Six-Sigma Software Using Cleanroom
Software Engineering Techniques

Virtually defect-free software can be generated at high productivity levels
by applying to software development the same process discipline used in

integrated circuit manufacturing.

by Grant E. Head

In the late 1980s, Motorola Inc. instituted its well-known six-
sigma program.! This program replaced the “Zero Defects”
slogan of the early '80s and allowed Motorola to win the first
Malcolm Baldridge award for quality in 1988. Since then,
many other companies have initiated six-sigma programs.2

The six-sigma program is based on the principle that long-
term reliability requires a greater design margin (a more
robust design) so that the product can endure the stress of
use without failing. The measure for determining the robust-
ness of a design is based on the standard deviation, or sigma,
found in a standard normal distribution. This measure is
called a capability index (Cp), which is defined as the ratio
of the maximum allowable design tolerance limits to the
traditional +3-sigma tolerance limits. Thus, for a six-sigma
design limit C;, = 2.

To illustrate six-sigma capability, consider a manufacturing
process in which a thin film of gold must be vapor-deposited
on a silicon substrate. Suppose that the target thickness of
this film is 250 angstroms and that as little as 220 angstroms
or as much as 280 angstroms is satisfactory. If as shown in
Fig. 1 the £30-angstrom design limits correspond to the six-
sigma points of the normal distribution, only one chip in a

billion will be produced with a film that is either too thin or
too thick.

In any practical process, the position of the mean will vary.
It is generally assumed that this variation is about +1.5 sigma.
With this shift in the mean a six-sigma design would pro-
duce 3.4 parts per million defective. This is considered to be
satisfactory and is becoming accepted as a quality standard.
Table I lists the defective parts per million (ppm) possible
for different sigma values.

At first the six-sigma measure was applied only to hardware
reliability and manufacturing processes. It was subsequently
recognized that it could also be applied to software quality.
A number of software development methodologies have
been shown to produce six-sigma quality software. Possibly
the methodology that is the easiest to implement and is the
most repeatable is a technique called cleanroom software
engineering, which was developed at IBM Corporation’s
Federal Systems Division during the early 1980s.3 We ap-
plied this methodology in a limited way in a typical HP
environment and achieved remarkable results.

220A 235A 250A 265A 280A
‘ Me?an |
' 156 ' +150_
Numerous Defects Numerous Defects
(6210 Defective ppm) (6210 Defective ppm)
Virtually No Part or Process Variation Virtually No
Defects Defects
(34 ppm)Z (34 ppy
f ‘ 1 : : | — Fig. 1. An illustration of a six-
—6o -4o -20 0 20 Ly Y sigma design specification. A
} Four Sigma } design specification of +30 a{lg-
| o | stroms corresponds to a +6-sigma
\ Six Sigma \ design. Also shown is the +1.50

ppm = Parts Per Million

40 June 1994 Hewlett-Packard Journal

variation from the mean as a
result of variations in the process.

Table |
Defective ppm for Different Sigma Values
Sigma ppm

1 697,700

2 308,733

3 66,803

4 6,210

5 233

6 3.4

7 0.019

When applied to software, the standard unit of measure is
called use, and six-sigma in this context means fewer than
3.4 failures (deviations from specifications) per million uses.
A use is generally defined to be something small such as the
single transaction of entering an order or command line.
This is admittedly a rather murky definition, but murkiness is
not considered to be significant. Six-sigma is a very stringent
reliability standard and is difficult to measure. If it is
achieved, the user sees virtually no defects at all, and the
actual definition of a use then becomes academic.

Cleanroom software engineering has demonstrated the ability
to produce software in which the user finds no defects. We
have confirmed these results at HP. This paper reports our
results and provides a description of the cleanroom process,
especially those portions of the process that we used.

Cleanroom Software Engineering

Cleanroom software engineering (“cleanroom”) is a metaphor
that comes from integrated circuit manufacturing. Large-scale
integrated circuits must be manufactured in an environment
that is free from dust, flecks of skin, and amoebas, among
other things. The processes and environment are carefully
controlled and the results are constantly monitored. When
defects occur, they are considered to be defects in the pro-
cesses and not in the product. These defects are character-
ized to determine the process failure that produced them.
The processes are then corrected and rerun. The product is
regenerated. The original defective product is not fixed, but
discarded.

The cleanroom software engineering philosophy is analogous
to the integrated circuit manufacturing cleanroom process.
Processes and environments are carefully controlled and are
monitored for defects. Any defects found are considered to
be defects in one or more of the processes. For example,
defects could be in the specification process, the design
methodology, or the inspection techniques used. Defects are
not considered to be in the source file or the code module
that was generated. Each defect is characterized to determine
which process failed and how the failure can be prevented.
The failing process is corrected and rerun. The original prod-
uct is discarded. This is why one of the main proponents of
cleanroom, Dr. Harlan Mills, suggests that the most important
tool for cleanroom is the wastebasket.4

Life Cycle
The life cycle of a cleanroom project differs from the tradi-
tional life cycle. The traditional 40-20-40 postinvestigation

life cycle consists of 40% design, 20% code, and 40% unit
testing. The product then goes to integration testing.

Cleanroom uses an 80-20 life cycle (80% for design and 20%
for coding). The unexecuted and untested product is then
presented to integration testing and is expected to work. If it
doesn’t work, the defects are examined to determine how
the process should be improved. The defective product is
then discarded and regenerated using the improved process.

No Unit Testing

Unit testing does not exist in cleanroom. Unit testing is pri-
vate testing performed by the programmer with the results
remaining private to the programmer.

The lack of unit testing in cleanroom is usually met with
skepticism or with the notion that something wasn’t stated
correctly or it was misunderstood. It seems inconceivable
that unit testing should not occur. However it is a reality.
Cleanroom not only claims that there is no need for unit
testing, it also states that unit testing is dangerous. Unit test-
ing tends to uncover superficial defects that are easily found
during testing, and it injects “deep” defects that are difficult
to expose with any other kind of testing.

