Fuzzy Family Setup Assignment and

Machine Balancing

Fuzzy logic is applied to the world of printed circuit assembly manufacturing
to aid in balancing machine loads to improve production rates.

by Jan Krucky

In disciplines such as engineering, chemistry, or physics,
precise, logical mathematical models based on empirical data
are used to make predictions about behavior. However,
some aspects of the real world are too imprecise or “fuzzy”
to lend themselves to modeling with exact mathematical
models.

The tool we have for representing the inexact aspects of the
real world is called fuzzy logic. With fuzzy logic, we can
model the imprecise modes of reasoning that play a role in
the human ability to make decisions when the environment
is uncertain and imprecise. This ability depends on our apti-
tude at inferring an approximate answer to a question from a
store of knowledge that is inexact, incomplete, and some-
times not completely reliable. For example, how do you
know when you are “sufficiently close” to but not too far
away from a curb when parallel parking a car?

In recent years fuzzy logic has been used in many applica-
tions ranging from simple household appliances to sophisti-
cated applications such as subway systems. This article de-
scribes an experiment in which fuzzy logic concepts are
applied in a printed circuit assembly manufacturing environ-
ment. Some background material on fuzzy logic is also
provided to help understand the concepts applied here.

The Manufacturing Environment

In printed circuit assembly environments, manufacturers
using surface mount technology are concerned with machine
setup and placement times. In low-product-mix production
environments manufacturers are primarily concerned with
placement time and to a lesser degree setup time. In medium-
to-high-product-mix production environments manufacturers
are mainly concerned with setup time.

One solution to the setup problem is to arrange the printed
circuit assemblies into groups or families so that the assem-
bly machines can use the same setup for different products.
In other words, reduce or eliminate setups between different
assembly runs. The solution to minimizing placement time is
to balance the component placement across the placement
machines.

HP’s Colorado Computer Manufacturing Operation (CCMO)
is a2 medium-to-high-product-mix printed circuit assembly
manufacturing entity. The heuristic, fuzzy-logic-based algo-
rithms described in this paper help determine how to mini-
mize setup time by clustering printed circuit assemblies into
families of products that share the same setup and by

balancing a product’s placement time between multiple
high-speed placement process steps.

The Placement Machines

The heart of our surface mount technology manufacturing
lines in terms of automated placement consists of two Fuji
CP-III high-speed pick-and-place machines arranged in series
and one Fuji IP-II general-purpose pick-and-place machine.

A Fuji CP-III placement machine supports two feeder banks
each having 70 slots available for component feeders to be
mounted on (see Fig. 1). The components are picked from
their feeders and placed on the printed circuit board, creat-
ing a printed circuit assembly. A component feeder might
take one or two slots. The tape-and-reel type feeder, which
is the one we use at CCMO, is characterized by its width for
slot allocation purposes. The standard feeder tape widths are
8 mm, 12 mm, 16 mm, 24 mm, and 32 mm. The 8-mm
feeder tapes consume one slot each while the 12-mm to
32-mm feeder tapes consume two slots. Additional feeder-to-
feeder spacing constraints might increase the number of slots
the feeders actually require. A component’s presentation,
package type, and style determine the tape-and-reel width
and therefore the feeder size.

Split-Bank

A feature of the Fuji CP-1II called split-bank addresses the
problem of high setup costs by allowing one bank to be
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Fig. 1. Simplified representation of a tape-and-reel type placement
machine.
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Fig. 2. The split bank feature of the Fuji CP-III assembly machine.
The first feeder banks of each machine are used for offline setup.

used for component placement while the other bank is be-
ing set up offline. Fig. 2 illustrates this split-bank feature. In
this configuration the first feeder bank on each machine is
used to perform the offline setup, and the second bank is
used for component placement.

Setup Time versus Placement Time

Our printed circuit assembly products vary quite a bit in
their setup-slot requirements. They range from eight slots on
the low end to 260 slots on the high end. For an average
product requiring 45 slots it takes 45 online minutes to set
up the feeders for placement. The average placement time is
2.5 minutes per board. In a low-to-medium-volume printed
circuit assembly shop such as CCMO, the average lot size is
20 products. Therefore, for an average run of 20 products,
47% of the time is spent on setup (leaving the placement
machine idle) and 53% of the time is spent placing the com-
ponents. This constitutes an unacceptable machine use and
hence a low output from the manufacturing shop. It’s not
just the online setup time, but also the frequency of having
to do these setups that affects productivity and quality. A
fixed setup for an entire run would seem to be a solution to
this problem. However, in a medium-to-high-product-mix,
low-volume environment such as ours, fixed setups cannot
be used. HP CCMO currently manufactures 120 products
with 1300 unique components placeable by the Fuji CP-III
equipment.

Another quick solution to this online setup time problem
would be to place a certain percentage of CP-III placeable
components at a different process step. For example, we
could use the Fuji IP-II for this purpose. This is not a feasi-
ble solution because the Fuji IP-II has a placement speed
that is four times slower than the CP-III. We use the Fuji IP-II
primarily for placing large components.

Alternate Setup Methodology

The setup time requirements mentioned above suggest that
we needed an alternative setup methodology to minimize
online setup time. The approaches we had available in-
cluded expansion on the split-bank option described above,
clustering the printed circuit assembly products into families
with identical setup while still allowing the split-bank setup
feature to be fully used, and balancing the two series CP-III
placement loads as much as possible. Balancing implies
that the components would be distributed between the
two placement machines so that both machines are kept
reasonably busy most of the time.

Since most of our printed circuit assembly products are

double-sided, meaning that components are placed on the
top and bottom sides of the printed circuit board, indepen-
dent balancing for each side of the printed circuit assembly
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was considered. However, family clustering as viewed by the
layout process dictated that a double-sided printed circuit
assembly should be treated as a sum of the requirements for
both sides of the board. Thus, no machine setup change
would be required when switching from side A to side B of
the same product.

