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Introduction 

C. Robert Morgan 
Senior Coizsctlting Etzgineer and 
Technical Program Manager, 
Core Technology Group 

Tlie complexity of high-performance 
systems and the need for ever-uicreased 
performance to be gained from those 
systerns creates a challenge for engi- 
neers, one that requires both experience 
and innovation in the development 
of s o h ~ a r e  tools. The papers in tlis 
issue of the.Journal are a few selected 
examples of the work performed 
within Compaq and by researchers 
worldwide to advance the state of the 
art. In fact, Compaq supports rele- 
vant research in programming lan- 
p a g e s  and tools. 

Compacl has been developing 
high-perfor~nance tools for more 
than thirty years, starting with tlie 
Fortran compiler for the DIGITAL 
PDP-10, introduced in 1967. Later 
cornpilcrs and tools for VAX coni- 
puter systems, introduced in 1977, 
made the VAY system one of the most 
usable in I%story. The co~npilers and 
debugger for VAXflMS are exem- 
plary. With the introduction of the 
TIAX successor in 1992, the 64-bit 
RISC Alpha systems, Compaq has 
continued the tradition ofdevelopjllg 
advanced tools that accelerate appli- 
cation performalice and usability for 
system users. Tlie papers, however, 
represent not only the work of 
Co~npaq engjneers but also that of 
researchers and academics wlio are 
working on problems a id  advanced 
techniques ofinterest to Compaq. 

The paper on characterization of 
system workloads by Casmira, Hunter, 
and Kaeli addresses the capture of 
basic data needed for the de\relopment 
of tools and high-performance appli- 
cations. The authors' work focuses 
on generating accurate profile and 
trace data on machines running the 
Windows NT operating system. 

Prof Ling describes tlie point in the 
program that is most freq~leiltly 
executed. Tracing describes the 
commonly execi~ted sequence of 
instructions. In addition to helping 
developers build more efficient 
applications, this infornlation assists 
designers and implernenters of hture 
Windows NT systems. 

Every conlpiler consists of two 
components: the front end, which 
analyzes the specific language, and 
the back end, which generates opti- 
mized instructions for the target 
machine. An efficient compiler is a 
balance of both components, As lan- 
guages such as C++ evol\rc, the com- 
piler front end must also e\~olve to 
lteep pace. C++ has now been stan- 
dardized, so e\~olutionary changes 
wdl lessen. Ho\vever, compiler devel- 
opers must continue to irnprove 
front-end techniques for implement- 
ing the language to ensure ever better 
application performance. An impor- 
tant feature of C++ compiler develop- 
ment is C++ templates. Templates 
may be implemented in multiple 
ways, with varying effects on appli- 
cation programs. The paper by 
Itzl<owitz and Foltan describes 
Compaq's efficient implcnientation 
oftemplates. 011 a related subject, 
liotithor, Harris, and Davis describe 
a systematic approach Colnpaq has 
developed for monitoring and 
improving C++ compilcr perfor- 
mance to minimize cost and masi- 
mize function and reliability. 

Improved optimization techniqueb 
for compiler back ends are presented 
in three papers. In the first of these, 
Reinig addresses the requirement in 
an optimizing compiler for an accu- 
rate description of the variables and 
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fields that may be changed by an 
assignment operation, and describes 
an efficient technique used in the 
C/C++ compilers for gathering this 
information. Swean): Carr, and Huber 
describe techniques for increasing 
execution speed in processors like 
the Alpha that issue multiple instruc- 
tions simultaneously. The technique 
reorders the instructions in  the pro- 
gram to increase the number of 
instructions that are simultaneously 
issued. Maximizing the performance 
of multiprocessor systems is the sub- 
ject ofthe paper by Hall et al., which 
was previously published in IEEE 
Cornp~lter and updated c\iitli an 
addendum for this issue. The authors 
describe the SUIF compiler, which 
represents some of the best research 
in this area and has become the basis 
of one part of the ARPA compiler 
infrastructi~re project. Cornpaq 
assistcd researchers bp providing the 
DIGITAL Fortran compiler fi-ont end 
and an Alphaserver 8400 system. 

As compilers become more cffec- 
tive in increasing applic~tion program 
performance, the ability to debug 
the programs becomes more difficult. 
The difficulty arises because the 
compiler gains efficiency by reorder- 
ing and eliminating instructions. 
Consequently, the instructions for 
xi application program are not easily 
identifiable as part ofany particular 
statement. The debugger cannot 
always report to the application pro- 
gram where variables are stored or 
what statement is currently being 
executed. Application programmers 
have nvo choices: Debug an unopti- 
mized version of the program or find 
some other technique for deternulung 
the state ofthe program. The paper 

by Brender, Nelson, and Arsenault 
reports an advanced development 
project at Compaq to provide tech- 
niques for the debugger to discover 
a more accurate image of the state of 
the program. These techniques are 
currently being added to Compaq 
debuggers. 

One of the problems that tool 
de\relopers face is increasing tool reli- 
ability. Tool developers, therefore, 
test the code. However, developers 
are often biased; they know how their 
programs operate, and they test cer- 
tain aspects of the code but not oth- 
ers. The paper by McICeeman describes 
a technique called differential testing 
that generates correct random tests of 
tools such as compilers. The random 
nature of the tests removes the devel- 
opers' bias. The tool can be used for 
two purposes: to improve existing 
tools and to compare the reliability 
ofcompetitive tools. 

The High Performance Technical 
Computing Group and the Core 
Technolog)! Group within Compaq 
are pleased to help develop this issue 
of the.Iournn1. Studying the work 
performed within Compaq and by 
other researchers worldwide is one 
way that we remain at the cutting 
edge of technology ofprogramming 
language, compiler, and program- 
ming tool research. 
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Foreword 

William C .  Blake 
Director; Hfgh Pc =r J' orina~zce 

Techn~cul Chi??p/it~i7# aizd 
Cbre Technologl~ Group 

Iligiral Technical Journal 

You might think t l ~ a t  the cover o f  this 
issue of  the Digit01 Technical Jout-ncll 
is a bit odd.  After all, what could be 
tlie relevance of tliose ancient alchenlists 
in the drawing t o  the computer-age 
topic o f  programming languages and 
tools? Certainly, both alchemists and 
programmers \vorl< busily on new 
tools. An even more interesting 
metaphorical connection is the 
alchenist and the compiler software 
developer as creators of tools that 
transforll (transmute, in the strict 
sense of  alchemy) the base into the 
precious. T h e  metaphor does, how- 
ever, break down. Unlike the mytli 
and folklore of  alchemy, the science 
and technology o f  compiler software 
development is a real and important 
part ofprocessing a new solution or  
algorithm into the correct and high- 
est performance set ofactual machine 
instructions. This issue of  theJourml 
addresses current, state-of-the-art 
work at Conipacl Computer Corp- 
oration o n  program~ning languages 
and tools. 

Gone are the days when program- 
mers plied tlieir craft "close t o  the 
macline," that is, \\/orlung in det~i led 
macline instructions. Toda), 7 s J rstem 
designers and application developers, 
driven by the pressures o f  tinie t o  
market and technical complesity, 
must express their solutions in terms 
"close to  the programmer" because 
people think best in ways that are 
abstract, language dependent, and 
machine independent. Enhancing 
the charactcristics of  an abstract 
high-level language, however, con- 
flicts with the need for lower level 
optimizations that nialte the code 
run fastest. Computers still require 
detailed machine instructions, and 
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the Iugh-level programs close t o  the 
programmer must be correctly com- 
piled into those instructions. This 
sernantic gap between progralnming 
languages and machine instructions is 
central t o  the evolution of  compilers 
and t o  nlicroprocessor arcliitectures 
as well. The colnpiler developer's role 
is t o  help close the gap by preserving 
the correctness o f  the compilation 
and at the same ti~iie resolving the 
trade-offs benvee~i tlie optimizations 
needed for impro\~ements "close to  
the programmer" and those needed 
"close t o  the machine." 

To put the \vork described in this 
Jo~li.lznl into context, it is helpfill to  
think about the changes in coinpiler 
requirements over tlle past 15 pears. 
It was in tlie early 1980s that the direc- 
tion of future computer architectt~res 
chaiged from iiicreasinglv complex 
instruction sets, CISC, that supported 
high-level languages t o  computer 
architectures with much simpler, 
reduced instruction sets, RISC. Threc 
key research efforts led the way: the 
Berkeley RTSC processor, the IBM 
SO1 RISC processor, and the Stanford 
MIPS processor. All three approaches 
dramatically reduced the instruction 
set and increased the clock rate. The 
RISC approach promised improve- 
ments up  t o  a factor offive compared 
with CISC machines using the same 
manufacturing technology. Conipaq's 
transition from the VAX to the Alpha 
64-bit RISC architecture was a direct 
result of  the new architectural trend. 

As a consequence of  these major 
architectural changes, compilers and 
tlieir associated tools became signifi- 
cantly more important. New, much 
Inore complex compilers for N S C  
machines eliminated the need for the 



large, microcoded CISC machines. 
The complexities of  high-level Ian- 
guage processing moved from the 
petrified sofnvare of CISC micro- 
processors to  a whole new generation 
of optinlizing con~pilers. This move 
caused some to claim that RISC really 
stands for "Relegate Importa~lt Stuff 
to  Compilers." 

The  introduction of the third-gen- 
eration Alpha microprocessor, the 
21264, demonstrates that the shift to 
RISC and Alpha system implementa- 
tions and compilers served Compaq 
customers well by producing reliable, 
accurate, and high-performance com- 
puters. I11 fact, Alpha systems, which 
have the ability t o  process over a bil- 
lion 64-bit floating-point numbers 
per second, perform at levels formerly 
attained only by specialized super- 
computers. I t  is no t  surprisuig that 
the Alpha microprocessor is the most 
frequently used microprocessor in the 
top 500  largest supercomputing sites 
in  the world. 

M e r  reading through the papers 
in this issue, you may wonder what is 
next for compilers and tools. As phys- 
ical limits curtail the shrinking ofsili- 
con feature sizes, there is not liltely to  
be a repeat of the performance gains 
at the microprocessor level, so  atten- 
tion will tllrn to  compiler technology 
and computer architecture t o  deliver 
the next thousandfold increase in sus- 
tained application performance. The 
two principal laws that affect dramatic 
application pertbrmance improve- 
ments are Moore's Law and Amdahl's 
Law. Moore's Law states that perfor- 
mance will double each 18 months 
due t o  semiconductor process scaling; 
and Amdahl's Law expresses the 
diminishing returns o f  various system 

speedup enhancements. 111 the next 
15 years, Moore's Law may be stopped 
by the physical realities ofscaling lini- 
its. But Amdahl's Law will be broken 
as well, as improvements in parallel 
language, tool development, and new 
methods of achieving yarallelisln will 
positively affect the h t u r e  ofcompil- 
ers and hence application performance. 
As you will see in papers in this issue, 
there is a ncw emphasis on  increasing 
execution speed by exploiting the 
multiple instruction issue capability of  
Alpha microprocessors. Improvements 
in execution speed will accelerate dra- 
matically as h t u r e  compilers exploit 
performance improvement techniques 
using new capabilities evolved hi Alpha. 
Compilers will deliver new ways of  
hiding instruction latency (reducing 
the performance gap between vector 
processors and MSC superscalar 
machines), improved unrolling and 
optimization o f  loops, instruction 
reordering and scheduling, and \\lays 
of dcaling with parallel decomposi- 
tion and data layout in non~l~l iform 
memory architectures. The challenges 
t o  co~npiler and tool developers will 
undoubtedly increase over time. 

By not relying on hardware 
improvements to  deliver all the 
increases jn performance, compiler 
wizards are making their own conui- 
butions - always watchful of  correct- 
ness first, then run-time performance, 
and, finally, speed and efficiency of  the 
software development process itself. 
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I 
Jason P. Casrnira 
David P. Hunter 

Tracing and David R. Kaeli 

Characterization of 
Windows NT-based 
System Workloads 

To optimize the design of pipelines, branch pre- 
dictors, and cache memories, computer archi- 
tects study the characteristics of benchmark 
programs by examining traces, i.e., samples of 
program execution. Since commercial desktop 
applications are increasingly dependent on ser- 
vices and application programming interfaces 
provided by the host operating system, the 
authors argue that traces from benchmark exe- 
cution must capture operating system execution 
in addition to  native application execution. 
Common benchmark-based workloads, how- 
ever, lack operating system execution. This 
paper discusses the ongoing joint efforts of the 
Northeastern University Computer Architecture 
Research Laboratory and Compaq Computer 
Corporation's Advanced and Emerging Tech- 
nologies Advanced Development Group to cap- 
ture operating system-rich traces on Alpha- 
based machines running the Windows NT oper- 
ating system. The authors describe the latest 
PatchWrx software toolset and demonstrate its 
trace-generating capabilities by characterizing 
numerous applications. Included is a discussion 
of the fundamental differences between using 
traces captured from common benchmark pro- 
grams and using those captured on commercial 
desktop applications. The data presented 
demonstrates that operating system execution 
can dominate the overall execution time of 
desktop applications such as Microsoft Word, 
Microsoft Visual C/C++, and Microsoft Internet 
Explorer and that the characteristics of the 
operating system instruction stream can be 
quite different from those typically found in 
benchmarking workloads. 

The computer architecture research community corn- 
rnonly uses trace-driven simulation in pursuing 
answers to n variety of design issues. AI-chitects spend a 
significant amount of  time studying the characteristics 
of benchmark programs by examining traccs, i.c., sam- 
ples taken from program execution. P o p ~ ~ l a r  bench- 
mark programs include tlie SPEC' and the BYTEln3rIc2 
benchmark test suites. Si~ice the underlying assump- 
tion is that these programs generate workloads that 
represent user applications, today's computer designs 
have been optimized based on the characteristics of 
these benchmark programs. 

Although tlie authors of popular bcnchmarks arc 
well intentioned, the resulting workloads lack operat- 
ing slatem execution and consccl~~cntly d o  not repre- 
seut some of the most prevalent desktop applications, 
e.g., Microsoft Word, Microsofi Visual C/C++, and 
Microsofi Internet Explorer. Such applications make 
heavy use of application programming intcrE1ces 
(APIs), \vhich in turn csecute many instructions in the 
operating system. As a result, the o\rerall pcrfor~nance 
of many desktop applications depends on  cfficicnt 
operating sjatcm interaction. Clearly operating system 
overhead can greatly r e d ~ ~ c e  the bcncfits of new 
computer design feature. Past architectural studies, 
however, have generally ignored operating system 
interaction because few tools can gencrate operating 
system-rich traces. 

This paper discusses tlic ongoing joint e fh r t s  of 
Northeastern University and Conlpaq Computer 
Corporation to capture operating system-rich traccs on 
DIGITAL Alpha- based machines running thc Microsoft 
Wuidows NT operating system. We argue that for u-aces 
of today's workloads to be accurate, thcy nmst capture 
the operating system execution as cvell as the native appli- 
cation execution. This need to capture compf~tc pro- 
gram trace information has been 3 driving forcc bcliind 
the development and use of sohvare tools such as the 
PatchWrs dynamic execution-tracing toolset, which wc 
describe in tlis paper. 

The PatchWrs toolset was originally developed by 
Sites and Per1 at  Digital Equipment Corporatio~l's 
Systems Research Center. Tlie)~ describcd PatchWrx, as 
developed for Wiudo\\,s NT version 3.5, in "Studics of 
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Windows NT Performance Using Dynamic Execution 
Traces."" The Northeastern University Computer 
Architecture Research Laboratory and Compaq's 
Advanced and Emerging Technologies Advanced 
Development Group continue to develop the toolset. 
We have updated the framework to operate under 
Windows NT version 4.0, added the ability to trace 
programs that have code sections larger than 4 mega- 
bytes (MB), added multiple trace buffer sizes, and 
developed additional postprocessing tools. 

After briefly discussing related tracing tools, we 
describe the PatchWrx toolset and specify the new 
features \ve have added. We then analyze PatchWrx 
traces captured on Windows NT version 4.0, demon- 
strating tlie capabilities of the tool while illustrating 
the importa~lce of capturing operating system-rich 
traces. In the final section, we su~n~narize  the paper, 
discuss the current limitations of tlie toolset, and sug- 
gest new directions for development and study. 

Trace Generation Tools 

Trace-driven sim~~lation has been the method of 
choice for evaluating thc merits of various architec- 
tural trade-offs.+.j Traces captured from tlie system 
under test are recorded and replayed through a model 
of thc proposed design. Computer architecture 
researchers have proposed methodologies that capture 
both application and operating system references. 
These tools include hardware-basedc'-lo and software- 
based" '' methods. Some of the issues involved in cap- 
turing operating system-rich traces are 

1.  Tracing overhead (system slowdown) 

2. Accuracy (perturbation of tlie memory address space) 

3. Completeness (capturing all desired information, 
e.g., the operating system reference stream) 

Table 1 contains a list of 10 tracing tools that have 
been developed over the past 10 to 15 years. Altliough 

far from complete, this list provides a sample of tlie 
tools that have been used to generate input to a variety 
of trace-driven simulation studies. We have cliaracter- 
ized each tool in terms of the three issues (criteria) pre- 
viously mentioned. Table 1 lists the target platform(s) 
for each tracing tool. 

Note that many of these tools cannot capture oper- 
ating system activity. For those that can, their associ- 
ated slowdown can significantly affect the accuracy of 
the captured trace. Of the tools that provide this capa- 
bility, PatchWrx introduces the least amount of slow- 
down yet maintains the integrity of the address space. 
The next section discusses the PatchWrs toolset. 

PatchWrx 

PatchWrx is a dynamic execution-tracing toolset 
developed for use on the Alpha-based Microsoft 
Windows NT operating system. The toolset utilizes 
the Privileged Architecture Library (PAL) facility, also 
referred to as PALcode, of the Alpha microprocessor 
to perform tracing with minimal overhead." PatchWrs 
can instrument, i.e., patch, all Windows NT applica- 
tion and system binary images, including tlie kernel, 
operating system services, drivers, and shared libraries. 
The PAL facility is a set of architected functions and 
instructions that provides a consistent interface to a set 
of complex system functions. These routines provide 
primitives for memory management, context switch- 
ing, interrupts, and exceptions. 

Patch Wrx and the Alpha PAL Routines 
The PatchWrx software tool is made possible through 
the PAL used by DIGITAL Alpha microprocessors. 
PAL routines have access to physical memory and 
internal liard\?iare registers and operate with interrupts 
disabled. PALcode is loaded from disk at system boot 
time. We modified and extended the shrink-wrapped 
Alpha PALcode on a DIGITAL Alpha 21064-based 
system to support the PatchWrx operations. The mod- 

Table 1 
Sample of Tracing Tools 

Average Address Operating 
Name Slowdown Perturbation System Activity Platform 

ATOM') 10X to  100X No Yes DIGITAL Alpha UNlX 
ATUM16 20X No Yes DIGITAL VAX OpenVMS 
E E LI7 1 OX to  100X Yes No SPARC Solaris 
Etchy8 3 5X Yes No Intel x86 Microsoft Windows NT V4.0 
NT-Atom1= 1 OX to 1 OOX N o N o DIGITAL Alpha Microsoft Windows NT V4.0 
PatchWrx3 4X N o Yes DIGITAL Alpha Microsoft Windows NTV4.0 
PixieZ0 10X to  100X Yes N o DIGITAL MIPS ULTRIX 
QPT12 1OXto 100X Yes N o SPARC Solaris, DIGITAL ULTRIX 
Shade2' 6X N o N o SPARC Solaris 
SimOS14 1 OX to  50,000X No Yes DIGITAL Alpha UNIX, SGI IRIX, SPARC Solaris 
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i fed PatchWrs PAL routines serve two major pilr- 
poses: (1) to  reserve the trace buffcr at system boot 
time and (2)  to log trace entries at trace time. 

One way that PatchWrx maintains a low operating 
overhead is to store the c a p t ~ ~ r e d  trace in a physical 
memory buffer, which is reserved at boot time. The 
size of the buffer can be varied depending on the 
amount of physical memory installed on the system. 
Since we use PAL routines to reserve this memory, the 
opcrating system is not aware that the memory exists 
because the PPLLcode pcrfor~ns all lo~r-lc\rel system ini- 
tialization before the operating system is started. 

PatchWrs logs all trace entries in this buffer. Writing 
tr'lcc entries directly to physical memory has se\.cral 
advantages. First, \\lriting to memory is ~ n ~ ~ c h  faster 
than writing to disk or  to tape. Second, using pliysical 
memory allo\vs tracing of the lowest levels of the oper- 
ating system (i.e., the page fault handler) \vithout gen- 
erating page faults. Third, using physical memory 
allows tracing across multiple threads running in niul- 
tiple address spaces regardless of which address space is 
currently running. 

To  enable PatchWrx to operate 111ider Windows NT 
versions 3.51 and 4.0, we started with the PAL rou- 
tines modified by Sites and Perl' and 11iade additional 
modifications as required by the opcrating spstern ver- 
sions. These modifications \vere conccntratcd in the 
process data structures. The PatchWrs-specific PAL 
routines are listed in Table 2 .  The first three routines 
arc used for reading the trace entries from tlie buffer 
and for turning tracing on and off. The remaining five 
routines are used to log trace entries based o n  the type 
ofinstruction i~istruniented. 

Patch Wrx Image Instrumentation 
Next we describe how we use PatchWrx to instrument 
Microsok Windows NT images. Patching the operat- 
ing s!lstem involves the instrumentation of  a11 the 
binary images, including applications, operating svs- 
tern cxccutables, libraries, and kernel. Once patching 
is complete, trace entries are loggcd by means of PAI, 
routincs as imagcs execute. 

Table 2 
PatchWrx-specific PAL Routines 

We define a patched instruction as an instruction 
\vithin an image's code section that is o \ ~ e r ~ / l i t t e ~ i  with 
an unconditional branch (BR) to a patch. The target of 
the BK contains the putch secfiorz. The patch section 
includes the trap (CALL-PAL) to the appropriate I'AL 
routine that logs a trace entry corresponding to the 
type of  instruction patched and the return branch to 
the original target. 

PatchWrx docs riot modifi, the original binary 
images; instead, it generates new images that contain 
patches. This operation preserves the original iniagcs 
on the system in case they need to be restored. 
Ins t rumenta t io~~ in\,olves replncj~lg all branching 
instructions o f  type ~~nconditional branch, conditional 
branch (e.g., branch if equal to  zero [BEQ]), branch 
to subroutine (13SR), function return (RET), jump 
(JLMP), and jump to  subroutine (JSR) within an 
image's code scction with unconditional branches to 
a patch section. If loads and stores are also traced, 
PatcbWrx replaces these instructions (e.g., load sign- 
extended longword [LDL]) with unconditional 
branches to the patch section, where the original load 
o r  store instruction is copied. A return branch is also 
needed to return control flow to the instruction subsc- 
q ~ ~ e n t  to the original load. When PatchbVrx encoun- 
ters this patch, the tool records the register value of the 
original load or  store instruction in tlie trace log. Thc 
patch section con t ins  all the patches for the imagc 
and is added to the rewritten image. Figure 1 sho\vs 
examples of patched instructions. PatchWrx replaces 
only branch instructions ulitliin an image to reduce the 
type and number of entries logged in the trace buffcr. 
Using these traced branches, the tool can later recon- 
struct the basic blocks they represent. 

As shown in Figure 1, PatchWrx replaces BR and 
JMP instructions with BR instructions that transfer 
control to  the patch scction. The original BR or  JMP 
instruction is repeated in the patch section for the pur- 
pose of recording the value of  the target register (if 
necessary) illto the trace buffer when the patched 
image is executed. This register value is necessary for 
reconstructing the traced instrirction stream. PatchCVrs 

PAL Routines Function 

PWRDENT 
PWPEEK 
PWCTRL 
PWBSR 
PWJSR 
PWLDST 
PWBRT 
PWBRF 

Read a trace entry from trace memory 
Read an arbitrary location (for debug) 
Initialize, turn tracing onloff 
Record a branch t o  subroutine 
Record a jumplcalllreturn 
Record a loadlstore base register value 
Record a conditional branch taken bit 
Record a conditional branch fall-through bit 
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ORIGINAL CODE 

EXAMPLE 1 JMP ZERO, (R19 ) 

EXAMPLE 2 

EXAMPLE 3 

EXAMPLE 4 

JSR R26, (R19) 

BEQ R3,TAROET.Q03 

PATCHED CODE 

. . . . . . . . . . . . . . . . . . . .  
P A T C H . ~ ~ ~ :  C A t t P A L  PWJSR 

JMP ZERO, (R19) 

BSR R26,PATCH.002 

. . . . . . . . . . . . . . . . . . . . . .  
PATCH. 002 : C A L L P A I  PWJSR 

JMP ZERO, (R19) 

BR PATCH.004 
BACK. 004 

. . . . . . . . . . . . . . . . . . . . .  
PATCH.004: CALL-PAL PWLDST 

LDL R20,4 (R16) 
BR BACK.004 

Figure 1 
Instruction Patch Examples 

replaces JSR and BSR instructions with BSR patches. 
This replacement preserves the return address (RA) 
register field value, which contains the return address 
for the subroutine. Again, the original instruction is 
repeated in the patch section for register value record- 
ing during tracing to help ficilitate reconstruction. 

Conditional branches have a larger and more com- 
plex patch than the other branch types because the 
original condition is duplicated and resolved within 
the patch. The taken o r  fall-through path generates a 
bit value when logged within the taken o r  fill-through 
trace entry. The return branch in the patch section is a 
replica of the original conditional branch. 

As explained earlier, for all patches, PatchWrs replaces 
the original branch with a patch ~~nconditional branch. 
Since Alpha jnstructions are equal in size, this replace- 
ment process allows patching without iucreasjng the 
code size within the image. Although the code size 
remains unchanged, the image size will increase in 
proportion to the number of  patches added. This 

image size change becomes an issue for dynamically 
linked library ( DLL) images. 

Patching Dynamic Link Libraries 
The Microsoft Windows NT operating system pro- 
vides a memory management system that allows shar- 
ing between p r o ~ e s s e s . ~ V o r  example, two processes 
that edit text files can share the text editor application 
image that has been mapped into memory When the 
first process invokes the editor, the operating system 
loads the application into memory and maps the 
process's virtual address space to  it. When the second 
process invokes the editor, rather than load another 
editor image, the operating system maps the second 
process's virtual address space to the physical pages 
that contain the editor. Of  course, both processes con- 
tain local storage for private data. 

DLLs are loaded into memory and shared in this 
manner. When patches are added to a DLL, the size of 
the image increases. When this image is mapped to 
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physical memory (as per its preferred base load 
address), the largcr image may overlap with another 
image having a base address within tlie new range. 
This image overlap can prevent the operating system 
from booting propcrly: sornc environliient DLLs will 
conflict in memory because they perform calls directly 
into other DLLs at fixed offsets. T o  resolve this issue, 
we rc.baslsc" the preferred base load addresses of the 
patched DLLs, which modifies the base load addresses 
of each patched DLL to eliminate conflicts. Rebasing 
affects the address accuracy of tlie patched system, 
though we are able to readjust the addresses during 
reconstruction. An increase in the paging activity may 
also be observed since thc additional code may cross 
page boundaries. 

The original version of the PatchWrx toolset was 
developed on Microsoft \iVindo\vs NT version 3.5. 
When versions 3.5 1 and 4.0 were released, several mod- 
ifications were lnade to the i~nage for~nat.  In complet- 
ing the: 3.5 1- and 4.0-compatible versions ofPatchWrx, 
we liad to address this issuc. One change that affected 
how we patch was the placement of the Import Address 
Table (IAT) into the hont of the initial code section of 
executable binary images. This table is used to look up 
the addresses of 1)LL procedures used ( i t . ,  imported) 
by the executable binary. In developing the current gen- 
eration of PatchWrx, we liad to make ~nodifications to 
use image header fields that had previously remained 
unused or  reserved, indicating the executable code sec- 
tions that contained data areas. 

Another issue that we addressed in tlie recent modi- 
fications to PatchWrs was long branches. The original 
version of PatcliWrs rcplaccs 311 branch, ju~iip,  call, 
and return instructions with either BR or BSR instruc- 
tions to the patch section. Since the PatchWrs tool has 
n o  information about machine state during the patch- 
ing phase, it is inlpossible to utilize other branching 
instructions (e.g., JlMP or  JSR instructions) to provide 
this branch-to-patch transition. Register and register- 
indirect branching instructions would require per- 
turbing the machine state. Therefore, the developers 
could use only program counter (PC)-based offset 
branching jnstructions. 

As discussed previously, in replacing a control tl(.)w 
instruction with a patch branch, PatchWrs uses a BR 
or KSR instruction in which thc ofket  field is set to 
branch to tlie corresponding patch within the image's 
patch section. The Alpha arcliitecture branching 
instructions use thc format sho\\w in Figure 2. 

The branch target virtual address computation for 
this format is newPC = (oldPC + 4) + (4  * sign- 
estended(21-bit branch displaccme~lt)). The register 
field holds the returli addrcss for BSRs. With this 
branch format and target virti~al address computation, 
the Alpha architecture provides a branch target range 
o f 4  MB from an instruction's current PC. 

Several applications that run today on  ~Vicrosoti 
Windows NT version 4.0 are sufficiently large that the 
displacement between a control flow instruction to be 
patched and the patch location within the patch section 
exceeds this 4-MB limit. (Recall tliat since we \want to 
avoid moving code or  data sections, thc patch section is 
placed at the end of the image.) To address this problem, 
we developed nvo new branch instri~ctions for L I S ~  \\~ith 
Patch\Vrx. These new branches were not implcmcntcd 
in the instruction set architect~~re of  thc Alpha architec- 
ture. Instead, we ilsed PALcode to imple~nc~it  them. The 
two new branches are designated long branch (LBR) and 
long branch subroutine (1,KSR). Figure 3 illustl-ates the 
format of these two instructions. 

The  computation of the target virtual address is 
newPC = (oldPC + 4 )  + (4 * sign-estended(25-bit 
branch displacemcnt)) for LBR branches and newPC: = 

(oldPC + 4) + (32 * zero-cxtcndcd(20-bit branch dis- 
placement)) for LBSR branches. PatchkVrs uses LBRs 
when patching any control flow instruction tliat has 
a displacement greater than 4 MR. PatchWrs uses 
L B S h  similarly for cc)ntrol flow instructiotls that must 
preserve the register field \value. 

\iWien an LBR or I.,BSR instrilctioll is csecuted 
within the image code section, a trap to PA1,codc 
occurs. Normall!: CALL-PAI, instructions have onc of 
several defined f i~nct io~l  fields that cause a correspond- 
ing PAL routine to be csccutcd. The nvo long branch 
instructions have function fields that d o  not belong to 
any of  the defined CALL-PAL instructions and there- 
fore force an illegal instruction exception within the 
PALcode. This PALcode flow has been modified to 
detect if a long branch has been encountered. 

OPCODE 1 000000 ~ 25-BIT DISPLACEMENT 

LBR INSTRUCTION FORMAT 

OPCODE I 000000 I REG I 
OPCODE 

20-BIT DISPLACEMENT 

LBSR INSTRUCTION FORMAT 31 26 25 21 20 0 

REG 

Figure 2 
AJpha Branch Instruction Format 

21-BIT DISPLACEMENT 

Figure 3 
1'ALcode Long Branch Instl.~lctlo~~ l'orlnnts 



As shown in Figure 3, both long branch types have 
the same PALcode operation code (opcode) value of 
000000. To distinguish between the two types, the least 
significant bit in the instruction word is set to 0 for LBRs 
and to 1 for LBSRs. bit is not included as a usable 
bit for the displacement fields of either branch type. 
Consequently, each LBR has a 25-bit displacement field 
and each LBSR has a 20-bit field. With a 25-bit usable 
displacement field, the PALcode performs the LBR tar- 
get address computation, allowing a 264-MB range. 

Since each LBSR instruction has a 20-bit displace- 
ment field, whereas the original Alpha architecture 
branch displacement field is 21 bits, the target instruc- 
tion address colnputation for LBSR instructions is per- 
formed differently than for standard branches within 
the P u o d e .  As shown in the address computation 
equation, the 20-bit displacement is multiplied by 32 
rather than by 4 (as for the LBR branch). Notice that 
the 20-bit displacement is always zero extended. The 
computation provides the LBSR instruction with a dis- 
placement of +32 MB. 

This computation procedure has two implications. 
First, LBSR instructions can only be used to branch 
from an image code section to an image's patch sec- 
tion. Second, branches into the patch section are 
either BR or BSR instructions (or their long displace- 
nlellt counterparts). PatchWrx uses only BR or LBR 
instructions to return from the patch section to the 
original branch target within a code section; BSR and 
LBSRinstructions are never used. Therefore, restrict- 
ing LBSR illstructions to use positive displacements 
does not present a problem. 

The LBSRdisplacement multiplier value of 32 does 
present some restrictions, however. The multiplier 
value of 4 used in the original Alpha instruction set 
architecture represents the instruction word length 
of 4 bytes. Thus, norn~al branch instruction target 
addresses must be aligned on a 4-byte boundary. By 
using the multiplier value of 32 for LBSRinstructions, 
LBSR target addresses are restricted to align on a 32- 
byte (i.e., eight-instruction) boundary. Since all LBSR 
targets reside within the patch section, this restriction 
does not pose a problem. If an LBSR is to be inserted 
into the image code section and the next available 
patch target address is not aligned properly, Patch\Vrx 
can insert no operation (NOP) instruction words and 
advance the next available patch target address until 
the necessary alignment is achieved. PatchWrx never 
executes the NOPs; they are inserted for alignment 
purposes only. Although inserting these NOP instruc- 
tions increases the image size, we have implemented 
several optimizations into the instrumentation algo- 
rithm to minimize this increase. For example, a queue 
is used to  hold LBSRs that do  not align. As LBR 
patches are committed, PatchWrx probes the queue to 
determine if any LBSRs align from their origin to the 
newly available patch target offiet. 

Trace Capture 
The PatchbVrx toolset allows the user to turn tracing on 
and offand thus capture any portion of workload execu- 
tion. The tracing tool is also responsible for copying trace 
entries fiom the physical memory buffer to disk. Copying 
the trace buffer to disk is performed after tracing has 
stopped so that the time required to perform the copy 
does not introduce any overhead d e g  trace capture. 

PatchWrx logs a trace entry for each patch encoun- 
tered during program execution. As it executes instruc- 
tions within the code section, PatchWrx encounters an 
unconditional PatchbVrx branch. Instead of branching to 
the original target, the patched branch transfers control 
to the image's patch section. W i h  the patch section, a 
PatchWrx PALcall traps to the PAL routine correspond- 
ing to the patch type and logs a trace enuy to the trace 
buffer. The PAL routine then returns to the instruction 
following the CALLPAL instruction. PatchWrx uses XI 

unconditional branch to transfer control fi-om thc patch 
section back to the original target within an irnage code 
section. During the execution of the PatchWrx PAL rou- 
tine, necessary machine state information is recorded 
and logged in the trace buffer. This allo~vs for the capture 
of register contents, process ID information, etc., whch 
are used later during mace reconstruction. 

The trace capture facility caphlres the dynamic execu- 
tion of a worWoad running on the system. To recon- 
struct the trace after it has been captured, the tracing 
tool must aJso capture a snapshot of the base load 
addresses of all active images on the system. This snap- 
shot serves as thc virtual address map used in recon- 
structing the trace. Each active process and its associated 
libraries is loaded into a separate address space, which 
may be different than the preferred load address as spec- 
ified statically in the image header. If each image was 
loaded into memory at its preferred base address, the 
virtual address map cvould not be necessary to perform 
reconstruction. Instead, PatchWrx could map target 
addresses from the trace buffer using the base address 
values contained in the static image headers. 

The type of trace record that PatchWrx logs into the 
trace buffer depends on the type of branch or low-level 
PAL hnction being traced. Figure 4 shows the trace 
record formats. The first three trace entry formats 
consist of an 8-bit opcode and a 24-bit time stamp. 
The time stamp is the low-order 24 bits of the CPU 
cycle counter. The 32-bit field of these three formats 
depends o n  the type of trace entry logged. The first 
format is used for target virtual addresses for all 
unconditional direct and indirect branches, jumps, 
calls, returns, interrupts, and returns from interrupts. 
The 32-bit field of the second format is used to record 
the base register value for traced load and store 
instructions and stack pointer values that are flushed 
into the trace buffer during system calls and returns. 
The 32-bit field of the third format is used for logging 
the current active process ID at a context swap. 
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Figure 4 
Trace Entry Formats 

OPCODE 

The fourth trace entry type is used for tracing con- 
ditional branches. I t  uses a 3-bit opcode and up  to 60 
talen/fall-through bits. A start bit is used to deter- 
mine how many bits are active. The start bit is set to 
1 if a conditional branch is taken and to 0 ifthe branch 
is not talcen. This recording scheme allows a compact 
encoding of conditional branch trace entries. During 
trace reconstruction, PatchkVrx uses conBtional branch 
trace entries to reconstruct the correct instruction 
flow when conditional branches are encountered and 
to provide concise information about when to deliver 
interrupts jn loops. 

Trace Reconstruction 
The reconstructio~~ phase is the final step in generating 
a full instruction stream of  traced system activity. As 
shown in Figure 5, trace reconstruction requires s e v  
era1 resources in order to generate an accurate instruc- 
tion stream of  all traced system activity. 

Trace reconstruction reads and initializes the head- 
ing of the captured trace, which includes a time stamp, 
the name of the user who capturcd the trace, and any 
important system configuration information, e.g., the 
operating system version number. Next, reconstruc- 
tion reads the first four raw trace records, which are 
automatically entered whenever tracing is turned on. 
These records contain the first target virtual addrcss, 
the active process ID, the value of the stack pointer, 
and the first taken/L~ll-through record to be used 
(such records always precede the branches they repre- 
sent). PatchWrx uses this information to  initialize the 
necessary data structures of the reconstruction process. 

TIME STAMP 

Using the first target virtual address and process 11) 
pair from the captured trace, trace reconstruction con- 
sults the virtual address map to determine in which 
image the instruction falls (based on  its dynamic base 
load address) and where that image is physically 
located o n  the system. The tool cons~~l t s  the patched 
image to determine the actual instruction at the target 
address, records this instruction, and then reads the 
next instruction fioin the patched image. T h s  process 
continues until reconstruction encounters either a 
conditional branch o r  an unconditional branch. A 
conditional branch causes the tool to check the first 
active bit of the current taken/fall-through entry to 
determine subsequent control flow; the process then 
continues at that address. If an unconditional branch is 
encountered, reconstruction records the entry and 
checks it against the next captured trace entry. If the 
two entries match, the tool outputs the recorded 
instructions to an instruction stream file, consults the 
cap tu rd  trace entry for t l ~ e  next target instruction vir- 
tual address, and repeats the procedure until the entire 
captured trace has been processed. 

Since PatchWrx captures interrupts and other low- 
level system activities (e.g., page faults) in the trace, 
these activities must also be reconstructed. When 
Patcl~Wrx logs an interrupt into the trace buffer, the 
correspo~ldillg target virtual address in the captured 
record represents the address of the first instructioil 
not executed when the interrupt was taken. PatchWrs 
flushes the currently active taken/fall-through entry 
to the memory buffer and initializes a new taken/fall- 
through entry. This new entry will be responsible for 
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Instl.~lctio~l Stream Kcconstruction l<eso~~rccs 

the conditional branches encountered beginning with 
tlie interrupt service routine. The address of  the first 
instruction within the interrupt service routine is then 
logged in the trace. 

During reconstruction, the reconstruction tool looks 
for the interrupt's first ~~nexecuted instruction address 
to Itno\\, which instruction to stop at when recon- 
structing the instruction stream. The tool then begins 
reconstructing the instruction stream, including the 
interrupt handler stream. If the unesecuted instruc- 
tion is within a loop, trace reconstruction utilizes the 
taken/fall-through entry convention. On taking the 
intcrr~~pt,  the active taken/fall-d~ro~igl~ record is flushed 
and another record is started. This proccss allows the 
tool to continue to  reconstruct iterations o f t h e  loop 
until all the taken/fall-through bits are exhausted. 

Operating System-Rich Workload 
Characterization 

As presented in the study by Lee et a.l .:"desktop appli- 
cations and benchmarks share some workload charac- 
teristics, but applications alone d o  not represent fill1 
system behavior. To investigate and address system 
design issues, computer architects should use operat- 
ing systern-rich traces. 

'Yo illustrate this point, we present a sample of thc 
\ ~ a r i o ~ ~ s  \vorlcload characteristics that exist in a set of 
benchmark and desktop applications specially sclected 
to study the differences in the use of  the operating sys- 
tem and related services. The first characteristic we dis- 
cuss is the amount of time each benchmark o r  desktop 
application spends within three domains: 

1. Application-only domain (e.g., win\vord.c~e and 
c\ccl.cxe) 

2. DLL domain-Win32 user (e.g., kernel32.dl1, 
user32.dl1, and ntdll.dll) 

3. Operating system domain-Win32 Iternel, Iternel, 
system processes, system idle process (e.g., 
Win32I<.sys, ntoskrnl.ese, drivers, and the spooler) 

Examining these times provides insight into a work- 
load's use of  each domain. \Ye also examine DLL and 
system service usage on an image basis for each work- 
load. T l i s  breakdown helps us more clearly identi+ the 
dependence between tlie worldoad and the system ser- 
vices provided by the Windows NT operating system. 

