Estimating the Value of Inspections
and Early Testing for Software Projects

A return-on-investment model is developed and applied to a typical
software project to show the value of doing inspections and unit and

module testing to reduce software defects.

by Louis A. Franz and Jonathan C. Shih

The software inspection process has become an important
part of the software development cycle, 1,234 and has been
used with varying levels of success within Hewlett-Packard. 4>
One of the main reasons for its success is that detecting de-
fects early has a big impact on reducing the cost of dealing
with software defects later in the development cycle. One
HP entity used metrics data from several software projects
and an industry profit and loss model to show the high cost
of finding and fixing defects late in the development cycle
and during postrelease.>

This paper describes the methods we have used to integrate
inspections and prerelease testing into the development of an
information technology software project. The metrics col-
lected and the tools we used to collect the metrics data on
this project are described. Finally, we describe an approach
to using the metrics data collected during inspections and

Customer Maintain

Database Field
Information

Sales Maintain
Outlet Dealer

Database Information

Database

Maintain

Product
Information

Contract
Database

60 December 1994 Hewlett-Packard Journal

Product
Database

testing to estimate the value (return on investment) of in-
vesting time and effort in early defect detection activities.

Background

The sales and inventory tracking (SIT) project evolved from
separate initiatives by several different groups in HP. These
initiatives had different objectives, but all relied on elements
of the same data: computer dealer sales and inventory levels
of HP products. To simplify the collection, processing, and
storage of this data, it was decided to create a centralized
system to house the data. All the applications that would
need to use this information could access the central SIT
system database. Fig. 1 shows the four major modules that
make up the SIT system and the major data stores accessed
by the system. These modules will be referenced throughout
this paper. Table I provides a summary of the major attributes
of the system.

Representative
Database

Load Dealer
Sales and
Inventory

Dealers

Fig. 1. The major components of
the sales and inventory tracking
(SIT) system.

O Hewlett-Packard Company 1994

Table |
Summary of the Sales and Inventory Tracking System

Batch

HP 3000 Series 980 running the
MPE/XL operating system

COBOL
HP AllBase/SQL (relational)

System type

Hardware platform

Language
DBMS

Data communications
(used for the electronic
transfer of data between
the dealer and HP)

Electronic Data Interchange
(EDI) ANSI standard transac-
tion sets (file formats):
867 product transfer and
resale report
846 inventory inquiry and
advice

Data access and
manipulation tools

Code

Cognos, PowerHouse (Quiz),
Supertool, KSAM, and VPLUS

25K total lines of source code
(13.6 KNCSS)*

* KNCSS = Thousands of noncomment source statements

We used the traditional HP software life cycle for our devel-
opment process. The basic steps of this process include:

* Investigation

* Design

* Construction and Testing

* Implementation and Release

* Postimplementation Review.

The inspection and prerelease testing discussed in this paper
occurred during the design, construction, and testing phases.

Inspection Process and Inspection Metrics

The objectives of the inspection process are to find errors
early in the development cycle, check for consistency with
coding standards, and ensure supportability of the final
code. During the course of conducting inspections for the
SIT project, we modified the HP inspection process to meet
our specific needs. Table II compares the recommended HP
inspection process with our modified process.

Step 3 was changed to Issue and Question Logging because
we found that inspectors often only had questions about the
document under inspection, and authors tended to feel more
comfortable with the term issue rather than defect. The

Table II
Comparison of Inspection Processes

Step Our Inspection Process HP Inspection Process

0 Planning Planning
Kickoff Kickoff
Preparation Preparation

Issue and Question Logging Defect Logging
Cause Brainstorming
Question and Answer Rework

Rework

1

2

3

4 Cause Brainstorming
5

6 Follow-up
-

Follow-up

O Hewlett-Packard Company 1994

term defect seemed to put the author on the defensive and
severely limited the effectiveness of the inspection process.

The Question and Answer step was added because inspectors
often had questions or wanted to discuss specific issues dur-
ing the Issue and Question Logging session. These questions
defocused the inspection and caused the process to take
longer.

In the Planning step the author and the moderator plan the
inspection, including the inspection goal, the composition of
the inspection team, and the meeting time. The Kickoff step
is used for training new inspectors, assigning the roles to the
inspection team members, distributing inspection materials,
and emphasizing the main focus of the inspection process.
During the Preparation step, inspectors independently go
through the inspection materials and identify as many defects
as possible. In the Cause Brainstorming step, inspection team
members brainstorm ideas about what kind of global issues
might have caused the defects and submit suggestions on
how to resolve these issues. During the Rework step, the
author addresses or fixes every issue that was logged during
step 3. Finally, in the Follow-up step, the moderator works
with the author to determine whether every issue was
addressed or fixed.

