Virtual Remote:

The Centralized Expert

Remote operation of bit error rate test sets using an X Windows based
“virtual instrument” allows network operators to monitor remote sites from a
central office. The extensive use of a common firmware development
platform allowed the fast-track development of virtual remote software
and rapid integration into all instruments built using the platform.

by Hamish Butler

In today’s competitive marketplace, network operators must
provide their customers with a cost-effective and efficient
service. Large corporate customers expect the network oper-
ator to provide a guaranteed quality of service at the best
possible price. This means that the network operator has
to run the network as efficiently as possible and as cheaply
as possible. Let’s look at the issues of efficiency and cost
separately.

First, the network must be efficient. That is, it must reliably
transport customer data on demand. It must have a low error
rate and high uptime. If data is lost in transit or if customers
are unable to send data because the network is down they
are likely to switch to another carrier. It is no longer accept-
able for the network operator to wait for faults to be reported
and then to fix them; a preventive maintenance approach is
required. Preventive maintenance involves monitoring the
performance of the network links and looking for any degra-
dation in performance. If the performance degrades beyond
a certain level the customer traffic must be switched to an-
other data link with the required level of performance. The
defective link must then be fixed as quickly as possible.

Network operators must be able to provide a competitively
priced service to their customers and still be able to run the
network and make a profit. This places heavy demands on
network test and maintenance:

Test and maintenance departments are under pressure to
maintain the required level of service using fewer staff.
Expenses are under tight control. Traveling between sites is
expensive and unproductive.

Network capacity is at a premium. The amount of spare
capacity that can be held in reserve is limited. If a data link
has errors and traffic is switched to a spare link it is prob-
able that the errored link must be fixed as soon as possible
so that it can then provide the spare capacity.

Traditional approaches have used comparatively low-skilled
technicians to provide the first level of troubleshooting and
maintenance. These technicians may have been based at
remote sites or based at a central site and dispatched to re-
mote sites as required. If these technicians were unable to
diagnose a fault a more skilled technician was sent to the
remote site. This process is time-consuming, expensive, and
prone to error. It is not unknown for a technician to travel to
a remote site only to find that the fault lies somewhere else.

Sometimes the unskilled technician has even introduced
faults into the system while attempting to diagnose the
original fault.

The ability to perform testing of remote sites from a central
office has many advantages. Skilled technicians can be con-
centrated at one site. Less time is spent traveling. Fault loca-
tions can be diagnosed before dispatching technicians to fix
the faults. Preventive maintenance is improved through the
ability to monitor many remote sites from one place.

The traditional approach to such centralized testing has been
to locate portable test equipment at remote sites and to com-
municate with these instruments using an RS-232 link and
modems. Using this method it was normal to interrogate the
instrument by writing a controller program for a PC or work-
station. This method is restricted because of the limited
amount of information that is returned to the operator. The
operator is only given the information that the programmer
requested when the program was written. For example, if
the program is monitoring one or more selected results and
something that is not being monitored by the program
changes, there will be no immediate feedback.

It is sometimes necessary for the skilled technician at the
central site to give instructions to an unskilled technician at
the remote site. Using the above method the skilled techni-
cian has no direct feedback of the tasks performed by the
unskilled technician.

The Virtual Instrument

Engineers at the HP Queensferry Telecommunications Op-
eration have been developing instrument firmware using an
X Windows instrument simulation for several years. The en-
gineers responsible for the instrument simulator had often
thought how useful it would be if the simulator could be
used to control an actual instrument.

In the second half of 1991 an HP field engineer started
working with a large network operator on a contract for HP
telecommunications test sets and computers. This customer
was setting up a large-scale centralized test and maintenance
system to monitor the network. Working with the customer
the HP field engineer developed the idea of the virtual
instrument.

October 1994 Hewlett-Packard Journal 75



Fig. 1. An image of two instruments in a “dark office” superimposed
on an image of an operator at a workstation using virtual remote
software to control the two instruments. Representations of the
instruments’ front panel are displayed on the screen.

