A Fast and Intuitive Online Help

System

The HP Help System provides application developers with the tools to
create and integrate rich online help information into their OSF/Motif-

based applications.

by Michael R. Wilson, Lori A. Cook, and Steven P. Hiebert

With the growing complexity of today’s UNIX*-operating-
system applications, and the desire to improve usability,
media-rich information is becoming more pervasive in
today’s computing environments. Users expect some base
level of online help to be provided from within the applica-
tions they are using. They expect online information to be
intuitive and graphical, with growing expectations of direct
audio and video support and interactive capabilities.

The HP Help System is a good start towards providing multi-
media online information that is both fast and intuitive. It has
become the standard online help system within HP and is
used extensively by the HP VUE and HP MPower products
and many other OSF/Motif-based products.

Background

The current HP Help Developer’s Kit is the second attempt by
the HP VUE program to deliver an application help system
for everyone. The first version, HP Vuehelp 2.0, while satisfy-
ing some of the HP VUE requirements as an application help
system, failed to meet application developers’ requirements
for features, performance, and ease of integration.

One of the design goals for the HP Help System was to de-
liver a complete solution to developers for creating, inte-
grating, and shipping rich online information with their OSF/
Motif-based application, while keeping its presence (system
resource use) to a minimum. There is a very fine line be-
tween providing the rich set of features that our customers
require and maintaining our performance objectives. In 95%
of the cases in which the issue of features versus performance
came up, performance won.

Based on the knowledge and insight our team gained in do-
ing the first version of the HP Help System, and a willingness
to make radical changes in our second release, we basically
started from scratch. We knew that our next-generation help
system needed to provide a competitive set of base features
and functionality that developers require, while producing
little or no end-user-visible performance degradation to the
hosting application.

The Help Developer’s Kit

Style Manager — Help
File Search Navigate Help | =<—— Menu

Topic Hierarchy

“You Are
Welcome to Style hfanager ~«——— Here”
Style Manager Tasks Context
E Select workspace backdrop patterns,
ZEr Help Text
Display

» Customizing System Behavior shows you how to customize
systern behavior, including mouse double-click speed and
window focus behavior.

Set Key click volume or character repeat
capability.

E Change mouse hutton click settings, double—click
speed, pointer acceleration, or pointer movement
threshold.

v Change beeper volume, tone, or duration.

E Choose the number of minutes before your screen
fimes out or whether or not your screen is

Fig. 1. Help dialog widget.

their client application. The help dialog widget (Fig. 1)
serves as the main display window for the HP Help System.
A second, lighter-weight help widget (quick help dialog) is
also available in the toolkit.

Following is a list of the components supported in the

developer’s kit:

For Authors

O The HP HelpTag markup language. This is a set of tags
used in text files to mark organization and content of on-
line help information. HP HelpTag is based on SGML
(Standard Generalized Markup Language).

© The HP HelpTag software. This is a set of software tools
for converting the authored HP HelpTag files into run-time
help files that contain the text for the help messages
displayed in the help widgets.

© The HelpView application. This is a program that allows
an author to test a newly developed online help facility.

The HP Help Developer’s Kit is a complete system for devel- ¢ For Programmers

oping online help for any OSF/Motif-based application. It
allows authors to write online help that includes graphics
and text formatting, hyperlinks, and communication with the
application. It provides a programmer’s toolkit allowing de-
velopers to integrate this rich online help information into

© The Xvh programming library. This library provides an
application programming interface for integrating help
windows into an application.

April 1994 Hewlett-Packard Journal 79

© A demonstration program. This is a simple example that
shows how to integrate the HP Help System into an OSF/
Motif application.

General Packaging Architecture

An online help system needs to feel like it is part of the host
application to the end user, not an appendage hanging off to
the side. For developers to leverage a third-party help system,
it must be delivered in such a way as to provide easy and
seamless integration into their application. Furthermore, the
effort and overhead of integrating and redistributing this
help system along with their application must be minimal,
while at the same time meeting the application’s and end-
user’s requirements for help. Users should feel as if they
have never left the application while getting help.

During our initial prototyping of the current HP Help System,
we kept stumbling on the same two key issues: performance
(how to make the system light and fast) and packaging (how
to make it easy to integrate into any OSF/Motif-based appli-
cation and redistribute with that application). Our initial help
system suffered greatly in both of these areas. HP Vuehelp
2.0 was server-based, large, slow, and dependent on the HP
VUE desktop. Any application using our help services had to
run within the HP VUE desktop environment.

We addressed these two issues with our current release and
ended up with a very different package. To fix the perfor-
mance problems of slow startup times and heavy server-
based implementation, we started copying functionality from
the help server into the client via a linked-in help library.
While prototyping this architecture, we quickly realized that
we were duplicating services. However, we were also get-
ting much better performance from the new client code. At
that point we realized that if we moved everything to a help
library we could fix our two biggest problems: performance
and packaging.

By moving to a help library and removing our hard-wired
dependencies on the HP VUE desktop and by bundling our
product with HP’s User Environment Developer’s Kit, we
cleaned up our previous dependency problems with HP
VUE. Now developers can embed help directly into their
application and ship a single executable that includes both.
Developers only have to link their OSF/Motif application
with the HP Help System library and they are ready to go.
All dependencies on external system and desktop services
have been removed. Fig. 2 shows an overview of our old
and new help system architectures.

Following are some of the advantages we gained by moving
from our initial HP Vuehelp 2.0 server-based implementation
to an embedded client-side architecture.

Integration Advantages:

O OSF/Motif-based application program interface (simple to
use for developers familiar with OSF/Motif)

O Complete application control over the help system dialog
management including creation, destruction, caching, and
reuse

O Smooth transition into the help system via consistent
resource settings between the application and the help
system (e.g., same fonts and color scheme and quick
response times)

80 April 1994 Hewlett-Packard Journal

Embedded Embedded
Help System Help System
APl XK
)) SRR LI
Client Client RS 5% Help Server
Application Application B 5% Application
—> — XXX KRR —

Help Memory Use =
400K Bytes per Application

@) (b)

Help Memory Use =
2.1M Bytes per User

Fig. 2. Two different approaches to integrating online help into an
application. (a) Client side embedded implementation using HP VUE
3.0 help. (b) Help server implementation using HP VUE 2.0 help. Our
initial prototypes revealed that the client side embedded solution is
better in terms of performance (rendering time) and memory use.