Along with the modified process, a one-page inspection
process overview was generated as the training reference
material for the project team. This overview was a very con-
venient and useful guideline for the project team because it
helped to remind the team what they were supposed to do
for each inspection.

Deciding What to Inspect

Because of time and resource constraints, not all of the
project’s 13 source programs and 29 job streams could be
inspected. The project team decided to use the risk assess-
ment done for the master test plan, which uses the opera-
tional importance and complexity of a module as a basis for
deciding which programs and job streams to inspect. The risk
assessment used for the master test plan is described later.
Fig. 2 shows the results of this selection process in terms of
inspection coverage and relative level of complexity of the
programs and job streams.

Inspection Metrics

Three forms were used to collect inspection metrics: the
inspection issue log, the inspection summary form, and the
inspection data summary and analysis form. Fig. 3 shows an
inspection log and an inspection summary form.

Test Plan
and
Test Script
Inspected

Percent of
Job Streams
(JcL)
Inspected

Percent of
Programs
Inspected

REEW]

dlesbits Complexity

* This module consisted of only one JCL and one program.

Fig. 2. Inspection coverage for the major modules in the SIT system
based on the criteria used in the master plan.

December 1994 Hewlett-Packard Journal 61

Inspection Summary

InspectionDate: Start Time:
Kickoff Meeting: Finish Time:
System or Project Name:
Document Inspected:
Preparation Time: Moderator Reader Author
l
Inspection Issue Log | Total Inspector Inspector Inspector
Page _ of _ Inspection Date Type of Inspection: Investigation Prototype ES IS
(Circle the Type) Coding Test Plan Installation Release
Document Inspected Documentation Other
R R A imate D t P
Page # Issue Type Severity Resolution pproxmae' ocument Fages
Line # Description or Program Lines Inspected: Pages NCSS
Number of Critical Issues (C) Number of Noncritical Issues (N)
Specifications (S) Specifications (S)
Design Logic (DL) Design Logic (DL)
Data (D) Data (D)
//—\ Standards Deviation (SD) Standards Deviation (SD)
_///—\ Miscommunication M) Miscommunication M)
\J Oversight (%) Oversight ov)
Resources (R) Resources (R)
Other 0) Other O)
Total: Total:
Number of Enhancements ___ (E)
Type: (S) Specification (DL) Design Logic How many times was th!s document inspected?
(D) Data (M) Miscommunication How many times was this document postponed?
(SD) Standards Deviation (OV) Oversight Why was it postponed?
(R) Resources (0) Others How many people were asked to participate in the
inspection but refused?
Severity: (C) Critical (N) Non-Critical Total time author spent to fix or address all defects:
(E) Enhancement Total time moderator spent to follow up with author:
(@) (b)
Fig. 3. (a) Inspection issue log. (b) Inspection summary form.
The inspection issue log is used for logging the issues ob- design and the type of tests to be performed. For design
served by the inspectors during the Issue and Question purposes, the system was divided into logical modules with
Logging session. The inspection summary describes the doc- each module performing a specific function (see Fig. 1). The
ument inspected, the inspector’s preparation time, the type test design was also oriented around this division.

of inspection , the number of pages and lines inspected, the
number and types of defects identified, and the total time
used to fix or address all the defects. The inspection data
summary and analysis form is a spreadsheet that was used to
collect the data entries required to calculate inspection effi- Master
ciency, inspection effectiveness, total time saved, and the Test Plan
return-on-investment value (described later). Table IIT lists
the data collected in the data summary and analysis form for
each item inspected.

Module
Test Plan

System

Unit Test Plan Test Plan

We selected four key inspection metrics to measure our in-
spection effort: number of critical defects found and fixed,
number of noncritical defects found and fixed, total time used

. Unit Test Case Module
by inspections, and total time saved by inspections. Worksheet Test Script

System
Test Script

Testing Process

Our testing process included test planning, unit testing,
module testing, and system testing. Test planning involved
creating a master test plan and doing a risk assessment to
determine where to focus our testing time.

Unit Test

System Test

Module
Test Report

System
Master Test Plan. A master test plan was created during the Test Report
design phase when the test strategy for the project was out-

lined (Fig. 4). The master test plan included the test plan Fig. 4. Master test plan organization.

