SoftBench Message Connector:
Customizing Software Development

Tool Interactions

Software developers using the SoftBench Framework can customize their
tool interaction environments to meet their individual needs, in seconds,
by pointing and clicking. Tool interaction branching and chaining are

supported. No user training is required.

by Joseph J. Courant

SoftBench Message Connector is the user tool interaction
facility of the SoftBench Framework, HP’s open integration
software framework. Message Connector allows users to
connect any tool that supports SoftBench Framework mes-
saging to any other tools that support SoftBench Framework
messaging without having to understand the underlying mes-
saging scheme. Users of the framework can easily customize
their tool interaction environments to meet their individual
needs, in literally seconds, by simply pointing and clicking.

People familiar with the term SoftBench may know it under
one or both of its two identities. The term SoftBench usually
refers to a software construction toolset.! The term Soft-
Bench Framework refers to an open integration software
framework often used to develop custom environments.2
People familiar with SoftBench the toolset should know that
underlying the toolset is the SoftBench Framework.

Message Connector can be used to establish connections
between any SoftBench tools without understanding the
underlying framework. The editor can be connected to the
builder which can be connected to the mail facility and the
debugger, and so on. Message Connector does not care what
tools will be connected, as long as those tools have a Soft-
Bench Framework message interface. The message interface
is added by using the SoftBench Encapsulator,3 which allows
users to attach messages to the functions of most tools. Mes-
sage Connector uses the message interface directly and with-
out modification. To date, over seventy known software tools
from a wide variety of companies have a SoftBench message
interface. It is also estimated that a much larger number of
unknown tools have a SoftBench message interface. Users of
the SoftBench Framework can now treat tools as components
of a personal work environment that is tailored specifically
by them and only takes minutes to construct.

Tools as Components

What does it mean to treat tools as components? To treat a
tool as a component means that the tool provides some
functionality that is part of a larger task. It is unproductive to
force tool users to interact with several individual tools to
accomplish a single task, but no tool vendor is able to pre-
dict all of the possible ways in which a tool’s functionality
will be used. Using Message Connector, several tools can

34 June 1994 Hewlett-Packard Journal

be connected together such that they interact with each
other automatically. This automatic interaction allows the
user to focus on the task at hand, not on the tools used to
accomplish the task.

A simple but powerful example is detecting spelling errors
in a document, text file, mail, or any other text created by a
user. The task is to create text free of spelling errors. The
tools involved are a text editor and a spell checker. In tradi-
tional tool use, the editor is used to create the text and then
the spell checker is used to check the text. In simple notes
or files the text is often not checked for errors because it
requires interacting with another tool, which for simple text
is not worth the effort. When treating tools as components
the user simply edits and saves text and the spell checker
checks the text automatically, only making its presence
known when errors exist. Note that in traditional tool use
there is one task but two required tool interactions. In the
component use model, there is one task and one required
tool interaction (see Fig. 1).

Using Message Connector, a user can establish that when the
editor saves a file, the spell checker will then check that
specific file. This is accomplished as follows:

1. Request that Message Connector create a new routine
(routine is the name given to any WHEN/THEN tool interaction).
2. Select the WHEN: tool to trigger an action (editor).

3. Select the specific function of the WHEN: tool that will
trigger the action (file saved).

4. Select the THEN: tool to respond to the action (spell
checker).

5. Select the specific function that will respond (check file).
6. Change the WHEN: and THEN: file fields to specify that the
file saved will be the file checked.

7. Save the routine (routines are persistent files allowing tool
interactions to be retained and turned on and off as desired).
8. Enable the routine.

Now any time the editor saves a file, that file will automati-
cally be spell checked. The focus of creating text free of
spelling errors is now the editor alone. The spell checking is
driven by editor events, not by the user.



