*

**

Approaches to Verifying Operational

Test Release Vectors

Five techniques are employed to minimize the time to develop the test
vectors used to test manufactured parts on an IC component tester.

by Joy Xiao Han

In today’s competitive computer industry, the ability to
accelerate the development process from design to manu-
factured part in a timely manner is an important factor. At
HP’s Chelmsford systems laboratory one of the things we
do is design and develop chips for HP 9000 Series 800
workstations. Among the activities performed during this
development is the generation of a series of test vectors
called operational test release (OTR) vectors, which are
used on component testers to verify the correctness of the
manufactured parts.

It typically takes six months to generate and verify opera-
tional test release vectors. With the techniques described in
this article we have been able to reduce the time spent
creating these vectors to four months.

Test Vector Development

The final product of our test vector development process is a
set of vectors (also called test patterns) that can be loaded
onto a tester to verify manufactured parts. Physical defects
that appear on manufactured parts can be so varied that it is
often impractical to try to detect them directly. Instead, auto-
matic test generation, waveform creation, and verification
tools are employed to deal with a logical model of a physical
defect, which is known as a fault. The most widely used
fault model is the stuck-at fault in which the input or the
output of a logic element is stuck at logic 0 or 1. For exam-
ple, an open trace, assuming positive logic, might exhibit
itself as stuck at logic 0.

Each vector that tests a typical block of application logic* has
at least two parts. One part is made up of data and/or in-
structions which are applied to the input of the chip. The
other part, called “expected results,” is used for comparison
with the actual output of the application logic to detect any
faults.

The first steps of our test vector development process are
shown in Fig. 1. We start by using a program called ATPG
(automatic test pattern generator) from Crosscheck Corpora-
tion to produce a file containing the test input patterns, the
fault-free simulation output patterns (expected results), and
the scan-in and scan-out™ patterns for the test logic. ATPG
uses a circuit model of the chip to determine the

content of the patterns produced.

We use the term application logic in this paper to refer to the logic on the chip that performs
the intended functions of the component. The other logic on the chip is called test logic, which
is included on the chip for testability.

Scan-out patterns are also treated as expected results.

[J Hewlett-Packard Company 1994

Circuit
Model

v

Run
ATPG
Software

Step 1

Step 2

(1011 ... 1100)

Use Verilog
HDL to Create
Verilog Model

* Test Patterns
 Expected Results

« Scan-In and Scan-Out
Patterns

Verilog-XL
Simulator

Verilog
Model

Step 3

T Simulated - Raw -
Output Waveform
Results Database

i Repeat Step 2

No
N
Compare
Patterns
Yes
Continue

Expected
Results
from ATPG

Fig. 1. The steps used to create a raw waveform data base.

The next step in our process is to use the Verilog hardware
description language (Verilog HDL) to create a behavioral and
structural model of the target hardware. The instructions in
the program are structured to test the application logic via
special test pins collectively called a test access port (TAP).
The TAP provides access to test logic circuits that are built
into a component to test the component itself and the inter-
connections between components. The TAP also provides
access to circuits that allow control and observation of the

55

December 1994 Hewlett-Packard Journal

Overview of the Test Access Port

Since the emergence of surface mounted devices a great deal of concern and
discussion has gone into determining how to test boards crammed with these
high-density devices. In 1990 these concerns resulted in ANSI/IEEE Standard
1149.1-1990, Standard Access Port and Boundary-Scan Architecture. This stan-
dard defines test logic that can be included on an integrated circuit to provide
standardized approaches to testing the component itself or the interconnections
between components on a printed circuit board. The standard also allows for
observing or controlling the behavior of a component during its normal operation.
The test logic allows test instructions and test data to be fed to a component, and
upon execution of an instruction, allows the results to be read out and observed.
Allinstructions, test data, and results are communicated in serial format.

The test logic defined by the standard consists of a chain of boundary-scan cells
and test support logic, which are accessed through the TAP inputs (see Fig. 1). A
boundary-scan cell is a shift-register stage that is connected between each input
or output pin on an IC and the application logic to which each pin is normally
connected (see Fig. 2). The scan cell has two states of operation. One state allows
a sequence of bits representing data and instructions to be shifted (scanned-in)
into a chain of scan cells, resulting in latching each cell to the desired value. The
scan-in and scan-out lines shown in Fig. 2 carry the bits from one cell to another.
The logic specified in the standard is designed so that the serial movement of

instruction data is not apparent to the circuits whose operation is controlled by
the instruction.

The other state of operation for the scan cells involves testing the application logic.
The test operation involves either receiving test data from the application logic via

the signal-in line and then latching the output, or shifting test data into the applica-

tion logic via the signal-out line. The test logic is specified such that the movement
of test data has no effect on the instruction present in the test circuitry.

After the test state is done the scan mode can be invoked again to shift out the
latched test results for comparison with the expected results.

The clock, shift, and mode lines shown in Fig. 2 are controlled by the TAP signals
(described below). The TAP lines are responsible for sending the proper signal
sequences to control the scanning or testing states. In addition, the mode line is
controlled according to the type of pin it is connected to (e.g., input, output,
bidirectional, tristate, etc.).