O Immediate support for a tightly coupled application-to-
help system environment (e.g., application-defined and
processed help controls such as hypertext links)

O Application-specific customization of the help system.

* Packaging Advantages:

O Eliminates installation and version problems (Since appli-
cations are not sharing the help services, the contention
between older or newer software versions does not exist.)

© Eliminates distribution problems. (The help system is
linked directly into the host application, tested and
shipped as one executable.)

Performance Advantages:

O Requires less overall system resources (RAM and disk) for
a single application using the help services

O Provides much faster initial response time when displaying
help requests.

Integration Concepts, Practices, and Mechanisms

As mentioned in the previous section, the run-time help
facility is made up of a collection of help dialog widgets and
files containing online help information. The help widgets
are linked directly into the client application via the help
library libXvh.a* and instantiated by the client to display help
information. While the help dialogs serve only as vehicles
for displaying online help information, standard OSF/Motif,
Xlib, and X toolkit (Xt) services provide the glue to integrate
the dialogs into the application.

The online help files in the HP Help System are called help
volumes. These volumes contain the text for the help topics
that are displayed in the dialog widgets. The following files,
or volumes are used by the HP Help System:

* volume.hv. This is the master help volume file accessed by the

HP Help System when a user makes a request for help in-
formation. Information stored in this file is used to access
the actual help topics stored in the help topic (ht) files.
volume.hvk. This is a keyword index file for the master help
volume.

volumeNN.ht. These are the help topic files, where NN repre-
sents file numbers (00, 01, 02 ...). If there are no chapter
elements in a help volume, only a single topic file (e.g.,
volume00.ht) will exist. These are the files containing the help
text.

The relationship between these files is shown in Fig. 3.

Keyword File
(volume.hvk)

Keyword Entry

Master Help Volume
(volume.hvk)

Topic
Files

Volume00.ht

Volume01.ht VolumeNN.ht

Fig. 3. The HP help file system.

There are two levels of integration with respect to the HP
Help System: integrating help into an application and inte-
grating a help-smart application into an HP VUE or HP
MPower desktop environment.

Integrating Help into an OSF/Motif Application
Developers have many degrees of freedom with respect to
how much or how little help capability they include in an
application. If an application and its help information have
very loose ties, there may be only a handful of topics that
the application is able to display directly. In contrast, the
application could provide specific help for nearly every ob-

ject and task in the application. This requires more work, but

it provides potentially greater benefits to the end user.

Help Dialogs. Two help widgets are supported in the help

library: quick help dialog and general help dialog. They both

support the same text, hypertext, and graphics display capa-
bilities, but differ with respect to the remainder of the user

interface. The quick help dialog (Fig. 4) is a very simple help

dialog intended for displaying small blocks of text to the
user. Quick help dialog is best used for handling things like
error messages, version information, and object and item
definitions.

The general help dialog, which is the most commonly used
help dialog, has a few more user interface features than the
quick help dialog widget. Most notably, the Topic Hierarchy list
(see Fig. 1), which appears just above the help text display
area, indicates the location of the current topic in the help
topic hierarchy. The general help dialog also provides vari-
ous navigational aids to assist the user in moving about the
online help information space.

Standard Xt Paradigm. The programmer interacts with the help
dialogs in the same manner as any other OSF/Motif widgets
used by the application. The two types of help dialogs are
defined by the following two widget classes:

* XvhQuickHelpDialogWidgetClass (for quick-help dialog)

* XvhHelpDialogWidgetClass (for general-help dialog).

Nearly every attribute of the help windows including the
volume name and topic identifier are manipulated as widget
resources. For instance, to display a new topic, an XtSetValues()
call is made to set the volume, location identifier, and help
type resources.

Creating Help Entry Points

Each help topic that can be displayed directly as the result of
a help request is called an entry point. That is, if there is at
least one way to get directly from the application to a help
topic, then that help topic is an entry point into help. Help
menus and buttons in the application are the basic help
entry points for an application. The types of help requests
that provide entry points into the HP Help System are
contextual help and item help.

Contextual Help. Contextual help provides help information
about the item on which the selection cursor is positioned.
Contextual help information provides users with information
about a specific item as it is currently used. The information
provided is specific to the meaning of the item in its current
state. For example, suppose a user is running an application
that uses an options widget that has four options. If the user
requests information on the widget while it has option 1
selected, the user will get help information on the option
widget in the context of its option 1 setting.

A selection cursor, which is a visual cue, enables users to
indicate with the keyboard the choice with which they want
to interact. It is typically represented by highlighting the
choice with an outline box.

The OSF/Motif user interface toolkit, through its help call-
back mechanism, provides direct support for contextual help
entry points. When a valid help callback is added to a wid-
get, and the user presses the help key (F1) while that widget
has the current keyboard focus (e.g., selection cursor), the
widget’s help callback is automatically executed.

From within the help callback, the application has the op-
portunity to display some help topic based on the selected

Help On Help

Using the HP Help System

Wealcome to the HF Healp Systein. To learn about using help
windows, choose one of the following hyperlinks:

Using Hyperlinks
Browsing Help Topics
Ising the Kewword Index

Printing Help Topics
Bewisiting Topics (History]

To choose a hyperlink:

Any underlined text you see within a help window is a

DK Backirack Print

Fig. 4. Quick help dialog box.

April 1994 Hewlett-Packard Journal 81

widget, or the application could dynamically construct some
help information based on the current context of the selected
i 1,2

item.1,

Any level of granularity can be applied when adding help
callbacks to an application’s user interface components.
They can be added to all the widgets and gadgets within the
application dialogs, the top-level windows for each of the
dialogs, or any combination in between.

If the user selects F1 help with the selection cursor over a
widget or gadget that has no help callback attached to it, the
OSF/Motif help callback mechanism has a fallback mecha-
nism for providing more general help. The help callback
mechanism will jump to the nearest ancestor that has a help
callback assigned and invoke that callback. The theory is that
if there is no specific help on that widget or gadget, then it
is better to provide more general help than none at all. Ap-
plication developers are responsible for adding their own
help callbacks to the user interface components in their ap-
plication. OSF/Motif sets these callbacks to NULL by default.