This was the vision presented to the customer: From a single
central office, customer personnel would be able to use an
HP workstation to bring up an accurate simulation of a re-
mote instrument on the display. They would be able to dis-
play several instruments simultaneously. Fig. 1 illustrates this
concept. The photograph shows an operator in a central
office using virtual remote to control two instruments in a
distant “dark office.” Each virtual instrument would be oper-
ated by using the mouse to press keys. These key presses
would be relayed to the remote instrument. As the remote
instrument updated any of its feedback mechanisms—dis-
play, LEDs, or audio—the instrument simulation would relay
these changes to the operator in the central office.

The important task now was to see how R&D could best
implement the virtual instrument application. The develop-
ment of the product was split into two stages. The first was
to take the current instrument simulator and use it to pro-
duce a prototype virtual instrument application. The second
stage was to take the prototype application and turn it into
a polished software product that would meet the rigorous
demands of HP customers.

Product Description

The product that emerged from this effort is the HP 15800A
virtual remote capability software. It runs on HP 9000 Series
300, 400, or 700 workstations under the HP-UX* 8.0 operating
system.T The software provides for the centralized supervi-
sion, operation, and collection of results from remotely
located HP 377xxA Option V01 telecommunications test
sets and analyzers. Option V01 virtual remote capability
enhances the instrument firmware to respond to the HP
15800A software.

A single workstation can control up to twelve remote test
sets. The display shows windows identical to the front panels
and screens of the test sets. When a technician is controlling
a remote test set manually, all actions and results can be
monitored at the workstation.

At present, Option V01 is available for the following test sets:
HP 37701B T1 tester

HP 37702A digital data tester

HP 37704A SONET test set

HP 37714A PDH/SDH test set

t APC version, HP 15801A, is now available as well.

76 October 1994 Hewlett-Packard Journal

HP 37717A PDH/SDH test set

HP 37721A digital transmission analyzer
HP 37722A digital telecomm analyzer

HP 37724A PDH/SDH test set

HP 37732A telecomm/datacomm analyzer.

Option V01 can be retrofitted to existing instruments by
changing ROMs.

Virtual Remote Design Concept

As has already been explained, instruments at the Queens-
ferry Telecommunications Operation are developed using an
instrument simulator. This instrument simulator is in fact part
of a larger common firmware platform.! This common firm-
ware platform incorporates compiler-based code generation
and simulation tools along with the source code for a core
generic instrument. The design of virtual remote is so closely
tied to the instrument simulator that a brief explanation is
required.

The core of Queensferry Telecommunications Operation’s
common firmware platform is a compilation and simulation
tool known as ISS—Instrument Software System. ISS is based
on an abstract, high-level, instrument definition language.
This language is used to define many aspects of the
instrument operation:

The instrument user interface

All instrument control variables

Interaction and dependencies between control variables
Instrument display data—text and graphics

Instrument results

Instrument data input—hard and soft keys

Relationships between data input (keys), control variables,
and data output (display data)

Printer output data

Remote control command definitions.

The instrument firmware development process is as follows:
Produce the instrument definition using the ISS language
Simulate the instrument operation using the ISS simulator
Use the ISS compiler to generate an embedded instrument
database

Compile the instrument database into embedded instrument
code

Test firmware operation in the target instrument.

The ISS simulator and the target instrument share the core
components, mainly the ISS database processing engine. The
development process is illustrated in Fig. 2.

As shown in Fig. 2, the ISS database and the ISS engine are
common to both the ISS simulator and the actual instrument.
The instrument operator interacts with the instrument using
keys on its front panel and data displayed on its screen. On
the workstation, the key input and screen output are handled
by a set of functions written in the C programming language.
These functions are implemented using X Windows function
calls.

In the instrument the screen output and key input are han-
dled by an alternative implementation of the same C func-
tions. In this case the functions interact directly with the

instrument’s display control and keyboard input hardware.

The basic instrument architecture is shown in Fig. 3.



Instrument
Definition

ISS

Database

Database
Code

AXLS
C Compiler

ISS
Database

ISS
Compiler

ISS
Engine

HP-UX
X Windows

Instrument
Drivers

Simulated Instrument

ooood
o o
o |
gooaa
0oooo
oooo
Workstation
Target Instrument
Fig. 2. Instrument development
%%%%% using the ISS compiler and simu-
%%%%% lator. The ISS database and the
0000g ISS engine are common to both
e —— Fhe simulator and the actual
instrument.

