Using State Machines as a Design
and Coding Tool

The wide acceptance of real-time extensions to structured analysis
techniques have led to the use of state machine descriptions for the
specification of systems in which state or sequence is a vital part.
However, the techniques for implementing these specifications have
remained poorly understood and haphazard, leading to implementations
that are difficult to verify against the specification. This paper examines
different approaches to the use of state machines and explores their

advantages and disadvantages.

by Mark J. Simms

In the theory of state machines, two types of state machine
model are defined: the Mealy Model and the Moore model.
In the Mealy model, outputs are associated with transitions.
When a transition happens, the output is generated. The for-
mat of this type of state machine as implemented in Cadre’s
Teamwork software is shown in Fig. 1. In the Moore model,
outputs are associated with states. When a state is entered,
the output is generated. The format of this type of state
machine as implemented in Teamwork is shown in Fig. 2.

Traditionally, the Mealy state machine model has been used
for software systems. Teamwork versions prior to 4.0 did not
support the Moore state machine model. This is because
software state-based systems typically only take action in
response to an event. An output is set on the transition, al-
though it may remain set indefinitely. This is sometimes not
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the optimum way of approaching a state-based model, but
tends to reflect the way software engineers think.

As a result, this paper will concentrate on the Mealy model
and references to state machines may be taken to assume
this model unless there is a specific reference to the contrary.
All of the concepts can be applied to Moore-model state
machines because any Moore state machine can be imple-
mented as a Mealy state machine, although the converse is
not true.

When the original concepts of structured analysis were pro-
posed by Tom DeMarco,! no concepts of state or sequence
were used. This led to difficulty in modeling a large class of
problems, including real-time control systems that are largely
based around state and sequence and have little data flow
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Fig. 1. Mealy state machine.
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Fig. 2. Moore state machine.

content. As a result, two proposals were made for extensions
to the structured analysis notation that would enable this
type of problem to be modeled.

The first proposal came from Paul Ward and Steve Mellor,2
who introduced a concept of signals to the structured analy-
sis notation. Signals differ from data flows in that they carry
timing information but no data. There are two types of sig-
nals: events and prompts. Events are generated by state
machines and by data transformations in response to
changes in the environment and cause state transitions
within the state machine. Prompts are generated by state
machines to control data transformations. Ward and Mellor
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proposed three types of control that could be exercised on
data transformations: enable, disable, and trigger. Teamwork/
SIM adds the kill prompt. The format of a Ward-Mellor state
machine is shown in Fig. 3.

The second proposal came from Derek Hatley and Imtiaz
Pirbhai,3 who use the concept of a control flow. Control
flows have the same properties as data flows, but are used
for control purposes. They carry data and are continuously
valid. The only way to pass timing information is to change
the value of a control flow in response to an external event.
Logical expressions involving input control flow values are
used to determine when transitions of a state machine take

Resume/

Start_Increasing_Speed/
Enable “Accelerate”

1
Stop_Increasing_Speed/
Disable “Accelerate_to_Desired_Speed”

Enable “Maintain_Speed_Reached” Brake_Engaged/

Disable
‘ “Maintain_

Activate/
Trigger “Get_Speed”

Start_Increasing_Speed/
Enable “Accelerate”

Initialize

Activate/
Trigger “Get_Speed”

Brake_Engaged

Fig. 3. Ward-Mellor state machine.
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Fig. 4. Hatley-Pirbhai state machine.

place. Assignments are used in a state machine to control
the values of output control flows. The format of a Hatley-
Pirbhai state machine is shown in Fig. 4.

Ward and Mellor’s signals can only be used in a Mealy state
machine since they have an instantaneous quality and it
makes little sense to have an instantaneous signal associated
with a state. This could be interpreted as the signal being sent
whenever the state is entered, but this is really associating it
with all the transitions into the state.

Hatley and Pirbhai’s control flows can be used with either
state machine model. If the setting of control flows is associ-
ated with transitions in a Mealy state machine, they are as-
sumed to be set until actively reset on another transition. If
the setting of control flows is associated with states in a
Moore state machine, then the control flow is deemed to be
undefined if the state machine is in a state that does not
actively output that control flow. This leads to a clearer defi-
nition of what is happening with a Mealy state machine and
therefore a tendency to use this model.

Design Criteria

When using state machines as a design tool rather than an
analysis tool, the method of implementing the state machine
must be considered to give the design a rigid definition. In
particular, the means of passing the external inputs to the
state machine and the way the state machine interfaces to the
procedural flow of the rest of the code must be well-defined.