Item Help. Item help allows users to get help on a particular
control (e.g., button, menu, or window) by selecting the
item with the pointer. Item help information should describe
the purpose of the item for which help is requested and
should tell users how to interact with that item. An item help
request does not provide context sensitive information like
the current state of the selected item.

Item help is usually accessed via an application’s Help menu
under the On ltem menu selection. Once selected, the cursor is
replaced with a question mark cursor. The user can then
select the item of interest.

The HP Help System API utility function, XvhReturnSelected-
Widgetld() assists developers in providing item help within their
application. This function provides an interface for selection
of a component within an application. XvhReturnSelectedWidgetid()
returns the widget identifier for any widget in the user inter-
face that the user has selected via the pointer.

At any point while the question mark cursor is displayed the
user can select the escape key (ESC) to abort the function call.
If the user selects any item outside the current application
windows the proper error value will be returned.

Once XvhReturnSelectedWidgetld() returns the selected widget
identifier, the application can invoke the help callback on
the identified widget or gadget to process the selected item.
From the help callback the application can display some help
topic based on the selected widget or dynamically construct
some help information based on the current selected item.

Integrating a Help-Smart Application

There are no restrictions regarding where run-time help files
are installed. However, a suggested practice is to package a
help volume in a separately installable file set so that the
system administrator can place them on a system file server.
This will save local resources and make the help information
available to a larger number of users. The default configura-
tion is for the run-time files to be installed with the rest of
the application’s files.

Another important step in installing help files is registration
(or symbolic links to help volumes). The registration process

82 April 1994 Hewlett-Packard Journal

SLANG
luser/vhelp/volumes/C/*

HPHelpKit.hv Vueintro.hv Vuewm.hv hpuxerror.hv reboot.hv
Help4Help.hv Vuelogin.hv browser.hv hpuxinfo.hv samprinter.hv
SharedX.hv Vuemisc.hv fax.hv hpuxreply.hv singleuser.hv

L] L] L] L] L]

L] L] L] L] L]

L] L] L] L] L]
@)

$LANG

luser/vhelp/families/C/*

HPVUE.hf SharedX.hf whiteboard.hf

(b)

Fig. 5. Help directory contents. (a) A portion of a directory contain-
ing help volumes. (b) A directory containing product families.

enables two important features of the HP Help System:
cross-volume hyperlinks and product family browsing.

Registering a Help Volume. After the run-time files have been
installed, a help volume is registered by creating an HP-UX¥
symbolic link to the help volume’s volume.hv file. The link is
created in one of the directories that the help system
searches for help volumes (Fig. 5a). For most help volumes,
the appropriate place for the link is in the /usrivhelp/ivolumes/
$LANG/ directory, where $LANG represents the language of the
help volume being registered. The default language for help
files is usually English.

Registering a Product Family. A product family is a group of
help volumes belonging to a particular product. To register a
product family, a help family file (producthfy must be created
with the rest of the product’s help files. The family file is
registered by creating a symbolic link to the product-name.hf file.
For most products, the appropriate place for the link is in
the lusrivhelp/families/$LANG/ directory (see Fig. 5b).

Family files can be read with the helpgen program (part of
HP VUE), which creates a special help volume that lists the
families and the volumes within each family installed on the
system.

Access to Help Volumes

The HP Help System has a simple, yet extensible mechanism
for transparent access to help volumes installed on the desk-
top. It supports both local and remote access to help vol-
umes and works with any number of workstations. The only
dependencies required are the proper help registration as
discussed above, NFS services (i.e., remote systems mounted
to the local server), and proper configuration of the help
environment variables discussed below.

When an application creates an instance of a help widget

the XmNhelpVolume resource can be set using either a complete
path to the volume.hv file, or if the volume is registered, using
the base name (i.e., the file name without the hv attached) of
the volume. When using the base name, the help system
searches several directories for the volume. The search ends
when the first matching volume.hv file is found. The value of
the user’s $LANG environment variable is also used to locate
help in the proper language (if it’s available).

The environment variable XYHHELPUSERSEARCHPATH specifies
the user search path for locating help volumes. Whenever
this resource is set to a relative path, the user’s default home
directory will be prepended to the value contained in the
XmNhelpVolume resource. The default value used when the
environment variable is not set is:

vhelp/%T/%L/%H.hv:\
vhelp/%T/%H.hv:\
vhelp/%T/%L/%H:\
vhelp/%H:\
vhelp/%T/C/%H.hv:\
vhelp/%T/C/%H:

where:

%L is the value of the $LANG environment variable

(C is the default)

%T is the type of file (volume or family) being searched for
%H is the help volume specified.

These path names are illustrated in Fig. 5.

The environment variable XVHHELPSYSTEMSEARCHPATH specifies
the system search path for locating help volumes. The default
value used when this environment variable is not set pre-
pends the string /usr to the strings given above. For example,
vhelp/%T/%L/%H.hv:\ becomes fusrivhelp/%T/%L/%H.hv\. Note that the
user search path defined above takes precedence over the
system search path.

Run-Time Help Volumes

The flexibility and power of this help system is largely
placed in the author’s hands. With the HP HelpTag markup
language and a creative author, very different and interesting
approaches can be taken with respect to presenting informa-
tion to the end user. Documents can be organized in either a
hierarchy with hyperlinks referencing the children at any
given level, or in the form of a network or web, with a lin-
ear collection of topics connected with hyperlinks to related
topics (see “Information Models for Online Help” on page 92
for more about these document organizations). It's up to the
author to explore the many capabilities with respect to
producing effective online help information for a particular
system.

Help Volume Structure. A help volume is a collection of related
topics that form an online book. Normally, the topics within
a volume are arranged in a hierarchy. Developers usually
create one help volume per application. However, for com-
plex applications or a collection of related applications sev-
eral help volumes might be developed. Topics within a help
volume can be referenced by unique location identifiers that
are assigned by the author. It is through these location iden-
tifiers that help information is referenced in the run-time
environment.

