Audio Support in HP MPower

Multimedia capability promises to enhance the communication and
presentation of information through the use of real-world data types such
as audio and video. Compact-disk-quality audio is the first of such data

types to be offered as a standard feature on all of HP’s

new workstations.

by Ellen N. Brandt, Thomas G. Fincher, and Monish S. Shah

HP MPower provides the hardware and software to allow
recording and playing of audio files over a network, incor-
porating audio in email, adding audio annotations to system
files, and recording and playing to external devices like tape
recorders, CD players, and VCRs. With these capabilities
audio-enabled applications can add voice annotation to doc-
uments ranging from spreadsheet rows and columns to CAD
drawings. Programmers might add audio comments to their
programs. Error messages could take the form of spoken
messages, or even distinctive sounds that convey more infor-
mation than a simple beep. Finally, background music could
be added to presentations.

This article describes HP MPower’s audio functionality,
application development tools, and audio hardware and
software architecture.

Audio Tools
The audio tools provided in HP MPower allow users to re-
cord, edit, and play audio data in a variety of file and data

formats. HP MPower also provides tools for converting be-
tween audio formats. All of these tools are built on the audio
library, which defines the application program interface to
HP MPower’s client/server audio implementation. The appli-
cation program interface, libraries, widgets, and header files
are available to third-party software developers who wish to
use audio in their applications.

The Audio Editor. The audio editor is based on OSF/Motif
widgets and audio library (alib) functions. The audio editor
enables the user to record, play, and edit audio files in a
variety of file and data formats. It displays a waveform rep-
resentation of the data to make editing easy and supports
basic editing tasks like selecting, cutting, and pasting. The
main screen for the audio editor is shown in Fig. 1a.

The audio editor can be invoked or redisplayed by clicking
on the audio icon on the HP MPower media bar. Dropping a
file from the HP VUE file manager onto the audio icon will
bring up the audio editor with the file already loaded and
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Fig. 1. The audio user interface
in HP MPower. (a) The audio
editor. (b) The audio control
panel.



displayed. A file can be loaded into an already visible audio
editor by dropping the file icon onto the editor screen.

Audio Control Panel. The audio control panel is an OSF/Motif
interface to global audio parameters such as volume and
output device selection (see Fig. 1b). All cooperating audio
applications can use the control panel so the user always
knows where to go to control these attributes. The audio
control panel also provides a Stop button that will stop the
current play operation from any cooperating application.

The audio control panel allows the user to turn monitoring
on or off. Monitoring involves listening to the audio input
signal. In a conventional tape recorder, monitoring allows
the user to listen to the audio signal being recorded. On a
workstation that has HP MPower, monitoring can be used
whether or not anything is being recorded. For example, a
user can monitor the workstation’s line inputs from a CD
player or VCR even when recording is not in progress
without using the CPU or other system resources.

Audio Playback. An audio file can be played by simply
double-clicking on the file’s icon in the file manager or in an
audio-enriched mail message. The file will begin playing
according to the settings of the audio control panel. A file
can also be played by dragging its icon from the file manager
to the speaker icon on the HP VUE front panel.

Other Functionality. In addition to the graphical interfaces to
audio functionality mentioned above, there are some other
capabilities shipped with HP MPower that are accessible
from a command line. In the directory /usr/audio/bin execut-
ables for the audio editor (audio_editor), the audio control
panel (AudioCP), the double-click function (send_sound), and the
convert and attributes programs are provided. The convert
program converts audio files from any supported file format,
data format, and rate and number of channels to any other
format and rate. The attributes program tells everything that
it can determine or guess about any audio file including file
format, data format, sampling rate, number of channels, data
length, and header length.

Audio Data and File Types

A number of audio data and file types exist in the industry
today, making it difficult for audio files to be shared in a
heterogeneous environment.

The lack of standards for audio is currently being addressed
by groups such as the IMA (Interactive Multimedia Associa-
tion). This organization and others are trying to develop
standards so that someday there will be a clearer picture as
to how to store audio information in a format that is accessi-
ble to everyone and can be easily incorporated with other
aspects of multimedia.

In the meantime, we chose to support two of the existing
file formats and to develop conversion utilities that allow us
to support sampling rates, data formats, and byte ordering
methods that are not supported directly by our audio
hardware.