We also present d ~ e  instruction rnix of each workload 
with and without tlie inclusion of the operating system 
execution. Understanding the differences in instruc- 
tion conlposition in the presence of system activity f i~r-  
ther hghbghts the behavior lacking in application-only 
traces, such as increases in branch and menlor) 1 I I ~ S ~ T L I C -  ' 

tions, when compared to application-only \vor!doads. 
We prcsent the average basic block lengths for each 
domain ofexecution (application-only, DLL, operating 
system) separately and then in combination. This met- 
ric reveals which workload domain dominates the 
branching behavior. Casmira's work provides a more 
complete description of these differences across a wider 
set ofworldoad characteristics." 

Workload Descriptions 
We performed all the experiments reported on  in this 
paper on  a DIGITAL Alpha platform running the 
Microsoft Windows NT version 4.0 operating system. 
We captured the traccs on  a 150-megahertz Alpha 
21064 processor. The system configuration incl~ldcd 
SO IMB of physical memory. Tablc 3 lists the workloads 
we examined. 
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Table 3 
Workload Description 

Workload Description 

fourier BYTEmark benchmark; a numerical analysis routine for calculating series approximations of waveforms 
neural BYTEmark benchmark; a small, functional back-propagation network simulator 

90 SPEC95 Go! game benchmark 
I i  SPEC95 Lisp interpreter benchmark 
cdplay Microsoft CD Player playing a music CD 
fx!32 DIGITAL FX!32 V1.l  interpretingltranslating included OpenGL sample x86 application 
ie Microsoft Internet Explorer V2.0 following a series of web page links 
vc50 Microsoft Visual UC++ V5.0 compiling a 3,000-line C program 
word Microsoft Word97 V7.0, spell-checking a 15-page document 

The fourier and neural workloads are from the 
BYl'Ernark benchmark test suite: the neural workload 
is a s~nall  array-based floating-point test; the fouricr 
worlcload is designed to measure transcendental and 
trigonometric floating-point unit performance. 

The go  and li workloads arc from tlle SPEC95 integer 
benchmark suite: the go workload is a simulation ofthe 
game Go!, with the computer playing against itselc the li 
workload is a Lisp interpreter. All the worklouds use the 
staidu--d inputs provided wid1 the benchmarks and are 
compiled with the default optimization level using the 
native Alpha version of Microsoft C/C++ version 5.0. 

The cdplay workload is the Microsoti C11 Pla)rcr 
application included in Microsoft \/Vindows NT vcr- 
sion 4.0. The  device was traced while playing a nlusic 
CD using default playing options (e.g., playing all the 
songs in order). 

k!32 workload is the DIGITAL FS!32 version 1 .l 
ernulntor/tl-anslator provided by Colllpaq's DIGITAL 
Alpha Migration Tools Group . 'Ve  ran the robot a-m 
OpenGL sample Intel-based application in the fore- 
ground during trace capture. 

l 'he  ie workload is the standard Microsofi Internet 
Explorer version 2.0 ~~or .k load  inclilded in Microsof? 
Windo\\.s N T  version 4.0. The ie workload was traced 
while traversing four links through the S o ~ i y  home 
web page, arriving finally at the Sony PlayStation Store 
web page. The trace was captured on May 4, 1998; 
pages niqr have changed since this date. The history 
cachc and the web link cache were both empty when 
the trace was captured. 

The slc50 worlcload is tlie Microsoft C/C++ version 
5.0 compiler compiling a 3,000-line C source code file. 
We used the command line interface, and we used the 
default optimization levels and other parameters, which 
best represented the common usage ofthe compiler. 

The word \vorldoad is Microsoft Word &om the 
Microsoft Office97 desktop application suite for the 
Alpha processor used to capture a manila1 spell check 
of a 15-page Microsofi Word document. The standard 
Microsoft Word dictionary was employed. 

To provide a clear and representative comparison 
ofworldoad behavior, \ \ ~ c  captured several traccs. For 
all scenarios, full traccs of cacli worklo,id captured 
approximately 5 to 10 seconds of cxcci~tion, filling the 
45-MR trace buffer. T o  characterizc worldoad behav- 
ior, each experiment was run with the bcnch~nark or  
application as the only activity o n  the system. Each 
workload was ru1i in the fo reg ro~~nd .  

To ensure that the traces captured were rcprcscnta- 
tive of  the overall workload behavior, we c ~ p t u r e d  
~nultiple traces. We chose different points during exe- 
cution for tracing to allow comparison bctwcen differ- 
ent portions of the selectcd scenarios. To investigate 
the variability present in sclectcd \vorldoads, \trc traced 
additional scenarios. A second Microsof? Word trace 
aras captured with the application performing an auto- 
format operation of  the same document used in the 
first trace of  the spell-check operation, and we cap- 
tured a second Microsoft Internet Explorer trace, 
repeating the Sony links but \\,it11 the links cached. PVe 
capti~red a second trace of  F X ! 3 2  using the included 
boggle sarnple game (for coniparison against using the 
0 p e n ~ ~  application input). Additionally, the F X ! 3 2  
translator mas traced while it optimized a native Intel 
x86 application's prof lc. To condense tlic number of 
memory pages occupied b y  an  iniagc, Microsof? 
designed the new linker to allow data to reside wit-liin 
the code regions. Hoolovay and Herdcg'" provide an 
explanation of  the DIGITAL F X ! 3 2  emulation and 
translatio~i/optirnization procedures. Cas~nirn disc~~sses 
these scenarios and others ." 

Domain Mix 
To illustrate the inherent differences between bench- 
mark and desktop application behavior, we brealc 
do\iln tlic captured trace 111 terms of three m i ~ t ~ ~ a l l y  
esclusive domains. The\c domains arc ( 1)  applicat~on, 
(2) DLL, and ( 3 )  operating system. '17hc application 
do~nain  represents the set of executed rnstructions that 
are within the traced application's executable image. 
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The DLL domain represents tlie instructions executed 
by the application of interest's process but excludes 
the application's executable image. This domain is 
made up of the DLLs, system services, a i d  drivers that 
the application may access during execution. The  
operating system domain includes instructions exe- 
cuted by the kernel o r  other system support service 
executable images, and all associated DLL and driver 
images. These are the processes, images, and libraries 
that are always present and running 011 the system. 
Figure 6 displays the breakdown of instructions into 
these three domains. The x-axis lists the cvorkloads, 
and the y-axis presents the percent composition of the 
captured trace. Note that the four benchmarks, i.e., 
fourier, neural, go, li, spend at least 95 percent oftheir 
execution within their application image. Both the 
fourier and thc neural benchmarks spend about 
99 percent of thcir execution within their application 
image. The go and li bench~narlci d o  eshibit some 
operating system activity, but this activity is due to the 
I/O gencrated as go displays o u t p i ~ t  as it progresses 
and as l i  reads input from its standard input file. 

The operating system dominates the execution in 
the cdplay worltload. The Microsoft CD Player appli- 
cation is 1 / 0  bound, relying heavily on the necessary 
services provided by the operating system and the 
DLLs to access the CD hardware. While waiting for 
I/Os to complete, the system activity is composed 

" 
FOURIER NEURI 

almost completely of  the kernel idle loop performing 
busy waiting (recall that each workload investigated is 
the only application running on  the system, so  there is 
no  other work to be done during these periods). 

The &!32 workload spends nearly all its execution 
time operating within DLLs. The robot arm Intel x86 
OpenGL sample that the DIGITAL FX!32 application 
is interpreting heavily exercises the graphics display 
libraries and console display services. 

The ie worltload is more evenly distxibuted across 
the three domains. The moderate amount of operating 
system activity is due to the nenvork and screen display 
1 /0  and also to tlie Microsoft Internet Explorer's 
cachmg of the pages it touches to local disk files. The 
DLL activity is gencrated by operating system services 
for screen and file 1 / 0  and by nenvork service library 
routines. The application image coordinates the usage 
of these routines, and network and display I/O, which 
is frequently encountered during the operations of 
selecting and opening web links. This coordination 
accounts for the high percentage of application domain 
execution exhibited by ie, as shown in Figure 6. 

The vc50 workload spends nearly all its execution 
time within its application image. This phase of  the 
compiler is responsible for performing the parsing and 
lexical analysis of  the source code file. There is some 
use of DLLs through invoking library routines to load 
included header filcs. l 'hc operating system activity, 

WORD 

WORKLOAD 

Figure 6 
D o m ~ i n  Esecution Mix 
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although small, is present; all I/O mi~s t  be accessed by 
means of a system service. 

The Microsoft Word spell-checking service is pro- 
vided by meals of a DLL included with tlic application. 
Thus for the word workload, this DLL handles both die 
search through the document and the succcssi\le diction- 
ary lookups. Operating system services are required for 
accessing portions of the file residing on  disk (not in 
Inemory pages), for displaying the search and compare 
results to thc user, a i d  for performing the user-driven 
I/O associated with accepting/rejecting word replace- 
ment choices (prompted by the spell-checking tool). 

F i p - e  6 shows the consistent pattern of u~struction 
domains that the four benchmarks follow in conmast to 
thc variability ui tile instruction ~ L Y  domain of the desktop 
application ~\lorkloads. Even thoudl these is slight operat- 
ing system activity for go  and li (attributable to 1 /0  ser- 
vices), the benclunarks spend practically all their execution 
within their application images; no  DLL use is visible. 
Clearly these benchmarks d o  not i~nlize system services to 
the level observed in the commercial dcsktop workloads. 
Witli t l ~ e  exception of the CD player, the commercial 
desktop applications esrunincd usc DLLs morc heavily 
than they d o  operating system services. This is especiallp 
true in the k!32 a i d  word ~vorkloads, which carry out the 
tasks captured in the trace by means of DLL routines. 

Characterization of Image Usage 

To investigate the domains present in thc tracc at the 
image level, we identified the top five most heavily 
used images, based on  the numbcr of  instructions exe- 
cutcd in each image. First, an explanation of some of  
the more frequently used systcm esecutables and 
1'lLLs is in order. Table 4 lists the names o f  the coni- 
monly used images and a brief description of each. 

We present the image usage of the nine traces. Tlus 
characterization includes all the images (e.g., executa- 
bles, DLLs, services, and drivers) listed in Table 5. The 
d a t ~  hclps demonstrate several points. First, commercial 
desktop ~\lorkloads spend a lot more tirne in DLLs than 
benchmarks do.  Consequently, we can project that the 

Table 4 
Common System Images 

Name Description 

number of procedure calls in desktop applications will 
be higher than the number of calls in benchmarks. 
Second, red applications depend not only on system 
DLLs but also on their locd L3LLs. We see this beha\ior 
esplicitly with t l ~ e  A/Iicrosoft Word application. 

Instruction Mix 
Although understanding the domain mix and image 
usage helps identitjr differences behveen benchmarks 
and desktop applications, we would like to look deeper 
within cach domain to see inherent differences that 
affect design decisions. Figure 7 shows the application- 
only instruction mix (i.e., the instruction mix for only 
the application and application-specific DLLs) for each 
workload. Each entry in the legend represents a class 
of instructions found \vithin the application domain. 
The y-axis dcnotcs the perccnt co~nposition of the 
trace; the workloads are displa)led on die x-axis. 

Note that the instruction mix for the h!32 workload 
is zero. This value is a result of  the lack of execution 
within the application image itself. Referring back to  
Table 5 and the domain instruction mix, note that 
nearly all the worlcload execution is ~ithm DLLs (some 
execution is within ntoslu-nl.exe). The remaining work- 
loads consist mainly of load, store, conditional branch, 
and arithmetic and logic unit (ALU) logic operations. 
N o  overriding characteristic differentiates benchmarks 
and desktop applications. Note the significant variabil- 
ity in the instruction mix among the different bench- 
marks and among the different desktop applications. 

Figure 8 shows thc instruction mix of  the entire 
trace. The first and most noticeable difference between 
the application domain and fiill-trace instruction mix 
figures is the increase in instruction types prescnt in 
the trace. Nine instruction classes were present in thc 
application domain instruction mixes, while 17 are 
present in thc fi111-system traces. Worth noting is the 
presence of 6 CALL-PL4L instruction types (dl ilsc the 
same opcode, but invoke 6 different PAL routines) 
in the f i l l  traces. Since each executed CALL-PAL 
instruction causes a trap that takes on  the order of tens 
of cycles to complete, \ i t  can conclude that this is a 

Windows NT operating system kernel core 
Hardware Abstraction Library (HAL), which is responsible for the  underlying hardware interface 
Main kernel library 
Kernel-mode device driver 
Graphics display interface library 
Library routines provided t o  each client process on the  Windows NT system 
Microsoft UC++ run-time library 
Graphics adapter library for the test platform 
Graphics adapter library for the  test platform 
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cdplay 

fx!32 

i e 

vc50 

word 

Table 5 
The Five Most Frequently Used Images in Each Application or Benchmark 

Image Name 
Workload (Percentage of Total Number of Instructions Executed within the Image) 

fourier bytecpu.exe winsrv.dll win32k.sys ntoskrnl.exe user32.dll Other 
(99.5%) (0.2%) (0.1 %) (0.1 %) (0.02%) (0.08%) 

neural bytecpu.exe winsrv.dll ntoskrnl.exe win32k.sys ntdll.dll Other 
(99.7%) (0.2%) (0.03%) (0.03%) (0.02%) (0.02%) 

go go.exe win32k.sys ntoskrnl.exe hal.dll qv.dll Other 
(95.5%) (2.0%) (1 .O%) (0.4%) (0.1 %) (1 .O%) 

I i li.exe win32k.sys ntoskrnl.exe user32.dll qv.dll Other 
(97.7%) (1 .ON) (0.6%) (0.1 %) (0.1 %) (0.5%) 
ntoskrnl.exe hal.dll win32k.sys tcpipsys winsrv.dll Other 
(81.8%) (14.7%) (1.1 Yo) (0.4%) (0.3%) (1.7%) 
hal.dll s3.dll OPENGL32.DLL MSVCRT.dll GLU32.dll Other 
(42.5%) (24.6%) (1 2.2%) (1 1.7%) (2.7%) (6.3%) 
iexplore.exe win32k.sys ntoskrnl.exe Fastfat.sys ntdll.dll Other 
(37.2%) (19.3%) (17.5%) (6.1 %) (6.0%) (13.9%) 
cl .exe ntoskrnl.exe MSVCRT.dll Ntfs.sys win32k.sys Other 
(83.1 %) (10.5%) (2.8%) (1.2%) (1.1 %) (1.3%) 
MSSP232.DLL MSGREN32.DLL ntoskrnl.exe win32k.sys hal.dll Other 
(36.4%) (34.0%) (1 0.2%) (7.7%) (4.0%) (7.7%) 

significant insight into the system's inherent run-time 
latency, not visible with application-only workloads. 

Next note the striking similarities in instruction 
mix for the four benchmarks in Figures 7 and 8. 
Benchmarks do not interact with the operating system 
in any significant manner. The desktop application 
workloads, however, show significant differences 
between the application domain and the complete 
trace instruction mixes. 

The number of store instructions for the cdplay 
workload decreaies from about 11  percent to approG- 
mately 1 percent. The number of BSR u~structions 
increases from 1 percent to about 6 percent. Most 
interesting for this application is the decrease in the 
number of ALU operations fiom almost 30 percent to 
about 2 percent, wMe the number of CALL-PAL 
instructions increases from 0 to 21 percent. Referring to 
Figure 6 ,  the dom'ain execution mix plots clearly show 
why the dfferences for t h ~ s  workload are so large when 
the system activity is included-more than 95 percent 
of the workload trace is operating system execution. 

Considering the latency incurred by executing 
CALL-PAL instructions, clearly an optimization that 
concentrates on improving ALU operations based on 
the application domain instruction mhes would have a 
much smaller impact on the true system performance. 
The measured dfference in instruction mix under- 
scores the importance not only of using real workloads 
for trace-driven simulations but also of i n c l u h g  the 
operating system behavior in order to see the full picture. 

The fi!32 complete trace instruction mix is, of 
course, completely different from the application 
instruction mix of Figure 7, in which no instructions 

were esecuted within the h!32 application image. Both 
the ie and the word workloads introduce CALL-PAL 
instructions when includmg the operating system. The 
ie instructio~~ mix shows an increase in jumps, calls, and 
returns, which most ke ly  reflects the increase in sub- 
routine calls for system services. The word instruction 
mix experiences a reduction in load instructions from 
approximately 52 percent to 35 percent. This decrease 
can be atwibuted to the increase in ALU operations pre- 
sent when operating system activity is included. 

The results presented in Figures 7 and 8 reinforce 
the points that benchmarlts do not represent true desk- 
top worldoads and that the desktop workloads display 
signLfica~tly different characteristics when viewed in the 
presence of system activity. 

Average Basic Block Length 
Includmg the operating system activity in our traccs yields 
an overall increase in the percentage of control tlow 
instructions present. Figure 9 shows a consequence of 
thls fact. In this figure, we present the average basic block 
length for each worldoad, on a per-domain basis. The 
ALL b u  is the average basic block length across all 
domains; OS denotes the operating system u~sm~ctions 
only; DLL denotes the workload's DLL instructions 
only; APPDLL denotes the combined application and 
DLL instructio~~s; and APP denotes the application 
instructions only. 

Inspecting the four benchmarks, we notice little dif- 
ference between the application-only basic block 
length and the overall basic block length. Referring to 
our domain instruction mis figure, recall that the 
benchmarlts spend about 95 percent oftheir execution 
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Figure 7 
Application-only Instruction Mix 

KEY: 

ALULOG 

PMlSC 

SWAPIRQL 

RETSYS 

RDTHREAD 

RDTEB 

CALLSYS 

MB 

TRAPB 

BSR 
BR 

BRXX 

ST 
LD 

RET 

JSR 
JMP 

- 
FOURIER NEURAL GO LI CDPLAY FX!32 IE VC50 WORD 

WORKLOAD 

Figure 8 
Complete Trace I~lstruction Mix 
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Figure 9 
Average Basic Block Length 

within their executable images. Therefore, including 
any operating system activity into a basic block length 
average has a minimal effect. 

However, co~lsidering tlie large amount of operat- 
ing system execution present in the cdplay trace, the 
overall basic block length is significantly less than tlie 
application-only length. The overall and operating 
system length values are almost the same. Not only 
does including the system activity in the trace intlu- 
elice the overall basic block length but  the ~ I ~ O L I I Z I  

ofsysteni activity determines to what degree the length 
is affected. 

I n  a similar fashion, the overall basic block length of 
the fx!32 trace tracks that of its DLLs. The length is 
directly proportional to the amount of time the work- 
load s p e ~ ~ d s  in its DLL dornain. 7:he cxecution of the ie 
workload is niore evenly distributed among the three 
domains, which affects tlie o\~erall basic block length, 
producing a niore evenly weighted average of all its 
domain basic block lengths (no one domain dominates). 

The vc50 workload spends a significant amount of 
time within its own executable image, which leads to  
an overall average basic block length similar to die 
application-only value. The  word workload is similar, 
but the DLL behavior dominates. The cdplay and ie 
workloads experience a 50 percent decrease in average 
basic block length. This decrease can be attributed to 
an increase in the number of branches in the presence 
of  operating system activity. With this increase in con- 
trol flow instructions, we expect increased pressure to 
be placed upon the branch prediction hardware. 

As observed in other characteristic categories, the 
four benchmarks d o  not exhibit noticeable deviations 
from application-only behavior when the operating 
system activity is introduced. Again this explains why 
sin~ulation results using benchmark traces ~~sual ly  track 
the actual performance when the benchmarks are run 
on  the real system. In contrast, four of the five desktop 
applications exhibit significantly different behavior in 
the presence of  the operating system. 
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Summary 

I n  this paper nre described the PatchIVrs toolset. We 
compared it t o  existing tools and de~nons t ra ted  the 
need for operating system-rich traces by showing tlie 
a m o u n t  o f t h e  total esecution spent  in tht: kerncl and 
the DLLs. In addition, we  s h o ~ v e d  that  csisting desk- 
t o p  benchmarks d o  n o t  exercise the  kernel and t h e  
D L L  sufficiently t o  provide nieaninghl  indicators of 
desktop performance. 

These results have reinforced o u r  argument  that  
researchers 11eed t o  use traces with both application 
and operating system i ~ i f o r ~ n a t i o n ,  espccially as new 
applications spend more  time executing within the  
operating system. T h e  goal is for computer  architects 
t o  use operating system-rich traces o f  applications that  
dominate  the  desktop market. 

We have recently fi nishcd modificatio~ls t o  the  PAL 
t o  enable PatchIVrx t o  run  o n  the Alpha 21 164 plat- 
form. Wc plan t o  s t ~ ~ d y  a wider range o f  desktop appli- 
cat io~is ,  including database and server appljcations. 
Future plans also include migrating tlie toolset t o  tlie 
Windows 2000 operating system. 
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Avrum E. Itzkowitz 
Lois D. Foltan 

Automatic Template 
Instantiation In 
DIGITAL C++ 

Automatic template instantiation in DIGITAL C++ 
version 6.0 employs a compile-time scheme that 
generates instantiation object files into a reposi- 
tory. This paper provides an overview of the C++ 

template facility and the template instantiation 
process, including manual and automatic instan- 
tiation techniques. It reviews the features of 
template instantiation in DIGITAL C++ and 
focuses on the development and implemen- 
tation of automatic template instantiation in 
DIGITAL C++ version 6.0. 

The template facility within the C++ language allo\\fs 
the tlser to provide a template for a class or  function 
and then apply specific arguments to the template 
to specify a type: or  f~nc t ion .  The process of applying 
arguments to a template, referred to as template instnn- 
tiation, causes specific code to be generated to imple- 
ment the functions and static data ~nembers of the 
instantiated template as needed by the program. 
Automatic template instantiation relieves the user of 
determining \\/liicli template entities need to bc ins t~n-  
tiated and \\,here: tlie)l should be instantiated. 

In this paper, we review the C++ template facility and 
describe approaches to implementing automatic t e ~ n -  
plate instantiation. We f o l l o ~ ~  that with a discussion of 
the facilities, rationale, and esperience of the DIGITAL 
C++ nutomatic template instanti'~tion support. \;Vc 

then describe thc design of the DIGITAL C++ version 
6.0 automatic tcmplate instantiation facility and indi- 
cate areas to be explored for further improvement. 

C++ Template Facility 

The C++ language provides a template facility that 
allows thc user to create a family ofclnsses o r  filnctions 
that are parameterized by For example, a user 
may pro\kie 3 Stnck tc~iiplate, \vhich defines a stack 
class for its argulncnt type. Consider the f~ l lo \ \~ ing  
template dcclaratio~i: 

template <class T >  class  Stack ( 
T *top-of-stack; 

public : 
void p u s h (  T arg 1 ;  
void pop( T &  arg 1 ;  

1 ; 

The act of applying the arguments to the template 
is referred to  as tc~nplatc instantiation. An instantia- 
tlon of a template crcatcs a new type or  f i ~ n c t ~ o n  that 
is defined for the specified types. Stackcint> crcatcs 
a class that provides a stack of the type int. 
Stack<user-class> creates a class that provides a stack 
ofuser-class. The types int and user-class are the arg11- 
ments for the template Stack. 
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In general, a ternplate needs to be instantiated \+/hen 
it is referenced. When a class template is instantiated, 
only those nieniber fi~nctions and static data members 
tliat are referenced are also instantiated. In the Stack 
exa~nplc, thc member function Push of tlie class 
Stackcint> needs to be instantiated only if it is used. 
Ternplate functions and static data ~ n e ~ n b c r s  have 
global scope; therefore, only one instantiation of  each 
should be in a user's application. Since source files are 
co~npiled separately and combined later at link time to 
1.7roducc an executable, the compiler alone is not able 
to ensure tliat one and only one instance of a specific 
template is efficiently generated for any gi\/en exe- 
cutable. That is, the compiler by itself is not able to 
kno\v \-vhether the function or  variable definition for a 
specific template is satisfied by code generated in 
another object ~nodulc.  

The C++ Standard provides facilities for the user to 
specify where a te~nplate entityshould be instantiated.' 
When the user explicitly specifies template instantia- 
tion, the user then becomes responsible for ensuring 
that there is only one instantiation of the template 
function o r  static data member per application. This 
responsibility can necessitate a considerable amount of 
work. However, the compiler and linlter working 
together can provide effective template instantiation 
w i t h o ~ ~ t  specific user direction. 

In the following section, \ve present tlie various 
approaches that can be used for teniplatc instantiation. 

Template lnstantiation Techniques 

Template insta~~tiat ion techniques call be broadly cat- 
egorized ,IS either manual or  automatic. \I\'ith manual 
instantiation, the co~-r~pilation system responds to user 
directives to instantiate template entities. These direc- 
tives can be in tlie source program, o r  they may be 
command-line options. With automatic instantiation, 
the compilation system, including the linker, decides 
\vhich instantiations are required and attempts to pro- 
vide thcm for the user's application. 

Manual lnstantiation 
Manual template instantiation is the act of  manually 
speci+ing that a template should be instantiated in the 
file that is bcing con~piled. This instantiation is given 
global external linkage, so that references to tlie 
instantiation that are made in other filcs resolve to this 
templatc instantiation. Manual te~nplate instantiation 
includes explicit instantiation requests and pragmas as 
well as command-line options. 

Explicit lnstantiation Requests and Pragmas :The 
conipilation systcni instantiates those template entities 
that the user specifies for inst~ntiation. The specification 
can be made using the C++ explicit template instantia- 
tion syntax o r  may be made using implementation- 

defincd directives o r  pragmas. Since instantiations arc 
given global external linkage, the user must ensure 
that the specified template instantiations appear only 
once throughout all the modules that compose the 
program. When only this mode of instantiation is 
used, the user also must ensure that all required tem- 
plate instantiations are specified to avoid unresolved 
symbols at link time. 

Command-line lnstantiation Command-line options 
can be used to specifi template instantiation. They are 
similar in operation to tlie explicit instantiation requests, 
except they indicate groups of templates that should be 
instantiated, rather than naming specific templates to be 
instantiated. The command-line options include 

Instantiate All Templates. A command-line option 
can direct the compiler to instantiate all te~nplate 
entities whose definitions are Izno\vn during conipi- 
lation and whose argument types are specified. This 
has the advantage of specifying many template 
instantiations at once. The user must still ensure 
that 110 template instantiation happens more than 
once in the program and that all required instantia- 
tions are satisfied. Due to these requirements, the 
user cannot usually specify this option on more than 
one source-file compilation in the program. This 
option can also cause the instantiation of templates 
that are not used by tlie program. 

Instantiate Used Tc~nplates. Aco~n~i ia id- l ine  option 
can be used to direct the compiler to instantiate 
only those template entities that are used by tlie 
source code and whose definitions are known at 
compilation. As in tlie previous technique, the user 
must ensure that no template instantiation happens 
more than once in the program and tliat all required 
instantiations arc satisfied. Due to these require- 
ments, the user cannot usually specify this option 
on  more than one source-file co~npilation in the 
program. 

Instantiate Used Teniplates Lmcally. This c o ~ n ~ n a n d -  
line option \vorl<s like the instantiate used templates 
option, escept that it defines each ternplate instan- 
tiation locally in the current compilation. This option 
has the advantage of providing complete te~nplate 
instantiation coverage for the program, as long as 
the definitions of thc used templates are available in 
each module. Since all teniplate i~lstantiations arc 
given local scope, there is n o  potential problen~ 
with ~nultiply defined instantiations when the 
program is linked. The major problem with this 
technique is that the user's application can be 
unnecessarily large, since tlie sanie template instan- 
tiations could appcar within multiple object files 
used to  link the application. This technique will fail 
if the instantiations must have global scope such as 
a class's static data members. 
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Figure 1 shows an example o f a  template function, 
template-f~~nc,  that  contains a locally defined static 
variable. As shown in the figure, the object files o f  both 
A and B contain local copies o f  template-func instanti- 
ated with int.  Each instance of template-hnc<int> 
defines its own \iersion o f  static variable x. In  this case, 
directing the compiler t o  instantiate used templates 
locally yields a different result than instantiating all o r  
used templates globally. 

I f w e  give the  static data members  global scope and  
ensure that they are properly defined and initialized by 
executable code rather than by static initialization, we 
can solve the static data nienibers problem. T h e  appli- 
cation, however, remains unnecessarily large, because 
multiple copies o f  the instantiated templates can be 
present in the executable. 

Automatic lnstantiation 
Automatic template instantiation relieves the user of 
tlie burden o f  determining which templates must be 
instantiated and where i n  the applicatiol~ those instanti- 
ations should tdte  place. Automatic template instantia- 
tion can be divided into two categories: compilc-time 
instantiation, whereby the decision about  what should 
be instantiated is made at  compile time, and link-time 
instantiation, whereby decisions about  template instan- 
tiation are rnade when the user's application is linlted. 
In both cases, specific link-time support is needed t o  
select the required instantiations for the executable. 

Compile-time Instantiation T w o  major techniques 
can be used t o  perform automatic template instantia- 
tion at  compile tinie. T h e  choice between the two 
depends upon the  facilities available in the  linker. 
Microsof? Visual C++ instantiates templates at  compile 
time using a strategy similar t o  the  instantiate used 
templates coniniand-line opt ion described previously.' 

Each instantiation is placed in the comniunal data sec- 
tion (COMDAT) o f  the current  compilation's object 
file. Each object file contains a copy o f  every template 
instantiation needed by that  compilation unit.  
COMDATs are sections that have an attribute that tells 
the  linker t o  accept, without  issuing a warning, multi- 
ple definitions o f  a symbol defined in the  section.' If 
more than o n e  object file defines that symbol, only the 
section from o n e  object file is linked into the image 
and the rest are discarded, a long with all symbols i l l  

t he  symbol table defined in the discarded section con-  
tribution. At link tinie, the linlter resol\res an instantia- 
tion reference by choosing o n e  o f  the instantiations 
defined in an indi\~idual object file's COIMDAT. T h e  
resulting user's application executable has a single 
copy o f  each recl~~ested instantiation. 

When  such linker support  is not  a\railable, another  
mechanism must  be  used t o  control con~pi le - t ime  
instantiation. O n e  such approach is to use a repositor)/ 
to contain the generated instantiations. T h e  compiler 
creates the instantiations in the  repository instead o f  
the  current  compilation's object file. At  link time, the 
linker includes any recli~ested instantiatio~ls from the 
repository. As a performance improvement ,  the  c o m -  
piler can also decide whether an instantiation needs t o  
be generated from the  state o f  the  repository. If the 
requested instantiation is in the  repository and can be 
determined t o  be up  t o  date, the  compiler does no t  
need t o  regenerate tlie instantiation. 

Link-time lnstantiation The  decision t o  instantiate can 
be lef? until link time. T h e  linlter can find the instantia- 
tions that are needed and direct die  compiler t o  generate 
those instantiations. McCluskey describes one  linlt-time 
i~istaitiation schemc.'~" 'The compiler logs every class, 
union, struct, or cnum in a name-mapping file in a repos- 
itory. Every declared template is also logged in the name- 

/ /  ternplate. hxx 
#include <iostream.h> 
template <class 'I5 v a ~ d  template-func iT pl 
I 

static T x = 0 ,  
c o u t  << x + p ,  
Y + + ,  

/ / A . C x x  
#include *template. h x x "  
extern v o ~ d  b-funcl) ; 
int main() 
I 

template-func(10) i 
b-f unc ( 1 ; 
return 01 

//B.cxx 
%include ' template. hux" 
void b-func (void) 
< 

/ / .  4 0 

templa te-f unc (20 1 ; 

Figure 1 
Tc~nplatc Function Containing n Locally Dctincd Static Variable 
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mapping We. At Link time, a prehlker determines vl~luch 
template instantiations are req~ured. The prelinker builds 
temporary instantiation source files in the repository to 
satisfy the referenced instantiations, compiles them, and 
adds the resulting object files to the linker input. 
Consider the example in Figure 2. 

During the compilation of main.cxx, a name- 
mapping file is built in the repository and the location 
of the user-defined class C and the function template, 
perform-some-hnction, are recorded. From the infor- 
mation stored in the name-mapping file, an instan- 
tiation source file is then created in the repository. 
Figure 3 shows the contents of the instantiation source 
file created to satisfy perform-some-hnction<C>. 

The prelinker then compiles the instantiation source 
file by invokjng the compiler in a special directed mode, 
which directs the compiler to generate code onJy for 
specific template instantiations that are listed on the 
command line. The compiler then generates the defin- 
ition of perform-some-function<C> in the resulting 
object file. The resulting object now satisfies the 
instantiation request and is included as part of the 
application's final link. To build the instantiation 
source files easily, the implementation of this scheme 
generally requires that template declarations, template 
definitions, and any argument types used to instantiate 
a class or function template must appear in separate, 
related header files. 

The Edison Design Group has developed another 
approach to link-time instantiation.' In this approach, 
the cornpiler records where template instantiations are 
used and where they can be instantiated. At link time, 
a prelinker assigns template instantiations by recording 
the assignments in a specially generated file that corre- 

-- -- 

Figure 3 
Example of a11 Instantiation Sourcc File 

sponds to  the particular source file that can success- 
hlly instantiate the user's request. Compiling and pre- 
linking the program used in Figure 2 generates an 
instantiation assignment file for main.cxx. This file 
contains information concerning the command-line 
options specified, the user's current working directory, 
and a list of instantiations that should be instantiated. 
Min.csx now owns the responsibility of instantiating 
perform-some-hnction<C>. The prelinker recompiles 
the source files, such as main.cxx, that have changes in 
their template instantiation assignments. The process 
is repeated until there are no  changes made to the 
instantiation assignments. Then the final link can be 
completed. 

This approach has the advantage of requiring no 
special file structure to support automatic template 
instantiation. It is generally faster and simpler than 
McCluskey's approach, because fewer files are com- 
piled in the generation of the needed instantiations 
and the instantiations are generated in the context of 
the user's source code. In addition, the assignment of 
instantiations to source files can be preserved between 
recompilations of the source code, so that unless the 
structure ofthe application changes, the needed instanti- 
ations will be available without additional recompilation. 

//C-class.hxx 
class C f 
public : 

/ / .  . . 
) ; 

//template.hxx 
template cclass T> void per fo~sorne- func t ion(T  &garam); 

//template.cxx 
template <class T=- void gerfo~some_function(T &garam) { 

i n t  main0 
( 

C c; 
perfomsome-function(c); 
return 0: 

) 

Figure 2 
Example of a Link-time Instantiation Scheme (McCluskey) 

Digital Technical Journal Vol. 10 No. 1 1998 25 



Comparison of Manual and Automatic lnstantiation 
Techniques 
The manual instantiation techniques require planning 
on the part of the user to ensure that needed instantia- 
tions are present, that no extraneous instantiations are 
generated, and that each needed instantiation appears 
exactly once within the application. Wid1 manual 
instantiation, the user has the advantage of gaining 
explicit control over all template instantiations. 
Although the strategy of instantiating used templates 
locally requires less planning, it does so at the cost of  
object file size and the restricted use of templates when 
static data members are present or  when static data is 
defiled locally within a function template instantiation. 

Automatic template instantiation provides template 
instantiation with n o  explicit action on  the part o f the  
user. Compile-time instantiation requires either spe- 
cific linker support t o  select a single template instanti- 
ation from potentially many candidates, o r  support by 
the compiler to generate instantiations in separate 
object files while compiling the user's source code. 
Relying on linker support allows the compiler to effi- 
ciently generate instantiations at the cost of larger 
object files; however, tlie user loses control over which 
instantiation is used in the executable file. Although 
the use of separate instantiation object files usually 
takes more time at compilation than the linker-support 
method, it results in more compact object files and can 
provide tlie user with more control over which instan- 
tiation is used in the executable file. 

Link-time instantiation provides template instan- 
tiation that is tailored to the needs of the esecutable 
file. The primary cost is link-time performance, since 
generation of  instantiations occurs at link time. 
Another disadvantage of  link-time instantiation can be 
observed when building object-code libraries. Either 
tlie library must contain all the instantiations that it 
req~~ires ,  or  the user who wants to link with die library 
must have access to all the machinery to create instan- 
tiations. Creating a library's instantiations involves 
extra steps during library construction. All the object 
files to be included in the library must be prelinked, 
so that the needed instantiations are generated. If 
instantiations are included in the individual object 
files in the library, as in the Edison Design Group 
approach, unintended modules may be linked from 
the library to provide the needed instantiations. 
Consider tlie follo\ving scenario, in \vhich object 
files A and B are included in the library. Both files 
require t l~e  instantiation of perfoun-s~ni~-hiction<int>. 
When these files are prelinked, the instantiation of  
perform-some-finction<int> is assigned to one of 
the files, say A. If an application that is being linked 
against tlie library requires that the object file B be 
linked into die esecutable, then the object file A is also 
linlced. Here tlie instantiation needed by B was instan- 

tiated in A even though the executable never refcr- 
enced anything explicitly defined in file A. This can 
yield an unnecessarily large executable. 

In the ncst section, we review the template instan- 
tiation support in earlier versions of DIGITAL C++ 
and then discuss the rationale and design of tlie auto- 
matic template instantiation facility in version 6.0 of 
DIGITAL C++. 

DIGITAL C++ Template lnstantiation Experience 

As the use of C++ templates has grown, DIGITAL 
C++ has been enhanced to support the need for . . 

improved instantiation techniques. The initial release 
of DIGITAL C++ occurred before the C++ standard- 
ization process had matured, so  that the language sup- 
ported was based on fie Annotated C++ Refirence 
Mantlal, referred to as the ARM.S The ARV defined 
template functionality, but it did not provide guidance 
for either manual or  automatic tcmplate instantiation. 
Thus it was necessary to  provide a DIGITAL C++- 
specific mechanism for template instantiation. 

DIGITAL C++ Manual Template lnstantiation 
The #pragma define-template directive and the instan- 
tiate all command-line option, -define-templates, have 
been supported since the initial release of  DIGITAL 
C++. 

In  Figure 4, the define-template pragma directs the 
compiler to instantiate class tcmplate, C, with type int. 
When the compiler detects the use of the pragma, it 
creates an internal C<int> type node and traverses the 
list of static data members and member functions 
defined within the class. If the definitions of these 
members are present at  the point the praglna is speci- 
fied, tlie compiler materializes each with type int. 

As the C++ language developed and template usage 
increased, users found manual template jnstantiation 
to be very labor intensive and requested an automated 
method. 

DIGITAL C++ Version 5.3 Automatic Template 
lnstantiation 
Automatic template instantiation capability became a 
serious issue during tlie planning stages of DIGITAL 
C++ version 5.3. The use of templates was increasing 
rapidly, and many new third-party libraries, such as 
Rogue Wave Software's Tools.h++, contained a signif- 
icant use of templates. Due to this growing need, the 
requirements were straightforward. The support had 
to be easy to use, have a short design phase, be quickly 
implementable o n  both the DIGITAL UNIX and the 
OpenVMS platforms, and provide reasonable perfor- 
mance. Because McCluskey's approach had been med 
in several implementations, it presented itself as our 
best option. 
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template <class T> clasa C ( 
public : 

void menlfuncl (T p )  ; 
void men~func2 (T p) ; 

template cclass T> void C<T>::me~~funcl(T p)  { / I . .  
template tclass Ts void CcT>::men~func2(T p )  { / / . .  

#pragma define-template C<int> 

Figure 4 
The define-template Pragma 

DIGITAL made two major changes to  McCluskey's 
approach to take advantage of the DIGITAL C++ 
compiler design. First, we allowed instantiation 
source files to be created at compile time instead of 
link time. This eliminated the need for McCluskey's 
name-mapping file and simplified the prelinking 
process considerably. Since the needed source files 
existed in the repository, there was no need to decon- 
struct the required template instantiations to deter- 
mine their arguments and types. 

The second change addressed the transitive closure 
problen~. Figure 5 shows an example of the class tem- 
plate Buffer being instantiated with the user-defined type 
C. After compilation of app.cxx with the McCluskey 

/ / B _ C ~ ~ Q B . ~ X X  
class B { / / .  . . } ,  

//Buffer.hxx 
template <class Tz class Buffer { 

T *buffer: 
int num-of-items; 

public I 

void adLitem(T ) ; 
/ / .  . . 

1; 

void f (void) 
( 

C c; 
Buffer<C> c-buffer; 
c_buffer.adLitem(&c) ; 

approach, the name-mapping file contained delinition 
locations ofclass B and class C. However, it did not con- 
tain any indication that class C had a data member that 
relied on the d e h t i o n  of class B. From the information 
in the name-mapping file, the prelinker then created an 
instantiation source file that included only C-class.hxx, 
Buffer.ksx, and Buffer.cxx. When t h ~ s  instantiation 
source file was compiled, an error resulted complaining 
that B is an undehed type whose size is unknown. 

We solved this problem in DIGITAL C++ version 
5.3 by including all the top-level header files included 
by the current compilation unit in any instantiation 
source files created. T l i s  ensured that B-class.hxx 
would be included in the generated instantiation file. 