Spell

Checker Editor

Spell
Checker

— — —P» Required User Interaction

——» Automatic Tool Interaction Using Message Connector

Fig. 1. Traditional tool use (left) compared with tools as task com-
ponents (right). Using the SoftBench Message Connector, the user
can set up a routine so that whenever a file is saved by the editor it
is automatically spell checked. The spell checker does not have to
be explicitly invoked by the user.

Tool Interaction Branching

While the above example is very simple, it applies equally
well to any number of tool interactions. It is also possible to
create branching of interaction based upon the success or
failure of a specific tool to perform a specific function (see
Fig. 2). For example, when the build tool creates a new exe-
cutable program then display, load, and execute the new
program within the debugger; when the build tool fails to
create a new executable then go to the line in the editor
where the failure occurred.

Interaction Chaining

It is possible to define interactions based upon a specific file
type, and it is also possible to chain the interactions (see Fig.
3). As an example, when the editor saves a text file then
spell check that file; when the editor saves a source code file
then perform a complexity analysis upon that file; when a
complexity analysis is performed on a file and there are no
functions that exceed a given complexity threshold then
build the file; when the complexity is too high, go to the
function in the editor that exceeds the given complexity
threshold; when the build tool creates a new executable

Builder

Build
Succeeded

Build
Failed

Editor

Debugger

——P Automatic Tool Interaction Using Message Connector

Fig. 2. Message Connector supports tool interaction branching. A
different tool is invoked automatically depending on the result of a
previous operation.

Source
Saved Saved
Complexity

Too High 65,501

Analysis

Spell
Checker

Complexity
Acceptable

Build Failed :
Builder

Build
Succeeded

v

Static
Analysis

Version
Control

Debugger

——» Automatic Tool Interaction Using Message Connector

Fig. 3. Tool interaction chaining.

program then display, load, and execute the new program
within the debugger, reload the new executable into the static
analysis tool, and save a version of the source file; when the
build tool fails to create a new executable, then go to the
line in the editor where the failure occurred. This example
of interaction chaining allows the user to focus on the task
of creating defect-free text and source files. The user’s focus
is on the editor and all other tools required to verify error-
free files are driven automatically by editor events, not by
the user. The tools have become components of a user task.

Message Connector Architecture

The architecture of Message Connector follows the compo-
nent model of use encouraged by Message Connector. As
shown in Fig. 4, Message Connector is a set of three sepa-
rate components. Each component is responsible for a sepa-
rate function and works with the other components through
the SoftBench Framework messaging system. The routine
manager provides the ability to enable, disable, organize,
and generally manage the routines. The routine editor’s
function is routine creation and editing. The routine engine’s
function is to activate and execute routines.

The importance of this architecture is that it allows Message
Connector, the tool that allows other tools to be treated as
components, to be treated as a set of components. This al-
lows the user, for example, to request that the routine engine
enable or disable another routine within a routine. It allows
the user to run a set of routines using the routine engine
without a user interface. It allows the user to request that the
routine engine automatically enable any routine saved by the
routine editor. Many other examples of the advantages of the
architecture can be given.

The routine manager simply gives the user a graphical
method of managing routines. When analyzing the tasks a

June 1994 Hewlett-Packard Journal 35



ASCIl Message
Connector Tool
Catalog Files

Binary
Routine
Files

Message
Connector
Routine
Manager

Message
Connector
Routine
Editor

Message
Connector
Routine
Engine

Spell
Checker

SoftBench Framework Messaging System

Message Connector user would perform, it was concluded
that the routine manager would be in the user’s environment
most of the time. It was also concluded that the routine
manager would be an icon most of the time. As a result, the
design goal for the routine manager was to occupy as little
screen space, memory, and process space as possible. As
designed and implemented, a large portion of the routine
manager’s user interface simply sends a message to the Soft-
Bench Framework requesting that a service be performed.
As an example, the Enable and Disable command buttons simply
send a message requesting that the routine engine enable or
disable the selected routine. The routine manager was de-
signed, implemented, and tested before the implementation
of the routine editor and the routine engine.