File Format. A file format is a structure in which there is infor-
mation about the data as well as the data itself. This informa-
tion may reside exclusively in a header at the beginning of
the file or may be interspersed in “chunks” throughout the

file. In the latter case, it is possible that only certain types of
chunks are pertinent to audio.

Pertinent information for audio files includes the sampling
rate, data format, number of channels, compression tech-
nique, and number of samples. Sometimes there is additional
information such as loop points or edit markers.

The two audio file formats we chose to support include
Microsoft? RIFF/Waveform, which is chunk-based, and the
NeXT/Sun audio format, which is a file header followed by
data.

We also support audio files that contain only the raw sam-
ples. Although this is a popular method of storing audio data
and it can be useful in a heterogeneous environment, we
recommend using a file format with a header whenever pos-
sible because the attributes of the audio data cannot be
determined from the samples themselves.

Data Format. Data format defines the method in which audio
samples are stored. The most basic method is linear PCM
(pulse code modulation). The signed amplitude of the audio
waveform is quantized at fixed intervals of time. Each step
of the quantization has equal size. This format is very easy
to work with and is preferred by most audio editing and
mixing routines. One of the formats that our audio hardware
supports is the 16-bit linear PCM, which is used by compact
disks and is popular on UNIX*-system-based workstations.

An unsigned version of 8-bit linear PCM is very popular
among Macintosh and PC users because instead of having an
amplitude range of —128 to +127, unsigned (or offset) 8-bit
linear has an amplitude range of 0 to 255. All samples are
offset by 128. For example, silence, which is normally
quantized as 0, is recorded as 128.

We also support the CCITT (International Consultative
Committee for Telephone and Telegraph) u-law and A-law
standards. These are companded PCM formats. In these for-
mats the straightforward linear scale is replaced with a base-
eight logarithmic scale such that there are small step sizes at
low signal levels and large step sizes at high signal levels.
The result is a better signal-to-noise ratio and the ability to
represent the dynamic range of 13-bit or 14-bit samples with
only 8 bits. pu-law and A-law both specify 8-bit samples at
8000 samples per second. p-law is very common on UNIX-
system-based workstations. An overview of the A-law and
u-law data formats is provided on page 65.

Sample Rate. The sample rate refers to the number of digital
samples used to represent one second of analog audio. The
greater the number of samples, the more accurately the
audio signal will be reproduced. A sample rate of 8 kHz
(8000 samples/s) can reproduce human voice with adequate
clarity, but it does a very poor job on music. For music, 44.1
kHz (44,100 samples/s) works well. The music on all com-
pact disks is recorded at this sample rate. Digital audio tapes
(DAT) have a 48-kHz sample rate, producing slightly better
audio quality. The audio hardware (described later) supports
all of these sample rates plus a few others.

The sampling rate is also subject to the Nyquist criterion,
which dictates that the sampling rate must be at least twice
the rate of the highest frequency being recorded. Higher
frequencies will typically be filtered out by the recording
hardware.
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Fig. 2. Client/server architecture for the audio software.

Multiple Channels. Although audio files with more than two
channels do exist, most are either mono (one channel) or
stereo (two channels). The two channels in a stereo file are
typically interleaved on a sample by sample basis. This
means there will be a sample for the left channel, followed
by one for the right, followed by the next one for the left
and so on.

Byte Ordering. One problem with supporting files across a
heterogeneous environment is that the byte ordering of the
local hardware may be different. In our audio structure we
supply information about the byte ordering of the audio
hardware connected to the system. Unfortunately, there is no
easy way to determine the byte ordering of the audio data in
a file that is imported from elsewhere. Therefore we are
forced to make assumptions. We assume all RIFF/Waveform
files use least-significant-byte-first order and that all other
files use most-significant-byte-first order. This applies even to
the files created by our audio tools.

Client/Server Architecture

The audio system software uses a client/server architecture
that is modeled after the X Window System (see Fig. 2). The
client side provides a consistent interface to application pro-
grams and handles the connection to the server, which may
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be local or remote. The server side provides a consistent
interface to the client side, handles control of the audio
device, and performs data I/0.

The audio server (aserver) interfaces multiple clients to the
audio hardware, allowing simultaneous play and record,
queuing of multiple play and record transactions, priority
preemption, and dynamic buffering.

The audio server also supplies information to the client side
about the attributes of the connected audio hardware. The
audio library provides the capability to convert various audio
attributes to ones that are supported by the connected hard-
ware. Therefore, the hardware attributes (sampling rates,
data formats, byte ordering, etc.) do not need to be the same
on the client and the server.