Help Volume Authoring. Online help is written in ordinary text
files. Special codes, or tags, are used to mark up elements
within the information. The tags form a markup language
called HP HelpTag. The HP HelpTag markup language de-
fines a hierarchy of elements that define high-level con-
structs such as chapters, sections, and subsections, and low-
level elements such as paragraphs, lists, and emphasized
words (Fig. 6). The text files created by authors and any
associated graphics files are compiled using the HP HelpTag

<lentity versionGraphic FILE "bike.bm”>
<metainfo>

<title>Helpdemo (Sample Application)
<copyright>

<graphic entity=versionGraphic><term nogloss|Helpdemol, Version 1.0

<image>

© Copyright Hewlett-Packard Company 1992
All Rights Reserved.

<limage>

IThis program is for demonstration purposes only! !!

<abstract>This online help volume is used with the ‘helpdemo’ program
that demonstrates how to use the HP Help System in an OSF/Motif
application.

<\metainfo>

<hometopic>Helpdemo Help Information
<idx|introduction|

This is the home topic. This is the top level of your helpdemo
help information.

Choose one of the following links to find out more about the helpdemo
program.

<list bullet>
* <xref chaplID>
* <xref chap2ID>
<\list>

<chapter id=chap1ID>An Application Help System

<list bullet>
* <xref onApplicationMenu>
* <xref sampleBtnOne>
* <xref sampleBtnTwo>
<\list>

<s1 id=sampleBtnOne>Button One Help

Here’s the help text for our sample button one.

<sl id=sampleBtnTwo>Button Two Help

Here’s the help text for our sample button two.

<s1 id=onApplicationMenu>Introducing Helpdemo

This is the topic displayed by choosing On Application from the Help menu.
<chapter id=chap2ID> Controlling The Application

The following links demonstrate how the HP Help System can control the
hosting application.

<list bullet>
* <link hyperlink="100" type=AppDefined> Move the window UP <\link>
* <link hyperlink="101" type=AppDefined> Move the window DOWN <\link>
* <link hyperlink="102" type=AppDefined> Move the window LEFT <\link>
*<link hyperlink="103" type=AppDefined> Move the window RIGHT <\link>
<\list>

Note: The text contained in the brackets “<>" is the tags that form the
HP HelpTag markup language.

Fig. 6. A sample HP HelpTag volume that is distributed as part of
the HP Help Developer’s Kit.

software to create run-time help files (Fig. 7). These run-
time files (or volumes) are installed with the application and
accessed when the user requests help.

Help Volume Compilation. The HP HelpTag compilation pro-
cess performs the following tasks in generating a compiled
run-time help volume:

Syntax validation

Conversion from the authored format to run-time format
Location identifier map generation

Topic compression

Topic hierarchy map generation.

April 1994 Hewlett-Packard Journal 83

Run-Time Help

Volume
HP HelpTag File Master Help
foo.htg \ foo.hv
HP HelpTag
Compiler
Graphics Files Help Topics

foo.tif

Fig. 7. The HP HelpTag compilation process.

While creating the help volume compilation process we de-
veloped techniques for improving the performance (speed
and size) of our system. Our objectives were to create a run-
time file format that supported very quick access (three sec-
onds from request to display) for any requested help topic
contained within a help volume, while at the same time
keeping the overall size of the volume as small as possible.
Topics with graphics can sometimes be slower than three
seconds.

To solve the quick access problem, a scheme was devised
that takes the physical hierarchy of authored topics within
the volume and flattens the whole volume. During this pro-
cess a jump table is generated that lists each topic name, the
file that topic resides in, and the offset into the file that rep-
resents the beginning of the topic. With this flattened format
and the jump table, topics can be quickly retrieved for dis-
play. The jump table is stored in the volume.hv file in X re-
source format, and parsed using standard xrm function calls
in Xlib.

Help Volume Compression and Decompression. The size of
compiled run-time help files was a real problem in the first
prototypes. The solution we developed to solve this problem
involves compressing the topics in the help topic (*ht) files.
This task was added as the last step in the compilation phase
of an authored help volume.

The help data files are compressed on a per-topic basis. That
is, each help file is read to determine the start and end points
of each topic in the data file. This information is used to step
through the data file, extracting each topic in turn, writing it
out to a temporary file, and using the HP-UX utility compress(1)
to compress the file. Unless a special option (<) is given to
compress, the utility will not compress a file if the file does
not actually shrink. (The HP Help System is able to read
uncompressed files.) After executing the compress utility, the
resulting file is checked for a .Z extension to determine if
compression has actually taken place.

If the topic is compressed, a null byte followed by three
bytes making up a 24-bit number holding the size of the
topic in bytes is written to a new version of the help data
file followed by the compressed topic. If the topic is not
compressed, it is simply copied to the new help data file. In
either case, a new version of the index file (volume.hv file) is
updated with the new starting offset of the topic based upon
the size of the previous topics.

84 April 1994 Hewlett-Packard Journal

Since no uncompressed topic will ever start with a null byte,
the leading null byte in compressed topics serves as a
“magic number” to indicate to the run-time help viewer that
the topic is compressed. The 24-bit size value written to the
file in a fixed byte order allows help files to work on ma-
chines with varying byte orders in machine words and is
used by the decompression algorithm in the run-time help
viewer to determine when to stop expanding a topic.

After the entire help data file has been compressed, the new
versions of the help data file and index file are moved to
replace the old versions.

When the compression algorithm was first prototyped, we
were pleasantly surprised by the results. The new scheme
saved over 40% in disk use per volume while creating no
end-user-visible performance degradation in rendering time.
We use the standard HP-UX compress(l) command, which is
called from the HP HelpTag program to handle the compres-
sion, and an embedded library version of uncompress for de-
compression at display time. We determined that the lack of
performance degradation in using compressed topics is
partly because most of the help topics are very small and the
embedded decompression function enables fast retrieval.

Graphics Compression and Decompression. Support is also
included for compressed graphics including X pixmaps, X
bitmaps, and X windows, as well as JPEG compressed TIFF
images, which are supported by the HP Image Library. See
the article on page 37 for more about the HP Image Library.
In most cases the best results, both for performance and disk
use, are gained by using JPEG compressed TIFF images.

