Automatic State Table Generation

The HP C1553A DDS tape autoloader requires a complex sequence of
simple operations to carry out mechanical retries. These sequences are
defined in tables. Cadre’s Teamwork was used for input and an automatic

tool was used to generate the tables to go in ROM.

by Mark J. Simms

The autoloader firmware for the HP C1553A digital audio
tape autoloader was written in the C programming language
to run on a Hitachi H8/325 processor. This processor is an
embedded system microcontroller with built in ROM, RAM,
I/O ports, timers, and serial ports. This allows a very low-
cost implementation of the autochanger controller in which
most of the functions can be carried out in a single chip.
However, the largest ROM size available on the HS8 series
of processors was 32K bytes. This means that the complex
retry algorithms required for controlling such a mechanical
device needed to be implemented in as compact a manner
as possible.

Our laboratory has a large amount of experience in producing
table-driven systems. All of our products have had some form
of table-driven control structures in some part of their firm-
ware. However, experience had shown that there can be
severe problems maintaining table-driven code because of
the difficulty of maintaining the tables. This derives from the
lack of readability of software written in C or assembly lan-
guage that merely defines the contents of data structures. A
lot of documentation needs to be added to the source code
to explain the meaning of the entries. If this is not main-
tained, then the declarations rapidly become unreadable.
This greatly increases both the time needed to implement
changes and the risk of errors.

The designers of the HP 9145A cartridge tape drive and the
HP 35470A DDS tape drive attempted to improve this situa-
tion by defining state machine languages that can be trans-
lated into C source code automatically. These languages
offered powerful constructs for defining the tables in terms
of state machines. The software would remain in one state
until an event was detected. Then a set of actions would be
carried out and a new state entered. This approach made the
table definition much more readable than the basic data dec-
larations and greatly alleviated the maintenance problems.
However, the state machine languages suffered from many
of the problems that are characteristic of “unstructured” pro-
gramming techniques. There was no observable flow in the
source code since transitions were permitted between any
two states. This made it very difficult to follow the flow of
the program and determine what sequence of actions had
occurred.

To aid in documenting these state machines, the Teamwork
structured analysis tool from Cadre Technologies was

adopted. This allowed the initial problem analysis to be car-
ried out graphically. A state transition diagram was produced

[J Hewlett-Packard Company 1994

to document the desired solution (see Fig. 1). This was then
implemented using the state machine language. However, as
the state machine language description was modified, the
diagram gradually became more and more out of date and
was updated periodically. This meant that while the diagram
could be used to gain an initial familiarity with the software,
it could never be guaranteed to be completely accurate.

With the HP C1553A autoloader, these problems became
more serious. The state tables were to be used very exten-
sively for mechanical control. Also, there was a very strong
need to communicate the control algorithms to mechanical
engineers and the product test team. This required that good
accurate documentation be available to all within the divi-
sion. It was felt that any manual system for maintaining such
documentation would prove unusable in real situations. As a
result, a decision was made to generate the state tables di-
rectly from the Teamwork diagrams. This would ensure that
the diagrams were always accurate reflections of the software.

Design Implications

Analysis of the HP C1553A motor control software showed
that the software divides into two major sections. The first is
a number of routines that handle the low-level control of the
mechanism. These routines control the motors and sole-
noids, read sensors, and track the position of the mecha-
nism. They track control information and map that onto the
control signals required to operate the motors in the correct
direction at the correct power level. They debounce input
readings and map them into mechanism position information.
These routines are implemented in C and use global variables
to interface with the rest of the software. The routines are
called in sequence to carry out all the necessary interfacing
to the mechanism.

The second section is the control sequencing. This contains
a number of state machines. Some of these are directly
linked to the individual mechanism parts. Others sequence
individual mechanism operations together in response to a
single command. These state machines interface with the
low-level routines by means of the control information and
mechanism position global variables.

