HP SharedX: A Tool for Real-Time

Collaboration

With this real-time communication product, two or more remote users can
share and interact with the same X-protocol-based applications from their
workstations. Windows are shared in such way that it almost seems as if
all the participants in the shared session are sitting at the same

workstation, running the same application.

by Daniel Garfinkel, Bruce C. Welti, and Thomas W. Yip

HP SharedX is a communication tool that extends the
industry-standard X Window System to enable real-time
sharing of X-protocol-based applications between two or
more remote users and displays. With HP SharedX users can
share information with one another via a workstation with-
out being in the same location.

Being able to share information over a network in real time
is a very effective productivity tool. The following two ex-
amples show how displaying applications across a computer
network can increase productivity:

System administration. Mary is a system administrator for
several networks distributed over several widely dispersed
buildings. When a user on a particular network encounters
what may be an application or system problem, Mary can,
with the user’s cooperation, establish a common (HP
SharedX) window with the user’s system. With this shared
window Mary can see and diagnose the user’s problem
while the user is watching what she is doing. She can per-
form this task without leaving her desk, using the diagnostic
tools available at her workstation.

Remote demonstrations. For some new or complex software
packages, there may be only a handful of people who are
able to demonstrate the software effectively. HP SharedX
gives these people an opportunity to have a virtual presence
at remote locations on the network. Hewlett-Packard’s Work
Management Operation routinely uses HP SharedX to dem-
onstrate advanced features of its HP WorkManager database
product from the desks of engineers in Fort Collins, Colo-
rado to prospective buyers all over the world. Also, various
partners who are developing additions to WorkManager use
HP SharedX to demonstrate their work in progress to the
engineers in Fort Collins, allowing new features to be eval-
uated “live” without travel.

HP SharedX can accomplish display sharing because of the
nature of the system it is built upon, the X Window System. 1.2
The X Window System, known simply as X, is a networked
window system allowing X applications running on one
computer to display on another (see “X Window System
Client/Server Architecture” on page 25). This networked
aspect allows sharing of expensive high-speed computers
among several users on low-cost X-based display stations.

Furthermore, X is designed to be interoperable in heteroge-
neous computing environments. Applications running on one
vendor’s hardware can display themselves on another ven-
dor’s display by adhering to the X protocol standard. Hetero-
geneity is accommodated by abstracting the application’s
view of the display subsystem, including the graphics hard-
ware, input device control, memory management, and data
formats. Interaction with the display station occurs through a
well-defined protocol, which provides a consistent way for
applications to work with a wide variety of display devices,
from PCs to high-resolution, deep-color workstations.

X has become the industry standard window system for
workstations in part because of its networked and heteroge-
neous nature. HP SharedX builds on the X Window System
by retransmitting the X protocol stream to multiple X display
stations, thus simultaneously displaying a single application
on multiple computer displays. Some key features of HP
SharedX are:

No changes are needed to existing X applications to share
them. HP SharedX allows users to share virtually any X ap-
plication, rather than forcing users to use specially written,
collaborative applications.

Users see a copy of the application to the best ability of
their display device. If necessary, HP SharedX will degrade
the quality of the displayed images to match the capabilities
of the display hardware.

Running applications can be shared without prior setup.
Users need not restart applications they want to share; the
application can be shared in its current state. This is impor-
tant in consulting environments where users may not know
how they got their application into its current state.

The receiving machines (machines receiving the shared ap-
plication) need no modifications or special software
installed. Since X protocol is the communication mechanism,
the receiving machine can be any X-capable display device.
Receivers of a shared application can interact with it as well
as the sender (the machine sending the shared application).
Receivers can demonstrate operation of the application
rather than describing to the sender what to do.
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Fig. 1. HP SharedX sender/receiver architecture and data flows during initial display connection.

The rest of this article covers the architecture of the HP
SharedX system, the user model and user interface for shar-
ing, an overview of the low-level mechanism that multicasts
the X protocol and merges input events, and finally, a de-
scription of how sharing is accomplished with displays of
different visual types and different resources.

HP SharedX Architecture ~
HP SharedX consists of three components: the HP SharedX
user interface (known as the connector), the HP SharedX Input
receiver service, and the HP SharedX extension to the X

server (see Fig. 1). The connector is the sender’s control for
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sharing and unsharing windows, enabling and disabling re- Bruce Welti. . . .

ceiver input, displaying sharing status, and so on. The re-
ceiver service is an optional process on the receiver’s ma-
chine that simplifies sharing windows and increases security.
The HP SharedX extension is a low-level mechanism that
shares windows, keeps those windows up to date, and
merges input from multiple users. These three components
are described in more detail later.

An HP SharedX session begins when the user at the sending
workstation specifies a receiver and pushes the Share button
in the HP SharedX connector window (Fig. 2). After the Share
button is pushed the sender selects the window to share by
clicking the mouse button over the desired window. Once
the desired window is selected the following events occur
between HP SharedX processes on the sender and receiver

Disconnect

workstations shown in Fig. 1. Each step corresponds to a Fig. 2. The HP SharedX connector window.

number circled in Fig. 1.
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X Window System Client/Server Architecture

The X Window System, commonly referred to as X, is an industry-standard, network-
transparent window system. X presents to the user a hierarchy of resizable over-
lapping windows providing device independent graphics. A graphical user interface is
commonly included as an integral part of the X Window System.

The principal feature that distinguishes X from a conventional window system is its
network transparency. The X Window System allows window applications or cli-
ents to access the display only through the X server, which is a separate process
that arbitrates resource conflicts and provides display, keyboard, and mouse
services to all clients accessing the display (Fig. 1). X can support a spectrum of
hardware displays ranging from small monochrome units to advanced graphics
systems with up to 32 bits of color per pixel.

The client and the server exchange information only by means of the X Window
System protocol which can be implemented via any reliable byte stream. In the
HP-UX* implementation of X, as in most others, this byte stream is implemented
as a socket, which is a logical data connection between two processes on the
network. Clients may reside locally with the display server or on a remote system
across the local area network (LAN). A performance optimization bypasses the
physical LAN when the client and the server are on the same computer.

Because the client program and the display server are two separate entities, the
target display can be specified at the time the application client is run. The client
program is indifferent. It sends out X protocol commands via calls to the X library
(Xlib), which in turn calls the network service functions to communicate with the
target X server.