Ward and Mellor recommend that the analysis be partitioned
into tasks according to the number of state machines in the
system. In addition to the state machine, the data transforma-
tions that it prompts and the event recognizers that supply it
with events may be in the same task. This leads to a very
simple interface to the rest of the code. The state machine is
the top-level module of the task. It calls an event recognizer
to get an event from the outside world. The event recognizer
returns an event to the state machine if one is available or
returns a code indicating no event if no event is available.
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The state machine then executes the transition by flagging
data transformations as enabled, disabled, or triggered and
changing to the next state. It executes any enabled or trig-
gered data transformations by calling the relevant procedures.
Finally, it sets the state of triggered data transformations to
disabled before calling the event recognizer again.

This implementation approach has a few drawbacks. First, if
there are a large number of state machines, then the number
of tasks can become very large. For systems that have to be
implemented on hardware with limited power, this can be
very wasteful. To get around this problem, a system by which
multiple state machines can be implemented in a single task
is required. This can be done by making the state machine
return control to the calling procedure after each loop. This
allows multiple state machines to be called in sequence.
This also allows other data transformation modules to be
called in the same sequence, imitating the parallel nature of
the analysis.

Secondly, in systems that are capable of suspending tasks,
the Ward-Mellor approach is very wasteful of processor time.
In this type of system, the event passing mechanism should
be built into the operating system in such a manner that
tasks can block until an event is generated. This works well
if triggers are the only prompts required. If data transforma-
tions must be enabled and disabled, the operating system
must be used to do this. However, this might produce
excessive operating system overhead.

The most efficient implementations based on this type of
design require that only triggers be used, but multiple state
machines can be executed in the same task. With these re-
strictions, the Ward-Mellor design approach can be highly
efficient for large and medium-sized systems. A real-time
operating system handles the scheduling of the tasks and
can block a task waiting for a semaphore to be set. The
semaphore can be set either by another task or by an inter-
rupt service routine responding to an external event. A
counting semaphore can be used to allow multiple events to
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activate a single task. Alternatively, a message queue mecha-
nism can be used to implement a similar technique. If events
are passed between state machines in the same task, then
this can be implemented by flags that are checked by the
event recognizer before suspending.

The top-level module in each task is responsible for calling
the event recognizer routine. This blocks until the task’s
semaphore is set. It then determines what event occurred
and returns the corresponding event code to the top-level
module. The appropriate state machine is called based on
the event code and passed the code as a parameter. The
state machine determines the data transformation modules to
be triggered and executes them in turn. It assigns the new
state and returns. The event recognizer is then called again.

Hatley and Pirbhai offer far less guidance than Ward and
Mellor on how to convert structured analysis state machines
into designs. However, the meaning of the state machine
appears more obvious at first sight, leading to a fairly
obvious design.

Since the control flows are simple data values, these are eas-
ily implemented as static variables. The state machine needs
only to read the variables, evaluate the logical expressions
on the transitions in sequence until one is found to be true,
execute the assignments on that transition and assign the
new state. This continues with the transitions from the new
state.

This approach has two problems. First, the order in which
the transitions are processed is arbitrary. This means that the
actions performed by the implementation are not necessarily
uniquely determined by the state machine description. This
is, however, a problem with the underlying analysis method.
It is the responsibility of the analyst to ensure either that no
two transitions become active simultaneously or that the
system will operate within specification even if they do.

Second and more serious, the state machine offers no
obvious way of interacting with the environment other than
through the static variables. This means that the state ma-
chine would ideally run in its own task interfacing with the
rest of the system via the variables representing the control
flows. This is a highly inefficient implementation. This can
be improved by implementing the state machine in such a
manner that it returns control to the module that called it
after each cycle. This allows several state machine modules
and associated data transformation modules to be placed in
the same task. This improves efficiency somewhat, but still
uses processing time when nothing is being done.

Because of the inefficiency of this sort of implementation it
can only be used where there is sufficient processor time to
spare. However, it does have advantages when there is no
operating system or where the operating system only offers
basic functionality. Since the state machine operates on
global variables, some simple data transformations can be
incorporated into the state machines. This can produce a
design that is very easy to learn and to follow and that can
be implemented very easily.

It is sometimes advantageous to add some of the features
of control-flow-based state machines to signal-based state

machines. This involves adding states that control the flow
of the state machine based on the value of variables. There
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should always be at least one exit transition active whenever
such a state is entered. These states are not true states since
the state machine never waits in the state. Instead they are
merely decision points that affect the future flow through the
state machine. Under certain circumstances, this can greatly
simplify the state machine.

Implementation Techniques

There are two major approaches to implementing state
machines in software. The first is to generate inline code that
executes the state machine logic directly. This is the faster
solution, but uses a large amount of code space. This ap-
proach is typically used on large systems where there is a
lot of memory and on systems where response time is very
important.