Since several state machines are running concurrently with
the low-level routines, this concurrency must be reflected in
the software. Each state machine, when called, checks to see
if a transition needs to be made. If not, control is returned
immediately. If a transition is needed, that transition is exe-
cuted and control is returned. This ensures that all the state

December 1994 Hewlett-Packard Journal 21

motor_action="motor_action_power_on"/
mc_status="no_error”;
mc_map_status="true”;
mc_map_cartridge_height="false”

mc_action="mc_jammed” |
mc_action="mc_power_on_Z"

mc_action="mc_failed”/

mc_action="mc_retract_picker”) »
recovering Z position

mc_action="mc_jammed” | mc_action="mc_success”/
mc_action="mc_power_on_Y"

mc_action="mc_failed”/ y
mc_action="mc_retract_picker” i
— 3 closing door

mc_action="mc_success”/
, Mc_action="mc_retract_picker”

(mc_action="“mc_jammed ” |
mc_action="mc_failed”) & mc_door_open/
mc_action="mc_retract_picker”

recovering X position

. mc_action="mc_success”

waiting for drive

motor_drive_status_valid &
((motor_drive_status_lurking="false” &
motor_drive_status_present="false”) |
(motor_drive_status_lurking="true” &
motor_drive_status_present="true"))/
mc_action="mc_recover_cartridge”

mc_action="mc_jammed”| mc_action="mc_jammed”|
mc_action="mc_failed"/ mc_action="mc_failed"/
mc_action="mc_retract_picker” . Mc_action="mc_retract_picker”

retracting cartridge

recovering cartridge

mc_X_motion_cartridge_present="true” & l

motor_drive_status_present="true”/ 16 ecking cartridge @
motor_drive_status_lurking="true” &
mc_action="mc_put_cartridge”

mc_action="“mc_success”
mc_action="mc_success”

mc_X_motion_cartridge_present="true” & mc_X_motion_cartridge_present="false” &
motor_drive_status_lurking="false” & motor_drive_status_lurking="false” &
motor_drive_status_present="false”/ motor_drive_status_present="false”/
mc_action="mc_platform_to_drive” mc_action="mc_platform_to_drive”

mc_action="mc_jammed”|
mc_action="mc_failed”/
mc_action="mc_retract_picker”

putting cartridge back

mc_action="mc_success”/

mc_action="mc_jammed”| o o
mc_action="mc_platform_to_drive’

mc_action="mc_failed”/
mc_action="mc_retract_picker”

recovering Y position

]
mc_action="mc_success” &
Imotor_drive_status_lurking="true”

mc_action="mc_success” &
motor_drive_status_lurking="false/
mc_action="mc_unload_cartridge”

|

1) mc_X_motion_cartridge_present="false” &
motor_drive_status_lurking="true” &
motor_drive_status_present="true”/ _ <
mc_action="“mc_platform_to_drive”

(mc_action="mc_success” |

mc_action="mc_success” & (mc_action="mc_success” | mc_action="mc_failed” |
mc_cartridge_height="mc_25_height"/ mc_action="mc_failed” | mc_action="mc_jammed”) &
mc_cartridge_height="mc_14_height”; mc_action="mc_jammed”) & (mc_R motion_at end="false” |
mc_action="mc_platform_to_cartridge” mc_X_motion_cartridge_present="false” mc_X_motion_cartridge_present="true”/

mc_R_motion_at_end="true”/
mc_status="mc_error”
mc_map_status="true”;
mc_action="mc_power_on_R"

mc_status="no_error”
mc_map_status="true”;
mc_cartridge_side="mc_456_side”;

mc_action="mc_jammed”| A !
mc_action="mc_rotate_magazine”

mc_action="mc_failed”/
mc_action="mc_retract_picker”

19 power on R
mc_action="mc_success”/
mc_action="mc_jammed”| mc_cartridge_height="mc_36_height”;
mc_action="mc_failed"/ , mc_action="mc_platform_to_cartridge”
mc_action="mc_retract_picker” <€ @
. l
10 going up to push .

“mc_action="mc_success” &
mc_action="mc_jammed”| mc_action="mc_success'/ mc_cartridge_height="mc_36_height"/
mc action="mc failed”/ mc_action="mc_sense_cartridge’ mc_cartridge_height="mc_25_height”;

. - mc_action="mc_platform_to_cartridge”

mc_action="mc_retract_picker” __ i
11 pushing in cartridge

mc_action="mc_success” &

mc_action="mc_jammed”| mc_cartridge_height="mc_14_height*/
mc_action="mc_failed”/ y mc_action="mc_platform_to_drive’
motor_action="motor_status_jammed” B)

going back down

mc_action="mc_success”/

retracting picker after mc_action="mc_jammed”| mc_cartridge_side=“mc_456_side”;
failure mc_action="mc_failed"/ y mc_action="mc_rotate_magazine’

mc_action="mc_retract_picker”

17

recovering R position

mc_action="mc_success”|
mc_action="“mc_jammed”| me_action="mc,_success”/

mc_actmn; mf_faned ! . " motor_action="motor_status_success”
v motor_action="motor_status_jammed - - -

Fig. 1. State transition diagram.