Why Families

While clustering products into families is a viable and an
attractive solution, other possible solutions such as partially
fixed setups augmented by families or scheduling optimiza-
tion to minimize the setup changes in the build sequence,
are also worth consideration.

One can imagine that none of the solutions mentioned
above will provide the optimal answer to every online set-
up-time issue, but their reasonable combination might. The
following reasons guided us into choosing family clustering
as an initial step towards minimizing online setup costs.
Intuitive (as opposed to algorithmic) family clustering on a
small scale has been in place at our manufacturing facility
for some time.

It appears that families give reasonable flexibility in terms of
the build schedule affecting the entire downstream process.
Families can take advantage of the CP-III's split-bank feature.
By altering the time window of a particular family’s assembly
duration (i.e., by shift, day, week, month, and so on), one
can directly control a family’s performance and effectiveness.

We chose a heuristic approach to minimizing setup time
because an exhaustive search is O(n!), where n is the num-
ber of products. Our facility currently manufactures 120
products and expects to add 40 new ones in the near future,
which would make an exhaustive search unrealistic.

Primary Family

As explained above, we wanted to use the family clustering
approach to take advantage of the CP-III split-bank setup
feature. One can quickly suggest a toggle scenario in which
each feeder bank would alternate between the states of be-
ing set up offline and being used for placement. However, it
would be difficult to synchronize the labor-intensive activi-
ties of perpetual offline setups in a practical implementation.
Also, this option would require a sufficient volume in the
toggled families to allow the completion of offline setups at
the idle placement banks. Given these reasons, a strict toggle
approach would probably not have worked to improve the
overall setup time in our environment. Instead of toggling,
we selected an approach in which certain feeder banks are
permanently dedicated to a family, and the remaining banks
toggle between offline setup and placement. This approach
led to the primary family concept.

A primary family is one that will not be toggled and is there-
fore always present on the machine. Since the primary family
is permanently set up it logically follows that each nonpri-
mary family includes primary family components. The more
primary family slots used by a bank containing a nonprimary
family the better. The summation of two series CP-III's banks
provides four setup banks available on a line. We elected to
dedicate the first bank of each CP-III to the primary family,
leaving us with two banks for nonprimary families (see

Fig. 3).
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Fig. 3. The setup for primary and nonprimary families.

Fig. 4 shows how the primary family concept can be used to
schedule a group of products to be built. Let’s assume that
we have primary family A and two nonprimary families AB
and AC. (Products in families AB and AC contain compo-
nents that are also part of products in family A.) First, any of
family AB’s products can be built. Although primary family
A’s products could be built using the same setup, it is highly
undesirable since it would waste the presence of family AB’s
setup. So, after all the demand from family AB’s products
have been satisfied, we can switch to products in primary
family A while we set up offline for family AC. On the prac-
tical side, it is unnecessary to set up the entire nonprimary
family unless all the family’s products are actually going to
be built.

This example shows that the primary family concept is use-
ful only if it is incorporated into the build schedule and the
primary family must have sufficient product volume to allow
the behavior depicted in Fig. 4.

Balancing

Family clustering results in a shared setup by a group of
printed circuit assembly products which among other things
might share the same components. This creates the problem
of ensuring that the assembly of all products is adequately
balanced on the two series CP-III placement machines. If the
load is not balanced, an undesirable starvation in the process
pipeline might occur. Balancing is accomplished by properly
assigning the family’s components between the two series
CP-III machines. An intuitive guess suggests that the success
of family clustering might make the balancing efforts propor-
tionally harder. Although the online setup time reduction is
the primary goal, it cannot justify a grossly imbalanced
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First Bank Second Bank First Bank Second Bank  Family
AB
A
AC
A

Used for Component Placement

Used for Offline Setup

Fig. 4. An illustration of how the primary family concept can be
used to schedule a group of products for assembly.

workload between two serial CP-1IIs. Therefore, machine
balancing is the key that truly enables the family approach.

Other Methods

In addition to applying fuzzy set theory to solve our family
assignment and balancing problem we also used two other
approaches: the greedy board heuristic and an extension to
the greedy board heuristic.

Greedy Board Approach. A research group at HP’s strategic
planning and modeling group in conjunction with Stanford
University suggested the greedy board heuristic approach to
minimize high setup cost for semiautomated manufacturing
operations. HP’s Networked Computer Manufacturing Opera-
tion (NCMO) implemented the greedy board approach at
their site.!

In the greedy-board heuristic a family is defined by the repeti-
tive addition of products, one at a time, until slot availability
is exhausted. The selection criterion is a function of the prod-
uct’s expected volume and its additional slot requirements.
The greedy ratio is:

Gi = Si/Vi

where s; is the number of additional slots a product p; adds to
the family, and v; is the product’s volume. Since the objective
is to minimize the number of slots added while maximizing
the family’s volume, the product with the smallest greedy
ratio wins and is added to the family. New slots are obtained
and the selection process, via the greedy ratio, is repeated
until either there are no more slots available or no more
products are to be added. See the greedy board example on
page 54.

The greedy board implementation at NCMO performs bal-
ancing by assigning components to the machines by a sim-
ple alternation until constraints are met. The components are
initially sorted by their volume use. This approach balances
the family overall, but it carries no guarantees for the prod-
ucts that draw from the family.

Extension to Greedy Board Heuristic. The greedy board heuristic
tends to prefer smaller, high-volume printed circuit assem-
blies in its selection procedure. At CCMO we extended the
original greedy ratio to:

Si

Gi=vxg

where ¢; is an average number of slots product p; shares
with products not yet selected. The CCMO extension slightly
curbs the volume greediness at the expense of including a
simple measure of commonality. However, the results
showed the CCMO extension to the greedy board heuristic
performed slightly better than the original algorithm. The
results from the two greedy-board approaches and the fuzzy
approach are given later in this paper.