A better process is to discover all defects in a public arena
such as in integration testing. (Preferably, the original pro-
grammer should not be involved in performing the testing.)
The same rigorous, disciplined processes would then be
applied to the correction of the defects as were applied to
the original design and coding of the product.

In practice, defects are almost always encountered in integra-
tion testing. That seems to surprise no one. With cleanroom,
however, these defects are usually minor and can be fixed
with nothing more than an examination of the symptoms
and a quick informal check of the code. It is very seldom
that sophisticated debuggers are required.

When to Discard the Product

When IBM was asked about the criteria for judging a module
worthy of being discarded, they stated that the basic criterion
is that if testing reveals more than five defects per thousand
lines of code, the module is discarded. This is a low defect
density by industry standards,> particularly when it is consid-
ered that the code in question has never been executed
even by an individual programmer. Our experience is that
any half-serious attempt to implement cleanroom will easily
achieve this. We achieved a defect density of one defect per
thousand lines of code the first time we did a cleanroom
project. It would appear that this “discard the offending
module” policy is primarily intended to be a strong attention
getter to achieve commitment to the process. It is seldom
necessary to invoke it.

Productivity Is Not Degraded

Productivity is high with cleanroom. A trained cleanroom
team can achieve a productivity rate approaching 800 non-
comment source statements (NCSS) per engineer month.
Industry average is 120 NCSS per engineer month. Most HP
entities quote figures higher than this, but seldom do these
quotes exceed 800 NCSS.

There is also evidence that the resulting product is signifi-
cantly more concise and compact than the industry average.6

June 1994 Hewlett-Packard Journal 41

This further enhances productivity. Not only is the product
produced at a high statement-per-month rate, but the total
number of statements is also smaller.

Needed Best Practices

Cleanroom is compatible with most industry-accepted best
practices for software generation. It is not necessary to un-
learn anything. Some of these best practices are required
(such as a structured design methodology). Others such as
software reuse are optional but compatible.

As mentioned above, cleanroom requires some sort of struc-
tured design methodology. It has been successfully employed
using a number of different design approaches. Most recently
however, the cleanroom originators are recommending a
form of object-oriented design.”

All cleanroom deliverables must be subject to inspections,
code walkthroughs, or some other form of rigorous peer
review. It is not critical what form is applied. What is critical
is that 100% of all deliverables be subjected to this peer-
review process and that it be done in small quantities. For
instance, it is recommended that no more than three to five
pages of a code module be inspected at a single inspection.

Required New Features

In addition to the standard software engineering practices
mentioned above, there are a number of cleanroom-specific
processes that are required or are recommended. These
practices include structured specifications, functional verifi-
cation, structured data, and statistical testing. Structured
specifications are applied to the project before design begins.
This strongly affects the delivery schedule and the project
management process. Functional verification is applied dur-
ing design, coding, and inspection processes. Structured data
is applied during the design process. Finally, statistical test-
ing is the integration testing methodology of choice. Fig. 2
summarizes the cleanroom processes.

Structured Specifications

Structured specifications is a term applied to the process
used to divide a product specification into small pieces for
implementation. It is not critical exactly how this division
is accomplished as long as the results have the following
characteristics:

Each specification segment must be small enough so that it
can be fully implemented by the development team within
days or weeks rather than months or years.

Cleanroom Processes

* The result of implementing each segment must be a module
that can be completely executed and tested on its own. This
means that no segment can contain partially implemented
features that must be avoided during testing to prevent
program failure.

* The segments may not have mutual dependencies. For ex-
ample, it is satisfactory for segment 4 to require the imple-
mentation of segment 3 to execute correctly. It is assumed
that segment 3 will be implemented first and will exist to
support the testing of segment 4. However, it is not satisfac-
tory for segment 3 to require segment 4 to execute properly
at the same time.

The structured specifications process is used by cleanroom
to facilitate control of the process by allowing the develop-
ment team to focus on small, easily conceptualized pieces. A
secondary but very important effect is that productivity is
increased. Increased productivity is a natural effect of the
team’s being focused. Each deliverable is small and the time
to produce it is psychologically short. The delivery date is
therefore always imminent and always seems to be within
reach. Morale is generally high because real progress is
visible and is achievable.

Structured specifications also offer a very definite project
management advantage. They serve to achieve the frequently
quoted maxim that when a project is 50% complete, 50% of
its features should be 100% complete instead of 100% of its
features being 50% complete. Proper management visibility
and the ability to control delivery schedules depend upon
this maxim’s being true.

Structured specifications are very similar to incremental
processes described in other methodologies but often the
purposes and benefits sound quite different. For instance, in
one case the structured specifications process is called evolu-
tionary delivery.® The primary benefit claimed for evolution-
ary delivery is that it allows “real” customers to examine
early releases and provide feedback so that the product will
evolve into something that really satisfies customer needs.
HP supports this approach and has classes to teach the
evolutionary delivery process to software developers.

From the description just given it would appear that each
evolutionary release is placed into the hands of real custom-
ers. This implies to many people that the entire release pro-
cess is repeated on a frequent (monthly) basis. Since multiple
releases and the support of multiple versions are considered
headaches for product support, this scenario is frowned

Structured
Specifications
(Divide Product
Specification
into Manageable
Pieces)

Functional
Verification
(Formal Checks
for Correctness)

Structured Data
(Treat Random
Data Access)

Statistical
Testing
(Measure
Quality in
Sigma Units)

Legal
Primitive
Evaluation

Intellectual
Control

Before Design Design

42 June 1994 Hewlett-Packard Journal

Design, Coding, and Inspection

Analytical
Proof

Fig. 2. The processes recom-
mended for software cleanroom

Integration Testing engineering.

upon. Cleanroom does not make it a priority to place each
stage of the product into the hands of real customers.

Looking at the definition of a real customer in the evolution-
ary delivery process, you realize that a real customer could
be the engineer at the next desk. In practice, the product
cannot be delivered to more than a handful of alpha or beta
testers until the product is released to the full market. This
type of release should not occur any more often than normal.
In fact, since cleanroom produces high-quality products, the
number of releases required for product repair is significantly
reduced.