22 December 1994 Hewlett-Packard Journal O Hewlett-Packard Company 1994

machines and low-level routines can be called in sequence,
thereby maintaining the required concurrency.

From this analysis, the following design criteria were derived
for the state machine implementation:

The state machines must be able to respond to the values
of mechanism position variables and execute transitions
accordingly.

The state machines must be able to set mechanism control
variables when a transition occurs.

A timeout mechanism is required that can handle times up
to 30 s with a resolution of 1 ms.

Each state machine must execute at most one transition
when executed.

Each transition must be executed as a complete unit to
lessen the risk of data contention problems.

The state machine implementation must use the minimum
space possible.

The ability to store a history of trace information must be
provided for debugging purposes.

Interpreting Teamwork/RT

The Teamwork/RT product provides a graphical state
machine editor that has the following features:

There is a set of states, each of which has a unique number
and a unique name.

There is an initial state, indicated by a single initial transition.
Transitions out of states may enter other states or may indi-
cate that the state machine has exited.

Transition information indicates the condition under which
the transition occurs and may give actions that are to be
carried out on that transition.

Each transition condition is a logical expression consisting of
a number of comparisons of variables with values.

Each transition action is an assignment of a value to a
variable.

The full syntax of this state machine description is supported
by the code generator tools. This gives a fairly rich design
environment in which to work. It has the additional advan-
tage that if the diagram is correct according to the Teamwork
syntax checker, it should generate code correctly and that
code should compile.

To parse the state machine diagrams, a program was written
to access the Teamwork database. This retrieves the data
structures for a complete diagram, parses them, and gener-
ates the required code table. The program connects to the
Teamwork database, retrieves the state transition diagram,
and follows the linked list of states. For each state, it identi-
fies each transition that exits that state. For each transition, it
parses the associated text and generates the required data
structures for its condition, actions, and next state.

Finding the start and end states of a transition and finding
the transition information that is bound to a given transition
involves the concept of an instance number. Each item in a
Teamwork diagram is given a number to identify it. This
number is unique across all items in the given diagram,
whether an item is a text block, a transition, or a state.

The instance numbers of the initial and final states and the
text block associated with a given transition are stored in
that transition’s entry in the linked list of transitions. The
state can be identified by searching through the linked list of

[J Hewlett-Packard Company 1994

states to find the one with the same instance number as in
the transition entry. The text block holding the transition
information can be identified by searching through the linked
list of text blocks to find the one with the same instance
number.

To increase the performance of the code generator, an array
of pointers to text blocks and states is set up at the start of
the program. The list of text blocks is searched and the entry
in the array indexed by the instance number of a given
block of text is set to point at that block of text. The list of
states is searched and the entry in the array indexed by the
instance number of a given state is set to point to that state’s
entry. This allows the start state, end state, and text block
associated with a given transition to be found by a single
table look-up each.

Parsing Transition Information

The transition information associated with a transition con-
sists of an event or an event, a / character, and a semicolon-
separated list of actions.

The event is a logical expression consisting of a number of
comparisons. Comparisons are linked with logical OR opera-
tions indicated by the | character and logical AND operations
indicated by the & character. The logical NOT operator, indi-
cated by the ~ character, can be used to invert an expres-
sion or comparison. Order of execution can be indicated by
the use of parentheses. Each comparison consists of either
just a variable or a variable, a comparator symbol, and a
constant value in double quotation marks. The comparators
can be equal =, greater than >, less than <, not equal ~=, less
than or equal to <=, or greater than or equal to >=.

Each action consists of the name of a variable, an equals
sign =, and the value to be assigned to that variable in
double quotation marks.

This gives a text block of the form:

mc_timed_out |

(mc_jam_sense &
mc_picker_state="mc_picker_open”)/

mc_X_motion_direction="mc_X_brake”;

mc_action="mc_jammed”

This should be read as follows: If mc_timed_out is true, or both
mc_jam_sense is true and mc_picker_state is mc_picker_open, then set
mc_X_motion_direction to the constant value mc_X_brake and set
mc_action to the constant value mc_jammed and transition to the
next state.

This text is parsed using a parser written using the yacc and
lex tools provided with the HP-UX* operating system. this
generates a reverse Polish form for the logical expression
along with the values required for the actions.

Generating the State Table

The major issue with the state table design was to implement
the full syntax supplied by the Teamwork/RT state transition
diagrams in as compact a form as possible. Performance was
not an issue. The maximum response time required of the
firmware was of the order of 3 ms. This was easily achievable
with the designs chosen.