The routine editor proved to be very challenging. The Mes-
sage Connector project goal stated that, “Message Connector
will provide SoftBench Framework value to all levels of end
users in minutes.” While a simple statement, the implications
were very powerful. “All levels of end users” implied that
whatever the editor did, displaying the underlying raw
framework would never meet the goal. All information
would have to be highly abstracted, and yet raw information
must be generated and could not be lost. “All levels of end
users” also implied that any user could add messaging tools
to the control of Message Connector, so Message Connector
could not have a static view of the framework and its current
tools. “In minutes” implied that there would be no need to
read a manual on a specific tool’s message interface and
format to access the tool’s functionality. It also implied that
the routine editor, tool list, and tool function lists must be
localizable by the user without disturbing the required raw
framework information. “In minutes” also implied that there
would be no writing of code to connect tools.

The routine editor underwent sixty paper prototype revisions,
eighteen code revisions, and countless formal and informal
cognitive tests with users ranging from administrative assis-
tants to tenured code development engineers. It is ironic that
one result of focusing a major portion of the project team’s
effort on the routine editor has been that various people
involved with promoting the product have complained that it
is too easy to use. Apparently people expect integration to
be difficult, and without a demonstration, potential custom-
ers question the integrity of the person describing Message
Connector. When someone is told that there is a tool that
can connect other disparate tools that have no knowledge of

36 June 1994 Hewlett-Packard Journal

Fig. 4. SoftBench Message

) Connector architecture. The three
major Message Connector mod-
ules—the routine manager, the
routine editor, and the routine
engine—are treated as compo-
nents like the tools.

each other, in millions of possible ways, in seconds, without
writing code, it is rather hard to believe.

The routine engine turned out to be an object-oriented won-
der. The routine engine must be very fast. It stores, deciphers,
matches, and substitutes portions of framework messages, it
receives and responds to a rapid succession of a large num-
ber of trigger messages, and it accommodates future en-
hancements. The routine engine is the brain, heart, and soul
of Message Connector and is completely invisible.

Example Revisited

Walking through the eight steps in the simple editor/spell
checker example above will show the interaction within and
between each of the Message Connector components.

1. Request that Message Conneclor create a new routine.

This step is accomplished using the routine manager (see
Fig. 5). The routine manager’s task is to prompt the user for
a routine name, ensure that the name has the proper file
extension (mer), and then simply send a request to the mes-
sage server to edit the named routine. The routine manager’s
role is largely coordination. It has no intimate knowledge of
the routine editor. After sending the request to the message
server to edit the named routine, the routine manager will
await a notification from the message server of whether the
edit was a success or a failure. The routine manager then
posts the status of the request.

A separate routine editor is started for each routine edit re-
quest received by the message server. When the routine
manager sends a request to the message server to edit a
routine, the message server starts a routine editor and the
routine editor initializes itself and sends a notification of
success or failure back to the message server. Fig. 6 shows a
typical routine editor screen.

2. Select the WHEN: tool to trigger an action.

In the case of creating a new routine, there is no routine to
load into the editor and therefore the WHEN: and THEN: fields
are displayed empty. The routine editor searches for and
displays all possible tools available for Message Connector to
manipulate. It is important that Message Connector is actu-
ally searching for Message Connector tool catalog files, not
the tools themselves. For each file found, the file name is
displayed as a tool in the routine editor.



Project: hpfceac

ROUTINE MAMNAGER

Hide Routine

nhide Routine...

edit—build

Enable Routine Disable Routine

Fig. 5. Typical routine manager screen.

pell.mcr

action

Ignore Failures
THEN: Request

action

The Message Connector tool catalog files contain three im-
portant pieces of information. The catalog files are ASCII
files that contain the raw messages required to access the
functions of the tool being cataloged. The catalog files also
contain the abstractions of the raw messages (these are dis-
played to the user, not the raw messages) and any message
help that may be required by a user. For most tools, the cat-
alog file is provided for the user by the person who added
the message interface. If the catalog file does not exist for a
particular tool, it can be created using that tool’s message
interface documentation. The catalog does not have to be
created by the tool provider. The catalog files can also be
edited by the user to change the abstraction displayed or to
hide some of the seldom used functions.