//C-class.hxx 
class C { 

5 datagtem; 
public: 

/ / .  . . 
) ;  

//Buffer.cxx 
template cclass Tr 

void BuffercT>::ad&item(T *g) ( ) 

Figure 5 
Instantiation of the  Class Template Buffer 
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Despite the fact that this type of  automatic link- 
time instantiation scheme was being widely used 
in thc industry, the results of  using a modified 
McCluskcy approach xvcre mixed. Stroustrup Ihas 
described the general problems with McCluslcey's 
approach.' We found that our implementation suf- 
fered particularly from poor link-time performance 
and so  did not satisfy our users' needs. 

DlGlTA L C++ Version 6.0 Automa tic Template 
lnstantia tion 
DIGITAL C++ version 6.0 is a complete reimplemen- 
tation of DIGITAL C++, with emphasis on ANSI C++ 
conformance. I t  is implemented using a completely 
new code base, which includes the industr!l-standard 
C++ front end from the Edison Design Group and a 
standard class library from Rogue Wave. 

From our  experience with template instantiation 
in 13IGITAL C++ versions 5.3 through 5.6, we con- 
cluded that the most important issue that should 
be addressed in the design and implementation of 
the automatic template instantiation facility was the 
compile- and link-time performance. Thc primary 
goal \vas to have the performance of  automatic tem- 
plate instantiation substantially exceed the perfor- 
mance of version 5.6. Another important goal was 
to remove the restriction of template declaration and 
definition placement in header files. In addition, the 
automatic te~nplate instantiation facility in version 6.0 
had to  be cult~trall!l compatible with the previous 
implementation. The user had to be able to move 
sources and objects to different directories, easily 
build archived and shared libraries, share instantia- 
tions between various applications, and have error 
diagnostics reported at the earliest possible moment in 
the instantiation process. 

Design and Implementation We decided to use a 
compile-time instantiation model as the basis for our 
implementation. Since \xle were using the Edison 
Design Group's front end, we seriously considered 
iwing their link-time model. However, the compile- 
time model seemed advantageous for several reasons. 
First, there are significant complications (as described 
in the section Comparison of  Manual and Automatic 
Instantiation Techniques) when trying to build 
libraries with a compiler that uses the Edison Design 
Group link-time model. In  addition, the link-time 
model requires recompilations that limit performance 
in many typical cases of  template use. We recognized 
that the link-time model could provide better perfor- 
n1ance in some cases, but these woi~ld be in the ~ninor- 
it)(. Finally, tlie implementation of the lid<-time model 
would require substantially more impjementation 
effort on the OpenVMS platform. The version of the 
Edison Design Group front end being used to build 
]DIGITAL C++ version 6.0 required tools to scan a 

user's object files for information concerning which 
modules could instantiate requested templates. Similar 
functionality would need to  be implemented for the 
OpenVMS platform. 

We preserved the concept of the template reposi- 
tory as a directory that contains the  individual tem- 
plate instantiation object files. The repository stores 
one object file for each template function, member 
function, static data member, and virtual table that is 
generated by automatic template instantiation. The 
file name of the instantiation object file is derived from 
the name of the instantiation's external name. At com- 
pile time, the front end generates intermediate code 
for all templates that are needed in the compilation 
unit and can be instantiated. A tree walk is performed 
over the intermediate code to find all entities that are 
needed by each generated template instantiation. The 
code generator is called to  generate code for the user- 
specified object file arid is then called repeatedly for 
each template instantiation to generate the instantia- 
tion object files in the repository. 

The compiler generally considers an instantiation to 
be needed when it is referenced fiom a context that is 
itselfneeded, such as in a function \\lth globd visibility or 
by the initialization of a variable that is needed. Virtual 
member fiinctions are needed when a constructor for 
the class is needed. Thus, all virtual hnction definitions 
should be visible in a compilation unit that requires a 
constructor for the class. Each instantiation that is gencr- 
ated \\ith automatic instantiation is marked as potentially 
being in its own object file in the repository. 

The intermediate representation of  each generated 
instantiation is walked to determine what other entities 
it references. At this point, the instantiation is a candi- 
date to be generated in its own object file, but it can 
sometimes be generated as part of tlie user-specified 
object file. If the instantiation references an entity that 
is local to  the compilation unit, such as a static h n c -  
tion, and that local entity is nonconstant and statically 
initialized, the instantiation is merged into the user- 
specified object file rather than generated in its own 
object file. As an alternative, we could have chosen to 
change the local entity into a global entity with a 
unique name and generate the instantiation in its o\vn 
object file. We chose not to d o  this in order to make it 
easier to share a repository benveen applications. With 
h s  alternative, the instantiation in the repository 
requires the object file containing the local entity's def- 
inition, which may be in another application. Note that 
any application that contains more than one definition 
of  the same instantiation that references a nonconstant 
local entity is a nonstandard-conforming application. 
This is a violation of t l ~ c  one definition r ~ i l e . ' ~  Consider 
the follo\ving codc fragment: 

static int j; 
template cclass T> int func ( T  arg) ( return j ;  ) 

int var = func( 2.5 ) ;  
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The reference to the static variable j in the template 
function, func, prevents the template fi-om being gen- 
erated into its own object file in the repository. 

When the individual instantiations are walked, we 
mark each global entity that is defined in the compila- 
tion unit so that the definition is replaced by an ester- 
nal reference when the instantiation object file is 
generated. Consider the following code fragment: 

void print-count(const char s, int ivar) 
( 

cout<c s <<.:" << ivar; 
) 

template cclass Tz void  func (T arg)  
I 

s t a t i c  int count = 0; 
print-count("count', count++): 

i 

The filnction, print-count, is defined in the source 
file and generated as a defined function in the user- 
specified object file. The template function, func, refer- 
ences the function, print-count. When the code for 
h n c  is generated in its own object file, the reference to 
print-count must be changed from a reference to a 
defined filnction to a reference to an externd function. 

By default, each needed instantiation is generated by 
every compilation that requires the instantiation. This 
is the safe default because it ensures that instantiations 
in the repository are up to date. However, there will 
probably be some compilation overhead from regener- 
ating instantiations that may already be up to date. We 
believed that the overhead of regcnerating instuitia- 
tions would typically be relatively small. For applica- 
tions with a high overhead of  instantiation, such as a 
large number ofsource files using the same large num- 
ber of template instantiations, we provided a compila- 
tion option to control the generation of  template 
instantiations to improve compile-time performance. 

The generation of  instantiation object files only 
when they are actually required is a difficult problem. 
Fine-grain dependency information would have to  be 
kept for each instantiation object file. Such depen- 
dency information would need to reflect those files that 
are required to successfi~lly generate the instantiation 
and record wllich command-line options the user speci- 
fied to the colnpiler. We suspected that the overhead 
involved with gathering and checking the information 
might be an appreciable percentage ofthe time it would 
take to d o  the instantiation, and thus it would not give 
us the performance i~nprovernent that we wanted. 

Instead, we decided to provide an option that allows 
the user to decide when instantiations are generated. 
We refer to this as the template time-stamp option, 
-ttimestanip. When using the time-stamp option, the 
compiler looks in the repository for a file named 
TIMESThklP. If the file is not found, it is created. The 
modification time of this file is referred to  as the time 

stamp. When generating an instantiation, the compiler 
looks in the repository to see if the instantiation object 
file exists. If it does not exist, it is generated. If the file 
already exists, its modfication time is compared to the 
time stamp. If the modification time is later than the 
time stamp, the instantiation is assumed to  be up to 
date and is not regenerated. Otherwise, the instantia- 
tion is generated. The user can control the generation 
of instantiatio~l object files by changing the modifica- 
tion time of the TIMESTAMP file. 

The time-stamp option would typically be used in 
a makefile o r  a shell script that compiles and builds 
an entire application. Before invoking make or  the 
shell script, the user would make certain that n o  
TIMESTAMP file resided in the repository. This 
would ensure that each needed instantiation would be 
generated exactly once during all the compilations 
done by the build procedure. 

Much of the C++ linker support in version 5.6 was 
reused with only minor modifications for version 
6.0. The compiler is presented with a single repository 
into which the instantiation object files are written. 
Multiple repositories can be specified at link time, and 
each can be searched for instantiations that are needed 
by the executable file. The  linker is used in a trial link 
mode to generate a list of all the unresolved external 
references. This list is then used to search the reposito- 
ries to  find the needed instantiation files, and the 
process is repeated untll n o  more instantiations are 
needed or  can be satisfied from the repository. The 
link then proceeds as any nor~nal  link, adding the list 
of instantiation object files to the list of object files 
and libraries as specified by the user. 

If  a vendor is creating a library rather than an exe- 
cutable file, the instantiations needed by the modules 
in the Library can be provided in either of  two ways: (1) 
The library vendor can put the needed instantiations 
in the library by adding the files in the repository to 
the library file. (2) The library vendor can provide the 
repository with the library and require that library 
users link with the repository as well. Note that instan- 
tiations placed in the library are fiscd when the library 
is created. Since the library is included in the trial link 
of an application, any instantiation in the .library takes 
precedence over the same named instantiation in a 
repository. 

Results In  a number of tests, DIGITAL C++ version 
6.0 showed improved performance over version 5.6. 
We tested a variety of user code samples that use tem- 
plates to varying degrees and found that build times for 
version 6.0 decreased substantially compared to the 
version 5.6 compiler. Examples of two typical C++ 
applications used in our tests are the publicly available 
EON raytracing benchmark and a subset oftests from 
our Standard Template Library (STL) test suite. For 
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tion occurs. In addition, it provides a substantial 
improvement in performance of template instantiation 
over version 5.6 and reduces the restrictions on the 
location of template declarations and defirutions. We 
continuc to investigate the template-instantiation imple- 
mentation to further improve con~pile- and link-time 
performance and ease of use. 
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Measurement and 
Analysis of C and C++ 
Performance 

As computer languages and architectures 
evolve, many more challenges are being pre- 
sented to compilers. Dealing with these issues 
in the context of the Alpha Architecture and the 
C and C++ languages has led Compaq's C and 
C++ compiler and engineering teams to develop 
a systematic approach to monitor and improve 
compiler performance at both run time and 
compile time. This approach takes into account 
five major aspects of product quality: function, 
reliability, performance, time to market, and 
cost. The measurement framework defines a 
controlled test environment, criteria for select- 
ing benchmarks, measurement frequency, and 
a method for discovering and prioritizing oppor- 
tunities for improvement. Three case studies 
demonstrate the methodology, the use of mea- 
surement and analysis tools, and the resulting 
performance improvements. 

I 
Hemant  G .  Rotithor 
Kevin W. Harris 
Mark W. Davis 

Optimizulg co~npilers are becoming ever more complex 
as languages, target architectures, and product features 
evolve. Languages contribute to compiler complesity 
with their increasing use of abstraction, modularity, 
delayed binding, polymorphism, and source reuse, 
especially when these attributes are used in combina- 
tion. Modern processor architectures are evolving ever 
greater levels of internal parallelism ui each successive 
generation of processor design. In addition, product 
feature demands such as support for fast threads and 
other forms of external parallelism, integration 144th 
smart debuggcrs, memory use analyzers, performance 
analyzers, smart edtors, incremental builders, and feed- 
back systems continue to add complexity. At the same 
time, traditional compiler requirements such as stan- 
dards conformance, compatibility with previous ver- 
sions and competitors' products, good compile speed, 
and reliability have not duninished. 

All these issues arise in the engineering of Compaq's 
C and C++ compilers for the Alpha Architecture. 
Dealing with them requires a hsciplined approach to 
performance measurement, analysis, and engineering of 
the compiler and libraries ifconsistent improvements in 
out-of-the-box and peak perfor~nance on Alpha proccs- 
sors are to be achieved. In response, several enpeer ing  
groups working on Alpha software have established 
procedures for feature support, perfor~nance measure- 
ment, analysis, and regression testing. 

The operating system groups measure and improve 
overall system performance by providing system-level 
tuning features and a variety of performance analysis 
tools. The Digital Products Division (DPD) Performance 
Analysis Group is responsible for providing official 
perfornlance statistics for each new processor mea- 
sured against industry-standard benchmarks, such as 
SPECmarks published by the Standard Performance 
Evaluation Corporation and the TPC series of transac- 
tion processing benchmarks from the Transaction 
Processing Performance Council. The DPD Performance 
Analysis Group has established rigorous methods for 
analyzing these benchmarks and provides perfor- 
mance regression testing for new software versions. 
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Similarly, the Alpha compiler back-end development 
group (GEM) has established performance improve- 
ment and regression testing procedures for SPECmarks; 
it also performs extensive run-time performance analy- 
sis of new processors, in conjunction with refining and 
developing new optimization techniques. Finally, con- 
sultants worlung wit11 independent sohvarc vendors 
(ISVs) help the ISVs port and tune their appjications 
to work well on  Alpha systems. 

Although the effort from these groups does con- 
tribute to competitive performance, especially on 
industr)l-standard benchmarks, the DEC C and C++ 
compiler engineering teams have found it necessary to 
independently monitor and improve both run-time 
and compile-time performance. In many cases, ISV 
support consultants have discovered that their applica- 
tions d o  not achieve the performance levels expected 
based on  industry-standard benchmarks. We have seen 
a variety ofcauses: New language constructs and prod- 
uct features are slow to appear in industry bench- 
marks, thus these optimizations have not received 
sufficient attention. Obsolete o r  obsolescent source 
code remaining in the bulk of existing applications 
causcs default options/switches to be selected that 
inhibit optimizations. Many of tlie most important 
optimizations used for exploiting internal parallelism 
make assumptions about code behavior that prove to 
be wrong. Bad esperiences with compilcr bugs induce 
users to avoid optinlizations entirely. Configuration 
and source-code changes made just before a product is 
released can interfere with important optimizations. 

For all these reasons, we have used a systematic 
approach to monitor, improve, and trade off five 
major aspects of product quality in the DEC C and 
DIGITAL C++ compilers. These aspects are fi~nction, 
reliability, performance, time to  market, and cost. 
Each aspect is chosen because it is important in isola- 
tion and because it trades offagainst each of tlie other 
aspects. The objective of this paper is to show ho\v the 
one characteristic of  performance can be improved 
while minimizing the impact on  the other four aspects 
of product q ~ d i t y .  

In this paper, we d o  not discuss any individual opti- 
mization methods in detail; there is a plethora ofliter- 
ature devoted to these topics, including a paper 
published in this./ourncil.' Nor d o  we discuss specific 
compilcr product features needed for competitive sup- 
port 0 1 1  individual platforms. Instead, we show how 
the efforts to measure, monitor, and improve perfor- 
mance are organized to minimize cost and time to 
nlarkct while maximizing hnction and reliability. 
Since all these product aspects are managed in the con- 
text of  a series of  product releases rather than a single 
release, our goals are frequently expressed in terms of  
relationships between old and new product versions. 

For esample, for the performance aspects, goals along 
the following lines are common: 

Optimizations should not impose a compile-speed 
penalty on  programs for which they d o  not apply. 

The use of unrelated compiler features shoi~ld not 
degrade optimizations. 

New optimizations should not degrade reliability. 

New optimizations should not degrade perfor- 
mance in any applications. 

Optimizations should not impose any nonlinear 
compile-speed penalty. 

N o  application should experience run-time speed 
regressions. 

Specific benchmarks or  applications should achieve 
specific run-time speed improvements. 

The use ofspecific ncw language features should not 
intl-oduce compile-speed or  run-time regressions. 

In  the context of  performance, the term rneas~~i-e- 
ment usually refers to crude metrics collected during 
an automated script, such as compile time, run ti~iie, 
or  memory usage. The term clncdysis, in contrast, 
refers t o  the process of breaking down the crude mea- 
surement into components and discovering how the 
measurement responds to  changing conditions. For 
example, we analyze how compile speed responds to 
an increase in available physical memory. Often, a 
comprehensive analysis of a particular issue may 
require a large number of  crude measurements. The 
goal is usually to identi@ a particular product feature 
or optimization algorithm that is failing to obey one of 
the product goals, such as those listed above, and 
repair it, replace it, or  amend the goal as appropriate. 
As always, individual instances of this approach are 
interesting in themselves, but the goal is to maxitnizc 
the overall performance \vhile minimizing tlie devel- 
opment cost, new feature availability, reliability, and 
time to market for the new version. 

Although some l i te ra ture '~~scusses  specific aspects 
of analyzing and iniproving performance of C and C++ 
compilers, a comprehensi\te discussion of the practical 
issues involved in the measurement and analysis of  
conipiler performance has not  been presented in the 
literature to our luiowledgc. In this paper, we provide a 
concrete bacl<ground for a practitioner in the field of 
compilation-related performance analysis. 

In  the next section, we describe the metrics associ- 
ated with the compilcr's performance. Following that, 
we discuss an environment for obtaining stable perfor- 
mance results, including appropriate benchmarks, 
measurement kequency, and management of the results. 
Fin'dy, we discuss the tools used for perforniaice mea- 
surement and analysis and give exaiiples of the use of 
those tools to solve real problerns. 
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Performance Metrics 

In  our experience, ISVs and end users are most inter- 
ested in the follo\v~ng performance ~nctrics: 

Function. Although hnction is not usi~ally consid- 
ered an aspect of performance, new language and 
prod~rct features are entirely appropriate to consider 
among potential performance impro\lernents when 
trading offde\~elopnient resources. From the point 
of view of a user who needs a particular feature, the 
absence of that feature is indistinguishable from an 
unacceptably slow implementation of that feature. 

Reliability. Academic papers on  performance sel- 
do111 discuss reliability, h ~ ~ t  it is c r~~cia l .  Not  only is 
an ~~nreliablc optimization useless, often it prcju- 
dices progralnniers against using any optimiza- 
tions, thus degrading ratlicr than enhancing overall 
performance. 

Application absolute run time. Typicdly, the absolute 
run timc of an application is measured for a bench- 
mark with specific input data. It is important to real- 
ize, however, that a user-supplied benchmark is often 
only a surrogate for tlie maximum application size. 

M a s i m ~ ~ r n  application sizc. Often, the elid user is 
not trying to solve a specific input set in the shortest 
timc; instead, the user is trying to solve the largest 
possible real-world proble~n within a specific time. 
T ~ L I S ,  trends (c.g., memory bnnd\vidtll) arc ofien 
more important than absolute timings. This also 
implies that specific benchmarks must be retired o r  
~~,pgr,ided \\llien processor irnpro\'emcnts 11ioot their 
original rationale. 

Price/Pcrfor~iiancc ratio. Often, the most effective 
co~npetitor is not tlie one ~ ~ l i o  c,ln match our 
p rod~~c t ' s  pcrfonna~~cc, but the one \vho ca i  give 
acceptable pcrfor~nnnce (see above) with the cheapest 
solution. Since compilcr dc\lclopas d o  not contribute 
directly to server or \vorl<station pricing decisions, 
they must lee the prc\lous mettics as surrogates. 

Cornpile speed. This aspect is primarily ofi~iterest to 
applicatio~i dcvclopers ratlicr than end Lrsers. 
Compile spcccl is oken given secondary considera- 
tion in academic papers on optimization; however, it 
can make or  break the decision of an ISV consider- 
ing a platfor~ii or a devclopmc~it en\~iron~ncnt.  Also, 
for C++, there is an important distinction between 
ab initio build speed and incremental build speed, 
due to thc need for template instantiation. 

Result file sizc. Both the object fi lc and executable 
file sizes arc important. This aspect was not a partic- 
ular problem with C, but several language features 
of C++ and its optiniizations can Icad to csplosive 
growth in result file sizc. The most obvious prob- 
lems arc the need for cstcnsi\c hnction inlining 

and for instalitiatio~l of templates. In addition, for 
debug versions of  the result files, it is essential to 
find a way to suppress repeated descriptions of the 
type information for variables in multiple niodules. 

Compiler djrnani~c memory use. Peak usage, aver- 
age usage, and pattern of  usage must be regulated 
to kccp the cost of a minimum dc\lclopmcnt con- 
figuratlo~i lo\\. In add~tion,  ~t IS ~niportant to cnsurc 
that specific comp~ler algor~thnis o r  combinat~ons 
of  them d o  not molate the usage assumptions built 
into the paging system, wh~cli can ~ i i ~ k e  the systc~n 
unusable during large comp~lations. 

Crude measurements can be madc for all or  most of 
these metrics in a single script. When attempting to 
make a significant improvement in one o r  niorc rnet- 
rics, however, the change ohen necessarily degrades 
others. This is acceptable, as long as tlie only cases that 
pay a penalty (e.g., in larger dynamic Iiiemorp use) arc 
the compilations that benefit fro111 the iniprovcd run- 
time performance. 

As the list ofperforlnance mctrics indicates, the most 
important distinction is made bctween co~npilc-time 
and run-time rnetrics. In  practice, we use automated 
scripts to measure compile-time and run-time perfor- 
rnance on a fairly f i - e q ~ ~ e ~ i t  (daily or  nlcckly during 
development) basis. 

Compile- Time Performance Metrics 
To  measure compile-time perhr~nancc,  11.e L I S ~  four 
metrics: compilation time, sizc of thc generated objects, 
dynamic memory usagc during compilation, and tem- 
plate instantiation time for C++.  

Compilation Time The compilation tirnc is measured 
as the tinie it takcs to compile a given sct of  soul-ccs, 
typically escluding the link timc. The link time is 
excluded so  that only compiler performance is mea- 
sured. This metric is important because it directly 
affects t l ~ e  productivity ofa  dcvclopcr. 111 tlic C++ case, 
performance is liieasured ab initio, bccailsc our prod- 
uct set does not  support incrcnicntal compilation 
below the granularity of a whole module. When opti- 
mization of the entire program is attempted, this niay 
become a more interesting issue. The UNIX slicll t i n -  
ing tools make a distinction benveen user and s)lstcni 
time, but this is not a mea~iingfi~l distinction k)r a com- 
piler user. Since co~ilpilation is typically CPU intcnsi\c 
and system time is usually modest, tracking the sum of 
both the user and tlie system timc gives the most realis- 
tic result. Slow compilation times can bc c a ~ ~ s e d  by the 
use of 0 (72') algorithms in the optimiz~tion phases, 
but they can also be frequently c a ~ ~ s c d  by excessive 
layering or modularity due to code reuse or  excessive 
gro~vth  of the in-1nemor)1 representation of the pro- 
gram during compilation (e.g., due to inlining). 
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Size of Generated Objects Excessive size of generated 
objects is a direct contributor to slow compile and 
link tirnes. In addition to the obvious issues of  inlin- 
ing and template instantiation, duplication of the type 
and naming information in the sy~nbolic debugging 
support Iias been a particular problem with C++. 
Compression is possible and helps with disk space, but 
this increases link time and memory use even more. 
The current solution is to eliminate duplicate informa- 
tion present in multiple modules of an application. 
'This work requires significant support in both the 
linker and the debugger. As a result, the implementa- 
tion has been difficult. 

Dynamic Memory Usage during Compilation Usually 
modern compilers have a multiphase design whereby 
tlie program is represented in several different forms in 
dynamic memory during the compilation process. For 
C and C++ optimized compilations, this in\~olves at 
least tlie following processes: 

Retrieving the entire source code for a module 
from its various headers 

Preprocessing the source according to the C/C++ 
rules 

Parsing the source code and representing it in an 
abstract form with semantic information embedded 

For C++, expanding template classes and f~~nct ions  
into their individ~~al instanccs 

Siniplifjing high-level language constructs into a 
form acceptable to the optimization phascs 

Converting the abstract rcprcsentation to a differ- 
ent abstract form acceptable to an optim~zcr, usu- 
ally called an intermediate language (IL) 

Expanding some low-level hnctions inline into the 
context of their callers 

Performing multiple optimization passes in\lol\1ing 
annotation and transformation of tlie IL 

Converting the IL to a form symbolically represent- 
j~ ig  the target machine language, usually called code 
generation 

Performing scheduling and other optimizations o n  
the symbolic machine language 

Converting the symbolic machine langi~agc to actual 
object code and writing it onto disk 

I n  modcr~l  C and C++ compilers, these various inter- 
mediate forms are kept entirely in dynamic memory. 
Although some of  these operations can be performed 
on a function-by-function basis within a ~ ~ i o d u l e ,  it is 
sometimes necessary for at least one intern~ediate form 
of the module to  reside in dynamic memory in its 
entirety. In some instances, it is necessary to keep mul- 
tiple forms of the whole module simultaneously. 

This presents a difficult design challenge: how d o  we 
compile large programs using an acceptable amount of 
virtual and physical memory? Trade-offs change con- 
stantly as memory prices decline and paging algorithms 
of operating systems change. Some optimizations even 
have the potential to expand one of the intermediate 
representations into a form that grows faster than the 
size of the  program (O(n  x log(n)), or  even 0 ( n 2 ) ) .  In 
these cases, optimization designers often limit the 
scope of the transfor~nation to a subset of an individual 
function (e.g., a loop nest) or  use some other means to 
artificially limit the dynamic memory and computation 
requirements. To  allow additiolial headroom, upstream 
compiler phascs are designed to eliminate unnecessary 
portions of the lnodule as early as possible. 

In addition, the memory management spste~ns are 
designed to  allow internal memory reuse as effi- 
ciently as possible. For this reason, compiler design- 
ers at Compaq have generally preferred a zone-based 
memory management approach rather than either a 
malloc-based o r  a garbage-collection approach. A 
zoned memory approach typically allows allocation 
of  varying amounts of memory into one of a set of 
identified zones, follo\ved by deallocation of the 
entire zone when k1I1 the individual allocations are n o  
longer needed. Since the source program is repre- 
sented by a succession of  internal representations 
in an optimizing compiler, a zoned-based memory 
management system is very appropriate. 

The  main goals of the design are to keep the peak 
mernory use below any artificial limits on  the virtual 
memory available for all the actual source modules 
that users care about, and to avoid algorithms that 
access memory in a way that causes excessive cache 
misses o r  page hults. 

Template Instantiation Time for C++ Templates are a 
major new feature of the C++ language and are heavily 
used jn the new Standard Library. Instantiation of 
templates can dominate the compile time o f the  mod- 
ules that use them. For this reason, template instantia- 
tion is undergoing activc s t~tdy and improvement, 
both \\/lien compiling a module for the first time and 
when recompiling in response to a source change. An 
improved technique, now widely adopted, retains pre- 
compiled instantiatio~is in a library to  be used across 
compilations of multiple modules. 

Template instantiation may be done at  either com- 
pile time or  during link time, o r  some cornbination.' 
DIGITAL C++ has rece~ltly changed from a link-time 
to  a compile-time model for improved instantiation 
performance. Thc instantiation time is generally pro- 
portiolial t o  tlie number of  templates instantiated, 
which is based on  a command-line switch specification 
and the time required to instantiate a typical template. 
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Run-Time Performance Metrics 
We use automated scripts to measure run-tinic perfor- 
muice for generated code, the debug image size, the pro- 
duction image size, and specific optimizations triggered. 

Run Time for Generated Code The run time for gen- 
erated code is measured as the sum of user and system 
time on UNIX required to run an esecutuble il-rlage. 
?'his is the primary metric for the quality of generated 
code. Code correctness is also validated. Comparing 
run times for slightly differing versions of synthetic 
benchmarks allo\vs us to test support for specific opti- 
mizations. Performance regression testing on  both 
synthetic benchmarks and user applications, ho\\,e\ler, 
is tlie most cost-effective method of preventing per- 
formance degradations. Tracing a performance regres- 
sion to a specific conipiler change is often difficult, but 
the earlier a regression is detected, the easier and 
cheaper it is to correct. 

Debug lmage Size The  size of an image co~npiled 
with the debug option selectcd during compilation is 
measured in  bytes. I t  is a constant struggle to avoid 
bloat caused by unnecessary or  redundant infor~nation 
required for symbolic debugging support. 

Production lmage Size The size of a production 
(optimized, with n o  debug information) application 
image is measured in bytes, The use of optimization 
techniques has historically made this size smaller, but 
modern RISC processors such as the Alpha micro- 
processor require optimizations that can increase code 
size substantially and can lead to excessive image sizes 
if the techniques are used indiscriminately. Heuristics 
used in tlie optimization algorithms linlit this size 
impact; however, subtle changes in one  part of tlie 
optimizer can trigger unexpected size increases that 
affect I-cache performance. 

Specific Optimizations Triggered In a multiphase 
opti~nizing compiler, a specific optimiz,ation usually 
requires preparatory contributions from several 
upstream phases and cleanup from several down- 
streani plinscs, in addition to  the a c t ~ ~ a l  transforma- 
tion. In  this environment, an unrelated change in one 
of the upstream o r  downstream phases may interfcre 
with a data structure or  violate an ;lssurnption 
exploited by a downstream phase and thus generate 
bad codc or  suppress the optimizations. The genera- 
tion of bad code can be detected quickly with auto- 
mated testing, but optimization regressions are much 
harder to find. 

For some optimizations, liowe\~er, it is possible to 
write test programs that are clearly representati\~e 
and can sho\v, either by some kind of  dumping o r  
by comparative performance tests, when an imple- 
mented optimization fails to worlc as expected. O n e  

commercially available test suite is called NULLSTONE," 
and custom-nlrittcn tests are used as well. 

In a collection ofsuch tests, the total number ofopti- 
mizations implemented as a percentage of the total 
tests can provide a usefill metric. This metric can indi- 
cate if successive coinpiler versions have improved and 
can help in comparing optimizations implemented in 
compilers from different vendors. The optimizations 
that are indicated as not implemented provide usehl 
data for guidng future development effort. 

The application developer must always consider the 
compile-time versus run-time trade-off. In a well- 
designed optimizing compiler, longer compile times 
are exchanged for shorter run times. This relationship, 
however, is far from linear and depends on the impor- 
tance of performance to the application and the phase 
of development. 

During the initial code-development stage, a shorter 
compile time is uscfi~l because the code is compiled 
often. During tllc production stage, a shorter run time 
is more important because the codc is run often. 
Although most of  the above metrics can be directly 
measured, dynamic nicrnory use can only be indirectly 
observed, for example, from the peak stack use and tlie 
peak heap use. As a result, our tests i~lclude bench- 
marks that potentially ~nalce heavy use of dynamic 
memory. Any degradation in a newer compiler version 
can be deduced fiom observing the compilation of 
S L I C I I  test cascs. 

Environment for Performance Measurement 

I11 this section, we describe our  testing environment, 
including hardwarc and sofnvare requirements, crite- 
ria for selecting benchmarlcs, fi-ecluency of pcrfor- 
mance measurement, and tracking the results of  our 
performance mcasurcments. 

Coiupiler perform~nce analysis and measurement 
give the most reliable and consistent results in a 
controlled environment. A nurnbcr of  factors other 
than tlie compiler pc~.formance have the potenti'd of 
affecting the observed results, and the effect of such 
perturbations must be minimized. The  hardware and 
software components of the test environment used arc 
discussed below. 

Experience has shown that it helps to have a dedi- 
cated machine for performance analysis and measure- 
ment, because the results obtained on  the sarnc 
machine tend to be consistent and can be meaning- 
fi~lly cornparcd with successive runs. In addition, the 
external influences can be closely controlled, and ver- 
sions of system sofnvarc, compilers, and benchmarks 
can bc controlled without impacting other users. 

Several aspects of the liard\\~are configuration on  the 
test machine can affcct the resulting measurements. 
Even \vitliin a singlc family of CPU architectures at 
cornparable clock speeds, differences in specific i~nple- 
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mentations can cause significant performance changes. 
The number of levels and the sizes of the on-chip and 
board-level caches can have a strong effect on perfor- 
mance in a way that depends on algorithnis of the 
application and the size of  the input data set. The size 
and the access speed of the main memory strongly 
affect pcrfor~nance, especially when the application 
code or  data does not fit into the cache. The activity on  
a network connected to the test system can have an 
effect on performance; for example, if the test sources 
and the executable image are located on a remote disk 
and are fetched over a network. Variations in the 
observed performance may be divided into two parts: 
(1 ) system-to-system variations in measurement when 
running the same benchmark and (2 )  run-to-run varia- 
tion on the same system running the same benchmark. 

Variation due to  hardware resource differences 
betcvccn systems is addressed by  sing a dedicated 
machine for performance measurement as indicated 
above. Variation due to  network activity can be mini- 
mized by closing all tlie applications that make use of 
the network before the performance tests are started 
and by using a disk system local to the machine under 
test. The variations due  to  cache and main memory 
system effects can be kept consistent between runs by 
using similar setups for successive runs of performance 
measurement. 

In  addition to the hardware components of  the 
setup described above, several aspects of tlie sohvare 
environment can affect performance. The operating 
system version used on thc test machine should corre- 
spond to the version that the users are likely to use on 
their machines, so  that the users see comparable per- 
formance. The libraries used with tlie co~npiler are 
usually shipped with the operating system. Using dif- 
ferent libraries can affect performance because newer 
libraries may have better optimizations or  new fca- 
tures. Tlie compiler switches used while compiling test 
sources can r c s ~ ~ l t  in different optimization trade-offs. 
Duc to the large number of compiler options sup- 
ported on a modern compiler, it is impractical t o  test 
performance with all possible combinations. 

To  meet our requirements, we used the followi~lg 
small set of switch combinations: 

1 .  Default Mode. The default mode represents the 
default combination of switches selected for the com- 
pilcr when no user-selectable options are specified. 
'The compiler designer chooses the default combina- 
tion to provide a reasonable trade-off between com- 
pile speed and run speed. Tlie use ofthis mode is very 
common, especially by novices, and thus is i~nportvit  
to measure. 

2. Debug Mode. In the debug mode, we test the option 
combination that the programmer would select when 
debugging. Optimizations are typically turned off, 
and tidl symbolic information is generated about the 

types lu~d addresses of program \lariables. This niodc 
is commonly specified during code development. 

3.  Optimize/Productio~l iMode. In the optimize/ 
production mode, \ve select the option combina- 
tion for generating optimized code (-0 compiler 
option) for a production image. This mode is most 
likely to be used in compiling applications before 
shipping to customers. 

We prefer to measure compile speed for debug mode, 
run speed for production mode, and both speeds for 
the default mode. Tlie default mode is expected to lose 
only modest run speed over optimize mode, have good 
compile speed, and provide usable debug information. 

Criteria for Selecting Benchmarks 
Specific benchmarks are selected for measuring perfor- 
rnance based on the ease of measuring interesting 
properties and the relevance to the user community. 
The desirable characteristics of usefill be~ichmarks are 

I t  should be possible to measure individual opti- 
mizations implemented in the compiler. 

I t  should be possible to  test performance for com- 
monly used language features. 
At least some of the bench~narlts should be repre- 
sentative ofwidely used applications. 

The benchmarks should provide consistent results, 
and the correctness of a run should be verifiable. 

The benchmarks should be scalable to  newer 
machines. As newer and faster machines are devel- 
oped, tlie benchmark execution times diminish. I t  
should be possible to scale the benchmarks on  the 
machines, so that usefill results can still be obtained 
without significant error in measurement. 

T o  meet tliese diverse requirements, we selected a set 
of benchmarks, each of which meets some of the 
requirements. We groi~ped our benchmarks in accor- 
dance with the performance meuics, that is, as compile- 
time and run-time benchmarks. This distinction is 
necessary because it allows us to fine-tune the contents 
of the benchniarks i~nder  each category. The compile- 
time 'and run-time benchmarks may be fi~rther classified 
as (1) synthetic benchmarks for testing the performance 
of specific features or (2) real applications that indicate 
typical performance and combine the specific features. 

Compile-Time Benchmarks Examples of synthetic 
compile-time benchmarks include the #define inten- 
sive preprocessing test, the array intensive test, the 
comment intensive test, the declaration processing 
intensive test, the hierarchical #include intensive test, 
the printf intensive test, the empty #include intensive 
test, the arithmetic intensive test, the fi~nction defini- 
tion intensive test (needs a large memory), and tlie 
instantiation intensive test. 
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Real applications used as compile-time bencli- 
marks include selected sources from the C compiler, 
the DIGITAL UNIX operating systeni, UNIS utilities 
such as awk, the X window interface, and C++ class 
inheritance. 

Run-Time Benchmarks Synthetic run-time bench- 
niarks contain tests for individual opti~iiizations for 
different data type, storage types, and operators. One  
run-time suite called NULLSTONE6 contains tests for 
C and C++ compiler optimizations; another test suite 
called Bench++' has tests for C++ features such as vir- 
tual function calls, exception handling, and abstraction 
penalty ( the Haney kernels test, the Stepanov bench- 
mark, and the OOPACK benchmark". 

Run-time benchmarks of real applicatio~is for the C 
langlage include some of the SPEC tests that are closely 
tracked by the DPD Performance Group. For C++, the 
tests consist of the groffword processor processing a set 
of documents, the EON ray tracuig beiich~iiark, the 
Odbsi~ii-a database simulator from the Universit)l of 
Colorado, and tests that call functions fiom a search 
class library. 

Acquiring and Maintaining Benchmarks 
\Ve have established methods of acquiring, maintain- 
ing, and updating benchmarks. Once the desirable 
characteristics of the benchmarks have been identified, 
usefill benchmarlcs may be obtained from several 
sources, notably a standards organization such as 
SPEC or  a vendor such as Nullstone Corporation. The 
public domain can provide benchmarks such as EON, 
groff, and Bench++. The use of a public-domain 
benchmark may require some level of  porting to make 
the bcnchmark usable on  the test platform if the origi- 
nal application was developed for use with a different 
language dialect, e. g. ,  GNU'S gcc. 

Sometimes, customers encounter perform~mce prob- 
lems with a specific feature usage pattern not anticipated 
by the compiler developers. Customers can provide 
extracts of code that a vendor can use to reproduce 
these performance problems. These code estracts can 
form good benchmarks for use in fiiture testing to avoid 
reoccilrrelice of tlie problem. 

Application code such as extracts from the compiler 
sources can be acquired from within the organization. 
Code may also be obtained from other sohvare dcvel- 
opment groups, e. g., the class library group, the 
debugger group, and the operating system group. 

If none of these sourccs can yield a benchmark ~ l i t l i  
a desirable characteristic, then one may be written 
solely to  test the specific feature or  combination. 

In our  tests of  the DIGITAL C++ compiler, we 
needed to use all tlie sources discussed above to  obtain 
C++ benchmarks that test the major features of the 
language. The public-domain benchmarks sometimes 
required a significant porting effort because of com- 

patibility issues between different C++ dialects. We 
also reviewed the results published by other C++ com- 
piler vendors. 

1Vaintaining a good set ofperformance mcasurerncnt 
benchmarks is necessary for evolving languages such as 
C and C++. New standards are being developed for 
thesc languages, and staridards compatibility may make 
some of a benchmark's features obsolctc. Updating tlie 
database of benchmarks used in testing involves 

Changing the source of existing benchmarks to 
~ccomniodate system header and default belia\~ior 
changes 

Adding new belichmarks to thc set when new coni- 
piles features and optimizations are implemented 

Deleting outdated benchmarks that d o  not scale 
well to newer machines 

In the following subsection, we discuss the frc- 
quency of our performance measurement. 

Measurement Frequency 
When deciding hotv often to measure co~npilcr pcr- 
tormance, \\re consider two major factors: 

I t  is costly to track do\vn a spccific pcrfol.ma11cc 
regression amid a large number of changes. In  fact, 
it sometimes becomes more econoniicnl to address 
a new opportunity instead. 

111 spite of autoliiation, it is still costly to run a suite 
of performance tests. 111 addition to tlic actual run 
time and the evaluation time, and even with signifi- 
cant efforts to filter ou t  noise, the normal run-to- 
run variability can show phantom rcgressions or 
Improvements. 

These considerations naturally lead to two obvious 
approaches to test frequency: 

Measuring at regular intervals. During active dc\.el- 
opment, measuring at  regular intcr\~als is the most 
appropriate policy. It allo\vs pinpointing spccific 
performance regressions most cheaply and permits 
easy scheduling and cost management. The interval 
selected depends 011 the amount of develop~iicnt 
(number of  developers and frequency of new code 
check-ins) and the cost of  the testing. In our tests, 
the intervals have been as frequent as three days and 
as infi-eqiient as 30 days. 

Measuring on demand. Measurement IS perfomled 
on demand when significant changes occur, for 
csample, the delivery of a major new version of ;7 
component or a new version of the operaong system 
A hill performance test is warranted to establish '1 

new baseline when a competitor's product is rclcnscd 
or to ensure that a problem has been corrected. 

Both strategies, ifiniplemented purely, haw problems. 
Frequent liieasurcment can catch problems early but is 
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resource intensive, whereas an on-demand strategy 
may not catch problems early enough and may not 
allow sufficient time to  address discovered problems. 
In retrospect, we discovered that the time devoted to 
Inore frequent runs of existing tests could be better 
used to develop new tests or  analyze known results 
more fully. 

We concluded that a combination strategy is the best 
approach. In our case all the performance tests are run 
prior to product releases and aher major component 
deliveries. Periodic testing is done during active devel- 
opment periods. The measurements can be used for 
analyzing existing problems, analyzing and comparing 
performance with a competing product, and finding 
new opportunities for performance improvement. 