Application

User Interface Toolkit
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Network Services
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Fig. 1. X Window System client/server architecture.

1. The connector sends a message over the network to the
HP SharedX receiver service on the receiver’s machine. The
receiver service displays a window asking the user at the
receiver system to accept a shared window from the sender
(Fig. 3).

2. The receiver passes back a yes or no response to the
connector. If the answer is no, the sender is informed that
access is denied to the receiver’s machine.

3. If the answer is yes (or if the receiving machine does not
have the receiver service), the connector sends a special X
protocol request (share window W to receiver R2) to the
sender’s X server. The X server’s main event loop recognizes
the share window request as one directed at the HP SharedX
extension. It calls the appropriate function in the extension
to handle the request.

Shared Receiver Service

Do you want to receive a window from:

Bruce Welti

I ions Help

Fig. 3. The HP SharedX receiver service window.

4. The HP SharedX extension opens a connection over the
network to the receiver’s X server. This is done with the Xlib
call XOpenDisplay.

5. The HP SharedX extension creates windows on the re-
ceiver’s screen to match those on the sender’s screen.

6. As the windows are created and mapped, the receiver’s
X server generates a request to redraw the newly created
windows.

7. The application responds by redrawing the contents of all
of its windows. X protocol drawing requests to redraw the
windows are handled locally by the sender’s X server, as
usual, but since the application is now shared, the protocol
is effectively echoed to the receiver (® in Fig. 1). This is
how the receiver is brought up to date with the sender
when the share is initiated. Incidentally, none of the re-
sources (graphics contexts, fonts, and so on) exist on the
receiver when the requests start flowing from the shared
application. Resources on the receiver are created when they
are needed, that is, at the point they are first used, and not
when they are created by the shared application. As a result,
the input from the application to the sender’s X server and
output from the sender’s X server to the receiver’s X server
might look like the following streams:

Input Output

ClearWindow(winl)
DrawLine( winl, gcl, x, y)
DrawLine( win2, gc2, X, y)

ClearWindow( winla)

gcla = CreateGC(winla, ... )
DrawLine( winla, gcla, X, y)
gc2a = CreateGC( win2a, ... )
DrawLine( win2a, X, y )
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Graphics Glossary

The following are some graphics terms that may be of help in reading parts of this
article that discuss graphics.

Color Map. A very high-speed look-up table that maps the numbers stored in the
frame buffer (video memory) to actual color values which are converted to analog
voltages and sent to the monitor.

Frame Buffer. The video memory of a display device in which each element
represents one picture element, or pixel. The frame buffer is divided into two
parts: onscreen memory (current visible image) and offscreen memory (graphics
memory that is never visible).

Graphic Context. A set of attributes such as foreground and background colors,
line styles, and fill patterns which are used by X clients to specify how the X server
should render the drawing requests it receives.

Image Planes. The primary display memory on HP's display systems, used for
rendering complex images.

Offscreen Memory. A portion of the frame buffer that cannot be displayed on the
monitor. In all other respects, offscreen memory behaves the same as on-screen
(visible) memory. Starbase and X use offscreen memory to hold character, cursor,
pixmap, and scratch information for rapid transfers to onscreen memory.

Pixmap. A rectangle of image data maintained in offscreen memory when there is
room, and in virtual memory when there is no room in offscreen memory.

Rendering. Any form of drawing operation, including text, line, and raster output.
Rendering may occur to onscreen memory, offscreen memory, or virtual memory.

Visual Type. The color map capabilities of a given display. Common visual types
supported on HP displays include 1-bit static gray (or monochrome), 8-bit pseudo
color (having 256 color map cells of RGB values), and 24-bit direct color (using 8
bits each for red, green, and blue values).

Note that these are only representations of the drawing
commands sent from the application and the sender’s X
server. The parameters winla and win2a correspond to the dif-
ferent windows created in step 5. The identifiers winla, gc2a,
and so on represent resources on the sender’s display which
are mapped to resources winla, gc2a, and so forth on the re-
ceiver’s display.

Once the redraw step is finished, the share connection is
established. From here on, the two displays are kept in
synchronization by equivalent X protocol being sent to each
server.

Connector

The HP SharedX connector (Fig. 2) is an X Window applica-
tion that contains all the controls that enable users to set up
and control application sharing. Using task analysis, we
designed the HP SharedX connector to match the user’s task
flow, thus providing intuitive controls to the complex opera-
tion of sharing an application. Some of the usability features
of the connector window include:

An address book (Fig. 4), accessible from the Receivers menu
item in the connector window, to keep and organize com-
mon receivers and allow users to specify receivers by user
name rather than machine name

A shared pointer (called a telepointer), available from the
Windows menu item in Fig. 2, for users to point to areas of
shared applications during collaboration
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Fig. 4. A window showing the address book.

Several cues, like changing a window title so that the user
can keep track of the windows being shared, the users re-
ceiving shared windows, and the receivers that can send
input to the shared application

Various levels of dialog information (For example, when the
user starts using HP SharedX, a Normal dialog level is set giv-
ing the user complete status information about the quality of
the shared application. When the user sets the dialog level
to Experienced, only critical errors are reported.)

Extensive online help information, including a troubleshoot-
ing section for diagnosing and fixing problems when sharing
applications.

After the first release of HP SharedX, we gathered informa-
tion on the product to determine major usability issues. From
this analysis three major issues emerged:

The need to annotate a shared window

The need for a “shared whiteboard” to assist in collaboration
The difficulty and security implications of the receiver’s
granting display access to the sender for shared applications.

The first two usability issues are addressed by the HP
SharedX Whiteboard (see “Whiteboard: A New Component
of HP SharedX” on page 28). The third issue is addressed by
the HP SharedX receiver service (described below), a pro-
gram that is invoked on the prospective receiver’s machine
when sharing is attempted.

Receiver Service

When a sharing request is made to the connector via the
Share button, the connector software first tries to invoke the
receiver service program on the receiver’s computer. The
receiver service displays a dialog box on the receiver’s dis-
play (Fig. 3). The dialog box informs the user that the sender
wants to share a window and asks for a yes or no response.
If the user selects yes, the receiver service grants access to
the receiver’s display for sharing.

