-mapping file, an instan-
tiation source file is then created in the repository.
Figure 3 shows the contents of the instantiation source
file created to satisfy perform-some-hnction<C>.

The prelinker then compiles the instantiation source
file by invokjng the compiler in a special directed mode,
which directs the compiler to generate code onJy for
specific template instantiations that are listed on the
command line. The compiler then generates the defin-
ition of perform-some-function<C> in the resulting
object file. The resulting object now satisfies the
instantiation request and is included as part of the
application's final link. To build the instantiation
source files easily, the implementation of this scheme
generally requires that template declarations, template
definitions, and any argument types used to instantiate
a class or function template must appear in separate,
related header files.

The Edison Design Group has developed another
approach to link-time instantiation.' In this approach,
the cornpiler records where template instantiations are
used and where they can be instantiated. At link time,
a prelinker assigns template instantiations by recording
the assignments in a specially generated file that corre-

-- --

Figure 3
Example of a11 Instantiation Sourcc File

sponds to the particular source file that can success-
hlly instantiate the user's request. Compiling and pre-
linking the program used in Figure 2 generates an
instantiation assignment file for main.cxx. This file
contains information concerning the command-line
options specified, the user's current working directory,
and a list of instantiations that should be instantiated.
Min.csx now owns the responsibility of instantiating
perform-some-hnction<C>. The prelinker recompiles
the source files, such as main.cxx, that have changes in
their template instantiation assignments. The process
is repeated until there are no changes made to the
instantiation assignments. Then the final link can be
completed.

This approach has the advantage of requiring no
special file structure to support automatic template
instantiation. It is generally faster and simpler than
McCluskey's approach, because fewer files are com-
piled in the generation of the needed instantiations
and the instantiations are generated in the context of
the user's source code. In addition, the assignment of
instantiations to source files can be preserved between
recompilations of the source code, so that unless the
structure ofthe application changes, the needed instanti-
ations will be available without additional recompilation.

//C-class.hxx
class C f
public :

/ / . . .
) ;

//template.hxx
template cclass T> void per fo~sorne- func t ion(T &garam);

//template.cxx
template <class T=- void gerfo~some_function(T &garam) {

i n t main0
(

C c;
perfomsome-function(c);
return 0:

)

Figure 2
Example of a Link-time Instantiation Scheme (McCluskey)

Digital Technical Journal Vol. 10 No. 1 1998 25

Comparison of Manual and Automatic lnstantiation
Techniques
The manual instantiation techniques require planning
on the part of the user to ensure that needed instantia-
tions are present, that no extraneous instantiations are
generated, and that each needed instantiation appears
exactly once within the application. Wid1 manual
instantiation, the user has the advantage of gaining
explicit control over all template instantiations.
Although the strategy of instantiating used templates
locally requires less planning, it does so at the cost of
object file size and the restricted use of templates when
static data members are present or when static data is
defiled locally within a function template instantiation.

Automatic template instantiation provides template
instantiation with n o explicit action on the part o f the
user. Compile-time instantiation requires either spe-
cific linker support t o select a single template instanti-
ation from potentially many candidates, o r support by
the compiler to generate instantiations in separate
object files while compiling the user's source code.
Relying on linker support allows the compiler to effi-
ciently generate instantiations at the cost of larger
object files; however, tlie user loses control over which
instantiation is used in the executable file. Although
the use of separate instantiation object files usually
takes more time at compilation than the linker-support
method, it results in more compact object files and can
provide tlie user with more control over which instan-
tiation is used in the executable file.

Link-time instantiation provides template instan-
tiation that is tailored to the needs of the esecutable
file. The primary cost is link-time performance, since
generation of instantiations occurs at link time.
Another disadvantage of link-time instantiation can be
observed when building object-code libraries. Either
tlie library must contain all the instantiations that it
req~~ires , or the user who wants to link with die library
must have access to all the machinery to create instan-
tiations. Creating a library's instantiations involves
extra steps during library construction. All the object
files to be included in the library must be prelinked,
so that the needed instantiations are generated. If
instantiations are included in the individual object
files in the library, as in the Edison Design Group
approach, unintended modules may be linked from
the library to provide the needed instantiations.
Consider tlie follo\ving scenario, in \vhich object
files A and B are included in the library. Both files
require t l~e instantiation of perfoun-s~ni~-hiction<int>.
When these files are prelinked, the instantiation of
perform-some-finction<int> is assigned to one of
the files, say A. If an application that is being linked
against tlie library requires that the object file B be
linked into die esecutable, then the object file A is also
linlced. Here tlie instantiation needed by B was instan-

tiated in A even though the executable never refcr-
enced anything explicitly defined in file A. This can
yield an unnecessarily large executable.

In the ncst section, we review the template instan-
tiation support in earlier versions of DIGITAL C++
and then discuss the rationale and design of tlie auto-
matic template instantiation facility in version 6.0 of
DIGITAL C++.

DIGITAL C++ Template lnstantiation Experience

As the use of C++ templates has grown, DIGITAL
C++ has been enhanced to support the need for . .

improved instantiation techniques. The initial release
of DIGITAL C++ occurred before the C++ standard-
ization process had matured, so that the language sup-
ported was based on fie Annotated C++ Refirence
Mantlal, referred to as the ARM.S The ARV defined
template functionality, but it did not provide guidance
for either manual or automatic tcmplate instantiation.
Thus it was necessary to provide a DIGITAL C++-
specific mechanism for template instantiation.

DIGITAL C++ Manual Template lnstantiation
The #pragma define-template directive and the instan-
tiate all command-line option, -define-templates, have
been supported since the initial release of DIGITAL
C++.

In Figure 4, the define-template pragma directs the
compiler to instantiate class tcmplate, C, with type int.
When the compiler detects the use of the pragma, it
creates an internal C<int> type node and traverses the
list of static data members and member functions
defined within the class. If the definitions of these
members are present at the point the praglna is speci-
fied, tlie compiler materializes each with type int.

As the C++ language developed and template usage
increased, users found manual template jnstantiation
to be very labor intensive and requested an automated
method.

DIGITAL C++ Version 5.3 Automatic Template
lnstantiation
Automatic template instantiation capability became a
serious issue during tlie planning stages of DIGITAL
C++ version 5.3. The use of templates was increasing
rapidly, and many new third-party libraries, such as
Rogue Wave Software's Tools.h++, contained a signif-
icant use of templates. Due to this growing need, the
requirements were straightforward. The support had
to be easy to use, have a short design phase, be quickly
implementable o n both the DIGITAL UNIX and the
OpenVMS platforms, and provide reasonable perfor-
mance. Because McCluskey's approach had been med
in several implementations, it presented itself as our
best option.

I>igiral Technical Journal Vol. 10 No. 1 1998

template <class T> clasa C (
public :

void menlfuncl (T p) ;
void men~func2 (T p) ;

template cclass T> void C<T>::me~~funcl(T p) { / I . .
template tclass Ts void CcT>::men~func2(T p) { / / . .

#pragma define-template C<int>

Figure 4
The define-template Pragma

DIGITAL made two major changes to McCluskey's
approach to take advantage of the DIGITAL C++
compiler design. First, we allowed instantiation
source files to be created at compile time instead of
link time. This eliminated the need for McCluskey's
name-mapping file and simplified the prelinking
process considerably. Since the needed source files
existed in the repository, there was no need to decon-
struct the required template instantiations to deter-
mine their arguments and types.

The second change addressed the transitive closure
problen~. Figure 5 shows an example of the class tem-
plate Buffer being instantiated with the user-defined type
C. After compilation of app.cxx with the McCluskey

/ / B _ C ~ ~ Q B . ~ X X
class B { / / . . . } ,

//Buffer.hxx
template <class Tz class Buffer {

T *buffer:
int num-of-items;

public I

void adLitem(T) ;
/ / . . .

1;

void f (void)
(

C c;
Buffer<C> c-buffer;
c_buffer.adLitem(&c) ;

approach, the name-mapping file contained delinition
locations ofclass B and class C. However, it did not con-
tain any indication that class C had a data member that
relied on the d e h t i o n of class B. From the information
in the name-mapping file, the prelinker then created an
instantiation source file that included only C-class.hxx,
Buffer.ksx, and Buffer.cxx. When t h ~ s instantiation
source file was compiled, an error resulted complaining
that B is an undehed type whose size is unknown.

We solved this problem in DIGITAL C++ version
5.3 by including all the top-level header files included
by the current compilation unit in any instantiation
source files created. T l i s ensured that B-class.hxx
would be included in the generated instantiation file.

//C-class.hxx
class C {

5 datagtem;
public:

/ / . . .
) ;

//Buffer.cxx
template cclass Tr

void BuffercT>::ad&item(T *g) ()

Figure 5
Instantiation of the Class Template Buffer

Vol. 10 No. 1 1998 27 D i g d Technical jnurnhl

Despite the fact that this type of automatic link-
time instantiation scheme was being widely used
in thc industry, the results of using a modified
McCluskcy approach xvcre mixed. Stroustrup Ihas
described the general problems with McCluslcey's
approach.' We found that our implementation suf-
fered particularly from poor link-time performance
and so did not satisfy our users' needs.

DlGlTA L C++ Version 6.0 Automa tic Template
lnstantia tion
DIGITAL C++ version 6.0 is a complete reimplemen-
tation of DIGITAL C++, with emphasis on ANSI C++
conformance. I t is implemented using a completely
new code base, which includes the industr!l-standard
C++ front end from the Edison Design Group and a
standard class library from Rogue Wave.

From our experience with template instantiation
in 13IGITAL C++ versions 5.3 through 5.6, we con-
cluded that the most important issue that should
be addressed in the design and implementation of
the automatic template instantiation facility was the
compile- and link-time performance. Thc primary
goal \vas to have the performance of automatic tem-
plate instantiation substantially exceed the perfor-
mance of version 5.6. Another important goal was
to remove the restriction of template declaration and
definition placement in header files. In addition, the
automatic te~nplate instantiation facility in version 6.0
had to be cult~trall!l compatible with the previous
implementation. The user had to be able to move
sources and objects to different directories, easily
build archived and shared libraries, share instantia-
tions between various applications, and have error
diagnostics reported at the earliest possible moment in
the instantiation process.

Design and Implementation We decided to use a
compile-time instantiation model as the basis for our
implementation. Since \xle were using the Edison
Design Group's front end, we seriously considered
iwing their link-time model. However, the compile-
time model seemed advantageous for several reasons.
First, there are significant complications (as described
in the section Comparison of Manual and Automatic
Instantiation Techniques) when trying to build
libraries with a compiler that uses the Edison Design
Group link-time model. In addition, the link-time
model requires recompilations that limit performance
in many typical cases of template use. We recognized
that the link-time model could provide better perfor-
n1ance in some cases, but these woi~ld be in the ~ninor-
it)(. Finally, tlie implementation of the lid<-time model
would require substantially more impjementation
effort on the OpenVMS platform. The version of the
Edison Design Group front end being used to build
]DIGITAL C++ version 6.0 required tools to scan a

user's object files for information concerning which
modules could instantiate requested templates. Similar
functionality would need to be implemented for the
OpenVMS platform.

We preserved the concept of the template reposi-
tory as a directory that contains the individual tem-
plate instantiation object files. The repository stores
one object file for each template function, member
function, static data member, and virtual table that is
generated by automatic template instantiation. The
file name of the instantiation object file is derived from
the name of the instantiation's external name. At com-
pile time, the front end generates intermediate code
for all templates that are needed in the compilation
unit and can be instantiated. A tree walk is performed
over the intermediate code to find all entities that are
needed by each generated template instantiation. The
code generator is called to generate code for the user-
specified object file arid is then called repeatedly for
each template instantiation to generate the instantia-
tion object files in the repository.

The compiler generally considers an instantiation to
be needed when it is referenced fiom a context that is
itselfneeded, such as in a function \\lth globd visibility or
by the initialization of a variable that is needed. Virtual
member fiinctions are needed when a constructor for
the class is needed. Thus, all virtual hnction definitions
should be visible in a compilation unit that requires a
constructor for the class. Each instantiation that is gencr-
ated \\ith automatic instantiation is marked as potentially
being in its own object file in the repository.

The intermediate representation of each generated
instantiation is walked to determine what other entities
it references. At this point, the instantiation is a candi-
date to be generated in its own object file, but it can
sometimes be generated as part of tlie user-specified
object file. If the instantiation references an entity that
is local to the compilation unit, such as a static h n c -
tion, and that local entity is nonconstant and statically
initialized, the instantiation is merged into the user-
specified object file rather than generated in its own
object file. As an alternative, we could have chosen to
change the local entity into a global entity with a
unique name and generate the instantiation in its o\vn
object file. We chose not to d o this in order to make it
easier to share a repository benveen applications. With
h s alternative, the instantiation in the repository
requires the object file containing the local entity's def-
inition, which may be in another application. Note that
any application that contains more than one definition
of the same instantiation that references a nonconstant
local entity is a nonstandard-conforming application.
This is a violation of t l ~ c one definition r ~ i l e . ' ~ Consider
the follo\ving codc fragment:

static int j;
template cclass T> int func (T arg) (return j ;)

int var = func(2.5) ;

28 l>rgitnl Technical Journal Vol. 10 No. 1 1998

The reference to the static variable j in the template
function, func, prevents the template fi-om being gen-
erated into its own object file in the repository.

When the individual instantiations are walked, we
mark each global entity that is defined in the compila-
tion unit so that the definition is replaced by an ester-
nal reference when the instantiation object file is
generated. Consider the following code fragment:

void print-count(const char s, int ivar)
(

cout<c s <<.:" << ivar;
)

template cclass Tz void func (T arg)
I

s t a t i c int count = 0;
print-count("count', count++):

i

The filnction, print-count, is defined in the source
file and generated as a defined function in the user-
specified object file. The template function, func, refer-
ences the function, print-count. When the code for
h n c is generated in its own object file, the reference to
print-count must be changed from a reference to a
defined filnction to a reference to an externd function.

By default, each needed instantiation is generated by
every compilation that requires the instantiation. This
is the safe default because it ensures that instantiations
in the repository are up to date. However, there will
probably be some compilation overhead from regener-
ating instantiations that may already be up to date. We
believed that the overhead of regcnerating instuitia-
tions would typically be relatively small. For applica-
tions with a high overhead of instantiation, such as a
large number ofsource files using the same large num-
ber of template instantiations, we provided a compila-
tion option to control the generation of template
instantiations to improve compile-time performance.

The generation of instantiation object files only
when they are actually required is a difficult problem.
Fine-grain dependency information would have to be
kept for each instantiation object file. Such depen-
dency information would need to reflect those files that
are required to successfi~lly generate the instantiation
and record wllich command-line options the user speci-
fied to the colnpiler. We suspected that the overhead
involved with gathering and checking the information
might be an appreciable percentage ofthe time it would
take to d o the instantiation, and thus it would not give
us the performance i~nprovernent that we wanted.

Instead, we decided to provide an option that allows
the user to decide when instantiations are generated.
We refer to this as the template time-stamp option,
-ttimestanip. When using the time-stamp option, the
compiler looks in the repository for a file named
TIMESThklP. If the file is not found, it is created. The
modification time of this file is referred to as the time

stamp. When generating an instantiation, the compiler
looks in the repository to see if the instantiation object
file exists. If it does not exist, it is generated. If the file
already exists, its modfication time is compared to the
time stamp. If the modification time is later than the
time stamp, the instantiation is assumed to be up to
date and is not regenerated. Otherwise, the instantia-
tion is generated. The user can control the generation
of instantiatio~l object files by changing the modifica-
tion time of the TIMESTAMP file.

The time-stamp option would typically be used in
a makefile o r a shell script that compiles and builds
an entire application. Before invoking make or the
shell script, the user would make certain that n o
TIMESTAMP file resided in the repository. This
would ensure that each needed instantiation would be
generated exactly once during all the compilations
done by the build procedure.

Much of the C++ linker support in version 5.6 was
reused with only minor modifications for version
6.0. The compiler is presented with a single repository
into which the instantiation object files are written.
Multiple repositories can be specified at link time, and
each can be searched for instantiations that are needed
by the executable file. The linker is used in a trial link
mode to generate a list of all the unresolved external
references. This list is then used to search the reposito-
ries to find the needed instantiation files, and the
process is repeated untll n o more instantiations are
needed or can be satisfied from the repository. The
link then proceeds as any nor~nal link, adding the list
of instantiation object files to the list of object files
and libraries as specified by the user.

If a vendor is creating a library rather than an exe-
cutable file, the instantiations needed by the modules
in the Library can be provided in either of two ways: (1)
The library vendor can put the needed instantiations
in the library by adding the files in the repository to
the library file. (2) The library vendor can provide the
repository with the library and require that library
users link with the repository as well. Note that instan-
tiations placed in the library are fiscd when the library
is created. Since the library is included in the trial link
of an application, any instantiation in the .library takes
precedence over the same named instantiation in a
repository.

Results In a number of tests, DIGITAL C++ version
6.0 showed improved performance over version 5.6.
We tested a variety of user code samples that use tem-
plates to varying degrees and found that build times for
version 6.0 decreased substantially compared to the
version 5.6 compiler. Examples of two typical C++
applications used in our tests are the publicly available
EON raytracing benchmark and a subset oftests from
our Standard Template Library (STL) test suite. For

Digital Technical Journal Vol. 10 No. 1 1998 29

tion occurs. In addition, it provides a substantial
improvement in performance of template instantiation
over version 5.6 and reduces the restrictions on the
location of template declarations and defirutions. We
continuc to investigate the template-instantiation imple-
mentation to further improve con~pile- and link-time
performance and ease of use.

Acknowledgment

The authors wish to acknowledge Bevin Brett, who
contributed substantially to the design and implenien-
tation of the needed walk and instantiation object file
generation for DIGITAL C++ version 6.0, and
Hernant Rotithor, who provided thc performance
rneasurements for DIGITAL C++ version 6.0 versus
version 5.6. The authors also wish to aclinowledge
Charlie Mitchell, Coleen Phillimore, Rich Phillips, and
Harold Seigel for their contributions to the design and
implementation of the DIGITAL C++ automatic tem-
plate instantiation.

References

1. ISO/IEC Standard 14882, Programming Language
C++, 1998.

2 B Stroustri~p, 7he C++ Progl-nnzrn~rzg L ~ I Z ~ L I G I ~ E ,
T h ~ r d Edlt~on (Read~ng, Mass Addson-Wesley,
1997)

3. Microsoft Visual C++ 5.0, On-line Help, "Templates,
C++."

4. Microsoft Corporation, "Microsoft Portable Exe-
cutable and Common Object File Format Specifica-
tion," Revision 5.0, Section 5.5.6, 11.licrosofi
Deueloperk Aiet~~lork (October 1997).

5. G. McCluske!~, "An Environment for Template Instan-
tiation," ?fie C++ Report, vol. 4, no. 2 (1992).

6. G. McCluskey and R. ~Murray, "Template Instantiation
for C++," Sigpln~l ~Votices, vol. 27, no. 12 (1992):
47-56.

7 . Ediso~i Design Group, "Template Instantiation in the
EDG C++ Front End," Note to the &IS1 C++ C o n -
rnittce, X3J16/95-0163, WG21/N0763.

8 . IM. Ellis and B. Stroustrup, 77?eAnnotnted C++ Refer-
ence ~ V ~ G I I Z L ~ C I ~ (Reading, Mass.: Addison-Wesley,
1990).

9 . B. Stroustrup, T73e Deslglz and Euolr~tror? oJ C++
(Reading, Mass.: Addison-MJesley, 1994): 366.

10. B. Stroustrup, The C++ I'rogmmming Lang~uzge,
Third Edition (Reading, Mass.: Addison-Weslcy,
1997): 203-205.

Biographies

Avrum E. Itzkowitz
L4vru~n Itzko\vitz was a contractor/consultant at DIGIT&
from September 1995 through December 1997. During
that time, he worked as part ofthe DIGITAL C++ develop-
ment team, designing and implementing much of the sup-
port for the automatic template instantiation facility in
DIGITAL C++ version 6.0. Avrum also designed and
implemented template instantiation tests. He is currently a
senior sofnvare arclutect engineer at GTE Internetworking.
H e holds a B.S. (1972) in electrical engineering from
Northwestern Uni\~ersity and M.S. (1976) and Ph.D.
(1979) degrees in computer science from the University
of Illinois. Avru~n is a member of the ACM, the IEEE-
Computer Society, and SIGPLAN.

Lois D. Foltan
Lois Foltan is a principal sofnvare engineer at Compaq.
Her areas of expertise include support for C++ automatic
template instantiation and the DIGITAL C++ object
model. She was a member of the DEC C/C++ co~npiler
team for eight years. During that time, she contributed
to the first GEM-based DEC C and DEC C++ compilers.
Recently, she joined the Digital Java team. Lois received a
B.S. in computer science from the University ofVermont
in 1988.

Vol. 10 No. 1 1998 31

Measurement and
Analysis of C and C++
Performance

As computer languages and architectures
evolve, many more challenges are being pre-
sented to compilers. Dealing with these issues
in the context of the Alpha Architecture and the
C and C++ languages has led Compaq's C and
C++ compiler and engineering teams to develop
a systematic approach to monitor and improve
compiler performance at both run time and
compile time. This approach takes into account
five major aspects of product quality: function,
reliability, performance, time to market, and
cost. The measurement framework defines a
controlled test environment, criteria for select-
ing benchmarks, measurement frequency, and
a method for discovering and prioritizing oppor-
tunities for improvement. Three case studies
demonstrate the methodology, the use of mea-
surement and analysis tools, and the resulting
performance improvements.

I
Hemant G . Rotithor
Kevin W. Harris
Mark W. Davis

Optimizulg co~npilers are becoming ever more complex
as languages, target architectures, and product features
evolve. Languages contribute to compiler complesity
with their increasing use of abstraction, modularity,
delayed binding, polymorphism, and source reuse,
especially when these attributes are used in combina-
tion. Modern processor architectures are evolving ever
greater levels of internal parallelism ui each successive
generation of processor design. In addition, product
feature demands such as support for fast threads and
other forms of external parallelism, integration 144th
smart debuggcrs, memory use analyzers, performance
analyzers, smart edtors, incremental builders, and feed-
back systems continue to add complexity. At the same
time, traditional compiler requirements such as stan-
dards conformance, compatibility with previous ver-
sions and competitors' products, good compile speed,
and reliability have not duninished.

All these issues arise in the engineering of Compaq's
C and C++ compilers for the Alpha Architecture.
Dealing with them requires a hsciplined approach to
performance measurement, analysis, and engineering of
the compiler and libraries ifconsistent improvements in
out-of-the-box and peak perfor~nance on Alpha proccs-
sors are to be achieved. In response, several enpeer ing
groups working on Alpha software have established
procedures for feature support, perfor~nance measure-
ment, analysis, and regression testing.

The operating system groups measure and improve
overall system performance by providing system-level
tuning features and a variety of performance analysis
tools. The Digital Products Division (DPD) Performance
Analysis Group is responsible for providing official
perfornlance statistics for each new processor mea-
sured against industry-standard benchmarks, such as
SPECmarks published by the Standard Performance
Evaluation Corporation and the TPC series of transac-
tion processing benchmarks from the Transaction
Processing Performance Council. The DPD Performance
Analysis Group has established rigorous methods for
analyzing these benchmarks and provides perfor-
mance regression testing for new software versions.

32 Digital Tcclinical Journal I7ol. 10 No. 1 1998

Similarly, the Alpha compiler back-end development
group (GEM) has established performance improve-
ment and regression testing procedures for SPECmarks;
it also performs extensive run-time performance analy-
sis of new processors, in conjunction with refining and
developing new optimization techniques. Finally, con-
sultants worlung wit11 independent sohvarc vendors
(ISVs) help the ISVs port and tune their appjications
to work well on Alpha systems.

Although the effort from these groups does con-
tribute to competitive performance, especially on
industr)l-standard benchmarks, the DEC C and C++
compiler engineering teams have found it necessary to
independently monitor and improve both run-time
and compile-time performance. In many cases, ISV
support consultants have discovered that their applica-
tions d o not achieve the performance levels expected
based on industry-standard benchmarks. We have seen
a variety ofcauses: New language constructs and prod-
uct features are slow to appear in industry bench-
marks, thus these optimizations have not received
sufficient attention. Obsolete o r obsolescent source
code remaining in the bulk of existing applications
causcs default options/switches to be selected that
inhibit optimizations. Many of tlie most important
optimizations used for exploiting internal parallelism
make assumptions about code behavior that prove to
be wrong. Bad esperiences with compilcr bugs induce
users to avoid optinlizations entirely. Configuration
and source-code changes made just before a product is
released can interfere with important optimizations.

For all these reasons, we have used a systematic
approach to monitor, improve, and trade off five
major aspects of product quality in the DEC C and
DIGITAL C++ compilers. These aspects are fi~nction,
reliability, performance, time to market, and cost.
Each aspect is chosen because it is important in isola-
tion and because it trades offagainst each of tlie other
aspects. The objective of this paper is to show ho\v the
one characteristic of performance can be improved
while minimizing the impact on the other four aspects
of product q ~ d i t y .

In this paper, we d o not discuss any individual opti-
mization methods in detail; there is a plethora ofliter-
ature devoted to these topics, including a paper
published in this./ourncil.' Nor d o we discuss specific
compilcr product features needed for competitive sup-
port 0 1 1 individual platforms. Instead, we show how
the efforts to measure, monitor, and improve perfor-
mance are organized to minimize cost and time to
nlarkct while maximizing hnction and reliability.
Since all these product aspects are managed in the con-
text of a series of product releases rather than a single
release, our goals are frequently expressed in terms of
relationships between old and new product versions.

For esample, for the performance aspects, goals along
the following lines are common:

Optimizations should not impose a compile-speed
penalty on programs for which they d o not apply.

The use of unrelated compiler features shoi~ld not
degrade optimizations.

New optimizations should not degrade reliability.

New optimizations should not degrade perfor-
mance in any applications.

Optimizations should not impose any nonlinear
compile-speed penalty.

N o application should experience run-time speed
regressions.

Specific benchmarks or applications should achieve
specific run-time speed improvements.

The use ofspecific ncw language features should not
intl-oduce compile-speed or run-time regressions.

In the context of performance, the term rneas~~i-e-
ment usually refers to crude metrics collected during
an automated script, such as compile time, run ti~iie,
or memory usage. The term clncdysis, in contrast,
refers t o the process of breaking down the crude mea-
surement into components and discovering how the
measurement responds to changing conditions. For
example, we analyze how compile speed responds to
an increase in available physical memory. Often, a
comprehensive analysis of a particular issue may
require a large number of crude measurements. The
goal is usually to identi@ a particular product feature
or optimization algorithm that is failing to obey one of
the product goals, such as those listed above, and
repair it, replace it, or amend the goal as appropriate.
As always, individual instances of this approach are
interesting in themselves, but the goal is to maxitnizc
the overall performance \vhile minimizing tlie devel-
opment cost, new feature availability, reliability, and
time to market for the new version.

Although some l i te ra ture '~~scusses specific aspects
of analyzing and iniproving performance of C and C++
compilers, a comprehensi\te discussion of the practical
issues involved in the measurement and analysis of
conipiler performance has not been presented in the
literature to our luiowledgc. In this paper, we provide a
concrete bacl<ground for a practitioner in the field of
compilation-related performance analysis.

In the next section, we describe the metrics associ-
ated with the compilcr's performance. Following that,
we discuss an environment for obtaining stable perfor-
mance results, including appropriate benchmarks,
measurement kequency, and management of the results.
Fin'dy, we discuss the tools used for perforniaice mea-
surement and analysis and give exaiiples of the use of
those tools to solve real problerns.

D~giral Technical Journal Vol. 10 No. 1 1998 33

Performance Metrics

In our experience, ISVs and end users are most inter-
ested in the follo\v~ng performance ~nctrics:

Function. Although hnction is not usi~ally consid-
ered an aspect of performance, new language and
prod~rct features are entirely appropriate to consider
among potential performance impro\lernents when
trading offde\~elopnient resources. From the point
of view of a user who needs a particular feature, the
absence of that feature is indistinguishable from an
unacceptably slow implementation of that feature.

Reliability. Academic papers on performance sel-
do111 discuss reliability, h ~ ~ t it is c r~~cia l . Not only is
an ~~nreliablc optimization useless, often it prcju-
dices progralnniers against using any optimiza-
tions, thus degrading ratlicr than enhancing overall
performance.

Application absolute run time. Typicdly, the absolute
run timc of an application is measured for a bench-
mark with specific input data. It is important to real-
ize, however, that a user-supplied benchmark is often
only a surrogate for tlie maximum application size.

M a s i m ~ ~ r n application sizc. Often, the elid user is
not trying to solve a specific input set in the shortest
timc; instead, the user is trying to solve the largest
possible real-world proble~n within a specific time.
T ~ L I S , trends (c.g., memory bnnd\vidtll) arc ofien
more important than absolute timings. This also
implies that specific benchmarks must be retired o r
~~,pgr,ided \\llien processor irnpro\'emcnts 11ioot their
original rationale.

Price/Pcrfor~iiancc ratio. Often, the most effective
co~npetitor is not tlie one ~ ~ l i o c,ln match our
p rod~~c t ' s pcrfonna~~cc, but the one \vho ca i give
acceptable pcrfor~nnnce (see above) with the cheapest
solution. Since compilcr dc\lclopas d o not contribute
directly to server or \vorl<station pricing decisions,
they must lee the prc\lous mettics as surrogates.

Cornpile speed. This aspect is primarily ofi~iterest to
applicatio~i dcvclopers ratlicr than end Lrsers.
Compile spcccl is oken given secondary considera-
tion in academic papers on optimization; however, it
can make or break the decision of an ISV consider-
ing a platfor~ii or a devclopmc~it en\~iron~ncnt. Also,
for C++, there is an important distinction between
ab initio build speed and incremental build speed,
due to thc need for template instantiation.

Result file sizc. Both the object fi lc and executable
file sizes arc important. This aspect was not a partic-
ular problem with C, but several language features
of C++ and its optiniizations can Icad to csplosive
growth in result file sizc. The most obvious prob-
lems arc the need for cstcnsi\c hnction inlining

and for instalitiatio~l of templates. In addition, for
debug versions of the result files, it is essential to
find a way to suppress repeated descriptions of the
type information for variables in multiple niodules.

Compiler djrnani~c memory use. Peak usage, aver-
age usage, and pattern of usage must be regulated
to kccp the cost of a minimum dc\lclopmcnt con-
figuratlo~i lo\\. In add~tion, ~t IS ~niportant to cnsurc
that specific comp~ler algor~thnis o r combinat~ons
of them d o not molate the usage assumptions built
into the paging system, wh~cli can ~ i i ~ k e the systc~n
unusable during large comp~lations.

Crude measurements can be madc for all or most of
these metrics in a single script. When attempting to
make a significant improvement in one o r niorc rnet-
rics, however, the change ohen necessarily degrades
others. This is acceptable, as long as tlie only cases that
pay a penalty (e.g., in larger dynamic Iiiemorp use) arc
the compilations that benefit fro111 the iniprovcd run-
time performance.

As the list ofperforlnance mctrics indicates, the most
important distinction is made bctween co~npilc-time
and run-time rnetrics. In practice, we use automated
scripts to measure compile-time and run-time perfor-
rnance on a fairly f i - e q ~ ~ e ~ i t (daily or nlcckly during
development) basis.

Compile- Time Performance Metrics
To measure compile-time perhr~nancc, 11.e L I S ~ four
metrics: compilation time, sizc of thc generated objects,
dynamic memory usagc during compilation, and tem-
plate instantiation time for C++.

Compilation Time The compilation tirnc is measured
as the tinie it takcs to compile a given sct of soul-ccs,
typically escluding the link timc. The link time is
excluded so that only compiler performance is mea-
sured. This metric is important because it directly
affects t l ~ e productivity ofa dcvclopcr. 111 tlic C++ case,
performance is liieasured ab initio, bccailsc our prod-
uct set does not support incrcnicntal compilation
below the granularity of a whole module. When opti-
mization of the entire program is attempted, this niay
become a more interesting issue. The UNIX slicll t i n -
ing tools make a distinction benveen user and s)lstcni
time, but this is not a mea~iingfi~l distinction k)r a com-
piler user. Since co~ilpilation is typically CPU intcnsi\c
and system time is usually modest, tracking the sum of
both the user and tlie system timc gives the most realis-
tic result. Slow compilation times can bc c a ~ ~ s e d by the
use of 0 (72') algorithms in the optimiz~tion phases,
but they can also be frequently c a ~ ~ s c d by excessive
layering or modularity due to code reuse or excessive
gro~vth of the in-1nemor)1 representation of the pro-
gram during compilation (e.g., due to inlining).

34 Digital Tcchnic.~l J o ~ ~ r n a l Vol. 10 No. 1 1998

Size of Generated Objects Excessive size of generated
objects is a direct contributor to slow compile and
link tirnes. In addition to the obvious issues of inlin-
ing and template instantiation, duplication of the type
and naming information in the sy~nbolic debugging
support Iias been a particular problem with C++.
Compression is possible and helps with disk space, but
this increases link time and memory use even more.
The current solution is to eliminate duplicate informa-
tion present in multiple modules of an application.
'This work requires significant support in both the
linker and the debugger. As a result, the implementa-
tion has been difficult.

Dynamic Memory Usage during Compilation Usually
modern compilers have a multiphase design whereby
tlie program is represented in several different forms in
dynamic memory during the compilation process. For
C and C++ optimized compilations, this in\~olves at
least tlie following processes:

Retrieving the entire source code for a module
from its various headers

Preprocessing the source according to the C/C++
rules

Parsing the source code and representing it in an
abstract form with semantic information embedded

For C++, expanding template classes and f~~nct ions
into their individ~~al instanccs

Siniplifjing high-level language constructs into a
form acceptable to the optimization phascs

Converting the abstract rcprcsentation to a differ-
ent abstract form acceptable to an optim~zcr, usu-
ally called an intermediate language (IL)

Expanding some low-level hnctions inline into the
context of their callers

Performing multiple optimization passes in\lol\1ing
annotation and transformation of tlie IL

Converting the IL to a form symbolically represent-
j~ ig the target machine language, usually called code
generation

Performing scheduling and other optimizations o n
the symbolic machine language

Converting the symbolic machine langi~agc to actual
object code and writing it onto disk

I n modcr~l C and C++ compilers, these various inter-
mediate forms are kept entirely in dynamic memory.
Although some of these operations can be performed
on a function-by-function basis within a ~ ~ i o d u l e , it is
sometimes necessary for at least one intern~ediate form
of the module to reside in dynamic memory in its
entirety. In some instances, it is necessary to keep mul-
tiple forms of the whole module simultaneously.

This presents a difficult design challenge: how d o we
compile large programs using an acceptable amount of
virtual and physical memory? Trade-offs change con-
stantly as memory prices decline and paging algorithms
of operating systems change. Some optimizations even
have the potential to expand one of the intermediate
representations into a form that grows faster than the
size of the program (O(n x log(n)), or even 0 (n 2)) . In
these cases, optimization designers often limit the
scope of the transfor~nation to a subset of an individual
function (e.g., a loop nest) or use some other means to
artificially limit the dynamic memory and computation
requirements. To allow additiolial headroom, upstream
compiler phascs are designed to eliminate unnecessary
portions of the lnodule as early as possible.

In addition, the memory management spste~ns are
designed to allow internal memory reuse as effi-
ciently as possible. For this reason, compiler design-
ers at Compaq have generally preferred a zone-based
memory management approach rather than either a
malloc-based o r a garbage-collection approach. A
zoned memory approach typically allows allocation
of varying amounts of memory into one of a set of
identified zones, follo\ved by deallocation of the
entire zone when k1I1 the individual allocations are n o
longer needed. Since the source program is repre-
sented by a succession of internal representations
in an optimizing compiler, a zoned-based memory
management system is very appropriate.

The main goals of the design are to keep the peak
mernory use below any artificial limits on the virtual
memory available for all the actual source modules
that users care about, and to avoid algorithms that
access memory in a way that causes excessive cache
misses o r page hults.

Template Instantiation Time for C++ Templates are a
major new feature of the C++ language and are heavily
used jn the new Standard Library. Instantiation of
templates can dominate the compile time o f the mod-
ules that use them. For this reason, template instantia-
tion is undergoing activc s t~tdy and improvement,
both \\/lien compiling a module for the first time and
when recompiling in response to a source change. An
improved technique, now widely adopted, retains pre-
compiled instantiatio~is in a library to be used across
compilations of multiple modules.

