An Event-Based, Retargetable Debugger

Remote and event-based debugging capability, a sophisticated graphical
user interface, and adaptability to different languages and target platforms

are some of the features provided in this debugger.

by Arun K. Iyengar, Thaddeus S. Grzesik, Valerie J. Ho-Gibson, Tracy A. Hoover, and John R. Vasta

Software developers rely heavily on debuggers for both
fixing bugs and analyzing programs. The information ob-
tained by a debugger can be used to add new features and
improve performance. Event-based debugging! is a powerful
method for examining program behavior. In event-based
debugging, the user instructs the debugger to respond to
events that occur during program execution. The proper
selection of events allows programs to be debugged at a
higher level than would otherwise be possible.

This article describes the HP Distributed Debugging Environ-
ment (HP DDE).2 HP DDE is distributed because it is capable
of debugging programs executing on remote hosts. HP DDE
has been ported and retargeted to several platforms and can
be used to debug programs written in C, C++, FORTRAN,
Pascal, and various assembly languages. The platforms that
HP DDE can run on include the HP-UX* operating system,
Domain/OS 68K, Domain/OS Prism, the SPARC implementa-
tion of Solaris, and the PA-RISC implementation of the OSF/1
operating system. HP DDE has a sophisticated graphical user
interface that provides the user with point-and-click access
to commands and program state. Finally, HP DDE has many
features that support event-based debugging and debugging
optimized code.

The modular architecture of HP DDE enhances its portability
and has been a critical component in its success. HP DDE
consists of a main debugger that communicates with several
modules called managers. The main debugger contains sup-
port for generalized debugger functions, and the managers
contain dependencies on specific languages, object code for-
mats, target platforms, and user interfaces.

User-Visible Features

Event-Based Debugging in HP DDE

Almost all debuggers support a traditional debugging para-
digm in which the user inserts breakpoints before critical
points in the program and examines the state of the program
after breakpoints are hit to find program errors. The disad-
vantage of this paradigm is that the user has to know where
to insert breakpoints within the program. The user may also
have to examine the state of the program at a number of
breakpoints before obtaining the desired information.

[J Hewlett-Packard Company 1994

In event-based debugging, the debugger does not return
control to the user until an event defined by the user occurs.
By choosing an appropriate event, the user can avoid stop-
ping the program at points that are not critical. Event-based
debugging allows the user to identify what is going on in a
program without spending large amounts of time inserting
breakpoints at crucial points.

Event-based debugging is achieved by monitoring the exe-
cuting program at an interval or granularity level specified
by the user. Whenever the debugger determines that a de-
sired event has occurred, the debugger returns control to the
user. A lower level of granularity, corresponding to frequent
monitoring, allows the user to determine more accurately the
location where a particular event occurs. However, a low
granularity level can cause execution time to increase sub-
stantially. HP DDE provides several intervals for monitoring
program execution, including every machine instruction,
every source statement, and entry to or exit from each pro-
cedure. Monitoring can be restricted to specific procedures
within a program. Typically, a user would use procedure-
entry-and-exit-level granularity to narrow an event to a spe-
cific procedure. After the faulty procedure is located, the
user can use source-statement-level or machine-instruction-
level granularity within the procedure to determine the exact
location of an event.

HP DDE contains many features for event-based debugging
including conditional breakpoints, execution traces, data
watchpoints, and event intercepts. Conditional breakpoints
allow the user to halt execution at a given point in a pro-
gram only if a set of conditions are met. Execution traces
suspend program execution at intervals specified by the
user. Data watchpoints allow the user to monitor a variable
or memory range (program execution is suspended when a
value corresponding to a watched variable or memory range
changes). Event intercepts allow the user to regain control of
the program when events such as program exceptions,
shared library loading and unloading, thread creation and
termination, and signals from the operating system occur.

The HP DDE command language allows the user to declare
variables for use in a debugging session and contains loops,
conditionals, and assignment statements to allow a wider
range of event specification.

December 1994 Hewlett-Packard Journal 33

Examples

Suppose that the user desires to suspend execution every
time a variable x becomes zero. This can be accomplished
with the following HP DDE command:*

dde> watchpoint x —do [if (x != 0) —then (go))

The behavior when no monitoring interval is specified in the
watchpoint command (as in this example) is to monitor the
expression after every source statement.

As another example, suppose the user wishes to break upon
entry to function foo only if argumentx is nonnegative. This
can be accomplished using a conditional breakpoint:

dde> breakpoint foo —do [if (x < 0) —then (go)]

It is possible for the user to examine data structures while a
program is suspended. The following HP DDE commands
will print all positive elements of a 20-element array A:

dde> declare int dde_var

dde> set dde_var=0

dde> while dde_var < 20 —loop [if A[dde_var] > 0 -then \
(print A{dde_var]);\
set dde_var = dde_var + 1]

The declare command allocates space for new variables that

can be used in debugging sessions, and the backslash () indi- ¢

cates that an HP DDE command continues on the next line.

The following commands will suspend execution whenever
the sum of the 20 elements of A is greater than 100:

dde> declare inti
dde> declare int sum
dde> watchpoint A —do \
[set i=0; set sum = 0; \
while i < 20 -loop \
[set sum = sum + A[i]; seti=i+1];\
if sum <= 100 -then (go)]

Sequences of commands such as these can be stored in a file
and used as input to HP DDE. In addition, macro expansion
allows a user to define a single command that is automati-
cally expanded by the command interpreter into multiple
commands.