Despite the relatively good results achieved by our extension
to the greedy board heuristic approach, we were still look-
ing for an alternative approach. This led us to explore using
fuzzy set theory to find a solution to our placement machine
setup problem.
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The Greedy Board Family Assignment Heuristic

As mentioned in the main article, a family in our manufacturing environment is a
group of products (boards) that can be built with a single setup on the component
placement machines. The greedy board heuristic is one way of assigning products
to families for printed circuit assembly. The only data required for the greedy board
algorithm is the list of components and the expected volume for each board. Each
family is created by the repetitive addition of products, one at a time, until slot
availability is exhausted.

In the following example assume there are eight component slots available per
family and that the following boards must be assigned to families.

Board Expected Volume (v;) Components
Alpha 1400 A F KM
Tango 132 C,K

Delta 2668 H D,R FK
Echo 1100 R,J,S, K
Beta 668 GFETL
Lambda 1332 H,D,FK
Gamma 900 A J EK

The board with the lowest greedy ratio is the first one added to the current family
being created.

Board New Parts Expected Volume Greedy Ratio
(si) (vi) (Gi=silvi)
Alpha 4 1400 0.0029
Tango 2 132 0.0152
Delta* 5 2668 0.0019
Echo 4 1100 0.0036
Beta 4 668 0.0060
Lambda 4 1332 0.0030
Gamma 4 900 0.0040

Delta is the board with the lowest greedy ratio so it becomes the first member of
the family. It has the highest product volume added per component slot used.
Delta adds five components, leaving three slots to fill this family.

With the components H, D, R, F, and K already in the family, for the next board the
ratios are computed as follows:

The following sections provide a brief overview of some of
the basic concepts of fuzzy set theory applicable to the top-
ics discussed in this paper. For more about fuzzy set theory
see reference 2.

Fuzzy Sets

Unlike the classical yes and no, or crisp (nonfuzzy) sets,
fuzzy sets allow more varying or partial degrees of member-
ship for their individual elements (see Fig. 5). Conceptually
only a few natural phenomena could be assigned a crisp
membership value of either yes or no without any doubt.
On the other hand, most of the real-world’s objects, events,
linguistic expressions, or any abstract qualities we experience
in our everyday life tend to be more suited for a fuzzier set
membership. Fuzzy sets allow their elements to belong to
multiple sets regardless of the relationship among the sets.

In spite of their tendency to seem imprecise, fuzzy sets are
unambiguously defined along with their associated opera-
tions and properties. The fuzzy sets used in the fuzzy family
assignment and machine balancing heuristic exist in uni-
verses of discourse that are finite and countable.
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Board New Parts Expected Volume Greedy Ratio
(si) () (Gi=silv))
Alpha 2 1400 0.0014
Tango 1 132 0.0076
Echo 2 1100 0.0018
Beta 3 668 0.0045
Lambda 0 1332 0.0000
Gamma 3 900 0.0033

The Lambda board is the one with the lowest greedy ratio because its components
are a complete subset of the components already in the family. Since adding
Lambda to the family does not require the addition of any components to the
family, the greedy ratios given above still apply for the selection of the next board.
The Alpha board has the next lowest ratio and it adds two new components (A and
M) to the family. This brings the total number of components in the family to
seven—one slot left.

After adding the Alpha board to the family, the new part-to-volume ratios for the
remaining unassigned boards become:

Board New Components Expected Volume Greedy Ratio
(si) (vi) (Gi=silv)
Tango 1 132 0.0076
Echo 2 1100 0.0018
Beta 3 668 0.0045
Gamma 3 900 0.0033

Now Echo has the lowest ratio. However, the Echo board has two components,
and since we already have seven components, adding the Echo components to
the family would exceed our limit of eight components per family. Therefore, Tango
is the only board that will fit even though it has the lowest theoretical contribution.
Adding the Tango board fills up the family allotment. Finally, the components in the
family include H, C, D, A, R, F, K, and M.

The next family is defined by following the above procedure for the remaining
boards: Echo, Beta, and Gamma.

Definition. To begin our discussion of fuzzy sets we define
the universe of discourse X = {x1,x2...xj} and let pua(x;) de-
note the degree of membership for fuzzy set A on universe
X for element x;. The degree of membership function for
fuzzy set A is ua(x) € [0,1], where 0 represents the weakest
membership in a set and 1 represents the strongest member-
ship in a set.

palxt) MA(&)

Fuzzy set A = X7 X

where the horizontal bar is not a quotient but a delimiter.

Examples. The following examples show different types of
fuzzy sets.
Number as a fuzzy set:
Universe U =10, 1, 2, 3, 4, 5}
Fuzzy set A =0.2/0 + 0.7/1 + 0.8/2 + 0.2/3 + 0.1/4 + 0.0/5
Fuzzy set A might be described linguistically as “just about
2” because 0.8/2 has the highest degree of membership in
fuzzy set A.
Defining people in terms of their preference for certain
alcoholic beverages:
Universe Y = {beer, wine, spirits} = {y1, ... y3}
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Fig. 5. Crispy and fuzzy representation of the notion of average
driving speed. (a) In the fuzzy representation the membership class
average driving speed varies from zero for <45 mi/h or >65 mi/h
to 100% at 55 mi/h. (b) In a crisp representation membership in the
average driving speed set is 100% in the range from 50 to 60 mi/h
only.

uyi)
Vi
might describe somebody who doesn’t drink much but
prefers wine and dislikes spirits
© Fuzzy set C = 0.8/beer + 0.2/wine + 0.1/spirits might
describe a beer lover
© Fuzzy set D = 0.0/beer + 0.0/wine + 0.0/spirits might de-
scribe a person who doesn’t indulge in alcoholic beverages
© Fuzzy set E = 0.8/beer + 0.7/wine + 0.8/spirits might
describe a heavy drinker.
* Defining a person in terms of their cultural heritage:

O Fuzzy set B =

= 0.1/beer + 0.3/wine + 0.0/spirits

© Universe Z = {Zirconia, Opalinia, Topazia} and ug(z;) repre-

sents a degree of cultural heritage from the three provinces
in some imaginary gem-producing country.
© Fuzzy set F = 0.3/Zirconian + 0.5/Opalinian + 0.1/Topazian

might describe someone who was born in Western Opalina,

attended a university in Zirconia, and married a Topazian
living in Diamond City, Zirconia.
* Lunch hour:
© Universe W = Day (continuous time of 24 hours)
> The fuzzy set L (1100 to 1300) might represent the term
“lunch hour” as shown in Fig. 6.
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Fig. 6. A fuzzy set representation of the term lunch hour.