When the user selects a tool from the Message Connector
routine editor tool list, the routine editor goes out and parses
the tool’s catalog file for all applicable message abstractions
and displays those abstractions.

3. Select the specific function of the WHEN: tool that will trigger
the action.

When a user selects a WHEN: function and copies that function
to the WHEN: statement, the routine editor reads the func-
tion’s raw message and the abstraction of the raw message.
Only the abstraction is displayed to the user, but both the
raw message and the abstraction are temporarily preserved
until the user saves the routine.

Select execution type:

Tool List Tool’s Action List

Home Tools: Request Spell Check File

11 Dic

Copy to "WHEN:"

Help on Selected Action,

Save Routine

Show SucceededfFailed

Show Requests

_name

Copy to "THEN:"
Fig. 6. Typical routine editor
screen.

Cancel

June 1994 Hewlett-Packard Journal 37



4. Select the THEN: tool to respond to the action.
5. Select the specific function that will respond.
These steps are similar to the WHEN: steps.

6. Change the WHEN: and THEN: file fields.

This simply allows the user to change the values displayed
on the screen. For these values, what is seen on the screen
is what will be used when the user selects Save Routine.

7. Save the routine.

This step takes all of the raw messages, the message abstrac-
tions, and the screen values and assembles them into an
internal routine file format which both the routine editor and
the routine engine are able to read. The routine editor then
writes out a binary data file into the routine file being edited
and then quits.

8. Enable the routine.

This step is driven by the routine manager, but is performed
by the routine engine. The user selects the routine of interest,
then selects the Enable Routine button on the routine manager.
Again, the routine manager’s primary role is coordination.
When the user selects the Enable Routine button, the routine
manager simply finds the routine selected and sends a re-
quest to the message server to enable the named routine.
The routine engine receives the enable request from the
message server and reads the named routine. After reading
the routine, the routine engine establishes the WHEN: mes-
sage connection to the message server. This WHEN: connec-
tion is as general as required. If the user uses any wildcards
in the WHEN: statement, the routine engine will establish a
general WHEN: message connection and then wait until the
message server forwards a message that matches the routine
engine’s message connection. If the message server forwards
a matching message, the routine engine sends a request for
each of the THEN: statements to the message server.

Development Process

Message Connector’s transformation from a concept to a
product was a wonderful challenge. The two most important
elements of this transformation were a cross-functional team
and complete project traceability. A decision was made be-
fore the first project meeting to assemble a cross-functional
team immediately. To make the team effective, all members
were considered equal in all team activity. It was made clear
that the success or failure of the project was the success or
failure of the entire team. This turned out to be the most
important decision of the Message Connector project. The
team consisted of people from human factors, learning prod-
ucts, product marketing, research and development, promo-
tional marketing, and technical customer support. Most of
the team members only spent a portion of their time on the
Message Connector project. However, a smaller group of
full-time people could never have substituted for Message
Connector’s cross-functional team. The collective knowledge
of the team covered every aspect of product requirements,
design, development, delivery, training, and promotion. Dur-
ing the entire life of the project nothing was forgotten and
there were no surprises, with the exception of a standing
ovation following a demonstration at sales training. The team

38 June 1994 Hewlett-Packard Journal

worked so well that it guided and corrected itself at every
juncture of the project.