The connector can get one of three responses from the re-
ceiver service. The receiver can answer yes, in which case
the connector will share the specified window. The receiver
can answer no, in which case the connector will display a
dialog box informing the sender that access permission was
denied. Lastly, the receiver service may not be present, in
which case the connector will attempt to share with the
receiver’s machine.
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Once HP SharedX has shared windows to the receiver, it
tells the receiver service to remove display access from the
sender. This prevents processes other than HP SharedX on
the sender from making unauthorized connections to the
receiver’s display.

HP SharedX Extensions

The HP SharedX extensions are low-level routines responsi-
ble for intercepting data streams that flow in and out of the
X server during a sharing session. These routines merge in-
put from multiple receivers and ensure that the receivers’
displays are updated properly.

Several groups of researchers have attempted application
sharing in the X window system environment.3 These imple-
mentations can be classified into four different architectures,
each with inherent strengths and weaknesses? (see Fig. 5).
The main goal of sharing X applications is to ensure that the
application and the basic X server don’t have to change to
work in a sharing environment. This requires some sort of
interface mechanism between the application and the X
server.

By far the most popular architecture for window sharing in
X is the centralized pseudoserver architecture (Fig. 5a). This
architecture places a process responsible for output multi-
casting and input merging between the shared applications
and the X server.t This architecture is the most flexible, but

T Output multicasting is the generation of multiple streams of requests from a single stream.
Input merging involves coalescing multiple streams of events into a single stream.

suffers from performance problems, even by unshared appli-
cations, because it places a process between the application
and the X server.

Other application sharing systems have used a replicated
architecture for sharing windows (Fig. 5b). The replicated
architecture runs a copy of the application for each receiver
of the shared application and keeps these copies synchro-
nized by sending identical input to each. Although this archi-
tecture optimizes the image for each receiver of the shared
application, it has been shown to be difficult to keep the
instances of the application synchronized and nearly
impossible to add users to an existing sharing session.

The sharing-capable library (Fig. 5¢) moves the output multi-
casting and input merging found in the pseudoserver archi-
tecture into the library of X functions (Xlib) linked into the
application. By moving the sharing into an existing process
and removing the pseudoserver process, performance is
enhanced, but applications in such a system cannot be sure
of sharability, either because they have not linked with this
special library, or because they are running on a machine in
the network that does not have the sharing-capable library.

The integrated sharing architecture, which is used in HP
SharedX, moves the output multicasting and input merging
routines inside the sender’s X server (Fig. 5d). This architec-
ture ensures that all applications are sharing-capable, while
eliminating the pseudoserver process.

(continued on page 29)
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Whiteboard: A New Component of HP SharedX

Whiteboard, a general-purpose image viewer and annotation X application, is a
new addition to HP SharedX. Whiteboard evolved from users’ needs to annotate
graphic images in shared applications. Although it is impractical to annotate im-
ages in live X applications because of limitations in the X Window System, White-
board allows users to share snapshots (portions) of their display and to annotate
those snapshots. Not only is Whiteboard useful for adding annotation to computer
images, it can also be used to create original images. As an X application, White-
board is treated just like any other X application when it is shared in the HP
SharedX environment.

Some of the other features that make Whiteboard convenient, powerful, and very
functional when shared include:

Annotation performed on an image can be erased without destroying the original
image.

Any region of the user's screen can be copied and pasted into the Whiteboard
drawing area, even if the region contains areas of different X visual types. This
ability to copy an arbitrary region containing multiple visual types is a new capa-
bility for X applications.

When shared, Whiteboard knows when input is coming from the sender or receiver.
Thus, it can respond differently according to the source of input. This capability is
used to ensure that receivers are restricted in what screen regions they can copy
to the Whiteboard.

Fig. 1 shows a typical Whiteboard display.

Annotating Images

The main feature that differentiates Whiteboard from other drawing applications is
the concept of erasable and unerasable layers. Maintaining two layers allows
users to erase image annotations without affecting the image being annotated.

When an image is loaded into Whiteboard, it is in the unerasable layer. Annotation
can be performed in the erasable layer and then erased without destroying the
original image. This is analogous to drawing an image on a real-world whiteboard
in indelible ink, annotating the image in erasable ink, and then erasing the board
leaving the original image. This user model is convenient in collaborative situations
where changing just the image annotation is desired. For convenience, Whiteboard
allows annotation to be hidden temporarily to reveal the unerasable image.

Copying Multivisual Regions

Copying a region from the screen is not as trivial as one might suspect. To an X
programmer, using the Xlib function XCopyArea to copy a root window region into
an XPixmap buffer might seem like an obvious solution. However, XCopyArea cannot
handle cases in which the selected region includes areas of multiple visual types
or visual types different from that of Whiteboard; the source and destination visual
types must be the same to use XCopyArea. In more recent X displays, a screen can
simultaneously support multiple visual types differing in depth and types of color
maps. Therefore, it is possible to have child windows of differing visual types in the
window hierarchy, which is not an uncommon situation.

An algorithm was developed to convert all image data in the selected region to the
destination visual type. This algorithm involves scanning the selected region for all
windows and parts of windows, coalescing those of the same visual types into
subregions, then reading and converting each subregion to the corresponding
subregion of the destination pixmap (paste buffer). If any subregion in the selected
region matches the visual type of the buffer, a simple XCopyArea call is used to
transfer the image information. Otherwise, the conversion algorithm uses functions in
HP’s Image Library to convert each subregion to the destination visual type.

If the X server on which Whiteboard is running supports deeper visual types than
the default, Whiteboard keeps the paste buffer in the deepest visual type available,
even though Whiteboard is running in the default (shallower) visual type. This
technique maintains the buffer contents at the highest possible color fidelity, so
that when a scaled paste is done, making the image larger, the resulting image
does not contain pronounced dither patterns.

Recognizing the Source of User Input

Whiteboard is the first application that is able to detect the source of user input
when the program is shared. Whiteboard uses a feature of the HP SharedX exten-
sions to the X server on the sender to examine events and determine the source of
input. Based on whether the sender or receiver generates the input, Whiteboard
performs a different operation when the Copy Region button is pressed. When the
sender presses the Copy Region button, Whiteboard allows the user to select a
region on the sender’s screen to copy. However, for security reasons a receiver
should not be able to copy the sender’s whole display. Instead, a Copy Region
operation by the receiver confines the function to the Whiteboard drawing area.
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Fig. 1. A typical Whiteboard display. The
white arrow with the circle on the end and the
text illustrate a typical annotation. The picture
on the right, which shows a zoomed-in portion
of the main image, is an example of copying
and pasting a portion of an image into the
Whiteboard.
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Ideally, Whiteboard should perform the copy from the display from which input is
initiated. Unfortunately, because Whiteboard does not have a direct connection to
the receiver’s display when the application is shared, no copying operations can be
initiated from the receiver's screen. Although the implemented Copy Region function
does not present the most ideal solution, it does maintain complete functionality
for the sender while providing the receiver with a reasonable substitute for the
copy operation.