Operations. Operations such as union, intersection, and com-
plement are defined in terms of their membership functions.
For fuzzy sets A and B on Universe X we have the following
calculations:

Union: iay(®) = ua(x) vV ueX)

or ¥xi: paun(xi) = Max{pa(xi), us(xi))

(see Fig. 7a).
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Fig. 7. Fuzzy set operations. (a) Union. (b) Intersection.
(c) Complement.
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Intersection: uang(X) = Ua(X) A up(x)
or Vx;: MAnB(Xi) = Miﬂ(MA(Xi)v “B(Xi))
(see Fig. 7b).

Complement: ua(x) = 1 — ua(x)

or Vx;: MA(Xi) =1- MA(Xi)

(see Fig. 70).

All of the operations defined above hold for fuzzy or classical
set theory. However, the two formulas known as excluded
middle laws do not hold for fuzzy sets, that is:

AUA=X
ANA=0

for classical set theory, but

AUA # X
ANA =0

for fuzzy set theory.

These laws, which take advantage of the either-or only
membership for a classical set’s elements, cannot hold for
fuzzy sets because of their varying degree of set member-
ship. Fig. 8 provides a graphical comparison between these
two formulas for classical and fuzzy set operations.

Fuzzification and Defuzzification

Fuzzification and defuzzification are operations that translate
back and forth between fuzzy and crisp representations of
information, measures, or events. Since most of our environ-
ment is more naturally represented in a fuzzy form rather
than a crisp form, the need for a fuzzification step could be
perceived as being a rare event. On the other hand, a defuz-
zification procedure is needed more often, as in the case in
which a fuzzy set has to be expressed as a single crisp num-
ber. There are several defuzzification methods. One of the
most commonly used and computationally trivial is the Max
method. The Max method simply chooses an element with
the largest membership value to be the single crisp represen-
tation of the fuzzy set. For example, for the fuzzy set C
given above the Max defuzzification method would yield
0.8/beer (i.e., fuzzy set C describes a beer lover).

Fuzzy Relations

The concept of relations between fuzzy sets is fairly analo-
gous to the idea of mapping in classical set theory in which
the elements or subsets of one universe of discourse are
mapped to elements or sets in another universe of discourse.
For example, if A is a fuzzy set on universe X and B is a
fuzzy set on universe Y then the fuzzy relation R=A ® B
maps universe X to universe Y (i.e., R is a relation on uni-
verse X x Y). The symbol ® denotes a composition opera-
tion which computes the strength of the relation between
the two sets. Please note that in general A @ B # B @ A
and furthermore A # R ® B.

Special Properties. The following are some of the special
properties of fuzzy relations.

A fuzzy set is also a fuzzy relation. For example, if A is a
fuzzy set on universe X and there exists I = 1/y as an iden-
tity fuzzy set on Universe Y = {y}, then fuzzy relation R = A
® I=A.

The same operations and properties valid for fuzzy sets also
hold for fuzzy relations.
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Fig. 8. A comparison of the excluded middle laws for (a) classical
sets and (b) fuzzy sets.

Fuzzy logic implication of the form P — Q can be also rep-
resented by a fuzzy relation since T(P = Q) =T(P V Q)
where T is the truth evaluation function. For example, if A is
a fuzzy set on universe X and B is a fuzzy set on universe Y
then a proposition P — Q describing IF ATHEN B, is equiva-
lent to the fuzzy relation R = (A ® B) U (A ® Y). Fig. 9
shows a graphical representation of this relationship.

Fuzzy Composition

Fuzzy composition operations compute the strength of the
relation between two fuzzy relations. To show the most pop-
ular composition operators, consider that we have fuzzy sets
X, Y, and Z and that R is a fuzzy relation on universe X x Y
and that S is a fuzzy relation on universe Y x Z. To find the
fuzzy relation T =R ® S on universe X x Z we use one of
the following composition operations:

Max-Min: uT(ti,j) =

MaX[Min(uR(rk’i),us(sjyk))Vk < B]Vi,j i=sajsy D)
Max-Product: pur(t;;) =
Mm{Pmd@m@M)uigk»Vk;sfﬂVm:is<L15y @)
sum-Product: rti) =

Z[Prod(m{(rkyi),us(sjyk))Vk < ﬁ]Vi,j isajsy 3

Y B{ ‘AUB AUB ‘AUB ~— AQBUARY

Fig. 9. A graphical depiction of the fuzzy logic implication R =
AR®BUAR®Y).



where:

a, B, v are the number of elements (cardinality) in the
fuzzy sets X, Y, and Z

are subscripts for matrix representations for
the fuzzy relations.

ij, k

The Max-Min composition operator selects the maximum
membership value from all the minimal values of every cor-
responding membership pair. For example, the Max-Min
value from the membership pairs [(0.4,0.6), (0.2,0.5)] is 0.4.
The Max-Prod composition operator replaces the Min func-
tion in the Max-Min operator with the Prod function, which
performs algebraic multiplication for every membership pair.
The Max-Prod value for our example above is 0.24. Finally,
the Sum-Prod operator is derived from the Max-Prod opera-
tor by replacing the Max function with the Sum function,
which adds together the results of the Prod operations on
each membership pair. Applying the Sum-Prod operator to
the example above gives the value 0.34. The are many other
composition operators available, some of which are designed
for specific applications.