Another type of structured specifications technique, which
is applied to information technology development, uses
information engineering time boxes.10 Time boxes are used
as a means of preventing endless feature creep while ensur-
ing that the product (in this case an information product)
still has flexibility and adaptability to changing business
requirements.

HP has adopted a technique called short interval scheduling!!
as a project management approach. Short interval scheduling
breaks the entire project into 4-to-6-week chunks, each with
its own set of deliverables. Short interval scheduling can be
applied to other projects besides those involved in software
development. This is an insight that is not obvious in other
techniques.

All of these methods are very similar to the structured speci-
fications technique. As different as they sound, they all serve
to break the task into bite-sized pieces, which is the goal of
the structured specifications portion of cleanroom.

Functional Verification

Functional verification is the heart of cleanroom and is pri-
marily responsible for achieving the dramatic improvement
in quality possible with cleanroom. It is based on the tenet
that, given the proper circumstances, the human intellect can
determine whether or not a piece of logic is correct, and if it
is not correct, devise a modification to fix it.* Functional verifi-
cation has three levels: intellectual control, legal primitive
evaluation, and analytical proof.

Intellectual control requires that the progression from speci-
fications to code be done in steps that are small enough and
documented well enough so that the correctness of each step

* This tenet is also the definition of intellectual control.

Specifications

is obvious. The working term here is “obvious.” The reviewer
should be tempted to say, “Of course this refinement level
follows correctly from its predecessor! Why belabor the
point?” If the reviewer is not tempted to say this, it may be
advisable to redesign the refinement level or to document it
more completely.

Legal primitive evaluation enhances intellectual control by
providing a mathematically derived set of questions for
proving and testing the assumptions made in the design
specifications. Analytical proof!? enhances legal primitive
evaluation by answering the question sets mathematically.
Analytical proof is a very rigorous and tedious correctness
proof and is very rarely used.

We have demonstrated here at HP that intellectual control
alone is capable of producing code with significantly im-
proved defect densities compared to software developed with
other traditional development processes. Application of the
complete cleanroom process will provide another two to
three orders of magnitude improvement in defect densities
and will produce six-sigma code.

Intellectual Control. The human intellect, fallible though it may
be, is able to assess correctness when presented with rea-
sonable data in a reasonable format. Testing is far inferior to
the power of the buman intellect. This is the key point. All
six-sigma software processes revolve around this point. It is
a myth that software must contain defects. This myth is a
self-fulfilling prophecy and prevents defect-free software
from being routinely presented to the marketplace. The
prevalence of the defect myth is the result of another myth,
which is that the computer is superior to the human and that
computer testing is the best way to ensure reliable software.

We are told that the human intellect can only understand
complexities when they are linked together in close, simple
relationships. This limitation can be made to work for us. If
it is ignored, it works against us and handicaps our creative
ability. Making this limitation work for us is the basis of
functional verification.

The basis for intellectual control and functional verification is
a structured development hierarchy. Most of us are familiar
with a representation of a hierarchy like the one modeled in
Fig. 3. This could be an illustration of how to progress from
design specifications to actual code using any one of

Code Code

Fig. 3. A typical representation of
a hierarchical diagram. In this
case the representation is for a
software design.

June 1994 Hewlett-Packard Journal 43

the currently popular, industry-accepted best practices for
design. Each of these practices has some form of stepwise
refinement. Each breaks down the specifications into ever
greater detail. The result is a program containing a set of
commands in some programming language.

The difference between the different software design meth-
ods is reflected in the interpretation of what the squares and
the connecting lines in Fig. 3 represent. If the developer is
using structured design techniques, they would mean data
and control connections, and if the developer is using object-
oriented design, they would represent objects in an object-
oriented hierarchy.

Functional verification does not care what these symbols
represent. In any of these methods, the squares 1, 2, 3, and
4 are supposed to describe fully the functionality of the
specifications at that level. Similarly, 4.1 through 4.3 fully
describe the functionality of square 4, and the code of square
3 fully implements the functionality of square 3. Intellectual
control can be achieved with any of them by adhering to the
following five principles.

Principle 1. Documentation must be complete. The first key
principle is that the documentation of the refinement levels
must be complete. It must fully reflect the requirements of
the abstraction level immediately above it. For instance, it
must be possible to locate within the documentation of
squares 1 through 4 in our example every feature described
in the specifications.

If documentation is complete, intellectual control is nearly
automatic. In the case described above, the designer intu-
itively works to make the documentation and the specifica-
tions consistent with each other. The inspectors intuitively
study to confirm the correctness.

Note that it is not always necessary to reproduce the specifi-
cations word for word. It will often be possible to simply
state, “This module fully implements the provisions of specifi-
cation section 7-4b.” The inspectors need only confirm that it
makes sense for section 7-4b to be treated in a single module.

Other times it may be necessary to define considerably more
than what is in the specifications. A feature that is spread
over several modules requires a specific description of which
portion is treated in each module and exactly how the mod-
ules interact with each other. It must be possible for the in-
spectors to look at all the modules as a whole and determine
that the feature is properly implemented in the full module
orchestration.

This principle is commonly violated. All industry-accepted
best design processes encourage full documentation, but it is
still not done because these design processes often lack the
perspective and the respect for intellectual control that is
provided by the principles of functional verification, or they
are insufficiently compelling to convey this respect. The con-
cept of intellectual control is often lost by many design pro-
cesses because the main emphasis is on the mechanics of
the specific methodology.

The result is that frequently the documentation for the first
level of the system specifications is nothing more than the
names of the modules (e.g., 1. Data Base Access Module,
2. In-Line Update Module, 3. Initialization Module, 4. User
Interface Module). It is left to the inspectors to guess, based

44 June 1994 Hewlett-Packard Journal

on the names, what portions of the specifications were
intended to be in which module.

Even when there is an attempt to conform fully to the meth-
odology and provide full documentation, neither the designer
nor the inspectors seem to worry about the continuity that is
required by functional verification. For example, a feature
required in the design specification might show up first in
level 4.1.2 or in the code associated with level 4.1.2 without
ever having been referenced in levels 4 or 4.1. Sometimes
the chosen design methodology does not sufficiently indi-
cate that this is dangerous. Once again, this is the result of a
failure to appreciate and respect the concept of intellectual
control.