62 December 1994 Hewlett-Packard Journal O Hewlett-Packard Company 1994

Table IlI
Inspection Summary and Analysis Data

Metric Units or Source of Data

Inspection time Preparation and meeting time in

hours

Number of critical and noncritical
defects

Defects

Documentation type Code, requirements and design
specifications, manuals, test
plans, job streams (JCL), and

other documents

KNCSS for code and number of
pages for other documents

Size of document

Amount inspected KNCSS or number of pages

inspected

Preparation rate = (number of pages) x (number of

people)/preparation time
Logging rate = (critical + noncritical defects)/

(hours/number of people)

Moderator follow-up Hours
time
Time to fix a defect Hours

Total time used = inspection time + time to fix +

follow-up time

Time saved on critical *
defects

Time saved on non- *
critical defects

Total time saved *

Return on investment *

* Defined later in this article.

The primary and secondary features to be tested were also
included in the master test plan. The primary features were
tested against the product specifications and the accuracy
of the data output. Secondarily, testing was performed to
ensure optimum speed and efficiency, ease of use (user
interface), and system supportability.

Risk Assessment. A risk analysis was performed to assess the
relative risk associated with each module and its compo-
nents. This risk analysis was used to help drive the schedule
and lower-level unit and integrated tests. Two factors were
used in assessing risk: operational importance to overall sys-
tem functionality and technical difficulty and complexity.
Each module was divided into submodules and rated against
each risk factor. For example, the proper execution of the
logic in submodule 4.2 was critical to the success of the sys-
tem as a whole, while submodule 1.4 merely supplied addi-
tional reference data to the database. Accordingly, module
4.2 received a higher operational importance rating. Simi-
larly, submodule 4.2 also received a higher complexity rating
because of the complexity of the coding task it entailed.
Each rating was based on a scale of one to five with one
being the lowest rating and five being the highest rating.
Ratings for each risk factor were then combined to get an
overall risk rating for each submodule (Fig. 5).

O Hewlett-Packard Company 1994

Operational Technical Overall Risk
S Difﬂcu'ty
N I

Fig. 5. Risk ratings by submodule.

Unit Testing. Unit testing, as in most software projects, was
performed for all programs and job streams. For the purpose
of this project, each individual program and job stream was
considered a unit. Since programs were often embedded in
job streams, program unit tests were often synchronized with
job stream unit tests to conserve time and effort.

Because of the small size of the project team, almost all tests
were performed by the program or job stream author. To
minimize the impact of this shortcoming, a simple testing
review process was established. A series of standard forms
were created to document each test and facilitate review by
the designer, users, and the project lead at different points in
the unit testing process (see Fig. 6).

Module Testing. An integrated test of all programs and job
streams within each module was conducted to test the over-
all functionality of each of the four system modules. Since
each program or job stream had already been tested during
unit testing, the primary focus of module testing was on veri-
fying that the units all functioned together properly and that
the desired end result of the module’s processing was
achieved.

A brief integrated test plan document was created for each
module. This test plan listed the features to be tested and
outlined the approach to be used. In addition, completion
criteria, test deliverables and required resources were
documented (Fig. 7).

Detailed test scripts were used to facilitate each module test
and make it easy to duplicate or rerun a particular test. Each

December 1994 Hewlett-Packard Journal 63

Unit Test Case Worksheet

Module Unit: 4.2

Program/Screen/Job Name: SIT4023S

VALID Input Conditions INVALID Input Conditions

Loc_hdr.id_code<>9 No transaction header

Quantity qualified = 14, 17, 76 ANSI code <> 867, 846

Tx_count = spaces

y

Unit Test Script

Module Unit: 4.3
Program/Screen/Job Name: SIT 4031S

Script #:

Procedure

Unit Test Case

Module Unit: 4.2
Program/Screen/Job Name: SIT 4020J

Script #:

Pass/ No

Case Description

Date Inspected: 5/4/92

Verify that locations with missing elements are reported.

Input Conditions

Outlets table “business_name” blank OID = 0671100920

End-user table “company” blank OID =067110011S

(1) Set file equations

(2) Run program, parm = ¢

Output Conditions

(3) Verify file layout matches

OID = 0671100920 appears on report

Resources needed —

OID = 067110011S appears on report

Programs: GETPROD

Screens: —

Special Requirements

Database: SITDB, PRIME

Use test file TST40207.TEST.SIT

SITDB Tables: Outlets, Channel_products

Others

Fig. 6. Unit test forms.