Managing Performance Measurement Results 
Typically, the first time a new test or analysis method is 
used, a few obvious improvement opportunities are 
revealed that can be cheaply addressed. Long-term 
improvement, however, can only be achieved by going 
beyond this initial success and addressing the remain- 
ing issues, which are either costly to irnple~nent or  
which occur infrequently enough to make the effort 
seem unworthy. This effort involves systematically 
tracking the performance issues uncovered by the 
analysis and judging the trends to decide which 
improvement efforts are most worthwhile. 

Our  experience shows that rigorously traclung all 
the performance issues resulting from tlie analyses 
provides a long list of opportunities for improvement, 
far more than can be addressed during tlie develop- 
ment of a single release. I t  thus became ob\!ious that, 
to deploy our development resources most effectively, 
we needed to devise a good prioritization scheme. 

For each performance opportunity on our list, we 
keep crude estimates of three criteria: usage frequency, 
payoff from implementation, and difficulty of imple- 
mentation. VVe then use the three criteria to divide die 
space of performance issues into equivalence classes. 
We define our criteria and estimates as follows: 

Usage frequency. The usage frequency is said to be 
c0171n~on if the langi~age feature or code pattern 
appears in a Ixge fraction of source modules or 
~~ncor~zmon if it appears in only a few modules. 
\%'hen the language feature or code pattern appears 
in most modules for a particular application domain 
predominantly, the usage frequency is said to be 
skewed. The classic example of skeziled usage is die 
complex data type. 

Payoff from implementation. Improvement in an 
iniple~nentation is estimated as high, moderate, or  
small. A /nigh improvement would be the elimina- 
tion of the language construct (e.g., removal of 
unnecessary constructors in C++) or  a significant 
fraction of their overhead (e.g., inlining small h n c -  

tions). A rnocler~~te improvement would be a 10 to 
50 percent increase in the speed of a language fea- 
ture. A small improvement such as loop unrolling 
is worthwhile because it is common. 

Difficulty of implementation. We estimate tlie 
resource cost for irnplenienting the suggested 
optimization as difficult, straightforward, or  easy. 
Items are classified based on the complexity of 
design issues, total code required, level of risk, or 
number and size of testing requirements. An easy 
improvement requires little up-front design and 
no new prograrnlner or  user interfaces, introduces 
little breakage risk for existing code, and is typically 
limited to a single compiler phase, even if it involves 
a substantial amount of new code. A stmighfor- 
ward improvement would typically require a sub- 
stantial design component with multiple options 
and a substantial amount of new coding and testing 
but would introduce little risk. A dzfJiczilt improve- 
ment would be one that introduces substantial risk 
regardless of the design chosen, involves a new user 
interface, or  requires substantial new coordination 
between components pro\tided by different groups. 

For each candidate impro\tement on our list, we 
assign a triple representing its priority, which is a 
Cartesian product of the three components above: 

Priority = (fl-equency) x (payoff) x (difficulty) 

This classification scheme, though crude and subjec- 
tive, provides a useful base for resource allocation. 
Opportunities classified as common, high, and easy are 
likely to provide the best resource use, whereas those 
issues classified as uncommon, small, and difficult are 
the least attractive. This scheme also allows manage- 
ment to prioritize performance opportunities against 
functional improvements when allocating resources 
and schedule for a product release. 

Further classification requires more judgment and 
consideration of external forces such as usage trends, 
hardware design trends, resource availability, and 
expertise in a given code base. Issues classified as c o n -  
nion and high but difficult are appropriate for a major 
achievement of a given release, whereas an opportu- 
nity that is unconinlon and moderate but easy might 
be an appropriate task for a novice conipiler developer. 

So-called "nonsense optimizations" are often con- 
troversial. These are opportunities that are almost 
nonexistent in human-written source code, for exam- 
ple, extensive operations on constants. Ordinarily tliey 
would be considered unattractive candidates; how- 
ever, they can appear in hidden forms such as the result 
of macro expansion or as the result of optimizations 
performed by earlier phases. In addition, they often 
have high per-use payoffand are easy to implement, so 
it is ~~sua l ly  worthwhile to implement new nonsense 
optimizations when they are discovered. 
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MCinagemcnt control and resoul-cc '~llocation issues 
can a r m  \vhcn common, Ih~gh, or cdsp opportunities 
involve sohvarc owned b\l groups not i111der tlie 
direct control of  the comp~ler developers, such as 
headers or  libraries. 

Tools and Methodology 

We begin this section with a discussion ofperfor~nance 
evaluation tools and their application to problems. We 
then briefly present the results of three case studies. 

Tools and Their Application to Problems 
Tools for performance evaluation are used for either 
measurement or  analysis. Tools for measurement are 
designed mainly for accurate, absolute timing. Low 
overhead, reproducibility, and stability are more 
important than high resolution. Measurement tools 
are primarily used in regression testing to identify the 
existence of new performance problems. Tools for 
analysis, on the other hand, are used to  isolate the 
source code responsible for the problem. High, rela- 
tive accuracy is more important than low overhead o r  
stability here. Analysis tools tend to be intrusjve: they 
add instrumentation to either tlie sources o r  tlie ese- 
cutable image in s o ~ i ~ c  manncl-, so that enough infor- 
mation about tlic cxeci~tion can be captured to 
providc a dctailcd profilc. 

\Ve have constructed adequate automated measure- 
ment tools using scripts layered over standard operating 
s!rsteni timing packages. For compile-ti~ne measure- 
ment, a driver ~.e,tds tlie compile com~nands kern a file 
and, after compiling the source the specified number 
of times, writes tlic resulting timings to a file. Post- 
processing scripts c\~aluatc the usability of the results 
(average tinies, deviations, and filc sizes) and compare 
the new results against a set of rcfcre~lcc results. For 
compile-time measurernent, the defai~lt, debug, and 
optimize compilation modes are all tested, as previ- 
ously discussed. 

These sum~narized r e s~~ l t s  indicate if the test version 
has suffered performance regressions, tlie magnitude 
of these regressions, and which benchmark source is 
exhibiting a I-egression. Analysis of  the problem can 
then begin. 

Tlie tools we use for compile-speed and run-time 
analysis are considerably more sophisticatcd than the 
measurement tools. They are generally provided by 
the CPU design o r  operating system tools develop- 
ment groups and are widely used for application tun- 
ing as well as compiler improvements. We have used 
the following compile-speed analysis tools: 

Tlie conipiler's internal -show statistics feature 
gives a crude measure of the time required for each 
compiler phase. 
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The gprof and hiprof tools arc s~~pp l i ed  in the 
development suites for DI(;ITAL UNIX.  Both 
operate by building an instruniented \.ersion of the 
test sohvare (the compiler itself in our case). The 
gprof tool \\forks with the compiler, the linker, and 
the loader; it is available from se\rcral UNIX vcn- 
dors. Hiprof is an Atoni tool" " a\rail'~ble only on 
D I G I T U  UNIS; it docs not rccluil-e co~npiler or  
linker support. 

The bench~ilark eshibiting the pcrfornmance prob- 
lem can then be co~upiled \\fit11 the profiling version 
of the compiler, and the compilation profile can be 
captured. Using the display facilities of the tool, we 
can analyze the relevant portions of the execution 
profile. We can then compare this profilc with that 
of the reference version to localize the problem to a 
specific area of compiler source. Once this informa- 
tion is available, a specific edit can be identified as 
tlie cause and a solution can be identified and 
implemented. Another round of measurement is 
needed to verify the repair is effective, similar to tlie 
procedure for addressing a hnctional regression. 

When the problem needs to be pinpointed lnorc 
accurately than is possible with these profiling 
tools, we use the IPROBE tool, which can provide 
instruction-by-instruction details about the csccu- 
tion of a function." 

We have used the followi~lg tools or processes for 
run-time analysis: 

PVe apply hiprof and gprof in combination, and 
the Il'ROBE tool as described above, to thc 
run-tirne behavior of the test program rather than 
to its compilation. 

PVe analyze the NU1,LSTONE results by examining 
the detailed log file. This log idc~ltitics the proble~ii 
and the macline code gcncratcd. ?'his 'lnalysis is usu- 
ally adequate suice the tests arc generally quite simple. 

If more detailed analysis is nccdcd, e.g., to pin- 
point cache misses, we use the highly detailed 
results generated by the L3jgitnl C o n t i n u o ~ ~ s  
Profiling Infrastructure (DCPI) tool.",' 1 X P I  can 

'lor o n  an display detailed (average) hard\varc beha\. 
instruction-by-instruction basis. Any scheduling 
problems that [nay be responsible for Freque~lt 
cache misses can be identified from the DCPI out- 
put, whereas they may not always be obvious fro111 
casually observing the rnachine code. 

Finally, we use the cstirnated schedule dump and 
statistical data optionally generated by the GEM 
back end.' This dump tells us how instructions are 
scheduled and issued based on  the processor archi- 
tecture selected. I t  may also provide information 
about ways to  impl-o\,e the schedule. 



In the rest of this section, we discuss three examples 
of applying analysis tools to problems identified by the 
performance measurement scripts. 

Compile-Time Test Case 
Compile-time regression occurred after a new opti- 
mization called base components was added to the 
GEM back end to improve the r~m-t ime performance 
ofstructure references. Table 1 gives compile-time test 
results that compare the ratios of compile times using 
the new optimized back end to  those obtained with 
the older back end. The results for the iostream test 
indicate a significant degradation of 25 percent in the 
compile speed for optimize mode, whereas the perfor- 
mance in the other two modes is unchanged. 

To analyze this problem, we built hiprof versions of 
the two compilers and compiled the iostream bench- 
mark to obtain its compilation profile. Figures l a  and 
l b  show the top contributions in the flat hiprof pro- 
files from the two compilers. These profiles indicate 
that the number ofcalls made to cse and gem-il-peep 
in the new version is greater tha i  that of the old one 
and that these calls are responsible for performance 
degradation. Figures 2a and 2 b  show the call graph 
profiles for cse for the two compilers and show the calls 
made by cse and the contributions ofeach component 

called by cse. Since these components are included in 
the GEM back end, the problem was fixed there. 

Run-Time Test Cases 
For the run-time analysis, we used two different test 
environments, the Haney lternels benchmark and the 
NULLSTONE test run against gcc. 

Haney Kernels The Haney kernels benchmark is a 
synthetic test written to examine the performance of 
specific C++ language features. In this run-time test 
case, an older C++ compiler (version 5.5) was com- 
pared with a new compiler under developn~ent (version 
6.0).  The Haney lternels results showed that the ver- 
sion 6.0 development compiler experienced an overall 
performance regression of 4 0  percent. We isolated the 
problem to the real matrix ~nultiplication function. 
Figure 3 sl~ows the execution profile for this function. 

We then used the DCPI tool to analyze perfor- 
mance of the inner loop instructions exercised on  ver- 
sion 6.0 and version 5 .5  of the C++ compiler. The 
resulting counts in Figures 4a and 4 b  show that the 
version 6.0 development compiler suffered a code 
scheduling regression. The leftmost column shows the 
average cycle counts for each instruction executed. 
The reason for this regression proved to be that a test 

Table 1 
Ratios of CPU (User and System) Compile Times (Seconds) of the  New Compiler t o  Those of the  Old Compiler 

File Name Debug Mode Default Mode Optimize Mode 

Options -00 -g -04 -go 

a1 amch2 
collevol 
d-inh 
e-rvirt-yes 
interfaceparticle 
iostream 
pistream 
t202 
t300 
t601 
t606 
t643 
testLcomplex-except1 
test-complex-math 
test-demo 
test-generic 
test-task-queue6 
test-task-rand I 
test-vector 
vectorf 

Averages 
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granularity: cyclesr unlts: seconds; total: 48.96 seconds 

% cumulative self self total 
t i m e  ssconda seconds calls  ms/call m s  Jcall name 
2.8 1.37 1.37 15195 0.13 0.13 cse [I21 
2.6 2.66 1.29 219607 0.01 0.01 gent-ilqeep [311 
2.6 3.93 1.27 515566 0.00 0.00 gem-fi-ud-acces~-resource [67] 
2.4 5.09 1.17 401891 0.00 0.00 gem-met-= I371 
2.3 6.23 1.14 713176 0. 00 0.00 -0tsZero 17.51 

(a) Hiprof Profile Showing Instructions Executed with the New Compiler 

granularity: cycles; units: seconds; total: 27.49 seconds 

& cumulative self self total 
time seconds secon- calls ms/call ms/call name 
3.0 0.83 0.83 143483 0.01 0 . 0 1  s ~ L ~ U - P  [Qo] 
2 . 7  1.58 0.75 614350 0.00 0.00 -0tsZero 1641 
2 . 5  2 . 2 6  0.63 8664 0.08 0.08 cae [I61 
1 . 7  2-71 0 . 4 5  465634 0.00 0.00 gecfi-ud-access-resource 1861 
I. 6 3.14 0,43 423144 0.00 0.00 g w - m g a t j l z  [36) 

(b) Hiprof Profde Showing Instructions Executed with the Old Compiler 

Figure 1 
Hiprof l'rof les of Co~npilers 

for pointer disambiguation outside tlie loop code was 
not performed properly in the version 6.0 compiler. 
The test would have ensured that the pointers a and t 
were not overlappilig. 

We traced the origin of this regression back t o  the 
intermediate code generated by tlie two compilers. 
Here we found that the version 6.0 compiler used a 
more modern form of array address computatio~i in 
the intermediate language for which the scheduler had 
not yct bcen tuned properly. The problem was fixed in 
the scheduler, and the regression was eliminated. 

Initial NULLSTONE Test Run against gcc We measured 
the performance of the DEC C compiler in compiling 
the NULLSTONE tests and repeated the performance 
mcasurcment of the gcc 2.7.2 compiler and libraries 
on the same tests. Figures Sa and 5b  show the results 
of our tests. This comparison is of interest because gcc 
is in the public domain and is widely used, being the 
primary compiler available on the public-domai~i 
Linus operating system. Figure Sa sho\\s the tests in 
which thc DEC C compiler performs at least 10 per- 
cent better than gcc. Figure Sb i~idicates the optimiza- 

cse T12J 
tes t-for-cse [ 42 1 
update-operands I921 
test-for-induction t97T 
g=df>ve 11361 
puskeffect [I49 1 

(a) Hierarchical Profile for cse with the New Compiler 

cse [I61 
tes t-for-cse E 561 
test-for-induction 1 104 ] 
update-operands 11061 
move 12151 
-effect 12671 

(b) Hierarchical Profile for cse with the Old Compiler 

Figure 2 
Hierarchical Call Graph Profiles for cse 
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void rmatMuLHC (Real * t , 
const Real * a, 
conet Real * b. 
const int M, consr int N, const int  KI 

{ 
i n t i ,  j, k; 
Real t a m ;  

for (j = 1; j c= N; j++) 
t 
far (k = 1; k c= R; kt+) 

( 
t e m p = b [ k - 1  + K f  (j -111; 

i f  [ t e q  != 0.0) 
{ 
for (i = 1; i C= H; i++l 
t [ i  - 1 t M * ( j  - 111 t= 

temp a t i  - 1 t M * (k - 111; 
1 

Figure 3 
Haney Loop for Real Matrix Multiplication 

tion tcsts in which the DEC C compiler shows 10 per- 
cent or more rrgression compared to gcc. 

We investigated the indvidual regressions by look- 
ing at the detailed log of the run and then examining 
the machine code generated for those test cases. 111 dus 
case, tlie alias optimization portion showed that the 
rcgressjons were caused by the use of an outmoded 
standard12s the dcfault language dialcct ( -s tdo)  for 
DEC C in the DIGITAL UNIX environment. After we 
retested with the -an&-alias option, these regres- 
sions disappeared. 

We also investigated and fixed rcgrcssions in 
instruction combining and if optimizations. Other 
regressions, which were too  difficult t o  fix within the 
existing schedule for the current releasc, were added 
to tlie issucs list with appropriate priorities. 

Conclusions 

The measurement and analysis of compiler performulce 
has become an irnporta~lt alid demanding field. The 
increasing co~nplexity of CPU architectures and the 
addtion ofnew features to languages require the devcl- 
opmcnt and implementation of new suategics for test- 
ing thc performance of C and C++ compilers. By 
en1plo)~ing enhanced measurement and analysis tech- 
nicliies, tools, and benchmarks, we \\,err able to address 
these challenges. Our  systematic framework for com- 
piler performance measurement, analysis, and prioriti- 
zation of impro\lernent opportunities should serve as an 
escellc~lt starting point for the practitioner in a situation 
in which similar requirements are imposed. 
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(a) DCPI Profile for This Execution with Version 6.0 
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6258 Qxl20019524 0: 9956f ff4 $ts $f11, -12 (t5) 
3154 0xl20019528 0:998hfff8 sts gfl2, -8(t5) 
3200 0x12001952~ 0:99a6fffc sts Sf13, -41t5) 
3168 0x120019530 0:£69fffe7 bne a4, Ox120019460 

(b) DCPI Profile with Counts with Version 5.5 

Figure 4 
DCPI P~.ofiles of the Inncr Loop 
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Alias Analysis in the 
DEC C and DIGITAL C++ 
Compilers 

During alias analysis, the DEC C and DIGITAL C++ 
compilers use source-level type information to 
improve the quality of code generated. Without 
the use of type information, the compilers 
would have to assume that any assignment 
through a pointer expression could modify any 
pointer-aliased object. In contrast, through the 
use of type information, the compilers can 
assume that such an assignment can modify 
only those objects whose type matches that 
referenced by the pointer. 

I 
August G .  Reinig 

When two o r  more address expressions reference the 
same memory location, these address esprcssions are 
aliases for each other. A compiler performs alias analy- 
sis to detect which address expressions d o  not refer- 
ence the same melnory locations. Good alias analysis is 
essential to the generation of efficient code. Code 
motion out ofloops, comlnon subespressio~i elirnina- 
tion, allocation of variables to registers, and detection 
ofuninitialized variables all depend upon thc compiler 
kcnowi~ig which objects a load or a store operation 
could reference. 

Address expressions Jnay be symbol expressions 
or  pointer expressions. In the C and C++ languages, 
a compiler always knows \\/hat object a symbol expres- 
sion references. The samc is not true with pointer 
expressions. Determining which objects a pointer 
expression map reference is an ongoing topic of 
research. 

Most of the research in this area focuses o n  the use 
of techniques that track which object a pointer cxpres- 
sion might point to.'.2 When thesc techniques cannot 
make this determination, they assume that the pointer 
expression points to any object whose address has 
been taken. Thesc techniques generally ignorc the 
type information a\railable to the source program. The 
best techniques pcrform interprocedural analysis to 
improve their accuracy. Although effective, the cost of 
analyzing a complcte program can make this analysis 
impractical. 

In contrast, the DEC C and DIGITAL C++ cornpil- 
ers use high-level type information as they perform 
ahas ,analysis on 3 routine-by-routine basis. Li~iudllg ahas 
analysis to  within a routine rcduces its cost, albeit at 
the cost of reducing its effectiveness. 

The use of  this type information results in slight 
iniprovements in the performance of  some standard- 
conforming C and C++ programs. These imp-ovc- 
melits come at little expense in terms of compilation 
time. There is, ho\vever, a risk that the use of this type 
information on nonstandard-co~iformil~g C or  C++ 
programs may result in the compiler producing code 
that exhibits ~~nespected  behavior. 
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The C and C++ Type Systems 

Research available on  the use of  type information dur- 
ing alias analysis involves languages other than C and 
C++.' Traditionally, C is a weakly typed language. A 
pointer that references one type may actually point to 
an objcct of a different type. For this reason, most 
alias-analysis techniques ignore type information when 
analyzing programs written in C. 

The IS0  Standard for C defines a much stronger 
typing system." In I S 0  Standard C,  a pointer expres- 
sion can access an object 017ly if the type referenced by 
the pointer meets the follo\ving criteria: 

I t  is compatible with the type of  the object, ignor- 
ing type qualifiers and signedness. 

I t  is compatible with the type of a member of an 
aggregate or  union or submembers thcrcof, jgnor- 
ing type qualifiers and signedness. 

I t  is the char type. 

Thus, in Figure 1,  the pointer p can point to  A, B, 
C, or S (through S.sub.m) but not to T or F. The 
pointrr q, being a pointer to char, can refer to any of 
A, B, C, S, T, or  F. 

The proposed I S 0  Standard for C++ defines a simi- 
lar typing system for C++.' The strength of  the 
Standard C and C++ type systems allows the DEC C 
and 13IGITAL C++ compilers to use type information 
during alias analysis. 

Many existing C applications d o  not conform to the 
Standard C typing rules. They use cast expressions to  
circumvent the Standard C type system. To support 
these applications, the DEC C compiler has a mode 
whereby it ignores type information during alias analy- 
sis. The DIGITAL C++ compiler also has such a mode. 
This mode exists to support those C++ programmers 
who circumvellt the C++ type system. 

int A; 
signed int const B; 
unsigned int volatile C; 
struct ( 

s t r u c t  ( 

int m; 
1 sub; 

1 s; 
struct { 

short z; 
1 T; 
float F: 

int *p; 
char *q; 

Figure 1 
Code Fragment Associated with the Explanation of the 
Standard C Aliasing Rilles 

The Side-eff ects Package 

The DEC C and DIGITAL C++ compilers are GEM 
 compiler^.^ The  GEM compiler system includes a 
hghly  optimizing back end. This back end uses the 
GEM data access model to determine whic.h objects a 
load or  a store may access. GEM compiler front ends 
augment the GEM data access model with a side- 
effects package, i.e., an alias-analysis package. The 
side-effects package provides the GEM optimizer 
additional information about loads and stores using 
language-specific infor~nation otherwise 1111available 
to the GEM optimizer. 

The DEC C and DIGITAL C++ con~pilers share a 
common side-effects package. The DEC C and C++ 
side-effects package 

Determines which symbols, types, and parts thereof 
a routine references 

Determines the possible side effects of these references 

Answers queries fi-om the GEM optin~izer regarding 
the effects and dependencies of memory accesses 

Preserving Memory Reference Information 
The DEC C and DIGITAL C++ front ends perform 
lexical analysis and parsing of  the source program, 
generating a GEM intermediate language (GEM IL) 
graph representation of tlie source program." trrpkc~ 
is a node in the GEM IL and represents an operation in 
the source program. 

As the DEC C and DIGITAL C++ fi-ont ends gener- 
ate GEM IL, they annotate each fetch (read) and store 
(write) tuple wit11 information dcscribing the object 
being read or  writtcn, T l ~ c  front ends annotate fctches 
and stores of symbols with information about the spm- 
bol. They annotate fetches ,and stores du-ough pointers 
with information about the type the pouiter references. 
The annotation information includes information 
dcscribing exactl)~ which bytes of the symbol or  type 
the tuple accesses. This allows the side-effects package 
to  differentiate between access to nvo different mem- 
bers of a structure. 

Arrays Neither the DEC C nor the DIGITAL C++ 
front end differentiates between accesses to different 
elements of an array. 130th assume that all array accesses 
are to the first element of the array. The GEM optimizer 
does extensive analysis of array references.' Being flow 
insensitive, the DEC C and C++ side-effects pacltage 
can, at best, differentiate between two array references 
that both use constant indices. The GElM optimizer can 
d o  much more. 

What the GEM optimizer cannot do,  however, is 
determine that an assignment through a pointer to an 
int does not change any value in an array of doubles. 
This is the purpose of the DEC C and C++ side-effkcts 
package. Mapping all array accesses to access the first 
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element of an array does not hinder this purpose and 
simplifies alias analysis ofarrays. 

Tuple Annotation Example For the propam fragment 
in Figure 2, the DEC C and DIGITAL C++ front ends 
generutc the annotated tuples displayed in Table 1. 

lntraprocedural Effects Analysis 
Tlie GEM optimizer makes several optimization passes 
over a routine. During each optimization pass, tlie 
DEC C and C++ side-efkcts package provides alias 
analysis information to the GEM optimizer by means 
of the following procedures: 

E x a m ~ n ~ n g  each tuple m t h ~ n  the routi~ic that rcfer- 
cnccs (rcads or  writes) Incmory, allocating effects 
c l aws  that represent the memory tliat tlie tuple 
references 

Performing type-based alias analysis 

Responding to  alias-analysis queries from the GEM 
optimizer 

To  dctermi~ie the possible side effects of a memory 
access, the side-effects package partitions liielnory into 
effects classes. An effects class represents all o r  part of 

S t l % E t  S 
i n t  X I  

int p; 
1 vl, v2; 
i n t  i; 
double d[31; 
stmct S *p; 

g->x - 33: 
vl*y = 3;  
v2 = vl; 
d[il  = 6101; 

Figure 2 
Code Fragment Associated with Tuple h~no ta t io~ l  
Exa~nplc  

an object. To  nii~iirnize tlie number of effects classes 
under consideration, the side-effects pacltage creates 
effects classes for only those object regions referenced 
wid in  the current routine. 

Having created effects classes h r  each referenced 
object region within tlie current routine, the side- 
effects pacltage then associates a signature with each 
effects class. The signature for an effects class records 
the possible side effccts of referencing the effects class. 
Tlie side-effects packagc uses this signature to respond 
to queries from the GEM optimizer about the effects 
and dependencies of tuples and symbols within the 
current routine. 

Allocating Effects Classes There are hvo kinds of 
effects classes. The first Iund rcprcsents a region of an 
individual object. The second lund represents a region 
of all allocated objects of a particular type. Allocated 
objects are those created by the malloc ( )  fi~nction 
and its relatives or  the C++ new operator. 

As it processes the t ~ ~ p l e s  within a routine, the side- 
effects pacltagc csa~ni~lcs  the memory reference infor- 
mation associated ~ f i t l i  the tuple. The side-effects 
package creates all effects class for each different set of 
lne~nory reference information it encounters. Two sets 
of  memory reference information are different if they 
contain different start- o r  end-offset informati011 or  
different symbol information. 

Two sets of mcniory reference information tl iat  
contain different type information are different only if 
the t\vo types are not cffccts equivalent. 'live types arc 
effects equivalent if they differ only in their signedness 
or  thcir type qualifiers. The signed int type and the 
volatile unsigned int type are effects equivalent. An 
assignment through a pointer to a signed int may 
change tlic \raluc of a volatile ~~ns igned  int. 

Typically, an  cffects class rcpreselits a complete 
object or  an indisidual member of a structure. An 
effects class Inay represent a subregion of the r egon  
represented by another effects class. This occurs when- 
ever code references a whole structure as well as indi- 
vidual members of the structure. In the case of unions, 

Table 1 
Tuple Annotations 

C/C++ Source Annotation Annotation 
Expression Tuple Symbol TY pe Start Byte End Byte 

Fetch p P struct 5 * 0 7 
Store p->x 

Store vl .y 

Fetch vl 
Store v2 

Fetch d[Ol 

none 
vl 

struct 5 
struct S 

struct S 

struct S 
double 

Fetch i d[il = d[Ol I int 0 3 
Store d[i] d double 0 7 
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if nvo members occup!l exactly the same nicmory loca- 
tions, a single effects class represents both members. 

For the program fragment in Figure 3, the side- 
effects package creates the effects classes displayed in 
Table 2. 

Therc is only one effects class for *uip and *ip since 
uip and ip ]nay point to the same object. Thcre are no 
effects classes for bytes 0 throi~gh 3 of s and struct S as 
there arc no references t o  s.x or  sp->s. By allocating 
effects classes for only those object regions referenced 
within thc routine, the side-effects pacltage greatly 
reduccs both the number of effects classes and the 
time rcquired to perform alias analysis. 

In the traditional C type system, a pointer expres- 
sion may point to anything, regardless of type. To rep- 
rcselit this, the side-effects package creates exactly one 
effects class to represent allocated objects. I t  ignores 
thc type and the start- and end-offset information. 

s truct  s ( 
i n t  x; 
struct T ( 

i n t  y; 
f loat  z ;  

t t; 
1 a: 
stl-uct S *sp; 
aigned i n t  *ip; 
unsigned int *uip: 
f loat  *fp; 

'uip = 'ip; 
*fg = 2 ;  
sp-rt = s . t ;  
sp->t.y = 2 ;  
s - *sp; 

Figure 3 
Code Fragment Associated with Allocating Effects Classes 

Using the traditional C type system, for the program 
fragment sho\;\ln in Figure 3, the side-effects package 
creates the effects classes displayed in Table 3. Here, 
effects class 7 replaces effects classes 7 through 11 in 
Table 2. All thc differe~~tiation by types disappears. 

Effects-class Signatures Having created the effects 
classes, the side-effccts package associates a signature 
with each effects class. In addition, it associates an 
effects-class signature with each tuple within the rou- 
tine and each symbol referenced within the routine. 

An effects-class signature records the possible side 
effects of  referencing an effects class. A reference to 
one effects class may reference another effects class. 
The effects class for a load through a pointer to  an int 
indicates that the load references an allocated int 
object. The pointer to all int may actually reference a 
pointer-aliased int symbol or  an int member o fa  struc- 
ture or  union. 

An effects-class signature is a subset of all the effects 
classes that might be referenced by a tuple. There is 
only one requirement for an effects-class signature: If 
two tuples may refer to the same part of memory, the 
intersection of their respective effects-class s ignat~~res  
must be non-null. If t\vo tuples cannot refer to the 
same part of  memory, it is desirable that the intersec- 
tion of their effects-class signatures is null. An empty 
interscction leads to more optimization opportunities. 

The most ob\~ious rule for building an effects-class 
signati~re is to include in it all the effects classes that 
might be touched by a reference to the effects class. 
This leads to suboptimal code in cases such as that 
shown in Figure 4. 

Therc are threc effects classes for this code, s<0,3>, 
s<4,7>, and s<0,7>, generated by references to s.s, s.y, 
and s, respectively. If the effects-class signature for 
s<0,3> includes both s<0,3> and s<0,7> and the 
effects-class signature for s<4,7> includes both s<4,7> 
and s<0,7>, then the intersection of these nvo effects- 

Table 2 
Effects Classes Using the Standard C Type Rules 

Type or  Source Generating 
Effects Class Symbol Start Offset End Offset Effects Class 

1 s 0 11 s 

2 S 4 11 s.t 

3 SP 0 7 SP 
4 fp  0 7 fp  
5 i P 0 7 i P 
6 uip 0 7 ui p 
7 struct S 0 11 *SP 
8 struct S 4 11 sp->t 
9 struct S 4 7 sp->t.y 

10 float 0 3 *fp 
11 int 0 3 *uip and *ip 

Digital Technical Journal 



Table 3 
Effects Classes Using the  Traditional C Type Rules 

Effects Class Type or Symbol Start Offset End Offset Source Generating Effects Class 

s 
s 

s P 
f p  
ip 
uip 
char 0 1 *sp, sp->t, *uip, sp->t.y, *fp, *ip 

class signatures is non-null. This falsely indicates that 
s.x and s.y may refer to  the same memory location. This 
forces GEM to generate code that stores s.y after stor- 
ing to S.X. 

The DEC C and C++ side-effects package uses more 
effective rules for building efkcts-class signatures. These 
rules offer Inore optimization opportunities while pre- 
serving necessary dependency information. 

Effects-class Signatures for Symbols If an cffects class 
represents a region A ofa  symbol, its signature includes 
itself. Its signature also includes all effects classes repre- 
senting regions of the symbol wholly contained within 
A. Finally, it includes any effects class representing a 
region of  the symbol that partially overlaps A. I t  does 
not i~lcludc effects classes representing regions of the 
symbol that d o  not overlap A or  that wholly contain A. 

Table 4 gives the symbol effects-class signatures for 
the three effects classes under discussion. 

The inclusion ofsubregions in an effects-class signa- 
ture means that refcrcnces to symbols interfere with 
references to members therein and vice versa. Excluding 
super-regions in an effects-class signature means that 

struct S { 

inc x;  
i n t  y ;  

} 3; 

s . x  = . . .  ; 
s . y  = . . . ;  
return s ;  

Figure 4 
Example of Problematic Codc for the Na'ive Rule for 
Building Effects-class Signatures 

Table 4 
Symbol Effects-class Signatures 

Effects Class Effects-class Signature 
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references to two separate ~ n e ~ n b c r s  of  3. sy~nbol d o  
not interfere with each other. In Table 4, the effects- 
class signatures for s<0,3> and s<4,7> do not interfere 
with each other. Both signatures interfere with the 
effects-class signature for sc0,7>. 

The inclusion of effects classes rcprcscnting partially 
overlapping regions of a symbol allows for the correct 
representation of the side effects of referencing sub- 
members of complex unions. 

Effects-class Signatures for Types If an etkcts class 
represents a region of a type, the contcnts of its signa- 
ture depends upon the type. If the type is the char type, 
the effects-class signature contains all thc effects classes 
representing regions of other types o r  pointer-aliased 
symbols. This retlects the C and C++ type rules, which 
state that a pointer to a char can point to anything. 

If the type is some type T other than char, the cffects- 
class signature contains efkcts classes representing: 

Those regions of T that overlap thc region o f T  the 
effects class represents, using the same overlap rules 
as for symbols 

Any rcgion of a pointer-aliased sym bol \vhosc type 
is compatible to 'T, ~gnor ing tvpc qualificl-s and 
signcdness 

A region of a pointer-aliascd aggregate or  union 
symbol that contains a member o r  s ~ ~ b m e m b e r  
whosc type is compat~ble to T, Igllonng typc q i ~ d i -  
fiers and signedness 

A region of  an aggregate o r  union typc that con- 
tains a member o r  subrnember ~vliosc typc is corn- 
patible to T, ignoring type q~~alificrs and signcdncss 

Table 5 gives the signatures for the cffccts classcs in 
Table 2, assuming that the symbol s is pointcr aliased. 

Including the effects classcs ofsymbols in the cffccts- 
class sigllatures of types records the intcrfcrcnce of 
references through pointers with references to pointer- 
aliased sy~nbols. In  Figure 3, the pointcr uip points to 
an unsigned int. The member.s.t.y has type int. Thus, 
uip may point to s.t.y. The member s.t contains s.t.y. 
Thus, the signature for the effects-class intc0,3> con- 



Table 5 
Type Effects-class Signatures 

Number Effects Class Effects-class Signature 

1 s<o, 1 1 > 1.2 
2 s<4,11> 2 
3 sp<0,7> 3 
4 fp<0,7> 4 
5 ip<0,7> 5 
6 uip<O,7> 6 
7 struct S<0,11> 1, 2, 7, 8, 9 
8 struct S<4,11> 1, 2,8, 9 
9 struct S<4,7> 1 ,  2, 9 

10 f loat<0,3> 1.2.7.8. 10 
11 int<0,3> 1,2,7,8,9,  11 

tains the effects-class s<4,11>. This means that the 
load 0fs . t  depends upon thc store through uip. 

Including the cffects classes of types in the signa- 
tures of the effects classes of  other types records the 
interference of  references through a pointer with ref- 
erences through pointers to other types. In Figure 3, 
the pointer Fp points to a float object. The  member 
sp->t.z has type float. Thus, fp  may point to sp->t.z. 
The member sp->t contains sp->t.z. Thus, the signa- 
ture for die effects-class float<0,3> contains the effects- 
class struct S<4,11>. This reflects the fact that the 
store to sp->t.y depends upon the store through fp ,  
i.e., it must occur after the store through fp .  

Even though the signature for the effects-class 
float<0,3> contains the effects-class struct S<4,11> 
(sp->t), it does not contain the effects-class struct 
S<4,7> (sp->t.y). There is n o  float member of struct 
S whose position within struct S overlaps bytes 4 
through 7 of struct S. There is a float member ofstruct 
S, namely z, whose position within struct S overlaps 
bytes 4 through 11 of  struct S.  The  signature for the 
effects-class float<0,3> would not contain the effects- 
class s<0,3> if it existed. There is n o  float member of  s 
whose position overlaps bytes 0 through 3 ofs.  

Additional Effects-class Signatures The side-effects 
package creates a special effects-class signature repre- 
senting the side effects of  a call. A called procedure 
may reference the following: 

Any pointer-aliased symbol (by means of a refer- 
ence through a pointer) 

Any allocated object (by means of a reference 
through a pointer) 

Any  ionl local symbol (by means ofdirect access) 

Any local static symbol (by means of recursion) 

The effects signature for a call includes all the effects 
classes representing these objects. 

Responding t o  Optimizer Queries During optimiza- 
tion, the optimizer makes two types of queries to the 
side-effects analysis routines: dominator-based queries 
and nondominator-based queries. 

When doing nondorninator-bascd optimizations, the 
optimizer uses a bit vector to represent those objects a 
write may change (its effects). A similar bit vector repre- 
sents those objects whose value a read may fetch (its 
dependencies). Each bit in the bit vector represents an 
effects class. If a tuple's effects-class signature contains 
an effects class, that effects class's bit is set in the tuple's 
bit vector. The optimizer uses the union of the bit vec- 
tors associated with a set of tuples to  represent the com- 
bined effects or  dependencies of those tuples. 

Dominator-based queries involve finding the near- 
est dominating tuple that might write to the same 
memory location as the tuple in question. Tuple A 
dominates tuple B if every path from the start of  the 
routine to B goes through A."f both tuples A and C 
dominate B, tuple A is the nearer dominator if C dom- 
inates A. 

When doing dominator-based optimizations, the 
side-effects package represents the tuples in the cur- 
rent dominator chain as a stack, adding and removing 
t ~ ~ p l e s  from the stack as GEM moves from one path 
in the routine's dominator tree to another. Searching 
a single stack for the nearest dominating tuple that 
might write the same memory as the tuple in question 
references could lead to O(N')performance, where N 
is the number of  tuples in the dominator chain. This 
worst-case behavior occurs when none of the tuples in 
a dominator chain affects any subsequent tuple in the 
chain. Each time the side-effects package searches the 
stack, it examines all the tuples in the stack. 

To avoid this, the DEC C and C++ side-effects pack- 
age creates a stack for each effects class. When pushing 
a tuple, the side-effects package pushes the tuple on  
each stack associated with an effects class in the tuple's 
effects-class signature. When the GEM optimizer tells 
the side-effects package to find the nearest dominating 
write for a tuple, the side-effects package need only 
choose the nearest of  those tuples that are on  the top 
of the stacks associated with the tuple's effects-class 
signature. I t  nced only look at the top of each stack, 
because a tuple would not be in the stack unless it 
might affect objects in the effects class associated with 
the stack. 

The niultistack worst-case behavior is O(NC). There 
are C separate stacks, one for each effects class. The  
effects-class signature for each effects class may con- 
tain all the other effects classes. This would mean that 
each of the Aftuples in the dominator chain would 
appear in each of  the stacks. 

Although the worst-case behavior for the multistack 
case is no  better than the single-stack case (C may be 
equal to N ) ,  in practice there are often more tuples 
within a routine than effects classes. Furthermore, 
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effects-class signatures often contain a small number 
of effects classes. A small number of  effects classes in 
an effects-class signature means that there are a small 
number of  stacks to consider. Choosing the nearest 
dominator from among the top tuples on  these stacks 
requires examining only a small number of  tuples. 

Cost of Using Type Information 

When compiling all of  the SPECint95 test suite9 using 
high optimization, alias analysis accounts for approxi- 
mately 5 perccnt of the compilation time. The use of 
Standard C type rules during alias analysis increases 
compilation time by less than 0.2 percent (time mea- 
sured in number of cycles consumed by the compiler 
as reported by Digital Continuous Profiling Infra- 
structure [DCPI]"). The increase in compilation time 
varies from program to program but never exceeds 
0 .5  percent. Handling the extra effects classes gener- 
ated by using Standard C type aliasing information 
accounted for most of  the increase. 

Potentially, the cost of including type-aliasing infor- 
mation could be huge. Calculating which effects classes 
a reference through a char * pointer could touch is 
straightforward as shown by the algorithm in Figure 5. 

A much more complicated process is required to 
calculate which effects classes could be touched by a 
reference through a pointer to a type other than char. 
The algorithm in Figure 6 performs this process. 

Fortunately, the innermost section of  this loop is 
rarely executed. The innermost section executes only 
if a routine references a structure either through a 
pointer or  a pointer-aliased symbol, that structure 
contains a substructure, and the routine references the 
substructure through a pointer. 

Effectiveness 

The benchmark programs from the SPECint95 suite 
offer some con\~enient test cases for measuring the 
effectiveness of type-based alias analysis. The sources are 
readily available and portable. The programs conform 
to alias rules established by the American National 
Standards Institute (ANSI) and are compute intensive. 
Unfortunately, they d o  not contain floating-point cal- 
culations. This reduces the number of different types 
used in the programs. Type-based alias analysis works 
best when there are many different types in use. 

Three ofthe SPECint95 programs show no improve- 
ment when compiled using the Standard C typing rules 
as opposed to using the traditional C typing rules. 
These programs, namely compress, go, and li, d o  not  
use many different types and pointers to them. \ m e n  
all the pointers in a program are pointers to ints (go), 
there is only one effects class for all pointer accesses. 
Because the compiler has no way to differentiate 
among the objects touched by a dereference of a 
pointer expression, it generates identical code for these 
programs, regardless of  the type rules used. The gen- 
erated code for li differs only slightly and only for 
infrequently esecuted routines. 