If proper documentation practices are followed, the result of
each inspection is confidence that each level fully satisfies
the requirements. For example, squares 1 through 4 in Fig. 3
fully implement the top-level specifications. Nothing is left
out, deferred, undefined, or added, and no requirements are
violated. Similarly, 4.1 through 4.3 fully satisfy the provisions
of 4, and 4.1.1 and 4.1.2 fully satisfy 4.1.

With these conditions met, inspections of 4.1 through 4.3
should only require reference to the definition for square 4
to confirm that 4.1 through 4.3 satisfy 4. If 4.2 attempts to
implement a feature of the specifications that is not explicitly
or implicitly referenced in 4, it is a defect and should be
logged as such in the inspection meeting.

Principle 2. A given definition and all of its next-level
refinements must be covered in a single inspection session.

This means that a single inspection session must cover
square 4 and all of its next-level refinements, 4.1 through
4.3. Altogether, 4.1 through 4.3 should not be more than
about five pages of material. More than five pages would
indicate that too much refinement was attempted at one time
and intellectual control probably cannot be maintained. The
offending level should be redone with some of the intended
refinement deferred to a lower level.

Principle 3. The full life cycle of any data item must be totally
defined at a single refinement level and must be covered in
a single inspection.

This is the key principle that allows us to be able to inspect
2.1.1 and 2.1.2 and only be concerned about their reaction
with each other and the way they implement 2.1. There is
no need to determine, for example, if they interact correctly
with 1.1 or 4.3.

This principle is a breakthrough concept and obliterates one
of the most troublesome aspects of large-system modifica-
tion. One seems never to be totally secure making a code
modification. There’s always the concern that something
may be getting broken somewhere else. This fear is an intu-
itive acknowledgment that intellectual control is not being
maintained.

Such “remote breaking” can only occur because of inconsis-
tent data management. Even troublesome problems associ-
ated with inappropriate interruptability or bogus recursion
are caused by inconsistent data management. Intellectual
control requires extreme respect for data management
visibility.

This visibility can be maintained by ensuring that each data
item is fully defined on a single abstraction level and totally
studied in a single inspection session. It should be clear:
Where and why the data item comes into existence

What each data item is initialized to and why

How and where each data item is used and what effects
occur as a result of its use

How and where each data item is updated and to what value
Where, why, and how each data item is deleted.

Note that careful adherence to this principle contributes sig-
nificantly to creating an object-oriented result even if that is
not the intent of the designer. This principle is also one of
the reasons why cleanroom lends itself so well to object-
oriented design methodologies.

Once the inspection team is fully satisfied that the data
management is consistent and correct, there is no need to be
concerned about interactions. For instance, the life cycle for
data that is global to the entire module would be fully de-
scribed and inspected when squares 1, 2, 3, and 4 were in-
spected. Square 2 then totally defines its own portion of this
management and 2.1, 2.2, 2.1.1, and 2.1.2 need only be con-
cerned that they are properly implementing square 2’s part
of this definition. Squares 1, 3, and 4 can take care of their
own portion with no worry about the effects on 2.

Adherence to principle 3 means that it is not necessary to
inspect any logic other than that which is presented in the
inspection packet. There is no intellectually uncontrolled
requirement to execute the entire program mentally to
determine whether or not it works.

Principle 4. Updates must conform to the same mechanisms.

Since even the best possible design processes are fallible, it
is likely that unanticipated requirements will later be discov-
ered. Functional verification does not preclude this. For in-
stance, it may be discovered that it is necessary to test a
global flag in the code for 2.1.1 which in turn must be set in
the code for 4.2. This is a common occurrence and the typi-
cal response is simply to create the global flag for 2.1.1 and
then update 4.2 to set it properly. Bug found. Bug fixed.
Everything works fine.

However, we have just destroyed the ability to make subse-
quent modifications to this mechanism in an intellectually
controlled way. Future intellectual control requires that this
new interface be retrofitted into the higher abstraction lev-
els. The life cycle of this flag must be fully described at the
square 1 through 4 level. In that one document, the square 2
test and the square 4 update must be described, and then
the appropriate portions of this definition must be repeated
and refined in 2.1, 2.1.1, and 4.2, and of course, all of this
should be subject to a full inspection.

Principle 5. Intellectual control must be accompanied by
bottom-up thinking.

These principles can lull people into believing that they have
intellectual control when, in fact, intellectual control is not
possible. Intellectual control is, by its nature, a top-down
process and is endangered by a pitfall that threatens all top-
down design processes: the tendency to postpone real deci-
sions indefinitely. To avoid this pitfall, the designers must be
alert to potential “and-then-a-miracle-happens” situations.
Anything that looks suspiciously tricky should be prototyped

as soon as possible. All the top-down design discipline in
the world will not save a project that depends upon a fea-
ture that is beyond the current state of the art. Such a feature
may not be recognized until very late in the development
cycle if top-down design is allowed to blind the developers
to its existence.

The Key Word Is “Obvious.” It must be remembered that these
five principles are followed for the single purpose of making
it obvious to the moderately thorough observer that the
design is correct. Practicality must be sufficiently demon-
strated, documentation must be sufficiently complete, the
design must be tackled in sufficiently small chunks, and data
management must be sufficiently clarified. All of these must
be so obviously sufficient that the reviewer is tempted to
say, “Of course! It's only obvious! Why belabor it?” If this is
not the case, a redesign is indicated.

Our experience suggests that the achievement of such a
state of obviousness is not a particularly challenging task. It
requires care, but, if these principles are well understood,
this care is almost automatic.

Legal Primitive Evaluation

Legal primitive evaluation enhances intellectual control by
providing a mathematically derived set of questions for each
legal Dykstra primitive (e.g., If-Then-Else, While-Do, etc.). For
each primitive, the designers and the reviewers ask the set
of questions that apply to that primitive and confirm that
each question can be answered affirmatively. If this is the
case, the correctness of the primitive is ensured.