Feature to Be Tested

* Module processes run correctly when run in production order

» Module processes run correctly with actual production data

« All programs, JCLs, screens pass data to next process on timely basis

Approach

« Set up production test environment

« Stream JCLs, run programs, and execute entry screens in production order

« Use production data

« Verify subsets of key table data after each process

Completion Criteria

« All programs, JCLs, screens run without error or abort

« End result of process is correct data loaded into Product_mix, Product_exhibit,
Channel_products, Customer_Products, and Customer_Exhibits Tables

Test Deliverables

« Test script

» Test summary report

Resources

« Staff - Lou, Shripad, Jill

* Environment
Jupiter - SIT account
Blitz - Patsy DB (PATSY##.PATDTA.MAS):Mode 5
— Prime DB (PRIME3##.PR3DTA.MAS):Mode 6

Fig. 7. A portion of an integrated test plan.

64 December 1994 Hewlett-Packard Journal

test script document included a listing of the resources
needed for the test, such as supporting databases, SIT data-
base tables, files, file equations, programs, and a step-by-
step procedure for executing the test. Where appropriate,
specific data to be entered into the system was included in
the procedure. Also included were the expected results of

each test step and the overall test.

Once the integrated module tests had been completed suc-
cessfully (often this took several iterations), a report detailing
the test results was created. The integrated test report docu-
mented the number of times the test was run, verified that
the completion criteria were met, listed the number of criti-
cal and noncritical defects detected, and verified that each

defect had been fixed.

System Testing. System testing was conducted in tandem with
a pilot test at an HP dealer. Initial values were entered for
the general-purpose database tables and for the dealer in-
volved in the pilot test. Production schedules were used to
control the job streaming that executed the system.

Testing Metrics. Two kinds of metrics were selected to mea-
sure our testing effort: total number of critical defects and

[Hewlett-Packard Company 1994

total testing time for each test phase. Table IV summarizes
our test metrics for unit and module testing. One critical
defect was found during system testing and the total system
test time was 19 hours.

Table IV
Testing Metrics
Module Size* Unit Test Module Test

Te Ne (ATT)e To Ne (ATT)
1.0 4489 73 4 1825 41 7 5.806
2.0 639 26 0 0 ek ek ek
3.0 3516 315 3 105 46 2 5.11
4.0 3738 35 21 167 36 13 277

*

Noncomment source statements (NCSS)

*

Not applicable
T, = Total testing time for critical defects in hours
N, = Total number of critical defects

(ATT), = Average testing time per critical defect = To/N¢
(ATT), is defined as zero when N is zero

Return-on-Investment Model

It is now generally accepted that inspections can help soft-
ware projects find defects early in the development cycle.
Similarly, the main purpose of unit and module testing is to
detect defects before system or pilot testing. Questions that
often come up regarding these defect finding efforts include
how much project time they will consume, how effective
they are, and how we can measure their value. Most of
these issues have been addressed in different ways in the
literature. 45

In this section we present a return-on-investment (ROI)
model we used to measure the value of inspections and
early testing in terms of time saved (and early to market).
The whole idea behind this kind of measurement is that it
should take longer to find and fix a defect at system test
than it does to find the same defect during inspection or unit
testing. This means that for every defect found during an
inspection or at an earlier stage of the testing phase, there
should be a time savings realized at the system test phase.

First we define the Prerelease ROI as:

Prerelease ROI =
Total Time Saved / Total Time Used

@

where:

Total Time Saved = Total Time Saved by Inspection +
Total Time Saved by Unit and Module Testing

and

Total Time Used = Total Time Used by Inspection +
Total Time Used by Unit and Module Testing.

We calculate the individual ROI for inspection and testing,
respectively, as follows:

Inspection ROI = Total Time Saved

by Inspection / Total Time Used by Inspection @)

[J Hewlett-Packard Company 1994

Testing ROI = Total Time Saved by Unit
and Module Testing / Total Time Used

by Unit and Module Testing. 3

We wanted to measure not only how much time was being
spent on inspection and testing but also how much time was
being saved as a result of the defects found during inspec-
tions and unit and module testing.

The time used during an inspection includes the sum of the
total inspection time spent by each team member, the time
spent by the author on fixing the defects, and the time spent
by the moderator following up on defect resolution with the
author.