The key to the development of virtual remote was to connect
the ISS engine embedded in the instrument with the screen
output and key input functions used on the workstation. The
use of the same set of display functions in both the work-
station and the embedded system gave the potential to

Display
Library

Keyboard

SCPI/Remote
Control

Printout

User
Applications

Human
Interface

Program
Interface

Operating System

ISS Core

Configuration
Information
from
Compiler

Instrument
Control

Results
Handler

Device Drivers

update both displays at the same time. We also wanted to
duplicate the function calls made by the instrument. At the
same time as the function call is performed in the instrument
it must also be performed on the workstation. This technique
is known as a remote procedure call. A UNIX” application

Measurement
Hardware

Measurement
Software

Results

Fig. 3. Basic instrument
architecture.

October 1994 Hewlett-Packard Journal 77



Target Instrument

0oooo
0oooo
0oooo
0oooo
0oooo
oofho
Control .
Display Instrument Firmware
Hardware

Send Remote Function Call to
Workstation Using RS-232 Protocol Human

Interface

Display
Library

A 4

ooooo

0ogoo

0ooog

0oooo

0oooo
0ooo Program
Interface

Workstation

that needs to make remote procedure calls to another ma-
chine on the network would use Sun Microsystems’ RPC. In
our instrument environment we could not support this. It
was decided to develop a protocol of our own between the
instrument and the workstation that could be used to initiate
remote display functions. This protocol would use ASCII
data transmitted between the instrument and the workstation
on a 9600-baud RS-232 data link. This is illustrated in Fig. 4.

The ISS database engine is event-driven. The keyboard pro-
cess in the instrument waits for a key to be pressed and then
acts upon that key. In the case of the display we had to out-
put to two devices at once—the simulated instrument and
the target instrument. In the case of the keyboard we had to
accept input data from two sources—a local keyboard and a
remote keyboard. This is accomplished through the use of
our dedicated protocol. Keys pressed locally are processed
as they always were. A key pressed on the workstation is
encoded and transmitted over the RS-232 link to the instru-
ment. When the data is received by the instrument it is de-
coded and the key code is placed in the key input queue.
This is shown in Fig. 5.

It would have been possible to use the above techniques to
develop an application that ran on the workstation and was
used to communicate with a remote instrument. This appli-
cation would have to have embedded knowledge about the
instrument it communicated with so that it could render an
accurate representation of the instrument on the workstation
screen and have knowledge of the keys present on the instru-
ment front panel and the key codes assigned to each one.

78 October 1994 Hewlett-Packard Journal

Instrument
Control

ISS Core

Results
Handler

Configuration
Information
from
Compiler

Fig. 4. Instrument-to-virtual-
display connection.

Because our division manufactures many different instru-
ments, this solution would require a separate virtual remote
application for each instrument, which is unsatisfactory for
the following reasons:

Developing multiple applications would require extra
engineering effort.

Extra administration effort would be required for sales and
support.

Customers often use several different instruments. Some
applications require different instruments used in combina-
tion. It would be unfriendly and expensive for our customers
to have to buy and use a separate application program for
each different instrument.

This approach may have presented problems with new in-
struments or instrument enhancements released after the
application code was produced.

The ideal solution is to have a single virtual remote ap-
plication program that can be used with any instrument that
is already shipping or that may ship in the future. To do
this the virtual remote application has to be completely ge-
neric, sourcing all of its instrument-specific data from the
instrument itself.

Once again, the use of the ISS simulator for instrument de-
velopment helped us to find the solution we required. The
ISS simulator already displayed a representation of the in-
strument on the workstation and had knowledge of the in-
strument key positions and key codes. This data is contained
in the instrument definition coded using the ISS language. In
the simulator this data is compiled into RAM data structures



0ooa

Local Key
Data Read
and Queued

Instrument Firmware

Virtual Keypresses Encoded,
Transmitted Using RS-232
Protocol and then Queued Human

Keyboard Interface

ooooo
0oooo
0ooog
ooooo
0oooo
0oog Program
Interface
Workstation

which are then used to render the instrument and process
the keys.