Help Dialogs

From the developer’s perspective the help dialog is seen as a
single widget. Widgets are created, managed, and destroyed
as one single object. In reality our help widgets are not one
monolithic help entity, but two separate very distinct compo-
nents: the text display engine component and the widget
component. The text display engine component as seen
from the developer’s perspective is the region in the help
widget that renders the text and graphics, provides hyperlink
access, and performs dynamic formatting of the text. The
widget component consists of the OSF/Motif code that
makes it a widget and the remainder of the user interface
including topic hierarchy, menu bar, and supporting dialogs
(print, keyword search, and history).

The Help Widget. By building the help dialogs as true OSF/
Motif widgets (customized or part of a toolkit) and exposing
this as our help API, we immediately gained an industry-
standard format for our help functions. The syntax and use
model for programmers is the same for every OSF/Motif
widget created. This makes it very easy for developers famil-
iar with OSF/Motif programming to understand and use the
help widgets.

The OSF/Motif-based API supports the various controls we
need to manage an instance of our help dialog. Through
standard OSF/Motif and X toolkit and Xlib functions, pro-
grammers have direct access to the help dialog resources
and can manipulate these values as they see fit. Developers
can add callbacks via XtAddCallback(), set and modify re-
sources via XtSetValues(), manage and unmanage the dialogs
via XtManageChild and XtUnmanageChild, and free the resources
when done via XtDestroyWidget().

The Display Area. Text formatting on the display allows differ-
ent types of text. The author can specify dynamic text that
will format or reformat text according to the window size.
The author can also specify static text that will not be refor-
matted to adjust to different window sizes. For dynamic text
a sequence of two or more spaces will be compressed into a
single space and internal newlines (Returns or Enters) will be
changed into a space. For static text all spaces and internal
newlines will be honored.

Help system users demanded the ability to resize help win-
dows. While vertical scrolling is accepted as necessary when
help topics are longer than the available screen space, hori-
zontal scrolling is not. Therefore, dynamic reformatting is a
must.

Foreign Language Format. Text formatting for foreign lan-
guages placed some special demands on our display area
text formatting widget.

European (8-bit) rules. For most European languages (includ-
ing English), breaking a line of text at spaces is sufficient.
The only other line-breaking rule applied is with hyphens. If
a word begins or ends with a hyphen, the hyphen is consid-
ered a part of the word. If the hyphen has a nonspace be-
fore and after it, it is considered a line breakable character
and anything after it is considered safe to place on the next
line.

Asian (16-bit) rules. For Asian language support, breaking a
line of text on a space is unacceptable since some 16-bit lan-
guages do not break their words with spaces (i.e., Japanese
and Chinese, but not Korean). With the Japanese language,
the characters are placed one after another without any word
breaking character because each character is considered a
word. There is also the concept that certain characters can-
not be the first character on a line or the last character on a
line. English (8-bit) characters can be mixed with 16-bit
characters.

Given these considerations, the following line-breaking rules
for 16-bit languages are used:

1. Break on an 8-bit space.

2. Break on a hyphen if the character before and after the
hyphen is not a space.

3. Break on an 8-bit character if it is followed by a 16-bit
character.

4. Break on a 16-bit character if it is followed by an 8-bit
character.

5. Break between two 16-bit characters if the first character
can be the last character on a line and the other character
can be the first character on a line.

Rather than hard code the values of those Japanese charac-
ters that can’t start or end a line into our help system, a
message catalog system is used. This provides a general
mechanism for any 16-bit language. All language localization
support people are required to determine which characters
in their language cannot start or end a line and localize the
appropriate native language support (NLS) file. The file /ust/
lib/nls/%T/%L/fmt_tbl.cat contains the values of those characters
that are used for rule 5 of the line-breaking rules. If this file

Your Personal Toolbox is for
applications and accessories
wyou use regularly, To open

vour Personal Toolbox, choose the Tools

Fig. 8. Text flowing around a graphic.

does not exist for a given language, rule 5 is ignored and
line breaking will occur between any two 16-bit characters.

Even using these line-breaking rules, sometimes the lines are
still too long to fit in the available space. For this case or
when static text pushes the boundary of the display area, the
help system gives up and displays a scroll bar so that the
user can see the information without having to resize the
window.

The help system uses the same routines for processing Eng-
lish or multibyte documents. These routines determine what
line-breaking rules to use based on the $LANG environment
variable and the character set used in the document.

If a document specifies an ISO-LATIN1 character set, the
display engine does not bother looking at rules 3 to 5 or us-
ing multibyte system routines. Only when the document and
the $LANG environment variable specify a 16-bit character set
are these rules and routines used. This minimally impacts the
access and rendering time but allows the same binary to be
used in the United States, Europe, and Asia.

Flowing Text. The help system display area also provides the
ability to flow text around a graphic. This is seen as a space
saving measure and a highly desired feature. The graphic can
be placed on the left side or the right side of the display
area and the text occupies the space to the side of the
graphic. If the text is too long and does not fit completely in
the space beside the graphic, the text wraps below the
graphic. Fig. 8 shows an example of this graphics formatting
technique.

Graphic Manipulation. Complaints about the text-only nature
of HP Vuehelp 2.0 strongly demonstrate the truth of the
adage “one picture is worth a thousand words.” Therefore,
the help system tries to allow as many standard graphic for-
mats as possible. During the design of the help system the
question was, which ones to allow? Eventually, it was deter-
mined to allow standard X graphics (plus the new X pix-
map) and TIFF image formats. The reason for selecting the X
graphic formats is that they are supported by standard Xlib
routines for accessing graphics files, and the reason for
choosing TIFF format is that the HP Image Library supports
TIFF format. The formats supported by the help system
include:

X bitmaps

X window files

X pixmap files

TIFF 5.0.

Graphic Compression. While JPEG compression schemes are
common for use with TIFF files, no compression was being

used with the X graphical formats. After numerous com-
plaints from authors about how much space Xwd files

(continued on page 88)

April 1994 Hewlett-Packard Journal 85

WYSIWYG Printing in an X Application

The HP Help System provides several features that allow authors to specify different
fonts in various sizes and combine them with graphics bitmap illustrations. These
capabilities and others created special challenges when it came to WYSIWYG
(what you see is what you get) printing. The HP Help System developed some
sophisticated techniques for handling WYSIWYG printing.

What Is WYSIWYG?