The second approach is to generate a table that encodes the
state machine logic in a compact manner that is then inter-
preted by a separate state machine interpreter. This produces
very compact code that is suitable for systems where code
space is low and response time is not critical.

Both signal-driven and control-flow-driven state machines
can be implemented either as inline code or as tables. Vari-
ous different coding schemes can be used depending on the
complexity of the syntax used for the state machine. In sys-
tems where the state machine module never returns, the
program counter can be used to determine the state. More
usually, however, a static state variable is used to maintain
the state between calls of the state machine module.

For a Hatley-Pirbhai type state machine, this leads to an im-
plementation of the form shown in Fig. 5. The state machine
is implemented as a single C function. A static variable
within the function holds the state. This variable is initialized
to the initial state of the state machine when the task is
started. The function is structured as a switch statement in
which each case limb is the processing for a given state. The

void state_machine( void )

static state = Engine_Off;
switch ( state ) {
case Engine_Off:
if (Engine_Running == True ) {
Action = Reset_Cruise;
state = Idle;
}
break;
case Idle:
if (Command == Resume ) {
Action = Accelerate_to_Desired_Speed,;
state = resuming;
} else if (Command == Start_Increasing_Speed ) {
Action = Accelerate;
state = accelerating;
} else if (Command == Activate ) {
Action = Get_Speed;
state = Initialize;
}
break;
case ( Slowing ):

breai(;
}
}

Fig. 5. Code for Hatley-Pirbhai state machine.
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#define number_of_enabled_functions 3
#define Accelerate_to_Desired_Speed_INDEX 0
#define Accelerate_INDEX 1

#define Maintain_Speed_Reached_INDEX 2

void (*function_array)()[ number_of_enabled_functions ] =
{ accelerate_to_desired_speed,
accelerate,
maintain_speed_reached
b
int enabled_array[ number_of_enabled_functions ]
= { FALSE, FALSE, FALSE };

void state_machine(int event )

{
static int state = Engine_Off;
inti
switch ( state ) {
case Engine_Off:

if (event == Engine_Running ) {
Reset_Cruise();
state = Idle;

}

break;

case |dle:
if (event == Resume ) {
enabled_array[
Accelerate_to_Desired_Speed_INDEX ] =
TRUE;
state = Accelerating;

}else if (event == Start_Increasing_Speed ) {
enabled_array[ Accelerate_INDEX ] = TRUE;
state = Accelerating;

}else if (event == Activate ) {

Get_Speed();
state = Initialize;

}
break;
case Slowing:

break;
}
for (i=0; i < number_of_enabled_functions; i++) {
if (enabled_array[i]) {
function_array[ i ]();
}

}
}

Fig. 6. Ward-Mellor state machine code.

case limb corresponding to the currently active state is exe-
cuted when the function is called. This tests the exit condi-
tions for the state in a series of if statements. If one of these
is qualified, then the actions are carried out in the statements
attached to the if statement and the new state is assigned.
The function is then exited to allow other processing to be
carried out in the same task.

For a Ward-Mellor type state machine, this approach leads to
an implementation of the form given in Fig. 6. Two arrays
are used. The first holds pointers to all the functions that are
enabled and disabled. The second holds a flag indicating
whether the function is currently enabled or disabled. The
function that implements the state machine has many simi-
larities to that for the Hatley-Pirbhai state machine. It is
structured as a switch statement with a case limb for each
state. Each case limb consists of if statements that determine
if the corresponding actions should be executed. The condi-
tions used are far more restrictive than in the Hatley-Pirbhai
case. They check whether the event code passed to the
function as a parameter is the value corresponding to the
required event. The actions are either triggers, which simply
call the function that corresponds to the required action, or
enables and disables, which set and clear flags in the array.
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At the end of the function, the array of flags is searched and
the corresponding functions are called via the pointers in the
second array.

This design makes a few assumptions about the calling envi-
ronment. First, the event recognizer functionality is not in
the state machine itself. The event recognizer is executed in
the calling environment and the event code is passed as a
parameter to the function. Secondly, the calling environment
must not block because this would prevent the enabled mod-
ules from being executed. Since the enabled modules are
called as functions from the state machine, the state machine
function must be executed at least as often as the enabled
modules need to be called.

Since the content of these state machines is fairly simple
and well-defined, machine code is a somewhat inefficient
way of storing it. As a result, in systems where code space is
at a premium, it may be advantageous to implement the
description of the state machine as a table that is interpreted
by a separate routine. The following paragraphs describe
one possible way of doing this for a Hatley-Pirbhai state
machine.

The state machine consists of an array of pointers and a state
variable. The state variable is used as an index into the array
to get the address of an array of structures containing a
pointer and a value. Each transition consists of a single con-
dition structure followed by a series of action structures and
then a structure with a null pointer and the destination state
indicating the end of the transition. The end of the transi-
tions for a given state is indicated by another structure with
a null pointer. This is depicted in Fig. 7.