Template instantiation may be done at either com-
pile time or during link time, o r some cornbination.'
DIGITAL C++ has rece~ltly changed from a link-time
to a compile-time model for improved instantiation
performance. Thc instantiation time is generally pro-
portiolial t o tlie number of templates instantiated,
which is based on a command-line switch specification
and the time required to instantiate a typical template.

Vol. 10 No. 1 1998 35 Digital Technical Journal

Run-Time Performance Metrics
We use automated scripts to measure run-tinic perfor-
muice for generated code, the debug image size, the pro-
duction image size, and specific optimizations triggered.

Run Time for Generated Code The run time for gen-
erated code is measured as the sum of user and system
time on UNIX required to run an esecutuble il-rlage.
?'his is the primary metric for the quality of generated
code. Code correctness is also validated. Comparing
run times for slightly differing versions of synthetic
benchmarks allo\vs us to test support for specific opti-
mizations. Performance regression testing on both
synthetic benchmarks and user applications, ho\\,e\ler,
is tlie most cost-effective method of preventing per-
formance degradations. Tracing a performance regres-
sion to a specific conipiler change is often difficult, but
the earlier a regression is detected, the easier and
cheaper it is to correct.

Debug lmage Size The size of an image co~npiled
with the debug option selectcd during compilation is
measured in bytes. I t is a constant struggle to avoid
bloat caused by unnecessary or redundant infor~nation
required for symbolic debugging support.

Production lmage Size The size of a production
(optimized, with n o debug information) application
image is measured in bytes, The use of optimization
techniques has historically made this size smaller, but
modern RISC processors such as the Alpha micro-
processor require optimizations that can increase code
size substantially and can lead to excessive image sizes
if the techniques are used indiscriminately. Heuristics
used in tlie optimization algorithms linlit this size
impact; however, subtle changes in one part of tlie
optimizer can trigger unexpected size increases that
affect I-cache performance.

Specific Optimizations Triggered In a multiphase
opti~nizing compiler, a specific optimiz,ation usually
requires preparatory contributions from several
upstream phases and cleanup from several down-
streani plinscs, in addition to the a c t ~ ~ a l transforma-
tion. In this environment, an unrelated change in one
of the upstream o r downstream phases may interfcre
with a data structure or violate an ;lssurnption
exploited by a downstream phase and thus generate
bad codc or suppress the optimizations. The genera-
tion of bad code can be detected quickly with auto-
mated testing, but optimization regressions are much
harder to find.

For some optimizations, liowe\~er, it is possible to
write test programs that are clearly representati\~e
and can sho\v, either by some kind of dumping o r
by comparative performance tests, when an imple-
mented optimization fails to worlc as expected. O n e

commercially available test suite is called NULLSTONE,"
and custom-nlrittcn tests are used as well.

In a collection ofsuch tests, the total number ofopti-
mizations implemented as a percentage of the total
tests can provide a usefill metric. This metric can indi-
cate if successive coinpiler versions have improved and
can help in comparing optimizations implemented in
compilers from different vendors. The optimizations
that are indicated as not implemented provide usehl
data for guidng future development effort.

The application developer must always consider the
compile-time versus run-time trade-off. In a well-
designed optimizing compiler, longer compile times
are exchanged for shorter run times. This relationship,
however, is far from linear and depends on the impor-
tance of performance to the application and the phase
of development.

During the initial code-development stage, a shorter
compile time is uscfi~l because the code is compiled
often. During tllc production stage, a shorter run time
is more important because the codc is run often.
Although most of the above metrics can be directly
measured, dynamic nicrnory use can only be indirectly
observed, for example, from the peak stack use and tlie
peak heap use. As a result, our tests i~lclude bench-
marks that potentially ~nalce heavy use of dynamic
memory. Any degradation in a newer compiler version
can be deduced fiom observing the compilation of
S L I C I I test cascs.

Environment for Performance Measurement

I11 this section, we describe our testing environment,
including hardwarc and sofnvare requirements, crite-
ria for selecting benchmarlcs, fi-ecluency of pcrfor-
mance measurement, and tracking the results of our
performance mcasurcments.

Coiupiler perform~nce analysis and measurement
give the most reliable and consistent results in a
controlled environment. A nurnbcr of factors other
than tlie compiler pc~.formance have the potenti'd of
affecting the observed results, and the effect of such
perturbations must be minimized. The hardware and
software components of the test environment used arc
discussed below.

Experience has shown that it helps to have a dedi-
cated machine for performance analysis and measure-
ment, because the results obtained on the sarnc
machine tend to be consistent and can be meaning-
fi~lly cornparcd with successive runs. In addition, the
external influences can be closely controlled, and ver-
sions of system sofnvarc, compilers, and benchmarks
can bc controlled without impacting other users.

Several aspects of the liard\\~are configuration on the
test machine can affcct the resulting measurements.
Even \vitliin a singlc family of CPU architectures at
cornparable clock speeds, differences in specific i~nple-

36 L>~gical Tcchn~cal Journal Vol. 10 No. 1 1998

mentations can cause significant performance changes.
The number of levels and the sizes of the on-chip and
board-level caches can have a strong effect on perfor-
mance in a way that depends on algorithnis of the
application and the size of the input data set. The size
and the access speed of the main memory strongly
affect pcrfor~nance, especially when the application
code or data does not fit into the cache. The activity on
a network connected to the test system can have an
effect on performance; for example, if the test sources
and the executable image are located on a remote disk
and are fetched over a network. Variations in the
observed performance may be divided into two parts:
(1) system-to-system variations in measurement when
running the same benchmark and (2) run-to-run varia-
tion on the same system running the same benchmark.

Variation due to hardware resource differences
betcvccn systems is addressed by sing a dedicated
machine for performance measurement as indicated
above. Variation due to network activity can be mini-
mized by closing all tlie applications that make use of
the network before the performance tests are started
and by using a disk system local to the machine under
test. The variations due to cache and main memory
system effects can be kept consistent between runs by
using similar setups for successive runs of performance
measurement.

In addition to the hardware components of the
setup described above, several aspects of tlie sohvare
environment can affect performance. The operating
system version used on thc test machine should corre-
spond to the version that the users are likely to use on
their machines, so that the users see comparable per-
formance. The libraries used with tlie co~npiler are
usually shipped with the operating system. Using dif-
ferent libraries can affect performance because newer
libraries may have better optimizations or new fca-
tures. Tlie compiler switches used while compiling test
sources can r c s ~ ~ l t in different optimization trade-offs.
Duc to the large number of compiler options sup-
ported on a modern compiler, it is impractical t o test
performance with all possible combinations.

To meet our requirements, we used the followi~lg
small set of switch combinations:

1 . Default Mode. The default mode represents the
default combination of switches selected for the com-
pilcr when no user-selectable options are specified.
'The compiler designer chooses the default combina-
tion to provide a reasonable trade-off between com-
pile speed and run speed. Tlie use ofthis mode is very
common, especially by novices, and thus is i~nportvit
to measure.

2. Debug Mode. In the debug mode, we test the option
combination that the programmer would select when
debugging. Optimizations are typically turned off,
and tidl symbolic information is generated about the

types lu~d addresses of program \lariables. This niodc
is commonly specified during code development.

3. Optimize/Productio~l iMode. In the optimize/
production mode, \ve select the option combina-
tion for generating optimized code (-0 compiler
option) for a production image. This mode is most
likely to be used in compiling applications before
shipping to customers.

We prefer to measure compile speed for debug mode,
run speed for production mode, and both speeds for
the default mode. Tlie default mode is expected to lose
only modest run speed over optimize mode, have good
compile speed, and provide usable debug information.

Criteria for Selecting Benchmarks
Specific benchmarks are selected for measuring perfor-
rnance based on the ease of measuring interesting
properties and the relevance to the user community.
The desirable characteristics of usefill be~ichmarks are

I t should be possible to measure individual opti-
mizations implemented in the compiler.

I t should be possible to test performance for com-
monly used language features.
At least some of the bench~narlts should be repre-
sentative ofwidely used applications.

The benchmarks should provide consistent results,
and the correctness of a run should be verifiable.

The benchmarks should be scalable to newer
machines. As newer and faster machines are devel-
oped, tlie benchmark execution times diminish. I t
should be possible to scale the benchmarks on the
machines, so that usefill results can still be obtained
without significant error in measurement.

T o meet tliese diverse requirements, we selected a set
of benchmarks, each of which meets some of the
requirements. We groi~ped our benchmarks in accor-
dance with the performance meuics, that is, as compile-
time and run-time benchmarks. This distinction is
necessary because it allows us to fine-tune the contents
of the benchniarks i~nder each category. The compile-
time 'and run-time benchmarks may be fi~rther classified
as (1) synthetic benchmarks for testing the performance
of specific features or (2) real applications that indicate
typical performance and combine the specific features.

Compile-Time Benchmarks Examples of synthetic
compile-time benchmarks include the #define inten-
sive preprocessing test, the array intensive test, the
comment intensive test, the declaration processing
intensive test, the hierarchical #include intensive test,
the printf intensive test, the empty #include intensive
test, the arithmetic intensive test, the fi~nction defini-
tion intensive test (needs a large memory), and tlie
instantiation intensive test.

Digital Teclin~c.ll Journal Vol. 10 No. 1 199s 37

Real applications used as compile-time bencli-
marks include selected sources from the C compiler,
the DIGITAL UNIX operating systeni, UNIS utilities
such as awk, the X window interface, and C++ class
inheritance.

Run-Time Benchmarks Synthetic run-time bench-
niarks contain tests for individual opti~iiizations for
different data type, storage types, and operators. One
run-time suite called NULLSTONE6 contains tests for
C and C++ compiler optimizations; another test suite
called Bench++' has tests for C++ features such as vir-
tual function calls, exception handling, and abstraction
penalty (the Haney kernels test, the Stepanov bench-
mark, and the OOPACK benchmark".

Run-time benchmarks of real applicatio~is for the C
langlage include some of the SPEC tests that are closely
tracked by the DPD Performance Group. For C++, the
tests consist of the groffword processor processing a set
of documents, the EON ray tracuig beiich~iiark, the
Odbsi~ii-a database simulator from the Universit)l of
Colorado, and tests that call functions fiom a search
class library.

Acquiring and Maintaining Benchmarks
\Ve have established methods of acquiring, maintain-
ing, and updating benchmarks. Once the desirable
characteristics of the benchmarks have been identified,
usefill benchmarlcs may be obtained from several
sources, notably a standards organization such as
SPEC or a vendor such as Nullstone Corporation. The
public domain can provide benchmarks such as EON,
groff, and Bench++. The use of a public-domain
benchmark may require some level of porting to make
the bcnchmark usable on the test platform if the origi-
nal application was developed for use with a different
language dialect, e. g. , GNU'S gcc.

Sometimes, customers encounter perform~mce prob-
lems with a specific feature usage pattern not anticipated
by the compiler developers. Customers can provide
extracts of code that a vendor can use to reproduce
these performance problems. These code estracts can
form good benchmarks for use in fiiture testing to avoid
reoccilrrelice of tlie problem.

Application code such as extracts from the compiler
sources can be acquired from within the organization.
Code may also be obtained from other sohvare dcvel-
opment groups, e. g., the class library group, the
debugger group, and the operating system group.

If none of these sourccs can yield a benchmark ~ l i t l i
a desirable characteristic, then one may be written
solely to test the specific feature or combination.

In our tests of the DIGITAL C++ compiler, we
needed to use all tlie sources discussed above to obtain
C++ benchmarks that test the major features of the
language. The public-domain benchmarks sometimes
required a significant porting effort because of com-

patibility issues between different C++ dialects. We
also reviewed the results published by other C++ com-
piler vendors.

1Vaintaining a good set ofperformance mcasurerncnt
benchmarks is necessary for evolving languages such as
C and C++. New standards are being developed for
thesc languages, and staridards compatibility may make
some of a benchmark's features obsolctc. Updating tlie
database of benchmarks used in testing involves

Changing the source of existing benchmarks to
~ccomniodate system header and default belia\~ior
changes

Adding new belichmarks to thc set when new coni-
piles features and optimizations are implemented

Deleting outdated benchmarks that d o not scale
well to newer machines

In the following subsection, we discuss the frc-
quency of our performance measurement.

Measurement Frequency
When deciding hotv often to measure co~npilcr pcr-
tormance, \\re consider two major factors:

I t is costly to track do\vn a spccific pcrfol.ma11cc
regression amid a large number of changes. In fact,
it sometimes becomes more econoniicnl to address
a new opportunity instead.

111 spite of autoliiation, it is still costly to run a suite
of performance tests. 111 addition to tlic actual run
time and the evaluation time, and even with signifi-
cant efforts to filter ou t noise, the normal run-to-
run variability can show phantom rcgressions or
Improvements.

These considerations naturally lead to two obvious
approaches to test frequency:

Measuring at regular intervals. During active dc\.el-
opment, measuring at regular intcr\~als is the most
appropriate policy. It allo\vs pinpointing spccific
performance regressions most cheaply and permits
easy scheduling and cost management. The interval
selected depends 011 the amount of develop~iicnt
(number of developers and frequency of new code
check-ins) and the cost of the testing. In our tests,
the intervals have been as frequent as three days and
as infi-eqiient as 30 days.

Measuring on demand. Measurement IS perfomled
on demand when significant changes occur, for
csample, the delivery of a major new version of ;7
component or a new version of the operaong system
A hill performance test is warranted to establish '1

new baseline when a competitor's product is rclcnscd
or to ensure that a problem has been corrected.

Both strategies, ifiniplemented purely, haw problems.
Frequent liieasurcment can catch problems early but is

Vol. 10 No. 1 1998

resource intensive, whereas an on-demand strategy
may not catch problems early enough and may not
allow sufficient time to address discovered problems.
In retrospect, we discovered that the time devoted to
Inore frequent runs of existing tests could be better
used to develop new tests or analyze known results
more fully.

We concluded that a combination strategy is the best
approach. In our case all the performance tests are run
prior to product releases and aher major component
deliveries. Periodic testing is done during active devel-
opment periods. The measurements can be used for
analyzing existing problems, analyzing and comparing
performance with a competing product, and finding
new opportunities for performance improvement.

Managing Performance Measurement Results
Typically, the first time a new test or analysis method is
used, a few obvious improvement opportunities are
revealed that can be cheaply addressed. Long-term
improvement, however, can only be achieved by going
beyond this initial success and addressing the remain-
ing issues, which are either costly to irnple~nent or
which occur infrequently enough to make the effort
seem unworthy. This effort involves systematically
tracking the performance issues uncovered by the
analysis and judging the trends to decide which
improvement efforts are most worthwhile.

Our experience shows that rigorously traclung all
the performance issues resulting from tlie analyses
provides a long list of opportunities for improvement,
far more than can be addressed during tlie develop-
ment of a single release. I t thus became ob\!ious that,
to deploy our development resources most effectively,
we needed to devise a good prioritization scheme.

For each performance opportunity on our list, we
keep crude estimates of three criteria: usage frequency,
payoff from implementation, and difficulty of imple-
mentation. VVe then use the three criteria to divide die
space of performance issues into equivalence classes.
We define our criteria and estimates as follows:

Usage frequency. The usage frequency is said to be
c0171n~on if the langi~age feature or code pattern
appears in a Ixge fraction of source modules or
~~ncor~zmon if it appears in only a few modules.
\%'hen the language feature or code pattern appears
in most modules for a particular application domain
predominantly, the usage frequency is said to be
skewed. The classic example of skeziled usage is die
complex data type.

Payoff from implementation. Improvement in an
iniple~nentation is estimated as high, moderate, or
small. A /nigh improvement would be the elimina-
tion of the language construct (e.g., removal of
unnecessary constructors in C++) or a significant
fraction of their overhead (e.g., inlining small h n c -

tions). A rnocler~~te improvement would be a 10 to
50 percent increase in the speed of a language fea-
ture. A small improvement such as loop unrolling
is worthwhile because it is common.

Difficulty of implementation. We estimate tlie
resource cost for irnplenienting the suggested
optimization as difficult, straightforward, or easy.
Items are classified based on the complexity of
design issues, total code required, level of risk, or
number and size of testing requirements. An easy
improvement requires little up-front design and
no new prograrnlner or user interfaces, introduces
little breakage risk for existing code, and is typically
limited to a single compiler phase, even if it involves
a substantial amount of new code. A stmighfor-
ward improvement would typically require a sub-
stantial design component with multiple options
and a substantial amount of new coding and testing
but would introduce little risk. A dzfJiczilt improve-
ment would be one that introduces substantial risk
regardless of the design chosen, involves a new user
interface, or requires substantial new coordination
between components pro\tided by different groups.

For each candidate impro\tement on our list, we
assign a triple representing its priority, which is a
Cartesian product of the three components above:

Priority = (fl-equency) x (payoff) x (difficulty)

This classification scheme, though crude and subjec-
tive, provides a useful base for resource allocation.
Opportunities classified as common, high, and easy are
likely to provide the best resource use, whereas those
issues classified as uncommon, small, and difficult are
the least attractive. This scheme also allows manage-
ment to prioritize performance opportunities against
functional improvements when allocating resources
and schedule for a product release.

Further classification requires more judgment and
consideration of external forces such as usage trends,
hardware design trends, resource availability, and
expertise in a given code base. Issues classified as c o n -
nion and high but difficult are appropriate for a major
achievement of a given release, whereas an opportu-
nity that is unconinlon and moderate but easy might
be an appropriate task for a novice conipiler developer.

So-called "nonsense optimizations" are often con-
troversial. These are opportunities that are almost
nonexistent in human-written source code, for exam-
ple, extensive operations on constants. Ordinarily tliey
would be considered unattractive candidates; how-
ever, they can appear in hidden forms such as the result
of macro expansion or as the result of optimizations
performed by earlier phases. In addition, they often
have high per-use payoffand are easy to implement, so
it is ~~sua l ly worthwhile to implement new nonsense
optimizations when they are discovered.

Digital Technical Journal Vol. 10 No . 1 199s

MCinagemcnt control and resoul-cc '~llocation issues
can a r m \vhcn common, Ih~gh, or cdsp opportunities
involve sohvarc owned b\l groups not i111der tlie
direct control of the comp~ler developers, such as
headers or libraries.

Tools and Methodology

We begin this section with a discussion ofperfor~nance
evaluation tools and their application to problems. We
then briefly present the results of three case studies.

Tools and Their Application to Problems
Tools for performance evaluation are used for either
measurement or analysis. Tools for measurement are
designed mainly for accurate, absolute timing. Low
overhead, reproducibility, and stability are more
important than high resolution. Measurement tools
are primarily used in regression testing to identify the
existence of new performance problems. Tools for
analysis, on the other hand, are used to isolate the
source code responsible for the problem. High, rela-
tive accuracy is more important than low overhead o r
stability here. Analysis tools tend to be intrusjve: they
add instrumentation to either tlie sources o r tlie ese-
cutable image in s o ~ i ~ c manncl-, so that enough infor-
mation about tlic cxeci~tion can be captured to
providc a dctailcd profilc.

\Ve have constructed adequate automated measure-
ment tools using scripts layered over standard operating
s!rsteni timing packages. For compile-ti~ne measure-
ment, a driver ~.e,tds tlie compile com~nands kern a file
and, after compiling the source the specified number
of times, writes tlic resulting timings to a file. Post-
processing scripts c\~aluatc the usability of the results
(average tinies, deviations, and filc sizes) and compare
the new results against a set of rcfcre~lcc results. For
compile-time measurernent, the defai~lt, debug, and
optimize compilation modes are all tested, as previ-
ously discussed.

These sum~narized r e s~~ l t s indicate if the test version
has suffered performance regressions, tlie magnitude
of these regressions, and which benchmark source is
exhibiting a I-egression. Analysis of the problem can
then begin.

Tlie tools we use for compile-speed and run-time
analysis are considerably more sophisticatcd than the
measurement tools. They are generally provided by
the CPU design o r operating system tools develop-
ment groups and are widely used for application tun-
ing as well as compiler improvements. We have used
the following compile-speed analysis tools:

Tlie conipiler's internal -show statistics feature
gives a crude measure of the time required for each
compiler phase.

Vol. 10 No. 1 1998

The gprof and hiprof tools arc s~~pp l i ed in the
development suites for DI(;ITAL UNIX. Both
operate by building an instruniented \.ersion of the
test sohvare (the compiler itself in our case). The
gprof tool \\forks with the compiler, the linker, and
the loader; it is available from se\rcral UNIX vcn-
dors. Hiprof is an Atoni tool" " a\rail'~ble only on
D I G I T U UNIS; it docs not rccluil-e co~npiler or
linker support.

The bench~ilark eshibiting the pcrfornmance prob-
lem can then be co~upiled \\fit11 the profiling version
of the compiler, and the compilation profile can be
captured. Using the display facilities of the tool, we
can analyze the relevant portions of the execution
profile. We can then compare this profilc with that
of the reference version to localize the problem to a
specific area of compiler source. Once this informa-
tion is available, a specific edit can be identified as
tlie cause and a solution can be identified and
implemented. Another round of measurement is
needed to verify the repair is effective, similar to tlie
procedure for addressing a hnctional regression.

When the problem needs to be pinpointed lnorc
accurately than is possible with these profiling
tools, we use the IPROBE tool, which can provide
instruction-by-instruction details about the csccu-
tion of a function."

We have used the followi~lg tools or processes for
run-time analysis:

PVe apply hiprof and gprof in combination, and
the Il'ROBE tool as described above, to thc
run-tirne behavior of the test program rather than
to its compilation.

PVe analyze the NU1,LSTONE results by examining
the detailed log file. This log idc~ltitics the proble~ii
and the macline code gcncratcd. ?'his 'lnalysis is usu-
ally adequate suice the tests arc generally quite simple.

If more detailed analysis is nccdcd, e.g., to pin-
point cache misses, we use the highly detailed
results generated by the L3jgitnl C o n t i n u o ~ ~ s
Profiling Infrastructure (DCPI) tool.",' 1 X P I can

'lor o n an display detailed (average) hard\varc beha\.
instruction-by-instruction basis. Any scheduling
problems that [nay be responsible for Freque~lt
cache misses can be identified from the DCPI out-
put, whereas they may not always be obvious fro111
casually observing the rnachine code.

Finally, we use the cstirnated schedule dump and
statistical data optionally generated by the GEM
back end.' This dump tells us how instructions are
scheduled and issued based on the processor archi-
tecture selected. I t may also provide information
about ways to impl-o\,e the schedule.

In the rest of this section, we discuss three examples
of applying analysis tools to problems identified by the
performance measurement scripts.

Compile-Time Test Case
Compile-time regression occurred after a new opti-
mization called base components was added to the
GEM back end to improve the r~m-t ime performance
ofstructure references. Table 1 gives compile-time test
results that compare the ratios of compile times using
the new optimized back end to those obtained with
the older back end. The results for the iostream test
indicate a significant degradation of 25 percent in the
compile speed for optimize mode, whereas the perfor-
mance in the other two modes is unchanged.

To analyze this problem, we built hiprof versions of
the two compilers and compiled the iostream bench-
mark to obtain its compilation profile. Figures l a and
l b show the top contributions in the flat hiprof pro-
files from the two compilers. These profiles indicate
that the number ofcalls made to cse and gem-il-peep
in the new version is greater tha i that of the old one
and that these calls are responsible for performance
degradation. Figures 2a and 2 b show the call graph
profiles for cse for the two compilers and show the calls
made by cse and the contributions ofeach component

called by cse. Since these components are included in
the GEM back end, the problem was fixed there.

Run-Time Test Cases
For the run-time analysis, we used two different test
environments, the Haney lternels benchmark and the
NULLSTONE test run against gcc.

Haney Kernels The Haney kernels benchmark is a
synthetic test written to examine the performance of
specific C++ language features. In this run-time test
case, an older C++ compiler (version 5.5) was com-
pared with a new compiler under developn~ent (version
6.0). The Haney lternels results showed that the ver-
sion 6.0 development compiler experienced an overall
performance regression of 4 0 percent. We isolated the
problem to the real matrix ~nultiplication function.
Figure 3 sl~ows the execution profile for this function.

We then used the DCPI tool to analyze perfor-
mance of the inner loop instructions exercised on ver-
sion 6.0 and version 5 .5 of the C++ compiler. The
resulting counts in Figures 4a and 4 b show that the
version 6.0 development compiler suffered a code
scheduling regression. The leftmost column shows the
average cycle counts for each instruction executed.
The reason for this regression proved to be that a test

Table 1
Ratios of CPU (User and System) Compile Times (Seconds) of the New Compiler t o Those of the Old Compiler

File Name Debug Mode Default Mode Optimize Mode

Options -00 -g -04 -go

a1 amch2
collevol
d-inh
e-rvirt-yes
interfaceparticle
iostream
pistream
t202
t300
t601
t606
t643
testLcomplex-except1
test-complex-math
test-demo
test-generic
test-task-queue6
test-task-rand I
test-vector
vectorf

Averages

Digital Technical Journal Vol. 10 No. 1 1998 41

granularity: cyclesr unlts: seconds; total: 48.96 seconds

% cumulative self self total
t i m e ssconda seconds calls ms/call m s Jcall name
2.8 1.37 1.37 15195 0.13 0.13 cse [I21
2.6 2.66 1.29 219607 0.01 0.01 gent-ilqeep [311
2.6 3.93 1.27 515566 0.00 0.00 gem-fi-ud-acces~-resource [67]
2.4 5.09 1.17 401891 0.00 0.00 gem-met-= I371
2.3 6.23 1.14 713176 0. 00 0.00 -0tsZero 17.51

(a) Hiprof Profile Showing Instructions Executed with the New Compiler

granularity: cycles; units: seconds; total: 27.49 seconds

& cumulative self self total
time seconds secon- calls ms/call ms/call name
3.0 0.83 0.83 143483 0.01 0 . 0 1 s ~ L ~ U - P [Qo]
2 . 7 1.58 0.75 614350 0.00 0.00 -0tsZero 1641
2 . 5 2 . 2 6 0.63 8664 0.08 0.08 cae [I61
1 . 7 2-71 0 . 4 5 465634 0.00 0.00 gecfi-ud-access-resource 1861
I. 6 3.14 0,43 423144 0.00 0.00 g w - m g a t j l z [36)

(b) Hiprof Profde Showing Instructions Executed with the Old Compiler

Figure 1
Hiprof l'rof les of Co~npilers

for pointer disambiguation outside tlie loop code was
not performed properly in the version 6.0 compiler.
The test would have ensured that the pointers a and t
were not overlappilig.

We traced the origin of this regression back t o the
intermediate code generated by tlie two compilers.
Here we found that the version 6.0 compiler used a
more modern form of array address computatio~i in
the intermediate language for which the scheduler had
not yct bcen tuned properly. The problem was fixed in
the scheduler, and the regression was eliminated.

Initial NULLSTONE Test Run against gcc We measured
the performance of the DEC C compiler in compiling
the NULLSTONE tests and repeated the performance
mcasurcment of the gcc 2.7.2 compiler and libraries
on the same tests. Figures Sa and 5b show the results
of our tests. This comparison is of interest because gcc
is in the public domain and is widely used, being the
primary compiler available on the public-domai~i
Linus operating system. Figure Sa sho\\s the tests in
which thc DEC C compiler performs at least 10 per-
cent better than gcc. Figure Sb i~idicates the optimiza-

cse T12J
tes t-for-cse [42 1
update-operands I921
test-for-induction t97T
g=df>ve 11361
puskeffect [I49 1

(a) Hierarchical Profile for cse with the New Compiler

cse [I61
tes t-for-cse E 561
test-for-induction 1 104]
update-operands 11061
move 12151
-effect 12671

(b) Hierarchical Profile for cse with the Old Compiler

Figure 2
Hierarchical Call Graph Profiles for cse

42 Digital Techn~cal J o u r ~ i a l Vol. 10 No. 1 1998

void rmatMuLHC (Real * t ,
const Real * a,
conet Real * b.
const int M, consr int N, const int KI

{
i n t i , j, k;
Real t a m ;

for (j = 1; j c= N; j++)
t
far (k = 1; k c= R; kt+)

(
t e m p = b [k - 1 + K f (j -111;

i f [t e q != 0.0)
{
for (i = 1; i C= H; i++l
t [i - 1 t M * (j - 111 t=

temp a t i - 1 t M * (k - 111;
1

Figure 3
Haney Loop for Real Matrix Multiplication

tion tcsts in which the DEC C compiler shows 10 per-
cent or more rrgression compared to gcc.

We investigated the indvidual regressions by look-
ing at the detailed log of the run and then examining
the machine code generated for those test cases. 111 dus
case, tlie alias optimization portion showed that the
rcgressjons were caused by the use of an outmoded
standard12s the dcfault language dialcct (-s tdo) for
DEC C in the DIGITAL UNIX environment. After we
retested with the -an&-alias option, these regres-
sions disappeared.

We also investigated and fixed rcgrcssions in
instruction combining and if optimizations. Other
regressions, which were too difficult t o fix within the
existing schedule for the current releasc, were added
to tlie issucs list with appropriate priorities.

Conclusions

The measurement and analysis of compiler performulce
has become an irnporta~lt alid demanding field. The
increasing co~nplexity of CPU architectures and the
addtion ofnew features to languages require the devcl-
opmcnt and implementation of new suategics for test-
ing thc performance of C and C++ compilers. By
en1plo)~ing enhanced measurement and analysis tech-
nicliies, tools, and benchmarks, we \\,err able to address
these challenges. Our systematic framework for com-
piler performance measurement, analysis, and prioriti-
zation of impro\lernent opportunities should serve as an
escellc~lt starting point for the practitioner in a situation
in which similar requirements are imposed.

References and Notes

1. D. Blickstein et al., "The GEM Optinlizing Compiler
System," Dilqitul 7i~ch11icuI . / O / ~ ~ I I C / / , 4, 110. 4
(Special issue, 1992): 121-136.

2. B. Calder, D. Grunn.ald, and B. Zorn, "Qi~antitjing
Behavioral Differences Between C and C++ Programs,"
JOLLI*IZGI~ Of ~ ' l 1 O ~ & J ~ 1 ~ 7 l) 7 ~ l l ~ L C I I ~ ~ ~ L I C I & S , 2 (1994):
313-351.

3. D. Detlefs, A. Dosser, and B. Zorn, "Memory Alloca-
tion Costs in Large C and C++ Programs," SoJizt*urc.
Praclice ar7d bAperierlce, vol. 24, no. 6 (1994):
527-542.

4. P. Wu and F. Wang, "On the Efficiency and Optimiza-
tion of C++ Programs," S$tocrr-e Przlctice atrd Eyper-i-
ence. vol. 26, no. 4 (1996): 453-465.

5. A. Itzko\vitz and L. Foltan, "Automatic Templntc
Instmtiation in DIGITAL C++," Digital Technical
jo~~rrzal, vol. 10, no. 1 (this issue, 1998): 22-3 1.

6 . NULLSTONE Optimization Categories, URL:
http://www.nullsto~~e.coni/htmls/category.htni,
N~~llstoiie Corporation, 1990-1998.

7. J . Orost, "The 13ench++ Benchmark Suite," December
12, 1995. A drati paper is available at http://\\r\\l\\.
.re~earch.a~.c~m/-~rost/bench_pl~~s~plus/paper.hd.

8. C++ Benchmarks, Comparing Compiler Perfornia~icc,
URL: hrtp://\~?v\\,.kai.com/indes.litinl, ICuck and
Associates, Inc. (KAI), 1998.

9 . ATOM: ZJser ~Mc~r~~ruI (Maynard, mass.: Digital Equip-
ment Corporation, 1995).

10. A. Eustnce and A. Sri\,nstava, "ATOM: A Flexiblc
Interface for Building High Performance Program
Analysis Tools," Western Rcscarch Lab Tcchnical Notc
TN-44, Digital Equipment Corporation, July 1994.

11. A. Etistnce, "Us~ng Atom in Computer Architecture
Teaching and Kcscnrch," Corvpirter Arclnltectirr.c~
Tech~zrcal Cvrrrrriir/ee ~\lc~uslr.//er. IEEE Compilter
Society, Spring 1995: 28-35.

12. J. Anderson et al., "Continuous Profiling: Where Have
All the Cycles Gone?" SRC Tcchnical Note 1997-016,
Digital Eqiiiplnent Corporation, July 1997; also in
AC1V.I Tr~~nsuctiort.~ orr Cbrnpllter Syslern.~. 15, no.
4 (1997): 357-390.

13. J. Dean, J . Hicks, C. Waldspurger, W. We~hl, and G.
Chrysos, "ProfileMe: Hnrdw.ue Support for Instruct~on-
Le\fcl Prof l~ng on Out-of Order Processors," 30th Syni-
posium on Microarchitecture (Micro-30), Raleigh, N.C.,
December 1997.

14. G~ride fo IPl~OUt., Irrstrrllir~g cord f3iirg (Mny~lard,
h/Iass.: l>igital Eq~iip~nent Corporation, 1994).

15. B. Kerninghan and D. Richie, %e C PI-ograrnr?tirrg
La17gl1nge (Englewood Cliffs, N.J.: Prentice-Hall,
1978).

Vol. 10 No. 1 1998 43 Digital Tcctch~licnl Journal

Ids
Id1
lds
muls
bis
addl
1Ba
w l e
Ma
adda
sts
1Bs
Ids
muls
at$%
S ~ D

Ids
Ida
mula
adds
8f S
Ids
Ids
w s
a&
St8

$El. O f t 6)
zero, 128 (t61
$£lo. O(t5)
SfO,$fl,$fl
zero, t S , a2
t4, 0x4, t4
tS, 164t5)
t4, t7, a4
t6, 16(t6)
Sf10 t,, Sfl , Sf 1
$£l, - M (t 5)
$fll, -12(t6)
$5121 -12 (t5)
SfO.Sfll.Sfl1

(a) DCPI Profile for This Execution with Version 6.0

1us
addl
Ids
mp1e
l&
mule
Ida
a s
BtS
Ida
Ids
la5
mula
Laa

3174 Ox120019510 0:580dlO4d muls $fO,$f13,$f13
0 OxTZ0019514 0:daOBfffc Ids $f16, -41tS)

6791 Ox120019518 0: 59cblBOb adds $flQ, SfP1. Sf11
3168 0x12001951~ Or59ec100c adds Sf15, $332, $ f l 2
30&6 Ox120019520 0:5a8d100d adds $f16,Sf13,$E13
6258 Qxl20019524 0: 9956f ff4 $ts $f11, -12 (t5)
3154 0xl20019528 0:998hfff8 sts gfl2, -8(t5)
3200 0x12001952~ 0:99a6fffc sts Sf13, -41t5)
3168 0x120019530 0:£69fffe7 bne a4, Ox120019460

(b) DCPI Profile with Counts with Version 5.5

Figure 4
DCPI P~.ofiles of the Inncr Loop

44 Digital Technical Jou~.n.~l Vol. 10 No. 1 199s

~ = - = ~ t ~ t ~ ~ ~ ~ n ~ = ~ n ~ ~ . = ~ ~ ~ j = ~ ~ ~ ~ ~ . ~ t t m m ~ = - = ~ ~ ~ e a r n n s . i ~ - s - * r s e r r = ~ n = - - r a p - - ~ r r r n n

I iNUUTWE GUMWStY PgRMRWNCE REGRBSSIQN REPORT I
I Mullrrt~ne Release 3.9U I
+--+----

I Threshold: W l s t o n e mtio Decreased by a t least 10% I
*------------------+----'--------------------------+-----------------------------+

I I 3aselinr Cot@lLet I Ilomparispn Compiler I
---e---------'----+I-----------------,---------+----------------------------+

I Coinpila I K C 2 . 7 . 2 1 DEC Alpha C 5.7-123 W36 1
I 1 I no restrict I
I Architecture I DEC Alpha I DIE Alpha I
I Model 1 3000/300 1 3000/300 I
------------------+----------------------------------------------------------+
I Optimization I Sample Size I Regressions I
+-----------'---+----"---------------------------+-----+--------+--------A-----+

I Alias pgtimiaatfon (by type) I 102 tests I 64 tests I
I Alias CptfmizatLon (cast-qualiffedl I 11 tests I 9 tests I
I Alias Optimization {by a&lreesl I 52 tests I 7 t w f s I
I Instruction Comhinjng 1 2510 teats I 2Q4 tests t
I Constant Progagation t I 5 tests I 1 tests I
I CSe Elimbati~ri I 2600 tests I 32 t a t s I
I Integer Divide Optimization I 92 tests I 32 tesee I
I Gxgreesion Smplification I 181, tests I 34 teats I
I If Optimization I 69 tests I 14 tests I
I Hoisting I 3 8 teats I 4 tests I
I Unswitching I 2 tests I 1 tests t
I zntwer MoBulue Opthisakion I 92 teks I 40 tests 1
I Integer Multiply Ogtimization I B9 testa I 93 te6tbs t
I Puinter Ogtimizatzerm 1 15 tmts I 1 - to I
I T a u Recwaion I 4 tests I 2 tests I
I Narrowing I 3 tests I 2 teats I
+-'-'----------"-'+---------'---------------------+-----------------------------+

I Tatal Performance Regressiorm z- 10% 1 6499 teats 1 542 tests I
P + = = * I ~ = = I ~ ~ = = ~ = ~ P E ~ ~ ~ = - ~ = ~ = ~ ~ = = = = ~ ~ ~ E = = i l ~ = ~ ~ = ~ a a = = = = ~ ~ ~ = ~ ~ u ~ ~ ~ ~ ~ a a ~ = ~ ~ ~ r =

Figure 5b
NULLS'TONE RCSLII~S <:onlparillg gcc \\lith DEC C Compiler, Showing ,411 Regressions of 10% or W r s c

Biographies

Hemant G. Kot i t l~or
Hemant Rotithor recei\lcd R. S., M. S., and PI1.D. degrees
in electrical engi~~ccring i l l 1979, 1981, and 1989, respec-
tivcly. H e \\,orlied 011 C and C++ colrlpiler performance
issues in the Core Tcch~~ology Group at Digital Equipment
Corporation for three years. Prior t o that, hc was 311 .ISS~S-

tam: profcccor at Worcester Polyrechllic Institute and a
dcvelopmc~it cnginccr ,lt Philips. Hcmant is a membcl-
of the program commirtec oFThr 10th Illtcrnational
Conference on l'arallel and Distributccl Computing ~ n d
Systc~~is (1'DCS '98). He is a scnior membcr of the IEEE
and a meniber of Eta IOppa Nu, Tau Beta Pi, uid Sigma
Xi. His interests include computer architecture, perfor-
mance analvsis, digital design, and networking. Hcniant
is currently employed at Intel Corporation.