Our market research uncovered a strong demand for WYSIWYG printing without a
clear definition of what WYSIWYG really meant. One obvious interpretation is the
screen dump that accurately represents on paper what is on the screen. This is
appropriate for some applications, but prototypes of this approach showed jagged
characters crammed into a small 4-by-6-inch window on a large 8"2-hy-11-inch
piece of paper. This satisfies no one. Another approach is to take a printed image
and display it on the screen matching line breaks as they appear on the printer.
This approach compromises readability on the screen, which is not acceptable for
an application providing online information. Fig. 1 shows one interpretation of
WYSIWYG printing.

The interpretation of WYSIWYG we chose for our help system is based on the
notion that “WYSIWYG is a state of mind.” True WYSIWYG is undesirable, but an
appropriate illusion of WYSIWYG is the right answer. For the HP Help System, we
give presentation on the screen and presentation on the printer separate consider-
ation. The printed page uses the same fonts as the screen (sans serif for the body
of the text and serif fonts for titles), but printer fonts are laid out and rendered at
300 dots per inch. The help topics are laid out to fit on the size of the printed page,
and each page has page numbers. Thus, line breaks and page breaks on paper
do not match line breaks and screenfuls on the display, but this is just what our
customers are looking for. Fig. 2 shows a comparison of screen and printer output.

Font Availability

We took care to allow the HP Help System to work with any X server. This was
important to us, since we knew our work was likely to be ported to other platforms
besides the HP-UX operating system. What is more, the distributed nature of X
means that even though the application may run on an HP-UX computer, it can be
displayed on a totally different device, such as an HP Vectra PC running an X
server under Microsoft” Windows. It is difficult to predict what fonts might be
available to the server.

To enable the help system to use fonts available on any display server as well as
those built into HP LaserJet printers, we developed a table that maps generic help
fonts to specific fonts available on the target server or printer. After having studied a
variety of HP documentation, we identified a need for three font families for help
messages: a serif proportionally spaced family (like Times), a sans serif propor-
tionally spaced family (like Helvetica), and a serif monospace family (like Courier).
Each family contains four treatments: normal, bold, italic, and bold italic. Table |
shows these fonts. For special characters, a symbol font is also included. Our
discovery of this was no surprise. It corresponds very closely to the 13 typefaces
typically found in PostScriptC] printers and in the HP LaserJet IIl printer.

This is & screen display that uses prirter metrics.

B will look really great printed out, but on the screen,
the character spacing is very unsven. This is sspacially
svidert when the same chamciar e repeaed a8 in the
rows of characters balow. Notice also how soma lstter
combinations are uncomfortably crowdad togethnrl

INIM DM AT T MmN

G GAIOE

Fig. 1. One interpretation of WYSIWYG printing.

Table |
HP Help System Generic Fonts
Typeface Treatments
Category
Normal Bold Italic Bold Italic

Serif A A A A
Sans Serif A A A A
Monospace A A A A

For screen use, we mapped our generic fonts to fonts included in the standard X
distribution, which is available on most if not all X servers. The distribution uses
New Century Schoolbook, Helvetica, and Courier fonts. Should these fonts not be
available, an administrator can change the mapping table. The table is in an X
resource file. For situations in which all the fonts are not available, several generic
fonts can be mapped to the same physical font. We did this with Asian languages
in which all four typeface treatments are not available. For Japanese, the serif
family is Mincho and the sans serif family is Gothic, but all treatments are mapped
to the one treatment available.

For HP LaserJet Il printers, we used the same scheme to ensure we used the
built-in fonts CG Times, Univers, and CG Courier. Thus, the fonts on the printer
are not identical to those on the screen, but they are close enough to create a
WYSIWYG state of mind to our users. Table Il shows various font family mappings.

As an example of how this mapping works consider an application that requests a
sans serif bold 12-point font. This request will be honored with Helvetica on a
European X server, Univers on an HP LaserJet lIl printer, and Gothic on a Japanese
X server.

Table Il
Font Family Mappings to Printer or Screen

Fonts Available

Typeface X Server HP LaserJet Il X Server

Category (European) (Japanese)

Serif New Century CG Times Mincho
Schoolbook

Sans Serif Helvetica Univers Gothic

Monospace Courier Courier Mincho

Use of generic fonts worked so well for us that we are now investigating ways to
build this capability into X font servers so that applications can be assured of a
reasonably rich set of fonts no matter what the platform or the current locale.

Xlib for Printing

The traditional approach to the implementation of printing in an application is to
write the rendering code at a reasonably high level and then write specific drivers
that convert from the higher-level code to the page-description language of the
printer. With this approach an application might end up with a large number of
drivers, one for each specific type of printer.

We addressed printing rather late in the development cycle. By the time we began
developing printing support, the rendering code had already been written directly
to Xlib, making it difficult to develop a higher-level tool kit as described above.
We turned this vice into a virtue by experimenting with a new concept using Xlib
functions.

Using some X toolkit and X motif routines we developed a clone of Xlib called
Xvplib, which has the same functions as Xlib, but generates PCL instead of X
protocol. Printing is done through a separate program called helpprint, which is called
by the help widget. The helpprint program uses the same help library (xvh) as the

86 April 1994 Hewlett-Packard Journal

File Search Navigate

Topic Hierarchy
Welcome to HP VUE

Survival Skills for New Users
Ifyou are new to HP VLIE, here are the essental skills you need to get started

To get help within any window: Press F1. (Try it now to get help on
using help windows,)

To select and raise a window: Click the window's frame. G press Al+Tab to
select the next window tack, Repeat until the the wind
raised and selected, Se

fl| the top of the window stacl

you want is
ng awindow maxes it active for input and raises it to

To move a window: Poln window's title bar (af the top of the window)

then press aro foid the left mouse button. Drag the window to & new location

then release the button

To open your Personal Toolbex: Choose the Tools control in the
Front Fanel. (Toolbaxes are not avalable in HP VUE Lite)

il To open a File Manager view of your home directory: Choose the
Flle Manager control in the Frent Panel. (File Manager is not available
In HP YUE Lite.)

il| To choose a hyperlink (underlined text within a help window): Click the

Fig. 2. A comparison between display (left) and printer (right) output from the help system.

display program, but links with XvpLib instead of Xlib for the printer driver code (see
Fig. 3).