A rigorous derivation of these questions can be found else-
where.13 There is insufficient space here to go through these
derivations in detail, but we can illustrate the process and its
mathematical basis by using a short, nonrigorous analysis of
one of these sets, the While-Do primitive. Questions associated
with the other primitives are given on page 47.

The While-Do construct is defined as follows:
S = [While A Do B

which means:
S is fully achieved by [While A Do B;].

The symbol S denotes the specification that the primitive is
attempting to satisfy, or the function it is attempting to per-
form. The symbol A is the while test, and B is the while body.

As an example, S could be the specification: “The entry is
added to the table.” The predicate represented by A would
then be an appropriate process to enable the program to
perform an iteration and to determine if the operation is
complete. B would be the processing required to accomplish
the addition to the table. We have chosen to use a While-Do
because, presumably, we think it makes sense. We may be
intending to accomplish the entry addition by scanning the
table sequentially until an appropriate insertion point is
found and then splicing the entry into the table at that point.
Whether or not this makes sense depends upon the known
characteristics of the entry and the table. It also may depend
upon the explicit (or implicit) existence of a further part of
the specification such as “...within 5 ms.”

To investigate whether it has been coded correctly, the
following three questions are asked:

June 1994 Hewlett-Packard Journal 45

1. Is loop termination guaranteed for any argument of S?
2. When A is true, does S equal B followed by S?
3. When A is false, does S equal S?

When the answer to these three questions is yes, the correct-
ness of the While-Do is guaranteed. The people asking these
questions should be the designer and the inspectors.

These questions require some explanation.
1. Is loop termination guaranteed for any argument of S?

This means that for any data presented to the function de-
fined by S, will the While-Do always terminate? For instance, in
our example, are there any possible instances of the entry or
the table for which the While-Do will go into an endless loop
because A can never acquire a value of FALSE?

This would appear to be an obvious question. So obvious,
that the reader may be tempted to ask why it is even men-
tioned. However, there is a lack of respect for While-Do
termination conditions and many defects occur because of
failure to terminate for certain inputs. A proper respect for
this question will cause a programmer to take care when
using it and will significantly help to avoid nontermination
failures.

Respect for this question is justified because it is difficult to
prove While-Do termination. In fact, it can be mathematically
proven that, for the general case, it is impossible to prove
termination.14 To guarantee the correctness of a While-Do, it is
therefore necessary to design simple termination conditions
that can be easily verified by inspection. Complicated While-Do
tests must be avoided.

2. When A is true, does S equal B followed by S?

This means that, when A is true, can S be achieved by
executing B and then presenting the results to S again? This
question is not quite so obvious.

Iterative statements are very difficult to prove. To prove the
correctness of the while statement, it is desirable to change it
to a noniterative form. We change it by invoking S recur-
sively. Thus, the expression:

S = [While A Do B} @D
becomes:
S =[If A Then (B; S)] @

Expression 2 is no longer an iterative construct and can be
more readily proven. Fig. 4 shows the diagrams for these
tWO expressions.

The equivalence of these two statements can be rigorously
demonstrated.!> A nonrigorous feeling for it can be obtained
by observing that when A is true in [While A Do B], the B expres-
sion is executed once and then you start at the beginning by
making the [While A] test again. If [While A Do B] is truly equal to
S, then one could imagine that, rather than starting again at
the beginning with the [While A] test, you simply start at the
beginning of S. That changes the While-Do to a simple If-Then,
and the predicate A is tested only once. If it is true, you exe-
cute B one time and then execute S to finish the processing.

The typical first reaction to this concept is that we haven’t
helped at all. The S expression is still iterative and now

46 June 1994 Hewlett-Packard Journal

S
While A Do B
True
False
Continue
S
If AThen (B; S)
True
False
Continue S

Fig. 4. Diagrams of the primitives While ADoB and If A Then (B; S).

we’'ve made it recursive making it seem that we have more
to prove. The response to this complaint is that we don’t
have to prove anything about S at all. The specification (the
entry is added to the table) is neither iterative nor recursive.
We have simply chosen to implement it using a While-Do con-
struct. We could, presumably, have implemented it some
other way.

S is nothing more than the specification. In the general case,
it may be a completely arbitrary statement from any source.
Whether the specification is correct or not is not our respon-
sibility. Our responsibility is to implement it as defined.

Question 2 can therefore be restated as follows: If A is true,
when we execute B one time and then turn the result over
to whatever we’ve defined S to be, does the result still
achieve S? An affirmative answer satisfies question 2.

In terms of our example, B will have examined part of the
table. It will either already have inserted the new entry into
the table or it will have decided that the portion of the table
it examined is not a candidate for inserting of the entry. The
unexamined portion of the table is now the new table upon
which the construct must execute. This new instance of the
table must be comparable to a standalone instance of the
table so that the concept of adding an entry to the table still
makes sense. If the resulting table fragment no longer looks
like any form of the table for which the specification S was
generated, question 2 may not be answerable affirmatively
and the proposed code would then be incorrect.

3. When A is false, does S equal S?

This question seems fairly obvious but it is frequently over-
looked. If A is found to be false the first time the While-Do is
executed and therefore no processing of B occurs, is this
satisfactory? Does the specification S allow for nothing to
happen and therefore for no change to occur as a result of
its execution?

In our example, the test posed by this question would likely
fail. S requires something to happen (i.e., an entry to be
added to the table). This would suggest that the While-Do may
not be the appropriate construct for this S. We may never
have noticed this fact if we hadn’t been forced to examine
question 3 carefully.

Structured Data

The principle of structured datal® recognizes that undisci-
plined accesses to randomly accessed arrays or accesses that
use generalized pointers cause the same kind of “reasoning
explosion” produced by the undisciplined use of GOTOs. For
instance, take the instruction:

Ali] = B[j+k];

This statement looks innocent enough. It would appear to
be appropriate in any well-structured program. Note, how-
ever, that it involves five variables, all of which must be ac-
counted for in any correctness analysis. If the program in
which this statement occurs is such that this statement is
executed several times, some of these variables may be set
in instructions that occur later in the program. Thus, this
instruction all by itself creates a reasoning explosion.