Changes in generated code for the remaining five 
benchmarks are more prevalent. Two benchmarks, 
ijpeg and perl, show a small reductio~l in the number 
of loads executed but n o  rneaninghl reduction in the 
total number of  instructions executed. The other 
three SPECint95 benchmarks show varying degrees 
of  reduction in both the number of  loads executed 
(see Table 6) and the total number of instructions 
executed (see Table 7). 

foreach pointer aaliased symbol 
foreach effects class representing a region of the symbol 

a&d that effects class to the effects clans  signature far char 

Figure 5 
Calculation of the Effects-class Signature of the Type char * 

foreach pointer aliased symbol or type referenced through a pointer 
Eoreach member therein 

if the member's type i s  referenced through pointer 
Eareach effects class representifig a region of the member'e type 

foreach effects class representing a ragion of the symbol or type 
referenced through a pointer 

if the two effects class regions overlap 
add the symbol's or pointer's effects class to the effects 

class signature associated with the effect class 
representing the member's type 

Figure 6 
Calculation of the Effects-class Signature for Types Other Than char 
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Table 6 
Number of Loads Executed by the  Select SPECint95 Benchmarks 

Millions of Loads Millions of Loads 
SPEC Benchmark Using Type Information without Type Information Percent Reduction 

gCC 10,268 10,365 0.9 

11 Peg 16,853 16,888 0.2 
m88ksim 13,889 14,157 1.9 
per1 1 1,260 11,296 0.3 
vortex 1 8,994 1 9,207 1.1 

Table 7 
Number of lnstructions Executed by t he  Select SPECint95 Benchmarks 

Millions of Instructions Millions of lnstructions 
SPEC Benchmark Using Type Information without Type Information Percent Reduction 

gCC 42,830 42,935 0.2 

\)Peg 82,844 82,834 0.0 
m88ksim 72,490 73,155 0.9 
per1 45,2 19 45,252 0.1 
vortex 80,093 80,607 0.6 

The load and instruction counts are those reported 
by using Atom's pisie tool on the SPECint95 binaries 
to generate pisstat data.",'? The compiler used was a 
development C compi.ler. All compilations used the 
follo\ving switches: - f a s t  , -04,  -arch ev56, and 
- 1  speed. The compilations using the 
Standard C type system used the -an.c,i-alias 
switch. The compilations using the traditional C type 
system used the -no.;lcsi,-il ia:; switch. The bench- 
mark binaries were run using the reference data set. 

DCP1"'measurenients of the reduction in the nuni- 
ber of cycles consumed by these SPECint95 bench- 
marks showed no  consistent reductions. Run-to-run 
variability in the data collected swamped any c)icle- 
time reductions that might have occurred. Similarly, 
measurements of gains in SPECint95' results due to 
the use of type inforn~ation during alias analysis showed 
no significant changes. 

Changes in Generated Code 

The code-gcncration changes one sees In the SPEClnt95 
benchmarks are exactly what one \vould expect. 

'The use of type information during alias analysis 
reduces the number of redundant loads. An example 
ofthis occurs in ijpeg, which co~~ta ins  the code sequence: 

in process~data~context.  Using the traditional C type 
system, the compiler must assume that main->row 
group-ctr is an alias for cinfo->min-DCT-scaled_sizc. 

Thus, it must generate code that loads cinfo->min- 
DCT-scaled-size twice. The Standard C type systcm 
allows the compiler to  generatc only one load of  
cinfo->niin-1)CT-scaled_size. 

Several of  the benchmarks contain code similar to  
the following from conversion-recipe in gcc: 

Using traditional C type n~les ,  the compiler must gcn- 
erate four loads of  curr.next->list. The conipilcr I I I L I S ~  

assume that the pointer curr.ncst->list may point to 
itself, making curr.nest->list->111cmber an alias for 
curr.nest->list. The Standard C type rules allo\v the 
compiler to assume that curr.next->list does not point 
to itself. This allows the compiler to generate code that 
reuses the result of the first load of curr.next->list, 
eliminating three redundant loads. 

111 another esample in gcc, the use of Standard C 
type rules allo\\a the compiler to rno1.e a load outside a 
loop. The following loop occurs in fixup-gotos: 

Standard C type rules tell the co~npiler that the store 
generated by TREE-ADDRESSABLE (lists) = 1 
cannot modiljl thisblock->data.block.outer-clearil~ps. 
This allows the compiler to generate code that fetches 
thisblock->data.blocI<.outer-cLea1~11ps once before 
entering the loop. Using traditional C type rules, 
the compiler must generate code that fetches 
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thisblock->data.block.oute~--cleanups each time it 
traverses thc loop. 

Not  01i1y can type information reduce the number 
of redundant loads, it can rcducc tJic number of redun- 
dant stores. In mS8ksirr1, thcrc arc many routines simi- 
lar to the following: 

\.\lliere opcl ,  dest, opc2, and src2 arc bit fields sharing 
the same 32 bits (longword). Using traditional C typ- 
ing rules, ptr->gcn and cmd->opc may be aliases for 
each othcr. Thus to implement the above routine, the 
compilcr must generate code that performs the fol- 
lowing actions: 

Load ptr->gen 

Update bit fields ptr->gen.opcl and ptr->gen.dest 

Storc ptr->gcn 

Load cmd->opc.rrr 

Update bit fields ptr->gen.opc2 and ptr->gen.src2 

Store ptr->gen 

Using Standard C typing rules, the compiler does not 
have to generate thc first store of ptr->gen. The assign- 
ments to ptr->gcn.opcl and ptr->gen.dest cannot 
change crnd->opc.rrr. I n  this case, alias analysis tliat is 
not typc based \vould have a difficult time detecting 
that ptr->gcn and cmd->opc d o  not alias each other. 
M88ksim never calls ffirst directly. It calls it by mcans 
of an array-indexed firnction pointcr. 

A Note of Caution 

Many C programs d o  not adhcrc to the Standard C 
aliasing rules. Through the use of explicit casting and 
implicit casting, they access objects ofone type by means 
of pointers to other types. More aggressive optimization 
by GEM combined with more detailed alias-analysis 
information from the DEC C and C++ side-effects 
package i~icreasingly results in these programs exliibit- 
ing unexpected behavior when the compiler uses 
Standard C aliasiug rules. 

Passing a pointer to one typc to a routine that 
expects a pointer to another typc works as expected, 
until the GEM optimizer inlines the called procedure. 
If the procedure is not  inlincd, tlie 13EC C and C++ 
side-effects package  nus st assume that the call conflicts 
with all pointer accesses before and afier the cal I .  Once 
GEM i~llines the routine, tlie side-cffects package is 
Free to assume that refcrcnces using the inlined pointer 
d o  not conflict with references using the pointer at the 
call site. The nvo pointers point to two dirferent types. 
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A recent example of this problem occurred in the 
gcc program in the SPECint95 benchmark suite. All 
programs in this suite arc supposed to conform to thc 
Standard C type-aliasing rules. Kccnuse of an improve- 
lnent to the GEM optimizer, this bench~nark s t ~ r t e d  
to give ~~nespected  res~rlts. In rts-alloc, gcc clears a 
structure by treating it as an array of ints, assigning 
zero to each elerncnt of the array. Subsecluent to xero- 
ing this structure, gcc assigns a value to one of the 
fields in the structure. Through a series of \lalid opti- 
mizations (given thc incorrect type information), the 
resulting code did not c l cx  all the fields in the struc- 
ture. This left uninitialized data in the structure, 
resulting in gcc bcliaving in an unexpected manner. 

To avoid potential problems, the DEC C compiler, 
by default, does no t  iue the Standard C type rules 
when performing alias analysis. The  user of  tlie c o n -  
piler has to explicitly assert that thc program does fol- 
low the Standard C type rules through the use of  a 
command-line switch. 

The DIC;I'lTAL C++ compiler does assunic that the 
C++ program it is cornpili~ig adhcrcs to thc Standard 
C++ type rules. A user of the l>IG17rAI, C++ cornpilcr 
can use a command-line s\vitch to inform the compilcr 
that it s h o ~ ~ l d  use traditional C type rules \\~licn per- 
forming alias analysis. 

Summary 

Using Standard C typc infor~iiation during alias ali'dysis 
does improve the generated code for some C and C++ 
programs. The compilation cost of usins type informa- 
tion is small. Except for rare cases, performance gains 
resulting from these code improvements are small. Any 
prograrns compiled using type information during allas 
a~ialysis must strictly adhere to the Standard C and C++ 
ahasing rules. If not, the optimizer may generate code 
that produces unespected results. 
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I 
Pldip H. S w e a ~ y  
Steven M. Carr 
Brett L. Huber Compiler Optimization 

for Superscalar Systems: 
Global Instruction 
Scheduling without 
Copies 

The performance of instruction-level parallel 
systems can be improved by compiler programs 
that order machine operations to increase 
system parallelism and reduce execution time. 
The optimization, called instruction scheduling, 
is typically classified as local scheduling if only 
basic-block context is considered, or as global 
scheduling if a larger context is used. Global 
scheduling is generally thought to give better 
results. One global method, dominator-path 
scheduling, schedules paths in a function's 
dominator tree. Unlike many other global 
scheduling methods, dominator-path schedul- 
ing does not require copying of operations 
to preserve program semantics, making this 
method attractive for superscalar architectures 
that provide a limited amount of instruction- 
level parallelism. In a small test suite for the 
Alpha 21 164 superscalar architecture, dominator- 
path scheduling produced schedules requiring 
7.3 percent less execution time than those pro- 
duced by local scheduling alone. 

Many o f  today's computer  applications require compll- 
tation power no t  easily achieved by computer  architcc- 
turcs that provide little o r  n o  parallclisrn. A proniising 
alternative is the parallel architecture, more specifically, 
the instruction-level parallel (ILL') archi tcct~~l-e ,  cvllich 
increases computation during each m<~cliine cyclc. II,P 
computers allow parallel complrtation o f  the lo~vcst 
level ~i iachine operations within a single instruction 
cycle, i~lcluding such operations as memory loads and 
stores, integer additions, and floating-point multiplica- 
tions. 112 arcliitect~~res, like con\~entional architccturcs, 
contain multiple functional units and pipclincd firnc- 
tional units; but, they have a single program countel- 
and operate o n  a single instruction stream. Compaq 
Computer  Corporation's AlphaScr\fc~- system, based on  
the Alpha 21 164 microproccssor, is an csa~i iple  of  an 
ILP macline.  

T o  effectively use parallel hardware and o b t ~ i n  
performance ad\lantages, co~npi lc r  programs must 
identi@ the  appropriate level o f  parallclisrn. For ILI' 
architectures, the compilcr mmst o rder  thc single 
instruction stream such that multiple, lo\\!-lcvcl opcra- 
tions execute simultaneously \\ihene\.cr possible. This 
ordering by the compiler o f  macliinc operations t o  
effecti\lel!l use an IL,l' a rch i tec t~~rc ' s  increased paral- 
lelism is called ~ ~ I S ~ I - I I C ~ ~ O ~ Z  s ~ h o c / ~ i l i ~ ~ , q .  It  is 311 opti- 
mization n o t  ~ ~ s u a l l ! ~  found in compilers for 11on-11,P 
architectures. 

Instruction scheduling is classified as local if it 
considers code only within a basic block and gloh~i l  if 
it schedules code across multiple basic bloclts. A dis- 
advantage t o  local instruction scheduling is its inability 
t o  consider contest  from sul-rounding I.>loclts. \Vliilc 
local scheduling can find parallclis~n within a basic 
bloclt, it can d o  ~ i o t h i n g  t o  exploit parallelism bcn\~ccn  
basic bloclts. Generally, global scheduling is preferred 
because it can talte advantage o f  added program paral- 
lelism available n ~ h e ~ l  the compiler is allowcci t o  move 
code across basic block boundaries. Tjadcn and Flynn,' 
for exan~ple,  found parallclisrn within J basic block 
quite limited. Using ,I test suite o f  scientific programs, 
they measured an ;nrcragc parallelis~n o f  1.8 \vitIiin 
basic blocks. I n  similar csper i~nents  o l i  scientific pro- 
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grams in which the compiler moved code across basic 
block boundaries, Nicolau and Fisher' found paral- 
lelism that rangcd from 4 to a virtually unlimited num- 
ber, with an average o f 9 0  for the entire test suite. 

T r ~ ~ c c  .schedrlling~' is a globd scheduling teclu~iql~e 
that attempts to optimize Frequently executed paths of 
a program, possibly at the expense of less ficquently 
executed paths. Trace scheduling exploits parallelism 
within sequential code by allowing massive niigration of 
operations across basic block boundaries during schedul- 
ing. By addressing this larger scheduling context (many 
basic blocks), trace scheduling can produce better sched- 
ules tha i  tecluliques that address the smdler context of a 
single block. To  ensure the prograrn semantics are not 
changed by interblock motion, trace scheduling inserts 
copies of operations that move across block boundaries. 
Such copies, necessary to  ensure progrxii semantics, are 
called coi71pe~~.s~l/ion c0pie.s. 

The research described here is driven by n desire to 
develop a global instruction scheduling technique 
that, like trace scheduling, allows operations to cross 
block boundaries to find good schedules and tliat, 
unlike trace scheduling, does not require insertion of  
compensation copies. Like trace scheduling, DPS first 
defines a multiblock context for scheduling and then 
uses a local instructioli scheduler to treat the larger 
context like a single basic block. Such a technique pro- 
vides effecti\ie schedules and avoids the: performance 
cost of executing co~npensation copies. The global 
schcduling technique described here is based on the 
dominator relation* among the basic blocks o fa  f ~ ~ n c -  
tion and is called doniinator-path scheduling (131's). 

Local Instruction Scheduling 

Sincc 1)PS relies o n  a local instruction scheduler, we 
begin with a brief discussion of the local scheduling 
problem. As the nalne implies, local instruction sched- 
uling attempts to maximize parallelisln within each 
basic block of a fi~nction's control tlow graph. In  gen- 
eral, this optimization problcm is NP-coniplctc." 
Howevcr, in practice, heuristics achicvc good results. 
(h~idskov et  d." give a good survey of early instruction 
scheduling algorithms. Allan et  al.' describe how one 
might build a retargetable local instruction scheduler.) 

List ~ c h e d ~ i l i r i g 5 s  a general method ohen used for 
local instruction scheduling. Briefly, list schcduling 
typically requires two phases. The first phase builds 
a directed acyclic graph (DAG), called the data depen- 
dence 13AG (DDD), for each basic block in the 
fi~nction. 1)DD nodes represent operations to be 
scheduled. The DDD's directed edges indicate that a 
node S prcccding a node Y constrains S to occur no 

'4 blsic block, 17, donli~lates another block, R, ifcvcry path from 
thc root of thc control-tloiv graph for n klncrion ro B must puss 
through 1). 

later than Y. These DDD edges are based on the formal- 
ism of data dependence analysis. There are three basic 
types of data dependence, as described by Padua et  al." 

Flow dependence, also called true dependence or  
data dependence. A DDD node MI is flow depen- 
dent on 1)Dl) node M I  if Ml executes before MI and 
R/II writes to some: memory location read by M?. 

Antidepcndence, also called false dependence. A 
DDD node M2 is antidependent on DDD node M I  
if M I  executes before M1 and M2 writes to  a mem- 
ory location read by M I ,  thereby destroying the 
value needed by MI .  

O u t p ~ ~ t  dependence. A DDD node M2 is output 
dependent on DDD node MI if MI executes before 
M2 and M2 and M I  both write to the same location. 

To  facilitate deterniination and manipulation of 
data dependence, the compiler maintains, for each 
DDD node, a set of all memory locations L L S B ~  (read) 
and all memory locations dej?ned (written) by that 
particular DDD node. 

Once the DDD is constructed, the second phase 
begins when list scheduling orders the graph's nodes 
into the shortest sequence of instructions, subject to 
(1) the constraints in the graph, and (2) the resource 
limitations in the machine (i.e., a machine is typically 
limited to holding only a single value at  any time). In 
general list scheduling, an ordered list of tasks, called a 
p77'07-i0) list, is constructed. The priority list takes its 
name from the fact tliat tasks are ranked such that those 
with the Iighest priority are chosen first. In the context 
oflocal instruction scheduling, the priority list contains 
DDD nodes, all of \vhose predecessors have already 
been included in the schedulc being constructed. 

Expressions, Statements, and Operations 

Wlthin the context of this paper, we discuss algorithms 
for code motion. Before going further, we need to 
ensure common understanding among our readers for 
our use of tcrtns such a5 e~prpssioils, statei77et7ts, and 
O ~ ~ ~ I I O I Z S  TO start, cvc consldcr a computer program 
to  bc a list of operntlons, cach of w h ~ c h  (possibly) 
computes a right-hand s ~ d c  (1-11s) valuc and asslgns tlic 
rhs value to a ~ n e ~ i ~ o r ) ~  locatton represe~ited by a lefi- 
hand side (Ihs) variable. This can be expressed as 

A t E  

where A represents a single memory locatio~i and E 
represents an expression with one  or  more operators 
and an appropriate number of  operands. During dif- 
ferent pllases of a compiler, opera t io~~s  [night be reprc- 
scnted as 

Source codc, a high-lcvcl langi~age such as C 
Intermediate statements, .I linear form of tliree- 
address code such as quads o r  11-tuples1" 
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DDl) nodes, nodes in a DDD, ready to be sched- 
uled by the instruction scheduler 

Important to note about operations, whether repre- 
sented as intermediate statements, source code, or  
DDD nodes, is that operations include both a set of 
definitions and a set of uses. 

Expressions, in contrast, represent the rhs of an 
operation and, as such, include uses but not defini- 
tions. Throughout this paper, \ve use the terms state- 
lnerzt, intevniediate statelnenl, operation, and DDD 
node interchangeably, because they all represent an 
operation, with both uses and definitions, albeit gen- 
erally at dfferent stages of the con~pilation process. 
When we use the term eexpression, howe\~er, we mean 
an I-hs with uses only and n o  definition. 

Dominator Analysis Used in Code Motion 

In  order to  determine \vhicIi operations can move 
across basic block bo~uidaries, we need to analyze the 
source program. Although there are some choices 
as to the exact analysis t o  perform, dominator-padl 
scheduling is based upon a formalism first described by 
Reif and Tarjan." We summarize Reif and Tarjan's 
work here and then discuss the enhailcenlents ~ v x d e d  
to allow interbloclc movement of operations. 

In their 1981 paper, Reif and Tarjan provide a fast 
algorithm for deterrnuing the approximate birthpoints 
of expressions in a program's flow graph. An expres- 
sion's birthpoint is tlie first block in the control flow 
graph at which the expression can be computed, and 
the value computed is paranteed to be the same as in 
the original program. Their technique is based upon 
fast co~nputatioil of the iclcfset for each basic bloclc of 
the control flow graph. The ideyset for a block B is 
that set of variables defined on a path benveeil B's 
immediate dominator and B. Given that the domina- 
tor relatioli for the basic blocks of a function can be 
represented as a clo~~zinato~*tree, the immediate domi- 
nator, IDOM, of a basic bloclc B is B's parent in the 
dominator wee. 

Expression birthpoints are not sufficient to allow us 
to safely move entire operations from a block to one of 
its dominators because birtlipoints address only the 
movement of expressions, not definitions. Operations 
in general include not only a computation of some 
expression but the assignment of the value computed 
to  a program variable. Ensuring a "safe" motion for an 
expressio~l requires only that n o  expression operand 
move above any possible dejinition of that operand, 
thus changing tlie program semantics. A similar 
requirement is necessar)i but not sufficient, for the 
variable to which tlie value is being assigned. In addi- 
tion to not moving A above any previous definition of 
A, A cannot move above any possible use of A. 
Otherwise, \+re run the rislc of changing A's value for 

that previous use. Thus, domillator analysis computes 
the iztse set for each basic block and for the ideJset. 
The i~lse  set for a block, B, is that set ofvariables used 
on some path benveen B's immediate don~inator and 
B. Using the idef and ime sets, do~ninator analysis com- 
putes an approximate birthpoint for each operation. 

In this paper, we use the term dominator analysis 
to m e a l  the analysis necessary to allow code motion of 
operations w~hile disallo\vi~ing compensatioii copies. 
Additionally, we use the term dominator motio?? for 
the general optimization of code motion based upoii 
dominator analysis. 

Enhancing the Reif and Tarjan Algorithm 
1Sy enhancing Rcif and Tarjan's algorithm to compute 
bi??hpoints of operations instead of expressions, we 
make several issues important that previously had no 
effect upon Reif and Tarjan's algorithm. This section 
motivates and describes the illformation needed to 
allo\v dominator motion, including tlie ~lsc,  cleJ iuse, 
and idef sets for each basic bloclc. An algorithmic 
description of this dominator analysis information is 
included in the section Overvie\v of Dominator-Path 
Scheduling and the Algorithm for Interblock Motion. 

When we allow code motion to move intermediate 
statements (or just expressions) fi-om a block to one of 
its dominators, cve run the rislc that tlie statement 
(expression) will be executed a different number of 
times in the dominator bloclc than it would have been 
in its original location. When \ve move oiily espres- 
sions, tlie risk is acceptable (although it may not be 
efficient to move a statement illto a loop) since the 
value needed at tlie origi~lal point of comp~~ta t ion  is 
preserved. Relative to program semantics, the number 
of times the same value is computed has no effect as 
long as the correct value is computed the last time. 

accuracy is guaranteed by expression birthpoints. 
Consider also the consequences of moving an expres- 

sion ti-om a block that is neuel* executed for some pa-tic- 
ular ulput data. Agaii, it may not be efficient to compute 
a value never used, but the computation does not dter  
program semantics. When dominator ~iiotion moves 
entire statements, ho~+~ever, die issue becomes more 
complex. If the statement moved assigns a new value to 
a1 ulductio~l variable, as UI the following exanple, 

doniinator motion would change 77's final value if it 
moved the statement to  a block where the execution 
frequency differed from that of its original blocl<. We 
could alleviate this problem by proliibiti~lg mot io~ i  of 
any statement for which tlie use and clef sets are not 
disjoint, but the possibility remains that a statement 
may define a variable based indirectly upon that vari- 
able's previous value. T o  remedy the more gencral 
problem, we disallow motion of any statement, S, 
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whose dejset  intersects with those variables that are 
~lsel-before-ciejnedin the basic block in which S resides. 

Suppose the optimizer moves an intermediate state- 
ment that defines a global variable from a block that 
may never be executed for some set of input data into 
a dominator block that is executed at  least once for 
the same input data. Then the optimized version has 
defined a variable that the unoptimized hnction did 
not, possibly changing program semantics. We can be 
sure that such motion does not change tlie semantics 
of that fi~nction being compiled; but there is no  mech- 
anism, short of conipiling the entire program as a sin- 
gle unit, to ensure that defining a global variable in this 
fi~nction will not change the value used in another 
fi~nction. Thus, to be conser\iative and ensure that 
it does not change program semantics, dominator 
motion prohibits interblock movement of any state- 
ment that defines a global variable. At first glance, it 
may seem that this prohibition cripples dominator 
motion's ability to  move any intermediate statements 
at all; but we shall see that such is not the case. 

One final addition to  Reif and Tarjan information is 
required to take care of a subtle problem. As discussed 
above, dominator analysis uses the idef and iuse sets to 
prevent illegal code motion. The use of these sets was 
assumed to be sufficient to ensure the legality of code 
motion into a dominator block; unfortunately, this is 
not  the case. Tlie problem is that a definition might 
pass through tlie immediate dominator o f B  to reach 
a use in a sibling of B in the dominator tree. If there 
were a definition of this variable in B, but the variable 
was not defined on  any path from the immediate dom- 
inator, there would be nothing in dominator analysis 
to prevent the definition from being moved into the 
dominator. But that would change the program's 
semantics. Figure 1 shows the control-flow graph for a 
hnction called findmax(), with only the statements 
referring to register 1-7. Register r7 is defined in blocks 
8 3  and B7, and referenced in B9. This means that r7 
is liue-ol,it of B5 and live-iiz to B8, but not live-in to 
B7; there is a definition of r7 in B3 that reaches B8. 
Because there is n o  definition or  use between B7 and 
its immediate dominator B5, the idef and izrse sets of 
B7 are empty; thus, dominator analysis, as described 
above, would allow the assignment of r7 to move 
upward to block B5. This motion is illegal; it changes 
the definition in B3. Moving the operation from B7 to 
B5 changes the conditional assignment of r7 to an 
~~nconditional one. 

To  prevent this fi-om happening, we can insert the 
variable into the izise set of the block B, in which we 
wish tlie statement to remain. We d o  not, however, 
want to add to the iuse set u~u~ecessarily. The solution 
is to add each variable, V, that is liue-in to any of B's 
siblings in the dominator tree, but not  into B, or  to B's 

ENTRY 0 

Figure 1 
Control Flow Graph for the Function findmas() 

iuse set. This will prevent any definition of V that 
might exist in B from moving up. If there is a defini- 
tion of V in B, but V is live-in to B, there must be some 
use of V in B before the d e h t i o n ,  so it could not move 
~ ~ p w a r d  in any case. 

Measurement of Dominator Motion 
T o  measure the motion possible in C programs, 
Swea~iy" dehied do~ninator motion as the movement 
of each intermediate statement to its birthpoint as 
defined by dominator analysis and by the number of 
dominator blocks each statement jumps during such 
movement. Swean)1's choice of internlediate state- 
Inents (as contrasted with source code, assembly lan- 
guage, or  DDD nodes) is attributed to the lack of 
machine resource constraints at that le\lel of program 
abstraction. H e  envisioned dominator motion as an 
upper bound on  the motion available in C pro, crams 
when compensation copies are included. In the test 
suite of 12 C programs compiled, more than 25 per- 
cent of all intermediate statements moved at least one 
dominator block upwards toward the root of the dorn- 
inator tree. One hnction allowed more than 50 per- 
cent of thc statements to  be hoisted an average of 
nearly eight dominator bloclzs. Tlie considerable 
amount of ~notioll  (without copies) available at tlie 
intermediate statement level of program abstraction 
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provided us with the motivation to use similar analysis 
techniques to facilitate global instruction scheduling. 

Overview of Dominator-path Scheduling and the 
Algorithm for lnterblock Motion 

Since experiments show that dominator analysis allows 
considerable code motion without copies, we chose to 
use dominator analysis as the basis for the instruction 
scheduling algorithm described here, namely dominator- 
path scheduling. As noted above, DPS is a global 
instruction scheduling method that does not require 
copies ofoperations that move from one basic block to 
another. DPS performs global instruction scheduling by 
treating a group of basic bloclcs found on a dominator 
tree path as a single block, scheduling the group as a 
whole. In this regard, it resembles trace scheduling, 
which schedules adjacent basic blocks as a single block. 
DPS's foundation is scheduling instructions while mov- 
ing operations among blocks according to both the 
opportunities provided by and the restrictiolls imposed 
by dominator analysis. 

The question arises as to how to exploit dominator 
analysis information to permit code motion at the 
instruction le17el during scheduling. DPS is based on 
the observation that we can use iclef and i~lse  sets to 
allow operations to move from a block to one of its 
dominators during instruction scheduling. Instruction 
scheduling can then choose the most advantageous 
position for an operation that is placed in any one of 
several blocks. Because machine operations are incor- 
porated in nodes of the DDD used in scheduling and, 
like intermediate statements, DDD nodes are repre- 
sented by def and use sets, the same analysis performed 
on intermediate statements can also be applied to a 
basic block's DDD nodes. 

The same motivation that drives trace scheduling- 
namely that scheduhg one large block allows better use 
of machu~e resources than scheduling the same code as 
several smaller blocks-also applies to DPS. I n  contrast 
to trace scheduling, DPS does not allow motion of 
DDD nodes when a copy of a node is required and does 
not incur the code esplosion due to copying that trace 
scheduling can potentially produce. For architectures 
with moderate instruction-level parallelism, DPS may 
produce better results than trace scheduling, because 
the more limited motion may be sufficient to make 
good use of machne resources, and unlrke trace sched- 
uling, no machine resources are devoted to executing 
semantic-preserving operation copies. 

Much like traces,* the dominator path's blocks can 
be chosen by any of several methods. One method is a 
heuristic choice of a path based on length, nesting 
depth, or some other program characteristic. Another 
is programmer specification of the most important 

paths. A third is actual profiling of the running pro- 
gram. We visit this issue again in the section Choosing 
Dominator Paths. First, however, we need to discuss 
the algorithmic details of DPS. 

Once DPS selects a dominator path to schedule, it 
requires a method to combine the blocks' DDDs into 
a single DDD for the entire do~ninator path. In our 
compilcr, this task is performed by a DDD coupler,'" 
which is designed for the purpose. Given the DDD 
coupler, DPS proceeds by repeatedly 

Choosing a dominator padl to schedule 

Using the DDD coupler to combine each block's 
DDD on the chosen don~inator path 

Scheduling the co~nbined DDD as a single bloclc 

The dominator-path scheduling algorithm, detailed 
in this section, is summarjzed in Figures 2 and 3. 

A significant aspect of the DPS process is to ensure 
"appropriate" interblock motion of DDD nodes and 
to prohibit "illegal" motion. As noted earlier, the 
combined DDD for a dominator path includes control 
flow. Therefore, when Dl's schedules a group of 
blocks represented by a single DDD, it needs a mecha- 
nism to map correctly the scheduled instructions to 
the basic blocks. The mechanism is easily accom- 
plished by the addition of two special nodes to each 
block's DDD. Called BlockStart and BlockEnd, these 
special nodes represent the basic block boundaries. 
Since dominator-path scheduling does not allow 
branches to move across block boundaries, each 
BlockStart and BlockEnd node is initially "tied" (wit11 
DDD arcs) to the branch statcrncnt ofthe block, ifany. 
Because BloclcStart and BlockEnd are nodes in the 
eventually combined DDD, they arc scheduled like all 
other nodes of the combined DDD. After scheduling, 
all instructions between the instruction containing the 
BlockStart node for a block and the instruction con- 
taining the BlockEnd node for that block are consid- 
ered instructions for that block. Nest, DPS must 
ensure that the BloclcStart and BlockEnd DDD nodes 
remain ordered (in the scheduled instructions) relative 
to one another and to thc BlocltStart and BlockEnd 
nodes for any other block. To do  so, DPS adds useand 
clef information to the nodes to represent a pseudore- 
source, BlockBoundary. Because each BlockStart 
node defines BlockBoundary and each BlockEnd 
node uses BlockBoundary, no  BlockEnd node can be 
scheduled ahead of its associated BlockStart node 
(because offlow dependence.) Also, a BloclcStart node 
cannot be scheduled before its do~ilinator block's 
13loclcEnd node (because of antidependence). By 
establishing tlicsc imaginary dependencies, DPS 
ensures that the DDD coupler adds arcs between all 
BlockStart and BlockEnd nodes. 

*groups of blocks to be scheduled together in trace scheduling 
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Algorithm Dominator-Path Scheduling 
Input: 

Function Control Flow Graph 
Dominator Tree 
Post-Dominator Tree 

Output: 
Scheduled instructions for the hnction 

Algorithm: 
While at least one Basic Block is ~~nschedulcd 

Heuristically choose a path B,, Bz,. . ., B,, in the Dominator Tree that includes 
only unscheduled Basic Blocks. 

Perform dominator analysis to compute 1Def and IUse sets 

/* Build one DDD for the entire dominator path */ 
CombinedDDD = BI 
F o r i = 2 t o n  

T = I~utializeTransitio~innD (B,.,,  B,) 
Co~nbinedDDD = Couple(ConibinedDDD,T) 
CombinedDDD = Couple (CombinedDDD, B, ) 

Perform list scheduling on CornbinedDDD 
Mark each block of DP scheduled 
Copy scheduled instructions to the Blocks of  the path (instructions between the 
BlockStart and BlockEnd nodes for a Block are "written" to that Block) 

End While 

Figure 2 
Dominator-path Scheduli~lg Algorithm 

Looking back to dominator analysis, we see that 
interblock motion is prohibited if the operation being 
moved 

Defines something that is included in either the 
ic/e/or ilr.scl sct 

Uses something included in the idef set for the 
block in which the operation currently resides 

To obtain the same prohibitions in the combined 
DDD, \\re add the idqf set for a basic block, B, to the 
clefset B's BlockStart node. Similarly, we add the iusc 
set for B to the lrscsct of B's BlockStart node. Thus we 
enforce the same restriction on  movement that domi- 
nator analysis imposed upon intermediatc statements 
and ensure that any interblock motion preserves pro- 
gram semantics. In a similar manner, DPS includes the 
restrictions on movement of operations that define 
either global variables o r  induction variables. Figure 3 
gives an algorithmic description of  the process of  
"doping" the BlockStart and BlockEnd nodes to pre- 
vent disallowed code motion. 

DPS is complicated by factors not relevant for dom- 
inator motion of intermediate statements. Foremost is 
the coniplcsity imposed by the bidirectional motion of 

operations that instruction scheduling allo\vs. In dom- 
inator motion, intermediate statements move in only 
one direction, i.e., toward the top of the function's 
control tlow graph, not from a dominator block to a 
dominated one. This one-directional motion is rea- 
sonable when attempting to move intermediatc state- 
ments because one statement's movement will likely 
open possibilities for more motion in the same direc- 
tion by other statements. When statements move in 
different directions, one  statement's motion might 
inhibit another's movement ill the opposite direction. 
The god of dominator motion is to move statements as 
far as possible in the control flow graph. In contrast, the 
god of DPS is not to maximize code motion, but rather 
to find, for each operation, 0, that location for 0 that 
will yield the shortest schedule. Thus our goal has 
changed fiom that of dominator motion. To gain thc 
full benefit From DPS, we wish to allow operations to 
move past block boundaries in either drection. To per- 
mit bidirectional motion, we use the post-dominator 
relation, which says that a basic block, PD, is a post- 
dominator of  a basic block B if all paths from B to the 
function's cxit must pass through PD. Using this strat- 
egy, we similarly define post-idef and post-iuse sets. In 
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Algorithm InitializeTransitio~iDDD(B,, B,) 
Input: 

A Transition DDD templates, with a Dummy DDDNode 
for Bl's block end and one for Bz's block start 
Two basic blocks, B, and B2 that eve wish to couple 
Dominator Tree 
Post-Dominator Tree 
The follo\ving dataflow information 

Def, Use, IDef, and IUse sets for BI and B2 
Used-Before-Defined set for B, 
Post-IDef, and Post-IUse sets for B1 and Bz 
Bz's "sibling" set, defined to include any variable 

live-in to  a dominator-tree sibling of B2, but not 
live-in to Bz 

A basic block DDD for each 0fB1 and B2 
Output: 

An initialized Transition DDD, T 
Algorithm: 

T = TransitionDDD 
/* "Fix" set for global and induction variables. */ 
Add set of  global variables to B2's IUse 
Add B2's Used-Before-Defined to B2's IUse 
Add B2's sibling set to B2's IUse 

IfB, does not post-dominate B, 
Add B,'s Use set to T's BlockEnd Def set 
Add Bl's Def set to T's BlockEnd Use set 

Else 
Add B,'s Post-IDefset to T's BlockEnd Defset 
Add 13,'s Post-IUse set to T's BlockEnd Use set 

Add Bz's IDef set to T's Blockstart Def set 
Add Bz's IUse set to T's BlocltStart Use set 
Return T 

Figure 3 
Initialize Transition DDl3 Algorithm 

fact, it is not  difficult to compute all these quantities 
for a function Tlic simplest way is to logically reverse 
the direction ofall the control flow graph arcs and per- 
form dominator analysis on thc resulting graph. 
Having computed the post-dominator tree, DPS 
chooses dominator paths such that the dominated 
node is a post-dominator of  its immediate predecessor 
in a dominator path. This choice allo\vs operations to 
move "freely" in both directions. Ofcourse, this may 
be too limiting on  the choice of dominator paths. To 
allo\v for thc possibility that nodcs in a dominator path 
will not  form a post-dominator relation, DPS needs a 
mechanism to limit bidirectional motion whcri 
~ leeded.  Again, we rely o n  the technique of adding 
dependencies to thc combined DDD. In this case 
(assuming that DPS is scheduling paths in the forward 
dominator trec), for any basic block, B, whose succes- 

sor, S, in the forward dom~nator  path does not post- 
dominate B, DPS adds B's clcfset to the //.sc.set of the 
BlocltEnd node assoc~ated with B. In  s~milar fashion, 
we add B's use set to B's BlockEnd node's ~Iefset .  
Thls technique prevents any Dl>D node origlnallp In 
B from moving down\vard in the dominator path. 

Choosing Dominator Paths 

DPS allo\vs code movement along any dominator 
path, but there are Inany ~ ~ 3 ) ~ s  to select thesc paths. An 
investigation of the effects of dominator-path choice 
on the efficiency of generated schedules tells u s  that 
the choice of  path is too important to be lefi to arbi- 
trary selection; nvice the average percent speedup* for 
several hnctions can often be achie\red with a simplc, 
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well-chosen heuristic. Some functions have a potential 
percent speedup almost four times the average. Thus, 
it is important to find a good, generally applicable 
heuristic to select the dominator paths. 

Unfortunately, it is not practical to schedule all of 
the possible partitionings for large Functions. If we 
allow a basic block to be included in only one domina- 
tor path, the formula for the number of distinct parti- 
tioning~ of the dominator tree is 

where Nis  the set of nodes of the dominator tree." 
Although the number of possible paths is not prohbi- 
tive for small dominator trees, larger trees have a pro- 
hibitively large number. For example, whetstone's 
11iain(), with 49 basic blocks, has almost two trillion 
distinct partitionings. 

To evaluate differences in dominator-path choices, 
we scheduled a group of small functions with DPS 
using every possible choice of dominator path. The 
target architecture for this study was a hypothetical 
6-wide long-instruction-word (LMI') machine, which 
was simulated and in which it was assumed that all 
cache accesses were hits. 

The results of exhaustive dorninator-path testing 
show, as expected, that varying the choice of domina- 
tor paths significantly affects the performance of 
scheduling. For all filnctions of at least two basic 
blocks, 1)PS showcd improvement over local schedul- 
ing for at least one of the possible choices of domina- 
tor paths. Table 1 shows the best, average, and worst 
percent speedup over local scheduling found for all 
hnctions that had a "best" speedup of over 2 percent; 
it also shows the speedup of the original implementa- 

tion of DPS and the number of distinct dominator tree 
partitionings. The original implementation of DPS 
included a single, simple heuristic to choose domina- 
tor paths. More specifically, to choose dominator paths 
within a group, G, of contiguous blocks at the same 
nesting level, the compiler continues to choose a 
block, B, to "expand." Expansion of B initializes a new 
dominator path to  include B and adds B's do~niliators 
until no more can be added. The algorithm then starts 
another dominator path by expanding another (as yet 
unexpanded) block of G. The first block of G chosen 
to  expand is the tail block, T, in an attempt to obtain as 
long a dominator path as possible. 

Unfortunately, not all functions are small enough to 
be tested by performing DPS for each possible parti- 
tioning of thc domillator trce. Therefore, we defined 
37 different heuristic methods of choosing dominator 
trees, based upon groupings of six key heuristic factors. 

The maximum path lengths of the basic guidelines 
were adjusted to  produce actual heuristics. We used 
the heuristic factors from which the individual heuris- 
tics were constructed; each seemed likely either to 
rnimic the observed characteristics of the best path 
selection or to allow more freedom of code motion 
and, therefore, more flexibility in filling "gaps." 

One nesting level-Group blocks from the same 
nesting level of a loop. Each block is in the same 
strongly connected component, so the blocl<s tend 
to have similar restrictions to code motion. For a 
group of blocks to be a strongly connected compo- 
nent, there must be some path in the control flow 
graph from each node in the component to all the 
other nodes in the component. Since the function 
will probably repeat the loop, it seems likely that 
the scheduler will be able to overlap blocks in it. 

Table 1 
Percent of Function Speedup Improvement Using DPS Path Choices over Local Scheduling 

Percent Speedup 

Function Name 

bubble 

No. Dominator 
Best Average Worst Original Tree Partitions 

39.2 10.6 -0.1 11.7 72 
readm 32.5 9.3 - 0.2 32.5 48 
solve 27.8 9.9 - 0.2 27.8 9 6 
queens 25.4 8.3 - 0.4 - 0.4 96 
swaprow 23.1 5.8 - 3.7 19.5 24 
~r int(g)  22.0 9.1 - 0.2 22.0 8 
findmax 21.3 6.2 - 0.3 8.7 18 
COPYCO~ 18.5 5.6 - 5.0 19.9 8 
elim 14.3 2.3 - 3.8 10.2 576 
mult 13.7 2.1 - 3.8 10.3 96 
subst 12.9 2.4 - 4.9 4.9 96 
print(8) 12.5 6.2 0.0 12.5 8 
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Longest path-Schedule the longest available path. 
This heuristic class allo\vs the maximum distance 
for codc motion. 

Postdominator-Follow the postdominator relation 
in thc dominator trce. When a dominator block, P, is 
succeeded by a lion-postdominator block, S, our 
compiler adds P's ~lqf  set to the rkse set of P's 
Blocl<khd node and the ~ / s c  set to the clef set to 
prevent any codc motion from P to S. If P is instead 
succeeded by its postdominator block, no  such mod- 
ification is necessary, and code would be allowed to 
move in both directions. Intuitively, the postdomina- 
tor relation is tlie exact inverse of the dominator rela- 
tion, so codc can move down, into a postdominator, 
as it niovcs up into a dominator. Further, the s i~~ ip lc  
act of a d d n g  nodes to the DDD  ill coniylicate list 
scheduling, making it harder for the scheduler to 
generate the most efficient schedule. 