46 Digital Technical Journal Vol. 10 No. 1 1998

Kevin W. Harr is
I<e,in Harris is a consulting sohvarc engineer at Cornpaq,
currently \vorking in the DEC C and C++ L>e\'clopment
Group. He has 2 1 years of cxpericr~cc working on high-
performance conlpiless, optimization, and par~llel pro-
cessing. I<evin graduated Phi R c ~ a Kappa in ~~iathernatics
from the U~iivcrsity of Maryland and joined Digital
Equipment Corporati011 akcr earning an M.S. i l l computer
science from the Pennsylvanin State Uni\,cnity. Hc has
made major contributious to the DIGITAL Fortran, <:,
and (:++ product hmilics. Hc holds p.lLcnts k)r techniq~~cs
for exploiting performance ofshnrcd memory ~n~~lt iproccs-
sors and register allocntion. Hc i c-~~rrcnrl!) rcspo~lsiblc fol-
performance issues in the DEC; C a~td l>IC;I'Tt\L C++
product hmilies. H e is jntercsted i l l CI'U archircct~~rc,
compiler design, large- and small-scalc p.~mllel is~~~ and its
exploitation, and sohvare quality issues.

Mark W. Davis
Mark Davis is a senior consulting engineer in the Core
Technology Group at Compaq. H e is a member of Compaq's
GEM Compiler Back End team, focusing 011 performance
issues. H e also chairs the DIGITAL Unix Calling Standard
Committee. H e joined Digital Equipment Corporation in
1991 after working as Director of Compilers at Stardent
Computer Corporation. Mark graduated Phi Beta Kappa in
mathematics from Amherst College and earned a Ph. D. in
computer science from Hanard University. H e is co-inventor
on a pending patent concerning 64-bit software on
OpenVMS.

Digital Technical Journal Vol. 10 No. 1 1998 47

Alias Analysis in the
DEC C and DIGITAL C++
Compilers

During alias analysis, the DEC C and DIGITAL C++
compilers use source-level type information to
improve the quality of code generated. Without
the use of type information, the compilers
would have to assume that any assignment
through a pointer expression could modify any
pointer-aliased object. In contrast, through the
use of type information, the compilers can
assume that such an assignment can modify
only those objects whose type matches that
referenced by the pointer.

I
August G . Reinig

When two o r more address expressions reference the
same memory location, these address esprcssions are
aliases for each other. A compiler performs alias analy-
sis to detect which address expressions d o not refer-
ence the same melnory locations. Good alias analysis is
essential to the generation of efficient code. Code
motion out ofloops, comlnon subespressio~i elirnina-
tion, allocation of variables to registers, and detection
ofuninitialized variables all depend upon thc compiler
kcnowi~ig which objects a load or a store operation
could reference.

Address expressions Jnay be symbol expressions
or pointer expressions. In the C and C++ languages,
a compiler always knows \\/hat object a symbol expres-
sion references. The samc is not true with pointer
expressions. Determining which objects a pointer
expression map reference is an ongoing topic of
research.

Most of the research in this area focuses o n the use
of techniques that track which object a pointer cxpres-
sion might point to.'.2 When thesc techniques cannot
make this determination, they assume that the pointer
expression points to any object whose address has
been taken. Thesc techniques generally ignorc the
type information a\railable to the source program. The
best techniques pcrform interprocedural analysis to
improve their accuracy. Although effective, the cost of
analyzing a complcte program can make this analysis
impractical.

In contrast, the DEC C and DIGITAL C++ cornpil-
ers use high-level type information as they perform
ahas ,analysis on 3 routine-by-routine basis. Li~iudllg ahas
analysis to within a routine rcduces its cost, albeit at
the cost of reducing its effectiveness.

The use of this type information results in slight
iniprovements in the performance of some standard-
conforming C and C++ programs. These imp-ovc-
melits come at little expense in terms of compilation
time. There is, ho\vever, a risk that the use of this type
information on nonstandard-co~iformil~g C or C++
programs may result in the compiler producing code
that exhibits ~~nespected behavior.

45 Iligitnl Technical Jour~val Vol. 10 No. 1 1998

The C and C++ Type Systems

Research available on the use of type information dur-
ing alias analysis involves languages other than C and
C++.' Traditionally, C is a weakly typed language. A
pointer that references one type may actually point to
an objcct of a different type. For this reason, most
alias-analysis techniques ignore type information when
analyzing programs written in C.

The IS0 Standard for C defines a much stronger
typing system." In I S 0 Standard C, a pointer expres-
sion can access an object 017ly if the type referenced by
the pointer meets the follo\ving criteria:

I t is compatible with the type of the object, ignor-
ing type qualifiers and signedness.

I t is compatible with the type of a member of an
aggregate or union or submembers thcrcof, jgnor-
ing type qualifiers and signedness.

I t is the char type.

Thus, in Figure 1, the pointer p can point to A, B,
C, or S (through S.sub.m) but not to T or F. The
pointrr q, being a pointer to char, can refer to any of
A, B, C, S, T, or F.

The proposed I S 0 Standard for C++ defines a simi-
lar typing system for C++.' The strength of the
Standard C and C++ type systems allows the DEC C
and 13IGITAL C++ compilers to use type information
during alias analysis.

Many existing C applications d o not conform to the
Standard C typing rules. They use cast expressions to
circumvent the Standard C type system. To support
these applications, the DEC C compiler has a mode
whereby it ignores type information during alias analy-
sis. The DIGITAL C++ compiler also has such a mode.
This mode exists to support those C++ programmers
who circumvellt the C++ type system.

int A;
signed int const B;
unsigned int volatile C;
struct (

s t r u c t (

int m;
1 sub;

1 s;
struct {

short z;
1 T;
float F:

int *p;
char *q;

Figure 1
Code Fragment Associated with the Explanation of the
Standard C Aliasing Rilles

The Side-eff ects Package

The DEC C and DIGITAL C++ compilers are GEM
 compiler^.^ The GEM compiler system includes a
hghly optimizing back end. This back end uses the
GEM data access model to determine whic.h objects a
load or a store may access. GEM compiler front ends
augment the GEM data access model with a side-
effects package, i.e., an alias-analysis package. The
side-effects package provides the GEM optimizer
additional information about loads and stores using
language-specific infor~nation otherwise 1111available
to the GEM optimizer.

The DEC C and DIGITAL C++ con~pilers share a
common side-effects package. The DEC C and C++
side-effects package

Determines which symbols, types, and parts thereof
a routine references

Determines the possible side effects of these references

Answers queries fi-om the GEM optin~izer regarding
the effects and dependencies of memory accesses

Preserving Memory Reference Information
The DEC C and DIGITAL C++ front ends perform
lexical analysis and parsing of the source program,
generating a GEM intermediate language (GEM IL)
graph representation of tlie source program." trrpkc~
is a node in the GEM IL and represents an operation in
the source program.

As the DEC C and DIGITAL C++ fi-ont ends gener-
ate GEM IL, they annotate each fetch (read) and store
(write) tuple wit11 information dcscribing the object
being read or writtcn, T l ~ c front ends annotate fctches
and stores of symbols with information about the spm-
bol. They annotate fetches ,and stores du-ough pointers
with information about the type the pouiter references.
The annotation information includes information
dcscribing exactl)~ which bytes of the symbol or type
the tuple accesses. This allows the side-effects package
to differentiate between access to nvo different mem-
bers of a structure.

Arrays Neither the DEC C nor the DIGITAL C++
front end differentiates between accesses to different
elements of an array. 130th assume that all array accesses
are to the first element of the array. The GEM optimizer
does extensive analysis of array references.' Being flow
insensitive, the DEC C and C++ side-effects pacltage
can, at best, differentiate between two array references
that both use constant indices. The GElM optimizer can
d o much more.

What the GEM optimizer cannot do, however, is
determine that an assignment through a pointer to an
int does not change any value in an array of doubles.
This is the purpose of the DEC C and C++ side-effkcts
package. Mapping all array accesses to access the first

Digital Technical Journal Vol. 10 No. 1 1998 47

element of an array does not hinder this purpose and
simplifies alias analysis ofarrays.

Tuple Annotation Example For the propam fragment
in Figure 2, the DEC C and DIGITAL C++ front ends
generutc the annotated tuples displayed in Table 1.

lntraprocedural Effects Analysis
Tlie GEM optimizer makes several optimization passes
over a routine. During each optimization pass, tlie
DEC C and C++ side-efkcts package provides alias
analysis information to the GEM optimizer by means
of the following procedures:

E x a m ~ n ~ n g each tuple m t h ~ n the routi~ic that rcfer-
cnccs (rcads or writes) Incmory, allocating effects
c l aws that represent the memory tliat tlie tuple
references

Performing type-based alias analysis

Responding to alias-analysis queries from the GEM
optimizer

To dctermi~ie the possible side effects of a memory
access, the side-effects package partitions liielnory into
effects classes. An effects class represents all o r part of

S t l % E t S
i n t X I

int p;
1 vl, v2;
i n t i;
double d[31;
stmct S *p;

g->x - 33:
vl*y = 3;
v2 = vl;
d[il = 6101;

Figure 2
Code Fragment Associated with Tuple h~no ta t io~ l
Exa~nplc

an object. To nii~iirnize tlie number of effects classes
under consideration, the side-effects pacltage creates
effects classes for only those object regions referenced
wid in the current routine.

Having created effects classes h r each referenced
object region within tlie current routine, the side-
effects pacltage then associates a signature with each
effects class. The signature for an effects class records
the possible side effccts of referencing the effects class.
Tlie side-effects packagc uses this signature to respond
to queries from the GEM optimizer about the effects
and dependencies of tuples and symbols within the
current routine.

Allocating Effects Classes There are hvo kinds of
effects classes. The first Iund rcprcsents a region of an
individual object. The second lund represents a region
of all allocated objects of a particular type. Allocated
objects are those created by the malloc () fi~nction
and its relatives or the C++ new operator.

As it processes the t ~ ~ p l e s within a routine, the side-
effects pacltagc csa~ni~lcs the memory reference infor-
mation associated ~ f i t l i the tuple. The side-effects
package creates all effects class for each different set of
lne~nory reference information it encounters. Two sets
of memory reference information are different if they
contain different start- o r end-offset informati011 or
different symbol information.

Two sets of mcniory reference information tl iat
contain different type information are different only if
the t\vo types are not cffccts equivalent. 'live types arc
effects equivalent if they differ only in their signedness
or thcir type qualifiers. The signed int type and the
volatile unsigned int type are effects equivalent. An
assignment through a pointer to a signed int may
change tlic \raluc of a volatile ~~ns igned int.

Typically, an cffects class rcpreselits a complete
object or an indisidual member of a structure. An
effects class Inay represent a subregion of the r egon
represented by another effects class. This occurs when-
ever code references a whole structure as well as indi-
vidual members of the structure. In the case of unions,

Table 1
Tuple Annotations

C/C++ Source Annotation Annotation
Expression Tuple Symbol TY pe Start Byte End Byte

Fetch p P struct 5 * 0 7
Store p->x

Store vl .y

Fetch vl
Store v2

Fetch d[Ol

none
vl

struct 5
struct S

struct S

struct S
double

Fetch i d[il = d[Ol I int 0 3
Store d[i] d double 0 7

50 i)igit;ll 'l'cchnic.~l Journal Vol. 10 No. 1 1998

if nvo members occup!l exactly the same nicmory loca-
tions, a single effects class represents both members.

For the program fragment in Figure 3, the side-
effects package creates the effects classes displayed in
Table 2.

Therc is only one effects class for *uip and *ip since
uip and ip]nay point to the same object. Thcre are no
effects classes for bytes 0 throi~gh 3 of s and struct S as
there arc no references t o s.x or sp->s. By allocating
effects classes for only those object regions referenced
within thc routine, the side-effects pacltage greatly
reduccs both the number of effects classes and the
time rcquired to perform alias analysis.

In the traditional C type system, a pointer expres-
sion may point to anything, regardless of type. To rep-
rcselit this, the side-effects package creates exactly one
effects class to represent allocated objects. I t ignores
thc type and the start- and end-offset information.

s truct s (
i n t x;
struct T (

i n t y;
f loat z ;

t t;
1 a:
stl-uct S *sp;
aigned i n t *ip;
unsigned int *uip:
f loat *fp;

'uip = 'ip;
*fg = 2 ;
sp-rt = s . t ;
sp->t.y = 2 ;
s - *sp;

Figure 3
Code Fragment Associated with Allocating Effects Classes

Using the traditional C type system, for the program
fragment sho\;\ln in Figure 3, the side-effects package
creates the effects classes displayed in Table 3. Here,
effects class 7 replaces effects classes 7 through 11 in
Table 2. All thc differe~~tiation by types disappears.

Effects-class Signatures Having created the effects
classes, the side-effccts package associates a signature
with each effects class. In addition, it associates an
effects-class signature with each tuple within the rou-
tine and each symbol referenced within the routine.

An effects-class signature records the possible side
effects of referencing an effects class. A reference to
one effects class may reference another effects class.
The effects class for a load through a pointer to an int
indicates that the load references an allocated int
object. The pointer to all int may actually reference a
pointer-aliased int symbol or an int member o fa struc-
ture or union.

An effects-class signature is a subset of all the effects
classes that might be referenced by a tuple. There is
only one requirement for an effects-class signature: If
two tuples may refer to the same part of memory, the
intersection of their respective effects-class s ignat~~res
must be non-null. If t\vo tuples cannot refer to the
same part of memory, it is desirable that the intersec-
tion of their effects-class signatures is null. An empty
interscction leads to more optimization opportunities.

The most ob\~ious rule for building an effects-class
signati~re is to include in it all the effects classes that
might be touched by a reference to the effects class.
This leads to suboptimal code in cases such as that
shown in Figure 4.

Therc are threc effects classes for this code, s<0,3>,
s<4,7>, and s<0,7>, generated by references to s.s, s.y,
and s, respectively. If the effects-class signature for
s<0,3> includes both s<0,3> and s<0,7> and the
effects-class signature for s<4,7> includes both s<4,7>
and s<0,7>, then the intersection of these nvo effects-

Table 2
Effects Classes Using the Standard C Type Rules

Type or Source Generating
Effects Class Symbol Start Offset End Offset Effects Class

1 s 0 11 s

2 S 4 11 s.t

3 SP 0 7 SP
4 fp 0 7 fp
5 i P 0 7 i P
6 uip 0 7 ui p
7 struct S 0 11 *SP
8 struct S 4 11 sp->t
9 struct S 4 7 sp->t.y

10 float 0 3 *fp
11 int 0 3 *uip and *ip

Digital Technical Journal

Table 3
Effects Classes Using the Traditional C Type Rules

Effects Class Type or Symbol Start Offset End Offset Source Generating Effects Class

s
s

s P
f p
ip
uip
char 0 1 *sp, sp->t, *uip, sp->t.y, *fp, *ip

class signatures is non-null. This falsely indicates that
s.x and s.y may refer to the same memory location. This
forces GEM to generate code that stores s.y after stor-
ing to S.X.

The DEC C and C++ side-effects package uses more
effective rules for building efkcts-class signatures. These
rules offer Inore optimization opportunities while pre-
serving necessary dependency information.

Effects-class Signatures for Symbols If an cffects class
represents a region A ofa symbol, its signature includes
itself. Its signature also includes all effects classes repre-
senting regions of the symbol wholly contained within
A. Finally, it includes any effects class representing a
region of the symbol that partially overlaps A. I t does
not i~lcludc effects classes representing regions of the
symbol that d o not overlap A or that wholly contain A.

Table 4 gives the symbol effects-class signatures for
the three effects classes under discussion.

The inclusion ofsubregions in an effects-class signa-
ture means that refcrcnces to symbols interfere with
references to members therein and vice versa. Excluding
super-regions in an effects-class signature means that

struct S {

inc x;
i n t y ;

} 3;

s . x = . . . ;
s . y = . . . ;
return s ;

Figure 4
Example of Problematic Codc for the Na'ive Rule for
Building Effects-class Signatures

Table 4
Symbol Effects-class Signatures

Effects Class Effects-class Signature

52 Dipitdl Technical Journal 1'01. 10 No. 1 1998

references to two separate ~ n e ~ n b c r s of 3. sy~nbol d o
not interfere with each other. In Table 4, the effects-
class signatures for s<0,3> and s<4,7> do not interfere
with each other. Both signatures interfere with the
effects-class signature for sc0,7>.

The inclusion of effects classes rcprcscnting partially
overlapping regions of a symbol allows for the correct
representation of the side effects of referencing sub-
members of complex unions.

Effects-class Signatures for Types If an etkcts class
represents a region of a type, the contcnts of its signa-
ture depends upon the type. If the type is the char type,
the effects-class signature contains all thc effects classes
representing regions of other types o r pointer-aliased
symbols. This retlects the C and C++ type rules, which
state that a pointer to a char can point to anything.

If the type is some type T other than char, the cffects-
class signature contains efkcts classes representing:

Those regions of T that overlap thc region o f T the
effects class represents, using the same overlap rules
as for symbols

Any rcgion of a pointer-aliased sym bol \vhosc type
is compatible to 'T, ~gnor ing tvpc qualificl-s and
signcdness

A region of a pointer-aliascd aggregate or union
symbol that contains a member o r s ~ ~ b m e m b e r
whosc type is compat~ble to T, Igllonng typc q i ~ d i -
fiers and signedness

A region of an aggregate o r union typc that con-
tains a member o r subrnember ~vliosc typc is corn-
patible to T, ignoring type q~~alificrs and signcdncss

Table 5 gives the signatures for the cffccts classcs in
Table 2, assuming that the symbol s is pointcr aliased.

Including the effects classcs ofsymbols in the cffccts-
class sigllatures of types records the intcrfcrcnce of
references through pointers with references to pointer-
aliased sy~nbols. In Figure 3, the pointcr uip points to
an unsigned int. The member.s.t.y has type int. Thus,
uip may point to s.t.y. The member s.t contains s.t.y.
Thus, the signature for the effects-class intc0,3> con-

Table 5
Type Effects-class Signatures

Number Effects Class Effects-class Signature

1 s<o, 1 1 > 1.2
2 s<4,11> 2
3 sp<0,7> 3
4 fp<0,7> 4
5 ip<0,7> 5
6 uip<O,7> 6
7 struct S<0,11> 1, 2, 7, 8, 9
8 struct S<4,11> 1, 2,8, 9
9 struct S<4,7> 1 , 2, 9

10 f loat<0,3> 1.2.7.8. 10
11 int<0,3> 1,2,7,8,9, 11

tains the effects-class s<4,11>. This means that the
load 0fs . t depends upon thc store through uip.

Including the cffects classes of types in the signa-
tures of the effects classes of other types records the
interference of references through a pointer with ref-
erences through pointers to other types. In Figure 3,
the pointer Fp points to a float object. The member
sp->t.z has type float. Thus, fp may point to sp->t.z.
The member sp->t contains sp->t.z. Thus, the signa-
ture for die effects-class float<0,3> contains the effects-
class struct S<4,11>. This reflects the fact that the
store to sp->t.y depends upon the store through fp ,
i.e., it must occur after the store through fp .

Even though the signature for the effects-class
float<0,3> contains the effects-class struct S<4,11>
(sp->t), it does not contain the effects-class struct
S<4,7> (sp->t.y). There is n o float member of struct
S whose position within struct S overlaps bytes 4
through 7 of struct S. There is a float member ofstruct
S, namely z, whose position within struct S overlaps
bytes 4 through 11 of struct S. The signature for the
effects-class float<0,3> would not contain the effects-
class s<0,3> if it existed. There is n o float member of s
whose position overlaps bytes 0 through 3 ofs.

Additional Effects-class Signatures The side-effects
package creates a special effects-class signature repre-
senting the side effects of a call. A called procedure
may reference the following:

Any pointer-aliased symbol (by means of a refer-
ence through a pointer)

Any allocated object (by means of a reference
through a pointer)

Any ionl local symbol (by means ofdirect access)

Any local static symbol (by means of recursion)

The effects signature for a call includes all the effects
classes representing these objects.

Responding t o Optimizer Queries During optimiza-
tion, the optimizer makes two types of queries to the
side-effects analysis routines: dominator-based queries
and nondominator-based queries.

When doing nondorninator-bascd optimizations, the
optimizer uses a bit vector to represent those objects a
write may change (its effects). A similar bit vector repre-
sents those objects whose value a read may fetch (its
dependencies). Each bit in the bit vector represents an
effects class. If a tuple's effects-class signature contains
an effects class, that effects class's bit is set in the tuple's
bit vector. The optimizer uses the union of the bit vec-
tors associated with a set of tuples to represent the com-
bined effects or dependencies of those tuples.

Dominator-based queries involve finding the near-
est dominating tuple that might write to the same
memory location as the tuple in question. Tuple A
dominates tuple B if every path from the start of the
routine to B goes through A."f both tuples A and C
dominate B, tuple A is the nearer dominator if C dom-
inates A.

When doing dominator-based optimizations, the
side-effects package represents the tuples in the cur-
rent dominator chain as a stack, adding and removing
t ~ ~ p l e s from the stack as GEM moves from one path
in the routine's dominator tree to another. Searching
a single stack for the nearest dominating tuple that
might write the same memory as the tuple in question
references could lead to O(N')performance, where N
is the number of tuples in the dominator chain. This
worst-case behavior occurs when none of the tuples in
a dominator chain affects any subsequent tuple in the
chain. Each time the side-effects package searches the
stack, it examines all the tuples in the stack.

To avoid this, the DEC C and C++ side-effects pack-
age creates a stack for each effects class. When pushing
a tuple, the side-effects package pushes the tuple on
each stack associated with an effects class in the tuple's
effects-class signature. When the GEM optimizer tells
the side-effects package to find the nearest dominating
write for a tuple, the side-effects package need only
choose the nearest of those tuples that are on the top
of the stacks associated with the tuple's effects-class
signature. I t nced only look at the top of each stack,
because a tuple would not be in the stack unless it
might affect objects in the effects class associated with
the stack.

The niultistack worst-case behavior is O(NC). There
are C separate stacks, one for each effects class. The
effects-class signature for each effects class may con-
tain all the other effects classes. This would mean that
each of the Aftuples in the dominator chain would
appear in each of the stacks.

Although the worst-case behavior for the multistack
case is no better than the single-stack case (C may be
equal to N) , in practice there are often more tuples
within a routine than effects classes. Furthermore,

Diaitnl Technical Jour~ial

effects-class signatures often contain a small number
of effects classes. A small number of effects classes in
an effects-class signature means that there are a small
number of stacks to consider. Choosing the nearest
dominator from among the top tuples on these stacks
requires examining only a small number of tuples.

Cost of Using Type Information

When compiling all of the SPECint95 test suite9 using
high optimization, alias analysis accounts for approxi-
mately 5 perccnt of the compilation time. The use of
Standard C type rules during alias analysis increases
compilation time by less than 0.2 percent (time mea-
sured in number of cycles consumed by the compiler
as reported by Digital Continuous Profiling Infra-
structure [DCPI]"). The increase in compilation time
varies from program to program but never exceeds
0 .5 percent. Handling the extra effects classes gener-
ated by using Standard C type aliasing information
accounted for most of the increase.

Potentially, the cost of including type-aliasing infor-
mation could be huge. Calculating which effects classes
a reference through a char * pointer could touch is
straightforward as shown by the algorithm in Figure 5.

A much more complicated process is required to
calculate which effects classes could be touched by a
reference through a pointer to a type other than char.
The algorithm in Figure 6 performs this process.

Fortunately, the innermost section of this loop is
rarely executed. The innermost section executes only
if a routine references a structure either through a
pointer or a pointer-aliased symbol, that structure
contains a substructure, and the routine references the
substructure through a pointer.

Effectiveness

The benchmark programs from the SPECint95 suite
offer some con\~enient test cases for measuring the
effectiveness of type-based alias analysis. The sources are
readily available and portable. The programs conform
to alias rules established by the American National
Standards Institute (ANSI) and are compute intensive.
Unfortunately, they d o not contain floating-point cal-
culations. This reduces the number of different types
used in the programs. Type-based alias analysis works
best when there are many different types in use.

Three ofthe SPECint95 programs show no improve-
ment when compiled using the Standard C typing rules
as opposed to using the traditional C typing rules.
These programs, namely compress, go, and li, d o not
use many different types and pointers to them. \ m e n
all the pointers in a program are pointers to ints (go),
there is only one effects class for all pointer accesses.
Because the compiler has no way to differentiate
among the objects touched by a dereference of a
pointer expression, it generates identical code for these
programs, regardless of the type rules used. The gen-
erated code for li differs only slightly and only for
infrequently esecuted routines.

Changes in generated code for the remaining five
benchmarks are more prevalent. Two benchmarks,
ijpeg and perl, show a small reductio~l in the number
of loads executed but n o rneaninghl reduction in the
total number of instructions executed. The other
three SPECint95 benchmarks show varying degrees
of reduction in both the number of loads executed
(see Table 6) and the total number of instructions
executed (see Table 7).

foreach pointer aaliased symbol
foreach effects class representing a region of the symbol

a&d that effects class to the effects clans signature far char

Figure 5
Calculation of the Effects-class Signature of the Type char *

foreach pointer aliased symbol or type referenced through a pointer
Eoreach member therein

if the member's type i s referenced through pointer
Eareach effects class representifig a region of the member'e type

foreach effects class representing a ragion of the symbol or type
referenced through a pointer

if the two effects class regions overlap
add the symbol's or pointer's effects class to the effects

class signature associated with the effect class
representing the member's type

Figure 6
Calculation of the Effects-class Signature for Types Other Than char

54 Digital Technical Journal Vol. 10 No. 1 1998

Table 6
Number of Loads Executed by the Select SPECint95 Benchmarks

Millions of Loads Millions of Loads
SPEC Benchmark Using Type Information without Type Information Percent Reduction

gCC 10,268 10,365 0.9

11 Peg 16,853 16,888 0.2
m88ksim 13,889 14,157 1.9
per1 1 1,260 11,296 0.3
vortex 1 8,994 1 9,207 1.1

Table 7
Number of lnstructions Executed by t he Select SPECint95 Benchmarks

Millions of Instructions Millions of lnstructions
SPEC Benchmark Using Type Information without Type Information Percent Reduction

gCC 42,830 42,935 0.2

\)Peg 82,844 82,834 0.0
m88ksim 72,490 73,155 0.9
per1 45,2 19 45,252 0.1
vortex 80,093 80,607 0.6

The load and instruction counts are those reported
by using Atom's pisie tool on the SPECint95 binaries
to generate pisstat data.",'? The compiler used was a
development C compi.ler. All compilations used the
follo\ving switches: - f a s t , -04, -arch ev56, and
- 1 speed. The compilations using the
Standard C type system used the -an.c,i-alias
switch. The compilations using the traditional C type
system used the -no.;lcsi,-il ia:; switch. The bench-
mark binaries were run using the reference data set.

DCP1"'measurenients of the reduction in the nuni-
ber of cycles consumed by these SPECint95 bench-
marks showed no consistent reductions. Run-to-run
variability in the data collected swamped any c)icle-
time reductions that might have occurred. Similarly,
measurements of gains in SPECint95' results due to
the use of type inforn~ation during alias analysis showed
no significant changes.

Changes in Generated Code

The code-gcncration changes one sees In the SPEClnt95
benchmarks are exactly what one \vould expect.

'The use of type information during alias analysis
reduces the number of redundant loads. An example
ofthis occurs in ijpeg, which co~~ta ins the code sequence:

in process~data~context. Using the traditional C type
system, the compiler must assume that main->row
group-ctr is an alias for cinfo->min-DCT-scaled_sizc.

Thus, it must generate code that loads cinfo->min-
DCT-scaled-size twice. The Standard C type systcm
allows the compiler to generatc only one load of
cinfo->niin-1)CT-scaled_size.

Several of the benchmarks contain code similar to
the following from conversion-recipe in gcc:

Using traditional C type n~les , the compiler must gcn-
erate four loads of curr.next->list. The conipilcr I I I L I S ~

assume that the pointer curr.ncst->list may point to
itself, making curr.nest->list->111cmber an alias for
curr.nest->list. The Standard C type rules allo\v the
compiler to assume that curr.next->list does not point
to itself. This allows the compiler to generate code that
reuses the result of the first load of curr.next->list,
eliminating three redundant loads.

111 another esample in gcc, the use of Standard C
type rules allo\\a the compiler to rno1.e a load outside a
loop. The following loop occurs in fixup-gotos:

Standard C type rules tell the co~npiler that the store
generated by TREE-ADDRESSABLE (lists) = 1
cannot modiljl thisblock->data.block.outer-clearil~ps.
This allows the compiler to generate code that fetches
thisblock->data.blocI<.outer-cLea1~11ps once before
entering the loop. Using traditional C type rules,
the compiler must generate code that fetches

D~giral Tcchnicnl Journal Val. 10 No. 1 1998 55

thisblock->data.block.oute~--cleanups each time it
traverses thc loop.

Not 01i1y can type information reduce the number
of redundant loads, it can rcducc tJic number of redun-
dant stores. In mS8ksirr1, thcrc arc many routines simi-
lar to the following:

\.\lliere opcl , dest, opc2, and src2 arc bit fields sharing
the same 32 bits (longword). Using traditional C typ-
ing rules, ptr->gcn and cmd->opc may be aliases for
each othcr. Thus to implement the above routine, the
compilcr must generate code that performs the fol-
lowing actions:

Load ptr->gen

Update bit fields ptr->gen.opcl and ptr->gen.dest

Storc ptr->gcn

Load cmd->opc.rrr

Update bit fields ptr->gen.opc2 and ptr->gen.src2

Store ptr->gen

Using Standard C typing rules, the compiler does not
have to generate thc first store of ptr->gen. The assign-
ments to ptr->gcn.opcl and ptr->gen.dest cannot
change crnd->opc.rrr. I n this case, alias analysis tliat is
not typc based \vould have a difficult time detecting
that ptr->gcn and cmd->opc d o not alias each other.
M88ksim never calls ffirst directly. It calls it by mcans
of an array-indexed firnction pointcr.

A Note of Caution

Many C programs d o not adhcrc to the Standard C
aliasing rules. Through the use of explicit casting and
implicit casting, they access objects ofone type by means
of pointers to other types. More aggressive optimization
by GEM combined with more detailed alias-analysis
information from the DEC C and C++ side-effects
package i~icreasingly results in these programs exliibit-
ing unexpected behavior when the compiler uses
Standard C aliasiug rules.

Passing a pointer to one typc to a routine that
expects a pointer to another typc works as expected,
until the GEM optimizer inlines the called procedure.
If the procedure is not inlincd, tlie 13EC C and C++
side-effects package nus st assume that the call conflicts
with all pointer accesses before and afier the cal I . Once
GEM i~llines the routine, tlie side-cffects package is
Free to assume that refcrcnces using the inlined pointer
d o not conflict with references using the pointer at the
call site. The nvo pointers point to two dirferent types.

56 Digital Technical Journal Val. 10 No. 1 1998

A recent example of this problem occurred in the
gcc program in the SPECint95 benchmark suite. All
programs in this suite arc supposed to conform to thc
Standard C type-aliasing rules. Kccnuse of an improve-
lnent to the GEM optimizer, this bench~nark s t ~ r t e d
to give ~~nespected res~rlts. In rts-alloc, gcc clears a
structure by treating it as an array of ints, assigning
zero to each elerncnt of the array. Subsecluent to xero-
ing this structure, gcc assigns a value to one of the
fields in the structure. Through a series of \lalid opti-
mizations (given thc incorrect type information), the
resulting code did not c l cx all the fields in the struc-
ture. This left uninitialized data in the structure,
resulting in gcc bcliaving in an unexpected manner.

To avoid potential problems, the DEC C compiler,
by default, does no t iue the Standard C type rules
when performing alias analysis. The user of tlie c o n -
piler has to explicitly assert that thc program does fol-
low the Standard C type rules through the use of a
command-line switch.

The DIC;I'lTAL C++ compiler does assunic that the
C++ program it is cornpili~ig adhcrcs to thc Standard
C++ type rules. A user of the l>IG17rAI, C++ cornpilcr
can use a command-line s\vitch to inform the compilcr
that it s h o ~ ~ l d use traditional C type rules \\~licn per-
forming alias analysis.

Summary

Using Standard C typc infor~iiation during alias ali'dysis
does improve the generated code for some C and C++
programs. The compilation cost of usins type informa-
tion is small. Except for rare cases, performance gains
resulting from these code improvements are small. Any
prograrns compiled using type information during allas
a~ialysis must strictly adhere to the Standard C and C++
ahasing rules. If not, the optimizer may generate code
that produces unespected results.

Acknowledgments

The author would Like to thank Dave Blickstcin, Mark
Davis, Neil Faiman, Steve Hobbs, and Rill Noyce of
the GEM team for their advice and ~ C V ~ C U I S of this
work. Dave Bliclcstein and Neil Fai~nan also did wol-I<
in the GEM optimizer to ensure tliat thc D E C C and
C++ side-effects package had all the information it
needed to d o alias analysis correctly and to cnsure tliat
the GEM optiniizer effectively used thc infor~iiation
the side-effects pacltage provided. Thanks also to John
He l l~ l i~ lg of the CSD Perfor~iiance G r o l ~ p and Jeannie
Lieb of the GEM team for their help using the
SPECint95 benchmark s ~ ~ i t c . A final word of thanks
goes to Bob Morgan k)r sugges t i~~g that I write this
paper and to my management for supporting my
doing so.

References and Notes Biography

1. R . Wilson and IM. Lam, "Efficient Context-Scnsiti\,c
Pointer Analysis for C Progranls," Pr.occ,oclrrrgs oj'the
AC>l/l SI(;IILA~\ '9~5 Cor~el.erzcc~ orr Procq~a~n~~rrrzg I.uir-
gtrc~~qo 1Ict.c-~:,,II cllrd I1nplc~rrze1ltutio,1. La Jolla, Calif.
(Junc 1995) : 1-12.