To execute this state machine, an interpreter function is
given the state variable and the list of pointers. Using the
state variable as an index into the table, it uses the corre-
sponding pointer to find the first structure corresponding to
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Fig. 7. State tables for a table-driven state machine.
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a transition from the current state. It then checks to see if the
condition is true by comparing the variable pointed to by the
pointer with the value stored in the structure. If they are
different, the table is scanned until a structure with a null
pointer is found indicating the end of that transition. The
procedure is then repeated until either a true condition is
found or a condition with a null pointer is found. If a condi-
tion with a null pointer is found, all the conditions have
been tested and the interpreter function returns to its calling
environment.

If a condition is found to be true, the interpreter function
scans the subsequent structures and assigns each value in
the structure to the variable indicated by the corresponding
pointer. It continues to do this until a structure with a null
pointer is encountered, indicating the end of the transition.
It assigns the value in this structure to the state variable

to cause a change of state. It then returns to its calling
environment.

A similar approach can be used for Ward-Mellor state ma-
chines. Event codes and pointers to functions to be enabled
or disabled are encoded in the tables. This requires a slightly
more flexible table format, but the principles are the same.

Automatic Generation

Once a rigorous mapping has been defined between the
state machine design and the code to be produced from it, it
is theoretically possible to design tools that can translate
state machine descriptions directly to the source code for the
final software. With the extensive use of graphical state ma-
chine editors for analysis, this gives the potential for a
graphical form of source code that is easy to follow and easy
to modify, removing some of the major problems of software
maintenance.

Analysis tools are not designed with direct code generation
in mind. As a result, the mappings from state machine de-
scription to code must be defined by the engineers on the
project using the tools. This allows a lot of flexibility for ex-
perienced engineers to produce mappings that are highly
tuned to the application concerned. It does mean that there
is a requirement for anyone wishing to learn about the code
to determine what the mapping is and why it was chosen.
Once this is understood, the functionality of the code can be
followed from the state machine diagrams.

For a structured analysis tool to be able to fulfill this role, it
must have a number of features. The following are some of
the most important:

The tool must support the state machine features required
by the implementers. This includes Mealy and Moore state
machines, types of conditions that cause transitions, types of
actions that can be placed on transitions or in states, size
and complexity of diagrams, and so on.

It must be possible to integrate the tool into the configura-
tion management system. Since the state machine diagrams
are now source code, it is vital that they be treated with a
high degree of care and attention.

The tool must be able to access the diagrams. If the data is
stored in any sort of database system, the appropriate access
routines must be supplied.

The tool must keep diagrams in a documented format that
does not change between revisions. Continually modifying
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code generation programs to track the format of the
diagrams is unacceptable.

Once these features have been established, code generation
becomes a simple task of defining the mapping between the
state machines and the code and then designing the transla-
tor program and any interpreter routines for table-driven
state machines. The rest of the code can then be designed
from the remainder of the structured analysis with the state
machine implementation in mind.

There have been a number of dedicated code generator pro-
grams on the market for some time, many of which use state
machines as part or all of their input tools. These systems
come with rigorously defined semantics for their diagrams so
that users of the system can rapidly understand designs with
which they are unfamiliar. These programs also come with a
defined mapping of the diagrams to code.

The biggest problem with this sort of system is that the fea-
tures of the state machines and the mapping to code supplied
by the vendor may not be ideal for the implementation that
is required for a given problem. Few systems currently avail-
able offer any ways of tuning the implementation for a given
set of design criteria. This is one of the major features to
look for in such a system.

A hybrid approach is possible in which a code generator
tool is used, but a custom front end is included to tune the
resulting code from the generator. This might be done either
by treating the tool in the same way as a generic structured
analysis tool and accessing the diagrams and generating
code directly from them or by postprocessing the resultant
code to optimize it for the given situation.

The hybrid approach is probably harder than designing a
generator for a generic structured analysis tool, but the re-
sults could be better. The added rigor of code generators
means that it is easier to use standardized semantics for the
system. The semantics are more likely to be complete than
those of a structured analysis tool.

Summary

The usefulness of state machines for specifying control ap-
plications has been well-proven. Their use in design and
implementation is also showing a great deal of promise. It
has shown major advantages in the following areas:

* Rapid code implementation because of the very close

mapping of analysis, design, and code

* Ease of maintenance because of the availability of easy-

to-read code in the form of state machine diagrams

* Compact implementation of a large proportion of the

functionality of a problem because of the use of table-based
state machines.

These advantages make the investment in tools for this
technique well worth the effort and expense involved.
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