Deriving Fuzzy Relations. The most difficult part about devel-
oping an application using fuzzy relations is obtaining the
relations themselves. Some of the methods used to derive
fuzzy relations include:

Intuitive knowledge, human experience, and opinions of
experts

Calculation methods for membership functions

Fuzzy compositions

Converted frequencies and probabilities.

Example. The following example illustrates how to derive a
fuzzy relationship. Consider the fuzzy sets and universes
described earlier:

Universe Y = {beer, wine, spirits}
Universe Z = {Zirconian, Opalinian, Topazian}

We will assume for this example that the relation R on uni-
verse Y x Z is based on the opinions of experts who know a
lot about the drinking habits of the inhabitants of the
provinces contained in universe Z.

Z

r—— —
0.6 03 0.1
0408 03|ty
0.2 0.1 0.7

R =

Although the relation R is derived from intuitive knowledge
and experience, we could have used one of the other meth-
ods to derive it based on some partial information. Remem-
ber that a fuzzy relation captures the pairwise strength of the
relation between elements of both universes, which in this
case consists of beer, wine, and spirits in rows and Zirconian,
Opalinian, and Topazian in columns. For example, there is a
strong (0.8) possibility of an Opalinian being a wine lover
according to relation R.

Now let’s take a beer lover described by the fuzzy set
C = 0.8/beer + 0.2/wine + 0.1/spirits
and perform Max-Min composition on the relation

H=CQ®R

Applying Max-Min yields:

up(Zirconian) =
Max[(Min(0.8,0.6),Min(0.2,0.4),Min(0.1,0.2)] = 0.6

up(Opalinian) =
Max[(Min(0.8,0.3),Min(0.2,0.8),Min(0.1,0.1)] = 0.3

up(Topazian) =
Max[(Min(0.8,0.1),Min(0.2,0.3),Min(0.1,0.7)] = 0.2

Therefore, the resulting fuzzy set H = 0.6/Zirconian +
0.3/Opalinian + 0.2/Topazian might suggest that a beer lover
is of predominantly Zirconian heritage with slight linkages to
Opalinian influences and very slight Topazian influences
based on the experts’ opinion represented in relation R.

The goal of our fuzzy family assignment heuristic is to find
products with similar components and group them into fami-
lies. In our family assignment heuristic there are two nested
iteration loops: an outer loop for each family being created
and an inner loop for selecting the “best-suited” product to
assign to the family. The inner loop is terminated when
there are no more products to be considered. The outer loop
is terminated either when there are no more families or
when no more products are being assigned to a particular
family. The following is a pseudo-code representation of our
algorithm.

1.  Family = Primary /* Initialization family variable */

2. REPEAT /* Start outer loop */

3. Qualify = PCA /* Products to be assigned to a family.*/

4. WHILE Qualify <> Empty /* Start inner loop. Loop */

/* until there are no more products */

5. Find Product from Qualify with the highest selectivity

measure (s;)

6. IF (a qualified Product is selected AND the slots
required by the selected Product < slot availability
of Family

7. THEN

8. Assign Product to Family and update slot
availability of Family

9. Remove Product from PCA

10. END IF

11. Remove Product from Qualify

12, END WHILE
13.  Family = get_a_new_family(Family)
14. UNTIL (PCA does not change OR no more Families)

Product product being considered for inclusion
in a family

returns next available family’s name and
slot availability

counter for the number of placement
machine slots available to a family (This
number is decreased by the number of
slots required by each product assigned

to the family.)

get_ a_new_family

slot availability

PCA list of products to be considered for
family assignment (This list is updated
each time a product is assigned to a
family.)

Qualify same as PCA except that this variable is
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used to determine when to terminate the
inner loop and is updated at each
iteration.

At the end of this algorithm there still might be products that
cannot be assigned to any family because of slot availability,
or there might be families with no products assigned.

We used the concepts of fuzzy sets, fuzzy relations, and
fuzzy composition to determine which products to select and
assign to each family. The variables used in our algorithm
include a fuzzy set p; which represents the printed circuit
assembly products, a selectivity measure s;, which is a value
that indicates how each product p; might fit into a particular
family, and finally, the fuzzy relation r, which is used to
capture the relation between selectivity s; and product p;.

Since the volume, commonality (common parts), and addi-
tional slots are the three independent qualifiers that describe a
product, they were used to define the product universe P =
{commonality, slots, volume}. Thus, a product

pi = ml;/commonality + m2;/volume + m3;/slots “%

is a fuzzy set on universe P where m1;, m2;, and m3; are the
membership values on the interval <0,1> for product p;.

We implemented the following computational methods to
obtain the membership values for universe P.

General commonality. General commonality between product
p1 and py is defined as:

comm(py,p2) = Ncs(P1,p2)/tns(p1) (©)
where ncs is the number of slots common to p; and p2, and
tns is the total number of slots required by pj. It could be
deduced that in general:

comm(py,pz) # comm(pz,py) unless ts(py) = ts(p2).
Commonality during primary family selection:

j=NAj=i

comm(pj,pi)
j=1

ml; = for product p;. ©)

N-1
N is the number of products not yet assigned to a family.

Commonality during nonprimary family selection:

j=NAj=i
z Comm(pi, pj)
j=1
ml; = N for product p;. @
N is the same as above.
Volume:
demand(pi)
m2 = oy for product p; ®
I}/I:ai((demand(pi»

where demand(p;) is the expected volume demand for
product p; and N is the same as above.
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Slots:

slots(pi)

m3; =1 - slots_available

for product pj ©)
where slots(pj) is the number of additional slots required for
product pj if it is selected, and slots_available; is the number
of slots available for a particular family during iteration t of
the assignment algorithm.

Selectivity and Fuzzy Relation

Since the selectivity measure s is defined on the universe S =
{selectivity}, the selectivity for product p; is defined as a
fuzzy set on universe S:

si = mj/selectivity.