Non-postdominator-Follow a non-postdominator 
in the domi~iatos trce. This heuristic class gencrallp 
means adding loop body blocks to the path. Notice 
that this seems at odds with the previous heuristic 
class. The previous class was suggested by intuition 
about the scheduler, and this one by observation of 
path behavior. 

ideJsize-Group by idej'set size. The larger tlie 
ici'cfsize, tlie more interference there is to code 
motion. A small klcfsize \vill probably a l l o ~ '  more 
code motion, so w c  try to  add blocks with small 
iclcf sizes. 

Density-Group by operation density. We define 
the density of cach basic block as the number of 
nodes in the DD13 divided by the number of instruc- 
tions required for local scheduling. A dense block 
already has close to  its maximum nuniber of opcra- 
tions; adding or  removing operations will probably 
not improve the schedule. For this reason, we want 
to avoid scheduling dense bloclts together. Two 
methods are tried: scheduling dense blocks with 
sparse blocks and putting sparse blocks togetlier. 

The heuristic factors were used to make individual 
heuristics by changing the limit on the possible num- 
ber of blocks in a path. I t  was reasonable to set Iiniits 
for four factors: postdominator, non-postdominator, 
iclc(f'sizc, and density. IVc tricd path length limits in 
blocks of 2, 3,4 ,  5, and unlimitcd, making a total of  
five he~rristics from each hc~rristic hctor. 

Running Dl's using cach of  the heuristic methods 
and comparing the efficiency of  the resulting code 
leads to  sc\~eral conclusions about effective heuristics 
for choosing DIPS'S dominator paths. For some heuris- 
tics, we can achieve the best schedules for DPS by 
using paths that rarely cscced three bloclts. For any 
particular class of heuristics, we can achieve the best 
schedule \\lit11 paths limited to five blocks or  fe\ver. 

Consequently, path lellgths can be limited ~ ~ i t h o u t  
lowering the efficiency of generated code, and longer 
paths, wluch increase scheduling time, can bc avoided. 

Since n o  one heuristic performed \veil for a11 h n c -  
tions, we advise using a co~iibination of heuristics, i.e., 
schedule by using each of three heuristics and taking 
the best schedule. The "combined" heuristic includes 
the follo\ving: 

Instruction density, limit to five blocks 

One nesting level on path, limit to five blocks 

Non-postdominator, unlinlitcd length 

Frequency-based List Scheduling 

Like some other global schedutlcrs, 1)PS uses a local 
scheduhg algorithm (list scheduling) on a global con- 
test, namely the ~neta-blocks built by 13PS. This algo- 
rithm raises the possibility of moving codc tiom less 
frequently executed blocks to more fi-cquently cseci~ted 
blocks. At h s t  glance, tlis practice scclns to be a bad idea. 

In  theory, to best schedule any mcta-block, an 
instruction scheduler must account for the differing 
cost of the instructions .~litliin the nicta-block. I f a  sin- 
gle meta-block includes multiple nesting Icvels, the 
scheduler must recognize that instructions added to 
blocks with higher nesting levels are more costly than 
those added to blocks with lower nesting Icvels. Even 
within a loop, there esists the potential for consider- 
able variation in the execution frcquencics ofdifferent 
blocks in the meta-block due to control tlo\v. OF 
course variable execution frequency is not a11 i s s ~ ~ e  in 
traditional local scheduling bccausc, \\.ithin the con- 
text of a single basic block, each l>l>l) node is exc- 
cuted the same number of  tirncs, namely, once cach 
time execution cnters the block. 

To address the issue of differing execution frequen- 
cies w i t h 1  mcta-blocks schcdulcd as a single block by 
DPS, we uilvestigated fi-equcncy-based list scheduling 
(FBLS),'%l estelision of list scheduling that provides 
an answer to this difficulty by co11siderin)r; that csccu- , . - 
tion frequencies diffkr within sections of the meta- 
blocks. FBLS uses a greedy method to place 1>1)1) nodes 
in the lowest-cost instruction possiblc. FRLS amencis 
the basic list-scheduling algorithm by revising only the 
DDD node placement policy in an attempt to reduce 
the run-time cycles required to csccutc a meta-block. 

Unfortunately, d tho~rgh  FBLS rnakcs intuitive sense, 
we found that DPS produced worse schedules with 
FBLS than it produced with a naive local scheduling 
algorithm that ignored frequency di ffcrences \vitliin 
DPS's meta-blocks. 'Therefore, tlic current implc- 
mentation of DPS ignores the excci~tio~i frequency 
differences bcnveen basic blocks, both in choosing 
dominator paths to schedule and in scheduling those 
dominator-path meta-blocks. 



Evaluation of Dominator-path Scheduling 

To measure the potential of DPS to generate more 
efficient schedules than local scheduling for commer- 
cial superscalar architectures, we ran a small test suite 
of C programs on  an Alpha 21164 server. The Alpha 
server is a superscalar architecture capable of issuing 
nvo integer and two floating-pojnt jnstructions each 
cycle. Our  compiler estimates the effectiveness of a 
schedule by modeling the 21 164  as an L W  architec- 
ture with all operation latencies known at compile 
time. O f  course this model was used only within the 
cornpiles itself. Our  results measured changes in 
21164 execution time (measured with the UNIX 
"time" command) required for eacb program. 

Our test suite of 14 C programs i~lcludes 8 programs 
that use integer computation only and 6 programs that 
include floating-point computation. We separated 
those groups because we see dramatic differences in 
DPS's performance when viewing integer and floating- 
point programs. To choose dominator paths, we used 
the combined lleuristic recommended by Huber." 

Table 2 su~n~nar izes  the results of tests we con- 
ducted to compare the execution times of  programs 
using DPS scheduling with those using local schedul- 
ing only. The table lists the programs used in the test 
suite and the percent improvement in execution times 
for DPS-scheduled programs. The execution time 

Table 2 
Percent DPS Scheduling Improvements over Local 
Scheduling of Programs 

Percent Execution 
Program Time Improvement 

8- Queens 
SymbolTable 
Bubblesort 
Nsieve 
Heapsort 
Killcache 
TSP 
Dhrystone 

C integer average 

Dice 
Whetstone 
Matrix Multiply 
Gauss 
Finite Difference 
Livermore 

C floating-point average 

Overall average 

measurements were made on an Alpha 21 164 server 
running at 250 megahertz with data cache sizes of  8 
kilobytes, 96 kilobytes, and 4 megabytes. 

Looking at Table 2,  we see that, in general, DPS 
improved the integer programs less than it improved 
the floating-point programs. The range of improve- 
ments for integer programs was from 0.7 percent for 
Dhrystone to 7.3 percent each for 8-Quecns and for 
SymboJTable. Summing all the improvements and 
dividing by eight (the number of integer programs) 
gives an "average" of 4.7 percent ilnprovement for the 
integer programs. DPS improved some of the floating- 
point programs even more significantly than the inte- 
ger programs. The range of i~nprovements for the six 
floating-point programs was from 3.7 percent for Djce 
(a simulation of rolling a pair ofdice 10,000,000 times 
using a uniform random number generator) to  17.6 
percent improvement for the finite difference pro- 
gram. The  average for the six floating-point programs 
was 10.8 percent. This suggests, not surprisingly, that 
the Alpha 21164 provides more opportunities for 
global schedi~ling improvement when floating-point 
programs are being compiled. 

Even within the six floating-point programs, how- 
ever, we see a distinct bi-modal behavior in terms of  
execution-time improvement. Three of the programs 
range from 12.3 percent to 17.6 percent improve- 
ment, whereas three are below 10 percent (and nvo of 
those significantly below 10 percent). A reason for this 
wide range is the use of  global variables. Remember 
that DPS forbids the motion of global variable defini- 
tions across block boundaries. This is necessary to 
ensure correct program semantics. I t  is hardly a coinci- 
dence that both Dice and Whetstone include only 
global floating-point variables, whereas Livern~ore's 
floating-point variables are mixed about half local 
and half global, and the three better performers use 
almost n o  global variables. Thus we conclude that, for 
floating-point programs with few global variables, we 
can expect improvements of roughly 12 to 15 percent 
in execution time. Inclusion of global variables and 
exclusion of floating-point values will, however, 
decrease DPS's abjlity to i~nprove execution time for 
the Alpha 21164. 

Related Work 

As we have discussed, local instruction scheduling can 
find parallelism within a basic block but cannot exploit 
parallelism between basic bloclts. Several global sched- 
uling techniques are available, however, that extract 
parallelism from a program by moving operations 
across block boundaries and subsequently inserting 
compensation copies to maintain program semantics. 
Trace scheduling%as the first of these techniques to 
be defined. As previously mentioned, trace scheduling 
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requires compensation copies. Other "early" global 
scheduling algorithn~s that require compenstation 
copies include Nicolau's pevcolc1tio7z schedc~ling'"'~ 
and Gupta's region scheduling.'W recent and quite 
popular cxtcnsion of trace schedul i~~g js Hwu's 
SuperBlock I n  addition to these more 
general, global scheduling methods, significant results 
have been obtained by software pipelining, which is a 
technique that overlaps iterations of  loops to exploit 
available ILP. Allan e t  provide a good summary, 
and Rau2' provides ,an excellent tutorial on how ~ n o ~ h l o  
schedctling, a popular software pipelining technique, 
should be implemented. Promising recent techniques 
have focused o n  defining a meta-environment, which 
includes both global scheduling and software pipelin- 
ing. Moon and E b c i o g l ~ ~ ~  present an aggressive tech- 
nique that combines software pipelining and global 
code motion (with copjes) into a single framework. 
Novak and N i ~ o l a u ~ ~  describe a sophisticated schedul- 
ing framework in which to place software pipelining, 
including alternatives to  modulo scheduling. While 
providing a significant number of  excellent global 
scheduling alternatives, none of these techniques pro- 
vides global scheduling without the possibility of  code 
expansion (copy code) as DPS does. 

To address the issue of producing schedules without 
operation copies, Bernstei11'"~~ defined a technique he 
calls global i17strc~ction sche~lziling (GPS) that al.lows 
movement of i~istructions beyond block boundaries 
based upon the program dependence graph (PDG)." 111 
a test suite of four programs run on IBM's RS/6000, 
Bernstein's method showed improvement of roughly 
7 percent over local scheduling for two ofthe programs, 
with 1-10 significant difference for the others. 

Comparing DPS to Bernstein's method, we see that 
both allow for i11terbloc.k motion without copies. 
Bernstein also allows for interblock movement requir- 
ing duplicates that DPS does not. Interestingly, 
Bernstein's later does not make use of this abil- 
ity to allow motion that requires duplication of opera- 
tions, suggesting that, to date, he has not  found such 
motion advisable for the RS/6000 architecture to 
which his techniques have been applied. Bernstein 
allows operation movement in only one direction, 
whereas DPS allows operations to move from a domi- 
nator block to a postdominator. This added flexibility is 
an advantage to DPS. O f  possibly greater significance, 
DPS uses the local instruction scheduler to place opera- 
tiol~s. Bernstein uses a separate set of heuristics to move 
operations in the PDG and then uses a subsequent local 
scheduling pass to order operations within each block. 
Fishcr' argues that incorporating movement of opera- 
tions with the scheduling ,phase itself provides better 
scheduling than dividing the interblock motion and 
scheduling phases. Based o n  that criterion alone, DPS 
has some advantages over Bernestein's method. 

Conclusions 

I t  is commonly accepted that to exploit the perfor- 
mance benefits of ILP, global instruction scheduling is 
required. Several varieties of global instruction sched- 
uling exist, most requiring coinpensation copies to 
ensure proper program semalltics when operations 
cross block boundaries during illstruction scheduling. 
Although such global scheduli~lg with compensation 
copies may be an effective strategy for architectures 
with large degrees of  ILP, another approach seems 
reasonable for more limited architectures, such as cur- 
rently available superscalar computers. 

This paper outlines DPS, a global instruction sched- 
uling technique that does not require compensation 
copies. Based on  the fact that more than 25 percent of 
intermediate statements can be moved upward at least 
one  dominator Mock in the control flow graph with- 
out  changing program semantics, DPS schedules paths 
in a fi~nction's dominator tree as meta-blocks, making 
use of an extended local instruction scheduler to 
schedule dominator paths. 

Experimental evidence shows that DPS does indeed 
produce more efficient schedules than local schedul- 
ing for Compaq's Alpha 21 164 server system, particu- 
larly for floating-point programs that avoid the use of 
global variables. This work has delnonstrated that con- 
siderable flexibility in placement of code is possible 
eve11 when compensation copies are not allowed. 
Although more research is required to  look into 
possible uses for this flexibility, the global instruction 
scheduling method described here (DPS) shows 
promise for ILP architectures. 
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Maximizing 
Multiprocessor 
Performance with 
the SUIF Compiler 

Parallelizing compilers f o r  multiprocessors f ace  

m a n y  hurdles. However, SUIF's robust  analysis 
a n d  memory  optimization techniques  enab led  

speedups  o n  t h r e e  four ths  of t h e  NAS a n d  
SPECfp95 benchmark programs. 

Q 1996 IEEE. Rcpfintcd, with permission, ti.oln C~)III /~IIIOI;  
I)ccc~nbcr 1996, pages 54-89 T h ~ s  paper has bccn ~notiitied for 
p~~blicnriun hcrc \\,it11 the addition o i rhc  sccrion Tllc Srnrus and 
Fur~lrc ofSI'1F. 
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The affordability of shared memory multiprocesso~-s 
offers the potential ofsupercomputer-class performance 
to the general public. Typically used in a multiprogram- 
ming mode, these machines increase throughput by 
running several independent applications in parallel. 
But multiple psoccssol-s can also work together to 
speed up single applications. This requires that ordinary 
sequential programs be rewritten to take advantage of 
tlie extra processors.' '' A ~ ~ t o ~ n a t i c  parallelization with a 
compiler offers n \\lay to d o  this. 

Parallelizing conlpilers face more difficult challenges 
from multiprocessors than from vector machines, which 
\yere their initid target. Using a vector architecture effec- 
t i~~ely involves parallelizing repeated arithmetic opera- 
tions on large data streams-for example, the innermost 
Loops in array-oriented programs. O n  a multiprocessor, 
however, this approach typically does not provide suffi- 
cient granularity of parallelism: Not enough work is 
performed in parallel to overcome processor synch- 
ronization and cornniunication overhead. To  use a 
~nultiprocessor effectively, the colnpiler must exploit 
coarse-grain parallelism, locating large computations 
that crui execute independently in parallel. 

Locating parallelism is just the first step in produc- 
ing efficient multiprocessor code. Achieving high per- 
formance also requires effective use of the memory 
hierarchy, and multiprocessor systems have more corn- 
plex memory hierarchies than typical vector machines: 
They contain not only shared memory but also multi- 
ple le\leJs of cache memory. 

These added challenges often limited the effectiveness 
of early parallelizing compilers for multiprocessors, so 
programmers developed their applications from scratch, 
without assistance from tools. Rut explicitly managing an 
application's parallelism ancl memory use requires a great 
deal o f p r o g m m i n g  I<nowledge, and the work is tedious 
and error-prone. Moreover, the resulting programs are 
optimized for only a specific machine. l:hus, die effort 
required to develop efficient parallel programs restricts 
the uses base for multiprocessors. 

This article describes automatic parallelization tech- 
niques in the SUIF (Stanford University Intermediate 
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Format) compiler that result in good multiprocessor 
performance for array-based numerical programs. We 
provide SUIF performaice measurements for the com- 
plete NAS a.nd SPEC@95 benchmark suites. Overall, the 
rcs~~l ts  for these scienthc programs arc promising. The 
compilcr yields speedups on tl~rec fourths of the pro- 
grams and has obtained the highest ever performance on 
the SPECfp95 benchmark, indicating that the compiler 
can also achieve efficient absolute perform:ulcc. 

Finding Coarse-grain Parallelism 

Multiprocessors work best \\{hen the individual proccs- 
sors have large units of  independent computation, but 
it is not easy to find such coarse-grain parallelism. First 
the compiler must find available parallelis~n across pro- 
cedure boundaries. Furthermore, the original conipu- 
tations may not be pardlelizable as given and may first 
require some traisformatio~~s. For example, experience 
in parallelizing by hand suggests that we must often 
replace global arrays with private versions on different 
processors. In  other cases, the computation may 
need to be restructured-for example, \ve may have to 
replace a sequential accun~ulation with a parallel reduc- 
tion operation. 

I t  takes a largc suite ofrobust analysis techniques to 
successfully locate coarse-grain parallelism. Gcncral 
and ~ r n i h r m  frarnetvorks helped us manage the com- 
plexity involved in building such a systcm into SUIF.  
We a~ltotnated the analysis to privatize arrays and to 
recognize reductions to both scalar and array variables. 
Our  compiler's analysis techniques all operate seam- 
lessly across proccdure boundaries. 

Scalar Analyses 
An initial phase analyzes scalar variables in the programs. 
I t  uses techniques such as data depcndcnce analysis, 
scalar privatization analysis, and reduction recognition 
to detect parallelism among operations with scalar vari- 
ables. It also derives symbolic information o n  tlicsc scalar 
variables that is usefill in the array analysis phase. Such 
itlforniation includes constant propagation, induction 
variable recognition and elimination, recognition of 
loop-invariant computations, and s)ln~bolic relation 
prc)pagation ."" 

Array Analyses 
An array analysis phase uses a unified mathe~natical 
framework bascd on linear algebra and integer linear 
prograniming.' The analysis applies the basic data 
dependence test to determine if accesses to  an array 
can rcfcr to tlic same location. To support array priva- 
tization, it also finds array dataflo\v tnfbrmation that 
determines whether array elements used in an iteration 
refer to  the values produced in a pre\.lous iteration. 
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Moreover, it recognizes commutative operations on 
sections of an array and transforms diem into parallel 
reductions. The reduction analysis is powerfil enough 
to recognize corntnutative updates of even indirectly 
accessed array locations, allowing parallelization of 
sparse computations. 

All these analyses arc fonn~~la ted  in terms of integer 
programming problems o n  systems of  linear inequali- 
ties that represent tlie data accessed. These inequalities 
are derived from loop bounds and array access func- 
tions. Illiplcmcnting optimizations to speed up com- 
mon cases reduces tlie compilation time. 

Interprocedural Analysis Framework 
All the analyses are implemented iisillg a uniforni 
interprocedural analysis framework, which helps man- 
age the sohvarc engineering complexity. The frame- 
work i~scs interprocedi~ral datatlolv analysis,' which is 
Inore efficient than the more common technique o f  
inline substitution.' Inline substitution replaces each 
procedure call with a copy of  the called proccdurc, 
then analyzes the expanded codc in the usual intrapro- 
cedural manner. Inline substitution is not  practical for 
large programs, bccnuse it can nlalce the program too 
large to analyze. 

Our  technique analyzes only a single copy of  each 
procedl~re, capturing its side effects in a function. This 
fi~nction js then applied at each call site to pr-oducc 
precise results. 1~VIic1i different calling contests ~ndke it 
necessary, the algorithm selectively clones a procedure 
so that code can be analyzed and possibly parallelized 
under different calling contexts (as when different 
constant values are passed to the same formal parame- 
ter). I n  this way the fill1 advantages of inlining are 
achieved ~vithout expanding the code indiscri~liinatcly. 

In  Figure 1 the boxes represent procedure bodics, 
and the lines connccti~lg them represent procedure 
calls. The main computation is a scries of four loops to 
compute three-dimensional fast Fourier transk)rms. 
Using interprocedural scalar and array aanlyscs, the 
SUIF conipiler determines that these loops are paral- 
lelizable. Each loop contains more than 500 lines of 
code spanning up to nine procedures with up to  42 
procedure calls. If this program had been hlly inlined, 
the loops presented to the compiler for analysis would 
have each colltaincd more than 86,000 lines of  codc. 

Memory Optimization 

Nunierical applications o n  high-performance micro- 
processors are ohen memory bo~tnd.  Even with one or  
morc levels ofcachc to bridge tlie gap benveen proces- 
sor and memory speeds, a processor [nay still waste half 
its time stalled o n  memory accesses because it frequently 
references an item not in the cache (a cache miss). This 
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Figure 1 
The compiler discovers parallelism through interprocedural array analysis. Each of the four parallelized loops at  lefi consists of 
more than 500 lines of code spanning up to nine procedures (boxes) with up to 42 procedure calls (lines). 

memory bottleneck is further exacerbated on  multi- 
processors by their greater need for memory traffic, 
resulting in more contention on  the memory bus. 

An effective compiler must address four issues that 
affect cache behavior: 

Communication: Processors in a multiprocessor 
system communicate through accesses to the  same 
memory location. Coherent caches typically keep 
the data consistent by causing accesses to data writ- 
ten by another processor to miss in the cache. Such 
misses are called true sharing misses. 

Limited capacity: Numcric applications tend to have 
large working sets, which typically exceed cache 
capacity. These applications ofien stream through 
large amounts of data beforc reusing any of it, 
resulting in poor temporal locality and numerous 
capacity misscs. 

Limited associativity: Caches typically have a small 
set associcrtivity; that is, each memory location can 
map to only one or  just a few locations in the cache. 
Conflict misses-when an item is discarded and 
later retrieved--can occur even when the applica- 
tion's working set is smaller than the cache, if the 
data are mapped to the same cache locations. 

Large line size: Data in a cache are transferred in 
fixed-size units called cache lines. Applications that 
d o  not use all the data in a cache line incur more 
misses and are said to have poor spatial locality. O n  
a multiprocessor, large cache lines can also lead to 
cache misses when different processors use differ- 

ent  parts of  the same cache line. Such misses are 
called fake sharing misses. 

The compiler tries to eliminate as many cache misses as 
possible, then minimize the impact of any that remain by 

ensuring that processors reuse the same data as 
many times as possible and 

making the data accessed by each processor con- 
tiguous in die shared address space. 

Tecluliques for addressing each of these subproblems 
are discussed below. Finally, to tolcratc the latency of 
remaining cache misses, the cotiipiler uses co~?zp~ler- 
insertedprefetching to move data into the cache before 
it is needed. 

Improving Processor Data Reuse 
The compiler reorganizes the computation so  that each 
processor reuses data to  the greatest possible extent."" 
This reduces the working set o n  each processor, 
thereby minimizing capacity misses. I t  also reduces 
interprocessor commulucation and thus minimizes 
true sharing misses. To achieve optimal reuse, the com- 
piler uses affinepartitioning. This technique analyzes 
reference patterns in the program to derive an affine 
mapping (linear transformation plus an offset) of the 
computation of  the data to the processors. The affine 
mappings are chosen to maximize a processor's reuse 
of  data while maintaining sufficient parallelism to keep 
all processors busy. The compiler also uses loop block- 
ing to reorder the computation executed 011 a single 
processor so that data is reused in the cache. 
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Making Processor Data Contiguous 
The compiler tries to arrange the data to  makc a 
processor's accesses contiguous in the shared addrcss 
space. This improves spatial locality \\rliile reducing 
conflict ~nisscs and falsc sharing. SUIF can manage 
data placement within a single array and across multi- 
ple arrays. Thc data-to-processor mappings computed 
bv the affinc partitioning analysis are used to  deter- 
mine the data being accessed by each processor. 

Figure 2 shows how the compilcr's usc of data per- 
mutation and data str ip-~nining'~ can make contiguous 
the data within a singlc array that is accessed by one 
processor. Data permutation interchanges the dimen- 
sions of the array-fix example, transposing a two- 
dimensional army. Data strip-mining changes an 
array's dimensionality so  that all data accessed by the 
same processor are in the same plane of the array. 

To  make data across multiple arrays accessed by the 
same processor contiguous, we use a technique called 
co/7/pi/et*-dilrc/cdp~~~qe coIoTi~~g." The compiler uses 

its knowledge of the  acccss patterns to dircct the oper- 
ating system's page allocation policy to makc each 
processor's data c o n t i g ~ ~ o ~ ~ s  in the p1i)rsical address 
space. The operating systern ~ ~ s c s  tlicse hints to deter- 
mine the virtual-to-physical page mapping at pagc 
allocation time. 

Experimental Results 

We conducted a series of pcrformancc c\!aluations to 
delnonstrate the impact o f  SUIF's analyses and opti- 
mizations. \;Vc obtained measurements on a Digital 
Alphaserver 8400 with eight 2 1 164 processors, each 
with two levels ofon-chip cache and a 4-Mbpte exter- 

, ~n on nal cache. Because speedups are harder to obtq' 
machines with fast processors, our  use of a state-of- 
the-art machine makes the results Inore riieaningh~l 
and applicable to future systems. 

We ~ ~ s e d  t \ \~o complete standard benchmark suitcs 
to evaluate our conipilcr. Wc prcscnt rcsults for the 10 

STRIP-MINING PERMUTATION 

Figure 2 
Data tsansforniations cnn ~nakc thc data accessed by each processor contiguous in the s h a d  addrcss space. In the two 
esalnples above, the original arrays arc two-dimensional; the axes are identified to sho\\r that  elements along the fil-st axis 
are contiguous. First thc atline partitioni~lg analysis determines which data elemeots are accesscd by thc salnc processor 
(the shaded elements are accessed by the first processor.) Second, data strip-mining turns thc 2D nrrny into a 3D array, 
with the shaded elements in the same plane. Finally, applying data permutation rotatcs the array, making data accesscd 
by each processor contiguous. 
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programs in the SPECfp95 benchmark suite, which is 
commonly used for benchmarking uniprocessors. We 
also used the eight official benchmark programs from 
the NAS parallel-system benchmark suite, except for 
embar; here we used a slightly modified version from 
Applied Parallel Research. 

Figure 3 shows the SPEC@95 and NAS speedups, 
measured on up to ejght processors on a 300-MHz 
Alphaserver. We calculated the speedups over the best 
sequential execution time from either officially reported 
results or  our own measurements. Note that mgrid and 
applu appear in both benchmark suites (the program 
source and data set sizes differ slightly). 

To measure the effects of  the different compiler 
techniques, we broke down the performance obtained 
on eight processors into three components. In Figure 
4, baseline shows the speedup obtained with paral- 
lelization using only intraprocedural data dependence 
analysis, scalar prjvatization, and scalar reduction 
transformations. Coarse grain includes the baseline 

techniques as well as techniques for locating coarse- 
grain parallel loops-for example, array privatization 
and reduction transformations, and full interproce- 
dural analysis of  both scalar and array variables. 
Memory includes the coarse-grain techniques as well 
as the ~nultiprocessor memory optimizations we 
dcscribed earlier. 

Figure 3 shows that ofthe 18 progranis, 13 show good 
parallel speedup and can thus take advantage of additional 
processors. SUIF's coarse-grain techniques and memory 
optimizations significantly affect the performance of half 
the programs. The swim and tomcatv programs show 
superlinear speedups because the compiler eliminates 
almost all cache misses and their 14 Mbyte working sets 
fit into the multiprocessor's aggregate cache. 

For most of  the programs that did not speed up, the 
compiler found much of  their computation to be par- 
allelizable, but the granularity is too fine to yield good 
n~ultiprocessor performance on machines with fast 
processors. Only two applications, @ppp and bulc, have 

tomcatv 

mgrid 
aPPlu 
turb3d 
hydro2d 

0 1 2 3 4 5 6 7 8  
PROCESSORS 

( a )  SPECfp95 

mgrid 

buk 
fftpde 

0 1 2 3 4 5 6 7 8  
PROCESSORS 

(b) NAS Parallcl Bench~narks 

Figure 3 
SUIF compiler speedups over the best sequential time achieved on the (a )  SI'ECfp95 and (b) NAS parallel benchmarks. 
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Figure 4 
The speedup achieved on eight processors is broken down into three components to show ho\.v SUIF's memory optilnization 
and discovery of coarse-grain parallelism affected perforn~imce. 

n o  statically analyzable loop-level prdlelism, so  they 
are not amenable to our techniques. 

Table 1 shows the times and SPEC ratios obtained 
on an eight-processor, 440-MHz Digital AlphaSer~rer 
8400, testifying to our compiler's high absolute per- 
formance. The SPEC ratios compare machine perfor- 
mance with that of  a reference machine. (These are 
not official SPEC ratings, which among other things 

require that the software be generally available. The 
ratios we obtained are nevertheless valid in assessing 
our compiler's performance.) The geometric mean of 
tile SPEC ratios i~nproves ovcr the uniprocessor execu- 
tion by a factor of 3 with four processors and by a fac- 
tor of 4.3 with eight processors. Our  eight-processor 
ratio of  63.9 represents a 50 percent improvement 
over the highest number reported to date.12 

Table 1 
Absolute Performance for the  S P E C f  Benchmarks Measured on a 440-MHz Digital Alphaserver Using One 
Processor, Four Processors, and Eight Processors 

Execution Time (secs) SPEC Ratio 

Benchmark 1 P 4P 8P 1 P 4P 8 P 

tomcatv 
swim 
su2cor 
hydro2d 
mgrid 

applu 
turb3d 
apsi 

~ P P P P  
wave5 
Geometric Mean 
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Editors' Note: With the follozuing section, the nzrlhon 
provide an update on the status of the SUIF compiler 
since the publication of their paper in Computer in 
Decenzber 1996. 

Addendum: The Status and Future of SUIF 

Public Availability of SUIF-parallelized Benchmarks 
The SUIF-parallelized versions of the SPEC@95 
benchmarks used for the experiments described in this 
paper have been released to  the SPEC committee and 
are available to any license holders of SPEC (see 
http://cwv.specbench.org/osg/cpu95/par-research). 
This benchmark distribution contains the SUIF out- 
put (C and FORTRAN code), along with the source 
code for the accompanying run-time libraries. We expect 
these benchmarks will be useful for two purposes: 
(1) for technology transfer, providing insight into how 
the compiler transforms the applications to  yield the 
reported results; and (2) for further experimentation, 
such as in architecture-simulation studies. 

The SUIF compiler system itself is available from the 
SUIF web site at http://ww-suif.stanford.edu. This 
system includes only the standard parallelization analy- 
ses that were used to obtain our baseline results. 

New Parallelization Analyses in SUIF 
Overall, the results ofautomatic parallelization reported 
in this paper are impressive; however, a few applica- 
tions either d o  not  speed up at all o r  achieve limited 
speedup at best. The  question arises as to  whether 
SUIF is exploiting all the available parallelism in these 
applications. Recently, an experiment to  answer this 
q i~es t io~l  was performed in which loops left unparal- 
lelized by SUIF were instrulnented wit11 run-time tests 
to determine whether opportunities for increasing the 
effectiveness of automatic parallelization remained in 
these progranls.' Run-time testing determined that 
eight of the programs from the NAS and SPEC95fp 
benchmxl<s had additional parallel loops, for a total of 
69 additional parallelizable loops, w h c h  is less than 5% 
of the total number of  loops in these programs. Of 
these 69 loops, the remaining parallelism had a signifi- 
cant effect on coverage (the percentage of  the pro- 
gram that is parallelizable) o r  granularity (the size of 
the parallel regions) in only four of the programs: apsi, 
su2cor, waves, and fftpde. 

We found that almost all the significant loops in 
these four programs could potentially be parallelized 
 sing a new approach that associates predicates wit11 
array data-flow Instead of producing conserv- 
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atitre results that hold for all control-flow patlis and all 
possible program inputs, predicated array data-flow 
analysis can derive optimistic results guarded by predi- 
cates. Predicated array data-flow analysis can lead to 
more effective auto~natic parallelization in three \\lays: 
(1) It  improves compile-time analysis by ruling out  
infeasible control-flow paths. (2) It  provides a franic- 
work for the compiler to introduce predicates that, if 
proven true, would guarantee safety b r  desirable data- 
flo\l values. (3 )  It enables the compiler to derive Ion.-cost 
run-time parallelization tests bascd on  the predicates 
associated with desirable data-flow values. 

SUIF and Compaq's GEM Compiler 
The GEIM compilcr systcln 1s the technology Compaq 
has been using to bu~ld  comp~lcr products for a variety 
of languages and hardwarc/soft\ilarc p l a t fo r~~ i s .~  
Within Compaq, work has bccn done to connect SUIF 
with the GEM compiler. SUIF's intermediate repre- 
sentxion was converted into GE144's intermediate rep- 
resentation, so  that SUIF code can be passed directly 
to GEM'S optimizing back end. This eliminates the 
loss of  information suffered when SUIF code is trans- 
lated to C/FORTRAN source before it is passed to 
GEM. It  also enables us to  generate more efficient 
code for Alpha-microprocessor systemr 

SUIF and the National Compiler Infrastructure 
The SUIF co~i ip~ler  systeln was I-cccntl\i chosen to be 
part of the Nnt~onal Comp~lcr Infrastructure (NCI) 
project funded by thc Dctcnsc Ad\ianced Rcsearcli 
Projects Agency ( D A I ' A )  and the Nat~onal Sc~cncc 
Foundation (NSF). 'The goal of  the project is to 
develop a common conipllcr platform for researchers 
and to facilitate technology transfer to ~ndustry. The 

SULF component of the NC:I project is the result of the 
collaboration among researchers in five universities 
(Harvard University, Massachusetts Institute of 
Technology, h c e  University, Stanford Uni\,crsity, 
University of California at Santa Barbara) and one 
industrial partner, Portland Group Inc. Compaq is a 
corporate sponsor of  the project and is providing thc 
FORTRAN front end. 

A revised version of the SUIF jnfrastructurc (SUIF 
2.0) is being released as part of  the SUIF NCI project 
(a preliminary vel-sion of  SUIF 2.0 is available at the 
SUIF web site). Tlic completed system \\rill be 
enhanced to support parallelization, in terprocedural 
a~ialysis, memory hierarchy optimizations, objected- 
oriented programming, scalar opti~nizations, and 
machine-dependent optin~izations. An overview of 
the SUIF NCI systeni is shown in Figure A l .  See 
M~~JMI-suif.sta~iford.ed~~/suif/NCI/suif.htrnl for more 
information about SUIF and thc NC:I projcct, includ- 
ing a complete list ofoptimizations and a scliedulc. 
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Debugging Optimized 
Code: Concepts and 
Implementation on 
DIGITAL Alpha Systems 

Effective user debugging of optimized code has 
been a topic of theoretical and practical interest 
in the software development community for 
almost two decades, yet today the state of the 
art is st i l l  highly uneven. We present a brief sur- 
vey of the literature and current practice that 
leads to the identification of three aspects of 
debugging optimized code that seem to be 
critical as well as tractable without extraordi- 
nary efforts. These aspects are (1) split lifetime 
support for variables whose allocation varies 
within a program combined with definition 
point reporting for currency determination, 
(2) stepping and setting breakpoints based on 
a semantic event characterization of program 
behavior, and (3) treatment of inlined routine 
calls in a manner that makes inlining largely 
transparent. We describe the realization of 
these capabilities as part of Compaq's GEM 

back-end compiler technology and the debug- 
ging component of the OpenVMS Alpha oper- 
ating system. 

I 
Ronald F. Brender 
Jeffrey E. Nelson 
Mark E. Arsenault 

Introduction 

In sofnvare developn~ent, it is common practice to 
debug a program that has been compiled with little or 
no optimization applied. The generated code closely 
corresponds to the source and is readly described by a 
simple and straightforward debugging symbol table. A 
debugger can interpret and control execution of the 
code in a fashion close t o  the user's source-level view 
of the program. 

Sometimes, however, developers find it necessary or 
desirable to  debug an optimized version of the pro- 
gram. For instance, a bug-whether a compiler bug or 
incorrect source code-may only reveal itself when 
optimization is applied. In other cases, the resource 
constraints may not allow the unoptimized form to be 
used because the code is too big and/or too slow. Or, 
the developer may need to start analysis using the 
remains, such as a core file, of the failed program, 
whether or not this code has been optimized. Whatever 
the reason, debuggmg optimized code is harder than 
debugging unoptirnized code-much harder-because 
optimization can greatly complicate the relationship 
between the source program and the generated code. 

Zellwegerl introduced the terms eqected behauior 
and tmithful behavior when referring to debugging 
optimized code. A debugger provides expected behav- 
ior if it provides the behavior a user would experience 
when debugging an unoptimized version of a pro- 
gram. Since achieving that behavior is often not possi- 
ble, a secondary goal is to  provide at least truthhl 
behavior, that is, to never lie to or mislead a user. In 
our experience, even truthful behavior can be chal- 
lenging to achieve, but it can be closely approached. 

T h s  paper describes three improvements made to 
Compaq's GEM back-end compiler system and to 
OpenVMS DEBUG, the debugging component of the 
OpenVMS Alpha operating system. These improve- 
ments address 

1. Split lifetime variables and currency determination 

2. Semantic events 

3.  Inlining 
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Before presenting the details of this work, we dis- 
cuss the alternative approaches to debugging optimized 
code that we considered, the state of the art, and the 
operating strategies we adopted. 

Alternative Approaches 
Various approaches have been explored to  improve 
the ability to debug optimized code. They include 
the following: 

Enhance debugger analysis 

Limit optimization 

Limit debugging to preplanned locations 

Dynamically deoptilnize as needed 

Exploit an associated program database 

We touch on these approaches in turn. 
In probably the oldest theoretical analysis that 

supports debugging optinlized codc, Hennessy2 stud- 
ies whether the value &splayed for a variable is current, 
that is, the expected value for that variable at a given 
point in the program. The value displayed might not 
be current because, for example, assignment of a later 
value has been moved forward or the relevant assign- 
ment has been delayed or omitted. Hennessy postu- 
lates that a flow graph description of a program is 
communicated to the debugger, which then solves 
certain flow analysis equations in response to debug 
commands to determine currency as needed. 
Copper~nanQakes a similar though much more gen- 
eral approach. Conversely, commercial implementa- 
tions have favored Inore complete preprocessing of 
information in the compiler to enable simpler debug- 
ger  mechanism^.^-" 

Ifoptimization is the "problem," then one approach 
to solving the problem is to limit optimization to only 
those kinds that are actua.lly supported in an available 
debugger. Zurawslu7 develops the notion of a r c c o v c ~  
filnction that matches each kind ofoptimizatio~l. As an 
optimization is applied during compilation, the corn- 
pensating recovery function is also created and made 
available for later use by a debugger. If such a recovery 
hnction cannot be created, then the optimization is 
omitted. Unfortunately, code-motion-related optimi- 
zations generally lack recovery firnctions and so must 
be foregone. Taking this approach to the extreme 
converges with traditional practice, which is simply to 
disable all optimization and debug a completely unop- 
timized program. 

If full debugger fi~nctionality need only be provided 
at some locations, then some debugger capabilities c m  
be provided more easily. Zurawski7 also employed this 
idea to make it easier to  construct appropriate recov- 
ery functions. This approach builds on a language- 
dependent concept of inspection points, which 
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generally lnust include all call sites and may corre- 
spond to most statement boundaries. His experience 
suggests, however, that even limiting inspection points 
to statement boundaries severely limits almost all kinds 
of optimization. 

H6lzle et  aLs describe techniques to dynamically 
deoptimize part of a program (replace optimized code 
with its ~~noptimized equi\lalent) during debugging to 
enable a debugger to perform requested actions. They 
~nalce the technique more tractable, in part by delaying 
asynchronous events to well-defined i~atet.t-~/j~tion 
points, generally bachvard branches and calls. Opti- 
mization between interruption points is unrestricted. 
However, even t h s  choice of interruption points 
severely limits most code motion and many other 
global optimizations. 

Pollock and others9.'" use a different kind of deopti- 
mization, which might be called preplanned, incre- 
mental deoptimization. During a debugging session, 
any debugging requests that cannot be honored 
because of optimization effects are remembered so 
that a subsequent compilatiorl can create an exe- 
cutable that can honor these requests. This scheme is 
supported by an incremental optimizer that uses a pro- 
gram database to provide rapid and smooth forward 
infor~nation flow to subsequent debugging sessions. 

Feiler" uses a program database to achieve the bene- 
fits of interactive debugging while applying as much 
static compilation technology as possible. He describes 
techniques for maintaining consistency between the 
primary tree-based representation and a derivative 
compiled form of the program in the face of both 
debugging actions and program modifications on-the- 
fly. While he appears to demonstrate that more is possi- 
ble than might be expected, substantial limitations still 
exist on debugging capability, optimization, or both. 

A comprehensi\~e introduction and overview to these 
and other approaches can be found in Copperman3 and 
Acll-Tabatabi." 111 addtion, "All Annotated Biblio- 
graphy on Debugging Optimized Code" is avdable 
separately on the D<yilcll Tech~zical~/o~lr.~ml web site at 
http://nww.digital.corn/info/DTJ. This bibliography 
cites uld summarizes the entire literature 011 debugging 
optimized code as best we know it. 

State of the Art 
When we began our work in early 1994, we assessed 
the level of' support for debugging optimized code 
that was available with competitive compilers. Because 
we have not updated this assessment, it is not appro- 
priate for us to report the results here in detail. We do  
however summarize tlie methodology uscd and the 
main results, which we believe remain generally valid. 