The advantages of the HP SharedX extension architecture
(integrated sharing architecture) include:

Any X application can be shared at any time

Unshared applications do not suffer a performance penalty
Sharing performance is optimized because state information
about the X server is directly accessible to the sharing mech-
anism. (Other implementations require the sharing mecha-
nism to query the X server state over the network, slowing
down the sharing process.)

The main disadvantage of the HP SharedX architecture is the
need to modify the X server, which requires access to the
source code for the X server. Using the sharing-library ap-
proach, an application can be linked with a sharing-capable
Xlib and can then be run with any standard X server.

Although these architectures for sharing applications differ,
the basics of sharing an application are the same for each
(with the exception of the replicated architecture). These
basics include making instances of windows on receivers’
displays, echoing the rendering requests of an application to
each receiver, matching resources on the sender machine
with those on the receiving machines, and merging input
events from the multiple X servers into a single stream and
returning the information back to the application. The fol-
lowing sections give a detailed look at how HP SharedX
deals with some of these issues in sharing applications.

Limitations of HP SharedX

Applications are displayed on HP workstations in one of two
ways. They are either displayed via the X server using X
protocol, or displayed directly using direct hardware access
(DHA).> DHA allows applications to bypass the X server to
render graphics on the display. Since HP SharedX operates
by retransmitting X protocol to the receiver’s display, appli-
cations based on X can be shared, while DHA programs
cannot be shared directly. The static images from DHA appli-
cations can be shared by copying their windows into the
Whiteboard application described on page 28.

Programs that render through the DHA mechanism include
those that use the Starbase graphics package or PEXt pro-
gramming interface. However, the programming interface
does not make the final determination of the rendering path.
For example, Starbase programs can be run with a graphics
driver that emits X protocol instead of using DHA. While
there is usually some performance penalty for using these
drivers, it does allow the application to be shared.

Even if an application is based on X, it may not share per-
fectly. For example, the audio application of HP MPower
uses X protocol to display its control panel but interacts with
the audio server to generate sound. Even though the control
panel shares properly, when the receiver presses the

t PEX are 3D enhancements to the X protocol.
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Fig. 6. An HP SharedX configuration in which output from a shared
application is not echoed on the receiver. In this case the output is
going to the audio server which knows nothing about the receiver.

play button, the audio is played only on the sender’s audio
server (see Fig. 0).

Another example of applications that do not share perfectly
are those applications that use X extensions. The X exten-
sion is a mechanism for extending the capability of the X
Window System. While the core X protocol is standard
among all X servers, X extensions vary among X server im-
plementations. HP SharedX only retransmits core X protocol,
so applications that use X extensions will have limitations
when shared. For example, if an application uses input de-
vices other than the keyboard and mouse via the X input
extension, Tt the receiver will see a copy of the window but
will not be able to interact with the application with these
additional input devices.

There are parts of the core X protocol that HP SharedX can-
not handle properly. One example is the X mechanism for
cut and paste. This mechanism uses a standard interprocess
messaging system for transferring data from one X program
to another. However, a receiver cannot cut and paste be-
tween a shared application and one on the local machine.
The two applications cannot communicate since they are not
connected directly to the same X server.

Establishing and Maintaining Connections

When a share request is made to a receiver, HP SharedX must
first establish an X connection to the receiver’s X server. It is
over this connection that HP SharedX will manage the
shared windows, retransmit rendering requests, and get re-
ceiver input. The display connection is made using the X
library (Xlib).

Xlib is the client-side library of functions used by all X appli-
cations. These functions create the protocol requests that

11 The X input extension allows applications to receive input from input devices such as graphics

tablets, knob boxes, button boxes, and so on.
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become the X protocol packets sent over the display con-
nection to the X server to request creation of windows,
drawing to those windows, and so on. Although the HP
SharedX extension is in the sender’s X server, it communi-
cates with the receiver’s X server using Xlib. This makes the
sender’s X server appear to the receiver’s X server the same
as any other X client.

The HP SharedX extension, however, has some requirements
that are different from other X clients, so we made some
changes to Xlib to accommodate these requirements. The
first change we made to Xlib was to create a mechanism to
recover from broken display connections. In X, programs
that lose their connection to the X server normally print an
error message and exit. For most X programs, their one con-
nection to the X server is their lifeblood, and if it is broken,
they may as well terminate. The sender’s X server still has
plenty to do if it loses a sharing connection, and thus it
should definitely not terminate. Xlib calls a user-specified
routine, XIOErrorHandler, when a display connection is broken.
In HP SharedX’s version of XIOErorHandler, the routine cleans
up data structures related to the broken display connection,
sends a notification to the HP SharedX user interface, and
jumps back to a location inside the X server to continue
processing.

A similar problem occurs when the remote X server is not
responding. This can happen for a variety of reasons such as
that another program may have taken exclusive access to the
X server, the network between the two computers may be
very busy, or the receiver’s X server may be busy handling
requests from other clients. In any case, X programs wait
indefinitely for requests to be serviced before proceeding,
which is not the desired behavior for the sender’s X server.
Therefore, HP SharedX has added a timeout handler to Xlib
that allows the sender’s X server to recover from a nonre-
sponsive receiver. After 30 seconds of waiting on a receiver’s
X server, HP SharedX closes the display connection and noti-
fies the sender that the receiver’s system is not responding.

The final change we made to Xlib handles failures to estab-
lish an X (display) connection. Normally when a display
connection fails, the program is not given a reason for the
failure. A mechanism was added to extract the reason for
display connection failure from Xlib and to return that infor-
mation to the user interface. This information allows the user
to diagnose problems more easily when attempting to share
windows.