10)

Fuzzy relation r on universe R = P x S is used to capture the
relation between product selectivity and the product itself.
When we translate the general notion of a fuzzy relation into
the reality of our problem, we end up with a 3 x 1 matrix
representation of the relation. The column symbolizes the
cardinality of universe S and the three rows relate to the
product universe P (i.e., commonality, volume, and slots).
Since different selection criteria might be desired at different
stages of the selection process, we found a need for at least
two distinct relations. Thus, based on our experience we
selected the following two categories that might require
separate fuzzy relations r.

First product assigned to a primary or nonprimary family
Nonfirst product assigned to a primary or nonprimary family.

The hardest part about using fuzzy relations is obtaining their
membership values. We wanted the membership values de-
rived for the relation r to express the importance assigned to

each of the three elements in universe P (i.e., commonality,
volume, and slots) during the process of selecting products

to add to a particular family. For example the relation:

0.7 | (commonality)
ri = | 0.4 | (volume)
0.2 | (slots)

says that for product p; during an iteration of the assignment
algorithm, commonality is to be given greater emphasis in
family assignment than volume or slots membership values.

One can use one of many fuzzy composition operators to
construct the relation, or one can intuitively guess the fuzzy
relation r based on some empirical experience or expertise.
In our prototypical implementation, we selected the second
approach.

Initially, we experimented with the empirically derived
graph shown in Fig. 10 to come up with the membership
values for the two categories of fuzzy relations mentioned
above. Note in Fig. 10 that the fuzzy relationship values for
commonality, volume, and slots are dependent on the slots
membership value. For example, a slots membership value
of 0.5 would provide the relation matrix:

0.8
n=]02
0.0
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Fig. 10. Fuzzy relation membership values for our experimental
functional approach to family assignment.

This approach turned out to be too complex and cumber-
some because of our lack of experience with creating mem-
bership relations. Consequently, at the end we settled for a
constant determination of a relation’s individual values to get
us started. This approach resulted in the following two fuzzy
relations in our prototypical implementation:

First product assigned to a primary or nonprimary family

[0.550 ]
0.150
0.300

ri = for product p; (1 < i < N)

Nonfirst product assigned to a primary or nonprimary family

[0.550]
0.200
0.250

ri = for product p; (1 < i < N)

where N is the number of products not yet assigned.

It is important to notice that in general no restrictions are
imposed on fuzzy membership values, but since we used the
Sum-Product fuzzy composition operator then the summation
of the elements in each relationship matrix must be <1.

Example

The fuzzy composition for our family assignment problem is
si =r1; & pj. Although we investigated a number of fuzzy
composition operators, we had the most success with the
Sum-Product composition operator.

The following example illustrates the actions performed by
the assignment algorithm to select a product to assign to a
particular family.

Assume there are three products p1, p2, and p3 and that we
are selecting the first product to be assigned to a primary or
nonprimary family.

ncs (number of common slots) for pairs of p;, pj fori = 3, j

< 3is:

20 10 12

10 30 21

12 21 40
slots_available = 45

demand (pjp) = 85, additional slots(py) = 20

From equation 4:
p1 = mlj/commonality + m2;/volume + m3;/slot
where:

by equation 5: comm(py, p2) = 10/20 = 0.5 and
comm(py, p3) = 12/20 = 0.6.

From equations 7, 8, and 9:
= 06405 412-055

m2; = 85/Max(85, 100, 60) = 0.85
m3; = 1 - 20/45 = 0.56.

m11

Finally,
p1 = 0.55/commonality + 0.85/volume + 0.56/slot

demand(p2) = 100, additional slots(p2) = 30, and
p2 = 0.51/commonality + 1.00/volume + 0.33/slot
demand(p3z) = 60, additional slots(pz) = 40, and

p3 = 0.41/commonality + 0.60/volume + 0.11/slot.

0.550
Since r123 = | 0-150 | using equation 3, the Sum-Product
0.300

operator, the fuzzy composition s; = r; @ p; for this example
is:

s1 =11 ® p; =0.55 % 0.55 + 0.150 % 0.85 + 0.300 x 0.56
=0.598

s2 =12 ® p2 =0.529
s3 =13 @ p3 = 0.348.

Finally, since Max(s1, S2, s3) = s1, product p; has the highest
selectivity measure and is therefore assigned to the family
being formed during this iteration.

After the fuzzy family assignment algorithm assigns the
products to their corresponding families, the fuzzy machine
balancer tries to assign each family’s components to the
placement machines. The primary objective is to have each
side of the assembled printed circuit assembly use the two
series CP-IIIs as equally as possible.

Constraints

Aside from the inherent constraints introduced by families,
manufacturing reality brings a few special cases of already
predetermined machine assignments and constraints.

Physical Process Constraints. Since the objective is to have as
much setup slot room as possible, certain physical process
related limitations arise. For example, constraints on the very
last slot available on the bank do not allow a two-slot-wide
feeder to be mounted on the last slot. If we have one slot
still available on each machine and we have to place a two-
slot-wide feeder, we need to move a one-slot-wide feeder
from one machine to make room for the two-slot-wide
feeder. Finally, a component whose package is higher than
3.5 mm must be placed by the second machine since the
component height might interfere with the placing nozzle on
a densely populated printed circuit assembly.
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Primary Family Products. If the printed circuit assembly mem-
bers in the primary family could be balanced without consid-
eration for the remaining printed circuit assemblies that use
a portion of the primary family, balancing could probably be
achieved at the expense of the remaining products’ imbal-
ance. Thus, it is crucial that balancing for primary family
products take into consideration the remaining products.

Nonprimary Family Products. In the case of nonprimary family
products, the problem is just the opposite of the problem
encountered for primary family products. For nonprimary
family products balancing has to incorporate the component
assignments already committed by the primary family
balancing procedure.