Just as Dykstra suggested that GOTOs should not be used at
all,17 the originators of cleanroom suggest that randomly
accessed arrays and pointers should not be used. Dykstra
recommended a set of primitives to use in place of GOTOs.

In the same way, cleanroom recommends that randomly
accessed arrays be replaced with structures such as queues,
stacks, and sets. These structures are safer because their ac-
cess methods are more constrained and disciplined. Many
current object-oriented class libraries support these structures
directly and take much of the mystery and the complexity out
of mentally converting from random-array thinking.

Statistical Testing

Statistical testing® is not really required for cleanroom, but it
is highly recommended because it allows an assessment of
quality in sigma units. It does not measure quality in defects
per lines of code. Measuring quality in sigma units gives users
visibility of how often a defect is expected to be encountered.
For instance, it makes no difference if there are 100 defects
per thousand lines of code if the user never actually encoun-
ters any of them. The product would be perceived as very
reliable. On the other hand, the product may have only one
defect in 100,000 lines of code, but if the user encounters
this defect every other day, the product is perceived to be
very unreliable.

Statistical testing also clearly shows when testing is complete
and when the product can safely be released. If the model is
predicting that the user will encounter a defect no more
often than once every 5000 years with an uncertainty of
+1000 years, it could be decided that it is safe to release the

Legal Primitive Evaluation

As described in the accompanying article, the process of doing legal primitive
evaluation involves asking a set of mathematically derived questions about the of
basic programming primitives (e.g., If-Then-Else, For-Do, etc.) used in a program.
The following is a list of the questions that must be investigated for each primitive.

In the following list S refers to the specification that must be satisfied by the
questions asked about the referenced primitive.

Sequence S=[A;B]
Does S equal A followed by B?

For-Do S=[ForADoBj]
Does S equal first B followed by second B ... followed by last B?

If-Then S=[If AThen B]]
If Alis true, does S = B?
If Ais false, does S = S?

If-Then-Else S=[If AThen B Else C;]
If Ais true, does S equal B?
If Ais false, does S equal C?

Case S =[Case P part (C1) B1 ... part (Cn) Bn Else E;]
When pis C1, does S equal B1?

When pis Cn, does S equal Bn?
When p is not a member of set (C1, ..., Cn), does S equal E?

While-Do S = [While A Do B;]
Is loop termination guaranteed for any argument of S?
When Ais true, does S equal B followed by S?
When A is false, does S equal S?

Do-Until S =[Do A Until B;]
Is loop termination guaranteed for any argument of S?
When B is false, does S equal A followed by S?
When B is true, does S equal A?

Do-While-Do S =[Do; A While B Do, C;]
Is loop termination guaranteed for any argument of S?
When B is true, does S equal A followed by C followed by S?
When B is false, does S equal A?

product. This is usually better than some industry-standard
methods (e.g., when the attrition rate from boredom among
the test team exceeds a certain threshold, it must be time to
release, or “When is this product supposed to be released?
May 17th. What's today’s date? May 17th. Oh. Then we must
be finished testing.”).

Statistical testing specifies the way test scenarios are devel-
oped and executed. Testing is done using scenarios that
conform to the expected user profile. A user profile is gener-
ated by identifying all states the system can be in (e.g., all
screens that could be displayed by the system) and, on each
one, identifying all the different actions the user could take
and the relative percentage of instances in which each
would be taken. As the scenario generator progresses
through these states, actions are selected randomly with a
weighting that corresponds to the predicted user profile.

For instance, if a given screen has a menu item that is antici-
pated to be invoked 75% of the time when the user is in that
screen, the invocation of this menu item is stipulated in 75%
of the generated scenarios involving the screen. If another

June 1994 Hewlett-Packard Journal 47

*

menu item will only be invoked 1% of the time, it would be
called in only 1% of the scenarios.

These scenarios are then executed and the error history is
evaluated according to a mathematical model designed to
predict how many more defects the user would encounter in
a given period of time or in a given number of uses. There
are several different models described in the literature.18

In general, statistical testing takes less time than traditional
testing. As soon as the model predicts a quality level corre-
sponding to a predefined goal (e.g., six sigma) with a suffi-
ciently small range of uncertainty (also predefined), the
product can be safely released. This is the case even when
100% testing coverage is not done, or when 100% of the
pathways are not executed.

Statistical testing requires that the software to which it is
applied be minimally reliable. If an attempt is made to apply
it to software that has an industry-typical defect density, any
of the statistical models will demonstrate instabilities and
usually blow up. When they don’t blow up, their predictions
are so unfavorable that a decision is usually made to ignore
them. This is an analytical reflection of the fact that you can’t
test quality into a program.

Quality Cannot Be Tested into a Product

Although it is the quality strategy chosen for many products,
it is not possible to test quality into a product. DeMarco!®
has an excellent analysis that demonstrates the validity of
this premise. This analysis is based on the apparent fact that
only about half of all defects can be eliminated by testing,
but that this factor of two is swamped by the variability of
the software packages on the market. The difference in de-
fect density between the best and worst products is a factor
of almost 4000.* Of course, these are the extremes. The
factor difference between the 25th percentile and the 75th
percentile is about 30 according to DeMarco. No one suggests
that testing should not be done—it eliminates extremely
noxious defects which are easy to test for—but compared
to the variability of software packages, the factor of two is
almost irrelevant. What then are the factors that produce
quality software?

Capers Jones?0 suggests that inspections alone can produce
a 60% elimination of defects, and when testing is added,
85% of defects are eliminated. There is no reported study,
but the literature would suggest that inspections coupled
with functional verification would eliminate more than 90%
of defects.2! Remarkably enough, testing seems to eliminate
most (virtually all) of the remaining defects. The literature
typically reports that no further defects are found after the
original test cycle is complete and that none are found in the
field.21 This was also our experience.

There is apparently a synergism between functional verifica-
tion and testing. Functional verification eliminates defects
that are difficult to detect with testing. The defects that are
left after application of inspections and functional verification
are generally those that are easy to test for. The result is that
>99% of all defects are eliminated via the combination of

This factor is based on a defect density of 60 defects per KNCSS for the worst products and
0.016 defects per KNCSS for the best products. The factor difference between these two
extremes is 60/0.016 = 3750 or ~4000.