To produce a machine readable form of the transition
information, each part is taken in turn.

December 1994 Hewlett-Packard Journal 23

To reference variables, the H8 processor uses 16-bit address-
ing. This can be truncated to 10 bits to limit the address space
to the 1024 bytes of RAM available on the processor. Since
there are over 3000 references to less than 50 variables, an
index table is far more efficient. In the transition information,
a six-bit index value is stored. This is used to look up the
address of the variable in an array of pointers.

Since every variable in the logical expression is associated
with a comparator, it would be useful to store the informa-
tion indicating the comparator in the spare two bits with the
variable index. Unfortunately, there are six comparators,
which would require at least three bits to store. However,
the comparators form pairs of inverses. Equal is the opposite
of not equal, greater than is the opposite of less than or
equal to and less than is the opposite of greater than or
equal to. As such, the logical NOT operation is used so that
only the three basic comparators have to be used in the state
table, allowing the comparator to fit in the two spare bits of
the variable index. Since most comparisons are equalities,
this saves a great deal of space while preserving the simple
table format with no items crossing byte boundaries. All
comparisons are with 8-bit values. These are stored in the
byte after the variable index and operator.

The logical operators are stored in single-byte values. This is
wasteful since only a couple of bits are really required for
these. However, it maintains the simplicity of the generator
and interpreter by avoiding the necessity of table items
crossing byte boundaries.

The expression is stored in the table in reverse Polish format
with the comparisons as values. The expression is terminated
with a zero byte to indicate where calculation should stop.

Each action consists of the six-bit index for the variable
stored in one byte and the single-byte value to be assigned
stored in the next byte. The list of actions is terminated by a
zero value to indicate the end of the list.

While most of the actions involve assignments of a single
byte, the setting up of timeouts requires that a 16-bit value
for the timeout in milliseconds be set. This variable is con-
sidered a special case by the state machine generator and
two assignments are generated. This maintains the readabil-
ity of the state machine diagram without adding complexity
to the state machine table to handle 16-bit values.

The final part of the transition information is the next state.
This is given as a single-byte value.

The state table entries for the transition text example given
earlier are:

(mc_timed_out_index | 128), 1, x==*
(mc_jam_sense_index | 128), 1, /* ==*/

(mc_picker_state_index | 128), mc_picker_open, /*==*
1,/* AND ¥/

2,/*OR*/

0,

mc_X_motion_direction_index, mc_X_brake,
mc_action_index, mc_jammed,

0,

0,

The transition data for each state is generated in turn. At the
end of the transitions out of a given state, a single byte of

24 December 1994 Hewlett-Packard Journal

value 255 is inserted to indicate the end of the transitions
associated with that state.

To access the transitions associated with a given state, a
table of pointers is used. The pointer indexed by a given
state number points to the first transition from that state.

A single byte of data is used to hold the number of the
current state. This is the same value as appears on the
Teamwork/RT diagram.

Finally, a structure is generated that holds a pointer to the
state pointer table, a pointer to the index variable, a pointer
to the state variable, and a code to be used for logging.

The complete data structures for the state table are shown in
Fig. 2.

State Table Interpreter
To execute the state table an interpreter routine is used. This
reads the state table and carries out the actions required.

The interpreter routine is passed a pointer to the header
structure for the state machine to be executed. It uses the
pointer to the state variable to get the current state. It uses
this as an index into the state pointer table to get a pointer
to the transitions for the current state. It then scans the
transition information.

The first thing in the transition information must be an ex-
pression, terminated by a zero byte. The interpreter routine
checks each byte in turn to see if it is a comparison, an
operation, or the terminating zero.

If either or both of the top bits are set, then it is a compari-
son and the next byte is the value to be compared. The bot-
tom six bits of the byte are used as an index into the index
table to get the pointer to the variable to be checked. This is
then used to get the variable’s value. The first two bits are
used to determine whether the comparison should be for
equality, greater than, or less than. The next byte is read, the
comparison is executed, and the result is placed on a stack.
The current byte is then incremented past both bytes of the
comparison.

If neither of the top two bits is set but the value is not zero,
then the byte indicates a logical operator. If the operator is
AND or OR, then the top two values are removed from the
stack, the operation is carried out on them, and the result is
pushed back on the stack. If the operator is NOT, then the
top value is pulled off the stack, inverted, and pushed back
on. The current byte is then incremented past the operator.

This is repeated until a zero byte is found as the current
byte. Then the top value is pulled off the stack to indicate
whether the expression evaluated to TRUE or not.