As a final example, the following commands will execute a
program and print the number of times a multithreaded
application switches between different threads:

dde> declare int ts_count

dde> setts_count=0

dde> intercept thread_switch —do [set ts_count =ts_count + 1; go]
dde> go; print ts_count

The User Interface

Several user interfaces have been designed for HP DDE. The
most sophisticated is a graphical user interface based on the
X Window System and OSF/Motif.3 It features multiple win-
dows, context-sensitive pop-up menus, and online help. The
user can customize menus, command buttons, and key bind-
ings. A typical HP DDE debugging session with four win-
dows is illustrated in Fig. 1. The graphical user interface can
manipulate up to six different types of windows:

Target program window. This is the window from which HP
DDE is invoked. All data to and from the program being

t HP DDE debugger commands can be entered in the command entry line area in the transcript
display window described in the next section.

34 December 1994 Hewlett-Packard Journal

debugged is directed to this window. The main parameter to
the debugger is the name of the program to be debugged.
Transcript display window. This is the debugger’s main
window. It has four components. The command entry line
component at the bottom of the window is for keyboard
entry of debugger commands. All debugger commands can
be entered from the keyboard in this area. Above the com-
mand entry line is the transcript area, which displays input
to the debugger (including commands accessed from the
mouse) and debugger output. The buttons along the left
side of this window provide quick access to common de-
bugger commands. For example, the user can single-step
the program (execute a single source statement) by clicking
on the button labeled Step. These buttons can be reconfig-
ured by the user to represent other commands. The pull-
down menus across the top of the transcript display window
allow access to all debugger commands via the mouse.
Source code display window. This window displays the
source code for the program being debugged.

Assembly display window. This window displays the dis-
assembled machine instructions for the program being
debugged.

Traceback display window. This window displays the current
dynamic call chain of the target program.

Variable display window. This window displays the values
of variables or memory ranges for which watchpoints have
been set. When a watched value changes, HP DDE sus-
pends execution, notifies the user of the change in value,
and updates the variable display window with the new
value.

Context-sensitive pop-up menus allow the user to access
common debugger commands with the mouse. Menus ap-
pear when the mouse is clicked. The menu that appears
depends on the position of the mouse within a particular
window at the time the mouse is clicked. For example, click-
ing on the mouse with the cursor positioned in the source
code region brings up the menu displayed in Fig. 2. The
cursor in Fig. 2 was positioned at the opening bracket of the
expression listfi] at the time the mouse was clicked. The menu
was thus seeded with the expression list[i]. If the cursor had
been positioned over list, the menu would have been seeded
with list instead of listf]. The mouse can be positioned to print
complex expressions in source programs without requiring
the user to type in the expressions.

For even quicker access, double-clicking causes HP DDE to

execute the first menu item instead of displaying the menu.

The default pop-up menus contain actions that are commonly
performed by users. However, pop-up menus can be easily

reconfigured by users to contain actions that are common to
a particular application.

Debugging Optimized Code

At a high level, optimization can be described as modifying
instructions and memory references to improve program
performance. Multiple source statements may map to the
same machine instruction. In some cases source statements
may not correspond to any machine instructions. Variables
may be moved from memory into a register or from one
register to another to eliminate costly memory references.
Unless a debugger has some way of knowing how source
statements and machine instructions have been rearranged
and where a variable is located, it can be very difficult to

[Hewlett-Packard Company 1994

= Distributed Debugging Environment — Session 18778 0
Program Monitor Information Interface Property Miscellanecus Help
S1op Execution

Executing image in process 18780: "/users/ho_gibson/dde/tesd
Step -over Break at: “\average'\main%3z
dde> step
Step Stepped to: “\\average\print_average'22
dde> step
Go Stepped to: \haverage'sumh1Z
back dde> print low
Tracebac Vyvaveragesumt low: ©
Emvu dde> print high
P “hwaveragehsumbhigh: 9
Env down
Quit...
dde> |

dde Session 18778 Source Code Display
Jusers/ho_gibson/dde/test/average.c

8.
3. ... int sum (list, low, high)
mw. ... int 1list[], low, high;
1. ... 1
12, . = int i, = = 0;
3. for (i = low; i <= high; i++)
4. . s += list[i];
5. ... return (s);
6. ... i
7. ...
18. .. . woid print_awverage (list, low, high)
19, .. int 1list[], low, high;
0. ... i
21, ...
(b)
dde Session 18778 Traceback Display
1. S$STARTS (00001934)
I _start (80040F24)
3. “Whwaveragehwmaint 32 (00002044)
4. ... A\vaveragesprint_averagenZ2 (00001FES)
5. . haveragehsumyl2

©)

xterm

dde average

(d

dde Session 10383 Source Code Display
/disk3/users/ho_gihson/dde/test/average.c

— DDE User Menu —I

8. ...

9Emd. . int sum (list, low, high) print list[i]

1w, ... int list[], low, high;

1. ... 1 : :

12, ... int i, s = 0; watch list[i]

13 ... for (i = low; 1 <= high; i++ . . s

19 -y é = lis£/Li]; ghi) describe list[i]

15, ... return (s);

6. ... 1 print -hex list[i]

1r. ...

18. ... wveoid print_average (list, low, high) print (deref once) list[i]
19, ... int list[], low, high;

20,0 ... 1 s . .
21, ... int total, num_elements, average; print (chase ptrs) list[i]
2. ... total = sum (list, low, high); .

23 .. num_elements = high - low; /* note break list[i]

[J Hewlett-Packard Company 1994

Fig. 1. Some of the windows
involved in a typical HP DDE
debugging session. (a) Transcript
display window. (b) Source code
display window. (c¢) Traceback
display window. (d) Target
program window.

Fig. 2. A context-sensitive pop-up
menu. This menu was obtained
by positioning the mouse cursor
(denoted by the caret on line 14)
in the source code display win-
dow and clicking on a mouse
button.

December 1994 Hewlett-Packard Journal 35