We created a series of example programs that pro- 
vide opportunities for optimization of a particular kind 



or  of  related kinds, and which could lead a traditional 
debugger to deviate from expected behavior. We corn- 
piled and e x e c ~ ~ t e d  these programs under the control 
of each system's debugger and recorded how the sys- 
tcrn handled the various kinds of optimization. The 
range of observed behaviors was divcrse. 

At one extreme were compilers that automatically 
disable all optimization if a debugging symbol table is 
requested (or, equivalently for our  purposes, ,' olve an 
error if both optimization and a debugging symbol 
table are requested). For these compilers, the whole 
exercise becomes moot; that is, attempting to debug 
optimized code is not allowed. 

Some compiler/debugger combinations appeared 
to i~sefi~lly support some of our test cases, although 
none handled all of them correctly. In particular, none 
seemed able to  show a traceback of subroutine calls 
that compensated for inlining of routine calls and all 
seemed to produce a lot ofjitter when stepping by line 
on systems where code is highly scheduled. 

The worst example that we found allowed comyila- 
tion using optimization but produced a debugging 
symbol table that did not reflect the results ofthat  opti- 
mization. For example, local variables were described 
as allocated on  the stack even though the generated 
code clearly used registers for these variables and never 
accessed any stack locations. At debug time, a request 
to examine such a variable resulted in the display of  the 
irrelevant and never-accessed stack locations. 

The bottom linc from this analysis was very clear: 
the state of the art for support of dcbugging opti- 
mized code was generally quite poor. DIGITAL'S 
debuggers, including OpenVMS DEBUG, were not  
unusual in this regard. The analysis did indicate some 
good examples, though. Both the CONVEX CXdb4sj 
and the H P  9000 DOC9ystems provide many valu- 
able capabilities. 

Biases and Goals 
Early in our work, we adopted the following strategies: 

D o  not limit or compromise optimization in any way. 

Stay within the framework of the traditional edit- 
compile-link-debug cycle. 
Keep the burden ofanalysis within the compiler. 

The prime directive for Compaq's GEM-based 
compilers is to achieve the highest possible perfor- 
mance from the Alpha architecture and chip technol- 
ogy. Any improvements in debugging such optimized 
code should be useful in the face of the best that a 
compiler has to offer. Conversely, if a programmer has 
the luxury of  preparing a less optimized version for 
debugging purposes, there is little o r  n o  reason for 
that version to be anything other than completely 

unoptimized. There seems to be n o  particular benefit 
t o  creating a special intermediate level of co~nbined 
debugger/optimization support. 

Pragmatically, we did not have the time or staffing 
to develop a new optimization framework, for exam- 
ple, based on  some kind of  program database. Nor  
were we interested in intruding into those parts of  the 
GEM compiler that performed optimization to create 
more complicated options and variations, which might 
be needed for dynamic deoptimization or  recovery 
hnction creation. 

Finally, it seemed sensible to perform most analysis 
activities within the compiler, where the most complete 
information about the program is already available. I t  is 
conceivable that passing additional information from 
t l ~ e  compiler to the debugger using the object file 
debugging symbol table might eventually tip the bd-  
ance toward performing more analysis in the debugger 
proper. The available size data (presented later in this 
paper in Table 3) d o  not iiidicate this. 

We identified three areas in which we felt enhanced 
capabilities would significantly improve support for 
debugging optimized code. These areas are 

1. The handling of split lifetime variables and currency 
determination 

2. The process of stepping though the program 

3. The handling of procedure inlining 

In  tlle following sections we present the capabilities we 
developed in each of these areas together with insight 
into the implementation techniques employed. 

First, we review the GEM and OpenVMS DEBUG 
framework in which we worked. The next three sec- 
tions address the new capabilities in turn. The last 
major section explores the resource costs (compile- 
time size and performance, and object and image 
sizes) needed to realize these capabilities. 

Starting Framework 

Compaq's GEM compiler system and the OpenVMS 
DEBUG component of the OpenVMS operating 
system provide the framework for our work. A brief 
description of each follows. 

GEM 
The GEM compiler system'" is the technology 
Compaq is using to build state-of-the-art compiler 
products for a variety of languages and hardware and 
software platforms. The GEM system supports a range 
of  languages (C, C++, FORTRAN including HPF, 
Pascal, Ada, COBOL, BLISS, and others) and has been 
successfully retargeted and rehosted for the Alpha, 
MIPS, and Intel LA-32 architectures and for the 
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Split Lifetime Example A simple example of  a split 
lifetime variable can be seen in the following straiglit- 
line code fragment: 

! Define (assign value to) A 

: ! U s e  definition (value of) A 
! Define A again 

C = . . .  A . . . ;  ! Use latter definition A  

In this example, the first value assigncd to variable A is 
used later in thc assignment to  variable B and then 
never used again. A new value is assigned to A and 
used in the assignment to variable C. 

Without changing the meaning of this fragment, we 
can rewrite the code as 

! Define A 1  

! Use A 1  
! Define A2 

C = . . .  A2 . . .  ; ! Use A2 

where variables A1 and A2 are split child variables of A. 
Because A1 and A2 are independent, the following 

is also an equivalent fragment: 

A 1  = . . .  : ! Define A 1  

A 2  = . . .  ; ! Define A2 
B = . . .  A l .  . . ;  ! Use A 1  
. . . 
C = . . .  A 2  . . .  ; ! Use A2 

Here, we see that the value of A2 is assigned while the 
value of A1 is still alive. That is, the split children of  a 
single variable have overlapping lifetimes. 

This example illustrates that split lifetime optimi- 
zation is possible even in simple straight-line code. 
Moreover, other optimizations can create opportuni- 
ties for split lifetime optimization that may not be 
apparent from casual examination of  the original 
source. In particular, loop unrolling (in which the 
body of  a loop is replicated several times in a row) 
can create loop bodies for which split lifetime opti- 
mization is feasible and desirable. 

Variables of Interest Our  implementation deals only 
with scalar variables and parameters. Thls includes 
Alpha's extended precision tloating-point (128-bit 

X-Floating) variables as well as variables of  any of  the 
complex types (see Sites'"). These latter variables are 
referred to as two-part variables because each requires 
two registers to hold its value. 

Currency Definition 
The  value o f a  variable in an optimized program is cur- 
rent with respect to a given position in the source pro- 
gram if the variable holds the value that .vvould be 
expected in an unoptimized version of the program. 
Several kinds of optimization can lead to noncurrent 
variables. Co~isider the currency example in Figure 1. 

As shown in Figure 1, the optimizing compiler has 
chosen to change the order of operations so  that line 4 
is executed prior to line 3. Now suppose that execu- 
tion has stopped at  the instruction in line 3 of  the 
unopti~nized code, the line that assigns a value to vari- 
able C. 

Given a request to display (print) the value of  A, 
a traditional debugger will display wliatevcr value 
happens to be contained in the location of A ,  which 
here, in the optimized code, happens to be the result 
o f  the second assignment to A. This displayed value 
o f  A is a correct value, but it is not  the expected 
value that should be displayed at line 3 .  This scenario 
might easily mislead a user into a frustrating and 
fruitless attempt to  determine how the assignment 
in line 1 is computing and assigning the wrong 
value. The problem occurs because the compiler has 
moved the second assignment so  that it is early rela- 
tive to  line 3. 

Another curre1ic)r example can be seen in the frag- 
ment (taken from Copperman,') that appears in Figure 
2. In this case, the optimizing compiler has chosen to 
omit the second assignment to variable A a i d  to  assign 
that value directly into tlic actual parameter location 
used for the call of routine FOO. Suppose that the 
debugger is stopped at the call of routine FOO. Given 
a request t o  display A, a traditional debugger is likely 
to display the result of the first assignment to A. Again, 
this value is an actual value of A, but it is not  the 
expected value. 

Alternativelv, it is possible that prior to reaching the 
call, the optimizing co~npiler has decided to reuse the 

Line Unoptimized Optimii~d 
1 A = . . .  ; ! Define A A = . . .  ; 
2 6 = . . .  A . . . ;  ! Use A B = . . . A . .  . 
3 C =  . . .  ; ! C does not depend on A A = . . .  ; 
4 A = . . .  ; ! Define A C = . . .  ; 
5 D = . . .  A...; ! Use second definition of A D = . . .  A , . . ;  

Figure 1 
Currency Example 1 
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Line Unoprhked Optimized 
1 A = express~onl; A = expressionl: 
2 B = . . .  A . . . ;  I Use 1st def.  of A B = ... A . . . ;  
3 A = expression2; 
4 FOO(A1; ! U s e  2nd def . of A FOO (expression2 ) ; 

Figure 2 
Currency Example 2 

location that originally held the first value of  A for 
another purpose. In this case, n o  v d i ~ e  ofA is available 
to display at  the call of routine FOO. 

Finally, consider the example shown in Figure 3, 
which illustrates that tlie currency of a variable is not a 
property that is invariant over time. Suppose that exe- 
cution is stopped at line 5, inside the loop. In this case, 
A is not current during the first time through the loop 
body because the actual value comes from line 3 
(moved from inside the loop); it should come from 
line 1. O n  subsequent times through the loop, the 
value from line 3 is the expccted value, and the value of 
A is current. 

As discussed earlier, most approaches to currency 
determination involve making certain kinds of  flow 
graph and compiler optimization information avail- 
able to the debugger s o  that it can report when a dis- 
played value is not current. However, we wanted to 
avoid adding major new lunds of analysis capability to 
DIGITAL'S debuggers. 

More fundarnentally, as the degree of optimization 
increases, the notion of currentposition in the program 
itself becomes increasingly ambiguous. Even when the 
particular instruction at which execution is pending can 
be clearlpand i~nequivocally related to a particular source 
location, this locadon is not automaticdly the best one to 
use for currency determi.nation. Nevertheless, thc source 
location (or set of locations) where a displayed value was 
assigned can be reliably reported without needing to 
establish the current position. 

Accordingly, we use an approach different than 
those considered in the literature. VVe use a straight- 
for\vard flow analysis formulation to determine what 

locations hold values of  uscr variables at any glvcn 
point in the program and combine this with the set of 
definition locations that provide those values. Because 
there may be more than one source location, the user 
is given the bask information to determine \\.here in 
the source tlie value of a variable may have originated. 
Consequently, the llser can dcterrnine \\lhcthcr the 
value displayed is appropriate for his o r  her purpose. 

Compiler Processing 
A compiler performs most split lifetime analysis on a 
routinc-by-routinc basis. A preliminary walk over thc 
entire symbol tablc idcnt~fics the variable symbols that 
are of intcrest for fi~rtlicr analysis. Then, for each rou- 
tine, the compiler performs the following steps: 

Code cell prepass 

Flow graph co~lstruction 

Easic block processing 

Parameter processing 

Bachvard propagation 

Forward propagation 

Information promotion and clea~iup 

AFtcr the compiler completes this processing for 
all rout~nes,  a symbol table postwalk pcrforrns final 
cleanup tasks. The following contains a br~ef  discus- 
sion of these steps. 

In this summary, we highlight only the main charac- 
teristics ofgenerd interest. In particular, we assume that 
each location, such as a register, is independent of dl 
other locations. This assumption is not appropriate to 
locaaons on the stack because va~iables of dffcrent sizcs 

L i e  Unoptimized 
1 A = . . .  ; 
2 . . . A . .  .; 
3 
4 while ( . . .  

5 . . . ,  
6 A = . . . ,  
7 ) 

Optimized 
A = . . .  ; 
. . . A . .  .; 

A = . . .  ; 
while ( . . . ) 

. . . ,  
/ /  A is loop invar ian t  

1 

Figure 3 
Currency Example 3 
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may overlay each other. The complexity of dealing with 
overlapping allocations is beyond the scope ofthis paper. 

Of  special importance in this processing is the fact 
that each operand of  every instruction includes a base 
symbol field that refers to the compiler's symbol table 
entry for the entity that is involved. 

Symbol Table Prewalk The symbol table prewalk 
identifies the variables of  interest for analysis. As dis- 
cussed, we are interested in scalars corresponding to 
user variables (not compiler-created temporaries), 
including Alpha's extended precision floating-point 
(128-bit )(_Floating) and comples values. 

DIGITAL'S FORTRAN implementations pass para- 
meters using a by-reference mechanism with bind 
(rather than copy-in/copy-out) semantics. GEM treats 
the hidden reference value as a variable that is subject 
to split lifetime optimization. Since the reference vari- 
able must be available to effect operations on the logi- 
cal parameter variable, it follows that both the abstract 
parameter and its reference value must be treated as 
interesting variables. 

Code Cell Prepass The code cell prepass performs a 
single walk over all code cells to  determine 

The maximum and minimum offsets in the stack 
frame that hold any interesting variables 

The highest numbered register that is actually refer- 
enced by the code 

Whether the stack frame uses a frame pointer that is 
separate from the stack pointer 

The compiler uses these characteristics to  preallocate 
various working storage areas. 

Flow Graph Construction A flow graph is built, in 
which each basic block is a node of the graph. 

Basic Block Processing Basic block processing per- 
forms a kind of symbolic execution of the instructions 
of  each block, keeping track of  the effect o n  machine 
state as execution progresses. 

When an instruction operand writes to  a location 
with a base symbol that indicates an interesting vari- 
able, the con~piler updates the location description to 
indicate that the variable is now known to reside in 
that location-this begins a lifetime segment. The 
instruction that assigned the value is also recorded 
with the lifetime segment. 

Ifthere was previously a known variable in that loca- 
tion, that lifetime segment is ended (even if it was for 
the same variable). The beginning and ending instruc- 
tions for that segment are then recorded with the vari- 
able in the symbol table. 

When an instruction reads an operand with a base 
symbol that indicates an interesting variable, some 
more unusual processing applies. 

If the variable being read is already lulow11 to 
occupy that location, then no further processi~lg is 
required. This is the most common case. 

If  the location already contains some othcr known 
variable, then the variable being read is added to the 
set of variables for that location. This situation can 
arise when there is an assignment of one variable to 
another and the register allocator arranges to allocate 
them both to the same location. As a result, the assign- 
ment happens implicitly. 

If the location does not contain a known variable 
but there is a write operation to that location earlier in 
the same block (a fact that is available from the loca- 
tion description), the prior write is retroactively 
treated as though it did write that variable at  the earlier 
instruction. This situation can arise when the result of 
a hnction call is assigned to a variable and the register 
allocator arranges to allocate that variable in the regis- 
ter where the call returns its value. The code cell repre- 
sentation for the call contains nothing that indicates a 
write to the variable; all that is ltnown is that the return 
value location is written as a result of the call. Only 
when a later code cell indicates that it is using the value 
of  a known variable from that location can we infer 
more ofwliat actually happened. 

If the location does not contain a lcnown variable and 
there is no  write to that same location earlier in this 
same basic block, then the defining i~lstruction cannot 
be immediately determined. A location description is 
created for the beginning of the basic block indicating 
that the given variable or  set of variables must have 
been defined in some predecessor block. Ofcourse, the 
contents known as a result of  the read operation can 
also propagate forward toward the end of  the block, 
just as for any other read or  write operation. 

Special care js needed to deal with a two-part variable. 
Such a variable does not become defined until both 
instructions that assign the value have been encoun- 
tered. Similarly, any reuse of either of the two locations 
ends the lifetime segment of the variable as a whole. 

A t  the end of basic block processing, location 
descriptions specify what is lcnown about the contents 
of each location as a result of read and write operations 
that occurred in the block. This description indicates 
the set ofvariables that occupy the location, or  that the 
location was last written by some value that is not the 
value of a user variable, o r  that the location does not 
change during execution of the block. 

Parameter Processing The compiler models parame- 
ters as locations that are defined with the contents of a 
known variable at the entry point o f a  routine. 
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Backward Propagation Backward propagation iter- 
ates over the flow graph and uses the locat io~~s  with 
known contents at the beginning of a block to work 
backward to predecessor blocks looking for instruc- 
tions that write to that location. For each variable in 
each input location, any such prior write instructio~i is 
retroactively made to look like a definition of the vari- 
able. Note that this propagation is not a flow algo- 
rithm because no convergence criteria is involved; it is 
simply a kind of spanning walk. 

Forward Propagation Forward propagation iterates 
over the flow graph and uses the locations with known 
contents at the end of  each block to work forward to 
successor blocks to  provide known contents at  the 
beginning of  other blocks. This is a classic "reaching 
definitions" flow algorithm, in which the input state of 
a location for a block is thc intersection of the hiown 
contents from the predecessors. 

In our case, the compiler also propagates definition 
points, which are the addresses of thc instructions that 
begin the lifetime segments. For those variables that are 
known to occupy a location, the set of definitions is die 
union of all the definitions that flow into that location. 

lnformation Promotion and Cleanup The final step of 
compiler processing is to combine dormat ion for adja- 
cent blocks where possible. This action saves space in the 
debugging sym bol table but does not affect the accuracy 
of the description. Descriptions for byreference bind 
parameters are nest merged with the descriptions for the 
associated reference variables. Finally, lifetime segment 
information not already associated with symbol table 
entries is copied back. 

Object File Representation 
The object file debugging symbol table representation 
for split lifetime variables is actually quite simple. 
Instead of  a single address for a variable, there is a 
sequence of  lifetime segment descriptions. Each life- 
time segment consists of 

The range of  addresses over which the child loca- 
tion applies 

Thc location (in a register, at a certain offset in the 
ulster or current stack frame, indirect through a re,' 

stack location, etc.) 

The set of addresses that provide definitions for this 
lifetime segment 

By convention, the last segment in the sequence can 
have the address range 0 to FFFFFFFF (hex). This 
address range is used for a static variable, for example 
in a FORTRAN COMMON block, that has a default allo- 
cation that applies whenever n o  active children exist. 

Debugger Processing 
Name resolution, that is, binding a textual name to the 
appropriate entry in the debug symbol table, is in n o  
way affected by whether or not a variable has split life- 
time segments. After the symbol table entry is found, 
any sequence oflifetime segments is searched for one 
that includes the current point of execution indcated 
by the program counter (PC). If found, the location of 
the value is taken from that segment. Otherwise, the 
value of the variable is not  available. 

Usage Example 
To illustrate how a user sees the results of this processing, 
consider the small C program ui Figgure 4. Note that the 
numbers in the left colunu~ are listing line numbers. 

When DOCT8 is compiled, linked, and executed 
under debugger control, the dialogue shown in Figure 5 
appears. The figurc also includes interpretive comments. 

Known Limitations 
The followil~g limitations apply to  the existing split 
lifetime support. 

Multiple Active Split Children \Wlile die compiler 
analysis correctly determines multiple active split child 
variables and the debug symbol table correctly describes 
them, OpenVMS DEBUG does not currently support 
multiple active child variables. When searcling a sym- 
bol's lifetime segments for one that includes the currelit 
PC, the first match is taken as the only match. 

Two-part Variables Support for two-part variables 
(those occupying two rcgisters) assumes that a com- 
plete definition will occur within a single basic block. 

int i, j ,  k; 

i f  (foo(i)) 
j = 1 7 ;  

} 
else ( 

k = 18; 
1 

printf ("%d, %d, %d\n", 

Figure 4 
C Example Routine DOCT8 (Source with Listing Line 
Numbers) 
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$ run doctB 
GpenVMS Alpha Debug64 Version T7.2-001 

%I, language is C, module set to DDeTB 
DBG> s teg/ into 
stepped to DOCTB\doctS\%LXNE 391 

391: k = 3 ;  
DBGz examine i, j , k 
%W, entity 'i' was not allocated in memory (was optimized away) 
%W, entity 'j' does not have a value at the current PC 
%W, entity 'k' does not have a value at the current PC 

Note the difference in the message for variable i compared to the messages for variables jand b We 
see that variable i was not allocated in memory (registers or otherwise), so there is no point in ever 
trying to examine its value again. Variablesjand k, however, d o  not have a value "at the current PC." 
Somewhere later in the program they will have a value, but not here. 

The dialogue cont i~~ues as follocvs: 

DBG> Step 6 
step@ to WCT8\doc tE\ %LINE 391 

391: k = 3; 
DBG> step 
stepped to DOCTB\doct8\%LINE 393 

393: if (foo(i)) { 
DBG, examine j, k 
%W, entity ' j l  does not have a value at the current PC 
DOCTB\doct8\k: 3 

value defined at WCTB\docta\%LINE 391 

Here we see that j is still undefined but know has a value, namely 3, which was assigned at line 391. 
The source indicates that jwas assigned a value at line 390, before the assignment to k, but j's assign- 
ment has yet to occur. 

Skipping ahead in the dialogue to the print statement at line 400, we see the following: 

DBO> set break %line 400 
DW> go 
break at DOCTB\&ct8\%LINe 400 

400s printf  (''$6, %d, %d\nU, 1, 1 ,  k )  ; 
DEGr examine j 
DOCTl\doct8\j: 2 

value defined at DOCT8\boct8\%tINE 390 
value defined at DKTS\doct8\%LINE 394 

Dm> examine k 
DOCTl\doctB\k: 18 

value defined at DOCTB\doct81%LTNE 397+4 
value defined at WCTB\doctB\&LINE 391 

This portion of the message shows that more than one definition location is given for both jand k. 
Which of each pair applies depends on which path was taken in the i f  statement. If a variable has an 
apparently inappropriate value, this mechanism provides a means to take a closer look at those places, 
and only those places, from which that value might have come. 

Figure 5 
Dialogue Resulting from Running DOCTS 

That is, at the end ofa basic bloclc, ifthe second part of 
a definition is missing then the initial part is discarded 
and forgotten. 

Consider the following FORTRAN fragment: 

COMPLEX X ,  Y 

Suppose that the last use of variable Xoccurs in the 
assignment to variable Y so that X'and Ycan be and are 
allocated in the same location, in particular, the same 
register pair. In this case, the definition of Yrequires 
only one instruction, which adds 1.0 to the real part of 
the location shared by Xand Y. Because there is no sec- 
ond instruction t o  indicate completion of the defini- 
tion, the definition will be lost by our implementation. 
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Semantic Stepping 

A major p rob le~n  with stcpping by line though opt i-  
mized code is that the appdrcnt source program loca- 
tion "bounces" back and forth, with the same line 
often appearing again and again. In large part this 
bouncing is d u e  t o  a compiler o p t i ~ ~ i i z a t i o n  called 
cocloschcdi t l i~ i~.  in \vhicli instructions that arise fi-om 
the same source line are scheduled, that is, reordered 
and intermixed with other  instructions, for better exe- 
cution performance. 

OpenVA4S lIEBUG, like riiost dcb~~ggel - s ,  interprets 
the : .  . '  . i .  . (step by linc) comniand t o  mean that  
the program should execute until tlie linc n u ~ i i b e r  
changes. Line numbers  change more  f r e q ~ ~ e n t l y  in 
scheduled codc than in ~ ~ n o p t i ~ n i z e d  code. 

For example, in saniple programs fi-om the SPEC95 
Benchmark Suite, the average n ~ ~ n i b c r  o f  instructions 
in sequence that share the same line number  is typi- 
cally benveen 2 and 3-and typically 5 0  t o  7 0  percent 
o f  those sequences consist o f  just 1 i n s t ~ . ~ ~ c t i o ~ i !  In  
contrast, if on1 y instruction-le\lel scheduling is dis- 
abled, then the average number  o f  instructions is 
ben\ieen 4 and  6, with 20 t o  3 0  percent consisting o f  
o n e  instruction. 111 a compilation wit11 n o  optirniza- 
tion, there ,Ire 8 t o  12 i n s t r ~ ~ c t i o n s  in a secluence, with 
roughly 5 percent consisting o f  a singlc instruction. 

A second problcni with stepping by linc through an 
optimized program is that,  because o f  the behavior o f  
revisiting tlie same line again and again, the user is 
never q ~ ~ i t e  sure \\,hen the line has finished executing. 
I t  is unclear when an  assignment ~ictually occ~l r s  o r  a 
control flow decision is about  t o  be made. 

In unoptimizcd codc, when a user requests a break- 
point o n  a certain line, thc user expects cxccution t o  
s top just before that  line, hence before the line is car- 
ried o u t .  In  optimized code, however, there is n o  \veil- 
defined location that is "before the line is carried out," 
because the  codc for th.it line is typically scattered 
a b o ~ ~ t ,  intermixed, and even combined \\!it11 the code 
for \rarious o thcr  lines. I t  is us~rally possible, hoivcver, 
t o  identify /he instrt~ction that actually carries o u t  the  
effect o f  the line. 

Semantic Event Concept 
\iVe introduce a new kind o f  stepping mode  called 
seniantic stepping t o  address these problems. Semantic 
stepping allows the program t o  execute up  to, but  no t  
including, an instruction that causes a sem,intic c fkc t .  
Instructions that cause seniantic effects are instr~ictions 
that 

Assign a \ialue t o  a user variable 

Malic a c ~ n t r o l  flour decision 

Make a routine call 

N o t  all sucli instructions are appropriate, liowevcr. 
We start \\lit11 an initial set o f  canciidatc instrl~ctions 
and refine it .  T h e  following sections describe the 
heuristics that are currentl) ! ~n ' use. 

Assignment T h e  candidates for assignment events 
are the  instructions that assign a value t o  a \!ariable ( o r  
t o  o n e  of i t s  split children). T h e  second instruction in 
an assignment t o  a hvo-part  variable is excluded. 
Stopping benvecn the n v o  assignments is inad\!isable 
because at  that  point the variable n o  longer has the 
complete old state and does no t  yet have the complete 
ne\v state. 

Branches There  are nvo  kinds o f  branch: uncondi- 
tional and conditional. An ~ ~ n c o n d i t i o n a l  branch may 
have a l u ~ o w n  destination 01- an unknown destination. 
Unconditional branches with kno\\!n destinations 
mos t  often arise as part o f  s o m e  larger semantic con-  
struct such as an if-then-else o r  a loop.  For- example, 
code for an if-then-else construct generally has an 
implicit join that  occurs at  the  end o f  the statement. 
T h e  join takes thc  form o f  a jump k o m  the end o f  o n e  
alternative t o  the location just past the last instruction 
o f  the  o thcr  (which has n o  explicit j ~ ~ m p  and falls 
through into the nes t  statement).  This jump turns the 
inherently symmetric join at  the  source le\!cl into an 
a s ~ m m e t r i c  construction at  the codc s trea~i i  level. 

Unconditional jumps allnost never define intercst- 
ing semalitic e\relits-some related instruction ~ ~ s u a l l y  
provides a more usefill event point,  sucli as the termi- 
nation test in the  case o f  a loop. O n e  exception is a 
simple g o t o  statement, bu t  these are \!cry often opti- 
mized away in an!! case. Conseql~cnt ly,  unconditional 
branches \\~itli kno\vn destinations are no t  trc,itcd as 
semantic C\ JCI I~S .  

Unconditional branches \\/it11 u~ikno\vn  dcstina- 
tions are really conditional branches: tl ic)~ arise from 
constructs S L I C ~ I  as a C - . .  , statement implemented 
as a table dispatch o r  a FOl<l-1WN assigned j , state- 
ment .  These branchcs definitely arc interesting points 
a t  which t o  allo\v user interaction bcf01-c tlie nc\v 
direction is taken. Thus ,  the compiler retains uncon- 
ditional branches as semantic events. 

Similarly, in  general, conditional branches t o  linown 
destinations a -e  important semantic event points. Often 
more t l ia i  one  branch instruction is generated for a sin- 
gle Iugh-level source construct, for example, a decision 
tree o f  tests and branches used t o  implement n small 
c - .  : .  ,: . . 8 statement. In  this case, only the first in the 

execution sequence is ~ ~ s e d  as tlie semantic event point. 

Calls Most  calls are visible t o  a user and constitute 
semantically interesting events. H o ~ v c \ ~ c r ,  calls t o  
some run-time library routines arc usually n o t  intercst- 



i~ ig  because tliese calls are perceived to be merely soft- 
ware implementations of primitive operations, such as 
integer division in the case of the Alpha architecture. 
GEM internally marks calls to all its own run-time sup- 
port routines as not semantically interesting. Compiler 
front cnds accomplish this where appropriate for tlieir 
own set of run-time support routines by setting a flag 
on the associated entry symbol node. 

Compiler Processing 
In most cases, the compiler can identify semantic event 
locations by simple predicates on each instruction. 
The exceptions are 

The second of the two instructions that assign val- 
ues to a two-part variable is identified during split 
Lifetime analysis. 

Conditional branches that are part of a larger con- 
struct are identified during a simple pass over the 
flow graph. 

Object Module Representation 
The object module debugging semantic event repre- 
sentation contains a sequence of address and event 
kind pairs, in asce~iding address order. 

Debugger Processing 
Se~nantic stepping in the debugger involves a new 
algorithm for determilung the range of instructions to 
execute. This algorithm is built on a debugger prirni- 
tive mechanism that supports full-speed execution of 
user instructions within a given range of addresses but 
traps any transfer out of that range, whether by reach- 
ing the end or by executing any kind of branch or call 
instruction. 

Semantic stepping works as follows. Starting with 
the current program counter address, OpenVMS 
DEBUG finds the next higher address that is a seman- 
tic event point; this is the target event point. 
OpenVMS DEBUG executes instructio~ls in the 
address range tliat starts at the address of the current 
instruction and cnds at the instr~~ction that precedes 
the target event point. The range execution terminates 
in tlie following two cases: 

1. If thc next instruction to execute is the targct event 
point, then executio~l rcached the end of target 
range and the step operation is complete. 

2. If the next instruction to execute is not the target 
event point, then the next address becomes the cur- 
rent address and the process repeats (silently). 

Note that, unlike the algorithm tliat determines the 
range for stepping by Line, the new algorithm does not 
require an explicit test for the kind of instruction, in 
particular, to test ifit is a kind of branch. The compiler 

already marks branches with the semantic event 
attribute, if appropriate. Also unlike the traditional 
stepping-by-line algorithm, the new algorithm does 
not consider the source line number. 

Visible Effect 
With semantic stepping, a user's perception of forward 
progress through the code is 110 longer dominated by 
tlie side effects of code scheduling, that is, stopping 
every few instructions regardless of w11at is happening. 
Rather, this perception is much more closely related to 
the actual semantic behavior, that is, stopping every 
statement or so, i~idependent of how many instruc- 
tions from disparate statements may have executed. 

Note that jumping forward and backward in the 
source may still occur, for example, when code motions 
have changed the order in which semantic actions are 
performed. Nothing about semantic event handling 
attempts to IGde such reordering. 

lnlining 

Procedure call inlining can be confusing when using a 
traditional debugger. For example, if routine INNER 
is inlined into routine CALLER and the current point 
of execution is within INNER, should the debugger 
report the current source location as at a location in 
the caller routine or in thc called routine? Neither is 
completely satisfactory by itself. If the current line is 
reported as at the location within INNER, then that 
information will appear to conflict with information 
from a call stack uaceback, which would not show 
routine INNER. If the current line is reported as 
though in CALLER, then relevant location informa- 
tion from the callee will be obscured or suppressed. 
Worse yet, in the case of nested inlining, potentially 
crucial information about the intermediate call path 
may not be available in any form. 

The problem of dealing with inlining was sol\led 
long ago by Zellwegerl-at least the topic has not 
been treated again since. Zellweger's approach adds 
additional information to  an otherwise traditional table 
that maps from instruction addresses to the corre- 
sponding source Line numbers. Our approach is differ- 
ent: it i~lcludes additional information in the scope 
description of the debugging symbol table. 

A key underpinning for inline support is the ability 
to accurately describe scopes that consist of multiple 
discontiguous ranges of instruction addresses, rather 
than the traditional single range. This capability is 
quitc independent of inlining as such. However, 
because code from an inlined routine is freely sched- 
uled with other code from the calling context, dealing 
accurately with the resulting disjoint scopes is an 
essential building block for effective support. 
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Goals for Debugger Support 
Our  overall goal is to support debugging of inlined 
code with expected behavior, that is, as though the 
inlining has not occurred. blorc specifically, we seek to 
provide thr ability to 

Report the source location corresponding to  the 
current position in tlie code 

Display parameters and local variables of  an uilined 
routine 

Show a traceback that includes call frames corrr- 
sponding to inlined routines 

Set a breakpoint at a given routinc entry 

Set a breakpoint at a given lint: number (from 
within an inlined routine) 

Call an inlined routine 

We have achieved these goals to a silbstantial cxtent. 

GEM Locators 
Before describing the mechanisms for inlining, we 
introduce the GEM notion of a locator. A locator 
describes a place in the source tcxt. The simplest kinds 
of locator describe a point in the source, including the 
name of  the file, the line within that file, and the col- 
umn within that line; they even describe tlie point at 
which that file was included by another file (as for a C 
or  C++ #include directive), if applicable. 

A crucial characteristic of locators is that they are all 
of a unifortn fixed size that is n o  larger than an integer 
or  pointer. (How this is achieved is beyond the scope 
of this paper.) In particular, locators are small enough 
that every tuple node in the intermediate language 
(IL) and every code cell in the generated code stream 
contains one. Moreover, GEM as a whole is quite 
meticulous about ~naintaining and propagating high- 
quality locator information throughout its optimiza- 
tion and code generation. 

hi additional lulld o f  locator was introduced for 
inlining support. This inline locator encodes a pair 
that consists of  a locator (which may also be an inline 
locator) and the address of an associated scope node in 
the GEM symbol table. 

Compiler Processing 
Debugging optimized code support for inlining gen- 
erally builds on  and is a minor enhancement of the 
G E M  inlining mechanism. Inlining occurs during an 
early part of the GEM optimizer phase. 

Inlining is implemented in GEM as follows: 

W i t l ~ i  the scope that cont ins  the call site, a r ~  irzline 
scope block is introduced. This scope represents the 
result of the inliliil~g operation. I t  is populated with 
local variable declarations that correspond one-to- 
one with the formal parameters of the inlined routine. 
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The actual arguments of tlie call are transfortlied 
into assignments that initialize the valucs of  thc sur- 
rogate parameter variables. 

The inline scope is also l-nade to contain a bod], 
scope, nrhich is a copy of the body of the inlined 
routine, including a copy of its local variables. 
The original call is replaced with a jump to a copy of 
the IL for the body of  the routinc, in which rcfer- 
elices to declarations or  p.il.ameters of the routine 
are replaced with referellces to their corresponding 
copied declarations. In  addition, returns from the 
routine are replaced with jumps back to the tuple 
following the original call. 

Similar "boundary adjustments" are made to deal 
with function results, output parameters, choice of 
entry point (when there is more than one, as might 
occur for FORTRAN alternate entry statenients), 
etc. (The bookkeeping is a bit intricate, but it is 
conceptually straightforward.) 

The  calling routine, which now incorporates a copy 
of  the inlined routine, is then further processed as a 
normal (though larger) routine. 

lnlining Annotations for Debugging The n~ain chaigcs 
introduced for debugging optirnizcd code support are 
as follows. 

The newly created inline scope block is annotated 
with additional information, namely, 

- A pointer to the routine declaration being inlined. 

- Tlie locator from the call that is replaced. In a sim- 
ple call with n o  arguments, there may be nothing 
left in the IL fro111 the original call afier inlining is 
completed; this locator captures the original call 
location for possible later use, for csa~nplc, as a 
supplement to the information that maps instruc- 
tion addresses to source line numbers. 

As the code list of the original inlined rol~tilie is 
copied, each locator fro111 the original is replaced by 
a new inline locator that records 

- The original locator. 

- The newly created inlinc scope into which it is 
being copied. 

As a result of these steps, every it~lined instruction can 
be related back to the scope into which it was inlined 
and hence to the routine from which it was inlined, 
regardless of how it may be modified or  moved as a 
result of subseqilcnt opti~n~zntiorl. 

Note that these additional steps arc an csccption to 
the general assertion that debugging optimized code 
support occurs after code gencration and just prior to 
object code emission. 7:hcse steps in n o  way intluence 
the generated code-only  the dcbugglng symbol tablc 
that is output. 



Prologue and Epilogue Sets The prologue of a rou- 
tine generally consists of  those instructions at the 
beginning of the routine that establish the routine 
stack frame (for example, allocate stack and save the 
return address and other preserved registers) and that 
must be executed before a debugger can i~sefitUy inter- 
pret the state of the routine. For this reason, setting a 
breakpoint at the beginning o f  a routine is usuallp 
(transparently) implemented by setting a breakpoint 
after the prologue of that routine is completed. 

Conversely, the epilogue of a routine consists of 
those instructions at the end of a routine that tear 
down the stack frame, reestablish the caller's contest, 
and make the return value, if any, available to the 
caller. For this reason, stopping at the end of  a routine 
is usually (transparently) implemented by setting a 
breakpoint before the epilogue of that routine begins. 

One  benefit of  inlining is that most prologue and 
epilogue code is avoided; however, there may still be 
some scope management associated with scope entry 
and exit. Also, some programming languagc-relatcd 
environment manage~nent associated with the scope 
may exist and should be treated in a manner analogous 
to traditional prologue and epilogue code. The prob- 
lern is how to identify it, because most of the tradi- 
tional compiler code generation hooks d o  not  apply. 

The model we chose takes advantage of the seman- 
tic event information that we describe in the section 
Semantic Stepping. In particular, we define the first 
semantic event that can be executed within the inlined 
routine to be the end of  the prologue. For reasons dis- 
cussed later, we define the last instruction (not the last 
semaitic event) of the inlined code as the beginning of 
the epilogue. As a result of unrelated optimization 
effects, each of  these may turn ou t  to be a set of 
instructions. Determination of  inline prologue and 
cpilogi~e sets occurs after split lifetime and semantic 
event determination is completed so that tlie results of 
those analyses call be used. 

To determine the set of prologue instructions, for each 
inline instance, GEM starts wid1 every possible entry 
block and scans forward through die How graph loolting 
for the first semantic event instruction that can be reached 
from that entry. The set of such instructions constitutes 
the prologue set for that instance of the inlined routine. 

Tlus is a spanning walk forward frorn the routinc 
entry (or entries) that stops either when a block is 
found to contain an i~lstruction from the given inline 
instance o r  when the block has already been encoun- 
tered (each block is considered at most once). Note 
that there may be execution paths that include one or 
more instructions from an inlining, none ofwhich is a 
semantic event instruction. 

The set of epilogue instructions is determined using 
an inverse of tlie prologue algorithm. The process 
starts with each possible exit block and scans backward 

through the flow graph looking for the last instruction 
(that is, the instri~ction closest t o  the routine exit) of 
an ~ n l ~ n e  instance that can reach an exit. 

Note that prologue and epilogue sets are not strictly 
symmetric: prologue sets consist ofonly instructions that 
are also scrnantic events, whereas epilogue sets include 
instructions that may or may not be semantic events. 

Object Module Representation 
T o  describe any inlining that may have occurred dur- 
ing compilation, we include three ne\v hnds  of infor- 
mation in tlie debugging symbol table. 

If the instructions contained in a scope d o  not form a 
single contiguous range, then the descriptio~i of the 
scope is augmented with a discontiguous range descrip- 
tion. This description consists of a sequence of ranges. 
(The scope itself indicates the traditional approximate 
range description to provide backward compatibility 
with older versions of OpenVMS DEBUG). This aug- 
mented description applies to dl scopes, whether or not 
they are the result of m h m g .  

For a scope that results from inlining a call, the 
description of  the scope is augmented with a record 
that refers to the routine that was inlined as well as the 
line number of the call. Each scope also contains nvo 
entries that consist of the sequence of prologue and 
epilogue addresses, respectively. 

Bacl~vard compatibility is f ~ ~ l l y  maintained. An older 
version of OpenVMS DEBUG that does not recognize 
the new kinds of information will simply ignore it. 

Debugger Processing 
As thc dcbuggcr reads the debugging symbol table of 
a module, it constructs a list of  the illlined instances for 
each routine. This process makes it possible to find all 
instances ofa  given routine. Note, however, that if every 
call of the routine is expa~ided inline and the routinc 
cannot otherwise be called from outside that module, 
then GElM does not create a noninlined (closed-form) 
version of die routine. 

Report Source Location It  is a simple process to report 
the source location that corresponds to the current code 
address. When stopped inside the code resulting from 
an udined routine, the program counter maps directly 
to a source line within the i l h c d  routine. 

Display Parameters and Local Variables As is the case 
for a noninlined routine, die scope description for an 
i h n e d  routine contains copies of the pararnetcrs a id  
the local variables. N o  special processing is required to 
perform name binduig for such entities. 

Include lnlined Calls in Traceback The debugger pre- 
sents inlined routines as if they are real routine calls. A 
stack frame whose current code address corresponds 
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t o  an inlined routine instance is described with two or  
more virtual stack frames: one o r  more for the inlined 
~nstance(s) and one for the ultimatc caller. (An csam- 
ple is sho\vn later in Figure 7.) 

Set Breakpoints at lnlined Routine lnstances The 
strategy for setting breakpoints at inlined routines is 
based on a generalization of  processing that previously 
existed for C++ member functions. Con~pilation of 
C++ modules can result in code for a given member 
f ~ ~ n c t i o n  being compiled every time the class o r  tcm- 
plate definition that contains the membcr h n c t ~ o n  is 
compiled. We refer to  all these compilations as clones. 
(It is not necessary to distinguish which of them is the 
original.) In our generalization, an inlined routine call 
Instance is treated like a clone. To  set a brcakpoint at a 
routine, the debugger sets breakpoints at  all the end- 
of-prologue addrcsscs of every clone of  the given rou- 
tine in all the currently active modules. 