The IEEE standard defines a minimum of three input connections and one output
connection (see Fig 1). An optional fourth input (TRST*) provides for asynchronous
initialization of the test logic circuitry defined in the standard.

\ Scan Cells

Application Logic

\ Scan Cells

Application Logic

o1 - TDI & T0O ™ | .0y
From || TCK - '
To Other
Teste TMS - ® hd ’ Components
System || trT* - ® ®
DO - T P —
T— TAP Input Signals TCK = Test Clock

TDI = Test Data In

Test Interconnections TDO = Test Data Out Fig. 1. A simplified block diagram of the
System Interconnections TMS = Test Mode Select test logic defined in ANSI/IEEE Standard
TRST* = Test Reset 1149.1-1990 surrounding application logic.

application circuits during their normal operation. The
specification for the TAP logic is given in IEEE Standard
1149.1-1990, and a brief overview is provided above. Also
included in the Verilog HDL model are calls to a utility called
$tds_monitor()* which associates timing information with the bit
patterns sent to the device under test. These calls will create
a raw waveform database containing timing and pattern in-
formation. It is called a raw waveform database because
during simulation runs every change on the component’s
pins is included in the database. One of the techniques de-
scribed below explains how this data is manipulated to
produce a more refined waveform database.

The third step shown in Fig. 1 involves running the Verilog-XL
logic simulator using the Verilog HDL model created in step

* The $tds_monitor() runs as part of the Verilog-XL simulator.

56 December 1994 Hewlett-Packard Journal

2 and the patterns created in step 1 as inputs. A waveform
database and an output pattern file are created from this
simulation. The output patterns from the simulation are com-
pared to the expected output patterns generated by the
ATPG software. If the patterns don’t match, steps 2 and 3 are
repeated until they do. If the patterns do match, we move
on to prepare the waveform database to become our opera-
tional test release vectors.

A great deal of time can be spent going back and forth be-
tween steps 2 and 3. The rest of this paper describes some
techniques that I have found to be helpful in getting through
steps 2 and 3 quickly. These techniques verify that the TAP
circuits are functioning properly.

[Hewlett-Packard Company 1994

IC Component

To Next Cell or TDO

*
| 'scan out

Application
Logic |

From Previous

To Next Cell or TDO

*
| Scan out

Output
». Pin

Signal Out

Scan In
From Previous

Cell or TDI Cell or TDI
| oce | — | Mode
I Clock 1 _';ggangAi o I Clock
' shift) 9 . ' shift

Fig. 2. The location of scan cells in relation chip I/O pins and the application logic. The mode, clock and shift signals are derived from the TAP input signals TMS, TCK, and TRST* respectively.

The first scan-in signal and the last scan-out signal correspond to TDI and TDO respectively.

Test Clock. TCK is the test clock input that provides the clock for the test logic. This
clock is provided so that scan cells surrounding the application logic can be con-
trolled independently of system clocks. TCK allows shifting of test data concurrently
with system operation (allowing online monitoring). It also ensures that test data
can be moved to or from a chip without changing the state of the application logic.

Test Mode Select. TMS is the signal used by the TAP controller to control test
operations. One use of TMS is to select whether the test circuitry is in the test state
or the scan state. To guard against race conditions, the TMS signal like the TDI
signal described below must be sampled on the rising edge of TCK.

Test Reset. The optional TRST* signal is included to allow for asynchronous reset
of the TAP controller. The reset signal only affects the test logic and has no impact
on the application logic.

Test 1/0 Lines. TDI and TDO are the test data input and output lines respectively.
They provide for the serial movement of test data through the circuit. Data pre-
sented at TDI is clocked into the selected register on the rising edge of TCK, while
output data appearing at TDO is clocked out on the falling edge of TCK. To simplify
the operation of components that are compatible with the standard, data must be
propagated from TDI to TDO without inversion.

Bibliography

1. IEEE Standard Test Access Port and Boundary-Scan Architecture, [EEE Std. 1149.1-1990,
IEEE Standards Board, May 1990.

2. R. G. Bennets, Design of Testable Logic Circuits, Addison-Wesley, 1984.

3.V.D. Agrawal and S. C. Seth, Test Generation for VLSI Chips, IEEE Computer Society
Press, 1988.

Technique 1

Check the scan chain* without a system clock. This step is
mainly used to make sure that the scan chain on the chip is
not broken. This test works by ensuring that whatever value
is scanned in (Sl in Fig. 2) should be exactly identical to the
value scanned out (SQ). The scan chain is advanced by clock
pulses. For example, a pulse from CLKA followed by a pulse
from CLKB causes the data on Sl to be propagated to SQ. SQ
turns into the Sl for the next scannable flip flop on the scan
chain. If the chip passes this test, we know that the scan logic
is set properly and that there is continuity in the scan chain.

Technique 2
Check the scan chain with a system clock. This check verifies
that the combinational logic in the application logic portion of

* A scan chain is a shift-register path through a circuit which is typically placed there to improve
testability. See “Overview of the Test Access Port” on page 56.