Managing Shared Windows

When users share an application, they usually have a clear
idea of what constitutes the application and what set of win-
dows should be shared. Most applications consist of a single
program with a single connection to the X server. For these
programs, it is easy for HP SharedX to share the right win-
dows. However, an application can consist of more than one
program (e.g., HP SoftBench), or a single program can dis-
play several windows that should not be grouped together
(e.g., the HP VUE file manager can display multiple windows,
each looking at a different directory). A user of the HP VUE
file manager usually wants just one window to be shared,
while a user of HP SoftBench may expect the debugger to
be shared along with the static analyzer.
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From the point of view of the X server, windows partake of
two relationships. One is a parent-child relationship, which
defines a window tree with all windows as descendants of
the root window. The other relationship is that in which
each window is owned by a display connection. Each win-
dow is uniquely identified by its window identifier, a 32-bit
number in which seven of the bits are the same for windows
owned by the same client. These seven bits are called the
resource base.

Applications typically consist of one or more top-level win-
dows in which applications display information. Because
windows are relatively inexpensive to create, they are used
extensively inside an application’s top-level window for
everything from drawing areas to buttons and menus.

When the user selects an application to share, HP SharedX
must select a group of windows that best represent the appli-
cation to send to the receiver’s display. HP SharedX makes
two assumptions: all top-level windows belonging to a
single client connection (i.e., having the same resource base)
belong to a single application, and all child windows of a
shared top-level window should be shared with that top-
level window.

Using these assumptions, if the sender shares an HP VUE file
manager window, HP SharedX will send to a receiver all file
manager windows. Users have the option of selecting Share
Alone from a pull-down menu, but they could easily forget
which applications to do this for. However, HP SharedX can
be configured to respond differently to the main Share button
for different applications. For many applications, HP
SharedX is shipped preconfigured to share only the applica-
tion’s selected top-level window and its children.

The other problem mentioned above, that of multiple pro-
grams that should be shared together, has not been ad-
dressed directly. While application developers could use the
HP SharedX command line interface to tie their applications
together, HP SharedX does not provide a simple mechanism
for grouping windows from different programs. Typically,
for these applications the user must manually share all the
desired windows.

Input Management

HP SharedX allows both the sender and the receivers of a
shared application to interact with an application. In X,
application input consists of events from the user’s input
devices and queries that the application makes about these
devices. For example, the application can query the position
of the mouse cursor, which, if the application is shared, has
as many values as there are viewers of the application.

Most application-sharing systems implement one of two in-
put merging policies: floor passing or free-for-all. The floor-
passing scheme allows one user at a time to input to the
application, with the choice of the user who has the floor
manually controlled by a moderator. The floor-passing
scheme ensures that input is not mixed from multiple users,
but it requires explicit user action to change the input floor.
The free-for-all policy allows anyone to input without explicit
action, but it is prone to intermixed input from multiple users.



The HP SharedX input model, called dynamic floor passing,
is a hybrid of these two methods. In this scheme, only one
user at a time can give input to the shared application. Thus,
user input does not become intermixed. However, input may
change among users dynamically without explicit action, but
only after a specific period of inactivity by the current user
giving input.

In addition to answering the problem of intermixed input,
dynamic floor passing solves the problem of input queries.
This method always returns the state of the user’s input
devices currently or most recently interacting with the
application.

The final challenge of handling input from multiple users is
translating the actual input event that occurred on a receiver
into an event that could have occurred on the sender. Trans-
lating a window identifier is trivial because HP SharedX main-
tains a mapping of which receiver windows correspond to
which sender windows. Translating the keycodes in the
event message is more difficult.

The keycode specified in an event is an index into a mapping
table of logical key symbols that can vary from one X server
to another. For example, one server can map keycode 52 to
the letter “a”, while another server can map the same key-
code to the letter “z”. The keycode mapping table is loaded
into the shared application when the display connection is
made, but the mapping can be changed dynamically.

When an event with a keycode is received by HP SharedX
from a receiver, it is translated into a key symbol based on
the current mapping for the receiver’s X server. HP SharedX
searches the sender’s keyboard mapping to see if any key-
code matches that same key symbol. If it does, the matching
keycode is returned in an input event to the application. If
no corresponding keycode on the sender’s machine exists,
the key event is discarded since no logical keycode can be
sent to the application.

The flow diagram in Fig. 7 shows the operation of the input
merging routine, including dynamic floor passing control
and event-code translation.

Allocating Display Resources and Rendering

HP SharedX uses a “lazy” allocation scheme for display re-
sources such as colors, pixmaps, graphics contexts, and
fonts. To minimize initial sharing time and the impact on the
receiving machine, display resources are allocated only when
needed for a rendering request. For example, a shared appli-
cation may allocate a large pixmap that is only displayed for
some error condition. If that error condition never occurs
during the sharing session, it would be a waste of time
and resources to make an instance of the pixmap on the
receiver’s machine.

Once allocated, the display resource mapping is maintained
so that future requests for that same display resource are
satisfied without contacting the receiving X server. For exam-
ple, if an application requests a line be drawn to a shared
window, HP SharedX performs the following procedure:

draw the line to the local display;
for each remote instance of the window
begin
if a remote instance of the graphic context has already
been allocated,
use that instance,
else

Input
Event
Received

Is Input from
User Who
Has the
Floor?

Is this User
Allowed to
Give Input?

Is any Input
Device “Grabbed”
by this Applica-
tion?

Has Enough
Time Elapsed
for the Input to
Change?

v

Give the
Floor to
this User

Discard

Input

Translate the Input
Event and Return to
the Application

Fig. 7. Flowchart for the HP SharedX input merging routine.

allocate a new remote graphic context and map it to
the local graphic context;
draw a line to the window instance with the graphic
context instance;
end;

When the allocation of a display resource fails, HP SharedX
uses several means to recover. In the case of pixmaps, HP
SharedX continues operation of the application without the
use of that image and notifies the user of this situation. In
other cases, HP SharedX will substitute other display re-
sources for the ones it cannot allocate. The next two sections
provide detailed examples of two display resources HP
SharedX will gracefully degrade: colors and fonts.

Managing Colors

The management of display resources such as graphic
contexts and windows in HP SharedX is fairly straightfor-
ward compared to the management of colors. The goal of
displaying identical images on all shared windows requires
mapping colors from the sender’s display to the receiver’s
display and degrading the colors gracefully if the exact
colors are unavailable.
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The term pixel refers to the number that represents a color
value. The pixel can be one of two types: read-only, which
represents a color that does not change and can therefore be
accessed by multiple programs simultaneously, or read/
write, which can be changed and is exclusively used by a
single application.