2 . 13. < ~ L I rant, "Retargetable High-1,evcl Alias Analysis,"
Pi-occ,c,cli~?gs of the 13th A r ~ n ~ l a I Synq~ositrnt 0 1 7 PI-111-
cip/c~.s c!f' Pru~q,zimnzi~zg La?zg~~uges. St. Petcrsburg
Beach, Fla. (January 1986): 1 10-1 18.

3 . A. l)iwan ct al., "Type-Based Alias Analysis," Proc-ct~l-
i1tji.s o/' Ihc 7998 ACJl SIGPWIV C b ~ f i r c ~ i ~ c c ~ oil Pro-
~ I - (I I I I U ? ~ I I ~ ~ L~nrzgri~/gc, Dc7.si:,,rr urrd I n ~ p l c ~ ~ n e ~ i t o t ~ o ~ r .
Montreal, Canada (Junc 1998): 106-1 17.

4 . Joint Technical Committee ISO/IEC J T C 1, "The C
Progrmmniing I,anguage," Ir?tcrrrn~ioiral S ~ L O ~ L / L L ~ L /
ISO/IEC' 9<S99 1990, section 6 . 3 Expressions.

3 "kvork~ng Paper for Draft Proposed Intcrnat~onal
Standard for Informat~on Systems-Prograrnrn~ng
1,anguagc C++," WG21/N1146, Novcrnbcr 1997,
scctlon 3 10

6 . 1). Blickstcin et al., "The GEM Optimizing Compiler
System," Iligitul 7ec/71zicaI,/o1tr-,7al, ~01. 4 , 110. 4 (Spc-
cia1 Issue, 1992) : 121-136.

7. R. <:ro\\~ell et al., "The GEM Loop Transfor~ner,"
Ili,qitnl 7i.ch11icul./orlrrzd vol. 10, no. 2, accepted for
pu hlication.

S. A. Aho, K. Sethi, and J . Ullman, Cor~z/~ile~sPrincples.
7i.chr.ri~lrres, arid Tools (Reading, Mass: Addison-
Wcslcy, 1986) : 104.

9 . Information about the SPEC bcnch~iiarks is available
from the Standard Perforrn'~ncc Evaluation Corpora-
tion at ht tp : / / \n \~\~.specbc~~cI~.o~.g/ .

10. J . Anderson et al., " C o n t i n ~ ~ o u s Profiling: kVicre Have
All the Cycles Gone?" Procc~,ci~lrgs oj ' thc Si.~teer~th
A C I ~ ~ . J ') J I) ~ / I O S ~ I ~ ~ I O I Z Operzllcrrg Svsteln h-irrci/~lcs, Sait-
Malo, France (October 1997) : 15-26.

11 . A. Srivastava and A. Eusracc, "ATOM: A System for
Building Custo~nized Program Analysis Tools," Pr.o-
ccc>clrrzg.s oJ'the 2AC~ll SlGPL 1.V '0 f Cb1//2,rc~rrcc> oi l P1.o-
,qrzr~n~ni~rg Lu~rgi~c!gc) Design ~/rrcl 1rn/)/e1nerztnlior?.
Orlando, Fla. (June 1994) : 196-20'3.

August G. Reinig
August Rcinig is a principal s o h \ ~ a r c engineer, currently
\ v o r k i ~ ~ g 011 dcbuggcr support in the DIGITAL C++
cornniler. In addition t o his \\rork on the D E C C and C++
side-efkcts package, August implemented a Java-based
distributed test system for the DF.C C and DIGITAL C++
compilers and a parallel build systcni for the D E C C and
DIGITAL. C++ comnilcrs. The distributed test svstern
simultaneousl!~ runs kultiplc tests on different maclines
and is fault tolerant. Bcfore joining the D E C C and C++
team, hc contributed to an advanced ticveloprnent incre-
mental compiler project, which led t o two patents,
"Method and Apparatus for Softwarc Testing Using a
Testing Technique to Tcst C:ornpilers" and "Method
and Apparatus for Testing Sohvarc." H e earned a B.S. in
mathematics (magna cum laude) kom Dartmouth College
in 1980 and an M.S. in computer science from Harvard
Uluvcrsity in 1997. H c is a rnc~nber of Phi Beta Kappa.

12. IIILIIPS-V Kcrli.re17ce ~ V I u ~ t r a l (111.vcc' ~lrzcl piAvsla[sl
(Sunnyvale, Calif.: MIPS Computer Systems, 1990) .

Digital Technical Jo111.n.1l

-
Val. 10 No. 1 1998 57

I
Pldip H. S w e a ~ y
Steven M. Carr
Brett L. Huber Compiler Optimization

for Superscalar Systems:
Global Instruction
Scheduling without
Copies

The performance of instruction-level parallel
systems can be improved by compiler programs
that order machine operations to increase
system parallelism and reduce execution time.
The optimization, called instruction scheduling,
is typically classified as local scheduling if only
basic-block context is considered, or as global
scheduling if a larger context is used. Global
scheduling is generally thought to give better
results. One global method, dominator-path
scheduling, schedules paths in a function's
dominator tree. Unlike many other global
scheduling methods, dominator-path schedul-
ing does not require copying of operations
to preserve program semantics, making this
method attractive for superscalar architectures
that provide a limited amount of instruction-
level parallelism. In a small test suite for the
Alpha 21 164 superscalar architecture, dominator-
path scheduling produced schedules requiring
7.3 percent less execution time than those pro-
duced by local scheduling alone.

Many o f today's computer applications require compll-
tation power no t easily achieved by computer architcc-
turcs that provide little o r n o parallclisrn. A proniising
alternative is the parallel architecture, more specifically,
the instruction-level parallel (ILL') archi tcct~~l-e , cvllich
increases computation during each m<~cliine cyclc. II,P
computers allow parallel complrtation o f the lo~vcst
level ~i iachine operations within a single instruction
cycle, i~lcluding such operations as memory loads and
stores, integer additions, and floating-point multiplica-
tions. 112 arcliitect~~res, like con\~entional architccturcs,
contain multiple functional units and pipclincd firnc-
tional units; but, they have a single program countel-
and operate o n a single instruction stream. Compaq
Computer Corporation's AlphaScr\fc~- system, based on
the Alpha 21 164 microproccssor, is an csa~i iple of an
ILP macline.

T o effectively use parallel hardware and o b t ~ i n
performance ad\lantages, co~npi lc r programs must
identi@ the appropriate level o f parallclisrn. For ILI'
architectures, the compilcr mmst o rder thc single
instruction stream such that multiple, lo\\!-lcvcl opcra-
tions execute simultaneously \\ihene\.cr possible. This
ordering by the compiler o f macliinc operations t o
effecti\lel!l use an IL,l' a rch i tec t~~rc ' s increased paral-
lelism is called ~ ~ I S ~ I - I I C ~ ~ O ~ Z s ~ h o c / ~ i l i ~ ~ , q . It is 311 opti-
mization n o t ~ ~ s u a l l ! ~ found in compilers for 11on-11,P
architectures.

Instruction scheduling is classified as local if it
considers code only within a basic block and gloh~i l if
it schedules code across multiple basic bloclts. A dis-
advantage t o local instruction scheduling is its inability
t o consider contest from sul-rounding I.>loclts. \Vliilc
local scheduling can find parallclis~n within a basic
bloclt, it can d o ~ i o t h i n g t o exploit parallelism bcn\~ccn
basic bloclts. Generally, global scheduling is preferred
because it can talte advantage o f added program paral-
lelism available n ~ h e ~ l the compiler is allowcci t o move
code across basic block boundaries. Tjadcn and Flynn,'
for exan~ple, found parallclisrn within J basic block
quite limited. Using ,I test suite o f scientific programs,
they measured an ;nrcragc parallelis~n o f 1.8 \vitIiin
basic blocks. I n similar csper i~nents o l i scientific pro-

58 l l ~ g ~ r a l Ttsh~l ica l Journal \fol. 10 No. 1 1998

grams in which the compiler moved code across basic
block boundaries, Nicolau and Fisher' found paral-
lelism that rangcd from 4 to a virtually unlimited num-
ber, with an average o f 9 0 for the entire test suite.

T r ~ ~ c c .schedrlling~' is a globd scheduling teclu~iql~e
that attempts to optimize Frequently executed paths of
a program, possibly at the expense of less ficquently
executed paths. Trace scheduling exploits parallelism
within sequential code by allowing massive niigration of
operations across basic block boundaries during schedul-
ing. By addressing this larger scheduling context (many
basic blocks), trace scheduling can produce better sched-
ules tha i tecluliques that address the smdler context of a
single block. To ensure the prograrn semantics are not
changed by interblock motion, trace scheduling inserts
copies of operations that move across block boundaries.
Such copies, necessary to ensure progrxii semantics, are
called coi71pe~~.s~l/ion c0pie.s.

The research described here is driven by n desire to
develop a global instruction scheduling technique
that, like trace scheduling, allows operations to cross
block boundaries to find good schedules and tliat,
unlike trace scheduling, does not require insertion of
compensation copies. Like trace scheduling, DPS first
defines a multiblock context for scheduling and then
uses a local instructioli scheduler to treat the larger
context like a single basic block. Such a technique pro-
vides effecti\ie schedules and avoids the: performance
cost of executing co~npensation copies. The global
schcduling technique described here is based on the
dominator relation* among the basic blocks o fa f ~ ~ n c -
tion and is called doniinator-path scheduling (131's).

Local Instruction Scheduling

Sincc 1)PS relies o n a local instruction scheduler, we
begin with a brief discussion of the local scheduling
problem. As the nalne implies, local instruction sched-
uling attempts to maximize parallelisln within each
basic block of a fi~nction's control tlow graph. In gen-
eral, this optimization problcm is NP-coniplctc."
Howevcr, in practice, heuristics achicvc good results.
(h~idskov et d." give a good survey of early instruction
scheduling algorithms. Allan et al.' describe how one
might build a retargetable local instruction scheduler.)

List ~ c h e d ~ i l i r i g 5 s a general method ohen used for
local instruction scheduling. Briefly, list schcduling
typically requires two phases. The first phase builds
a directed acyclic graph (DAG), called the data depen-
dence 13AG (DDD), for each basic block in the
fi~nction. 1)DD nodes represent operations to be
scheduled. The DDD's directed edges indicate that a
node S prcccding a node Y constrains S to occur no

'4 blsic block, 17, donli~lates another block, R, ifcvcry path from
thc root of thc control-tloiv graph for n klncrion ro B must puss
through 1).

later than Y. These DDD edges are based on the formal-
ism of data dependence analysis. There are three basic
types of data dependence, as described by Padua et al."

Flow dependence, also called true dependence or
data dependence. A DDD node MI is flow depen-
dent on 1)Dl) node M I if Ml executes before MI and
R/II writes to some: memory location read by M?.

Antidepcndence, also called false dependence. A
DDD node M2 is antidependent on DDD node M I
if M I executes before M1 and M2 writes to a mem-
ory location read by M I , thereby destroying the
value needed by MI .

O u t p ~ ~ t dependence. A DDD node M2 is output
dependent on DDD node MI if MI executes before
M2 and M2 and M I both write to the same location.

To facilitate deterniination and manipulation of
data dependence, the compiler maintains, for each
DDD node, a set of all memory locations L L S B ~ (read)
and all memory locations dej?ned (written) by that
particular DDD node.

Once the DDD is constructed, the second phase
begins when list scheduling orders the graph's nodes
into the shortest sequence of instructions, subject to
(1) the constraints in the graph, and (2) the resource
limitations in the machine (i.e., a machine is typically
limited to holding only a single value at any time). In
general list scheduling, an ordered list of tasks, called a
p77'07-i0) list, is constructed. The priority list takes its
name from the fact tliat tasks are ranked such that those
with the Iighest priority are chosen first. In the context
oflocal instruction scheduling, the priority list contains
DDD nodes, all of \vhose predecessors have already
been included in the schedulc being constructed.

Expressions, Statements, and Operations

Wlthin the context of this paper, we discuss algorithms
for code motion. Before going further, we need to
ensure common understanding among our readers for
our use of tcrtns such a5 e~prpssioils, statei77et7ts, and
O ~ ~ ~ I I O I Z S TO start, cvc consldcr a computer program
to bc a list of operntlons, cach of w h ~ c h (possibly)
computes a right-hand s ~ d c (1-11s) valuc and asslgns tlic
rhs value to a ~ n e ~ i ~ o r) ~ locatton represe~ited by a lefi-
hand side (Ihs) variable. This can be expressed as

A t E

where A represents a single memory locatio~i and E
represents an expression with one or more operators
and an appropriate number of operands. During dif-
ferent pllases of a compiler, opera t io~~s [night be reprc-
scnted as

Source codc, a high-lcvcl langi~age such as C
Intermediate statements, .I linear form of tliree-
address code such as quads o r 11-tuples1"

Digital Tcduucal Journal Vol. LO No. 1 1998 59

DDl) nodes, nodes in a DDD, ready to be sched-
uled by the instruction scheduler

Important to note about operations, whether repre-
sented as intermediate statements, source code, or
DDD nodes, is that operations include both a set of
definitions and a set of uses.

Expressions, in contrast, represent the rhs of an
operation and, as such, include uses but not defini-
tions. Throughout this paper, \ve use the terms state-
lnerzt, intevniediate statelnenl, operation, and DDD
node interchangeably, because they all represent an
operation, with both uses and definitions, albeit gen-
erally at dfferent stages of the con~pilation process.
When we use the term eexpression, howe\~er, we mean
an I-hs with uses only and n o definition.

Dominator Analysis Used in Code Motion

In order to determine \vhicIi operations can move
across basic block bo~uidaries, we need to analyze the
source program. Although there are some choices
as to the exact analysis t o perform, dominator-padl
scheduling is based upon a formalism first described by
Reif and Tarjan." We summarize Reif and Tarjan's
work here and then discuss the enhailcenlents ~ v x d e d
to allow interbloclc movement of operations.

In their 1981 paper, Reif and Tarjan provide a fast
algorithm for deterrnuing the approximate birthpoints
of expressions in a program's flow graph. An expres-
sion's birthpoint is tlie first block in the control flow
graph at which the expression can be computed, and
the value computed is paranteed to be the same as in
the original program. Their technique is based upon
fast co~nputatioil of the iclcfset for each basic bloclc of
the control flow graph. The ideyset for a block B is
that set of variables defined on a path benveeil B's
immediate dominator and B. Given that the domina-
tor relatioli for the basic blocks of a function can be
represented as a clo~~zinato~*tree, the immediate domi-
nator, IDOM, of a basic bloclc B is B's parent in the
dominator wee.

Expression birthpoints are not sufficient to allow us
to safely move entire operations from a block to one of
its dominators because birtlipoints address only the
movement of expressions, not definitions. Operations
in general include not only a computation of some
expression but the assignment of the value computed
to a program variable. Ensuring a "safe" motion for an
expressio~l requires only that n o expression operand
move above any possible dejinition of that operand,
thus changing tlie program semantics. A similar
requirement is necessar)i but not sufficient, for the
variable to which tlie value is being assigned. In addi-
tion to not moving A above any previous definition of
A, A cannot move above any possible use of A.
Otherwise, \+re run the rislc of changing A's value for

that previous use. Thus, domillator analysis computes
the iztse set for each basic block and for the ideJset.
The i~lse set for a block, B, is that set ofvariables used
on some path benveen B's immediate don~inator and
B. Using the idef and ime sets, do~ninator analysis com-
putes an approximate birthpoint for each operation.

In this paper, we use the term dominator analysis
to m e a l the analysis necessary to allow code motion of
operations w~hile disallo\vi~ing compensatioii copies.
Additionally, we use the term dominator motio?? for
the general optimization of code motion based upoii
dominator analysis.

Enhancing the Reif and Tarjan Algorithm
1Sy enhancing Rcif and Tarjan's algorithm to compute
bi??hpoints of operations instead of expressions, we
make several issues important that previously had no
effect upon Reif and Tarjan's algorithm. This section
motivates and describes the illformation needed to
allo\v dominator motion, including tlie ~lsc, cleJ iuse,
and idef sets for each basic bloclc. An algorithmic
description of this dominator analysis information is
included in the section Overvie\v of Dominator-Path
Scheduling and the Algorithm for Interblock Motion.

When we allow code motion to move intermediate
statements (or just expressions) fi-om a block to one of
its dominators, cve run the rislc that tlie statement
(expression) will be executed a different number of
times in the dominator bloclc than it would have been
in its original location. When \ve move oiily espres-
sions, tlie risk is acceptable (although it may not be
efficient to move a statement illto a loop) since the
value needed at tlie origi~lal point of comp~~ta t ion is
preserved. Relative to program semantics, the number
of times the same value is computed has no effect as
long as the correct value is computed the last time.

accuracy is guaranteed by expression birthpoints.
Consider also the consequences of moving an expres-

sion ti-om a block that is neuel* executed for some pa-tic-
ular ulput data. Agaii, it may not be efficient to compute
a value never used, but the computation does not dter
program semantics. When dominator ~iiotion moves
entire statements, ho~+~ever, die issue becomes more
complex. If the statement moved assigns a new value to
a1 ulductio~l variable, as UI the following exanple,

doniinator motion would change 77's final value if it
moved the statement to a block where the execution
frequency differed from that of its original blocl<. We
could alleviate this problem by proliibiti~lg mot io~ i of
any statement for which tlie use and clef sets are not
disjoint, but the possibility remains that a statement
may define a variable based indirectly upon that vari-
able's previous value. T o remedy the more gencral
problem, we disallow motion of any statement, S,

60 Digital Tcchnic.1l Journal 1701. 10 No. 1 1998

whose dejset intersects with those variables that are
~lsel-before-ciejnedin the basic block in which S resides.

Suppose the optimizer moves an intermediate state-
ment that defines a global variable from a block that
may never be executed for some set of input data into
a dominator block that is executed at least once for
the same input data. Then the optimized version has
defined a variable that the unoptimized hnction did
not, possibly changing program semantics. We can be
sure that such motion does not change tlie semantics
of that fi~nction being compiled; but there is no mech-
anism, short of conipiling the entire program as a sin-
gle unit, to ensure that defining a global variable in this
fi~nction will not change the value used in another
fi~nction. Thus, to be conser\iative and ensure that
it does not change program semantics, dominator
motion prohibits interblock movement of any state-
ment that defines a global variable. At first glance, it
may seem that this prohibition cripples dominator
motion's ability to move any intermediate statements
at all; but we shall see that such is not the case.

One final addition to Reif and Tarjan information is
required to take care of a subtle problem. As discussed
above, dominator analysis uses the idef and iuse sets to
prevent illegal code motion. The use of these sets was
assumed to be sufficient to ensure the legality of code
motion into a dominator block; unfortunately, this is
not the case. Tlie problem is that a definition might
pass through tlie immediate dominator o f B to reach
a use in a sibling of B in the dominator tree. If there
were a definition of this variable in B, but the variable
was not defined on any path from the immediate dom-
inator, there would be nothing in dominator analysis
to prevent the definition from being moved into the
dominator. But that would change the program's
semantics. Figure 1 shows the control-flow graph for a
hnction called findmax(), with only the statements
referring to register 1-7. Register r7 is defined in blocks
8 3 and B7, and referenced in B9. This means that r7
is liue-ol,it of B5 and live-iiz to B8, but not live-in to
B7; there is a definition of r7 in B3 that reaches B8.
Because there is n o definition or use between B7 and
its immediate dominator B5, the idef and izrse sets of
B7 are empty; thus, dominator analysis, as described
above, would allow the assignment of r7 to move
upward to block B5. This motion is illegal; it changes
the definition in B3. Moving the operation from B7 to
B5 changes the conditional assignment of r7 to an
~~nconditional one.

To prevent this fi-om happening, we can insert the
variable into the izise set of the block B, in which we
wish tlie statement to remain. We d o not, however,
want to add to the iuse set u~u~ecessarily. The solution
is to add each variable, V, that is liue-in to any of B's
siblings in the dominator tree, but not into B, or to B's

ENTRY 0

Figure 1
Control Flow Graph for the Function findmas()

iuse set. This will prevent any definition of V that
might exist in B from moving up. If there is a defini-
tion of V in B, but V is live-in to B, there must be some
use of V in B before the d e h t i o n , so it could not move
~ ~ p w a r d in any case.

Measurement of Dominator Motion
T o measure the motion possible in C programs,
Swea~iy" dehied do~ninator motion as the movement
of each intermediate statement to its birthpoint as
defined by dominator analysis and by the number of
dominator blocks each statement jumps during such
movement. Swean)1's choice of internlediate state-
Inents (as contrasted with source code, assembly lan-
guage, or DDD nodes) is attributed to the lack of
machine resource constraints at that le\lel of program
abstraction. H e envisioned dominator motion as an
upper bound on the motion available in C pro, crams
when compensation copies are included. In the test
suite of 12 C programs compiled, more than 25 per-
cent of all intermediate statements moved at least one
dominator block upwards toward the root of the dorn-
inator tree. One hnction allowed more than 50 per-
cent of thc statements to be hoisted an average of
nearly eight dominator bloclzs. Tlie considerable
amount of ~notioll (without copies) available at tlie
intermediate statement level of program abstraction

Digital Technical Journal Vol. 10 No . 1 1998 61

provided us with the motivation to use similar analysis
techniques to facilitate global instruction scheduling.

Overview of Dominator-path Scheduling and the
Algorithm for lnterblock Motion

Since experiments show that dominator analysis allows
considerable code motion without copies, we chose to
use dominator analysis as the basis for the instruction
scheduling algorithm described here, namely dominator-
path scheduling. As noted above, DPS is a global
instruction scheduling method that does not require
copies ofoperations that move from one basic block to
another. DPS performs global instruction scheduling by
treating a group of basic bloclcs found on a dominator
tree path as a single block, scheduling the group as a
whole. In this regard, it resembles trace scheduling,
which schedules adjacent basic blocks as a single block.
DPS's foundation is scheduling instructions while mov-
ing operations among blocks according to both the
opportunities provided by and the restrictiolls imposed
by dominator analysis.

The question arises as to how to exploit dominator
analysis information to permit code motion at the
instruction le17el during scheduling. DPS is based on
the observation that we can use iclef and i~lse sets to
allow operations to move from a block to one of its
dominators during instruction scheduling. Instruction
scheduling can then choose the most advantageous
position for an operation that is placed in any one of
several blocks. Because machine operations are incor-
porated in nodes of the DDD used in scheduling and,
like intermediate statements, DDD nodes are repre-
sented by def and use sets, the same analysis performed
on intermediate statements can also be applied to a
basic block's DDD nodes.

The same motivation that drives trace scheduling-
namely that scheduhg one large block allows better use
of machu~e resources than scheduling the same code as
several smaller blocks-also applies to DPS. I n contrast
to trace scheduling, DPS does not allow motion of
DDD nodes when a copy of a node is required and does
not incur the code esplosion due to copying that trace
scheduling can potentially produce. For architectures
with moderate instruction-level parallelism, DPS may
produce better results than trace scheduling, because
the more limited motion may be sufficient to make
good use of machne resources, and unlrke trace sched-
uling, no machine resources are devoted to executing
semantic-preserving operation copies.

Much like traces,* the dominator path's blocks can
be chosen by any of several methods. One method is a
heuristic choice of a path based on length, nesting
depth, or some other program characteristic. Another
is programmer specification of the most important

paths. A third is actual profiling of the running pro-
gram. We visit this issue again in the section Choosing
Dominator Paths. First, however, we need to discuss
the algorithmic details of DPS.

Once DPS selects a dominator path to schedule, it
requires a method to combine the blocks' DDDs into
a single DDD for the entire do~ninator path. In our
compilcr, this task is performed by a DDD coupler,'"
which is designed for the purpose. Given the DDD
coupler, DPS proceeds by repeatedly

Choosing a dominator padl to schedule

Using the DDD coupler to combine each block's
DDD on the chosen don~inator path

Scheduling the co~nbined DDD as a single bloclc

The dominator-path scheduling algorithm, detailed
in this section, is summarjzed in Figures 2 and 3.

A significant aspect of the DPS process is to ensure
"appropriate" interblock motion of DDD nodes and
to prohibit "illegal" motion. As noted earlier, the
combined DDD for a dominator path includes control
flow. Therefore, when Dl's schedules a group of
blocks represented by a single DDD, it needs a mecha-
nism to map correctly the scheduled instructions to
the basic blocks. The mechanism is easily accom-
plished by the addition of two special nodes to each
block's DDD. Called BlockStart and BlockEnd, these
special nodes represent the basic block boundaries.
Since dominator-path scheduling does not allow
branches to move across block boundaries, each
BlockStart and BlockEnd node is initially "tied" (wit11
DDD arcs) to the branch statcrncnt ofthe block, ifany.
Because BloclcStart and BlockEnd are nodes in the
eventually combined DDD, they arc scheduled like all
other nodes of the combined DDD. After scheduling,
all instructions between the instruction containing the
BlockStart node for a block and the instruction con-
taining the BlockEnd node for that block are consid-
ered instructions for that block. Nest, DPS must
ensure that the BloclcStart and BlockEnd DDD nodes
remain ordered (in the scheduled instructions) relative
to one another and to thc BlocltStart and BlockEnd
nodes for any other block. To do so, DPS adds useand
clef information to the nodes to represent a pseudore-
source, BlockBoundary. Because each BlockStart
node defines BlockBoundary and each BlockEnd
node uses BlockBoundary, no BlockEnd node can be
scheduled ahead of its associated BlockStart node
(because offlow dependence.) Also, a BloclcStart node
cannot be scheduled before its do~ilinator block's
13loclcEnd node (because of antidependence). By
establishing tlicsc imaginary dependencies, DPS
ensures that the DDD coupler adds arcs between all
BlockStart and BlockEnd nodes.

*groups of blocks to be scheduled together in trace scheduling

62 Digital Technical Journal Vol. 10 N o 1 1998

Algorithm Dominator-Path Scheduling
Input:

Function Control Flow Graph
Dominator Tree
Post-Dominator Tree

Output:
Scheduled instructions for the hnction

Algorithm:
While at least one Basic Block is ~~nschedulcd

Heuristically choose a path B,, Bz,. . ., B,, in the Dominator Tree that includes
only unscheduled Basic Blocks.

Perform dominator analysis to compute 1Def and IUse sets

/* Build one DDD for the entire dominator path */
CombinedDDD = BI
F o r i = 2 t o n

T = I~utializeTransitio~innD (B,.,, B,)
Co~nbinedDDD = Couple(ConibinedDDD,T)
CombinedDDD = Couple (CombinedDDD, B,)

Perform list scheduling on CornbinedDDD
Mark each block of DP scheduled
Copy scheduled instructions to the Blocks of the path (instructions between the
BlockStart and BlockEnd nodes for a Block are "written" to that Block)

End While

Figure 2
Dominator-path Scheduli~lg Algorithm

Looking back to dominator analysis, we see that
interblock motion is prohibited if the operation being
moved

Defines something that is included in either the
ic/e/or ilr.scl sct

Uses something included in the idef set for the
block in which the operation currently resides

To obtain the same prohibitions in the combined
DDD, \\re add the idqf set for a basic block, B, to the
clefset B's BlockStart node. Similarly, we add the iusc
set for B to the lrscsct of B's BlockStart node. Thus we
enforce the same restriction on movement that domi-
nator analysis imposed upon intermediatc statements
and ensure that any interblock motion preserves pro-
gram semantics. In a similar manner, DPS includes the
restrictions on movement of operations that define
either global variables o r induction variables. Figure 3
gives an algorithmic description of the process of
"doping" the BlockStart and BlockEnd nodes to pre-
vent disallowed code motion.

DPS is complicated by factors not relevant for dom-
inator motion of intermediate statements. Foremost is
the coniplcsity imposed by the bidirectional motion of

operations that instruction scheduling allo\vs. In dom-
inator motion, intermediate statements move in only
one direction, i.e., toward the top of the function's
control tlow graph, not from a dominator block to a
dominated one. This one-directional motion is rea-
sonable when attempting to move intermediatc state-
ments because one statement's movement will likely
open possibilities for more motion in the same direc-
tion by other statements. When statements move in
different directions, one statement's motion might
inhibit another's movement ill the opposite direction.
The god of dominator motion is to move statements as
far as possible in the control flow graph. In contrast, the
god of DPS is not to maximize code motion, but rather
to find, for each operation, 0, that location for 0 that
will yield the shortest schedule. Thus our goal has
changed fiom that of dominator motion. To gain thc
full benefit From DPS, we wish to allow operations to
move past block boundaries in either drection. To per-
mit bidirectional motion, we use the post-dominator
relation, which says that a basic block, PD, is a post-
dominator of a basic block B if all paths from B to the
function's cxit must pass through PD. Using this strat-
egy, we similarly define post-idef and post-iuse sets. In

Ddgid Tcchicat Journal Vol. 10 No. 1 1998 63

Algorithm InitializeTransitio~iDDD(B,, B,)
Input:

A Transition DDD templates, with a Dummy DDDNode
for Bl's block end and one for Bz's block start
Two basic blocks, B, and B2 that eve wish to couple
Dominator Tree
Post-Dominator Tree
The follo\ving dataflow information

Def, Use, IDef, and IUse sets for BI and B2
Used-Before-Defined set for B,
Post-IDef, and Post-IUse sets for B1 and Bz
Bz's "sibling" set, defined to include any variable

live-in to a dominator-tree sibling of B2, but not
live-in to Bz

A basic block DDD for each 0fB1 and B2
Output:

An initialized Transition DDD, T
Algorithm:

T = TransitionDDD
/* "Fix" set for global and induction variables. */
Add set of global variables to B2's IUse
Add B2's Used-Before-Defined to B2's IUse
Add B2's sibling set to B2's IUse

IfB, does not post-dominate B,
Add B,'s Use set to T's BlockEnd Def set
Add Bl's Def set to T's BlockEnd Use set

Else
Add B,'s Post-IDefset to T's BlockEnd Defset
Add 13,'s Post-IUse set to T's BlockEnd Use set

Add Bz's IDef set to T's Blockstart Def set
Add Bz's IUse set to T's BlocltStart Use set
Return T

Figure 3
Initialize Transition DDl3 Algorithm

fact, it is not difficult to compute all these quantities
for a function Tlic simplest way is to logically reverse
the direction ofall the control flow graph arcs and per-
form dominator analysis on thc resulting graph.
Having computed the post-dominator tree, DPS
chooses dominator paths such that the dominated
node is a post-dominator of its immediate predecessor
in a dominator path. This choice allo\vs operations to
move "freely" in both directions. Ofcourse, this may
be too limiting on the choice of dominator paths. To
allo\v for thc possibility that nodcs in a dominator path
will not form a post-dominator relation, DPS needs a
mechanism to limit bidirectional motion whcri
~ leeded. Again, we rely o n the technique of adding
dependencies to thc combined DDD. In this case
(assuming that DPS is scheduling paths in the forward
dominator trec), for any basic block, B, whose succes-

sor, S, in the forward dom~nator path does not post-
dominate B, DPS adds B's clcfset to the //.sc.set of the
BlocltEnd node assoc~ated with B. In s~milar fashion,
we add B's use set to B's BlockEnd node's ~Iefset .
Thls technique prevents any Dl>D node origlnallp In
B from moving down\vard in the dominator path.

Choosing Dominator Paths

DPS allo\vs code movement along any dominator
path, but there are Inany ~ ~ 3) ~ s to select thesc paths. An
investigation of the effects of dominator-path choice
on the efficiency of generated schedules tells u s that
the choice of path is too important to be lefi to arbi-
trary selection; nvice the average percent speedup* for
several hnctions can often be achie\red with a simplc,

64 Digital Technical Journal

well-chosen heuristic. Some functions have a potential
percent speedup almost four times the average. Thus,
it is important to find a good, generally applicable
heuristic to select the dominator paths.

Unfortunately, it is not practical to schedule all of
the possible partitionings for large Functions. If we
allow a basic block to be included in only one domina-
tor path, the formula for the number of distinct parti-
tioning~ of the dominator tree is

where Nis the set of nodes of the dominator tree."
Although the number of possible paths is not prohbi-
tive for small dominator trees, larger trees have a pro-
hibitively large number. For example, whetstone's
11iain(), with 49 basic blocks, has almost two trillion
distinct partitionings.

To evaluate differences in dominator-path choices,
we scheduled a group of small functions with DPS
using every possible choice of dominator path. The
target architecture for this study was a hypothetical
6-wide long-instruction-word (LMI') machine, which
was simulated and in which it was assumed that all
cache accesses were hits.

The results of exhaustive dorninator-path testing
show, as expected, that varying the choice of domina-
tor paths significantly affects the performance of
scheduling. For all filnctions of at least two basic
blocks, 1)PS showcd improvement over local schedul-
ing for at least one of the possible choices of domina-
tor paths. Table 1 shows the best, average, and worst
percent speedup over local scheduling found for all
hnctions that had a "best" speedup of over 2 percent;
it also shows the speedup of the original implementa-

tion of DPS and the number of distinct dominator tree
partitionings. The original implementation of DPS
included a single, simple heuristic to choose domina-
tor paths. More specifically, to choose dominator paths
within a group, G, of contiguous blocks at the same
nesting level, the compiler continues to choose a
block, B, to "expand." Expansion of B initializes a new
dominator path to include B and adds B's do~niliators
until no more can be added. The algorithm then starts
another dominator path by expanding another (as yet
unexpanded) block of G. The first block of G chosen
to expand is the tail block, T, in an attempt to obtain as
long a dominator path as possible.

Unfortunately, not all functions are small enough to
be tested by performing DPS for each possible parti-
tioning of thc domillator trce. Therefore, we defined
37 different heuristic methods of choosing dominator
trees, based upon groupings of six key heuristic factors.

The maximum path lengths of the basic guidelines
were adjusted to produce actual heuristics. We used
the heuristic factors from which the individual heuris-
tics were constructed; each seemed likely either to
rnimic the observed characteristics of the best path
selection or to allow more freedom of code motion
and, therefore, more flexibility in filling "gaps."

One nesting level-Group blocks from the same
nesting level of a loop. Each block is in the same
strongly connected component, so the blocl<s tend
to have similar restrictions to code motion. For a
group of blocks to be a strongly connected compo-
nent, there must be some path in the control flow
graph from each node in the component to all the
other nodes in the component. Since the function
will probably repeat the loop, it seems likely that
the scheduler will be able to overlap blocks in it.

Table 1
Percent of Function Speedup Improvement Using DPS Path Choices over Local Scheduling

Percent Speedup

Function Name

bubble

No. Dominator
Best Average Worst Original Tree Partitions

39.2 10.6 -0.1 11.7 72
readm 32.5 9.3 - 0.2 32.5 48
solve 27.8 9.9 - 0.2 27.8 9 6
queens 25.4 8.3 - 0.4 - 0.4 96
swaprow 23.1 5.8 - 3.7 19.5 24
~r int(g) 22.0 9.1 - 0.2 22.0 8
findmax 21.3 6.2 - 0.3 8.7 18
COPYCO~ 18.5 5.6 - 5.0 19.9 8
elim 14.3 2.3 - 3.8 10.2 576
mult 13.7 2.1 - 3.8 10.3 96
subst 12.9 2.4 - 4.9 4.9 96
print(8) 12.5 6.2 0.0 12.5 8

Vol. 10 No. 1 1998 65 Digital Techmcal Journal

Longest path-Schedule the longest available path.
This heuristic class allo\vs the maximum distance
for codc motion.

Postdominator-Follow the postdominator relation
in thc dominator trce. When a dominator block, P, is
succeeded by a lion-postdominator block, S, our
compiler adds P's ~lqf set to the rkse set of P's
Blocl<khd node and the ~ / s c set to the clef set to
prevent any codc motion from P to S. If P is instead
succeeded by its postdominator block, no such mod-
ification is necessary, and code would be allowed to
move in both directions. Intuitively, the postdomina-
tor relation is tlie exact inverse of the dominator rela-
tion, so codc can move down, into a postdominator,
as it niovcs up into a dominator. Further, the s i~~ ip lc
act of a d d n g nodes to the DDD ill coniylicate list
scheduling, making it harder for the scheduler to
generate the most efficient schedule.