Support for Application Developers

Since our audio software subsystem is closely modeled after
the X Window System and OSF/Motif, we provide a library,
a server, widgets, and a toolkit that are very similar to their X
counterparts. When appropriate, we followed the X conven-
tions in our implementation of the various components. For
example, the naming convention, function argument conven-
tion, and event and error handling of the audio library all
follow the conventions used in Xlib. An application devel-
oper who is familiar with X and OSF/Motif should find it
easy to incorporate audio functionality.

The audio server handles the interface to the audio driver
and provides control of audio transactions. This isolates the
audio client from hardware-specific device calls and allows a
higher level of transaction control than would otherwise be
possible.

The audio library is conceptually much like the X library, or
Xlib. The audio library provides the low-level application
program interface for audio. The audio library provides func-
tions that allow an application to connect to one or more
audio servers, to manipulate the configuration of the audio
hardware controlled by the servers, to control recording
from a server to a file or data stream, and to control play-
back from a file or data stream to a server. The audio library
also provides the capability for applications to play audio
from any of several popular file and data formats and to
save audio in any of those formats.

The audio widgets provide high-level access to record and
play functionality. The application developer can use the
widgets without having to learn the lower-level audio library
calls. The audio widgets don’t export all the functionality of
the audio library, but they do provide some flexibility
through the use of resources that can be specified by the
client application.

The audio toolkit provides callbacks for audio events. Since
it is not desirable for audio events to interfere with other
events when an application is using the X toolkit, the audio
toolkit allows the X toolkit to detect audio events and call
the audio toolkit event handler.

Several example programs are also provided for developers.
These include the source code and Makefiles. Some of the
examples use the widgets and toolkit, and others use only
the low-level audio library calls.

(continued on page 66)



Overview of A-law and p-law Data Formats

An analog audio signal is continuous in time and amplitude (Fig. 1a). In contrast, a
digital audio signal is discrete in time and amplitude. An analog-to-digital converter
is used to convert an analog audio signal to digital format. This conversion con-
sists of two separate steps: sampling and quantization. Sampling converts the
analog signal from continuous time to discrete time by capturing the value of the
analog signal at regular intervals in time. Theoretically, the sampled signal only
has a value at those sampling times. Fig. 1b shows the sampled version of the
signal in Fig. 1a.

The process of quantization maps each sample value to a number. These num-
bers are represented with a fixed number of bits, giving them limited precision. The
quantization process picks the number that best approximates the amplitude of the
sample. Essentially, each step in the digital code represents a quantum of increase
(or decrease) in the amplitude. Hence the name, quantization. Fig. 1c shows the
signal after quantization, along with the digital codes assigned to each quantiza-
tion level. A digital audio stream is simply a sequence of such digital codes. Al-
though Fig. 1c shows only a few quantization levels, actual implementations use
thousands of levels.

The most straightforward form of quantization uses fixed-size quanta of amplitude.
In other words, each step in the digital code represents the same step size in
amplitude. In this scheme, the mapping from amplitude to digital codes can be
represented with a linear function (known as linear quantization). Fig. 2a shows a
linear mapping function.

A-law and p-law define a kind of mapping in which the digital code is roughly equal
to the logarithm of the amplitude. Although both laws use the same basic idea, the
actual mapping equations are somewhat different in the two laws. Also, to simplify
the conversion to or from linear quantization, a piecewise linear approximation is
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Fig. 1. The stages of converting an audio analog signal from analog to digital format.

(a) Original analog signal. (b) Sampled version of the analog signal. (c) Quantization levels
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Fig. 2. Methods of quantization. (a) Linear mapping, or linear quantization. (b) Logarithmic
mapping function and its piecewise linear approximation.

used. Fig. 2b shows a logarithmic mapping function and its piecewise linear
approximation.