The development of virtual remote required these data struc-
tures to be added to the instrument database embedded into
the instrument. Once this was done it was an easy step to
enhance the instrument-to-workstation protocol to allow the
data held in ROM in the instrument to be sent over the
RS-232 data link to the virtual remote application in the
workstation. The virtual remote application then holds the
data in a RAM data structure and uses it to render the instru-
ment and process key presses.

Fig. 6 shows a workstation screen displaying the virtual re-
mote representation of an instrument being controlled. All of
the data needed to draw this image is stored within the in-
strument and is sent to the virtual remote application upon
request. This allows the virtual remote software to control
many different instruments without any prior knowledge of
how they look or how they operate.

Virtual Remote Development

Using the above design concepts it was relatively easy to
produce a working virtual remote prototype. The prototype
application was extremely useful and very successful. It
proved that the design concept was feasible, it illustrated the
concept of the virtual instrument, it allowed the instrument-
to-workstation protocol to be tested, it helped prove the
viability of the product, and it gave a base upon which the
final product would be built.

Once the prototype was complete the next stage of the proj-
ect was to take the prototype and turn it into an application

Instrument
Control

ISS Core

RESIIS]
Handler

Configuration
Information
from
Compiler

Fig. 5. Virtual-keyboard-to-
instrument-keyboard process.

suitable for use by customers. This application had to im-
plement features not supported in the initial prototype:
Multiple simultaneous connections

Connection arbitration and verification

Connection to and dialing of remote instruments using
modems

Socket connections to remote instruments over a LAN
Industry-standard OSF/Motif graphical user interface.

The first change needed to convert the prototype into a
product was to convert the application to use an OSF/Motifl]
user interface style. This was done using HP’s Interface Ar-
chitect (also known as UIM/X) user interface management
system. The prototype virtual remote had relied entirely on
the display library written at the Queensferry Telecommu-
nications Operation for all X display functions. This display
library relies on low-level Xlib functions. This approach was
adequate for the simulation of the instrument display and
front panel. The implementation of application-specific dis-
play widgets such as menus and error dialogs was, however,
somewhat nonstandard. Interface Architect was used to pro-
vide the top-level OSF/Motif application widgets and error
dialogs. The low-level display functions using the shared
display library were then embedded inside the OSE/Motif
application.

The next stage in the development was to split the single-
threaded application into constituent parts that could be
used to create a multiprocess application capable of support-
ing the requirements of the final system. The design used is
shown in Fig. 7.

October 1994 Hewlett-Packard Journal 79



Il DATA TERTER ~ roiibal — Sy@l el B Trymms i §]

This design has several advantages. The independent server
process is the core of the system. This process is responsible
for the arbitration and initiation of all connection requests. If
all connections were made using TCP/IP a single server
would be responsible for all instruments connected to the
network. When using RS-232 for direct or modem connec-
tions a server process is required for each workstation. This
process is responsible for instruments connected through the
RS-232 ports of the workstation upon which it is running.
Each server process accepts connection requests from any
front-end process. The front-end process may be running on
the same host as the server or on any other networked
workstation. The separation of the front end from the server
gives us the ability to make connections across the network
to instruments physically connected to remote workstations.
A second advantage of separating the front end from the
server is that it allows the provision of more than one front

> X

vrmrs232 .
Windows

vrmdisp

47
Instrument

Control Control

vrmserver

Control

Front End

Fig. 7. Virtual remote software architecture.

80 October 1994 Hewlett-Packard Journal

=
-
-
-
-
-
-
n
-
-
L
-
[
n
L
-
L

Fig. 6. A workstation screen dis-
playing a picture of an instrument
drawn by the virtual remote ap-
plication. All of the data used to
draw this image is stored in the
instrument and is sent to the vir-
tual remote application when
requested. This allows virtual re-
mote to be used with many dif-
ferent instruments without having
any special knowledge about
how they look or operate.

end. At present only two front ends have been provided: an
OSF/Motif-based menu interface and a command-line inter-
face. It would be relatively easy to design a new front end,
perhaps for integration with some larger system.