Non-postdominator-Follow a non-postdominator
in the domi~iatos trce. This heuristic class gencrallp
means adding loop body blocks to the path. Notice
that this seems at odds with the previous heuristic
class. The previous class was suggested by intuition
about the scheduler, and this one by observation of
path behavior.

ideJsize-Group by idej'set size. The larger tlie
ici'cfsize, tlie more interference there is to code
motion. A small klcfsize \vill probably a l l o ~ ' more
code motion, so w c try to add blocks with small
iclcf sizes.

Density-Group by operation density. We define
the density of cach basic block as the number of
nodes in the DD13 divided by the number of instruc-
tions required for local scheduling. A dense block
already has close to its maximum nuniber of opcra-
tions; adding or removing operations will probably
not improve the schedule. For this reason, we want
to avoid scheduling dense bloclts together. Two
methods are tried: scheduling dense blocks with
sparse blocks and putting sparse blocks togetlier.

The heuristic factors were used to make individual
heuristics by changing the limit on the possible num-
ber of blocks in a path. I t was reasonable to set Iiniits
for four factors: postdominator, non-postdominator,
iclc(f'sizc, and density. IVc tricd path length limits in
blocks of 2, 3,4 , 5, and unlimitcd, making a total of
five he~rristics from each hc~rristic hctor.

Running Dl's using cach of the heuristic methods
and comparing the efficiency of the resulting code
leads to sc\~eral conclusions about effective heuristics
for choosing DIPS'S dominator paths. For some heuris-
tics, we can achieve the best schedules for DPS by
using paths that rarely cscced three bloclts. For any
particular class of heuristics, we can achieve the best
schedule \\lit11 paths limited to five blocks or fe\ver.

Consequently, path lellgths can be limited ~ ~ i t h o u t
lowering the efficiency of generated code, and longer
paths, wluch increase scheduling time, can bc avoided.

Since n o one heuristic performed \veil for a11 h n c -
tions, we advise using a co~iibination of heuristics, i.e.,
schedule by using each of three heuristics and taking
the best schedule. The "combined" heuristic includes
the follo\ving:

Instruction density, limit to five blocks

One nesting level on path, limit to five blocks

Non-postdominator, unlinlitcd length

Frequency-based List Scheduling

Like some other global schedutlcrs, 1)PS uses a local
scheduhg algorithm (list scheduling) on a global con-
test, namely the ~neta-blocks built by 13PS. This algo-
rithm raises the possibility of moving codc tiom less
frequently executed blocks to more fi-cquently cseci~ted
blocks. At h s t glance, tlis practice scclns to be a bad idea.

In theory, to best schedule any mcta-block, an
instruction scheduler must account for the differing
cost of the instructions .~litliin the nicta-block. I f a sin-
gle meta-block includes multiple nesting Icvels, the
scheduler must recognize that instructions added to
blocks with higher nesting levels are more costly than
those added to blocks with lower nesting Icvels. Even
within a loop, there esists the potential for consider-
able variation in the execution frcquencics ofdifferent
blocks in the meta-block due to control tlo\v. OF
course variable execution frequency is not a11 i s s ~ ~ e in
traditional local scheduling bccausc, \\.ithin the con-
text of a single basic block, each l>l>l) node is exc-
cuted the same number of tirncs, namely, once cach
time execution cnters the block.

To address the issue of differing execution frequen-
cies w i t h 1 mcta-blocks schcdulcd as a single block by
DPS, we uilvestigated fi-equcncy-based list scheduling
(FBLS),'%l estelision of list scheduling that provides
an answer to this difficulty by co11siderin)r; that csccu- , . -
tion frequencies diffkr within sections of the meta-
blocks. FBLS uses a greedy method to place 1>1)1) nodes
in the lowest-cost instruction possiblc. FRLS amencis
the basic list-scheduling algorithm by revising only the
DDD node placement policy in an attempt to reduce
the run-time cycles required to csccutc a meta-block.

Unfortunately, d tho~rgh FBLS rnakcs intuitive sense,
we found that DPS produced worse schedules with
FBLS than it produced with a naive local scheduling
algorithm that ignored frequency di ffcrences \vitliin
DPS's meta-blocks. 'Therefore, tlic current implc-
mentation of DPS ignores the excci~tio~i frequency
differences bcnveen basic blocks, both in choosing
dominator paths to schedule and in scheduling those
dominator-path meta-blocks.

Evaluation of Dominator-path Scheduling

To measure the potential of DPS to generate more
efficient schedules than local scheduling for commer-
cial superscalar architectures, we ran a small test suite
of C programs on an Alpha 21164 server. The Alpha
server is a superscalar architecture capable of issuing
nvo integer and two floating-pojnt jnstructions each
cycle. Our compiler estimates the effectiveness of a
schedule by modeling the 21 164 as an L W architec-
ture with all operation latencies known at compile
time. O f course this model was used only within the
cornpiles itself. Our results measured changes in
21164 execution time (measured with the UNIX
"time" command) required for eacb program.

Our test suite of 14 C programs i~lcludes 8 programs
that use integer computation only and 6 programs that
include floating-point computation. We separated
those groups because we see dramatic differences in
DPS's performance when viewing integer and floating-
point programs. To choose dominator paths, we used
the combined lleuristic recommended by Huber."

Table 2 su~n~nar izes the results of tests we con-
ducted to compare the execution times of programs
using DPS scheduling with those using local schedul-
ing only. The table lists the programs used in the test
suite and the percent improvement in execution times
for DPS-scheduled programs. The execution time

Table 2
Percent DPS Scheduling Improvements over Local
Scheduling of Programs

Percent Execution
Program Time Improvement

8- Queens
SymbolTable
Bubblesort
Nsieve
Heapsort
Killcache
TSP
Dhrystone

C integer average

Dice
Whetstone
Matrix Multiply
Gauss
Finite Difference
Livermore

C floating-point average

Overall average

measurements were made on an Alpha 21 164 server
running at 250 megahertz with data cache sizes of 8
kilobytes, 96 kilobytes, and 4 megabytes.

Looking at Table 2, we see that, in general, DPS
improved the integer programs less than it improved
the floating-point programs. The range of improve-
ments for integer programs was from 0.7 percent for
Dhrystone to 7.3 percent each for 8-Quecns and for
SymboJTable. Summing all the improvements and
dividing by eight (the number of integer programs)
gives an "average" of 4.7 percent ilnprovement for the
integer programs. DPS improved some of the floating-
point programs even more significantly than the inte-
ger programs. The range of i~nprovements for the six
floating-point programs was from 3.7 percent for Djce
(a simulation of rolling a pair ofdice 10,000,000 times
using a uniform random number generator) to 17.6
percent improvement for the finite difference pro-
gram. The average for the six floating-point programs
was 10.8 percent. This suggests, not surprisingly, that
the Alpha 21164 provides more opportunities for
global schedi~ling improvement when floating-point
programs are being compiled.

Even within the six floating-point programs, how-
ever, we see a distinct bi-modal behavior in terms of
execution-time improvement. Three of the programs
range from 12.3 percent to 17.6 percent improve-
ment, whereas three are below 10 percent (and nvo of
those significantly below 10 percent). A reason for this
wide range is the use of global variables. Remember
that DPS forbids the motion of global variable defini-
tions across block boundaries. This is necessary to
ensure correct program semantics. I t is hardly a coinci-
dence that both Dice and Whetstone include only
global floating-point variables, whereas Livern~ore's
floating-point variables are mixed about half local
and half global, and the three better performers use
almost n o global variables. Thus we conclude that, for
floating-point programs with few global variables, we
can expect improvements of roughly 12 to 15 percent
in execution time. Inclusion of global variables and
exclusion of floating-point values will, however,
decrease DPS's abjlity to i~nprove execution time for
the Alpha 21164.

Related Work

As we have discussed, local instruction scheduling can
find parallelism within a basic block but cannot exploit
parallelism between basic bloclts. Several global sched-
uling techniques are available, however, that extract
parallelism from a program by moving operations
across block boundaries and subsequently inserting
compensation copies to maintain program semantics.
Trace scheduling%as the first of these techniques to
be defined. As previously mentioned, trace scheduling

Digital Technical Journal Vol. 10 No. 1 1998 67

requires compensation copies. Other "early" global
scheduling algorithn~s that require compenstation
copies include Nicolau's pevcolc1tio7z schedc~ling'"'~
and Gupta's region scheduling.'W recent and quite
popular cxtcnsion of trace schedul i~~g js Hwu's
SuperBlock I n addition to these more
general, global scheduling methods, significant results
have been obtained by software pipelining, which is a
technique that overlaps iterations of loops to exploit
available ILP. Allan e t provide a good summary,
and Rau2' provides ,an excellent tutorial on how ~ n o ~ h l o
schedctling, a popular software pipelining technique,
should be implemented. Promising recent techniques
have focused o n defining a meta-environment, which
includes both global scheduling and software pipelin-
ing. Moon and E b c i o g l ~ ~ ~ present an aggressive tech-
nique that combines software pipelining and global
code motion (with copjes) into a single framework.
Novak and N i ~ o l a u ~ ~ describe a sophisticated schedul-
ing framework in which to place software pipelining,
including alternatives to modulo scheduling. While
providing a significant number of excellent global
scheduling alternatives, none of these techniques pro-
vides global scheduling without the possibility of code
expansion (copy code) as DPS does.

To address the issue of producing schedules without
operation copies, Bernstei11'"~~ defined a technique he
calls global i17strc~ction sche~lziling (GPS) that al.lows
movement of i~istructions beyond block boundaries
based upon the program dependence graph (PDG)." 111
a test suite of four programs run on IBM's RS/6000,
Bernstein's method showed improvement of roughly
7 percent over local scheduling for two ofthe programs,
with 1-10 significant difference for the others.

Comparing DPS to Bernstein's method, we see that
both allow for i11terbloc.k motion without copies.
Bernstein also allows for interblock movement requir-
ing duplicates that DPS does not. Interestingly,
Bernstein's later does not make use of this abil-
ity to allow motion that requires duplication of opera-
tions, suggesting that, to date, he has not found such
motion advisable for the RS/6000 architecture to
which his techniques have been applied. Bernstein
allows operation movement in only one direction,
whereas DPS allows operations to move from a domi-
nator block to a postdominator. This added flexibility is
an advantage to DPS. O f possibly greater significance,
DPS uses the local instruction scheduler to place opera-
tiol~s. Bernstein uses a separate set of heuristics to move
operations in the PDG and then uses a subsequent local
scheduling pass to order operations within each block.
Fishcr' argues that incorporating movement of opera-
tions with the scheduling ,phase itself provides better
scheduling than dividing the interblock motion and
scheduling phases. Based o n that criterion alone, DPS
has some advantages over Bernestein's method.

Conclusions

I t is commonly accepted that to exploit the perfor-
mance benefits of ILP, global instruction scheduling is
required. Several varieties of global instruction sched-
uling exist, most requiring coinpensation copies to
ensure proper program semalltics when operations
cross block boundaries during illstruction scheduling.
Although such global scheduli~lg with compensation
copies may be an effective strategy for architectures
with large degrees of ILP, another approach seems
reasonable for more limited architectures, such as cur-
rently available superscalar computers.

This paper outlines DPS, a global instruction sched-
uling technique that does not require compensation
copies. Based on the fact that more than 25 percent of
intermediate statements can be moved upward at least
one dominator Mock in the control flow graph with-
out changing program semantics, DPS schedules paths
in a fi~nction's dominator tree as meta-blocks, making
use of an extended local instruction scheduler to
schedule dominator paths.

Experimental evidence shows that DPS does indeed
produce more efficient schedules than local schedul-
ing for Compaq's Alpha 21 164 server system, particu-
larly for floating-point programs that avoid the use of
global variables. This work has delnonstrated that con-
siderable flexibility in placement of code is possible
eve11 when compensation copies are not allowed.
Although more research is required to look into
possible uses for this flexibility, the global instruction
scheduling method described here (DPS) shows
promise for ILP architectures.

Acknowledgments

This research was supported in part by an External
Research Program grant from Digital Equipment
Corporation and by the National Science Foundation
under grant CCR-9308348.

References

1. G. Tjaden and M. Flyn~i, "Detection of Parallel Ese-
cution of Independe~lt Instructions," JEEE Trur7sac-
tiorzs 077 Conzpztten, C-19(10) (October 1970):
889-895.

2. A. Nicolau and J. Fisher, "Measuring the Parallelism
Available for Very Long Instruction Word Architec-
tures," IEEE fic~.itsactio7zs on Con?puteq 33(1 1)
(Novcrnber 1984): 968-976.

3. J . Fisher, "Trace Scheduling: A Technique for Global
Microcode Compaction," IEEE Trarzsactioizs oiz Cow-
pureus, C-30(7) (July 1981): 478-490.

68 digital Tcchn~cal Journal Vol. 10 No. 1 1998

4. J. Ellis, Bulldog: A Compiler for VLIW Architectures
(Cambridge, IMA: MIT Press, 1985), Ph.D. thesis,
Yalc University (1984).

5. D. DeWitt, "A [Machine-Independent Approach to the
Production of Optimal Horizontal Microcode," Ph.D.
thesis, University of Michigan, Ann Arbor, Mich.
(1976).

6. D. Landskov, S. Davidson, B. Shriver, and P. Mallett,
"Local Microcode Compaction Tech~liques," ACM
Computing Sc~ruejs, 12(3) (September 1980):
261-294.

7. V. Allan, S. Beaty, B . Su, and P. Sweany, "Building a

llctargetable Local Instruction Scheduler," SoJl~uare-
Practice& Fxperience, 28(3) (March 1998): 249-284.

8. E. Coffman, Compcrter arzd Job-Shop Schedt~lirzg
TI3eory (New York: John Wiley & Sons, 1976).

9 . D. Padua, D. I<llck, and D. Lmvrie, "High-Speed Mul-
tiprocessors and Compilation Techniques," IEEE Trans-
actions on Computers, C-29(9) (September 1980):
763-776.

10. A. Aho, R. Sethi, and J . Ullman, Compilers: Principles,
Techrziq~ies, and Tools (Reading, M A : Addison-

18. R. Gupta and M. Soffa, "Region Scheduling: hi
Approach for Detecting and Redistributing Paral-
lelism," IEEE Trurzsactions on Sofi~uare Engineeri~zg,
16(4) (April 1990): 421-431.

19. S. Mahlke, W. Chen, W.-M. Hwu, B. Rao, and M.
Schlansker, "Sentinel Scheduling for \rLW and Super-
scalar Processors," Proceedirzgs of the 5th hzterrza-
tional Conference 012 Architectrural Support Jor
Programming Languages and Operating Systems,
Boston, Mass. (October 1992): 238-247.

20. C. Chekuri, R. Johnson, R. Monvani, B. Natarajan, B.
Rau, and M. Schlnnsker, "Profile-Drivcn Instruction-
Lcvel-Parallel Scheduling with Application to Super
Blocks," Proceedings of the 29th International Sym-
posium on Microarchitectzrre (MICRO-29), Paris,
France (December 1996): 58-67.

21. V. Allall, R. Jones, R. Lee, and S. Allan, "Soft\vare
Pipelining," ACIVI Comp~iting Sz~ruejs, 27(3) (Septem-
ber 1995).

22. B. Rau, "Iterative Modulo Scheduling: An Algorithm
for S o b a r e l'ipelining Loops," Proceedir~gs of the
27th hzternation~rl Synposizinz on il/licroarcbitecture
(MICRO-27), San Jose, Calif. (December 1994): 63-74.

PVesley, 1986). 23. S.-M. Moon and K. Ebcioglu, "Parallelizing Nonnu-
11. H. Reif and R. Tarjan, "Syn~bolic Program Analysis in merical Code with Selective Scheduling and Sofhvare

Almost-Linear Time," ,lo~irnal of Con?pz~tiizg, 1 1 (1) Pipeli~~ing," ACM Transactions on Progminmirzg
(February 1981): 81-93, Lang~rages caizd Systenzs, 18(6) (Novcmber 1997):

12. P. Sweany, "Interblock Code Motion without Copies,"
Ph.D. thesis, Computer Science Department, Col-
orado State University (1992).

13. R. Mueller, M. Duda, P. S\veany, and J . Walicki,
"Horizon: A Retargctable Compiler for Horizontal
Microarchitectures," IEEE Transacrions on Software
Engineering: Special Issue on Microprogramrnilzg,
14(5) (May 1998): 575-583.

14. B. Huber, "Path-Selection Heuristics for Dominator-
Pat11 Scheduling," Master's thesis, Department of Con-
puter Science, Michigan Technological University
(1995).

15. M. Bourke, P. Sweany, and S. Beaty, "Extending List
Scheduling to Cons~der Execut~on Frequency," Pro-
ceedings of lhe 28th F/uivu~a lnteri~atronal Conference
on Syslen7 Sczences (January 1996).

16. A. Nicolau, "Percolation Scheduling: A Parallel Com-
pilation Technique," Technical Report TR85-678,
Department of Comp~~te r Science, Cornell University
(May 1985).

24. S. Novak and A. Nicolau, "An Effic~ent Global Resource
Directed Approach to Exploiting Instruction-Level Pard-
lehsrn," Proceedrng~ oft13e 1996hzternclt~oizal Confeazce
on P~~rallel Arcl~h~tect~~res and Comptlcr Techizrqz~es
(PACT 96), Boston, Mass. (October 1996) 87-96.

25. D. Bernstein and LM. Rodeh, "Global Instruct~on
Scheduling for Superscalar Mach~nes," Proceed~ngs of
the ACII/ISIGPLAN 1991 Conference on Prograrnmz~zg
Language Des~gn and fnzplementatron, Toronto,
Canada (June 1991): 241-255.

26. D. Bernstein, D. Cohen, and H. Kra\vczyk, "Code
Duplication: An Assist for Global Instruction Schedul-
ing," Proceed~ngs ofthe 24th Ii~ternatrorznl Synzposczim
on il.licroarchztectz~i~e (MICRO-24), Albuquerque,
N . Mex. (November 1991): 103-1 13.

27. D. Bernstein, D. Cohen, Y. L,avon, and V. Rainish,
"Performance Evaluation of Instruction Scheduling
on the IBM RS/6000," Proceedings ofthe 2.5th Inter-
~zational Symposizim on il/lic~+oc~rchitect~~re (MICRO-
25), Portland, Oreg. (December 1992): 226-235.

17. A. Aiken and A. Nicolau, "A Development Environ-
28. J. Ferrante, K. Ottenstein, and J. Warren, "The Pro-

ment for Horizontal Microcode," IEEE Transactzons
gram Dependence Graph and Its Use In Optimiza-

012 Softzucrre Eng~neerirzg, 14(5) (May 1988):
tion," ACM Tra~zsactzons on Progran?mr~ig Lang~r~ges

584-594.
ancl Systems, 9(3) (July 1987): 319-349.

Digital Technical Journal Vol. 10 No. 1 1998 69

Biographies

Philip H. Sweany
Associate Professor Phil Sweany has been a member of
Michigan Technological University's Computer Science
faculty since 1991. H e has been investigating compiler
techniques for instruction-level parallel (ILP) architectures,
co-authoring several papers on instruction scheduling, reg-
ister assignment, and the interaction between these two
optimizations. Phil has been the primary designer and
implementer of Rocket, a Iighly optimizing compiler that
is easily retargetable for a wide range of ILP architectures.
His rescarch has been significantly assisted by grants from
Digital Equipment Corporation and the National Science
Foundation. Phil received a B.S. in computer science in
1983 from Washington State University, and M.S. and
Ph.D. degrees in computer science from Colorado State
University in 1986 and 1992, respectively.

Steven M. Carr
Steve Carr is an assistant professor in the Department of
Computer Science at Michigan Technological University.
The focus of his research at the ~~niversity is memor)i-
hierarchy management and optimization of instruction-
level parallel architectures. Steve's research has been sup-
ported by both the National Science Foundation and
Digital Equipment Corporation. H e receivcd a B.S. in
computer sciencc %om Michigan Technological University
in 1987 and M.S. and Ph.D. degrees from Rice U~liversity
in 1990 and 1993, respectively. Steve is a member ofACM
and an IEEE Cornp~~ter Society Affiliate.

70 Digital Technical Journal Vol. 10 No. 1 1998

Brett L. Huber
Raised in Hope, Michigan, Brett earned B.S. and M.S.
degrees in computer science at Michigan Technological
Universinr in Michiean's historic I<enreenaw Peninsula. H e "
is an engineer in the Software Development Systems group
at Texas Instruments, Inc., and is currently developing an
opt imizi~~g compiler for the TMS320C6x family of VLIW
digital signal processors. Brett is a member of the ACM
and an IEEE Computer Society Affiliate.

Maximizing
Multiprocessor
Performance with
the SUIF Compiler

Parallelizing compilers f o r multiprocessors f ace

m a n y hurdles. However, SUIF's robust analysis
a n d memory optimization techniques enab led

speedups o n t h r e e four ths of t h e NAS a n d
SPECfp95 benchmark programs.

Q 1996 IEEE. Rcpfintcd, with permission, ti.oln C~)III /~IIIOI;
I)ccc~nbcr 1996, pages 54-89 T h ~ s paper has bccn ~notiitied for
p~~blicnriun hcrc \\,it11 the addition o i rhc sccrion Tllc Srnrus and
Fur~lrc ofSI'1F.

I
Mary W. Hall
Jennifer M. Anderson
Saman P. Amarasinghe
Brian R Murphy
Shih-Wei Liao
Edouard Bugnion
Monica S. Lam

The affordability of shared memory multiprocesso~-s
offers the potential ofsupercomputer-class performance
to the general public. Typically used in a multiprogram-
ming mode, these machines increase throughput by
running several independent applications in parallel.
But multiple psoccssol-s can also work together to
speed up single applications. This requires that ordinary
sequential programs be rewritten to take advantage of
tlie extra processors.' '' A ~ ~ t o ~ n a t i c parallelization with a
compiler offers n \\lay to d o this.

Parallelizing conlpilers face more difficult challenges
from multiprocessors than from vector machines, which
\yere their initid target. Using a vector architecture effec-
t i~~ely involves parallelizing repeated arithmetic opera-
tions on large data streams-for example, the innermost
Loops in array-oriented programs. O n a multiprocessor,
however, this approach typically does not provide suffi-
cient granularity of parallelism: Not enough work is
performed in parallel to overcome processor synch-
ronization and cornniunication overhead. To use a
~nultiprocessor effectively, the colnpiler must exploit
coarse-grain parallelism, locating large computations
that crui execute independently in parallel.

Locating parallelism is just the first step in produc-
ing efficient multiprocessor code. Achieving high per-
formance also requires effective use of the memory
hierarchy, and multiprocessor systems have more corn-
plex memory hierarchies than typical vector machines:
They contain not only shared memory but also multi-
ple le\leJs of cache memory.

These added challenges often limited the effectiveness
of early parallelizing compilers for multiprocessors, so
programmers developed their applications from scratch,
without assistance from tools. Rut explicitly managing an
application's parallelism ancl memory use requires a great
deal o f p r o g m m i n g I<nowledge, and the work is tedious
and error-prone. Moreover, the resulting programs are
optimized for only a specific machine. l:hus, die effort
required to develop efficient parallel programs restricts
the uses base for multiprocessors.

This article describes automatic parallelization tech-
niques in the SUIF (Stanford University Intermediate

Vol. 10 No. 1 1998 71 Digital Tcchnicnl Journ;~l

I

Format) compiler that result in good multiprocessor
performance for array-based numerical programs. We
provide SUIF performaice measurements for the com-
plete NAS a.nd SPEC@95 benchmark suites. Overall, the
rcs~~l ts for these scienthc programs arc promising. The
compilcr yields speedups on tl~rec fourths of the pro-
grams and has obtained the highest ever performance on
the SPECfp95 benchmark, indicating that the compiler
can also achieve efficient absolute perform:ulcc.

Finding Coarse-grain Parallelism

Multiprocessors work best \\{hen the individual proccs-
sors have large units of independent computation, but
it is not easy to find such coarse-grain parallelism. First
the compiler must find available parallelis~n across pro-
cedure boundaries. Furthermore, the original conipu-
tations may not be pardlelizable as given and may first
require some traisformatio~~s. For example, experience
in parallelizing by hand suggests that we must often
replace global arrays with private versions on different
processors. In other cases, the computation may
need to be restructured-for example, \ve may have to
replace a sequential accun~ulation with a parallel reduc-
tion operation.

I t takes a largc suite ofrobust analysis techniques to
successfully locate coarse-grain parallelism. Gcncral
and ~ r n i h r m frarnetvorks helped us manage the com-
plexity involved in building such a systcm into SUIF.
We a~ltotnated the analysis to privatize arrays and to
recognize reductions to both scalar and array variables.
Our compiler's analysis techniques all operate seam-
lessly across proccdure boundaries.

Scalar Analyses
An initial phase analyzes scalar variables in the programs.
I t uses techniques such as data depcndcnce analysis,
scalar privatization analysis, and reduction recognition
to detect parallelism among operations with scalar vari-
ables. It also derives symbolic information o n tlicsc scalar
variables that is usefill in the array analysis phase. Such
itlforniation includes constant propagation, induction
variable recognition and elimination, recognition of
loop-invariant computations, and s)ln~bolic relation
prc)pagation .""

Array Analyses
An array analysis phase uses a unified mathe~natical
framework bascd on linear algebra and integer linear
prograniming.' The analysis applies the basic data
dependence test to determine if accesses to an array
can rcfcr to tlic same location. To support array priva-
tization, it also finds array dataflo\v tnfbrmation that
determines whether array elements used in an iteration
refer to the values produced in a pre\.lous iteration.

72 1)iginl Technical Journal Vol. 10 No. 1 1998

Moreover, it recognizes commutative operations on
sections of an array and transforms diem into parallel
reductions. The reduction analysis is powerfil enough
to recognize corntnutative updates of even indirectly
accessed array locations, allowing parallelization of
sparse computations.

All these analyses arc fonn~~la ted in terms of integer
programming problems o n systems of linear inequali-
ties that represent tlie data accessed. These inequalities
are derived from loop bounds and array access func-
tions. Illiplcmcnting optimizations to speed up com-
mon cases reduces tlie compilation time.

Interprocedural Analysis Framework
All the analyses are implemented iisillg a uniforni
interprocedural analysis framework, which helps man-
age the sohvarc engineering complexity. The frame-
work i~scs interprocedi~ral datatlolv analysis,' which is
Inore efficient than the more common technique o f
inline substitution.' Inline substitution replaces each
procedure call with a copy of the called proccdurc,
then analyzes the expanded codc in the usual intrapro-
cedural manner. Inline substitution is not practical for
large programs, bccnuse it can nlalce the program too
large to analyze.

Our technique analyzes only a single copy of each
procedl~re, capturing its side effects in a function. This
fi~nction js then applied at each call site to pr-oducc
precise results. 1~VIic1i different calling contests ~ndke it
necessary, the algorithm selectively clones a procedure
so that code can be analyzed and possibly parallelized
under different calling contexts (as when different
constant values are passed to the same formal parame-
ter). I n this way the fill1 advantages of inlining are
achieved ~vithout expanding the code indiscri~liinatcly.

In Figure 1 the boxes represent procedure bodics,
and the lines connccti~lg them represent procedure
calls. The main computation is a scries of four loops to
compute three-dimensional fast Fourier transk)rms.
Using interprocedural scalar and array aanlyscs, the
SUIF conipiler determines that these loops are paral-
lelizable. Each loop contains more than 500 lines of
code spanning up to nine procedures with up to 42
procedure calls. If this program had been hlly inlined,
the loops presented to the compiler for analysis would
have each colltaincd more than 86,000 lines of codc.

Memory Optimization

Nunierical applications o n high-performance micro-
processors are ohen memory bo~tnd. Even with one or
morc levels ofcachc to bridge tlie gap benveen proces-
sor and memory speeds, a processor [nay still waste half
its time stalled o n memory accesses because it frequently
references an item not in the cache (a cache miss). This

I : : I

Figure 1
The compiler discovers parallelism through interprocedural array analysis. Each of the four parallelized loops at lefi consists of
more than 500 lines of code spanning up to nine procedures (boxes) with up to 42 procedure calls (lines).

memory bottleneck is further exacerbated on multi-
processors by their greater need for memory traffic,
resulting in more contention on the memory bus.

An effective compiler must address four issues that
affect cache behavior:

Communication: Processors in a multiprocessor
system communicate through accesses to the same
memory location. Coherent caches typically keep
the data consistent by causing accesses to data writ-
ten by another processor to miss in the cache. Such
misses are called true sharing misses.

Limited capacity: Numcric applications tend to have
large working sets, which typically exceed cache
capacity. These applications ofien stream through
large amounts of data beforc reusing any of it,
resulting in poor temporal locality and numerous
capacity misscs.

Limited associativity: Caches typically have a small
set associcrtivity; that is, each memory location can
map to only one or just a few locations in the cache.
Conflict misses-when an item is discarded and
later retrieved--can occur even when the applica-
tion's working set is smaller than the cache, if the
data are mapped to the same cache locations.

Large line size: Data in a cache are transferred in
fixed-size units called cache lines. Applications that
d o not use all the data in a cache line incur more
misses and are said to have poor spatial locality. O n
a multiprocessor, large cache lines can also lead to
cache misses when different processors use differ-

ent parts of the same cache line. Such misses are
called fake sharing misses.

The compiler tries to eliminate as many cache misses as
possible, then minimize the impact of any that remain by

ensuring that processors reuse the same data as
many times as possible and

making the data accessed by each processor con-
tiguous in die shared address space.

Tecluliques for addressing each of these subproblems
are discussed below. Finally, to tolcratc the latency of
remaining cache misses, the cotiipiler uses co~?zp~ler-
insertedprefetching to move data into the cache before
it is needed.

Improving Processor Data Reuse
The compiler reorganizes the computation so that each
processor reuses data to the greatest possible extent.""
This reduces the working set o n each processor,
thereby minimizing capacity misses. I t also reduces
interprocessor commulucation and thus minimizes
true sharing misses. To achieve optimal reuse, the com-
piler uses affinepartitioning. This technique analyzes
reference patterns in the program to derive an affine
mapping (linear transformation plus an offset) of the
computation of the data to the processors. The affine
mappings are chosen to maximize a processor's reuse
of data while maintaining sufficient parallelism to keep
all processors busy. The compiler also uses loop block-
ing to reorder the computation executed 011 a single
processor so that data is reused in the cache.

Digital Technical Journal Vol 10 No. 1 1998 73

Making Processor Data Contiguous
The compiler tries to arrange the data to makc a
processor's accesses contiguous in the shared addrcss
space. This improves spatial locality \\rliile reducing
conflict ~nisscs and falsc sharing. SUIF can manage
data placement within a single array and across multi-
ple arrays. Thc data-to-processor mappings computed
bv the affinc partitioning analysis are used to deter-
mine the data being accessed by each processor.

Figure 2 shows how the compilcr's usc of data per-
mutation and data str ip-~nining'~ can make contiguous
the data within a singlc array that is accessed by one
processor. Data permutation interchanges the dimen-
sions of the array-fix example, transposing a two-
dimensional army. Data strip-mining changes an
array's dimensionality so that all data accessed by the
same processor are in the same plane of the array.

To make data across multiple arrays accessed by the
same processor contiguous, we use a technique called
co/7/pi/et*-dilrc/cdp~~~qe coIoTi~~g." The compiler uses

its knowledge of the acccss patterns to dircct the oper-
ating system's page allocation policy to makc each
processor's data c o n t i g ~ ~ o ~ ~ s in the p1i)rsical address
space. The operating systern ~ ~ s c s tlicse hints to deter-
mine the virtual-to-physical page mapping at pagc
allocation time.

Experimental Results

We conducted a series of pcrformancc c\!aluations to
delnonstrate the impact o f SUIF's analyses and opti-
mizations. \;Vc obtained measurements on a Digital
Alphaserver 8400 with eight 2 1 164 processors, each
with two levels ofon-chip cache and a 4-Mbpte exter-

, ~n on nal cache. Because speedups are harder to obtq'
machines with fast processors, our use of a state-of-
the-art machine makes the results Inore riieaningh~l
and applicable to future systems.

We ~ ~ s e d t \ \~o complete standard benchmark suitcs
to evaluate our conipilcr. Wc prcscnt rcsults for the 10

STRIP-MINING PERMUTATION

Figure 2
Data tsansforniations cnn ~nakc thc data accessed by each processor contiguous in the s h a d addrcss space. In the two
esalnples above, the original arrays arc two-dimensional; the axes are identified to sho\\r that elements along the fil-st axis
are contiguous. First thc atline partitioni~lg analysis determines which data elemeots are accesscd by thc salnc processor
(the shaded elements are accessed by the first processor.) Second, data strip-mining turns thc 2D nrrny into a 3D array,
with the shaded elements in the same plane. Finally, applying data permutation rotatcs the array, making data accesscd
by each processor contiguous.

74 Digital Technical Journal \bl. 10 No. 1 1998

programs in the SPECfp95 benchmark suite, which is
commonly used for benchmarking uniprocessors. We
also used the eight official benchmark programs from
the NAS parallel-system benchmark suite, except for
embar; here we used a slightly modified version from
Applied Parallel Research.

Figure 3 shows the SPEC@95 and NAS speedups,
measured on up to ejght processors on a 300-MHz
Alphaserver. We calculated the speedups over the best
sequential execution time from either officially reported
results or our own measurements. Note that mgrid and
applu appear in both benchmark suites (the program
source and data set sizes differ slightly).

To measure the effects of the different compiler
techniques, we broke down the performance obtained
on eight processors into three components. In Figure
4, baseline shows the speedup obtained with paral-
lelization using only intraprocedural data dependence
analysis, scalar prjvatization, and scalar reduction
transformations. Coarse grain includes the baseline

techniques as well as techniques for locating coarse-
grain parallel loops-for example, array privatization
and reduction transformations, and full interproce-
dural analysis of both scalar and array variables.
Memory includes the coarse-grain techniques as well
as the ~nultiprocessor memory optimizations we
dcscribed earlier.

Figure 3 shows that ofthe 18 progranis, 13 show good
parallel speedup and can thus take advantage of additional
processors. SUIF's coarse-grain techniques and memory
optimizations significantly affect the performance of half
the programs. The swim and tomcatv programs show
superlinear speedups because the compiler eliminates
almost all cache misses and their 14 Mbyte working sets
fit into the multiprocessor's aggregate cache.

For most of the programs that did not speed up, the
compiler found much of their computation to be par-
allelizable, but the granularity is too fine to yield good
n~ultiprocessor performance on machines with fast
processors. Only two applications, @ppp and bulc, have

tomcatv

mgrid
aPPlu
turb3d
hydro2d

0 1 2 3 4 5 6 7 8
PROCESSORS

(a) SPECfp95

mgrid

buk
fftpde

0 1 2 3 4 5 6 7 8
PROCESSORS

(b) NAS Parallcl Bench~narks

Figure 3
SUIF compiler speedups over the best sequential time achieved on the (a) SI'ECfp95 and (b) NAS parallel benchmarks.

Vol. 10 No. 1 1998 75

z = a x

m

KEY:

MEMORY OPTIMIZATION

COARSE-GRAIN PARALLELISM

BASELINE

Figure 4
The speedup achieved on eight processors is broken down into three components to show ho\.v SUIF's memory optilnization
and discovery of coarse-grain parallelism affected perforn~imce.

n o statically analyzable loop-level prdlelism, so they
are not amenable to our techniques.

Table 1 shows the times and SPEC ratios obtained
on an eight-processor, 440-MHz Digital AlphaSer~rer
8400, testifying to our compiler's high absolute per-
formance. The SPEC ratios compare machine perfor-
mance with that of a reference machine. (These are
not official SPEC ratings, which among other things

require that the software be generally available. The
ratios we obtained are nevertheless valid in assessing
our compiler's performance.) The geometric mean of
tile SPEC ratios i~nproves ovcr the uniprocessor execu-
tion by a factor of 3 with four processors and by a fac-
tor of 4.3 with eight processors. Our eight-processor
ratio of 63.9 represents a 50 percent improvement
over the highest number reported to date.12

Table 1
Absolute Performance for the S P E C f Benchmarks Measured on a 440-MHz Digital Alphaserver Using One
Processor, Four Processors, and Eight Processors

Execution Time (secs) SPEC Ratio

Benchmark 1 P 4P 8P 1 P 4P 8 P

tomcatv
swim
su2cor
hydro2d
mgrid

applu
turb3d
apsi

~ P P P P
wave5
Geometric Mean

76 Digital Technical Journal

Acknowledgments

This research was supported in part by the Air Force
Materiel Command and ARPA contracts F30602-95-
C-0098, DABT63-95-C-0118, and DABT63-94-C-
0054; a Digital Equipment Corporation grant; an
NSF Young Investigator Award; an NSF CISE post-
doctoral fellowship; and fellowships from ATPcT Bell
Laboratories, DEC Western Research Laboratory,
Intel Corp., and the National Science Foundation.