Telephone companies use A-law and p-law to carry long distance conversations
because these formats save bandwidth. For telephone conversations, signal
strength may vary as much as 30 dB because some callers have softer voices
than others, or some microphones are more sensitive than others. It is necessary
to maintain a 35-dB signal-to-noise ratio (SNR) over the entire range. With linear
mapping, quantization noise remains independent of the amplitude level, so one
must design for 65-dB signal-to-noise ratio (30 dB + 35 dB) to meet the require-
ments. As the signal strength varies over the 30-dB dynamic range, the SNR
varies between 35 dB and 65 dB. This solution delivers a higher SNR than re-
quired at most amplitudes to meet the SNR requirement at minimum amplitude.
The price for exceeding the SNR specification in a linear mapping scheme is that
12 bits per sample would be required. However, using A-law or u-law, 35-dB sig-
nal-to-noise ratio can be maintained over a 30-dB amplitude range with just eight
bits. This works because logarithmic mapping has the property that larger signal
amplitudes result in larger quantization steps. Thus, quantization noise is propor-
tional to the amplitude, maintaining a reasonable SNR across a broad dynamic
range. This is a more efficient way to use the quantization levels, making eight bits
per sample adequate. Thus, the use of A-law or p-law results in a 33% reduction
in telephone audio transmission. The same benefits are realized in computer
audio.

The differences between A-law and u-law are minimal. The U.S.A., Canada, and
Japan use u-law for telephone transmission, whereas most other countries use
A-law for telephone transmission. While A-law is somewhat easier to implement,
u-law provides slightly better quality at low amplitudes. Note that A-law and p-law
work well with voice audio only. For high-fidelity music reproduction, linear mapping
with 16 bits per sample is typically used.
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Audio Hardware

While audio components such as microphones and speakers
work with analog signals, the workstation CPU manipulates
data in digital form. Thus, to record audio on a workstation,
the analog audio signal must be converted to digital form
using an analog-to-digital converter. Similarly, audio play-
back requires a digital-to-analog converter. The addition of
these components turns a workstation into a versatile tape
recorder—one that can provide rapid access to a large num-
ber of audio clips and associate them with other data types
within the workstation.

By supporting several options for sample rates and data for-
mats and offering a choice of stereo or monophonic sound,
the audio hardware used on HP 9000 workstations allows
the user to make the appropriate trade-offs between quality
and storage requirements. For example, higher sample rates
result in better quality, but also require more storage. The
user has the freedom to choose the appropriate quality.

The audio inputs and outputs are compatible with most con-
sumer equipment, which allows easy connectivity. Two types
of inputs are offered on our audio hardware: microphone
and line in (for VCRs and compact disks). Only one of these
may be selected at any given time. Three outputs are avail-
able: speaker, headphones, and line out. Any combination of
outputs may be activated simultaneously, but they will all
output the same signal. Although the audio design supports
these five types of inputs and outputs, some workstations do
not contain all five connectors because of space restrictions.
Input and output may be activated simultaneously, which
means that simultaneous recording and playback is allowed.

Audio under the UNIX Operating System

Audio presents a special challenge to a UNIX system because
audio is an isochronous data type. Isochronous means con-
stant with respect to time. This implies that the system must
process audio samples at exactly the specified sample rate. If
it slows down or speeds up, the listener will perceive distor-
tion in the audio. Unfortunately, the UNIX operating system
was not designed to work with isochronous data types. In
fact, the UNIX system supports multitasking, which means
that the CPU splits its effort between any number of tasks
that might be active. Obviously, when there are more tasks
outstanding, each task gets less time from the processor. This
makes it impossible to guarantee that the audio hardware
will get as much processor time as it needs.

Even the hardware infrastructure of the workstation can
interfere with audio operation. Just as the CPU cannot guar-
antee adequate attention to audio, the system bus cannot
guarantee adequate bandwidth for audio. The audio hard-
ware design team’s challenge was clear: overcome these
difficulties while maintaining low cost.

The Solution

The problem description above makes it clear that a solution
that guarantees isochronous operation under all conditions
does not exist. The designers instead chose an approach that
achieves isochronous operation under most conditions. That
approach calls for putting a reasonable, not worst-case, up-
per bound on the delay for any given operation and com-
puting how much audio data could be consumed or pro-
duced in that time. A FIFO buffer of that size is required to
cover that delay. For example, a heavily loaded CPU may
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Fig. 3. Block diagram of the audio I/O hardware within a simplified
representation of a portion of a workstation.

shift its attention away from the audio tasks for one or two
seconds. Therefore, more than two seconds of audio is typi-
cally buffered in system memory. (Actually, the user can
vary the size of that buffer if necessary. A system that is
often heavily loaded might need a larger buffer.)