For inspections, we defined the total time saved and the
total time used as:

Total Time Saved by Inspection = Time Saved on
Critical Defects + Time Saved on Noncritical Defects

Total Time Used by Inspection = Inspection Time +
Time to Fix and Follow up for Defect Resolution

where the critical defects are defects that affect function-
ality and performance and noncritical defects are all other
defects.

The time spent finding and fixing a critical defect at system
test is called BBT (black box testing time). Therefore, for
every critical defect found before system test, the total time
saved can be calculated as follows:

Time Saved on Critical Defects = BBT X Number of
Critical Defects — Total Time Used.

The model we used to measure noncritical defects is based
on the assumption that noncritical defects could be found by
inspection but would not be detected by testing. The non-
critical defects will become supportability issues after manu-
facturing release. We defined a new variable called MTTR*
(mean total time to rework) to measure the time spent on
noncritical defects.

MTTR = Time to Find Defect + Time to Fix Defect +
Time to Release to Production.

Thus,

Time Saved on Noncritical Defects = MTTR X Number
of Noncritical Defects.

For testing metrics we wanted to measure not only how
much time was being spent on unit and module testing, but
also how much time was being saved as a result of the de-
fects found during these tests. Thus, we defined the total
time saved and total time used for testing as:

Total Time Saved = Time Saved on Critical Defects

Total Time Used = Time to Design and Build a Test +
Time to Execute + Time to Find and Fix a Defect.

* We used an average time of 6 hours for MTTR in our calculations.

65

December 1994 Hewlett-Packard Journal

The defect data and time data for our sales and inventory
tracking project are summarized in Tables V and VI.

Table V
Defect Summary for the SIT Project
During During Total
Inspection Testing Prerelease
Defects

Number of Critical De- 12 51 63
fects Found and Fixed
Number of Noncritical 78 0 78

Defects Found and
Fixed

With the code size equal to 13.6 KNCSS, prerelease defect
density = 141/13.6 = 10.4 defects/KNCSS.

Using the model described above, we can calculate the ROI
values shown in Table VI.

Total Time Saved by Inspection = (20 hours X 12) +
(6 hours x 78) — 90 hours = 708 hours**

Total Time Saved by Testing = 20 hours x 51 — 310 =
710
hours*

From equations 1, 2, and 3:
ROI for Inspections = 708 / 90 = 787%
ROI for Testing = 710 / 310 = 229%
Prerelease Total ROI = 1418 / 400 = 355%.

Table VI
Time Data and Return on Investment Results

Total Time Total Time Return on
Used (hours) Saved (hours) Investment (%)
Inspection 90 708 787
Testing 310 710 229
Prerelease 400 1418 355
Total
Results

Fig. 8 shows that with the exception of module SIT4.0 the
average testing time per critical defect decreased from unit
test to module test for the system’s major modules. The rea-
son that it took 19 hours per critical defect at system test is
mainly the time it took to find and fix one defect that was
overlooked during inspection. Had the project team not over-
looked one particular issue related to product structure that
resulted in this defect, the average testing time per critical
defect at system test would have been significantly lower.

Module SIT4.0 went through the most thorough inspection
including a design inspection since it is the most complex of
the four modules. We believe our efforts paid off because it
took less time at unit test and module test in terms of aver-
age testing time per critical defect for module SIT4.0 than for
the other three modules.

* The time to find and fix a critical defect during system test at HP ranges from 4 to 20 hours.
We used 20 hours in our ROI calculations.

66 December 1994 Hewlett-Packard Journal

25—+
20+ ¥
B
3 15+
[+
S
$ 104
>
o
T
54
—]
[—
0 t t
Unit Module System
SIT1.0 ¢ SIT2.04 SIT3.00 SIT4.00 System %

Fig. 8. Testing time by test phase and module.

Fig. 9 is a plot of the ROI column in Table VI. It shows that
inspections have resulted in more than three times the ROI
of testing. This reinforces the notion that a great deal of
money and time can be saved by finding defects early in the
software development cycle.

Lessons Learned

The inspection and testing processes we used for the SIT
project are not very different from other software projects in
HP. However, we did put more emphasis on early defect
detection and collected a lot of metrics. The following are
some of the lessons we learned from our efforts during this
project.

Project Management. Some of the lessons we learned about
project management include:
Setting aside time for inspections and thorough testing does
pay off in the long run. Management approval may be diffi-
cult to get, especially when under intense time pressure.
One should get commitment to delivering a quality product,
then present inspections and testing as part of delivering on
this commitment.
Keep high-level test plans short and simple while still pro-
viding enough direction for the lower-level plans. By keep-
ing these plans short and simple, time will be saved and the
project team can still get adequate direction.
* Adequate follow-up to inspection and testing activities is
important to make sure all issues are resolved. The inspec-
tion log, testing error logs, and integration test reports

1,000+

800

600+

400+

Return on Investment (%

200+

Inspection Testing Prerelease Total

Fig. 9. Relative impact of inspections and testing.