The helpprint application uses the Xlib call XOpenDisplay() to open a printer and then
uses the XCreateSimpleWindow() routine to create a window on the print display.
This window reflects the margins on the page. The help-rendering library (Xvh)
then renders the current help topic into the window. The rendering process per-
formed by Xvh involves retrieving the window size using XGetWindowAttributes(), load-
ing fonts using XLoadQueryFont, and using XDrawlmageString() to render text until
done. The XvpLib library provides the Xlib functions and generates the PCL code
required. Many pixel arguments such as width, height, x, and y are much larger to
printer displays than to screen displays because of the 300-dpi resolution of the
printer. However, calls such as XTextwidth(), which returns the space required to

Display Program Print Program

Xvh Xvh

Xvplib

X Application Program Interface

X Protocol

Printer

Xvh = Help Library.
Xlib = X Library.
Xvplib = Printing Library.

Fig. 3. The architecture for HP help printing drivers for the display and for the printer.

Survival Skills for New Users
It you are néw to HP VIJE, hera are the assential skills you nwad 10 get sterted:

Tor gat help within any vandow: Preze Fi. [Try A now 1o gat help on using bk windows | iF1 J

To sedact snd raked B window Click the window's Irara, O, prass At + Teb to zelact the next
wrirwdpew in the 378ck- Fapeat until the the window you want is raired aro saleciad. Selacting a
wandows makas it #ctva for input and reises it 10 tha 1op o the window stmck.

To mave s window: Point to the window's tifle DBr (at the 1op of the window|. (han Dregs and Aod
tha lett mouse turton. Drag the window to & new location. then relasss (e buiten,
@

To opdn & Al Msneger waw o1 youl homa Hrectory: Choose the File Manepar conlio! in
tha Front Panel. [Fis Maneger is not mualabie i HP WLUE Lite.) -

To apen your PFersenal Toalbos: Chocsa the Taols contral in tha Front Fenal.
iToolppxes ara ot available in HP VUE L.}

Ta chooas & hypadink (undedised text within 4 halp window}: Chck the undedined phrese. Or, Move
=ha keyboard teghlipht 1o tha hypedink you want to choose, Lhen press Eriar.

if you click o link with & 30lid undechng
I you Click m ink with a dashed undarline .
More: .

* More Mouss Survwel Skills

draw a string, still work fine. The XvpLib library supports both the HP LaserJet Il
(PCL 4) and the HP LaserJet lIl (PCL 5) printers. The primary difference between
them is the selection of built-in fonts. The match from X to PCL was surprisingly
close, but some X calls (such as XORing bitmaps) had to be interpreted liberally.
XvpLib supports all 36 X functions used by the help topic library Xvh.

Using X as our print interface worked very well. Only about three lines of code had
to be added to the help-rendering library (Xvh) to support printing. Common render-
ing code for the screen and printer made it easy for us to keep the layout of help
topics consistent between screen and printer.

Printing for Special Printers

The printing approach described above works very well with PCL printers. However,
HP customers in Japan presented us with special challenges. First, the Japanese
language requires support for 16-bit text, and these customers typically have
printers that support Asian page description languages such as Canon’s LIPS and
Ricoh’s RPL.

To support such requirements, we took a different approach. Instead of using
helpprint to render to the printer, we developed another rendering program called
helpprintrst. This program creates an offscreen pixmap the size of a sheet of paper
on the X server and and then calls Xvh to render into that pixmap. The print pro-
gram retrieves the completed page using XGetimage() and sends it to the printing
library (XvpLib) to turn the image into a PCL bitmap. Special filters in the print
spooler convert the PCL bitmap into a bitmap suitable for the target printer.

Axel Deininger
Engineer/Scientist
Workstation Technology Division

Microsoftis a U.S. registered trademark of Microsoft Corporation.

PostScript is a trademark of Adobe Systems Incorporated which may be registered in certain
jurisdictions.

April 1994 Hewlett-Packard Journal 87

require, the help system was modified to find and access
compressed files. The author uses the same HP-UX compres-
sion utility mentioned earlier to compress the graphic files.
The same internal decompression routine used to decom-
press topic files is used to decompress the graphic files into
a temporary file. After decompression, the help system reads
the graphic file as usual.

Using compression on X graphic files can impact access
time. For very large graphic images or for a topic that uses
many graphics, this impact can be noticeable. The trade-off
between speed and disk space is one that the author and
application engineer must address.

Color Degradation. Another obstacle encountered with han-
dling graphics was color graphics on grayscale or black and
white displays. Having to provide three different images for
the three types of displays is not feasible because of disk
use. Therefore, the help system has to degrade a color image
for grayscale or black and white displays.

For X bitmaps, this is no problem since bitmaps are specified
as using the foreground and background colors only. For
TIFF images, the HP Image Library forces the image to the
proper color set depending on the display type. For X pix-
maps, the Xlib routines take the same approach depending
on the display. This leaves the X window files to manipulate.

The task is to reduce an Xwd file from a full color image to
a grayscale image containing no more than the maximum
number of gray colors we have available. This number is kept
in a variable called MAX_GRAY_COLORS. The HP Help System
uses eight gray colors. The first step in this process is to map
each of the X window color pixels to a grayscale luminosity
value (@ in Fig. 9). This is done using the NTSC (National
Television Standards Committee) formula for converting RGB
values into a corresponding grayscale value:

luminosity = 0.299 x red + 0.587 % green + 0.114 X blue

where red, green, blue are the X window color values in the
range of 0 to 255. This creates a grayscale luminosity value
in the range from 0 to 255.

The next step is to determine the number of distinct lumi-
nosity values used in the image. This involves counting the
total number of luminosity values computed above (@ in
Fig. 9). The idea is to group the grayscale luminosity values
across the available gray colors so that the image can be
evenly and reasonably rendered.

After determining the actual number of distinct luminosity
values used in the image, a further calculation is done to
determine which gray color to use for a given group of lumi-
nosity values (® in Fig. 9). If the number of distinct lumi-
nosity values is greater than or equal to MAX_GRAY_COLORS,
then each gray color will be used at least once. However,
if the number of distinct luminosity values is less than
MAX_GRAY_COLORS a calculation is performed to spread the
color load among the gray colors instead of bunching them
together. This provides the contrast in an image.