Two options exist for moving audio data between system
memory and the audio hardware. Either the CPU can move
it in response to an interrupt, or the audio hardware itself
can move it. Since the CPU often turns its attention to other
things, it might take several milliseconds to respond to an
interrupt. Under the design philosophy described above, the
audio hardware would need to buffer enough data to cover
that delay. To provide adequate storage space, a separate
memory chip would be required, making the audio hard-
ware somewhat more expensive. On the other hand, the
audio hardware could access the data using direct memory
access (DMA). To perform DMA, the audio hardware must
become the master of the system bus. The delay for getting
mastership is on the order of tens of microseconds, and the
buffer must be able to cover that delay. The DMA approach
reduces the size of the buffer by two orders of magnitude.
In fact, in the final design, the required buffer size is small
enough to implement inside a simple gate array (see Fig. 3).
The gate array is required to interface to the bus anyway, so
the cost increase was negligible. Of course, the DMA logic
added design complexity. Thus, cost was reduced through
increased R&D effort. To make the audio hardware inexpen-
sive enough to offer it as a standard feature, the engineering
trade-offs had to favor lower cost.



Physical or Virtual DMA?

All modern workstations employ a virtual memory system
that allows the CPU to work with virtual memory spaces that
are larger than the physical memory available in the system.
All programs access memory using a virtual address, and the
CPU hardware translates it to a physical address. In contrast,
DMA accesses do not go through that same hardware, so the
hardware initiating a DMA request must supply the physical
address to the bus. In that sense, HP workstations do physi-
cal DMA, not virtual DMA. Still, an I/O device could include
the hardware necessary to do virtual-to-physical translation,
effectively giving that device the ability to do virtual DMA.
Since programs work with virtual addresses, they could com-
municate with I/O hardware more easily if that hardware did
virtual, rather than physical DMA.

Unfortunately, virtual-to-physical translation hardware adds
complexity and cost to I/O hardware. For that reason, our
audio hardware does not do virtual DMA. Instead, the driver
software assumes the responsibility of presenting the hard-
ware with physical addresses. Again, the trade-off was made
in favor of lower system cost.

Hardware Components

Fig. 3 shows a block diagram of the audio hardware compo-
nents within a simplified representation of a workstation. As
shown in the figure, the audio hardware connects to the
workstation’s system bus. The CPU uses the system bus to
initialize the audio hardware with the desired parameters
such as sample rate, volume level, and so on. The DMA
block uses the system bus to read audio data for playback
and to write audio data for recording. It writes the playback
data into the playback FIFO and reads the recorded data
from the record FIFO. Each FIFO’s size is 8 words by 32 bits.
The other ends of the FIFOs connect to the serial interface
block. This hardware converts audio data from parallel
form, which the FIFOs use, to serial form, which the audio
CODEC requires. The term CODEC is an abbreviation for
coder/decoder. In this context, analog-to-digital converters
are called coders and digital-to-analog converters are called
decoders. The audio CODEC implements two converters of
each type in a single chip, allowing stereo operation. Some

of the CODEC inputs and outputs are buffered with analog
amplifiers. In some cases, the amplifiers provide more gain,
while in others they help match input or output impedance.
The CODEC also implements the logic required to support
the various sample rates and data formats discussed earlier.
The analog-to-digital and digital-to-analog converters inher-
ently operate with 16-bit linear data. So, if A-law or y-law
mode is selected, the CODEC converts playback data from
the selected mode to 16-bit linear and recorded data from
16-bit linear to the selected mode.

The CODEC is a commercially available part. A single gate
array implements the rest of the logic in the audio hardware.
Some salient features of this HP-designed gate array are:
4,953 gates

1.0-micrometer technology

120 PQFP (plastic quad flat pack) package.

The process used for this gate array allows finer-pitch I/O
pads than most similar processes. The finer pitch is better
matched to the particular ratio of gates to pins of this chip. If
manufactured in another process, this chip would have cost
more because of a larger die area.

Conclusion

For audio to be useful on the desktop, audio capabilities
must be pervasive. The HP 9000 Series 700 workstations
have kept the cost of audio hardware and application devel-
opment low by avoiding special-purpose hardware like digital
signal processors in favor of using the power of the PA-RISC
processor to handle digital audio signals. This allows HP to
ship high-quality audio with every workstation. Our audio
offering is completed with an audio server and basic audio
tools to get users started with audio, and a library containing
audio widgets, a toolkit, and program examples for
application developers.
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