Pixels are converted to colors either by using the pixel as an

index into a color map (a look-up table) or by treating the
pixel as a representation of the color itself. The interpreta-
tion of the pixel is based on the visual type,T of which there
are six in the X window system. Three of these allow X pro-
grams to allocate read/write cells (grayscale, pseudo color,
and direct color), while the other three provide a fixed set of
colors (static gray, static color, and true color).

To divide the six visual types another way, four of them
(static gray, grayscale, static color, and pseudo color) use a
single color map to map a pixel into a gray value or an RGB
triplet (Figs. 8a and 8b). These displays typically use between
one and eight planes, so their color maps typically store
between 2 and 256 color values. Another visual type, direct
color, uses three color maps, one each for red, green, and
blue. The pixel is decomposed into three indexes for look-up
in the three color maps (see Fig. 8c). The last, true color, de-
composes the pixel directly into red, green, and blue values

Color map capabilities (see glossary on page 26).

0 0X0000
1 OXFFFF
2 0XABCD
. Gray Level Equivalent to

Pixel=3 —» 3 0X688D —> Magenta = 26765 1,
4 0X0123
5 0XDEAD
.
L] .

(a) (b)

Pixel = 0X00050204 (hex)
RedIndex=5 — Green Index =2 Blue Index =4

L

0X0000

dign

d

Blue Value = OXFFFF

Red Value = OXFFFF

Pixel=3 —»

(see Fig. 8d). True color and direct color typically use either
12 or 24 planes, yielding 4,096 or 16,777,216 colors.

Our color mapping solution addresses two questions. Given
the sender’s and receiver’s visual types, and the sizes of their
color maps (number of different colors available):

How are the available colors used to best advantage?

How is color mapping maintained?

Using the Best Colors Available. The key to color matching is
always to have a color that is close enough if the exact color
is unavailable. If the receiver’s color display system is static,
supporting only read-only colors, the solution is simple: map
each sender color into the closest receiver color. For receiv-
ers with dynamic color systems that support read/write col-
ors, a color ramp is created. The color ramp contains a set of
colors evenly distributed throughout the RGB color space, a
three-dimensional space defined by axes of red, green, and
blue values (see Fig. 9). The benefit of the ramp is that any
color matches a ramp color within some maximum color
difference in the color space. However, the maximum color
difference may still be larger than is desirable, so the ramp is
a fallback if an exact color match cannot be allocated.

A color ramp array and the values for the receiver’s color
map are created when the display connection is made to the
receiver for sharing. Fig. 10 shows an example of a color

RGB Values = (0XFFFF, 0X0000,
OXFFFF) = Magenta

Pixel = 0X00FFOOFF (hex)

Scale to Range:
0-OXFFFF

Red Value =
OXFFFF

Blue Value =
OXFFFF

Green Value =
0X0000

RGB = (0XFFFF, 0X0000, OXFFFF) = Magenta

©

(d)

Fig. 8. Four representations for the color magenta. (a) The read-only gray level (static gray or grayscale) equivalents for magenta.
(b) Read-only static color or pseudo color representations. (c¢) Direct color representation of magenta. The pixel is split into indexes into
the color map. (d) True color representation. The pixel value is split into parts, and each part is scaled to create the values for the different

shades of red, green, and blue for magenta.
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Fig. 9. A three-dimensional representation of the color ramp for an
8-bit color display with four shades of blue, four shades of red, and
eight shades of green.

ramp array that contains pointers to the color map on the
receiver. The values in the color map are determined from
the three-dimensional color ramp mentioned above. As each
entry is allocated in the receiver’s color map, the index to
that entry is sent back to the sender and placed into the ramp
array table, creating a table of indexes into the receiver’s
color map.

The size of the color ramp depends on the size and type of
the destination visual type. For grayscale visual types, a gray-
scale ramp of up to 16 values is allocated. For direct color
visuals, up to 16 levels of red, green, and blue for a total of
4,096 distinct color values are allocated. In both of these
visual types, 16 levels provide enough resolution to ensure a
good color match without using excessive color map entries.
The ramp used for eight-plane pseudo color consists of all
combinations of four evenly spaced values of red, eight val-
ues of green, and four values of blue, for a total of 4 by 8 by
4 = 128 colors. The ramp takes up half of the available colors
in an eight-plane color map.

Indexes Sent
to Receiver

Ramp Array
Index Table

Color Map

R G B
Black — 0

Receiver

Sender

Fig. 10. The color ramp array containing indexes into the receiver’s
color map. Both of these items are created when the connection
between sender and receiver is first established.
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Fig. 11. A two-dimensional representation of the color space used
by the color-matching algorithm.

Eight-plane pseudo color visual types are the most common
and most difficult type to deal with since not enough colors
exist to cover the color space adequately with a ramp. To
compensate for large color errors, HP SharedX judiciously
uses the remaining color cells available in addition to the
ramp. For any given color, the following color-matching
algorithm is used to map the sender’s colors onto colors on
the receiver:

1. If the X application on the sender allocated the color as
read/write, then attempt to allocate a matching read/write
color on the receiver. A read/write color is needed since the
application may change the color of the allocated pixel at
some later time and, to maintain color accuracy, the
receiver’s matching color must be changed as well.

2. If the application allocated a read-only color or if the
above allocation failed, find the closest color from the ramp
or a previously allocated read-only color. If that color is
close enough to the desired color, use it as the match.

3. If the closest read-only color is not close enough, try to
allocate a new read-only color. If this succeeds, add the
color to the list of allocated read-only colors and return the
new pixel as the match.

4. If the read-only color could not be allocated, use the
closest pixel from step 2 since it is the best available match.
Notify the user that the colors do not match exactly.

Fig. 11 shows a two-dimensional representation of the color
space given in Fig. 9. Each circle encompasses colors that
are close enough to a particular color ramp value (repre-
sented by the point in the middle of each circle). Each of the
points represents a read-only color that has already been
allocated on the receiver’s X server.