48

June 1994 Hewlett-Packard Journal

inspections, functional verification, and testing. Table II sum-
marizes the percentage of defect removal with the application
of individual or combinations of different defect detection
strategies.

Table Il
Defect Removal Percentages
Based on Defect Detection Strategies

Detection Strategy % Defect Removal

Testing 50%
Inspections 60%
Inspections + Testing 85%
Inspections + Functional Verification 90%
Inspections + Functional Verification >99%

+ Testing

Our Experience

We applied cleanroom to three projects, although only one
of them actually made it to the marketplace. The project that
made it to market had cleanroom applied all the way
through its life cycle. The other projects were canceled for
nontechnical reasons, but cleanroom was applied as long as
they existed. The completed project, which consisted of a
relatively small amount of code (3.5 KNCSS), was released as
part of a large Microsoft” Windows system. The project team
for this effort consisted of five software engineers.

All the techniques described in this paper except structured
data and statistical testing were applied to the projects. All
the products were Microsoft Windows applications written in
C or C++. Structured data was not addressed because we
never came across a serious need for random arrays or
pointers. Although statistical testing was not applied, it was
our intent eventually to do so, but the total lack of defects
demotivated us from pursuing a complicated, analytical test-
ing mode particularly when our testing resources were in
high demand from the organization to help other portions of
the system prepare for product release.

Design Methodology. We applied the rigorous object-oriented
methodology known as box notation.” This is the methodol-
ogy recommended by the cleanroom originators. We found it
to be satisfyingly rigorous and disciplined.

Box notation is a methodology that progresses from func-
tional specification to detailed design through a series of
steps represented as boxes with varying transparency. The
first box is a black box signifying that all external aspects of
the system or module are known but none of the internal
implementation is known. This is the ultimate object. It is
defined by noting all the stimuli applied to the box by the
user and the observable responses produced by these stimuli.

Inevitably, these responses are a function not only of the
stimulus, but also of the stimulus history. For example, a
mouse click at location 100,200 on the screen will produce a
response that depends upon the behavior of the window
that currently includes the location 100,200. The window at
that location is, in turn, a function of all the previous mouse
clicks and other inputs to the system.

The black box is then converted to a state box in which the
stimulus history producing the responses of the black box is
captured in the form of states that the box passes through.
The response produced by a given stimulus can be deter-
mined not necessarily from the analysis of a potentially infi-
nite stimulus history, but more simply by noting the state the
system is in and the response produced by that stimulus
within that state. States are captured as values within a set
of state data. The state box fully reveals this data. It contains
an internal black box that takes as its input the stimulus and
the current set of state data and produces the desired re-
sponse and a new set of state data. The state data is fully
revealed but the internal black box still hides its own internal
processing.

The state box is then converted to a clear box in which all
processing is visible. However, this processing is represented
as a series of interacting black boxes in which the interac-
tions and the relations are clearly visible but, once again, the
black boxes hide their own internal processing. This clear
box is the final implementation of the object. In this object,
the encapsulated data and the methods to process it are
clearly visible.

Each of these internal black boxes is then treated similarly in
a stepwise refinement process that ends only when all the
internal black boxes can be expressed as single commands
of the destination language.

This process allows many of the pitfalls of object-oriented
design and programming to be avoided by carefully illumi-
nating them at the proper time. For instance, the optimum
data encapsulation level is more easily determined because
the designer is forced to consider it at a level where per-
spective is the clearest. Data encapsulation at too high a
level degrades modularity and defeats “object orientedness,’
but data encapsulation at too low a level produces redun-
dancies and multiple copies of the same data with the asso-
ciated possibility of update error and loss of integrity. These
pitfalls are more easily avoided because the designer is
forced to think about the question at exactly that point in
the design when the view of the system is optimum for such
a consideration.

)

Inspections. We employed a slightly adapted version of the
HP-recommended inspection method taught by Tom Gilb.?
We found this method very satisfactory. Our minimal adapta-
tion was to allow slightly more discussion during the logging
meeting than Gilb recommends. We felt that this was needed
to accommodate functional verification.

Functional Verification. No attempt was made to implement
anything but the first level of functional verification—intel-
lectual control. This was found to be easily implemented, and
when the principles were adequately adhered to, was almost
automatic. Inspectors who knew nothing about functional
verification or intellectual control automatically accomplished
it when given material that conformed to its principles and,
amusingly, they also automatically complained when slight
deviations from these principles occurred.

Structured Specifications. The project team called cleanroom’s
structured specifications process evolutionary delivery be-
cause of its similarity to the evolutionary delivery methodol-
ogy mentioned earlier and because evolutionary delivery is
more like our HP environment. Structured specifications

were developed in a defense-industry environment where
dynamic specifications are frowned upon and where adapt-
ability is not a virtue. However, evolutionary delivery as-
sumes a dynamic environment and encourages adaptability.
Regardless of the differences, both philosophies are similar.

At first, both marketing and management were skeptical.
They were not reassured by the idea that a large amount of
time would elapse before the product would take shape
because of the large up-front design investment and because
some features would not be addressed at all until very late in
the development cycle. They were told not to expect an early
prototype within the first few days that would demonstrate
the major features.

Very quickly, these doubts were dispelled. Marketing was
brought into the effort during the early rigorous design
stages to provide guidance and direction. They participated
in the specification structuring and set priorities and desired
schedules for the releases. They caught on to the idea of
getting the “juiciest parts” first and found that they were get-
ting real code very quickly and could have this real code
reviewed by real users while there was still time to allow
the users’ feedback to influence design decisions. They also
became enthusiastic about participating in the inspections
during the top-level definitions.

Management realized that the evolutionary staged releases
were coming regularly enough and quickly enough that they
could predict very early in the development cycle which
stage had a high possibility of being finished in time to hit
the optimum release window. They could then adjust scope
and priority to ensure that the release date could be reliably
achieved.