One critical reason the team worked so well was the second
most important element of the project—complete project
traceability. There was not a single element of the project
that could not be directly traced back to the project goal.
This traceability provided excellent communication and di-
rection for each team member. In the first two intense weeks
of the project, the team met twice per day, one hour per
meeting. These meetings derived the project goal, objectives
(subgoals by team definition), and requirements. The rule of
these meetings was simple: while in this portion of the proj-
ect no new level of detail was attempted until the current
level was fully defined, understood, and challenged by all
members. As each new level of detail was defined, one crite-
rion was that it must be directly derived from the level
above—again, complete project traceability. The project goal
was then posted in every team member’s office to provide a
constant reminder to make the correct trade-offs when work-
ing on Message Connector. This amount of time and trace-
ability seemed excessive to some people outside of the
team, but it proved to be extremely productive. All of the
team members knew exactly what they were doing, what
others were doing, and why they were doing it throughout
the life of the project.

The project goal was made easy to remember, but was ex-
tremely challenging: “Message Connector will provide Soft-
Bench Framework value to all levels of end users in minutes.”
At first glance, this seems very simple. Breaking the goal
apart, there are three separate, very challenging pieces to the
goal: “SoftBench Framework value,” “all levels of end users,”
and “in minutes.” As an example of the challenge, let’s look
more closely at the “in minutes” portion of the project goal.
“In minutes” means that there is a requirement that the user
find value in literally minutes using a new product that uses
a rather complex framework and a large number of un-
known tools that perform an unknown set of functionality.
How would Message Connector provide all of this informa-
tion without requiring the user to refer to any documenta-
tion? “In minutes” made a very dramatic impact on the user
interface, user documentation, and user training (no training
is required). These three pieces of the goal also provided the
grounds for the project objectives. The project objectives
then provided the basis for the project and product require-
ments. At each new level of detail it was reassuring to the
team that there was no effort expended that did not directly
trace back to the project goal. The team ownership, motiva-
tion, creativity, and productivity proved to be extremely high.

Conclusion

Using Message Connector, users of the SoftBench Frame-
work can easily customize their tool interaction environment
to treat their tools as components of a task, in literally se-
conds, by simply pointing and clicking. This was all made
possible by immediately establishing a cross-functional team
to own the project and requiring complete project traceabil-
ity. An interesting fact is that early users of Message Connec-
tor developed two new components that are separate from
the Message Connector product but are now shipped with it.
One component (named Softshell) executes any specified



UNIX* command using messaging and can return the output
of the command in a message. This allows a Message Con-
nector user to execute UNIX commands directly as a result
of an event of any tool. For example, when the user re-
quests the editor to edit a file, if the file is read-only then
execute the UNIX command to give the user write access.
The second component (named XtoBMS) converts X Win-
dows events into messages that Message Connector can use
to request functionality from any component automatically.
This means that when any tool maps a window to the
screen, the user environment can respond with any action
the user defines. This has been used extensively in process
management tools so that the appearance of a tool on the
screen causes the process tool to change the task a user is
currently performing.

Acknowledgments

The transformation of Message Connector from concept to
product was the result of a very strong team effort. While
there were many people involved with the project at various

points, the core Message Connector team consisted of Alan
Klein representing learning products, Jan Ryles representing
human factors, Byron Jenings representing research and de-
velopment, Gary Thalman representing product marketing,
Carol Gessner and Wayne Cook representing technical cus-
tomer support, Dave Willis and Tim Tillson representing
project management, and the author representing research
and development. The cross-functional team approach
caused roles and responsibilities to become pleasantly
blurred. The entire team is the parent of Message Connector.

References

1. C. Gerety, “A New Generation of Software Development Tools,”
Hewlett-Packard Journal, Vol. 41, no. 3, June 1990, pp. 48-58.

2. M.R. Cagan, “The HP SoftBench Environment: An Architecture for
a New Generation of Software Tools,” ibid, pp. 36-47.

3. B.D. Fromme, “HP Encapsulator: Bridging the Generation Gap,”
ibid, pp. 59-68.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other
countries.

June 1994 Hewlett-Packard Journal 39