The color-matching algorithm first checks to see if a color is
close enough to an already allocated color. Point A in Fig. 11
is close enough so another cell is not allocated (step 2 in
algorithm). Thus, for point A, 2/3 red, 6/7 green, and some
value for blue is used.

Point B in Fig. 11 is not close enough to any allocated color,
so a color is allocated and point B is added to the list of
available colors (step 3 of the algorithm). If B cannot be
allocated in the color map, the closest color is selected that
has already been allocated, although technically it is not
close enough (step 4 of algorithm).
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The difference between the desired color and the candidate
color is measured as the sum of squares:

diff = (desired_red - actual_red)? +
(desired_green — actual_green)? +
(desired_blue — actual blue)2

The color with the minimum difference is the closest color. A
close enough threshold was determined empirically to opti-
mize the accuracy of color images while minimizing the num-
ber of receiver color cells used. Since images tend to have
color themes (i.e., the colors are clustered in a few regions
of the color space), a fairly high degree of color accuracy
can be obtained without excessive demand for color cells.

Private Color Maps. An X display has a default, shared color
map that most applications use. If an application needs more
colors than are available in the default color map, it can
create and use a private color map over which it has com-
plete control. When an application using a private color map
has its window focused, that application’s color map is
installed (copied into the display hardware) by the X win-
dow manager. On displays that support only one color map
in hardware (most of the low-end displays), everything on
the entire screen is displayed using the installed color map.
When a private color map is installed, all applications using
the default color map take on random colors. As soon as an
application using the default color map gains the focus, the
default color map is reinstalled, and the application with the
private color map will have random colors. As the current
color map switches back and forth from default to private,
the user sees color flashing. The user typically prefers to
display shared windows with the default color map to avoid
this irritation.

When a window is shared to receivers with display types
that have read/write color maps, a color ramp is created on
the receiver’s X display. The ramp is created in the default
color map to reduce the probability of color flashing. If the
desired ramp cannot fit in the default color map, it is placed
in a private color map.

The system user interface is usually the first process to allo-
cate pixels, and the pixels with the smallest indexes are allo-
cated first. When a private color map is used, HP SharedX
copies some of the lower pixel values from the default color
map into the private color map. This way, when X switches
between the two color maps, the colors used by the system
user interface do not flash. The number of pixels copied is
optimized to reduce color flashing while leaving color cells
for later allocation.

Keeping Track of Pixel Mapping. To minimize the number of
times the color matching algorithm is executed, a mapping
of previously matched pixels is maintained. Different map-
ping methods are used depending on the range of possible
sender color values. For small ranges (up to 256 different
colors) a simple array is used, in which:

receiver_pixel = map [sender_pixel]

When the sender is a 24-plane display, this approach would
require 48 megabytes of memory, so a more memory-efficient
mapping scheme is needed. Since the goal is to produce
close colors for the receiver rather than exact color matches,
resolution of the sender color is reduced before applying the
color mapping. Red, green, and blue values of the color are
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reduced to four bits rather than eight bits for each plane,
which results in 16 (24) levels of each. Thus, the total num-
ber of possible color values is 4096 (163), a reasonable size
for a mapping array. If color() is a function that returns the
RGB values of a pixel, and crunch() is a function that converts
an RGB triplet to a number in the range 0...4095 (four bits
per pixel), then the mapping is as follows:

receiver_pixel = map [crunch (color (sender_pixel))]

The result of this mapping is that all colors close to a mapped
color are mapped with that color. This method, called color-
zone mapping, gives fast performance and adequate color
matching, while keeping memory use fairly small.

Matching Fonts

The fonts in which applications display text can be specified
by the user in the X Window System. From the set of fonts
supported by the X server, the user selects a font that is
aesthetically pleasing. Since there are no standard fonts in X,
each X server can support a different set of fonts.

To maintain consistency between the sender and receiver of
a shared application, it is important that text be displayed in
a similar font on the receiver’s display. HP SharedX employs
a font matching algorithm to ensure a close font match.

Fonts in X have both a name and characteristics. A font can
be loaded by specifying either its name or its characteristics
using the X Logical Font Description (XLFD) format. HP
SharedX first tries to match the font by name since it is un-
likely that fonts with the same name differ. If the font with
the same name is unavailable on the receiver’s X server,
fonts are matched by their characteristics.

The XLFD description defines 13 characteristics of a font
such as its size, character set, weight, slant, and style. When
matching fonts for the purpose of sharing an application,
some of these characteristics are more important than others
in choosing the font with the closest characteristics.

HP SharedX obtains a list of all XLFD type fonts from the
receiver’s X server at display connection time. When a font
match is needed, the source font’s characteristics are com-
pared to those available on the receiver’s X server. A
weighted sum of differences of the characteristics is calcu-
lated and the font with the minimum difference is considered
the closest match.

The weighting of characteristics was determined through a
combination of intuition and observation. With the exception
of character set, discussed below, it seems clear that size is
the most important criterion, with width taking precedence
over height. This is partly because many X applications write
text in two different ways. One way is to pass a whole string
of characters to the server and let it determine the location
of each character based on its knowledge of the font. The
other way is for the program to control the spacing and send
one character at a time to the X server. The program must
then know about the character widths for the font in use. In
this method, the program has no knowledge that the re-
ceiver may be using a different font with different spacings,
and characters may overlap or be widely spaced for their
size. If the first method is used, the receiver’s X server will
correctly space the characters for the font in use, but the
positions of characters within the window will be incorrect.



If both methods are used, as they are in terminal emulators,
the receiver is faced with a messy mixture of incorrect
spacings and characters in incorrect positions.

Another important factor with respect to spacing is whether
a font is proportional or monospaced. Proportional fonts use
different widths for different characters, while a monospaced
font uses the same space for all characters. In most cases, it
is better to match a monospaced font to another mono-
spaced font, even if they are of slightly different size, than to
match it with a proportional font of the same size. Likewise,
matching a proportional font with another proportional font
tends to give the best appearance, and if the typefaces are
similar, the chance is high that specific character widths will
be similar.

The issue of character sets is an easy one for an English
speaking person to ignore. Almost all fonts have identical
characters in the range of characters most often used (the
ASCII characters) numbered 32 to 127. The differences lie
mainly in the upper range, the characters numbered 128 to
255 and beyond. This is where characters with special
accents, used in most European languages, are found. If
accented characters are used, the difference in character sets
is very important.