Morale. The cleanroom literature claims that cleanroom teams
have a very high morale and satisfaction level. This is attrib-
uted to the fact that they have finally been given the tools
necessary to achieve the kind of quality job that everyone
wants to do. Our own experience was that this occurred
surprisingly quickly. People with remarkably disparate,
scarcely compatible personalities not only worked well
together, they became enthusiastic about the process.

It appears that the following factors were influential in
producing high morale:

Almost daily inspections created an environment in which
each person on the team took turns being in the “hot seat.”
People quickly developed an understanding that reasonable
criticism was both acceptable and beneficial. The resulting
frankness and openness were perceived by all to be remark-
ably refreshing and exhilarating.

Team members were surprised that they were being allowed
to do what they were doing. They were allowed to take the
time necessary to do the kind of job they felt was proper.

Productivity. Productivity was difficult to measure. Only one
project actually made it to the market place, and it is difficult
to divide the instruction count accurately among the engi-
neers that contributed to it. However, the subjective impres-
sion was that it certainly didn’t take any longer. When no
defects are found one suddenly discovers that the job is fin-
ished. At first this is disconcerting and anticlimactic, but it
also emphasizes the savings that can be realized at the end
of the project. This compensates for the extra effort at the
beginning of the project.

June 1994 Hewlett-Packard Journal 49

Conclusion

The cleanroom team mentioned in this paper no longer
exists as a single organization. However, portions of clean-
room are still being practiced in certain organizations within
Hewlett-Packard. These portions especially include structured
specifications and intellectual control.

We believe our efforts can be duplicated in any software
organization. There was nothing unique about our situation.
We achieved remarkable results with less than total dogmatic
dedication to the methodology.

The product that made it to market was designed using
functional decomposition. Even though functional decom-
position is minimally rigorous and disciplined, we found
the results completely satisfactory. The project consisted of
enhancing a 2-KNCSS module to 3.5 KNCSS.

The original module was reverse engineered to generate the
functional decomposition document that became the basis
for the design. The completed module was subjected to the
intellectual control processes and the reviewers were never
told which code was the original and which was modified or
new code. A total of 36 defects were found during the in-
spection process for a total of 10 defects per KNCSS. An
additional five defects were found the first week of testing
(1.4 defects per KNCSS). No defects were encountered in the
subsequent 10 months of full system integration testing and
none have been found since the system was released.

It was interesting to note that the defects found during in-
spections included items such as a design problem which
would have, under rare conditions, mixed incompatible file
versions in the same object, a piece of data that if it had
been accessed would have produced a rare, nonrepeatable
crash, and a number of cases in which resources were not
being released which would, after a long period of time, have
caused the Windows system to halt. Most of these defects
would have been very difficult to find by testing.

Defects found during testing were primarily simple screen
appearance problems which were readily visible and easily
characterized and eliminated. These results conform well to
expected cleanroom results. About 90% of the defects were
eliminated by inspections with functional verification. About
10% more were eliminated via testing. No other defects were
ever encountered in subsequent full-system integration test-
ing or by customers in the field. It can be expected on the
basis of other cleanroom results reported in the literature

50 June 1994 Hewlett-Packard Journal

that at least 99% of all defects in this module were eliminated
in this way and that the final product probably contains no
more than 0.1 defect per KNCSS.

References

1. MJ. Harry, The Nature of Six Sigma Quality, Motorola Government
Electronics Group, 1987.

2. P.A. Tobias, “A Six Sigma Program Implementation,” Proceedings
of the IEEE 1991 Custom Integrated Circuits Conference, p. 29.1.1.
3. H.D. Mills, M. Dyer, and R.C. Linger, “Cleanroom Software Engi-
neering,” IEEE Software, Vol. 4, no. 5, September 1987, pp. 19-25.
4. H.D. Mills and J.H. Poore, “Bringing Software Under Statistical
Quality Control,” Quality Progress, Vol. 21, no. 11, November 1988,
pp. 52-55.

5. T. DeMarco, Controlling Software Projects, Yourdon Press, 1982,
pp. 195-267.

6. R.C. Linger and H.D. Mills, “A Case Study in Software Engineering,”
Proceedings COMPSAC 88, p. 14.

7. H.D. Mills, R.C. Linger, and A.R. Hevner, Principles of Information
Systems Analysis and Design, Academic Press, 1986.

8. P.A. Currit, M. Dyer, and H.D. Mills, “Certifying the Reliability of
Software,” IEEE Transactions on Software Engineering, Vol. SE-12,
no. 1, January 1986, pp 3-11.

9. T. Gilb, The Principles of Software Engineering Management,
Addison-Wesley, 1988, pp. 83-114.

10. J. Martin, Information Engineering Book III, Prentice Hall, 1990,
pp. 169-196.

11. Navigator Systems Series Overview Monograph, Ernst & Young
International, Ltd., 1991, pp. 55-56.

12. R.C. Linger, H.D. Mills, and B.I. Witt, Structured Programming:
Theory and Practice, Addison-Wesley, 1979, pp. 227-229.

13. Ibid, pp. 213-300.

14. H.D. Mills, et al, Principles of Computer Programming, Allyn and
Bacon, Inc., 1987, pp. 236-238.

15. R.C. Linger, H.D. Mills, and B.I. Witt, op cit, pp. 219-221.

16. H.D. Mills and R.C. Linger, “Data Structured Programming: Pro-
gram Design without Arrays and Pointers,” IEEE Transactions on
Software Engineering, Vol. SE-12, no. 2, Feb. 1986, pp. 192-197.

17. E.-W. Dijkstra, “Structured Programming,” Software Engineering
Techniques, NATO Science Committee, 1969, pp. 88-93.

18. P.A. Currit, M. Dyer, and H.D. Mills, op cit, pp. 3-11.

19. T. DeMarco, op cit, p. 216.

20. Unpublished presentation given at the 1988 HP Software
Engineering Productivity Conference.

21. R.C. Linger and H.D. Mills, op cit, pp. 8-16.

Microsoftis a U.S. registered trademark of Microsoft Corporation.
Windows is a U.S. trademark of Microsoft Corporation.