Placement Time Estimation. The true placement time for a
printed circuit assembly is a function of the placement se-
quence, which includes the placement table movement, the
placing head rotation speed, and the feeder bank movement.
The only information we have available is the placing head
rotation speed and even that is an approximation. The maxi-
mum allowable speed for the placing head rotation is deter-
mined from a component’s polarity, presentation, package
type, size, and pickup nozzle size. Furthermore, the placing
head has 12 two-nozzle stations that are all influenced by
the head’s speed selection. We approximated the placement
speed by obtaining the speed of the head rotation.

Products with Inherent Imbalance. In certain cases only the
duplication of a component’s availability among the CP-III
placement machines would lead to good balance. For exam-
ple, it is possible that a printed circuit assembly’s side re-
quires a placement-intensive component that greatly exceeds
the total placement of the remaining components. Only an
availability of that component in both of the CP-III setups
would provide a shot at a reasonable balance. In our initial
implementation we didn’t use this approach.

Algorithm Outline

Just as in our family assignment approach we used the con-
cepts of fuzzy sets, relationships, and fuzzy composition to
balance the series CP-III loads for each printed circuit assem-
bly side being assembled. The following is a high-level pro-
cedural outline of our balancing algorithm.

Define component fuzzy set ¢ for1 < i < N
Sort all ¢; in decreasing order
Initialize fuzzy relation r
FOR1 <i <N
IF ¢ has no predetermined matching assignment m,
THEN
mi=r Q& ¢
m; Defuzzification = m;, for ¢;
END IF
Assign component ¢; to machine m,
Update the relation r; r = rel update(c;j, my,)
END FOR
Ensure that all machine constraints are satisfied.

== N0 00~ NN R W

=

¢; is the ith component represented by the fuzzy set ¢
N is the number of components to be assigned
m; is the machine fuzzy set obtained for component
G
m, is an actual machine a to which the component ¢;
has been assigned
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r  describes the relation between ¢; and myj
® is the fuzzy operator.

N
Nonfuzzy sorting of fuzzy sets is based on Z\X/iyj where Wi
i=1
is a value described for all fuzzy components ¢; (described
below), i is the ith component, and j is the jth product.

Fuzzy Component ¢

A fuzzy set ¢; representing a physical component C; is defined
on universe P = {pl,pz,...pq} where py, p2,...Pq represent
products. Thus, fuzzy set

¢ = (Wi,1/p1, wi2/p2, .. Wi,j/pq) an
where:
Wij = Wi,i/norm(Ci) (12)

Wi = w_place(Cy) x qty_per(Cy,pj) X no_images(pj)

x logio(demand(py)) (13)

w_place is a placement time weight factor
for physical component C;

qty_per is the number of times a component
C; is placed on product p;

no_images is the number of times product p;
appears on a single manufacturing
fixture (panel)

demand is the expected volume demand for

product p;

(14

Q is the cardinality of universe P.

Q
n()rm(Ci) = %/La{((wi,j)

Machine Fuzzy Set m

The machine fuzzy set m is defined on the universe M =
{CP3.1,CP3.2}. Consequently, the fuzzy set m; is defined as a
fuzzy set on universe M as:

mj = wi1/CP3.1 + w; ,/CP3.2 15)

and it is obtained by r; & ¢j, where & is the fuzzy
composition operator of choice.

Fuzzy Relation r

Fuzzy relation r on universe R = P x M is used to capture the
relation between the physical component C represented by
fuzzy set ¢ and machine fuzzy set m. We developed the fol-
lowing general equation to obtain membership values for
the relation r.

rgn = 1 — assigned_currenty n/assigned_expectedy ,, (16)

where:
0<k<Q since Q is the cardinality of
universe P
l<n<?2 since universe M has two

elements CP3.1 and CP3.2

is the current assignment for the
kth product and the nth physical
machine

is the expected assignment for
the kth product and the nth
physical machine.

assigned_currenty

assigned_expectedy



If assigned_currenty , > assigned_expectedy , then rg n = 0
(ri,n should be in the <0,1> interval).

We considered two possible ways to obtain values for
assigned_currenty , and assigned_expected . In the first
approach, we only considered the component placement
time without any additional consideration for slot space li-
mitations. In the second approach, we tried to incorporate
some of the known slot constraints. The following equations
show the two approaches for obtaining the values for
assigned_currenty , and assigned_expectedy n:

Placement time only.
assigned_expectedy , =
j=NA cj EA

Z (Wj,k) + aCkn | X PPkn
=1

a7

z=NA C]- €Machp

assigned_currenty , = Z (Wj,k) + acg, (18)
j=1
where
acy n is the placement time sum for components

committed to the nth machine for the kth
product

PPk,n is the percentile portion of the kth product
preferred to be consumed at the nth
physical machine

Machy, is a crisp set of all physical components C
assigned to the nth physical machine

n=2

A= U Mach, (19)

n=1

Wik see the definition of the fuzzy component ¢
given above

N is the number of components to be assigned.

Placement time with slot constraints considered.
assigned_expectedy , =
j=NA Ci$A
z (\X/i,k X s]) X availy + acipn | X ppin
j=1
assigned_currenty , =
j=NAC;EMachy,

z (Wj,k X sj) X takeny + acy
j=1

where:

aCk n is the placement time sum for components
committed to the nth machine for the kth
product

PPk,n is the percentile portion of the kth product
preferred to be consumed at the nth
physical machine

Mach, is a crisp set of all physical components C
assigned to the nth physical machine

Wik see the definition of the fuzzy component ¢
given above

S is the number of slots component C;

consumes

avail, is the number of slots available for the nth
machine
takeny is the number of slots already taken at
, the nth machine
n=
A= U Mach,, is a crisp set containing components
n=1 already assigned to some machine.

Note that the acy j identifier used in both approaches in-
cludes the predetermined components already assigned to
a machine. Thus, the fuzzy machine balancer does not ac-
tively consider predetermined components for balancing, it
simply incorporates their passive balancing impact into the
balancing process.

The second approach is very complex and elaborate and tries
to control a lot of independent measures simultaneously.
Thus we selected the first approach for our prototype be-
cause we achieved much better overall balance with this ap-
proach even though we have to ensure that slot constraints
are satisfied in an independent postbalancing step.