This issue becomes more important when character sets for
pictograms or entirely different alphabets are used. If the
character set does not match, the receiver is given meaning-
less garbage. But what constitutes a match? Does the name
of the character set have to match exactly, or are there more
or less equivalent character sets that have different names?
These issues have not been addressed in the current font
matching algorithm. For HP SharedX to work acceptably
with these types of characters, it is best to have the same
font on sender and receiver machines.

Performance

The performance of HP SharedX depends on the characteris-
tics of the network connection, the performance of the
workstations involved, the application being shared, and the
operations performed with the application. There are three
networking factors that affect performance: network speed
or bandwidth, line delays, and network load. Increased load
is roughly equivalent to decreased bandwidth. Performance
increases directly with network bandwidth, up to a limit of
about 500 kbits/s for an unloaded network. Beyond that,
other factors limit performance. Line delays are of greater
importance when sharing over a wide area network (WAN).
Screen update times increase proportionally to line delays.

Given a network with reasonable bandwidth, HP SharedX
performance will be greatly affected by the performance of
the computers involved in the sharing, especially the send-
ing machine. When users have a choice of who sends and
who receives, the person with the faster machine should be
the sender.

Applications vary widely in how they make use of X. For
example, an application receives an expose event from the
X server, indicating that some portion of a window has just
become visible and therefore needs redrawing. Some appli-
cations redraw the entire window, while others are more
efficient and only repaint the portion that is exposed. A
word processing application may update the entire window

every time the user types a letter. While this scheme works
acceptably when not sharing, this application is nearly
unusable when shared.

If application windows can be resized, the sender can im-
prove performance by making windows smaller. Also, users
often come to recognize slow operations. If resizing can be
done before starting the sharing session, there will be less
demand on the network. If the application is still too slow
when shared, the sender can take snapshots of it with the
Whiteboard and share the Whiteboard.

Lazy allocation of resources in HP SharedX affects perfor-
mance in some interesting ways. For example, the White-
board uses two large pixmaps for the drawing area, one for
the erasable layer and one for the unerasable layer. The
erasable pixmap is allocated immediately when the White-
board is shared. The other, however, is not used until the
user does an erase operation. The user may be typing some
text into the drawing and then hit the backspace key. At that
point, the Whiteboard and all other X programs on the send-
er’s display “freeze” while the unerasable pixmap is created
on the receiver’s X server.

When more than one receiver is involved in a sharing ses-
sion, the method of connection becomes important. If there
is one receiver, and the parties involved want to add a sec-
ond, either the sender or the receiver can share to the new
person. The first receiver sharing to the second receiver is
called daisychaining. The sender sharing to more than one
receiver is called fanning out. With the right combination of
daisychaining and fanning out, an application can be shared
to a large number of people.

Determining an optimal configuration for one-to-many
sharing is more complex when the computers vary in perfor-
mance or when the network links between the parties vary.
Some general rules for optimizing performance are:

The fastest machines should be daisychaining, and slow
machines should all be leaves in the sharing tree.

When some of the receivers are connected by a LAN, while
others can only be reached over a WAN, the number of
WAN connections should be minimized.

For example, if a sender in Colorado is sharing a window to
five receivers in New York and three receivers in California,
it is most efficient for the sender to share the window to the
fastest receiver in New York and the fastest receiver in
California and have those receivers share to others on the
same local network.

Conclusions

The implementation of HP SharedX presented several prob-
lems. First and foremost, since this type of technology is
new, no foundation of past experience was available to
build upon, especially when it came to designing the HP
SharedX user interface. The user interface design challenges
were solved by applying human factors design techniques,
including user task analysis and human factors testing. The
HP SharedX extension presented a totally different chal-
lenge, including handling input from multiple sources in a
sane manner and applying X protocol customized for a ma-
chine of one type and mapping it to machines of very differ-
ent types. The HP SharedX extension challenges were met
by understanding the nature of the X window system and
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gracefully degrading the display image when receiver display
resources do not match those of the sender’s display. Although
there are no perfect answers to any of these challenges, the
value of HP SharedX far outweighs its limitations.

Acknowledgments

Many individuals have contributed to HP SharedX, from its
conception at HP Labs to its becoming a product. Steve
Lowder and Phil Gust played a major role in initiating the
HP venture into collaborative tools and helped with the ini-
tial HP SharedX prototype. Thanks also to Nancy Kedzerski
and Dan Flickinger; HP SharedX would have never become
a product without their support. Special thanks to Joe
Gersch, whose vision carried HP SharedX from an HP Labs
prototype to a commercial product. Thanks to Randy
Branson in product marketing for his valuable input and sup-
port. Thanks also to the design and implementation team of
John Byrnes, Fred Sprague, Rich Wildman, Susan Frontczak,
Perry Wells, Jeff Wood, Ken Burgess, Steve Wolf, and Mary
Jones. Thanks to Bob Benusa for information on HP
SharedX performance. Finally, thanks to Jan Ryles for her
insight into users and tasks.

36 April 1994 Hewlett-Packard Journal

References

1. F. E. Hall and J. B. Byers, “X: A Window System Standard for
Distributed Computing Environments,” Hewlett-Packard Journal,
Vol. 39, no. 5, October 1988, pp. 46-50.

2. K. H. Bronstein, D.J. Sweetser, and W.R. Yoder, “System Design
for Compatibility of a High-Performance Graphics Library and The X
Window System,” Hewlett-Packard Journal, Vol. 40, no. 6, December
1989, pp. 6-12.

3.J. C. Lauwers, “Collaboration Transparency in Desktop Teleconfer-
encing Environments,” Computer Systems Laboratory Technical
Report CSL-TR-90-435, Stanford University, July 1990.

4. D. Garfinkel and R.J. Branson, “ A Comparison of Application
Sharing Architectures in the X Environment,” Proceedings of Xhibi-
tion *91, June 1991.

5.J. R. Boyton, et al, “Sharing Access to Display Resources in the
Starbase/X11 Merge System,” Hewlett-Packard Journal, Vol. 40, no.
6, December 1989, pp. 22-23.

HP-UX is based on and is compatible with UNIX System Laboratories’ UNIX* operating system.
It also complies with X/Open's* XPG3, POSIX 1003.1 and SVID2 interface specifications.
UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries.
XIOpen is a trademark of X/Open Company Limited in the UK and other countries.