Finally, when the image is rendered to the display the shade
of gray associated with a particular group of luminosity val-
ues is mapped to the appropriate display pixel (@ in Fig. 9).

If the system has to degrade the image to black and white, it
first calculates the grayscale colors using the luminosity cal-
culation described above. Then it dithers the image using a
Floyd-Steinberg error-diffusion algorithm, which incorporates
a Stucki error filter.3

The end user can force the whole environment including the
help system to use grayscale or black and white by setting it
via the HP VUE style manager’s Color Use dialog. Also, if an
image uses more colors than are available in the color map,
the help system will automatically degrade the image until it
is renderable.

Hard-Copy Support

A critical and difficult requirement of this help system was to
provide WYSIWYG (what you see is what you get) printing
support to match our text display capabilities. To ensure
good performance and not tie up an application just to print
out its online help, we implemented the printing mechanism
as a separate application. When an end user requests to print
one or more topics in the current help volume, the widget
code packages the request and performs a vfork(2) to launch
the print application.

The help system supports two different print applications:
helpprint which is for HP LaserJet printers (i.e., PCL support)
and helpprintrst for printing help volumes that contain multi-
byte characters such as those used in some Asian languages.
The helpprintrst command operates just like the helpprint com-
mand except that its output does not depend on printer
fonts. Instead, helpprintrst creates a page-size graphic image of
each help topic.

Grayscale Cumulative Counts Groups of Distinct
Luminosity of Distinct Lumi- Luminosity Values
Values (0-255) nosity Values Assigned to Each
NEEEEE | -ETm T T N
[o0 | 1 [[[[][]
[%0 | 2 . [|
s (2 ®@)»s3 ®» Be
f : <EE
A s 5 e
- | [6 | ¢ [[[™
- - | 7 [|
| W - ¢ [
X Window | Display Pixels
Color Pixels [255
Eigh
Gray Fig. 9. The process of reducing
Colors a full color image to a grayscale

* Four Entries with the Luminosity Value 59

88 April 1994 Hewlett-Packard Journal

image.

Helpview wv
774 v(E) ta3R(8) SRR
by 2 R

Japanese Localization Test Volume

T IR

~IF

=

7 #—< v MR

ZOFEFEERRIERENSTF A ORFEETLDT

FTo HA@16Ew b 54 0T L—2—UiRAT 4

nE 3 inEEACPENTT, BEREER ToI4 <7
VTV P EFALTALINIEBRINILDTT,

Multi-Byte
Characters

This section covers warious examples of localized
text., The intent is to test how our line-break rules
work with the 18-bit text. Each example is just a
body of text designed to test each of the various
line break rules in the localized language

Fig. 10. A localized help window.

The goal in implementing a WYSIWYG printing solution for
the help widgets was centered on creating a solution that
could solve the printing problem for many applications, not
just the HP Help System. Refer to “WYSIWYG Printing in an
X Application,” on page NO TAG for a description of the
printing solution used by the HP Help System.

Localizability

The HP Help System supports the authoring and displaying
of online help in virtually any language. The online help
information can be authored and translated in either single-
byte or multibyte character sets. All the components within
the developer’s kit are multibyte-smart and can parse and
display the localized information.

The help widgets use the $LANG environment variable to de-
termine which language directory to search to retrieve the
requested help volume. For example, if $LANG = Japanese
when the request to display help occurs, the widget code
will attempt to open the Japanese localized version of that
help volume. If one does not exist, then the default version,
which is English, will be used.

When an authored help volume is compiled via HP HelpTag,
the author sets the proper character set option. The character
set information is used at run time to determine the proper
fonts to use for displaying the localized help text. The default
character set for the HP HelpTag compiler is the one defined
for 8-bit character sets by ISO 8859-1. Currently only one
character set per volume is supported.

Fig. 10 shows a sample of a localized help window.

Parsing Multibyte Characters. To make a single tool work for
single-byte and multibyte character sets without constantly

checking for the length of the current character, all charac-
ters are converted to wide characters on input. This input
conversion is driven by either command line option, on an
HP HelpTag entity file, or by the current setting of the locale.
All internal processing of characters is done on wide charac-
ters with those wide characters being converted back to mul-
tibyte characters on output. Single-byte character sets are
treated just like multibyte character sets in that the same
input and output conversions always take place.

This scheme of doing all internal processing on wide charac-
ters has proven to be a very effective means for making one
tool work for all languages. The scheme did require imple-
mentation of wide character versions of most of the string
functions (e.g., strepy, strlen) but those functions were all quite
straightforward to create.

Localizing User Interface Components. The menus, buttons,
labels, and error messages that appear in help dialogs also
support full localization to native languages. The help dialogs
read the user interface component strings from a message
catalog named Xvh.cat. Different localized versions are sup-
ported by default and included with the developer’s kit. For
languages not supplied with the help system, the developer
must translate the message catalog /usrivhelp/nls/C/Xvh.msg and
then use the gencat command to create the needed run-time
message catalog file.

Acknowledgments

The authors wish to acknowledge all those who contributed
to the design and development of the HP Help Developer’s
Kit, including the R&D, learning products, and marketing
groups at the Open Systems Software Division in Corvallis, as
well as the many other contributors throughout HP. Appreci-
ation to Brian Cripe for his willingness to beat the issues into
resolutions, to Axel Deininger for performing coding mira-
cles with respect to WYSIWYG printing, and to the many
managers that supported this project through to release: Bob
Miller, Rick McKay, and Ken Bronstein. Special thanks goes
to Dex Smith for helping our team understand the value of
SGML and pushing us in that direction with respect to our
product offering.

References

1. OSF/Motif Style Guide, Revision 1.2, Prentice-Hall, 1993.

2. OSF/Motif Programmers Guide, Revision 1.1 Prentice-Hall, 1991.
3. R. Ulichney, Digital Halftoning, MIT Press, 1988, pp. 239-244.

OSF/Motif is a trademark of the Open Software Foundation in the U.S. and other countries.
UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries.

HP-UX is based on and is compatible with UNIX System Laboratories’ UNIX operating system.
It also complies with X/Open's* XPG3, POSIX 1003.1 and SVID2 interface specifications.

XIOpen is a trademark of X/Open Company Limited in the UK and other countries.

April 1994 Hewlett-Packard Journal 89