If the expression is TRUE, the actions are read in turn as byte
pairs until a zero byte is found as the first byte. For each
byte pair, the value in the second byte is assigned to the
variable pointed to by the pointer in the index table indi-
cated by the index in the first byte. When the terminating
zero byte is found, the next byte is assigned to the state vari-
able and the interpreter routine exits, having completed a
transition.

[Hewlett-Packard Company 1994

Variable 0 Pointer
Variable 1 Pointer
Variable 2 Pointer

Variable 3 Pointer
\ \
Variable n Pointer

Index Table

Index Table

State Pointer Table State 0 Pointer

State Variable State 1 Pointer

Log Value State 2 Pointer

State Table
Header Structure

State n Pointer

State Pointer
Table

State Variable

If the expression evaluates to FALSE, the actions are skipped
over until a zero index is found. The next byte is skipped as
well, since this is the next state value. The subsequent byte
is checked to see if there are any more transitions to pro-
cess. If this byte is not 255, then another transition follows
and it is processed in the same manner. If this byte is 255,
then all the transitions have been processed and none have
conditions that are TRUE. The interpreter routine exits with-
out carrying out any actions or altering the state variable.

Initialization and Exception Conditions

The state variable must be initialized at startup for the initial
state of the system. Rather than provide a mechanism for the
initialization routines to know the initial state, an additional
state 0 is added to the state machine. Any transitions on the
diagram that connect off-page are viewed as connecting to
this additional state. Since the initial transition that identifies
the initial state is the only one that can come from off-page,
this allows the initial state to be set merely by setting it to
zero. As soon as the state machine is executed, it will
transition into the initial state on the diagram.

When an exception occurs, it is useful to be able to restart
the state machine to initialize those areas of the mechanism
under its control. Rather than connect all the transitions that
handle exception conditions to the initial state, these are
allowed to run off-page. In the Teamwork/RT notation, this
means that the state machine has exited and that it should be
restarted from the initial state on its next invocation. Since
these off-page connectors connect to the additional state 0,

O Hewlett-Packard Company 1994

I

State 0 Transition 0

State 0 Transition 1

State 0 Transition n

1

State 1 Transition 0

State 1 Transition 1

|

State 1 Transition n

State 2 Transition 0

State 2 Transition 1

State 2 Transition n

State n Transition 0

State n Transition 1

State n Transition n

Bl
s

Transition
Information Table

Fig. 2. State table data structures.
this has exactly the desired effect. The exception transition
can then be made to restart the state machine without the
clutter of unnecessary connections on the diagram.

Debugging and Trace Logging

To be able to debug problems with a real-time control sys-
tem, it is important to be able to get trace information back
from the unit after a failure to determine what the system
was doing at the time of failure. With a system that is largely
implemented as state tables, it is possible to follow the flow
of actions in terms of the state changes involved. As such, the
state table interpreter was designed with a tracing function
built in.

Whenever a state change occurs, the state table interpreter
logs the current time as a 16-bit rolling clock counting in
milliseconds, the 8-bit log value in the state table header
structure that identifies which state machine is being exe-
cuted, and the 8-bit value of the new state. The resultant
32-bit value is stored in an internal rolling buffer and is also
transmitted on one of the H8 processor’s built-in serial lines.

To decode this trace information, host-based interpreter pro-
grams are used. These decode the information in the trace
log to identify exactly which state table and state within the
table are involved. These are then printed out using the
names on the Teamwork/RT state transition diagrams. This
enables the changes in state to be followed on the diagrams
merely by following the names given. The time each state
was entered is listed alongside the name of the state to facili-
tate the interpretation of the mechanical factors that may

December 1994 Hewlett-Packard Journal 25

have caused the state change. The use of milliseconds
throughout, both for timeouts and for trace logging, allows
engineers debugging failures to work in real-world values
rather than units that are solely dependent on the software
design.

During product test, the serial output from the micropro-

cessor is monitored and the data is interpreted in real time.

This allows both real-time debugging of failures and the
gathering of a complete history of a test. In the field, the

26 December 1994 Hewlett-Packard Journal

rolling buffer is returned from the autochanger via its SCSI
interface. This only allows a recent history to be returned,
but does not require additional hardware to monitor the
serial port.

HP-UX is based on and is compatible with Novell's UNIX" operating system. It also complies
with X/Open's* XPG4, POSIX 1003.1, 1003.2, FIPS 151-1, and SVID2 interface specifications.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a trademark of X/Open Company Limited in the UK and other countries.

[Hewlett-Packard Company 1994