Set Breakpoints at lnlined Line Number lnstances The 
strategy for setting breakpoints on  line numbers shares 
some features of  setting breakpoints on routines, with 
additional complications. Compiler-rcportcd line num- 
bcrs on OpenVlMS s)stems arc uniq~re across all the 
files included in a compilation. I t  follotvs that the same 
file included in more than one compilation map have 
difkrcnt associated line numbers. 

To  set a breakpoint at a particular line number, 
that line number needs to  be f rst ~iorrnalized relative 
to the containing file. This nor~nalized line number 
value is then compared to nor~nalized line numbers 
for that same file that are included in other compila- 
tions. (If  different versions of  thc same named file 
occur in different compilations, the versions are 
treated as unrelated.) The  original line number is 
converted into the set of  address rangcs that corre- 
spond to it in all modules, taking into account inlin- 
ing and cloning. 

Call a Routine That Is lnlined If the co~npiler creates a 
closed-form version of a rol~tilie, then the debugger 
can call that routine independent of wherher there 
may also be inlined instances of the routine. If no  such 
version of the routine exists, then the debugger cannot 
call the routi~lc. 

Usage Example 
Inlining support has many aspects, but we will illus- 
trate only one-a call traceback that includes inlined 
calls. Considcr the sample program sho\vn in Figure 6. 
This program has four routines: thrcc arc combined in 
3 single file (enabling the GE,M FORTRLY compiler 
to perform inline optimizations), and the last is in a 
separate file. To  help correlate the li~ics of code in 

L i n e + + + + +  F i l e  DOCFJ-INLINE-2.FOR 
--- 

Main routine 

INTEGER A ,  C 
TYPE * ,  4 ( 3 .  C ( O ) )  
END 

FUNCTION A I I ,  L) 
INTEGER A .  B 
A = B ( 5 ,  I) + 2*L 
RETURN 
END 

FUNCTION B ( J ,  KI 
INTEGER B, C 
8 - C ( 9 )  + J + K 
END 

+++++ File DOCN-INLIME-2A.FOR 
1 C 
2 FUNCTION C ( I ) 
3 INTEGER C 
4 C = 2 * 1  
3 RETURN 
5 END 

Figure 6 
Program to  Illustl-atc Inlining Support 

these hvo files with those in Figure 7, we added line 
numbers to the lefi o f thc  code. Note that these num- 
ber-~ are not part of the program. 

Ifwc compilc, link, and run this program using tlic 
OpcnVlMS DEBUG option, we can step to a placc in 
routine B that is just before the call t o  routine C and 
then request a traceback of the call stack. This dialogue 
is shown in F i g ~ ~ r c  7. 

Figure 7 shows that pscudo stack fkanies are reported 
for routines A and 13, even though the call of routine B 
has been inlined into routine A a11d the call of routinc A 
has been inlincd into the main program. The main dif- 
ference from a real stack ti-arne is the extra line that 
reports that the "above routine is inlined." 

Limitations 
111 a real stack frame, it is possible to esamine (and 
even deposit into) the real muchine registers, rather 
than examine the variables that happen to be allocated 
in machine registers. In an inlined stack frame, this 
operation is not well defined and consequently not 
supported. In  a noninlined stack fiame, these opera- 
tions are still allowed. 

An attractive feature that would round out  the 
expected behavior of inlined routine calls \vould be to 
support stepping into or over the inlined call in the 
sarlie way that is possiblc for noninlined calls. This fca- 
ture is not  currently supported-execution always 
steps into the call. 
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GEMEVNS rUn DOCFJ-INLINE-2 
OpenVMS Alpha Debug64 Version T7.2-001 

%I, LMg~ag6:  FORTRAN, Module: DOCFJ-INLJL3NE-2SMAIN 
. . . 
DBG> s tep/semantic 
stepped to WCFJ-INLINE-2$MAIN\A\B\%LINE 15+8 

15: B E C ( 9 )  + J + K 
DBG> show calls 
module name  routine name line re1 PC abs PC 

----- above routine is in l ined 

----- above routine i s  inlined 
*DOCPJ-INLlNE-2SMAUl 

DOCFJ-INLIXB-2SMAIN 

Figure 7 
OpcnVMS DEBUG Dialogue to Illustrate Inlining Support 

Performance and Resource Usage 

We gathered a number of statistics to  determine typi- 
cal resource requirements for using the enhanced 
debugging optimized code capability compared to the 
traditional practicc ofdebugging unoptimized code. A 
short summary ofthe findings follows. 

All metrics tend to show wide variance from pro- 
gram to program, especially small ones. 

Generating tradtiond debugging symbol dormation 
increases the size of object modules typically by 50 to 
100 percent on the OpenVMS system. Executable 
image sizes show sunilar but smaller size increases. 

Generating enhanced symbol table information 
adds about 2 to 5 percent to the typical compilation 
time, although higher percentages have been seen 
for unusually large programs. 

Generating enhanced synlbol table information 
uses significant memory during compjlation but 
does not affect the peak memory requirement of a 
compilation. 

Generating cnhanced symbol table information 
fbrther increases the size of the symbol table infor- 
mation compared to that for an ~lnoptimized conl- 
pilation. On the OpenVMS system, this adds 100 to 
200 percent to the debugging symbol table of 
object modules and perhaps 50 to 100 percent for 
executable images. 

Compiling with fill1 optimization reduces the 
resulting image size. Total net image size increases 
typically by 50 to SO percent. 

A more detailed presentation of findings follows. 
Tables 1 through 3 present data collected using pro- 
duction OpenVMS Alpha native compilers built in 
December 1996. In developing these results, we used 
five combinations of compilation options as follows: 

S1: no optimization (noopt), no debugging infor- 
mation (nodebug, nodbgopt) 

S2: no  optimization (noopt), normal debugging 
information (debug, nod bgopt) 

S4: full (default) optimization (opt), no debugging 
information (nodebug, nodbgopt) 

S5: full optimization (opt), normal debugging 
information only (debug, nodbgopt) 

S8: full optimization (opt), enhanced debugging 
information (debug, dbgopt) 

Note that the option combination numbering sys- 
tem is historical; we retained the system to help keep 
data logs consistent over time. 

Compile- time Speed 
The incremental compile-time cost of creating enhanced 
symbol table information is presented in Table 1 for a 
sanipling of BLISS, C, and FORTRAN modi~les. The 
data in th~s table can be summarized as follows: 

Traditional debugging (colun~n 1 )  increases the 
total compilation time by about 1 percent. 
Enhanced debugging (column 2) increases the 
compilation time by about 4 percent. The largest 
colnponent of that time, approximately 3 percent, 
is attributed to the flow analysis involved in han- 
dling split lifetime variables (column 3). 
Debugging tends to incrcase as a percentage of 
time in larger modules, which suggests that pro- 
cessing time is slightly nonlinear in program size; 
however, this increase does not seem to be excessive 
even in very large modules. 

Compile-time Space 
The compile-time memory usage during the creation of 
enhanced symbol information is presented in Table 2. 
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Table 1 
Percent of Compilation Time Used to  Createloutput Debugging Information 

52 (noopt, debug, 58 (opt, debug, (Split Lifetime 
Module nod bgopt) dbgopt) Analysis Only) 

BLISS CODE 
1.1% 0.7% 
1.8 1.3 
5.2 4.4 
3.5 2.7 

14.4 13.9 

GEM-AN 
GEM-DB 
GEM-DF 
GEM-FB 
GEM-IL-PEEP 

C CODE 
5.2 
2.9 
4.5 

C-METRIC 
GRAM 
INTERP 

FORTRAN CODE 
nm 

13.0 
6.4 
6.3 

MATRIX300X 
NAGL 
SPICE-V07 
WAVEX 

Average 
Typical range 
Note: "nm" represents "not meaningful," that is, too small to be accurately measured 

Table 2 
Key Dynamic Memory Zone Sizes during BLISS GEM Compilations 

Peak SYMBOL EIL CODE OM % % YO 
Total ZONE ZONE ZONE ZONE Peak Larg EIL File 

BLISS CODE 
1 84 

2,056 
457 

4.41 1 

G E M-AN 
GEM-DF 
GEM-FB 
GEM-IL-PEEP 

C CODE 
2,563 

21 1 
688 

C-METRIC 
GRAM 
INTERP 

FORTRAN CODE 
227 101 

1,791 1,742 
3,256 885 
3.1 19 3,482 

MATRIX300X 
NAGL 
SPICE-V07 
WAVEX 

Average 
Note: All numbers to the left of the vertical bar are thousands of bytes, not multiples of 1,024. 

Column Key: 
Column Description 

Peak Total 
SYMBOL ZONE 
EIL ZONE 
CODE ZONE 
OM ZONE 
%Peak 
%Larg 
%EIL 

The peak dynamic memory allocated in all zones during the compilation 
The zone that holds the GEM symbol table 
The zone that holds the largest EIL ZONE (used for the expanded intermediate representation) 
The zone that holds the GEM generated code list 
The zone that holds split lifetime and other working data 
The OM ZONE size as a percentage of the Peak Total size 
The OM ZONE size as a percentage of the largest single zone in the compilation 
The OM ZONE size as a percentage of the EIL ZONE size 
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The following is a summary of  the data, where OM 
ZONE refers to tlie temporary \\Forking virtual mern- 
ory zone used for split lifetime analysis: 

The OIM ZONE size averages about 10 perccnt of 
thc peak co~iipilation size. 

'I:lie OIM ZONE size is one-quarter to one- half of the 
EIL ZONE size. (The latter is well lcnow~l for typi- 
cally being the largest zone in a GEM compilation.) 
Since the O M  ZONE is created and destroyed afier all 
EIL ZONES are destroyed, the OM ZONE does not 
contribute to establisling the peak tod size. 

image text, etc.) due to the inclusion ofenhanced infor- 
mation compared to the traltional symbol table size. 

SS/S2: This ratio sho\vs the object or  image size 
with enhanced debugging j~lformation wjth opti- 
mization compared to the traditional debugging 
size without optimization. 

The last ratio, SS/S2, is especially interesting because 
it combines two effects: (1)  the reduction in size as a 
result of  compiler optimization, and (2) the increase in 
size because tlie larger debugging symbol table needed 
to describe the result of tlie optimization. The result- 
ing net increase is reasonably modest. 

Object Module Size Summary and Conclusions 
The incrcased size of enhanced symbol table inforrna- 
tion for both object files and executable image files is 
s h o ~ / n  in Table 3.  

In  Table 3, the application or group of modules is iden- 
tified in the first colurm~. The co lum~s  labeled S1, S2, etc. 
give the resdting size for the combination of compilation 
options described earlier. Object module and executable 
image data is presented in successive rows. 

Three ratios of particular interest are computed. 

There exists a small but significant literature regarding 
the debugging ofoptimized code, yet very few debug- 
gers take advantage ofwhat is luiown. In this paper we 
describe the new capabilities for debugging optimized 
code that are now supported in the GEM compiler sps- 
tem and the OpenVMS DEBUG component of the 
OpenVMS Alpha operating system. These capabilities 
deal with split lifetime variables and currency determi- 
nation, semantic stepping, and procedure inlining. For 
cach case, we describe the problcrn addressed 2nd then 
present an o\rervie\i/ of GEM compiler and OpenVMS 
DEBUG processing and the object module represen- 
tation that mediates between them. All but the inlin- 
ing support are included in OpenVMS DEBUG V7.0 
and in GE1M-based conlpilers for Alpha systems that 
have been shipping since 1996. The inlining support is 

S2/S1: This ratio shows the object or image size 
with traditional debugg~ng information compared 
to a base compilation without any debugging infor- 
mation. This ratio indicates thc additional cost, in 
terms of incrcased object and image file size, associ- 
ated with doing tradtional symbolic debugging. 

(SS-SS)/(S2-Sl): This ratio shows the increase in 
debugging symbol table size (esclusivc: of base object, 

Table 3 
Object/Executable (.OBJ/.EXE) File Sizes (in Number of Blocks) for Various OpenVMS Components 

51 52 54 5 5 58 
noopt noopt 0 Pt 0 Pt 0 Pt (58-S5)/ 
nodebug debug 52/51 nodebug debug debug (52-51) 58/52 

File nodbgopt nodbgopt Ratio nodbdopt nodbgopt dbgopt Ratio Ratio 

BLISS CODE 
27,483 
10,373 

C CODE 
478 
250 
100 
58 

134 
7 5 

FORTRAN CODE 
16 
15 

288 
187 

1,073 
549 
393 
490 
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currently in field test. Work is under way t o  provide 
similar capabilities in the ladebug debugger1 I S  compo- 
nent  o f  the DIGITAL UNIX operating system. 

Tllere are and will always be more opportli~lities and 
new challenges to improve thc abllity t o  d e b ~ ~ g  opti- 
mized codc. Perhaps the biggest problem of dl is to fig- 
ure out  where best t o  focus h t u r e  attention. I t  is easy to  
see how the capabilities described in thls paper provide 
major benefits. We find it much harder t o  see what capa- 
bility could provide the next major u ~ c r e ~ n e n t  in debug- 
ging effecti\lcness when working with optl~nizcd codc. 
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Differential Testing 
for Software 

Differential testing, a form of random testing, 
is a component of a mature testing technology 
for large software systems. It complements 
regression testing based on commercial test 
suites and tests locally developed during prod- 
uct development and deployment. Differential 
testing requires that two or more comparable 
systems be available to  the tester. These sys- 
tems are presented with an exhaustive series 
of mechanically generated test cases. If (we 
might say when) the results differ or one of 
the systems loops indefinitely or crashes, the 
tester has a candidate for a bug-exposing test. 
Implementing differential testing is an interest- 
ing technical problem. Getting it into use is an 
even more interesting social challenge. This 
paper is derived from experience in differential 
testing of compilers and run-time systems at 
DIGITAL over the last few years and recently 
at Compaq. A working prototype for testing 
C compilers is available on the web. 

The Testing Problem 

Successfi~l corn~nercial computer systems contain tens 
of rnillions of lines of handwritten software, a11 of 
which is subject to change as co~iipetitive pressures 
motivate thc addition of new fcatures in each release. 
As a practical matter, clualit)l is not  a question of cor- 
rectness, but rather of  how many bugs are fixed and 
how few are introduced in the ongoing development 
process. If the bug count is increasing, the sohvare is 
deteriorating. 

Quality 
Testing is n major contributor to quality-it is the last 
chance for the development organization to rcducc 
the number of bugs delivered to customers. Typically, 
developers build a suite of tests that the softu~arc must 
pass to advancc to a new release. Three major sourccs 
of such tests arc the de\lelopment engineers, \illlo 
b l o w  where to probe thc weak points; commercial tcst 
suites, wliicli are the arbiters ofconformance; and ~ 1 1 s -  
tomer complaints, which developers must address to 
win customer loyalty. All three types of test cases are 
relevant to customer satisfaction and therefore have 
value to the developers. Thc resultant test suite for the 
sohvare under test becomes intellectual property, 
encapsulates the accumulated experience of  problem 
fixes, a i d  can contain more lines ofcode than the sofi- 
ware itsclf. 

Testing is always incomplete. The  simplest rneasurc 
of completeness is statement co\lcrage. Instrumentatioll 
can be added to the software bcforc it is tested. When 
a test is run, thc instrumentation generates a report 
detailing which statclnents arc ac t~~al ly  execi~ted. 
Obviously, code that is not executed was not tested. 
Random testing is n way to malce testing more com- 
plete. Onc value of random tcsting is introducing the 
unexpected test-1,000 monlteys on  the lceyboard can 
produce some surprising and even amusing input! The 
traditional approach to acquiring such input is to Ict 
university students use the sohvare. 

Testing s o h \ ~ a r c  is an active field of  endeavor. 
Interesting starting points for gathering backgroiuid 
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information and references are the web site main- 
tained by Software Research, Inc.' and the book 
SoJziut-c Testing arid Qi~uliQ Ass~imnce." 

Developer Distaste 
A development team with a substantial bug backlog 
does not find it helpfill to have an automatic bug 
finder continually increasing the backlog. The team 
priority is to address customer coniplaints before deal- 
ing with bugs detected by a robot. Engineers argue 
that the rando~nly produced tests d o  not uncover 
errors that are likely to bother customers. "Nobody 
\vould d o  that," "That error is not important," and 
"Don't waste our time; we have plenty of real errors 
to fix" are typical developer retorts. 

The cornplaints have a substantial basis. During a visit 
to our development group, Professor C. A. R. Hoa-e of 
Oxford University succinctly summarized one class of 
complaints: "You cannot fix a.11 infinite number of bugs 
one at a time." Some s o h a r e  needs a stronger remedy 
than a stream ofbug reports. Moreover, a stream of bug 
reports map consume the energy tliat could be applied 
in more general and productive ways. 

The developer pushback just described indicates that 
a differential testing effort must be based on  a per- 
ceived need for better testing from within the product 
develop~i~ent team. Performing the testing is pointless 
jfthc developers cannot or will not use the results. 

Differential testing is most easily applicable to soft- 
ware whose quality is already under control, that is, 
sohvare for which there are few known outstanding 
errors. Running n very large number of tests and 
expending team effbrt only when an error is found 
becomes an attractive alternative. Team members' 
morale increases when the software passes millions of  
hard tests and test coverage of their code expands. 

The technology should be important for applica- 
tions for which there is a high premium on  correct- 
ncss. In particular, product differentiation can be 
achieved for software that has few failures in compari- 
son to the competition. Differential testing is designed 
to provide such comparisons. 

The technology should also be important for appli- 
cations fbr which there is a high premium on indepen- 
dently duplicating the behavior of some existing 
application. Identical behavior is important when old 
software is being retired in favor of a new irnplementa- 
tion, o r  when the new sohvare is challenging a domi- 
nant competitor. 

Seeking an Oracle 
The  ugliest problem in testing is evaluating tlie result 
of a test. A regression harness can automatically check 
that a result has not changed, but this information 
serves no purpose unless the result is luio\vn to be cor- 

rect. The  very complexity of modern software that 
drives us to construct tests makes it impractical to pro- 
vide a priori knowledge of the expected results. The 
problem is worse for randomly generated tests. There 
is not likely to be a higher level of  reasoning that can 
be applied, which forces tlie tester to instead follow 
the tedious steps that the colnputer will carry out  dur- 
ing the test run. An oracle is needed. 

One class of results is easy to evaluate: program 
crashes. A crash is never the right answer. In  the triage 
that drives a maintenance effort, crashes are assigned to 
die top priority category. Although this paper does not 
contain an in-depth discussion of crashes, all crashes 
caused by differential testing are rcported and consti- 
tute a substantial portion of the discovered bugs. 

Differential testing, which is covered in the foUo\ving 
section, provides part of the solution to the problem of 
needing an oracle. The remainder of the solution is dis- 
cussed ui the section entitled Test Reduction. 

Differential Testing 

Differential testing addresses a specific problem-the 
cost of evaluating test results. Every test yields some 
result. If a single test is fed to several comparable pro- 
grams (for example, several C compilers), and one pro- 
gram gives a different result, a bug map have been 
exposed. For usable software, very few generated tests 
will result in differences. Beca~~se  it is feasible to gener- 
ate milljons of tests, even a few differences can result in 
a substantial stream of detected bugs. The trade-off is 
to use many computer cycles instead of human effort to 
design and evaluate tests. Particle physicists use the 
same paradigm: they examine millions of mostly boring 
events to find a few high-interest particle interactions. 

Several issues must be addressed to make differen- 
tial testing effective. The  first issue concerns the qual- 
ity of the test. Any random string fed to a C compiler 
yields some result-most likely a &agnostic. Feeding 
random strings to  the compiler soon becomes unpro- 
ductive, however, because these tests provide only 
shallow coverage of  the compiler logic. Developers 
must devise tests that drive deep into the tested com- 
piler. The second issue relates to  false positives. The 
results of two tested programs may differ and yet 
still be correct, depending on  the requirements. For 
example, a C con~piler may freely choose among alter- 
natives for unspecified, undefined, or  implementqt' < 1011- 
defined constructs as detailed in the C Standard." 
Similarly, even for required diagnostics, the form of  
the diagnostic is unspecified and therefore difficult t o  
compare across systems. The third issue deals with the 
amount of noise in the generated test case. Given a 
successful random test, there is likely to be a much 
shorter test that exposes the same bug. The developer 
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who is seeking to fix the bug strongly prefers to use thc 
shorter test. The fourth issue concerns comparing pro- 
grams that must run on  diflerent platforms. Differential 
testing is easily adapted to distributed testing. 

Test Case Quality 

Writing good tests requires a deep knowledge of the 
system under test. Writing a good test generator 
requires embedding that same knowledge in the gen- 
erator. This section presents tlie testing of C compilers 
as an cxample. 

Testing C Compilers 
For a C compiler, we constructed sample C source files 
at several levels of  increasing quality. 

1. Sequence of  ASCII characters 

2. Sequence of  words, separators, and white space 

3. Syntactically correct C program 

4. Type-correct C program 

5. Statically conforming C program 

6. Dynamically conforming C program 

7. Model-conforming C program 

Given a test case selected fi-om any level, we con- 
structed additional nearby test cases by randonily 
a d d n g  or  deleting some character or  word from the 
givcn test case. An altered test case is more liltely to 
cause the compilers to issue a diagnostic or  to crash. 
Both the selected and the a.ltered test cases are valuable. 

One of d ~ e  more entertaining testing papers reports 
the results of  feeding random noise to the C run-time 
library.* A typical library function crashed or  hung on 30 
percent of tlie test cases. C compilers should d o  better, 
but this hypothesis is worth checking. Only rarely 
wvould a tested compiler faced with level 1 input execute 
any code deeper than the lexer and its diagnostics. One 
test at this level caused the compiler to crash because an 
input line was too long for the compiler's buffer. 

At level 2, given lexically correct text, parser error 
detection and diagnostics are tested, and at the same 
time the leser is more thoroughly co\lered. The C 
Standard describes the form of C tokens and C "white- 
space" (blanks and comments). I t  is relatively easy to 
write a leseme generator that will eventually produce 
every corrcct token a i d  white-space. What surprised us 
was the kind of bugs that tlie testing revealed at this 

level. One  compiler could not hand.le OxOOOOOl if 
there were too many leading zeros in the hexadecimal 
number. Another compiler crashed when faced with 
die floating-point constant 1E1000. Many compilers 
failed to properly process digraphs and trigraphs. 

Stochastic Grammar 
A vocabulary is a set of nvo kinds of symbols: terminal 
and nonterminal. The terminal symbols are what one 
can write down. The ~lo~iterminal symbols are names 
for higher level language structures. For example, the 
symbol "+" is a terminal symbol, and the symbol 
"additive-espression" is a nonterminal symbol of the 
C prograrnlning language. A grammar is a set of rules 
for describing a language. A rule has a left side and a 
right side. The left side is always a nonterminal sym- 
bol. The right side is a sequence of symbols. The rulc 
gives one definition for the structure named by the Icfi 
side. For example, the rule shown in Figure 1 defines 
the use of "+" for addition in C. This rule is recursive, 
defining additive-expression in terms of itself. 

There is one special nontcrminal symbol called the 
start symbol. At any time, a nonterminal symbol can be 
replaced by the right side of a rule for which it is the left 
side. Beginning with the start symbol, nonter~ninals 
can be replaced until there are no more nonter~ninal 
symbols. The result of many replacements is a sequence 
of terminal symbols. I f  the grammar describes C, the 
sequence of terminal sy~nbols will form a syntactically 
corrcct C program. Randomly generated white-space 
can be inserted during or  aftcr generation. 

A stochastic grammar associates a probability \vith 
each grammar rule. 

For level 2, we wrote a stochastic grammar for ley- 
emes and a Tcl script to interpret the gramniar,'." per- 
forming the replacements just described. Whenever a 
nonterminal is to be expanded, a new random number 
is compared with the fixed rule probabilities to direct 
the choice of right side. 

In either case, at this level and at levels 3 through 7, 
setting the many fixed choice probabilities pcrmits 
some control of  the distribution of  output values. 
No t  all assignments of probabilities make sense. The  
probabjlities for the right sides that define a specific 
nonterminal must add up to 1.0. The probability of 
expanding recursive rules must be weighted toward a 
nonrecursive alternative to avoid a recursion loop in 
the generator. A system of linear equations can be 
solved for the espectcd Icngths of strings generated by 

Figure 1 
Rule That Defincs the Use of "+" for Addition in C 
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each nonterminal. If, for some set of probabilities, all 
the expected lengths are finite and nonnegative, this 
set of probabilities ensures that the generator does not 
often run away. 

Increasing Test Quality 
At level 3 ,  given syntactic all^^ correct tcxt, one would 
expcct to see declaration diagnostics while more thor- 
oughly covering the code in the parser. At this level, 
the generator is unlikely to produce a test program 
that will co~npile. Nevertheless, conlpiler errors were 
detectcd. For example, one parser refused the expres- 
sion 1==1==1. 

The syntax of C is given in the C Standard. Using 
the concept of stochastic grammar, it is easy to write a 
generator that will eventually produce every syntacti- 
cally correct C translation-unit. In fact, \\re extended 
our Tcl leser grammar to all of C .  

At level 4, given a syntactically correct generated 
progralii in which every identifier is declared and all 
expressions are type correct, the lexer, the parser, and a 
good deal of the semantic logic of the compiler are 
covered. Some generated test programs compile and 
execute, giving the first interesting differential testing 
results. Achieving level 4 is not easy but is relatively 
straightforward for an experienced compiler writer. A 
symbol table must be built and the identifier use lim- 
ited to those identifiers that are already declared. The 
requirements for combining arithmetic types in C 
( i n t ,  short, char, float, double with long 
and/or unsigned) \yere expressed grammatically. 
Grammar r~lles defining, for example, int-additive- 
expression replaced the rules defining additive-expres- 
sion. The replacements were done systematically for all 
combinations of arithmetic types and operators. To 
avoid introducing typographical errors in the defining 
grammar, m ~ ~ c h  of  the grammar itself was generated 
by auxiliary Tcl programs. The Tcl grammar inter- 
preter did not need to be changed to accommodate 
this more accurate and \loluminous grammatical data. 
\Ye cstended the generator to implement declare- 

before-use and to provide the derived types of  C 
(struct, union, pointer). These necessary 
improvements led to thousands of  lines of tricky 
implementation detail in Tcl. At this point, Tcl, a 
nearly structureless language, was reaching its limits 
as an implementation language. 

At level 5, where the static semantics of the C 
Standard have been factored into the generator, most 
generated programs compile and run. 

Figure 2 contains a fi-agnicnt of a generated C test 
program from level 5. 

A large percentage of level 5 programs terminate 
abnormally, typically on a divide-by-zero operation. A 
peculiarity of C is that many operators produce a 
Boolean value of  0 or  1. Consequently, a lot of expres- 
sion results are 0, so  it is likely for a division operation 
to have a zero denominator. Such tests are wasted. The 
number of wasted tests can be reduced somewhat by 
setting low probabilities for using divide, for creating 
Boolean values, or for using Boolean values as d.ivisors. 

Regarding level 6, dynamic standards violations can- 
not be avoided at generation time without a priori 
choosing not to generate some valid C, so instead we 
implement post-run analysis. For every discovered dif- 
ference (potential bug), we regenerate the same test case, 
replacing each arithmetic operator with a fi~nction call, 
uiside which there is a check for standards violations. 

The following is a fi~nction that checks for "integer 
shift out  of range." ( I f  \ve \\/ere testing C++,  we could 
have used overloading to avoid having to include the 
type signature in thc name of the checking function.) 

int 
int-shl-int-int(int val, int an t )  { 

assert(amt >= 0 && amt c sizeof(int)*8); 
return val cc amt; 

1 

For example, the generated text 

is replaced upon regeneration by the text 

+t u115 + - -  ui8 * tt u116 - ( ui17 + ++ ui20 * ( $121 & ( argc c<= 
c14 ) ? ( us23 ) c ++ argc c= ++ s122 : -- ( ( * & * & 8124 1 == 
0160030347~ s ++ t t5u7 ) . sit51116 & 1731044438~ * ++ ui25 * ( 

unsigned i n t  ) ++ ( ld26 ) & ( ( ( 0761 1 2137167721L * 8127 ? 
u128 & dl.2 * ++ d9 * DBL-EPSILON * 7e+4 + ++ dl1 + ++ dl0 * dl2 ( 
++ ld31 * .4L * 9.1 - ld32 * ++ f33 - - .7392E-6L * ++ 1634 + 22.82L 
+ 1.91 -- ld35 >= + t  1637 ) == 9.F t ( t+ £38 ) + t+ f39 * f 4 0  > ( 
float ) ++ f41 * f42 ,= c14 ++ : ac43 & as44 ) * uc13 h .9309L - ( 
ui18 * 007lOlU * u i f 9  ? ~ ~ 4 6  -- ? -- ld47 + ld48 : ++ ld49 - ld48 
++ ld50 : ++ 1851 1 >= 239.611 1 A - ++ argc == ( int afgntad ) argc - 
++ ui54 ) -  ++ u157 >= ++ u158 argc - 9111 ++ * & u159 * + +  u160 ; 

Figure 2 
Generated C Espression 
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If, on  being rerun, the regenerated test case asserts a 
standards violation (for example, a shift of  more than 
the word length), the test is discarded and testing con- 
tinues with the nest case. 

T\vo problems with the generator remain: (1) obtain- 
ing enough output from the generated programs so 
that differences are visible and (2) ensuring that the 
generated programs resemble real-world programs so 
that the developers are interested in the test results. 
Sol\ling these two problems brings the quality of test 
input to level 7. The trick here is to begin generating the 
program not 6om the C grammar nontermind symbol 
translat~on-un~t but rather fiom a model program 
described by a morc elaborate string in which solnc of 
the program IS already hlly generated. As a simple 
esamplc, supposc you want to generate a ~iuniber of 
print statements at thc end of the test program. The 
starting string of the generating grammar might be 

int main() I 
declaration-list 
statement-list 
print-list 
exit(0): 

where the gammatical definition of p r i n t - l i s t  is 
given by 

print-list P [ identifier ) ; 
print-list print-list P ( identifier ) ; 

In  the starting string above there are three nonter- 
minals for the three lists instead of just one for tlie 
standard C start symbol translation-unit. Progranis 
generatcd from this starting string will cause output 
just before exit. Because differences caused by round- 
ing error were uninteresting to us, we modified this 
print macro for types float and double to print only 
a few significant digits. With a little more effort, the 
expansion o f p r i n t - l i s t  can be forced to  print each 
variable esactl y once. 

Alternatively, suppose a test designer receives a bug 
report fi-om the field, analyzes the report, and fixes the 
bug. Instead ofsimply putting the bug-causing case in 
the regression suite, the test designer can generalize it 
in the manner just presented so  that many similar test 
cases can be used to explore for other nearby bugs. 

The effcct of level 7 IS to nugnient the probabilities 
in thc stocliast~c grammar with more precise and direct 
means of control. 

Forgotten Inputs 
The claborate command-line flags, config files, and 
environment variables that condition the behavior of 
programs are also input. Such input can also be gener- 
ated using the same toolset that is used to generate the 
test programs. The very first test on  the very first run 

104 Digital Tcchnicnl Journal Vol. 10 No. 1 1998 

with generated compiler directive flags revealed a bug 
in a compiler under test-it could not even compile its 
own header files. 

Results 
Table 1 indicates the kinds of bugs we discovered dur- 
ing the testing. Only those results that are exhibited by 
very short text are shown. Some of the results derive 
from hand generalizatioil of a problem that originally 
surfaced through rand on^ testing. 

There was a reason for each result. For example, thc 
server crash occurred when the tested cornpilcr got a 
stack overflo\v 01.1 a heavily loaded machine with a very 
large memory. The operating system attempted to 
clump a gigabyte of compiler stack, which caused all 
tlie otlier active users to  thrash, and many of them also 
dumped for lack of memory. The many disk drives on 
the server began a dance of the lights that sopped up 
the remaining free resources, causing the operators to  
boot the server to recover. Excellent testing can make 
you unpopular with almost everyone. 

Test Distribution 

Each tested or  comparison prograni must be executed 
where it is supported. This may meal1 different hard- 
ware, operating system, and even physical location. 

There are numeroils ways to utilize a network 
to distribute tests and then gather the results. One par- 
ticularly simple way is to use continuously running 
watcher programs. Each watcher program periodically 
examines a common file system for tlie esistence of 
some particular files upon which the program can act. 
I f n o  files exist, the watcher program slccps for a while 
and tries again. O n  most operating systems, watcher 
programs can be implemented as command scripts. 

There is a test master and a number of  test beds. 
The test master generates the test cases, assigns them 
to the test beds, and later analyzes the results. Each 
test bed runs its assigned tests. The test master and test 
beds share a file space, perhaps via a network. For each 
test bed there is a test input directory and a test output 
directory. 

A watcher program called the test driver waits until 
all the (possibly remote) test input directories are 
ern!", The test driver then writes its latest generatcd 
test case into each of the test input directories and 
rcturns to its watch-sleep cycle. For each test bed tlicrc 
is n test watcher program that waits until there is a file 
in its test input directory. When a test watcher finds a 
file to test, the test watcher runs the new test, puts the 
results in its test output directory, and returns to tlie 
watch-sleep cycle. Another watcher program called 
the test analyzer waits until all the test o i ~ t p u t  directo- 
ries contain results. Then the results, both input and 



Table 1 
Results of Testing C Compilers 

Source Code 

if (1.1) 
1 ? 1 : 1 / 0  
O.OF/O.OF 
x!=O?X/x: I 
1 == 1 == 1 

-!O 
0x000000000000000 
0x80000000 
1E1000 
1 >> INT-MAX 
'a b' 
int i=sizeof(i=l); 
LDBL-MAX 

(++n,O) ? -- n: 1 
if (sizeof(char)+d) f(d) 
i=(unsigned)-I .OF; 
int f(register()); 
int (...(x)...); 

digraphs (<: <% etc.) 
alb 

Resulting Problem 

Constant float espression evaluated false 
Se\reral compilcr crashcs 
Compiler crash 
Incorrect answer 
Spurious syntas error 
Spurious type error 
Spurious constant out of rangc message 
I~i~orrcct  constant con\,crslon 
Comp~ler crash 
T\vcnty-minute compile time 
Inconsistent byte order 
Compiler crash 
Incorrect value 
Operator ++ ignored 
Illegal instruction in code generator 
Random value 
Compiler crash or spurious diagnostic 
Enough nested parentlncses to lull thc  compiler 

Spurious diagnostic (10 parentheses) 
Compiler crash (100 parentheses) 
Scrver crash (10,000 parentheses) 

Spurious error mcssages 
The famous Pentium divide bug (we did not catch it 

but \Ire could have) 

output, are collected for analysis, and all the files are 
deleted from every test i n p ~ ~ t  and output directory, 
thus enabling another cycle to begin. 

Using the file system for synchronization is adequate 
for computations on the scale of a compile-and-execute 
sequence. Because of the many sleep periods, h s  distri- 
budon systern runs efficiently but not fast. If tlirough- 
put becomes a problem, the test systern designer can 
provide morc sophisticated remote execution. The dis- 
tribution solution as described is ncither robust against 
crashes and loops nor easy to start. It is possible to elab- 
orate the watcher programs to respond to a reasonable 
number of additional requirements. 

Test Analysis 

The test analyzer can compare the output in various 
\vays. The goal is to discover likely bugs in the corn- 
piler undcr tcst. The initial step is to distinguish the 
test results by failure category, using corresponding 
directories to hold the results. If the compiler under 
test crashes, the test analyzer writes the test data to the 
crash directory. If the compiler undcr test enters an 

endless loop, the test analyzer writes the test data to 
the loop directory. If one of the comparison conlpilers 
crashes o r  enters an endless loop, the test analyzer dis- 
cards the test, since reporting the bugs of a compari- 
son compiler is not a testing objective. If some, but 
not all, of  the test case executions terminate abnor- 
mally, the test case is written to  the abend directory. If 
all the test cases run to  conlpletion but the output dif- 
fers, the case is written to the test diff directory. 
Otlieruise, the test case is discarded. 

Test Reduction 
A tester must esamine each filed test case to determine 
ifit exposes a fault in the compiler under test. The first 
step is to reduce the test to the shortest version that 
qualifies for examination. 

A watcher called t l ~ e  crash analyzer esamines the 
crash directory for files and moves found files to a 
\\[orking directory. The crash analyzer then applies a 
S~OI- t cn ing  tra~isformation to the source of thc test 
case and reruns the test. If the compiler under test still 
crashes, the original test case is replaced by the short- 
ened test case. Otherwise, the change is backed out 
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and a new transformation is tried. We used 23 heuris- 
tic transformations, including 

Remove a statement 

Remove a declaration 

Change a constant to 1 

Change an identifier to 1 

1 Delete a pair of matching braces 

Delete an if clause 

When all the transformations have been systematically 
tried once, tlie process is started over again. The  
process is repeated until a whole cj~cle leaves the 
sourcc oftlie test unchanged. A similar process is used 
for thc loop, abend, and diffdirectories. 

The typical result of  the test reduction process is to 
reduce generated C test programs of 500 to 600 lines 
to equally usefil C programs of  only a few lines. It is 
not ~ ~ n u s u a l  to use 10,000 or  more compile opera- 
tions during test reduction. The trade-off is using 
many computer cycles instead of human effort to ana- 
lyzc tlie ugly generated test case. 

Test Presentation 
After the shortcst form of thc tcst case is ready, thc tcst 
analyzer wraps it In a c o ~ n ~ n a ~ l d  script that 

1. Reports environmental information (compiler vcr- 
sion, compiler flags, name of the  test platform, time 
of  test, etc.) 

2. Reports thc test output o r  crash information 

3. Reruns tlie test (the test input is embedded in the 
script) 

The test analyzer writes the command scripts to a 
results directory. 

Test Evaluation and Report 
person who is managing the differential testing 

setup periodically runs scripts that have accumulated in 
tlie results directory to determine \vhich ones cspose a 
problem of interest to the develop~nent team. Onc 
proble~n peculiar to random testing is that once a bug 
is found, it will be found again and again until it is 
fixed. This argues the case for giving high priority to 
the bugs exposed by differential testing. Uninteresting 
and duplicate tests are manually discarded, and the rest 
are entered into the development team bug queue. 

Summary and Directions 

Differential testing, suitably tuned to the tested 
program, conipleme~its traditional software testing 
processcs. It finds faults that wo~lld otherwise remain 
undetected. It is cost-effective. I t  is applicable to a 
\vide range of large soft\\pare. I t  has proven unpopular 
with tlic dcvelopcrs of the  tested software. 

This technology exposed new bugs in C co~npilers 
each day during its use at DIGITAL. Most of  the bugs 
were in the comparison compilers, but a significant 
number of bugs in DIGITAL code were found and 
corrected. 

Numerous special-purpose differential testing har- 
ncsses were put into use at DIGITAL, each testing 
some small part of a large program. For example, the 
C prcproccssor, multidimensional Fortran arrays, 
optimizer constant folding, and a new p r i n t f  f i~nc- 
tion each \\/ere tested by ad hoc differential testers. 

The  Java API (run-time library) is a large body of 
relatively new code that runs on  a wide variety of  plat- 
for1-n~. Since "Write once, run anywhere" is the Java 
~iiotto,  the standard for conformance is high; liowe\ler, 
experience has shown that the standard is difficult to 
achieve. Differential testing should help. What needs 
to be done is to generate a sequence of  calls into the 
API on  various Java platfornis, comparing tlie results 
and reporting differences. Technically, this procedure 
is much simpler than testing C compilers. Chris Rohrs, 
an MIT intern at lIIGITAL, wrote a system entirely in 
Java, gathering method signature information dircctly 
out  of the binary class files. This API tester may be 
ilsecl \ \~ l ic~i  the quality of the Java API reaches tlie 
point where the implementors are not buried in bug 
reports and when there are more independent iniplc- 
mentations of  the Java run time. 

Differential testing can be used to increase tcst cow 
erage. Using the coverage data taken from running 
the standard regression suite as a baseline, the dcvcl- 
opers can run random tests to see if coverage can 
be increased. Developers can freely add coveragc- 
increasing tests to the test suite using the test output 3s 
an initial oracle. N o  11arm is done because e\Ien if tlic 
recorded ~.csult is \vrong, the compiler is no  worse off 
for it. If at a later time a regression is observed o n  thc 
gencratcd test, either the new or  the old version u.as 
wrong. Thc dc\,elopers are alerted and can react. John  
Parlu and John Hale applied this technology to 
DIGITAL'S C compilers. 

The probleni of  retiring an old conipiler in favor of a 
new one requires the new one to duplicate old behavior 
so as not to upset the installed base. Differential testing 
can cornpare the old and the new, flagging all new 
results (correct or  not) that disagree with thc old results. 

Differential testing call be used to  measure quality. 
Supposing that the majority rules, a rnillioll tests can 
be run on  a set ofcompeting compilers. The metric is 
failed tests per million runs. The authors of  the hilcd 
compilers can cithcr fis the bugs or provc the majority 
wrong. In any case, quality improves. 

At Compacl, differential testing opportunities arisc 
regularly and are often satisfied by testing systenis that 
arc less elaborate than tlie original C testing systcn~, 
which has been retired. 
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