The fuzzy relation r has to be updated every time a compo-
nent C is assigned to the nth physical machine. This proce-
dure ensures that the current component assignment is going
to be reflected by the fuzzy relation r. This update is done
fairly quickly by recalculating the assigned_currenty ,, value
for the corresponding machine n and product px (0 < k <
Q). It is obvious that the update of assigned_currenty
changes the appropriate ry , and hence the fuzzy relation r.

Fuzzy Composition

Although the Max-Min and Sum-Prod composition operators
were investigated, the Max-Prod fuzzy composition operator
performed best for our balancing algorithm, and we used
the Max defuzzification approach to select a component to
assign to a particular machine.

The following example illustrates our machine balancing
algorithm. In this example we are trying to assign component
c10, and we have three products p1, p2, and p3 to assemble.
Components c1 to ¢cg have already been assigned to one of
two placement machines CP3.1 and CP3.2

To simplify our calculations assume that acy p, is O for all k
and all n meaning there are no predetermined components
on any of the products in question.

From equation 11:

c10 = w10,1/p1 + Wio2/p2 + W103/P3
and from equation 12

wioj = Wlo,i/norm(Clo)

If we assume that Wyg (1,2,3) = (112.72, 150.0, 0.0) then using
equations 12 and 14:

wio,1 = 112.72/150.0 = 0.75
WlO,Z = 150.0/150.0 =1.0
w1o,3 = 0.0.

Thus,
c10 = 0.75/p1 + 1.0/p2 + 0.0/p3.

Assume that after computing equations 17 and 18 we get the
following values for each placement machine:
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CP3.1 CP3.2
1713.0 1713.0 | P1
2000.0 2000.0 | P2

assign_expected =
459.0 459.0 | P3

and
1273.0 498.0
assign_current = | 1782.0 1560.0
150.0 450.0

The assign_expected matrix has the same values in both
columns because we want to balance the load equally be-
tween the two placement machines for products py, p2, and
p3. Assign_current shows the component balance between
the two machines for components ¢ through cg at the
current iteration of the balancing algorithm.

Using equation 16
0.26 0.72

0.11 0.21
0.67 0.02

r=

Referring to steps 6, 7, 8, and 9 in our machine balancing
algorithm, the following items are computed.

Step 6. From equation 14, m; = ry ® ¢; using the Max_Prod
fuzzy composition operator in equation 2:

0.26 0.72
r1o ® c1o = Max4 [0.75 1.0 00] | 0.1 0.21
0.67 0.02
= Max [(0.19 0.11 0.0)(0.54 021 0.0)]
Thus,

mig = 0.19/CP3.1 + 054/(:})32
16 + 12

144
101

-
N
|
T

« Steps 7 and 8. Defuzzification = m, for ¢; is obtained by
applying the Max defuzzification method to myg. Thus,
Max(mjg) = my = CP3.2 meaning that component cyg is
assigned to machine CP3.2 since it has the maximal
membership value (0.54).

Step 9. Update the relation r.

r = rel update(cj, m,) and updating

1273.0 601.72

assign_current = | 1782.0 1710.0 | ati =10
150.0 450.0
makes
0.26 0.64
r= | 011 015
0.67 0.02

for the next iteration.
Results

For this experiment we used two manufacturing production
lines at our site. The first one is denoted as line 1 and the
second one as line 2. The total line volume is equivalent be-
tween the two lines. The statistics on the two lines include:
Line 1: 27 products, 13 double-sided, 413 unique components,
and on average a component appears on 3.05 products.
Line 2: 34 products, 11 double-sided, 540 unique components,
and on average a component appears on 4.69 products.

Fig. 11 shows the setup families created for the printed
circuit assembly products assigned to lines 1 and 2.

2 2
o o
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8 8 8T 1
a 10+ a
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S o
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S g4 kS 6
z z
g 5
=Z 6T =
41
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Primary A B C D E F Primary A B C D E F G H |
Setup Families Setup Families
(@) (b)

M Fuzzy Family Assignment

CCMO Greedy Board

["] NCMO Greedy Board

Fig. 11. The setup families created and the number of printed circuit assembly products contained in each family based on the type of

family assignment algorithm used. (a) Line 1. (b) Line 2.
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Fig. 12. A cumulative representation of the family assignments for line 1 and line 2 versus component placement volume. (a) Line 1.
(b) Line 2.

Family Assignment Line 1. The results for this line were indeed phenomenal.
Fig. 12 shows the percentage of component placement vol- The primary and A families together constitute 95% of com-
ume versus the cumulative contribution for each of the family ~ ponent placement volume for the line. This results in no
assignment techniques described in this paper. need for setup changeover for 95% of the volume for one
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Fig. 13. Machine imbalance for line 1.

June 1994 Hewlett-Packard Journal 63



80 +

5+

65 T

60 T

50 T

45+

3BT

Machine Imbalance (%)
15
t

30T

01

151

1l
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month. The 28% reduction of the number of families is a
side effect of the fuzzy family assignment optimization.

Line 2. The major achievement of the fuzzy family assign-
ment technique for line 2 was not just the moderate volume
improvements over the greedy board and CCMO greedy
board, but its ability to produce the same solution we ob-
tained when we manually forced certain products into a
primary family using the greedy board method. When we
first investigated greedy board capabilities, we allowed
hand-picked products to be forced into a family, regardless
of their greedy ratio. The forced products were carefully
identified based on our intuition and expertise.

Machine Balancing

Figs. 13 and 14 show the percentage imbalance for individ-
ual printed circuit assemblies manufactured on lines 1 and 2
respectively. The line 1 average imbalance was 12.75% for
the fuzzy machine balancing approach and 35.9% for the
balance obtained by the greedy board approach. The line 2
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Products

results are 10.73% for the fuzzy machine balancing approach
and 29.58% for the greedy board approach. The families are
the same ones provided by the fuzzy family assignment
method.
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