[J Hewlett-Packard Company 1994

the chip works. Usually the master clock (MCLK) is opposite
in state to the system clock (CLK) (i.e., when CLK is on, MCLK
is off and vice versa). The only exception to this behavior
occurs when we execute a double-strobe test to check the
time margin on the chip.

The opposite clock states are verified by ensuring that the
data on the D input in Fig. 2, which is the result of all pre-
vious combinational logic, is inverted at MQ when CLK is low.
On the other hand, when CLK is turned on, the inverted value
of MQ (the exact value of D) appears at Q. This is the same
value we can monitor at SQ by advancing the scan chain
with pulses from CLKA and CLKB in the correct sequence.

Technique 3

Check the TAP state sequence. Since the TAP logic is basi-
cally a state machine its current state is recorded in a mode
register. I have found it necessary to pay attention to the

57

December 1994 Hewlett-Packard Journal

Q

MCLK CLK

D
(Signal In;

Si
(Scan In; é,

Latch

previous state of the TAP circuit by checking certain bits in
the mode register. For example, one error that typically takes
a long time to correct occurs when the bit in the mode regis-
ter that controls I/O direction (PSCAN in Fig. 3) is not set
properly during initialization. Forgetting to set this bit causes
TSTDEN (test data enable) to go high during a scan. Later
when data is supposed to be coming out of the chip (via the
I/O pin) and the tester is driving a value into the chip, a bus
fight occurs. We want TSTDEN to be low, which puts the gate
in tristate mode when the tester is driving a signal onto the
pin. Anytime the wrong data is output because of something
that is done or not done early in the test cycle, it always
takes a long time to debug. Debugging time can be saved if
each state (bits in the mode register) is closely monitored.

Technique 4

Check the value of each pin before each system clock. One
bug that occurs frequently is that test vectors will run
smoothly during simulation, but cause bus fights when they
are run on the tester. From Fig. 3 we can see that if BUSIN
and the tester drive an identical value onto the I/O pin at
the same time, a problem occurs that can only be caught by
the tester and not by simulation. This problem can be elimi-
nated if we stop the simulation before each system clock
and make sure that the I/O pin is driven by either BUSIN
when the pin acts as an output (i.e., the pins drive the
values to the BUSOUT), or by the tester when the pin acts as
an input, but not both at one time. This task can be easily
accomplished by using the Verilog-XL command $showvars.

Technique 5

Verify that the process of creating the operational test release
(OTR) vectors for the tester is correct. Fig. 4 shows the addi-
tional steps we take to create and verify the OTR vectors.
The first thing we do is take the raw waveform database

58 December 1994 Hewlett-Packard Journal

Scan Out

Q

} (Signal Out)

Fig. 2. Scannable flip-flop. This is
a portion of our implementation
of a scan cell. The MCLK, ML, CLKA,
and CLKB signals are controlled by
the TAP test logic and are derived
from the TAP input signals TMS,
TRST*, and TCK.

W SQ. (Scan Out)

described above and use the conditioners* ALIGN and
WINDOW to create a more refined waveform database. We
use the ALIGN conditioner to align each signal to be edge
triggered. The WINDOW conditioner is used to select certain
cycles or windows within a cycle during which output data
is valid, which results in monitoring pins only at the times
we care about. The next step is to verify that the windowed
data is okay. This involves the same process we went
through in steps 2 and 3 of Fig. 1. If everything is okay, the
waveform database is converted to OTR vectors to run on
the tester.

* Conditioners are functions that provide a way to modify waveform data generated via

$tds_monitor. The ALIGN and WINDOW conditioners come from TSSI Inc.

From
PSCAN
T2 Mode
Register
TESTER
DRIVING TESTDEN
BUSIN
1/0 Pin
BUSOUT

TESTDEN = 0 when TESTER DRIVING Is Sending Input to I/O Pin
=1 when BUSIN Is Sending Output to I/O Pin

Fig. 3. A simplified diagram of the circuitry around an I/O pin.

[Hewlett-Packard Company 1994

Raw —_— WINDOW " Refined
Waveform —-p ng_lnill\‘s Ag%?:d BN (Select Waveform
Database Signals of

Interest)

T

Database

Verify
Correctness
of Waveform

DEIELEN]

The contents of
the refined waveform
database become
the OTR Vectors.

Fig. 4. The final steps in creating the OTR vectors.

Conclusion

These five techniques have proven to be a success in the
Chelmsford systems lab by shortening the time it takes us to
produce final test vectors. These techniques can also be ap-
plied to non-ATPG OTR vectors, since we can create vectors
manually to meet different needs and put them into ATPG
format. We characterized the entire analog circuitry em-
bedded in one chip by controlling the proper bits on the
scan chain.

O Hewlett-Packard Company 1994

Acknowledgments

I would like to acknowledge all those from the Chelmsford
systems lab and the Corvallis Integrated Circuit Business
Division lab who contributed to the slave memory control-
ler’s operational test release. Also, special thanks to my
managers for their continuous recognition and support.

December 1994 Hewlett-Packard Journal 59