References

1. J.M. Anderson, S.P. Amarasinghe, and M.S. Lam,
"Data and Compl~tation Transformations for Multi-
processors," Proc. Ffth ACM SICPlaix Symnp. Prilzci-
ples avid Practice of t'arallel I-'rogmmnzing, AC M
Press, New York, 1995, pp. 166-178.

2. J . M. Anderson and M.S. Lam, "Global Optimizations
for Parallelism and Locality on Scalable Parallel
Machines," Proc. SIGPlun 93 Conf Progratnming
Language Deszgn and Implenzentation, ACM Press,
New York, 1993, pp. 112-125.

3. P. Banerjee et al., "The Paradigm Compiler for
Distributed-Memory Multicomputers," Computer,
Oct. 1995, pp. 37-47.

4. W. Blunie et al., "Effective Automatic Parallelization
with Polaris," Ilrt'l ,I Pnmllel Progrnn?mr7lg, May
1995.

5. E. Bugnion et al., "Compiler-Directed Page Coloring
for Multiprocessors," Proc. Seventh Ir?t'I CogK Archi-
tect~~ral %~/pport ,for Programming Langt~ages and
Ol~emtiizg Systenxs, ACM Press, New York, 1996, pp.
244-257.

6. K. Cooper et al., "The Parascope Parallel Program-
ming Environment," Proc. IEEE. Feb. 1993, pp.
244-263.

7. Standard Performance Evaluation Corp., "Digital
Equipment Corporation AlphaServer 8400 5/440
SPEC CFP95 Results," SPEC ~Vez~~sletter, Oct. 1996.

8. M. Haghighat and C. Polychronopolo~~s, "Symbolic
Puialysis for Parallelizing Compilers," ACiM Trans Pro-
gra.n~iniizg La~guages aacl Systems, July 1996, pp.
477-5 18.

9. R4.W. Hall et al., "Detecting Coarsc-Graln Parallelism
Using an Interprocedural Parallelizing Cornp~ler,"
Proc. Sc~pE?rconzpf,ltilzg '95, IEEE CS Press, Los Alami-
tos, Calif., 1995 (CD-ROM only).

10. P. Havlak, Interprocedziral Symbolic A~zalysis, PhD
thesis, Dept. of Cornpi~ter Science, Rice Univ., May
1994.

11. F. Irigoin, J?. Jouvelot, and R. Triolet, "Semantical
Interprocedural Parallelization: An Overview of the
PIPS Project," Proc I991 ACA4 Int'I Conj S~percom-
p~llzng, ACM Prcss, New York, 1991, pp. 244-251.

12. I<. Iccnnedy and U IGcrner, "Automatic Data Layout
for H ~ g h Performance Fortran," Proc Si@ercon7p~1f-
ing '95. I E E E CS Press, Los Alamitos, Calif., 1995
(CD-ROIM only).

Editors' Note: With the follozuing section, the nzrlhon
provide an update on the status of the SUIF compiler
since the publication of their paper in Computer in
Decenzber 1996.

Addendum: The Status and Future of SUIF

Public Availability of SUIF-parallelized Benchmarks
The SUIF-parallelized versions of the SPEC@95
benchmarks used for the experiments described in this
paper have been released to the SPEC committee and
are available to any license holders of SPEC (see
http://cwv.specbench.org/osg/cpu95/par-research).
This benchmark distribution contains the SUIF out-
put (C and FORTRAN code), along with the source
code for the accompanying run-time libraries. We expect
these benchmarks will be useful for two purposes:
(1) for technology transfer, providing insight into how
the compiler transforms the applications to yield the
reported results; and (2) for further experimentation,
such as in architecture-simulation studies.

The SUIF compiler system itself is available from the
SUIF web site at http://ww-suif.stanford.edu. This
system includes only the standard parallelization analy-
ses that were used to obtain our baseline results.

New Parallelization Analyses in SUIF
Overall, the results ofautomatic parallelization reported
in this paper are impressive; however, a few applica-
tions either d o not speed up at all o r achieve limited
speedup at best. The question arises as to whether
SUIF is exploiting all the available parallelism in these
applications. Recently, an experiment to answer this
q i~es t io~l was performed in which loops left unparal-
lelized by SUIF were instrulnented wit11 run-time tests
to determine whether opportunities for increasing the
effectiveness of automatic parallelization remained in
these progranls.' Run-time testing determined that
eight of the programs from the NAS and SPEC95fp
benchmxl<s had additional parallel loops, for a total of
69 additional parallelizable loops, w h c h is less than 5%
of the total number of loops in these programs. Of
these 69 loops, the remaining parallelism had a signifi-
cant effect on coverage (the percentage of the pro-
gram that is parallelizable) o r granularity (the size of
the parallel regions) in only four of the programs: apsi,
su2cor, waves, and fftpde.

We found that almost all the significant loops in
these four programs could potentially be parallelized
 sing a new approach that associates predicates wit11
array data-flow Instead of producing conserv-

Digital Technical Journal Vol. 10 No. 1 1998 77

atitre results that hold for all control-flow patlis and all
possible program inputs, predicated array data-flow
analysis can derive optimistic results guarded by predi-
cates. Predicated array data-flow analysis can lead to
more effective auto~natic parallelization in three \\lays:
(1) It improves compile-time analysis by ruling out
infeasible control-flow paths. (2) It provides a franic-
work for the compiler to introduce predicates that, if
proven true, would guarantee safety b r desirable data-
flo\l values. (3) It enables the compiler to derive Ion.-cost
run-time parallelization tests bascd on the predicates
associated with desirable data-flow values.

SUIF and Compaq's GEM Compiler
The GEIM compilcr systcln 1s the technology Compaq
has been using to bu~ld comp~lcr products for a variety
of languages and hardwarc/soft\ilarc p l a t fo r~~ i s .~
Within Compaq, work has bccn done to connect SUIF
with the GEM compiler. SUIF's intermediate repre-
sentxion was converted into GE144's intermediate rep-
resentation, so that SUIF code can be passed directly
to GEM'S optimizing back end. This eliminates the
loss of information suffered when SUIF code is trans-
lated to C/FORTRAN source before it is passed to
GEM. It also enables us to generate more efficient
code for Alpha-microprocessor systemr

SUIF and the National Compiler Infrastructure
The SUIF co~i ip~ler systeln was I-cccntl\i chosen to be
part of the Nnt~onal Comp~lcr Infrastructure (NCI)
project funded by thc Dctcnsc Ad\ianced Rcsearcli
Projects Agency (D A I ' A) and the Nat~onal Sc~cncc
Foundation (NSF). 'The goal of the project is to
develop a common conipllcr platform for researchers
and to facilitate technology transfer to ~ndustry. The

SULF component of the NC:I project is the result of the
collaboration among researchers in five universities
(Harvard University, Massachusetts Institute of
Technology, h c e University, Stanford Uni\,crsity,
University of California at Santa Barbara) and one
industrial partner, Portland Group Inc. Compaq is a
corporate sponsor of the project and is providing thc
FORTRAN front end.

A revised version of the SUIF jnfrastructurc (SUIF
2.0) is being released as part of the SUIF NCI project
(a preliminary vel-sion of SUIF 2.0 is available at the
SUIF web site). Tlic completed system \\rill be
enhanced to support parallelization, in terprocedural
a~ialysis, memory hierarchy optimizations, objected-
oriented programming, scalar opti~nizations, and
machine-dependent optin~izations. An overview of
the SUIF NCI systeni is shown in Figure A l . See
M~~JMI-suif.sta~iford.ed~~/suif/NCI/suif.htrnl for more
information about SUIF and thc NC:I projcct, includ-
ing a complete list ofoptimizations and a scliedulc.

References

1. B. So, S. moon, and M. Hall, "M~~sLII-ing the Effective-
ness of Automatic P3rallclization in SUIF-'," P~',ncc,c,i/i~(q.s
of the /~~/errrutiorzal Co~fi)re~lcc olr Slcpc,~-c-o/~rpl~/i~~~q
98, July 199s.

2 . S. iMoon, lVl. Hall, 2nd B. ~Murph!,, "Predic;lted Arr;ly
Data-Flotv Analysis for Run-Time Parnllclization," I'ro-
ceediugs oJthc> 11~/0~~1~1l io11~c l (,OI!/~JI-O/ICO O I I .SII/IOI.L-(IIIZ-
ptlting '98, July 1998.

3 . D. Blickstri~~ c t dl., "The G E M Optirniz~ng Compiler
System," Di,q~/ul ~?~bl/iCfl//f~ll/~l~~//, \.ol. 4,110. 4 (Specla1
Issue, 1992): 121-136.

FRONT
ENDS

INTERPROCEDURAL ANALYSIS
PARALLELIZATION

LOCALITY OPTIMIZATIONS
SCHEDULING

OBJECT-ORIENTED OPTIMIZATIONS
REGISTER ALLOCATION

SCALAR OPTIMIZATIONS

TARGET
LANGUAGES

Figure A1
The SUIF Cornpilcr Infr ;~s t r~~ct~~rc

Val. 10 No. 1 1998

Biographies

Mary W. Hall
Mary Hall is jointly a research assistant professor and project
leader at the University of Southern California, Department
of Computer Science and at USC's Information Sciences
Institute, where she has been since 1996. Her research
interests focus on compiler support for high-performance
computing, particularly interprocedural analysis and auto-
matic parallelization. She graduated magna cum laude with
a B.A. in co lnp~~ter science and mathematical sciences in
1985 and received an M.S. and a Ph.D. in computer science
in 1989 and 1991, respectively, all from Rice University.
Prior to joining USC/ISI, she was a visiting assistant pro-
fessor and senior research fellow in the Department of

Brian R Murphy
A doctoral candidate in computer science at Stanford Uni-
versity, Brian Murphy is currently working on advanced pro-
gram analysis under SUIF as part of the National Compiler
Infrastructure Project. H e received a B.S. in computer sci-
ence and engineering and an M.S. in electrical engineering
and computer science from the Massachusetts Institute of
Technology. His master's thesis work on program analysis
was carried out with the Functional Languages group at
the IBM Almaden Research Center. Brian was elected to
the Tau Beta Pi and Eta Kappa Nu honor societies.

Computer Scicnce at Caltech. In earlier positions, she was
a rcsearch scientist at Stanford University, working with
the SUIF Compiler group, and in the Center for Research
on Parallel Computation at Rice University.

Tennifer M. Anderson
Jennifer ~ ~ ~ C ~ S O I I is a research staff member at Compaq's
Western Research Laboratory where she has worked 011 the
Digital Continuous Profiling Infrastructure (DCPI) proj-
ect. Hcr research interests include compiler algorithms,
programming languages and environments, profiling sys-
tems, and parallel and distributed systems sofnvare. She
earned a B.S. in information and computer science from
the University of California at Irvine and received M.S.
and Ph. D. degrees in computer science from Stanford
University.

Saman P. Amarasinghe
Saman Amarasinghe is an assistant professor of computer
science and engineering at the Massachusetts Institute of
Technology and a member of the Laboratory for Computer
Science. His research interests include compilers and com-
puter architecture. H e received a B.S. in electrical engineer-
ing and computer science from Cornell University and M.S.
and Ph.D. degrees in electrical engineering from Stanford
University.

Shih-Wei Liao
Shih-Wei Liao is a doctoral candidate at the Stanford
University Computer Systems Laboratory. His research
interests include compiler algorithms and design, pro-
gramming environments, and computer architectures.
H e received a B.S. in computer science from National
Taiwan University in 1991 and an M.S. in electrical
engineering from Stanford University in 1994.

Edouard Bugnion
Ed Bugnion holds a Diplom in engineering from the Swiss
Federal Institute of Technology (ETH), Zurich (1994)
and an M.S. from Stanford University (l996), where he is a
doctoral candidate in computer science. His research inter-
ests include operating systems, computer architecture, and
machine simulation. From 1996 to 1997, Ed was also a
research consultant to Compaq's Western Research
Laboratory. H e is the recipient of a National Science
Foundation Graduate Research Fellowshp.

Digital Technical Journal Vol. 10 No. 1 1998 79

Monica S. Lam
Monica Lam is an associate professor in the Computer
Science Department at Stanford University. She leads the
SUIF project, which is aimed at developing a common
infrastructure to support research in compilers for
advanced languages and architectures. Her research inter-
ests are compilers and computer architecture. Monica
earned a B.S. fiom the University of British Columbia in
1980 and a Ph.D. in computer science fiom Carnegie
Mellon University in 1987. She received the National
Science Foundation Young Investigator award in 1992.

80 Digital Technical Journal Vol. 10 No. 1 1998

Debugging Optimized
Code: Concepts and
Implementation on
DIGITAL Alpha Systems

Effective user debugging of optimized code has
been a topic of theoretical and practical interest
in the software development community for
almost two decades, yet today the state of the
art is st i l l highly uneven. We present a brief sur-
vey of the literature and current practice that
leads to the identification of three aspects of
debugging optimized code that seem to be
critical as well as tractable without extraordi-
nary efforts. These aspects are (1) split lifetime
support for variables whose allocation varies
within a program combined with definition
point reporting for currency determination,
(2) stepping and setting breakpoints based on
a semantic event characterization of program
behavior, and (3) treatment of inlined routine
calls in a manner that makes inlining largely
transparent. We describe the realization of
these capabilities as part of Compaq's GEM

back-end compiler technology and the debug-
ging component of the OpenVMS Alpha oper-
ating system.

I
Ronald F. Brender
Jeffrey E. Nelson
Mark E. Arsenault

Introduction

In sofnvare developn~ent, it is common practice to
debug a program that has been compiled with little or
no optimization applied. The generated code closely
corresponds to the source and is readly described by a
simple and straightforward debugging symbol table. A
debugger can interpret and control execution of the
code in a fashion close t o the user's source-level view
of the program.

Sometimes, however, developers find it necessary or
desirable to debug an optimized version of the pro-
gram. For instance, a bug-whether a compiler bug or
incorrect source code-may only reveal itself when
optimization is applied. In other cases, the resource
constraints may not allow the unoptimized form to be
used because the code is too big and/or too slow. Or,
the developer may need to start analysis using the
remains, such as a core file, of the failed program,
whether or not this code has been optimized. Whatever
the reason, debuggmg optimized code is harder than
debugging unoptirnized code-much harder-because
optimization can greatly complicate the relationship
between the source program and the generated code.

Zellwegerl introduced the terms eqected behauior
and tmithful behavior when referring to debugging
optimized code. A debugger provides expected behav-
ior if it provides the behavior a user would experience
when debugging an unoptimized version of a pro-
gram. Since achieving that behavior is often not possi-
ble, a secondary goal is to provide at least truthhl
behavior, that is, to never lie to or mislead a user. In
our experience, even truthful behavior can be chal-
lenging to achieve, but it can be closely approached.

T h s paper describes three improvements made to
Compaq's GEM back-end compiler system and to
OpenVMS DEBUG, the debugging component of the
OpenVMS Alpha operating system. These improve-
ments address

1. Split lifetime variables and currency determination

2. Semantic events

3. Inlining

Vol. 10 No. 1 1998

Before presenting the details of this work, we dis-
cuss the alternative approaches to debugging optimized
code that we considered, the state of the art, and the
operating strategies we adopted.

Alternative Approaches
Various approaches have been explored to improve
the ability to debug optimized code. They include
the following:

Enhance debugger analysis

Limit optimization

Limit debugging to preplanned locations

Dynamically deoptilnize as needed

Exploit an associated program database

We touch on these approaches in turn.
In probably the oldest theoretical analysis that

supports debugging optinlized codc, Hennessy2 stud-
ies whether the value &splayed for a variable is current,
that is, the expected value for that variable at a given
point in the program. The value displayed might not
be current because, for example, assignment of a later
value has been moved forward or the relevant assign-
ment has been delayed or omitted. Hennessy postu-
lates that a flow graph description of a program is
communicated to the debugger, which then solves
certain flow analysis equations in response to debug
commands to determine currency as needed.
Copper~nanQakes a similar though much more gen-
eral approach. Conversely, commercial implementa-
tions have favored Inore complete preprocessing of
information in the compiler to enable simpler debug-
ger mechanism^.^-"

Ifoptimization is the "problem," then one approach
to solving the problem is to limit optimization to only
those kinds that are actua.lly supported in an available
debugger. Zurawslu7 develops the notion of a r c c o v c ~
filnction that matches each kind ofoptimizatio~l. As an
optimization is applied during compilation, the corn-
pensating recovery function is also created and made
available for later use by a debugger. If such a recovery
hnction cannot be created, then the optimization is
omitted. Unfortunately, code-motion-related optimi-
zations generally lack recovery firnctions and so must
be foregone. Taking this approach to the extreme
converges with traditional practice, which is simply to
disable all optimization and debug a completely unop-
timized program.

If full debugger fi~nctionality need only be provided
at some locations, then some debugger capabilities c m
be provided more easily. Zurawski7 also employed this
idea to make it easier to construct appropriate recov-
ery functions. This approach builds on a language-
dependent concept of inspection points, which

Vol. 10 No. 1 1998

generally lnust include all call sites and may corre-
spond to most statement boundaries. His experience
suggests, however, that even limiting inspection points
to statement boundaries severely limits almost all kinds
of optimization.

H6lzle et aLs describe techniques to dynamically
deoptimize part of a program (replace optimized code
with its ~~noptimized equi\lalent) during debugging to
enable a debugger to perform requested actions. They
~nalce the technique more tractable, in part by delaying
asynchronous events to well-defined i~atet.t-~/j~tion
points, generally bachvard branches and calls. Opti-
mization between interruption points is unrestricted.
However, even t h s choice of interruption points
severely limits most code motion and many other
global optimizations.

Pollock and others9.'" use a different kind of deopti-
mization, which might be called preplanned, incre-
mental deoptimization. During a debugging session,
any debugging requests that cannot be honored
because of optimization effects are remembered so
that a subsequent compilatiorl can create an exe-
cutable that can honor these requests. This scheme is
supported by an incremental optimizer that uses a pro-
gram database to provide rapid and smooth forward
infor~nation flow to subsequent debugging sessions.

Feiler" uses a program database to achieve the bene-
fits of interactive debugging while applying as much
static compilation technology as possible. He describes
techniques for maintaining consistency between the
primary tree-based representation and a derivative
compiled form of the program in the face of both
debugging actions and program modifications on-the-
fly. While he appears to demonstrate that more is possi-
ble than might be expected, substantial limitations still
exist on debugging capability, optimization, or both.

A comprehensi\~e introduction and overview to these
and other approaches can be found in Copperman3 and
Acll-Tabatabi." 111 addtion, "All Annotated Biblio-
graphy on Debugging Optimized Code" is avdable
separately on the D<yilcll Tech~zical~/o~lr.~ml web site at
http://nww.digital.corn/info/DTJ. This bibliography
cites uld summarizes the entire literature 011 debugging
optimized code as best we know it.

State of the Art
When we began our work in early 1994, we assessed
the level of' support for debugging optimized code
that was available with competitive compilers. Because
we have not updated this assessment, it is not appro-
priate for us to report the results here in detail. We do
however summarize tlie methodology uscd and the
main results, which we believe remain generally valid.

We created a series of example programs that pro-
vide opportunities for optimization of a particular kind

or of related kinds, and which could lead a traditional
debugger to deviate from expected behavior. We corn-
piled and e x e c ~ ~ t e d these programs under the control
of each system's debugger and recorded how the sys-
tcrn handled the various kinds of optimization. The
range of observed behaviors was divcrse.

At one extreme were compilers that automatically
disable all optimization if a debugging symbol table is
requested (or, equivalently for our purposes, ,' olve an
error if both optimization and a debugging symbol
table are requested). For these compilers, the whole
exercise becomes moot; that is, attempting to debug
optimized code is not allowed.

Some compiler/debugger combinations appeared
to i~sefi~lly support some of our test cases, although
none handled all of them correctly. In particular, none
seemed able to show a traceback of subroutine calls
that compensated for inlining of routine calls and all
seemed to produce a lot ofjitter when stepping by line
on systems where code is highly scheduled.

The worst example that we found allowed comyila-
tion using optimization but produced a debugging
symbol table that did not reflect the results ofthat opti-
mization. For example, local variables were described
as allocated on the stack even though the generated
code clearly used registers for these variables and never
accessed any stack locations. At debug time, a request
to examine such a variable resulted in the display of the
irrelevant and never-accessed stack locations.

The bottom linc from this analysis was very clear:
the state of the art for support of dcbugging opti-
mized code was generally quite poor. DIGITAL'S
debuggers, including OpenVMS DEBUG, were not
unusual in this regard. The analysis did indicate some
good examples, though. Both the CONVEX CXdb4sj
and the H P 9000 DOC9ystems provide many valu-
able capabilities.

Biases and Goals
Early in our work, we adopted the following strategies:

D o not limit or compromise optimization in any way.

Stay within the framework of the traditional edit-
compile-link-debug cycle.
Keep the burden ofanalysis within the compiler.

The prime directive for Compaq's GEM-based
compilers is to achieve the highest possible perfor-
mance from the Alpha architecture and chip technol-
ogy. Any improvements in debugging such optimized
code should be useful in the face of the best that a
compiler has to offer. Conversely, if a programmer has
the luxury of preparing a less optimized version for
debugging purposes, there is little o r n o reason for
that version to be anything other than completely

unoptimized. There seems to be n o particular benefit
t o creating a special intermediate level of co~nbined
debugger/optimization support.

Pragmatically, we did not have the time or staffing
to develop a new optimization framework, for exam-
ple, based on some kind of program database. Nor
were we interested in intruding into those parts of the
GEM compiler that performed optimization to create
more complicated options and variations, which might
be needed for dynamic deoptimization or recovery
hnction creation.

Finally, it seemed sensible to perform most analysis
activities within the compiler, where the most complete
information about the program is already available. I t is
conceivable that passing additional information from
t l ~ e compiler to the debugger using the object file
debugging symbol table might eventually tip the bd-
ance toward performing more analysis in the debugger
proper. The available size data (presented later in this
paper in Table 3) d o not iiidicate this.

We identified three areas in which we felt enhanced
capabilities would significantly improve support for
debugging optimized code. These areas are

1. The handling of split lifetime variables and currency
determination

2. The process of stepping though the program

3. The handling of procedure inlining

In tlle following sections we present the capabilities we
developed in each of these areas together with insight
into the implementation techniques employed.

First, we review the GEM and OpenVMS DEBUG
framework in which we worked. The next three sec-
tions address the new capabilities in turn. The last
major section explores the resource costs (compile-
time size and performance, and object and image
sizes) needed to realize these capabilities.

Starting Framework

Compaq's GEM compiler system and the OpenVMS
DEBUG component of the OpenVMS operating
system provide the framework for our work. A brief
description of each follows.

GEM
The GEM compiler system'" is the technology
Compaq is using to build state-of-the-art compiler
products for a variety of languages and hardware and
software platforms. The GEM system supports a range
of languages (C, C++, FORTRAN including HPF,
Pascal, Ada, COBOL, BLISS, and others) and has been
successfully retargeted and rehosted for the Alpha,
MIPS, and Intel LA-32 architectures and for the

Digital Technical Journal Vol. 10 No. 1 1998 83

Split Lifetime Example A simple example of a split
lifetime variable can be seen in the following straiglit-
line code fragment:

! Define (assign value to) A

: ! U s e definition (value of) A
! Define A again

C = . . . A . . . ; ! Use latter definition A

In this example, the first value assigncd to variable A is
used later in thc assignment to variable B and then
never used again. A new value is assigned to A and
used in the assignment to variable C.

Without changing the meaning of this fragment, we
can rewrite the code as

! Define A 1

! Use A 1
! Define A2

C = . . . A2 . . . ; ! Use A2

where variables A1 and A2 are split child variables of A.
Because A1 and A2 are independent, the following

is also an equivalent fragment:

A 1 = . . . : ! Define A 1

A 2 = . . . ; ! Define A2
B = . . . A l . . . ; ! Use A 1
. . .
C = . . . A 2 . . . ; ! Use A2

Here, we see that the value of A2 is assigned while the
value of A1 is still alive. That is, the split children of a
single variable have overlapping lifetimes.

This example illustrates that split lifetime optimi-
zation is possible even in simple straight-line code.
Moreover, other optimizations can create opportuni-
ties for split lifetime optimization that may not be
apparent from casual examination of the original
source. In particular, loop unrolling (in which the
body of a loop is replicated several times in a row)
can create loop bodies for which split lifetime opti-
mization is feasible and desirable.

Variables of Interest Our implementation deals only
with scalar variables and parameters. Thls includes
Alpha's extended precision tloating-point (128-bit

X-Floating) variables as well as variables of any of the
complex types (see Sites'"). These latter variables are
referred to as two-part variables because each requires
two registers to hold its value.

Currency Definition
The value o f a variable in an optimized program is cur-
rent with respect to a given position in the source pro-
gram if the variable holds the value that .vvould be
expected in an unoptimized version of the program.
Several kinds of optimization can lead to noncurrent
variables. Co~isider the currency example in Figure 1.

As shown in Figure 1, the optimizing compiler has
chosen to change the order of operations so that line 4
is executed prior to line 3. Now suppose that execu-
tion has stopped at the instruction in line 3 of the
unopti~nized code, the line that assigns a value to vari-
able C.

Given a request to display (print) the value of A,
a traditional debugger will display wliatevcr value
happens to be contained in the location of A , which
here, in the optimized code, happens to be the result
o f the second assignment to A. This displayed value
o f A is a correct value, but it is not the expected
value that should be displayed at line 3 . This scenario
might easily mislead a user into a frustrating and
fruitless attempt to determine how the assignment
in line 1 is computing and assigning the wrong
value. The problem occurs because the compiler has
moved the second assignment so that it is early rela-
tive to line 3.

Another curre1ic)r example can be seen in the frag-
ment (taken from Copperman,') that appears in Figure
2. In this case, the optimizing compiler has chosen to
omit the second assignment to variable A a i d to assign
that value directly into tlic actual parameter location
used for the call of routine FOO. Suppose that the
debugger is stopped at the call of routine FOO. Given
a request t o display A, a traditional debugger is likely
to display the result of the first assignment to A. Again,
this value is an actual value of A, but it is not the
expected value.

Alternativelv, it is possible that prior to reaching the
call, the optimizing co~npiler has decided to reuse the

Line Unoptimized Optimii~d
1 A = . . . ; ! Define A A = . . . ;
2 6 = . . . A . . . ; ! Use A B = . . . A . . .
3 C = . . . ; ! C does not depend on A A = . . . ;
4 A = . . . ; ! Define A C = . . . ;
5 D = . . . A...; ! Use second definition of A D = . . . A , . . ;

Figure 1
Currency Example 1

Digital Technical Journal Vol . lOh 'o .1 1998 85

Line Unoprhked Optimized
1 A = express~onl; A = expressionl:
2 B = . . . A . . . ; I Use 1st def. of A B = ... A . . . ;
3 A = expression2;
4 FOO(A1; ! U s e 2nd def . of A FOO (expression2) ;

Figure 2
Currency Example 2

location that originally held the first value of A for
another purpose. In this case, n o v d i ~ e ofA is available
to display at the call of routine FOO.

Finally, consider the example shown in Figure 3,
which illustrates that tlie currency of a variable is not a
property that is invariant over time. Suppose that exe-
cution is stopped at line 5, inside the loop. In this case,
A is not current during the first time through the loop
body because the actual value comes from line 3
(moved from inside the loop); it should come from
line 1. O n subsequent times through the loop, the
value from line 3 is the expccted value, and the value of
A is current.

As discussed earlier, most approaches to currency
determination involve making certain kinds of flow
graph and compiler optimization information avail-
able to the debugger s o that it can report when a dis-
played value is not current. However, we wanted to
avoid adding major new lunds of analysis capability to
DIGITAL'S debuggers.

More fundarnentally, as the degree of optimization
increases, the notion of currentposition in the program
itself becomes increasingly ambiguous. Even when the
particular instruction at which execution is pending can
be clearlpand i~nequivocally related to a particular source
location, this locadon is not automaticdly the best one to
use for currency determi.nation. Nevertheless, thc source
location (or set of locations) where a displayed value was
assigned can be reliably reported without needing to
establish the current position.

Accordingly, we use an approach different than
those considered in the literature. VVe use a straight-
for\vard flow analysis formulation to determine what

locations hold values of uscr variables at any glvcn
point in the program and combine this with the set of
definition locations that provide those values. Because
there may be more than one source location, the user
is given the bask information to determine \\.here in
the source tlie value of a variable may have originated.
Consequently, the llser can dcterrnine \\lhcthcr the
value displayed is appropriate for his o r her purpose.

Compiler Processing
A compiler performs most split lifetime analysis on a
routinc-by-routinc basis. A preliminary walk over thc
entire symbol tablc idcnt~fics the variable symbols that
are of intcrest for fi~rtlicr analysis. Then, for each rou-
tine, the compiler performs the following steps:

Code cell prepass

Flow graph co~lstruction

Easic block processing

Parameter processing

Bachvard propagation

Forward propagation

Information promotion and clea~iup

AFtcr the compiler completes this processing for
all rout~nes, a symbol table postwalk pcrforrns final
cleanup tasks. The following contains a br~ef discus-
sion of these steps.

In this summary, we highlight only the main charac-
teristics ofgenerd interest. In particular, we assume that
each location, such as a register, is independent of dl
other locations. This assumption is not appropriate to
locaaons on the stack because va~iables of dffcrent sizcs

L i e Unoptimized
1 A = . . . ;
2 . . . A . . .;
3
4 while (. . .

5 . . . ,
6 A = . . . ,
7)

Optimized
A = . . . ;
. . . A . . .;

A = . . . ;
while (. . .)

. . . ,
/ / A is loop invar ian t

1

Figure 3
Currency Example 3

86 Digital Technical Jourl-la1 Vol. 10 No. 1 1998

may overlay each other. The complexity of dealing with
overlapping allocations is beyond the scope ofthis paper.

Of special importance in this processing is the fact
that each operand of every instruction includes a base
symbol field that refers to the compiler's symbol table
entry for the entity that is involved.

Symbol Table Prewalk The symbol table prewalk
identifies the variables of interest for analysis. As dis-
cussed, we are interested in scalars corresponding to
user variables (not compiler-created temporaries),
including Alpha's extended precision floating-point
(128-bit)(_Floating) and comples values.

DIGITAL'S FORTRAN implementations pass para-
meters using a by-reference mechanism with bind
(rather than copy-in/copy-out) semantics. GEM treats
the hidden reference value as a variable that is subject
to split lifetime optimization. Since the reference vari-
able must be available to effect operations on the logi-
cal parameter variable, it follows that both the abstract
parameter and its reference value must be treated as
interesting variables.

Code Cell Prepass The code cell prepass performs a
single walk over all code cells to determine

The maximum and minimum offsets in the stack
frame that hold any interesting variables

The highest numbered register that is actually refer-
enced by the code

Whether the stack frame uses a frame pointer that is
separate from the stack pointer

The compiler uses these characteristics to preallocate
various working storage areas.

Flow Graph Construction A flow graph is built, in
which each basic block is a node of the graph.

Basic Block Processing Basic block processing per-
forms a kind of symbolic execution of the instructions
of each block, keeping track of the effect o n machine
state as execution progresses.

When an instruction operand writes to a location
with a base symbol that indicates an interesting vari-
able, the con~piler updates the location description to
indicate that the variable is now known to reside in
that location-this begins a lifetime segment. The
instruction that assigned the value is also recorded
with the lifetime segment.

Ifthere was previously a known variable in that loca-
tion, that lifetime segment is ended (even if it was for
the same variable). The beginning and ending instruc-
tions for that segment are then recorded with the vari-
able in the symbol table.

When an instruction reads an operand with a base
symbol that indicates an interesting variable, some
more unusual processing applies.

If the variable being read is already lulow11 to
occupy that location, then no further processi~lg is
required. This is the most common case.

If the location already contains some othcr known
variable, then the variable being read is added to the
set of variables for that location. This situation can
arise when there is an assignment of one variable to
another and the register allocator arranges to allocate
them both to the same location. As a result, the assign-
ment happens implicitly.

If the location does not contain a known variable
but there is a write operation to that location earlier in
the same block (a fact that is available from the loca-
tion description), the prior write is retroactively
treated as though it did write that variable at the earlier
instruction. This situation can arise when the result of
a hnction call is assigned to a variable and the register
allocator arranges to allocate that variable in the regis-
ter where the call returns its value. The code cell repre-
sentation for the call contains nothing that indicates a
write to the variable; all that is ltnown is that the return
value location is written as a result of the call. Only
when a later code cell indicates that it is using the value
of a known variable from that location can we infer
more ofwliat actually happened.

If the location does not contain a lcnown variable and
there is no write to that same location earlier in this
same basic block, then the defining i~lstruction cannot
be immediately determined. A location description is
created for the beginning of the basic block indicating
that the given variable or set of variables must have
been defined in some predecessor block. Ofcourse, the
contents known as a result of the read operation can
also propagate forward toward the end of the block,
just as for any other read or write operation.

Special care js needed to deal with a two-part variable.
Such a variable does not become defined until both
instructions that assign the value have been encoun-
tered. Similarly, any reuse of either of the two locations
ends the lifetime segment of the variable as a whole.

A t the end of basic block processing, location
descriptions specify what is lcnown about the contents
of each location as a result of read and write operations
that occurred in the block. This description indicates
the set ofvariables that occupy the location, or that the
location was last written by some value that is not the
value of a user variable, o r that the location does not
change during execution of the block.

Parameter Processing The compiler models parame-
ters as locations that are defined with the contents of a
known variable at the entry point o f a routine.

Digital Technical Journal Vol. 10 No. 1 1998

Backward Propagation Backward propagation iter-
ates over the flow graph and uses the locat io~~s with
known contents at the beginning of a block to work
backward to predecessor blocks looking for instruc-
tions that write to that location. For each variable in
each input location, any such prior write instructio~i is
retroactively made to look like a definition of the vari-
able. Note that this propagation is not a flow algo-
rithm because no convergence criteria is involved; it is
simply a kind of spanning walk.

Forward Propagation Forward propagation iterates
over the flow graph and uses the locations with known
contents at the end of each block to work forward to
successor blocks to provide known contents at the
beginning of other blocks. This is a classic "reaching
definitions" flow algorithm, in which the input state of
a location for a block is thc intersection of the hiown
contents from the predecessors.

In our case, the compiler also propagates definition
points, which are the addresses of thc instructions that
begin the lifetime segments. For those variables that are
known to occupy a location, the set of definitions is die
union of all the definitions that flow into that location.

lnformation Promotion and Cleanup The final step of
compiler processing is to combine dormat ion for adja-
cent blocks where possible. This action saves space in the
debugging sym bol table but does not affect the accuracy
of the description. Descriptions for byreference bind
parameters are nest merged with the descriptions for the
associated reference variables. Finally, lifetime segment
information not already associated with symbol table
entries is copied back.

Object File Representation
The object file debugging symbol table representation
for split lifetime variables is actually quite simple.
Instead of a single address for a variable, there is a
sequence of lifetime segment descriptions. Each life-
time segment consists of

The range of addresses over which the child loca-
tion applies

Thc location (in a register, at a certain offset in the
ulster or current stack frame, indirect through a re,'

stack location, etc.)

The set of addresses that provide definitions for this
lifetime segment

By convention, the last segment in the sequence can
have the address range 0 to FFFFFFFF (hex). This
address range is used for a static variable, for example
in a FORTRAN COMMON block, that has a default allo-
cation that applies whenever n o active children exist.

Debugger Processing
Name resolution, that is, binding a textual name to the
appropriate entry in the debug symbol table, is in n o
way affected by whether or not a variable has split life-
time segments. After the symbol table entry is found,
any sequence oflifetime segments is searched for one
that includes the current point of execution indcated
by the program counter (PC). If found, the location of
the value is taken from that segment. Otherwise, the
value of the variable is not available.