[Hewlett-Packard Company 1994

helped the project lead keep up on the status of each issue
and ensure that each issue was resolved.

Establish coding standards at the beginning so that minimal
time is spent during code inspections questioning points
of style. The focus of code inspections should be code
functionality.

Inspection. Since the inspection process is the most important
tool for defect-free software, many adjustments were made
here.

Attitude is the key to effective inspections. No one writes

error-free code, but many people think they do. Authors

must realize that they make mistakes and take the attitude
that they want inspectors to find these errors. The inspec-
tors, on the other hand, can destroy the whole process by
being too critical. The inspectors must keep the author’s ego
intact by remaining constructive. Perhaps the best way to
keep people’s attitudes in line is to make sure they know
that they may be an inspector now, but at a later date, their

role and the author’s will be reversed. For this reason, im-

plementing an inspection process for most or all of a proj-

ect’s code is likely to be much more effective than random
inspection of a few programs.

No managers should be involved in the inspection of code.

Having a manager present tends to put the author on the

defensive. Also, depending on the person, the inspector

either goes on the offensive or withdraws from the process
entirely.

In addition to finding defects (or “issues”), which helps to

save testing and rework time, the inspection process has

other, more intangible, benefits:

O Increased teamwork. Inspections provide an excellent
forum for the team to see each other’s strengths and weak-
nesses and gain a new respect for each other’s unique
abilities. By adding the question and answer session to the
inspection process, we provided a forum for the team to
discuss issues and creatively solve them together.

O Support team education. Including members of the team
that would eventually support the SIT system allowed
these people to become familiar with the system and
confident that it would be supportable.

Testing. The lessons learned from unit and module testing
include the need for expanded participation in testing and
the value of test scripts.

Unit testing. On small project teams it is difficult to coordi-
nate testing so that someone other than the author tests each
unit. Establishing a process that includes the designer, other

[J Hewlett-Packard Company 1994

programmers, and users helps tremendously towards ensuring
full test case coverage.

Module testing. Integration test scripts are invaluable. The
effort expended to create the scripts for the SIT project was
significant, especially the first one. However, the reward, in
terms of time saved and rework, more than justified the ef-
fort. Furthermore, these scripts have been very useful to the
support team for performing regression testing when the
programs or job streams are modified.

Success Factors. The SIT product was released to production
in early March 1992. Since that time the product has been
relatively defect-free. In reviewing what has been done, we
observed some key factors that contributed to our success.
These success factors can be summarized as following:
Strong management support. We had very strong manage-
ment support for the inspection and testing process and the
time commitment involved. This was the most important and
critical success factor for the implementation of inspections
and metrics collection.

Team acceptance. The SIT project team accepted the quality
concept. We agreed on our quality goals and understood
how the inspection and testing processes would help us to
achieve those goals.

Focus. The SIT project was selected as the pilot project to
implement the inspection process. Our initial focus was on
code inspection. After the project team felt comfortable with
doing inspections, other documents such as test scripts and
test plans were also inspected.

Acknowledgments

We would like to thank the following people for their help
and support in developing this paper: Jennifer Hansen, Tadd
Koziel, Bruce Morris, Patti Hutchison, John Robertson, Debra
Vent, and Kelley Wood.

References

1. M.E. Fagan, “Design and Code Inspections to Reduce Errors in
Program Development,” IBM System Journal, Vol.15, no. 3, 1976, pp.
182-211.

2. M.E. Fagan, “Advances in Software Inspections,” IEEE Transac-
tions on Software Engineering, Vol. SE-12, no. 7, July 1986, pp.
744-751.

3. T. Gilb, Principles of Software Engineering Management,
Addison-Wesley Publishing Co., 1988, Chapter 12.

4. FW. Blakely and M.E. Boles, “A Case Study of Code Inspections,”
Hewlett-Packard Journal, Vol. 42, no. 4, October 1991, pp. 58-63.

5. W.T. Ward, “Calculating the Real Cost of Software Defects,”
Heuwlett-Packard Journal, Vol. 42, no.4, October 1991, pp. 55-58.

67

December 1994 Hewlett-Packard Journal