Usage Example
To illustrate how a user sees the results of this processing,
consider the small C program ui Figgure 4. Note that the
numbers in the left colunu~ are listing line numbers.

When DOCT8 is compiled, linked, and executed
under debugger control, the dialogue shown in Figure 5
appears. The figurc also includes interpretive comments.

Known Limitations
The followil~g limitations apply to the existing split
lifetime support.

Multiple Active Split Children \Wlile die compiler
analysis correctly determines multiple active split child
variables and the debug symbol table correctly describes
them, OpenVMS DEBUG does not currently support
multiple active child variables. When searcling a sym-
bol's lifetime segments for one that includes the currelit
PC, the first match is taken as the only match.

Two-part Variables Support for two-part variables
(those occupying two rcgisters) assumes that a com-
plete definition will occur within a single basic block.

int i, j , k;

i f (foo(i))
j = 1 7 ;

}
else (

k = 18;
1

printf ("%d, %d, %d\n",

Figure 4
C Example Routine DOCT8 (Source with Listing Line
Numbers)

88 Digital Tccllllical Journal Val. 10 No. 1 1998

$ run doctB
GpenVMS Alpha Debug64 Version T7.2-001

%I, language is C, module set to DDeTB
DBG> s teg/ into
stepped to DOCTB\doctS\%LXNE 391

391: k = 3 ;
DBGz examine i, j , k
%W, entity 'i' was not allocated in memory (was optimized away)
%W, entity 'j' does not have a value at the current PC
%W, entity 'k' does not have a value at the current PC

Note the difference in the message for variable i compared to the messages for variables jand b We
see that variable i was not allocated in memory (registers or otherwise), so there is no point in ever
trying to examine its value again. Variablesjand k, however, d o not have a value "at the current PC."
Somewhere later in the program they will have a value, but not here.

The dialogue cont i~~ues as follocvs:

DBG> Step 6
step@ to WCT8\doc tE\ %LINE 391

391: k = 3;
DBG> step
stepped to DOCTB\doct8\%LINE 393

393: if (foo(i)) {
DBG, examine j, k
%W, entity ' j l does not have a value at the current PC
DOCTB\doct8\k: 3

value defined at WCTB\docta\%LINE 391

Here we see that j is still undefined but know has a value, namely 3, which was assigned at line 391.
The source indicates that jwas assigned a value at line 390, before the assignment to k, but j's assign-
ment has yet to occur.

Skipping ahead in the dialogue to the print statement at line 400, we see the following:

DBO> set break %line 400
DW> go
break at DOCTB\&ct8\%LINe 400

400s printf (''$6, %d, %d\nU, 1, 1 , k) ;
DEGr examine j
DOCTl\doct8\j: 2

value defined at DOCT8\boct8\%tINE 390
value defined at DKTS\doct8\%LINE 394

Dm> examine k
DOCTl\doctB\k: 18

value defined at DOCTB\doct81%LTNE 397+4
value defined at WCTB\doctB\&LINE 391

This portion of the message shows that more than one definition location is given for both jand k.
Which of each pair applies depends on which path was taken in the i f statement. If a variable has an
apparently inappropriate value, this mechanism provides a means to take a closer look at those places,
and only those places, from which that value might have come.

Figure 5
Dialogue Resulting from Running DOCTS

That is, at the end ofa basic bloclc, ifthe second part of
a definition is missing then the initial part is discarded
and forgotten.

Consider the following FORTRAN fragment:

COMPLEX X , Y

Suppose that the last use of variable Xoccurs in the
assignment to variable Y so that X'and Ycan be and are
allocated in the same location, in particular, the same
register pair. In this case, the definition of Yrequires
only one instruction, which adds 1.0 to the real part of
the location shared by Xand Y. Because there is no sec-
ond instruction t o indicate completion of the defini-
tion, the definition will be lost by our implementation.

\bl. 10 No. 1 1998 89 Digital Technical Journal

Semantic Stepping

A major p rob le~n with stcpping by line though opt i-
mized code is that the appdrcnt source program loca-
tion "bounces" back and forth, with the same line
often appearing again and again. In large part this
bouncing is d u e t o a compiler o p t i ~ ~ i i z a t i o n called
cocloschcdi t l i~ i~. in \vhicli instructions that arise fi-om
the same source line are scheduled, that is, reordered
and intermixed with other instructions, for better exe-
cution performance.

OpenVA4S lIEBUG, like riiost dcb~~ggel - s , interprets
the : . . ' . i . . (step by linc) comniand t o mean that
the program should execute until tlie linc n u ~ i i b e r
changes. Line numbers change more f r e q ~ ~ e n t l y in
scheduled codc than in ~ ~ n o p t i ~ n i z e d code.

For example, in saniple programs fi-om the SPEC95
Benchmark Suite, the average n ~ ~ n i b c r o f instructions
in sequence that share the same line number is typi-
cally benveen 2 and 3-and typically 5 0 t o 7 0 percent
o f those sequences consist o f just 1 i n s t ~ . ~ ~ c t i o ~ i ! In
contrast, if on1 y instruction-le\lel scheduling is dis-
abled, then the average number o f instructions is
ben\ieen 4 and 6, with 20 t o 3 0 percent consisting o f
o n e instruction. 111 a compilation wit11 n o optirniza-
tion, there ,Ire 8 t o 12 i n s t r ~ ~ c t i o n s in a secluence, with
roughly 5 percent consisting o f a singlc instruction.

A second problcni with stepping by linc through an
optimized program is that, because o f the behavior o f
revisiting tlie same line again and again, the user is
never q ~ ~ i t e sure \\,hen the line has finished executing.
I t is unclear when an assignment ~ictually occ~l r s o r a
control flow decision is about t o be made.

In unoptimizcd codc, when a user requests a break-
point o n a certain line, thc user expects cxccution t o
s top just before that line, hence before the line is car-
ried o u t . In optimized code, however, there is n o \veil-
defined location that is "before the line is carried out,"
because the codc for th.it line is typically scattered
a b o ~ ~ t , intermixed, and even combined \\!it11 the code
for \rarious o thcr lines. I t is us~rally possible, hoivcver,
t o identify /he instrt~ction that actually carries o u t the
effect o f the line.

Semantic Event Concept
\iVe introduce a new kind o f stepping mode called
seniantic stepping t o address these problems. Semantic
stepping allows the program t o execute up to, but no t
including, an instruction that causes a sem,intic c fkc t .
Instructions that cause seniantic effects are instr~ictions
that

Assign a \ialue t o a user variable

Malic a c ~ n t r o l flour decision

Make a routine call

N o t all sucli instructions are appropriate, liowevcr.
We start \\lit11 an initial set o f canciidatc instrl~ctions
and refine it . T h e following sections describe the
heuristics that are currentl) ! ~n ' use.

Assignment T h e candidates for assignment events
are the instructions that assign a value t o a \!ariable (o r
t o o n e of i t s split children). T h e second instruction in
an assignment t o a hvo-part variable is excluded.
Stopping benvecn the n v o assignments is inad\!isable
because at that point the variable n o longer has the
complete old state and does no t yet have the complete
ne\v state.

Branches There are nvo kinds o f branch: uncondi-
tional and conditional. An ~ ~ n c o n d i t i o n a l branch may
have a l u ~ o w n destination 01- an unknown destination.
Unconditional branches with kno\\!n destinations
mos t often arise as part o f s o m e larger semantic con-
struct such as an if-then-else o r a loop. For- example,
code for an if-then-else construct generally has an
implicit join that occurs at the end o f the statement.
T h e join takes thc form o f a jump k o m the end o f o n e
alternative t o the location just past the last instruction
o f the o thcr (which has n o explicit j ~ ~ m p and falls
through into the nes t statement). This jump turns the
inherently symmetric join at the source le\!cl into an
a s ~ m m e t r i c construction at the codc s trea~i i level.

Unconditional jumps allnost never define intercst-
ing semalitic e\relits-some related instruction ~ ~ s u a l l y
provides a more usefill event point, sucli as the termi-
nation test in the case o f a loop. O n e exception is a
simple g o t o statement, bu t these are \!cry often opti-
mized away in an!! case. Conseql~cnt ly, unconditional
branches \\~itli kno\vn destinations are no t trc,itcd as
semantic C\ JCI I~S .

Unconditional branches \\/it11 u~ikno\vn dcstina-
tions are really conditional branches: tl ic)~ arise from
constructs S L I C ~ I as a C - . . , statement implemented
as a table dispatch o r a FOl<l-1WN assigned j , state-
ment . These branchcs definitely arc interesting points
a t which t o allo\v user interaction bcf01-c tlie nc\v
direction is taken. Thus , the compiler retains uncon-
ditional branches as semantic events.

Similarly, in general, conditional branches t o linown
destinations a -e important semantic event points. Often
more t l ia i one branch instruction is generated for a sin-
gle Iugh-level source construct, for example, a decision
tree o f tests and branches used t o implement n small
c - . : . ,: . . 8 statement. In this case, only the first in the

execution sequence is ~ ~ s e d as tlie semantic event point.

Calls Most calls are visible t o a user and constitute
semantically interesting events. H o ~ v c \ ~ c r , calls t o
some run-time library routines arc usually n o t intercst-

i~ ig because tliese calls are perceived to be merely soft-
ware implementations of primitive operations, such as
integer division in the case of the Alpha architecture.
GEM internally marks calls to all its own run-time sup-
port routines as not semantically interesting. Compiler
front cnds accomplish this where appropriate for tlieir
own set of run-time support routines by setting a flag
on the associated entry symbol node.

Compiler Processing
In most cases, the compiler can identify semantic event
locations by simple predicates on each instruction.
The exceptions are

The second of the two instructions that assign val-
ues to a two-part variable is identified during split
Lifetime analysis.

Conditional branches that are part of a larger con-
struct are identified during a simple pass over the
flow graph.

Object Module Representation
The object module debugging semantic event repre-
sentation contains a sequence of address and event
kind pairs, in asce~iding address order.

Debugger Processing
Se~nantic stepping in the debugger involves a new
algorithm for determilung the range of instructions to
execute. This algorithm is built on a debugger prirni-
tive mechanism that supports full-speed execution of
user instructions within a given range of addresses but
traps any transfer out of that range, whether by reach-
ing the end or by executing any kind of branch or call
instruction.

Semantic stepping works as follows. Starting with
the current program counter address, OpenVMS
DEBUG finds the next higher address that is a seman-
tic event point; this is the target event point.
OpenVMS DEBUG executes instructio~ls in the
address range tliat starts at the address of the current
instruction and cnds at the instr~~ction that precedes
the target event point. The range execution terminates
in tlie following two cases:

1. If thc next instruction to execute is the targct event
point, then executio~l rcached the end of target
range and the step operation is complete.

2. If the next instruction to execute is not the target
event point, then the next address becomes the cur-
rent address and the process repeats (silently).

Note that, unlike the algorithm tliat determines the
range for stepping by Line, the new algorithm does not
require an explicit test for the kind of instruction, in
particular, to test ifit is a kind of branch. The compiler

already marks branches with the semantic event
attribute, if appropriate. Also unlike the traditional
stepping-by-line algorithm, the new algorithm does
not consider the source line number.

Visible Effect
With semantic stepping, a user's perception of forward
progress through the code is 110 longer dominated by
tlie side effects of code scheduling, that is, stopping
every few instructions regardless of w11at is happening.
Rather, this perception is much more closely related to
the actual semantic behavior, that is, stopping every
statement or so, i~idependent of how many instruc-
tions from disparate statements may have executed.

Note that jumping forward and backward in the
source may still occur, for example, when code motions
have changed the order in which semantic actions are
performed. Nothing about semantic event handling
attempts to IGde such reordering.

lnlining

Procedure call inlining can be confusing when using a
traditional debugger. For example, if routine INNER
is inlined into routine CALLER and the current point
of execution is within INNER, should the debugger
report the current source location as at a location in
the caller routine or in thc called routine? Neither is
completely satisfactory by itself. If the current line is
reported as at the location within INNER, then that
information will appear to conflict with information
from a call stack uaceback, which would not show
routine INNER. If the current line is reported as
though in CALLER, then relevant location informa-
tion from the callee will be obscured or suppressed.
Worse yet, in the case of nested inlining, potentially
crucial information about the intermediate call path
may not be available in any form.

The problem of dealing with inlining was sol\led
long ago by Zellwegerl-at least the topic has not
been treated again since. Zellweger's approach adds
additional information to an otherwise traditional table
that maps from instruction addresses to the corre-
sponding source Line numbers. Our approach is differ-
ent: it i~lcludes additional information in the scope
description of the debugging symbol table.

A key underpinning for inline support is the ability
to accurately describe scopes that consist of multiple
discontiguous ranges of instruction addresses, rather
than the traditional single range. This capability is
quitc independent of inlining as such. However,
because code from an inlined routine is freely sched-
uled with other code from the calling context, dealing
accurately with the resulting disjoint scopes is an
essential building block for effective support.

Digital Technical Journal Vol. 10 No. 1 1998 91

Goals for Debugger Support
Our overall goal is to support debugging of inlined
code with expected behavior, that is, as though the
inlining has not occurred. blorc specifically, we seek to
provide thr ability to

Report the source location corresponding to the
current position in tlie code

Display parameters and local variables of an uilined
routine

Show a traceback that includes call frames corrr-
sponding to inlined routines

Set a breakpoint at a given routinc entry

Set a breakpoint at a given lint: number (from
within an inlined routine)

Call an inlined routine

We have achieved these goals to a silbstantial cxtent.

GEM Locators
Before describing the mechanisms for inlining, we
introduce the GEM notion of a locator. A locator
describes a place in the source tcxt. The simplest kinds
of locator describe a point in the source, including the
name of the file, the line within that file, and the col-
umn within that line; they even describe tlie point at
which that file was included by another file (as for a C
or C++ #include directive), if applicable.

A crucial characteristic of locators is that they are all
of a unifortn fixed size that is n o larger than an integer
or pointer. (How this is achieved is beyond the scope
of this paper.) In particular, locators are small enough
that every tuple node in the intermediate language
(IL) and every code cell in the generated code stream
contains one. Moreover, GEM as a whole is quite
meticulous about ~naintaining and propagating high-
quality locator information throughout its optimiza-
tion and code generation.

hi additional lulld o f locator was introduced for
inlining support. This inline locator encodes a pair
that consists of a locator (which may also be an inline
locator) and the address of an associated scope node in
the GEM symbol table.

Compiler Processing
Debugging optimized code support for inlining gen-
erally builds on and is a minor enhancement of the
G E M inlining mechanism. Inlining occurs during an
early part of the GEM optimizer phase.

Inlining is implemented in GEM as follows:

W i t l ~ i the scope that cont ins the call site, a r ~ irzline
scope block is introduced. This scope represents the
result of the inliliil~g operation. I t is populated with
local variable declarations that correspond one-to-
one with the formal parameters of the inlined routine.

92 D~g~tal Tecli~lical Journal Vol. 10 No. 1 1998

The actual arguments of tlie call are transfortlied
into assignments that initialize the valucs of thc sur-
rogate parameter variables.

The inline scope is also l-nade to contain a bod],
scope, nrhich is a copy of the body of the inlined
routine, including a copy of its local variables.
The original call is replaced with a jump to a copy of
the IL for the body of the routinc, in which rcfer-
elices to declarations or p.il.ameters of the routine
are replaced with referellces to their corresponding
copied declarations. In addition, returns from the
routine are replaced with jumps back to the tuple
following the original call.

Similar "boundary adjustments" are made to deal
with function results, output parameters, choice of
entry point (when there is more than one, as might
occur for FORTRAN alternate entry statenients),
etc. (The bookkeeping is a bit intricate, but it is
conceptually straightforward.)

The calling routine, which now incorporates a copy
of the inlined routine, is then further processed as a
normal (though larger) routine.

lnlining Annotations for Debugging The n~ain chaigcs
introduced for debugging optirnizcd code support are
as follows.

The newly created inline scope block is annotated
with additional information, namely,

- A pointer to the routine declaration being inlined.

- Tlie locator from the call that is replaced. In a sim-
ple call with n o arguments, there may be nothing
left in the IL fro111 the original call afier inlining is
completed; this locator captures the original call
location for possible later use, for csa~nplc, as a
supplement to the information that maps instruc-
tion addresses to source line numbers.

As the code list of the original inlined rol~tilie is
copied, each locator fro111 the original is replaced by
a new inline locator that records

- The original locator.

- The newly created inlinc scope into which it is
being copied.

As a result of these steps, every it~lined instruction can
be related back to the scope into which it was inlined
and hence to the routine from which it was inlined,
regardless of how it may be modified or moved as a
result of subseqilcnt opti~n~zntiorl.

Note that these additional steps arc an csccption to
the general assertion that debugging optimized code
support occurs after code gencration and just prior to
object code emission. 7:hcse steps in n o way intluence
the generated code-only the dcbugglng symbol tablc
that is output.

Prologue and Epilogue Sets The prologue of a rou-
tine generally consists of those instructions at the
beginning of the routine that establish the routine
stack frame (for example, allocate stack and save the
return address and other preserved registers) and that
must be executed before a debugger can i~sefitUy inter-
pret the state of the routine. For this reason, setting a
breakpoint at the beginning o f a routine is usuallp
(transparently) implemented by setting a breakpoint
after the prologue of that routine is completed.

Conversely, the epilogue of a routine consists of
those instructions at the end of a routine that tear
down the stack frame, reestablish the caller's contest,
and make the return value, if any, available to the
caller. For this reason, stopping at the end of a routine
is usually (transparently) implemented by setting a
breakpoint before the epilogue of that routine begins.

One benefit of inlining is that most prologue and
epilogue code is avoided; however, there may still be
some scope management associated with scope entry
and exit. Also, some programming languagc-relatcd
environment manage~nent associated with the scope
may exist and should be treated in a manner analogous
to traditional prologue and epilogue code. The prob-
lern is how to identify it, because most of the tradi-
tional compiler code generation hooks d o not apply.

The model we chose takes advantage of the seman-
tic event information that we describe in the section
Semantic Stepping. In particular, we define the first
semantic event that can be executed within the inlined
routine to be the end of the prologue. For reasons dis-
cussed later, we define the last instruction (not the last
semaitic event) of the inlined code as the beginning of
the epilogue. As a result of unrelated optimization
effects, each of these may turn ou t to be a set of
instructions. Determination of inline prologue and
cpilogi~e sets occurs after split lifetime and semantic
event determination is completed so that tlie results of
those analyses call be used.

To determine the set of prologue instructions, for each
inline instance, GEM starts wid1 every possible entry
block and scans forward through die How graph loolting
for the first semantic event instruction that can be reached
from that entry. The set of such instructions constitutes
the prologue set for that instance of the inlined routine.

Tlus is a spanning walk forward frorn the routinc
entry (or entries) that stops either when a block is
found to contain an i~lstruction from the given inline
instance o r when the block has already been encoun-
tered (each block is considered at most once). Note
that there may be execution paths that include one or
more instructions from an inlining, none ofwhich is a
semantic event instruction.

The set of epilogue instructions is determined using
an inverse of tlie prologue algorithm. The process
starts with each possible exit block and scans backward

through the flow graph looking for the last instruction
(that is, the instri~ction closest t o the routine exit) of
an ~ n l ~ n e instance that can reach an exit.

Note that prologue and epilogue sets are not strictly
symmetric: prologue sets consist ofonly instructions that
are also scrnantic events, whereas epilogue sets include
instructions that may or may not be semantic events.

Object Module Representation
T o describe any inlining that may have occurred dur-
ing compilation, we include three ne\v hnds of infor-
mation in tlie debugging symbol table.

If the instructions contained in a scope d o not form a
single contiguous range, then the descriptio~i of the
scope is augmented with a discontiguous range descrip-
tion. This description consists of a sequence of ranges.
(The scope itself indicates the traditional approximate
range description to provide backward compatibility
with older versions of OpenVMS DEBUG). This aug-
mented description applies to dl scopes, whether or not
they are the result of m h m g .

For a scope that results from inlining a call, the
description of the scope is augmented with a record
that refers to the routine that was inlined as well as the
line number of the call. Each scope also contains nvo
entries that consist of the sequence of prologue and
epilogue addresses, respectively.

Bacl~vard compatibility is f ~ ~ l l y maintained. An older
version of OpenVMS DEBUG that does not recognize
the new kinds of information will simply ignore it.

Debugger Processing
As thc dcbuggcr reads the debugging symbol table of
a module, it constructs a list of the illlined instances for
each routine. This process makes it possible to find all
instances ofa given routine. Note, however, that if every
call of the routine is expa~ided inline and the routinc
cannot otherwise be called from outside that module,
then GElM does not create a noninlined (closed-form)
version of die routine.

Report Source Location It is a simple process to report
the source location that corresponds to the current code
address. When stopped inside the code resulting from
an udined routine, the program counter maps directly
to a source line within the i l h c d routine.

Display Parameters and Local Variables As is the case
for a noninlined routine, die scope description for an
i h n e d routine contains copies of the pararnetcrs a id
the local variables. N o special processing is required to
perform name binduig for such entities.

Include lnlined Calls in Traceback The debugger pre-
sents inlined routines as if they are real routine calls. A
stack frame whose current code address corresponds

Vol. 10 No. 1 1998 93 Digital Technical Journal

t o an inlined routine instance is described with two or
more virtual stack frames: one o r more for the inlined
~nstance(s) and one for the ultimatc caller. (An csam-
ple is sho\vn later in Figure 7.)

Set Breakpoints at lnlined Routine lnstances The
strategy for setting breakpoints at inlined routines is
based on a generalization of processing that previously
existed for C++ member functions. Con~pilation of
C++ modules can result in code for a given member
f ~ ~ n c t i o n being compiled every time the class o r tcm-
plate definition that contains the membcr h n c t ~ o n is
compiled. We refer to all these compilations as clones.
(It is not necessary to distinguish which of them is the
original.) In our generalization, an inlined routine call
Instance is treated like a clone. To set a brcakpoint at a
routine, the debugger sets breakpoints at all the end-
of-prologue addrcsscs of every clone of the given rou-
tine in all the currently active modules.

Set Breakpoints at lnlined Line Number lnstances The
strategy for setting breakpoints on line numbers shares
some features of setting breakpoints on routines, with
additional complications. Compiler-rcportcd line num-
bcrs on OpenVlMS s)stems arc uniq~re across all the
files included in a compilation. I t follotvs that the same
file included in more than one compilation map have
difkrcnt associated line numbers.

To set a breakpoint at a particular line number,
that line number needs to be f rst ~iorrnalized relative
to the containing file. This nor~nalized line number
value is then compared to nor~nalized line numbers
for that same file that are included in other compila-
tions. (If different versions of thc same named file
occur in different compilations, the versions are
treated as unrelated.) The original line number is
converted into the set of address rangcs that corre-
spond to it in all modules, taking into account inlin-
ing and cloning.

Call a Routine That Is lnlined If the co~npiler creates a
closed-form version of a rol~tilie, then the debugger
can call that routine independent of wherher there
may also be inlined instances of the routine. If no such
version of the routine exists, then the debugger cannot
call the routi~lc.

Usage Example
Inlining support has many aspects, but we will illus-
trate only one-a call traceback that includes inlined
calls. Considcr the sample program sho\vn in Figure 6.
This program has four routines: thrcc arc combined in
3 single file (enabling the GE,M FORTRLY compiler
to perform inline optimizations), and the last is in a
separate file. To help correlate the li~ics of code in

L i n e + + + + + F i l e DOCFJ-INLINE-2.FOR

Main routine

INTEGER A , C
TYPE * , 4 (3 . C (O))
END

FUNCTION A I I , L)
INTEGER A . B
A = B (5 , I) + 2*L
RETURN
END

FUNCTION B (J , KI
INTEGER B, C
8 - C (9) + J + K
END

+++++ File DOCN-INLIME-2A.FOR
1 C
2 FUNCTION C (I)
3 INTEGER C
4 C = 2 * 1
3 RETURN
5 END

Figure 6
Program to Illustl-atc Inlining Support

these hvo files with those in Figure 7, we added line
numbers to the lefi o f thc code. Note that these num-
ber-~ are not part of the program.

Ifwc compilc, link, and run this program using tlic
OpcnVlMS DEBUG option, we can step to a placc in
routine B that is just before the call t o routine C and
then request a traceback of the call stack. This dialogue
is shown in F i g ~ ~ r c 7.

Figure 7 shows that pscudo stack fkanies are reported
for routines A and 13, even though the call of routine B
has been inlined into routine A a11d the call of routinc A
has been inlincd into the main program. The main dif-
ference from a real stack ti-arne is the extra line that
reports that the "above routine is inlined."

Limitations
111 a real stack frame, it is possible to esamine (and
even deposit into) the real muchine registers, rather
than examine the variables that happen to be allocated
in machine registers. In an inlined stack frame, this
operation is not well defined and consequently not
supported. In a noninlined stack fiame, these opera-
tions are still allowed.

An attractive feature that would round out the
expected behavior of inlined routine calls \vould be to
support stepping into or over the inlined call in the
sarlie way that is possiblc for noninlined calls. This fca-
ture is not currently supported-execution always
steps into the call.

Vol. 10 N o 1 1998

GEMEVNS rUn DOCFJ-INLINE-2
OpenVMS Alpha Debug64 Version T7.2-001

%I, LMg~ag6: FORTRAN, Module: DOCFJ-INLJL3NE-2SMAIN
. . .
DBG> s tep/semantic
stepped to WCFJ-INLINE-2$MAIN\A\B\%LINE 15+8

15: B E C (9) + J + K
DBG> show calls
module name routine name line re1 PC abs PC

----- above routine is in l ined

----- above routine i s inlined
*DOCPJ-INLlNE-2SMAUl

DOCFJ-INLIXB-2SMAIN

Figure 7
OpcnVMS DEBUG Dialogue to Illustrate Inlining Support

Performance and Resource Usage

We gathered a number of statistics to determine typi-
cal resource requirements for using the enhanced
debugging optimized code capability compared to the
traditional practicc ofdebugging unoptimized code. A
short summary ofthe findings follows.

All metrics tend to show wide variance from pro-
gram to program, especially small ones.

Generating tradtiond debugging symbol dormation
increases the size of object modules typically by 50 to
100 percent on the OpenVMS system. Executable
image sizes show sunilar but smaller size increases.

Generating enhanced symbol table information
adds about 2 to 5 percent to the typical compilation
time, although higher percentages have been seen
for unusually large programs.

Generating enhanced synlbol table information
uses significant memory during compjlation but
does not affect the peak memory requirement of a
compilation.

Generating cnhanced symbol table information
fbrther increases the size of the symbol table infor-
mation compared to that for an ~lnoptimized conl-
pilation. On the OpenVMS system, this adds 100 to
200 percent to the debugging symbol table of
object modules and perhaps 50 to 100 percent for
executable images.

Compiling with fill1 optimization reduces the
resulting image size. Total net image size increases
typically by 50 to SO percent.

A more detailed presentation of findings follows.
Tables 1 through 3 present data collected using pro-
duction OpenVMS Alpha native compilers built in
December 1996. In developing these results, we used
five combinations of compilation options as follows:

S1: no optimization (noopt), no debugging infor-
mation (nodebug, nodbgopt)

S2: no optimization (noopt), normal debugging
information (debug, nod bgopt)

S4: full (default) optimization (opt), no debugging
information (nodebug, nodbgopt)

S5: full optimization (opt), normal debugging
information only (debug, nodbgopt)

S8: full optimization (opt), enhanced debugging
information (debug, dbgopt)

Note that the option combination numbering sys-
tem is historical; we retained the system to help keep
data logs consistent over time.

Compile- time Speed
The incremental compile-time cost of creating enhanced
symbol table information is presented in Table 1 for a
sanipling of BLISS, C, and FORTRAN modi~les. The
data in th~s table can be summarized as follows:

Traditional debugging (colun~n 1) increases the
total compilation time by about 1 percent.
Enhanced debugging (column 2) increases the
compilation time by about 4 percent. The largest
colnponent of that time, approximately 3 percent,
is attributed to the flow analysis involved in han-
dling split lifetime variables (column 3).
Debugging tends to incrcase as a percentage of
time in larger modules, which suggests that pro-
cessing time is slightly nonlinear in program size;
however, this increase does not seem to be excessive
even in very large modules.

Compile-time Space
The compile-time memory usage during the creation of
enhanced symbol information is presented in Table 2.

Digital Tcc+llid j w d Vol. 10 No. 1 1998 95

Table 1
Percent of Compilation Time Used to Createloutput Debugging Information

52 (noopt, debug, 58 (opt, debug, (Split Lifetime
Module nod bgopt) dbgopt) Analysis Only)

BLISS CODE
1.1% 0.7%
1.8 1.3
5.2 4.4
3.5 2.7

14.4 13.9

GEM-AN
GEM-DB
GEM-DF
GEM-FB
GEM-IL-PEEP

C CODE
5.2
2.9
4.5

C-METRIC
GRAM
INTERP

FORTRAN CODE
nm

13.0
6.4
6.3

MATRIX300X
NAGL
SPICE-V07
WAVEX

Average
Typical range
Note: "nm" represents "not meaningful," that is, too small to be accurately measured

Table 2
Key Dynamic Memory Zone Sizes during BLISS GEM Compilations

Peak SYMBOL EIL CODE OM % % YO
Total ZONE ZONE ZONE ZONE Peak Larg EIL File

BLISS CODE
1 84

2,056
457

4.41 1

G E M-AN
GEM-DF
GEM-FB
GEM-IL-PEEP

C CODE
2,563

21 1
688

C-METRIC
GRAM
INTERP

FORTRAN CODE
227 101

1,791 1,742
3,256 885
3.1 19 3,482

MATRIX300X
NAGL
SPICE-V07
WAVEX

Average
Note: All numbers to the left of the vertical bar are thousands of bytes, not multiples of 1,024.

Column Key:
Column Description

Peak Total
SYMBOL ZONE
EIL ZONE
CODE ZONE
OM ZONE
%Peak
%Larg
%EIL

The peak dynamic memory allocated in all zones during the compilation
The zone that holds the GEM symbol table
The zone that holds the largest EIL ZONE (used for the expanded intermediate representation)
The zone that holds the GEM generated code list
The zone that holds split lifetime and other working data
The OM ZONE size as a percentage of the Peak Total size
The OM ZONE size as a percentage of the largest single zone in the compilation
The OM ZONE size as a percentage of the EIL ZONE size

\'ol. 10 No. 1 1998

The following is a summary of the data, where OM
ZONE refers to tlie temporary \\Forking virtual mern-
ory zone used for split lifetime analysis:

The OIM ZONE size averages about 10 perccnt of
thc peak co~iipilation size.

'I:lie OIM ZONE size is one-quarter to one- half of the
EIL ZONE size. (The latter is well lcnow~l for typi-
cally being the largest zone in a GEM compilation.)
Since the O M ZONE is created and destroyed afier all
EIL ZONES are destroyed, the OM ZONE does not
contribute to establisling the peak tod size.

image text, etc.) due to the inclusion ofenhanced infor-
mation compared to the traltional symbol table size.

SS/S2: This ratio sho\vs the object or image size
with enhanced debugging j~lformation wjth opti-
mization compared to the traditional debugging
size without optimization.

The last ratio, SS/S2, is especially interesting because
it combines two effects: (1) the reduction in size as a
result of compiler optimization, and (2) the increase in
size because tlie larger debugging symbol table needed
to describe the result of tlie optimization. The result-
ing net increase is reasonably modest.

Object Module Size Summary and Conclusions
The incrcased size of enhanced symbol table inforrna-
tion for both object files and executable image files is
s h o ~ / n in Table 3.

In Table 3, the application or group of modules is iden-
tified in the first colurm~. The co lum~s labeled S1, S2, etc.
give the resdting size for the combination of compilation
options described earlier. Object module and executable
image data is presented in successive rows.

Three ratios of particular interest are computed.

There exists a small but significant literature regarding
the debugging ofoptimized code, yet very few debug-
gers take advantage ofwhat is luiown. In this paper we
describe the new capabilities for debugging optimized
code that are now supported in the GEM compiler sps-
tem and the OpenVMS DEBUG component of the
OpenVMS Alpha operating system. These capabilities
deal with split lifetime variables and currency determi-
nation, semantic stepping, and procedure inlining. For
cach case, we describe the problcrn addressed 2nd then
present an o\rervie\i/ of GEM compiler and OpenVMS
DEBUG processing and the object module represen-
tation that mediates between them. All but the inlin-
ing support are included in OpenVMS DEBUG V7.0
and in GE1M-based conlpilers for Alpha systems that
have been shipping since 1996. The inlining support is

S2/S1: This ratio shows the object or image size
with traditional debugg~ng information compared
to a base compilation without any debugging infor-
mation. This ratio indicates thc additional cost, in
terms of incrcased object and image file size, associ-
ated with doing tradtional symbolic debugging.

(SS-SS)/(S2-Sl): This ratio shows the increase in
debugging symbol table size (esclusivc: of base object,

Table 3
Object/Executable (.OBJ/.EXE) File Sizes (in Number of Blocks) for Various OpenVMS Components

51 52 54 5 5 58
noopt noopt 0 Pt 0 Pt 0 Pt (58-S5)/
nodebug debug 52/51 nodebug debug debug (52-51) 58/52

File nodbgopt nodbgopt Ratio nodbdopt nodbgopt dbgopt Ratio Ratio

BLISS CODE
27,483
10,373

C CODE
478
250
100
58

134
7 5

FORTRAN CODE
16
15

288
187

1,073
549
393
490

13igitd Tcchnicnl Journd Vol. 10 No. 1 1998

currently in field test. Work is under way t o provide
similar capabilities in the ladebug debugger1 I S compo-
nent o f the DIGITAL UNIX operating system.

Tllere are and will always be more opportli~lities and
new challenges to improve thc abllity t o d e b ~ ~ g opti-
mized codc. Perhaps the biggest problem of dl is to fig-
ure out where best t o focus h t u r e attention. I t is easy to
see how the capabilities described in thls paper provide
major benefits. We find it much harder t o see what capa-
bility could provide the next major u ~ c r e ~ n e n t in debug-
ging effecti\lcness when working with optl~nizcd codc.

References

1. P. Zellwcgcr, "Interactive Source-Level Debugging of
Optimized Programs," Ph.D. Dissertation, U~liversity
of California, Xerox PARC CSL-84-5 (May 1984).

2. J. Hennessy, "Syn~bolic 13ebuggi1g of Optimized Codc,"
ACiM 7ir1rrsac/ior7s or? Prograrnnzing Lmzgll(lg(l tirrd
S):itoiis. vol. 4, no. 3 (July 1982): 323-344.

3. M. Copperman, "Debugging Optimized Code Witli-
out Being Misled," Ph.D. Dissertation, University of
Cal~fornia a t Santa Cruz, UCSC Technical Kcport
UCSC-CRL-93-21 (JLII I~ 11, 1993).

4. G. Brooks, G. Hansen, and S. Simmons, "A Ne\v
Approach to Debugging Optimized Code," AC1.I .SIG-
PLAN 92 Colzfere~zce on Pro~ram~/zlrzg Lurr~~tagc,
Dcslgt~ arzd hnplerner1tci/ior7, SIG'PU N no lice.^, VOI . 27,
no 7 (July 1992): 1-1 1.

5. Con\lcx Computer Corporation, COIVVEX C'Yrlh Cotr-
cepts (Richardson, Tex.: Convex Press, Order No.
DSW-471, May 1991).

6. D. Coutant, S. Melo): and M. R~~scetta, "DOC: A Prac-
tical Approach to So~~rce- I~\ ie l Debugguig of Globally
Opti~iiizcd Code," Proccv~clir.rg.< of/he S'GPLAN 88 Ci1r.l-

.ft.~rcc or1 Pr~~qrarnnzin~, hrrg~inge Design clad I~rplc-
i~7errtutiotz. Atlanta, Ga. (Junc 22-24, 1988): 125-1 34.

7. L. Zurawski, "Source-Level Debugging of Globally Opd-
mized Codc with Expected Behavior," Ph.D. Disserta-
Don, Uni\tcrsity of Illinois at Urbana-Charnpaig~i (1989).

8. U. HBlzle, C. Chambers, and D. Ungar, "Debugging
Optimized Code with Dynamic Deoptimization,"
ACM SIGPL4N 92 Conference on Progruwrnling Larr-
g~iuge Ilesign arzd Implemerztution, San Francisco,
Calif. (June 17-19, 1992) and SIGPINT Notices, vol.
27, no. 7 (July 1992): 32-43.

9. L. l'ollock and M. Soffa, "High-level Debugging with
the Aid of an I~~cremental Optimizer," Proccvcliri,:s v/ '
the ? I s / Hutoaii Ir7/errzatior1ul Conferet7ce OH S;~s/c/r?
Scierrce.s(Januarv 1988): 524-532.

10. L. Pollock, M. Bivens, and M. Soffa, "Debugging
Optimized Codc via Tailoring," Irrto~izntioi7nl S) J ~ I /) U -
sir1171 011 Sojiioare Taf112g a i ~ d Arru!)sis (August 1994).

. l . P. Feiler, "A Language-Oriented Interactive Program-
ming Environment Based on Compilation Technol-
om," Ph.D. Dissertation, Carnegie-Mellon Uni\,ersity,
<:MU-CS-82-117 may 1982).

12. A. Adl-Tabatabi, "Source-Level Debugging o f Glob-
ally Optimized Code," Ph.D. Dissertation, Carncgic
Mellon University, CMU-CS-96-133 (June 1996).

13. D. Blickstein et a]., "The GEM Optimizing Comp~ler
System," Ihgrt~rl Techr~icul/ortri7n~, \,ol. 4, no. 4 (Spe-
clnl Issuc 1992): 121-136.

14. B. Bea~der, "VAX DEBUG: A1 Interact~\lc, Syrnbol~c,
Mdtiliu~gual Debugger," AC44 SIGSOFTSIGPLAN Sqli-
z~rnrt. Bzgitleering S~mpositlrn orz High-Letd I kb i~g -
girlg. ACM SIGPLAN Notices, vol. 18, no. 8 (August
1983): 173-179.

15. Oj~cri I4VSDehti~ger~~I~rrrric1l, Order No. AA-QSBJB-
TE (Maynard, Mass.: Digital tqu~pment Corporation,
November 1996).

16. R. Sites, ed., Abha Architeclllr-e Kefere~icc IVIUIIIINI.
3d ed. (Woburn, Mass.: Digital Press, 1998).

l.7. T. 13inghnm, N. Hobbs, and 1). Husson, "Espc~-icnccs
l>e\reloping and Using ail Object-Oriented Libmr!. for
Program h4anipulation," OOPSLA (.i)/!/i.rz,rrcc~ Pro-
ccc~tlir?gs, AGM SIGPLAN hlo/ices, vol. 12, no. 10
(October 1993): 83-89.

1.8, Digilal UfVIX Ladebug Debugger lzIa~7ucrl Order No.
AA-PZ7EE-T1TE (Ma!rl~al-d, Mass.: Digtal Equipment
Corporation, March 1996).

Biographies

Ronald F. Brender
Ronald F, Brcnder is a senior c o n s ~ ~ l t n ~ ~ t software engineer
in Compaq's Core Technology Group, ivliere he is work~ng
on both the GEM compiler and the UNIX ladebug pro-
jects. During his cdreer, Ron has worked in advanced
developme~it and product dcvelopmcnt roles for BLISS,
FORTR4N, Ma, and multilanguge debuggingon I3IGITAL's
DE(:s),stc~n-10, P1)P-11, VAX, and Alpha computcr systems.
Hc scr\lcd as 3 rcprcscntative on the ANSI and IS0 standards
comnittccs for FOKI'RAN 77 and latcr for Ada 83, also sen-
ulg as a U.S. 13cpartnient of Dcfcnsc invitcd Distingu~slicd
Revie\vcr and a member of the Ada Board and the Ada
Languagc Maintenancc Cornniittcc for more thui ci$lt
years. Ron joined Digital Equipment Corporation i n 1970,
after earning the degrees of B.S.E. (engineering sciences),
1M.S. (applied mathematics), and Ph. D. (cornputcr ~ n d
conimunicat~on sciences) in 1965, 1968, aid 1969, rcspcc-
tively, all koni the U~iversity of n/I~cliignn. He is a member
of the Association for Computing Macliinerp and the IEEE
Computer Society. Ron holds seven patents and has published
several papers in the area ofprogramming languagc design
and implementation.

98 Digital Tcclinic.~l Journnl Vol. 10 No. 1 1908

Jeffrey E. Nelson
Jefiey E. Nelso~i is a senior sohvare developer at Candle
Corporation in Minneapolis, Minnesota. H e currently
develops mcssage broker soft\vare for Roma BSP, Candle's
middleware li-arnework for integrating business applications.
Previously at DIGITAL, JetTwas a principal sofnvare engineer
on the OpenVMS and ladebug debugger projects. H e spe-
cialized UI debug symbol table formats, run-time language
support, and computer architecn~re support. H e contributed
to porting the OpenVMS debugger konl the VAY to the
Alpha platform. He represented DIGITAL on the industry-
\vide PLSIG co~nmittee that devcloped thc DWARF debug-
ging symbol table Format. Jeff holds an 1M.S. degree in
computer science and applications k o ~ n Virginia Polytechnic
Institute and State University and a B.S. degce UI computcr
science From the University ofWisconsin-Lacrosse. Jeffis
an alumnus of tlie Graduate Engineering Education Program
(GEEP), has been a\varded one patent, and has pre\iously
p~~blished and presented work in the area ofreal-time, object-
oriented garbage collection.

Mark E. Arsenault
 mark E. Arsenault is a principal sohvare engineer in
Compaq's OperiVMS Engineering Group working on
the OpenVMS debugger. Mark has implemented support in
the debugger for 64-bit addressing, C++, and inlining. H e
joined DIGITAL in 1981 and has \vorkcd on several soft-
ware development tools, including the BLISS compiler and
the Source Code Atralyzer. Mark holds nvo patents, one each
for thc Hcap Analyzcr and for the Correlation Facility. He
rcceived a B.A. in physics from Boston University in 198 1 .

Digital Technical Journal Vol. 10 No. 1 1998

Differential Testing
for Software

Differential testing, a form of random testing,
is a component of a mature testing technology
for large software systems. It complements
regression testing based on commercial test
suites and tests locally developed during prod-
uct development and deployment. Differential
testing requires that two or more comparable
systems be available to the tester. These sys-
tems are presented with an exhaustive series
of mechanically generated test cases. If (we
might say when) the results differ or one of
the systems loops indefinitely or crashes, the
tester has a candidate for a bug-exposing test.
Implementing differential testing is an interest-
ing technical problem. Getting it into use is an
even more interesting social challenge. This
paper is derived from experience in differential
testing of compilers and run-time systems at
DIGITAL over the last few years and recently
at Compaq. A working prototype for testing
C compilers is available on the web.

The Testing Problem

Successfi~l corn~nercial computer systems contain tens
of rnillions of lines of handwritten software, a11 of
which is subject to change as co~iipetitive pressures
motivate thc addition of new fcatures in each release.
As a practical matter, clualit)l is not a question of cor-
rectness, but rather of how many bugs are fixed and
how few are introduced in the ongoing development
process. If the bug count is increasing, the sohvare is
deteriorating.

Quality
Testing is n major contributor to quality-it is the last
chance for the development organization to rcducc
the number of bugs delivered to customers. Typically,
developers build a suite of tests that the softu~arc must
pass to advancc to a new release. Three major sourccs
of such tests arc the de\lelopment engineers, \illlo
b l o w where to probe thc weak points; commercial tcst
suites, wliicli are the arbiters ofconformance; and ~ 1 1 s -
tomer complaints, which developers must address to
win customer loyalty. All three types of test cases are
relevant to customer satisfaction and therefore have
value to the developers. Thc resultant test suite for the
sohvare under test becomes intellectual property,
encapsulates the accumulated experience of problem
fixes, a i d can contain more lines ofcode than the sofi-
ware itsclf.

Testing is always incomplete. The simplest rneasurc
of completeness is statement co\lcrage. Instrumentatioll
can be added to the software bcforc it is tested. When
a test is run, thc instrumentation generates a report
detailing which statclnents arc ac t~~al ly execi~ted.
Obviously, code that is not executed was not tested.
Random testing is n way to malce testing more com-
plete. Onc value of random tcsting is introducing the
unexpected test-1,000 monlteys on the lceyboard can
produce some surprising and even amusing input! The
traditional approach to acquiring such input is to Ict
university students use the sohvare.

Testing s o h \ ~ a r c is an active field of endeavor.
Interesting starting points for gathering backgroiuid

Vol. 10 No. l 1998

information and references are the web site main-
tained by Software Research, Inc.' and the book
SoJziut-c Testing arid Qi~uliQ Ass~imnce."

Developer Distaste
A development team with a substantial bug backlog
does not find it helpfill to have an automatic bug
finder continually increasing the backlog. The team
priority is to address customer coniplaints before deal-
ing with bugs detected by a robot. Engineers argue
that the rando~nly produced tests d o not uncover
errors that are likely to bother customers. "Nobody
\vould d o that," "That error is not important," and
"Don't waste our time; we have plenty of real errors
to fix" are typical developer retorts.

The cornplaints have a substantial basis. During a visit
to our development group, Professor C. A. R. Hoa-e of
Oxford University succinctly summarized one class of
complaints: "You cannot fix a.11 infinite number of bugs
one at a time." Some s o h a r e needs a stronger remedy
than a stream ofbug reports. Moreover, a stream of bug
reports map consume the energy tliat could be applied
in more general and productive ways.

The developer pushback just described indicates that
a differential testing effort must be based on a per-
ceived need for better testing from within the product
develop~i~ent team. Performing the testing is pointless
jfthc developers cannot or will not use the results.

Differential testing is most easily applicable to soft-
ware whose quality is already under control, that is,
sohvare for which there are few known outstanding
errors. Running n very large number of tests and
expending team effbrt only when an error is found
becomes an attractive alternative. Team members'
morale increases when the software passes millions of
hard tests and test coverage of their code expands.

The technology should be important for applica-
tions for which there is a high premium on correct-
ncss. In particular, product differentiation can be
achieved for software that has few failures in compari-
son to the competition. Differential testing is designed
to provide such comparisons.

The technology should also be important for appli-
cations fbr which there is a high premium on indepen-
dently duplicating the behavior of some existing
application. Identical behavior is important when old
software is being retired in favor of a new irnplementa-
tion, o r when the new sohvare is challenging a domi-
nant competitor.

Seeking an Oracle
The ugliest problem in testing is evaluating tlie result
of a test. A regression harness can automatically check
that a result has not changed, but this information
serves no purpose unless the result is luio\vn to be cor-

rect. The very complexity of modern software that
drives us to construct tests makes it impractical to pro-
vide a priori knowledge of the expected results. The
problem is worse for randomly generated tests. There
is not likely to be a higher level of reasoning that can
be applied, which forces tlie tester to instead follow
the tedious steps that the colnputer will carry out dur-
ing the test run. An oracle is needed.

One class of results is easy to evaluate: program
crashes. A crash is never the right answer. In the triage
that drives a maintenance effort, crashes are assigned to
die top priority category. Although this paper does not
contain an in-depth discussion of crashes, all crashes
caused by differential testing are rcported and consti-
tute a substantial portion of the discovered bugs.

Differential testing, which is covered in the foUo\ving
section, provides part of the solution to the problem of
needing an oracle. The remainder of the solution is dis-
cussed ui the section entitled Test Reduction.

Differential Testing

Differential testing addresses a specific problem-the
cost of evaluating test results. Every test yields some
result. If a single test is fed to several comparable pro-
grams (for example, several C compilers), and one pro-
gram gives a different result, a bug map have been
exposed. For usable software, very few generated tests
will result in differences. Beca~~se it is feasible to gener-
ate milljons of tests, even a few differences can result in
a substantial stream of detected bugs. The trade-off is
to use many computer cycles instead of human effort to
design and evaluate tests. Particle physicists use the
same paradigm: they examine millions of mostly boring
events to find a few high-interest particle interactions.

Several issues must be addressed to make differen-
tial testing effective. The first issue concerns the qual-
ity of the test. Any random string fed to a C compiler
yields some result-most likely a &agnostic. Feeding
random strings to the compiler soon becomes unpro-
ductive, however, because these tests provide only
shallow coverage of the compiler logic. Developers
must devise tests that drive deep into the tested com-
piler. The second issue relates to false positives. The
results of two tested programs may differ and yet
still be correct, depending on the requirements. For
example, a C con~piler may freely choose among alter-
natives for unspecified, undefined, or implementqt' < 1011-
defined constructs as detailed in the C Standard."
Similarly, even for required diagnostics, the form of
the diagnostic is unspecified and therefore difficult t o
compare across systems. The third issue deals with the
amount of noise in the generated test case. Given a
successful random test, there is likely to be a much
shorter test that exposes the same bug. The developer

Vol. 10 No. 1 1998 101 Digital Technical Journal

who is seeking to fix the bug strongly prefers to use thc
shorter test. The fourth issue concerns comparing pro-
grams that must run on diflerent platforms. Differential
testing is easily adapted to distributed testing.

Test Case Quality

Writing good tests requires a deep knowledge of the
system under test. Writing a good test generator
requires embedding that same knowledge in the gen-
erator. This section presents tlie testing of C compilers
as an cxample.

Testing C Compilers
For a C compiler, we constructed sample C source files
at several levels of increasing quality.

1. Sequence of ASCII characters

2. Sequence of words, separators, and white space

3. Syntactically correct C program

4. Type-correct C program

5. Statically conforming C program

6. Dynamically conforming C program

7. Model-conforming C program

Given a test case selected fi-om any level, we con-
structed additional nearby test cases by randonily
a d d n g or deleting some character or word from the
givcn test case. An altered test case is more liltely to
cause the compilers to issue a diagnostic or to crash.
Both the selected and the a.ltered test cases are valuable.

One of d ~ e more entertaining testing papers reports
the results of feeding random noise to the C run-time
library.* A typical library function crashed or hung on 30
percent of tlie test cases. C compilers should d o better,
but this hypothesis is worth checking. Only rarely
wvould a tested compiler faced with level 1 input execute
any code deeper than the lexer and its diagnostics. One
test at this level caused the compiler to crash because an
input line was too long for the compiler's buffer.

At level 2, given lexically correct text, parser error
detection and diagnostics are tested, and at the same
time the leser is more thoroughly co\lered. The C
Standard describes the form of C tokens and C "white-
space" (blanks and comments). I t is relatively easy to
write a leseme generator that will eventually produce
every corrcct token a i d white-space. What surprised us
was the kind of bugs that tlie testing revealed at this

level. One compiler could not hand.le OxOOOOOl if
there were too many leading zeros in the hexadecimal
number. Another compiler crashed when faced with
die floating-point constant 1E1000. Many compilers
failed to properly process digraphs and trigraphs.

Stochastic Grammar
A vocabulary is a set of nvo kinds of symbols: terminal
and nonterminal. The terminal symbols are what one
can write down. The ~lo~iterminal symbols are names
for higher level language structures. For example, the
symbol "+" is a terminal symbol, and the symbol
"additive-espression" is a nonterminal symbol of the
C prograrnlning language. A grammar is a set of rules
for describing a language. A rule has a left side and a
right side. The left side is always a nonterminal sym-
bol. The right side is a sequence of symbols. The rulc
gives one definition for the structure named by the Icfi
side. For example, the rule shown in Figure 1 defines
the use of "+" for addition in C. This rule is recursive,
defining additive-expression in terms of itself.

There is one special nontcrminal symbol called the
start symbol. At any time, a nonterminal symbol can be
replaced by the right side of a rule for which it is the left
side. Beginning with the start symbol, nonter~ninals
can be replaced until there are no more nonter~ninal
symbols. The result of many replacements is a sequence
of terminal symbols. I f the grammar describes C, the
sequence of terminal sy~nbols will form a syntactically
corrcct C program. Randomly generated white-space
can be inserted during or aftcr generation.

A stochastic grammar associates a probability \vith
each grammar rule.

For level 2, we wrote a stochastic grammar for ley-
emes and a Tcl script to interpret the gramniar,'." per-
forming the replacements just described. Whenever a
nonterminal is to be expanded, a new random number
is compared with the fixed rule probabilities to direct
the choice of right side.

In either case, at this level and at levels 3 through 7,
setting the many fixed choice probabilities pcrmits
some control of the distribution of output values.
No t all assignments of probabilities make sense. The
probabjlities for the right sides that define a specific
nonterminal must add up to 1.0. The probability of
expanding recursive rules must be weighted toward a
nonrecursive alternative to avoid a recursion loop in
the generator. A system of linear equations can be
solved for the espectcd Icngths of strings generated by

Figure 1
Rule That Defincs the Use of "+" for Addition in C

102 Digital Tcdlnical Jourtial Vol. 10 No. 1 1998

each nonterminal. If, for some set of probabilities, all
the expected lengths are finite and nonnegative, this
set of probabilities ensures that the generator does not
often run away.

Increasing Test Quality
At level 3 , given syntactic all^^ correct tcxt, one would
expcct to see declaration diagnostics while more thor-
oughly covering the code in the parser. At this level,
the generator is unlikely to produce a test program
that will co~npile. Nevertheless, conlpiler errors were
detectcd. For example, one parser refused the expres-
sion 1==1==1.

The syntax of C is given in the C Standard. Using
the concept of stochastic grammar, it is easy to write a
generator that will eventually produce every syntacti-
cally correct C translation-unit. In fact, \\re extended
our Tcl leser grammar to all of C .

At level 4, given a syntactically correct generated
progralii in which every identifier is declared and all
expressions are type correct, the lexer, the parser, and a
good deal of the semantic logic of the compiler are
covered. Some generated test programs compile and
execute, giving the first interesting differential testing
results. Achieving level 4 is not easy but is relatively
straightforward for an experienced compiler writer. A
symbol table must be built and the identifier use lim-
ited to those identifiers that are already declared. The
requirements for combining arithmetic types in C
(i n t , short, char, float, double with long
and/or unsigned) \yere expressed grammatically.
Grammar r~lles defining, for example, int-additive-
expression replaced the rules defining additive-expres-
sion. The replacements were done systematically for all
combinations of arithmetic types and operators. To
avoid introducing typographical errors in the defining
grammar, m ~ ~ c h of the grammar itself was generated
by auxiliary Tcl programs. The Tcl grammar inter-
preter did not need to be changed to accommodate
this more accurate and \loluminous grammatical data.
\Ye cstended the generator to implement declare-

before-use and to provide the derived types of C
(struct, union, pointer). These necessary
improvements led to thousands of lines of tricky
implementation detail in Tcl. At this point, Tcl, a
nearly structureless language, was reaching its limits
as an implementation language.

At level 5, where the static semantics of the C
Standard have been factored into the generator, most
generated programs compile and run.

Figure 2 contains a fi-agnicnt of a generated C test
program from level 5.

A large percentage of level 5 programs terminate
abnormally, typically on a divide-by-zero operation. A
peculiarity of C is that many operators produce a
Boolean value of 0 or 1. Consequently, a lot of expres-
sion results are 0, so it is likely for a division operation
to have a zero denominator. Such tests are wasted. The
number of wasted tests can be reduced somewhat by
setting low probabilities for using divide, for creating
Boolean values, or for using Boolean values as d.ivisors.

Regarding level 6, dynamic standards violations can-
not be avoided at generation time without a priori
choosing not to generate some valid C, so instead we
implement post-run analysis. For every discovered dif-
ference (potential bug), we regenerate the same test case,
replacing each arithmetic operator with a fi~nction call,
uiside which there is a check for standards violations.

The following is a fi~nction that checks for "integer
shift out of range." (I f \ve \\/ere testing C++, we could
have used overloading to avoid having to include the
type signature in thc name of the checking function.)

int
int-shl-int-int(int val, int an t) {

assert(amt >= 0 && amt c sizeof(int)*8);
return val cc amt;

1

For example, the generated text

is replaced upon regeneration by the text

+t u115 + - - ui8 * tt u116 - (ui17 + ++ ui20 * ($121 & (argc c<=
c14) ? (us23) c ++ argc c= ++ s122 : -- ((* & * & 8124 1 ==
0160030347~ s ++ t t5u7) . sit51116 & 1731044438~ * ++ ui25 * (

unsigned i n t) ++ (ld26) & (((0761 1 2137167721L * 8127 ?
u128 & dl.2 * ++ d9 * DBL-EPSILON * 7e+4 + ++ dl1 + ++ dl0 * dl2 (
++ ld31 * .4L * 9.1 - ld32 * ++ f33 - - .7392E-6L * ++ 1634 + 22.82L
+ 1.91 -- ld35 >= + t 1637) == 9.F t (t+ £38) + t+ f39 * f 4 0 > (
float) ++ f41 * f42 ,= c14 ++ : ac43 & as44) * uc13 h .9309L - (
ui18 * 007lOlU * u i f 9 ? ~ ~ 4 6 -- ? -- ld47 + ld48 : ++ ld49 - ld48
++ ld50 : ++ 1851 1 >= 239.611 1 A - ++ argc == (int afgntad) argc -
++ ui54) - ++ u157 >= ++ u158 argc - 9111 ++ * & u159 * + + u160 ;

Figure 2
Generated C Espression

Digital Teclinical Journal \fol. 10 No. 1 1998 103

If, on being rerun, the regenerated test case asserts a
standards violation (for example, a shift of more than
the word length), the test is discarded and testing con-
tinues with the nest case.

T\vo problems with the generator remain: (1) obtain-
ing enough output from the generated programs so
that differences are visible and (2) ensuring that the
generated programs resemble real-world programs so
that the developers are interested in the test results.
Sol\ling these two problems brings the quality of test
input to level 7. The trick here is to begin generating the
program not 6om the C grammar nontermind symbol
translat~on-un~t but rather fiom a model program
described by a morc elaborate string in which solnc of
the program IS already hlly generated. As a simple
esamplc, supposc you want to generate a ~iuniber of
print statements at thc end of the test program. The
starting string of the generating grammar might be

int main() I
declaration-list
statement-list
print-list
exit(0):

where the gammatical definition of p r i n t - l i s t is
given by

print-list P [identifier) ;
print-list print-list P (identifier) ;

In the starting string above there are three nonter-
minals for the three lists instead of just one for tlie
standard C start symbol translation-unit. Progranis
generatcd from this starting string will cause output
just before exit. Because differences caused by round-
ing error were uninteresting to us, we modified this
print macro for types float and double to print only
a few significant digits. With a little more effort, the
expansion o f p r i n t - l i s t can be forced to print each
variable esactl y once.

Alternatively, suppose a test designer receives a bug
report fi-om the field, analyzes the report, and fixes the
bug. Instead ofsimply putting the bug-causing case in
the regression suite, the test designer can generalize it
in the manner just presented so that many similar test
cases can be used to explore for other nearby bugs.

The effcct of level 7 IS to nugnient the probabilities
in thc stocliast~c grammar with more precise and direct
means of control.

Forgotten Inputs
The claborate command-line flags, config files, and
environment variables that condition the behavior of
programs are also input. Such input can also be gener-
ated using the same toolset that is used to generate the
test programs. The very first test on the very first run

104 Digital Tcchnicnl Journal Vol. 10 No. 1 1998

with generated compiler directive flags revealed a bug
in a compiler under test-it could not even compile its
own header files.

Results
Table 1 indicates the kinds of bugs we discovered dur-
ing the testing. Only those results that are exhibited by
very short text are shown. Some of the results derive
from hand generalizatioil of a problem that originally
surfaced through rand on^ testing.

There was a reason for each result. For example, thc
server crash occurred when the tested cornpilcr got a
stack overflo\v 01.1 a heavily loaded machine with a very
large memory. The operating system attempted to
clump a gigabyte of compiler stack, which caused all
tlie otlier active users to thrash, and many of them also
dumped for lack of memory. The many disk drives on
the server began a dance of the lights that sopped up
the remaining free resources, causing the operators to
boot the server to recover. Excellent testing can make
you unpopular with almost everyone.

Test Distribution

Each tested or comparison prograni must be executed
where it is supported. This may meal1 different hard-
ware, operating system, and even physical location.

There are numeroils ways to utilize a network
to distribute tests and then gather the results. One par-
ticularly simple way is to use continuously running
watcher programs. Each watcher program periodically
examines a common file system for tlie esistence of
some particular files upon which the program can act.
I f n o files exist, the watcher program slccps for a while
and tries again. O n most operating systems, watcher
programs can be implemented as command scripts.

There is a test master and a number of test beds.
The test master generates the test cases, assigns them
to the test beds, and later analyzes the results. Each
test bed runs its assigned tests. The test master and test
beds share a file space, perhaps via a network. For each
test bed there is a test input directory and a test output
directory.

A watcher program called the test driver waits until
all the (possibly remote) test input directories are
ern!", The test driver then writes its latest generatcd
test case into each of the test input directories and
rcturns to its watch-sleep cycle. For each test bed tlicrc
is n test watcher program that waits until there is a file
in its test input directory. When a test watcher finds a
file to test, the test watcher runs the new test, puts the
results in its test output directory, and returns to tlie
watch-sleep cycle. Another watcher program called
the test analyzer waits until all the test o i ~ t p u t directo-
ries contain results. Then the results, both input and

Table 1
Results of Testing C Compilers

Source Code

if (1.1)
1 ? 1 : 1 / 0
O.OF/O.OF
x!=O?X/x: I
1 == 1 == 1

-!O
0x000000000000000
0x80000000
1E1000
1 >> INT-MAX
'a b'
int i=sizeof(i=l);
LDBL-MAX

(++n,O) ? -- n: 1
if (sizeof(char)+d) f(d)
i=(unsigned)-I .OF;
int f(register());
int (...(x)...);

digraphs (<: <% etc.)
alb

Resulting Problem

Constant float espression evaluated false
Se\reral compilcr crashcs
Compiler crash
Incorrect answer
Spurious syntas error
Spurious type error
Spurious constant out of rangc message
I~i~orrcct constant con\,crslon
Comp~ler crash
T\vcnty-minute compile time
Inconsistent byte order
Compiler crash
Incorrect value
Operator ++ ignored
Illegal instruction in code generator
Random value
Compiler crash or spurious diagnostic
Enough nested parentlncses to lull thc compiler

Spurious diagnostic (10 parentheses)
Compiler crash (100 parentheses)
Scrver crash (10,000 parentheses)

Spurious error mcssages
The famous Pentium divide bug (we did not catch it

but \Ire could have)

output, are collected for analysis, and all the files are
deleted from every test i n p ~ ~ t and output directory,
thus enabling another cycle to begin.

Using the file system for synchronization is adequate
for computations on the scale of a compile-and-execute
sequence. Because of the many sleep periods, h s distri-
budon systern runs efficiently but not fast. If tlirough-
put becomes a problem, the test systern designer can
provide morc sophisticated remote execution. The dis-
tribution solution as described is ncither robust against
crashes and loops nor easy to start. It is possible to elab-
orate the watcher programs to respond to a reasonable
number of additional requirements.

Test Analysis

The test analyzer can compare the output in various
\vays. The goal is to discover likely bugs in the corn-
piler undcr tcst. The initial step is to distinguish the
test results by failure category, using corresponding
directories to hold the results. If the compiler under
test crashes, the test analyzer writes the test data to the
crash directory. If the compiler undcr test enters an

endless loop, the test analyzer writes the test data to
the loop directory. If one of the comparison conlpilers
crashes o r enters an endless loop, the test analyzer dis-
cards the test, since reporting the bugs of a compari-
son compiler is not a testing objective. If some, but
not all, of the test case executions terminate abnor-
mally, the test case is written to the abend directory. If
all the test cases run to conlpletion but the output dif-
fers, the case is written to the test diff directory.
Otlieruise, the test case is discarded.

Test Reduction
A tester must esamine each filed test case to determine
ifit exposes a fault in the compiler under test. The first
step is to reduce the test to the shortest version that
qualifies for examination.

A watcher called t l ~ e crash analyzer esamines the
crash directory for files and moves found files to a
\\[orking directory. The crash analyzer then applies a
S~OI- t cn ing tra~isformation to the source of thc test
case and reruns the test. If the compiler under test still
crashes, the original test case is replaced by the short-
ened test case. Otherwise, the change is backed out

Digiral Technical Journal Vol. 10 No. 1 I998 105

and a new transformation is tried. We used 23 heuris-
tic transformations, including

Remove a statement

Remove a declaration

Change a constant to 1

Change an identifier to 1

1 Delete a pair of matching braces

Delete an if clause

When all the transformations have been systematically
tried once, tlie process is started over again. The
process is repeated until a whole cj~cle leaves the
sourcc oftlie test unchanged. A similar process is used
for thc loop, abend, and diffdirectories.

The typical result of the test reduction process is to
reduce generated C test programs of 500 to 600 lines
to equally usefil C programs of only a few lines. It is
not ~ ~ n u s u a l to use 10,000 or more compile opera-
tions during test reduction. The trade-off is using
many computer cycles instead of human effort to ana-
lyzc tlie ugly generated test case.

Test Presentation
After the shortcst form of thc tcst case is ready, thc tcst
analyzer wraps it In a c o ~ n ~ n a ~ l d script that

1. Reports environmental information (compiler vcr-
sion, compiler flags, name of the test platform, time
of test, etc.)

2. Reports thc test output o r crash information

3. Reruns tlie test (the test input is embedded in the
script)

The test analyzer writes the command scripts to a
results directory.

Test Evaluation and Report
person who is managing the differential testing

setup periodically runs scripts that have accumulated in
tlie results directory to determine \vhich ones cspose a
problem of interest to the develop~nent team. Onc
proble~n peculiar to random testing is that once a bug
is found, it will be found again and again until it is
fixed. This argues the case for giving high priority to
the bugs exposed by differential testing. Uninteresting
and duplicate tests are manually discarded, and the rest
are entered into the development team bug queue.

Summary and Directions

Differential testing, suitably tuned to the tested
program, conipleme~its traditional software testing
processcs. It finds faults that wo~lld otherwise remain
undetected. It is cost-effective. I t is applicable to a
\vide range of large soft\\pare. I t has proven unpopular
with tlic dcvelopcrs of the tested software.

This technology exposed new bugs in C co~npilers
each day during its use at DIGITAL. Most of the bugs
were in the comparison compilers, but a significant
number of bugs in DIGITAL code were found and
corrected.

Numerous special-purpose differential testing har-
ncsses were put into use at DIGITAL, each testing
some small part of a large program. For example, the
C prcproccssor, multidimensional Fortran arrays,
optimizer constant folding, and a new p r i n t f f i~nc-
tion each \\/ere tested by ad hoc differential testers.

The Java API (run-time library) is a large body of
relatively new code that runs on a wide variety of plat-
for1-n~. Since "Write once, run anywhere" is the Java
~iiotto, the standard for conformance is high; liowe\ler,
experience has shown that the standard is difficult to
achieve. Differential testing should help. What needs
to be done is to generate a sequence of calls into the
API on various Java platfornis, comparing tlie results
and reporting differences. Technically, this procedure
is much simpler than testing C compilers. Chris Rohrs,
an MIT intern at lIIGITAL, wrote a system entirely in
Java, gathering method signature information dircctly
out of the binary class files. This API tester may be
ilsecl \ \~ l ic~i the quality of the Java API reaches tlie
point where the implementors are not buried in bug
reports and when there are more independent iniplc-
mentations of the Java run time.

Differential testing can be used to increase tcst cow
erage. Using the coverage data taken from running
the standard regression suite as a baseline, the dcvcl-
opers can run random tests to see if coverage can
be increased. Developers can freely add coveragc-
increasing tests to the test suite using the test output 3s
an initial oracle. N o 11arm is done because e\Ien if tlic
recorded ~.csult is \vrong, the compiler is no worse off
for it. If at a later time a regression is observed o n thc
gencratcd test, either the new or the old version u.as
wrong. Thc dc\,elopers are alerted and can react. John
Parlu and John Hale applied this technology to
DIGITAL'S C compilers.

The probleni of retiring an old conipiler in favor of a
new one requires the new one to duplicate old behavior
so as not to upset the installed base. Differential testing
can cornpare the old and the new, flagging all new
results (correct or not) that disagree with thc old results.

Differential testing call be used to measure quality.
Supposing that the majority rules, a rnillioll tests can
be run on a set ofcompeting compilers. The metric is
failed tests per million runs. The authors of the hilcd
compilers can cithcr fis the bugs or provc the majority
wrong. In any case, quality improves.

At Compacl, differential testing opportunities arisc
regularly and are often satisfied by testing systenis that
arc less elaborate than tlie original C testing systcn~,
which has been retired.

106 LXgiral Tcch~lical Journal Vol. 10 No. 1 1998

Acknowledgments Biography

This work was beg~111 in the Digital Cambridge
Research Laboratory by Andy Payne b a e d o n his ear-
lier experience in testing DIGITAL Alpha hardware.
T h e author and August Reinig continued the develop-
ment as an advanced development project in the co111-
p ~ l e r product g r o u p in Nashua, N e w Ha~iipshire .
Steve Rogers and Christine Gregowsltc contributed t o
the work, and Steve eventually placed a free working
prototype o n thc web. ' Bruce Foster managed and
encouraged thc project, giving the iniplenientors ideas
faster than they could be used.

References and Notes

1. Information 011 testing is available at http://www.tesnvork;.
com/Institute/HotList/.

2. B. Beizcr, SoJttu~c~rc~ Tee-tirtg artd Quuli!)~ Assurcir.rce (New
York: Van Nostrand Reinhold, 1984).

3. ISO/lEC 9899: 1990, Pi-ogru~ntning L~117,yriuges- C: 1st
ed. (Gcneva, Switzerland: International Organization
for Standardization, 1990).

4. B. Miller, "hi Empirical Study ofReliability," CAChf,
vol. 33, no. 12 (1)ecember 1990): 32-44.

5. Infornintion on Tcl/'rk is available at
h t tp : / / sunscr ip t . s~~n.co~n/

6. J . Ous tc rho~~t , 721 a i ~ c l the 712 70olkit (Reading, Mass.:
Addison-Wcsley, 1994).

7. Information on DDT distribution is available at
http://steve-rogers.com/projccts/ddt/.

General Reference

W. McKccman, A. Reinig, and A. Payne, "Method
and Apparatus for Software Testillg Using a
Differential Testing Technique t o Tcst Compilers,"
U.S. Patent 5,754,860 (May 1998).

William M. McKeeman
William McI<ecnian develops system soh\~are for Compaq
Computer Corporation. H; is a senior consulting e ~ l ~ i h e e r
in the Core Technology Group. His work encompasses
fast-turnaround compilers, unit testing, differential testing,
physics simulation, and the Java compiler. Bill came to
DIGITAL in 1988 aker more than 20 years in academia
and research. Most recently, he was a research professor at
the Aikcn Computation Laboratory of Harvard U~li\,crsity,
visiting from the Wang Institute Masters in Software
Engineering program, where he served as Professor and
Chair of the Faculty. He has served 011 the faculties of the
University of California at Santa Cruz and Stanford
Uni \ , e r s i~ and on various state and uni\rersity computer
advisory committees. In addition, he has been an ACIM and
IEEE National Lecturer and chairman of the 4th Annual
Workshop in Microprogramming and is a member of the
IFIP Working Group 2.3 on Programming me tho do log..
Bill fountied the Summer Institute in Computer Science
programs at Santa Cruz and Stanford and was technical
advisor to Boston University for the Wung Institute 1988
Sumnicr Institi~te. H e recei\,ed a Ph.13. in computc~.sci-
cnce fi-om Stanforti University, an M.A. mathenintics
horn Thc George Washington University, a 13.A. in mathe-
matics from Uni\~crsity of California at Berkeley, 2nd pilot
wings from the U.S. I\'a\y. Bill has coa~~tliored 16 patents,
3 books, and numerous pi~blished papers in the arcas of
compilers, programming language design, and progmm-
ming methodology.

Digirll Tctch~lical Journal Vol. 10 No. 1 1998 107

	Front cover
	A letter to readers of the Digital Technical Journal
	Contents
	Introduction
	Foreword
	Tracing and Characterization of Windows NT-based System Workloads
	Automatic Template Instantiation In DIGITAL C++
	Measurement and Analysis of C and C++ Performance
	Alias Analysis in the DEC C and DIGITAL C++ Compilers
	Compiler Optimization for Superscalar Systems: Global Instruction Scheduling without Copies
	Maximizing Multiprocessor Performance with the SUIF Compiler
	Debugging Optimized Code: Concepts and Implementation on DIGITAL Alpha Systems
	Differential Testing for Software
	Back cover