Once the front end has verified that no one is connected to
a particular instrument, it attempts to establish a connection
to the instrument. Here again, the communications process
has been decoupled from the server. The server must deter-
mine the communications channel used for connecting to
the instrument. This data is stored in the instrument configu-
ration file. The server then uses this data to start the appro-
priate communications driver process. The communications
drivers provided at present are RS-232 direct connect, RS-232
modem, and TCP/IP. Queensferry Telecommunications Op-
eration instruments have traditionally supported RS-232 and
HP-IB (IEEE 488, IEC 625) communications ports. The TCP/IP
method of connection is provided to allow networked com-
munications and to allow more simultaneous connections
than would be possible using RS-232 ports provided on cur-
rent workstations. This method operates by using TCP/IP to
connect the workstation over the network to a terminal mul-
tiplexer. This device maps TCP/IP addresses to RS-232 ports.

The latest generation of instruments produced by the
Queensferry Telecommunications Operation can have a
ThinLan/Ethertwist interface that allows TCP/IP communica-
tion directly to the instrument. This removes the need for the
terminal multiplexer and allows any workstation on the net-
work to connect to any instrument.

New communications channels can be provided simply by
writing a new driver process.

Once the server has started the communications process and
established that the instrument is responding, it starts up the
virtual remote display process. This process is the part of the



Hewlett Packard HP37714A
Graphical Text Resulis

MERSUREMENT STARTED
TEST DURATION

11:24 25-N0V-1333
1 Ald B7h 33m

Start: 11:24 THU, 25-HOY-1993 Display:

EIT ERROR COUMT —+
o 10f 10% 10% 10+ 105 10% 107 0

o o
=] E]
I =

=}
- m
=1 @
W z

o T T S g

T

application most closely related to the lab prototype. This
process interrogates the instrument for its X display data and
uses this data to draw the image of the instrument. It then
processes key presses, encodes them, and sends them to the
instrument. Data received from the instrument is decoded
and the appropriate action taken. This may be the drawing
of characters on the screen, illuminating LEDs, or simulating
the behavior of an HP ThinkJet printer.

Printer Simulation

The test instruments designed at the Queensferry Telecom-
munications Operation allow a rich set of data to be logged
to an external printer under a variety of operator-defined
conditions. An external printer is not of much use if the in-
strument to which it is connected is not on the same site as
the operator using the instrument. It was therefore decided
to provide a virtual printer along with the virtual instrument.

Once again this development was facilitated by the ISS de-
velopment platform. The ISS language/compiler/simulator
provides facilities for the instrument designer to compose
logging format definitions, which are formatted in the instru-
ment as required. To allow testing of the formats for correct-
ness, an X Windows printer simulator had been developed
and integrated with the ISS simulator. The simulator could
take the compiled format definitions and simulate their
output to an HP ThinkJet printer.

To provide the virtual printer capability to the virtual remote
application, all that was required was to integrate the X Win-
dows printer application with the virtual remote application
and provide a means to multiplex the printer data with other
virtual remote data transmitted between the workstation and
the instrument.

The integration of the X Windows printer application with
virtual remote was a straightforward task. To maintain the
overall look and feel of the application the low-level Xlib
code used for the printer application was encapsulated
within an OSF/Motif user interface. The separation of the

15 MINS

POH CODE COUNT —
10t 102 10%® 104 105 10% 107

Fig. 8. This is a screen of the
virtual printer application. The
virtual printer displays print data
that the instrument would nor-
mally send to a real printer. Dur-
ing virtual remote operation the
data is sent to the virtual remote
application and is displayed by
the virtual printer. The push-
buttons on the virtual printer can
be used to send the buffered
printer data to a real printer con-
nected to the workstation, save
the data to a file, clear the buffer,
and so on.

printer data from the standard virtual remote protocol was
accomplished by extending the protocol to provide a means
of encoding the printer data. This was necessary to prevent
raw printer data from clashing with the virtual remote proto-
col. The instrument logging output driver can detect when
the instrument is in the virtual mode of operation and will
then output the printer data in encoded rather than raw
form. Mutual exclusion is used to prevent the display pro-
cess and the printer output process from attempting to send
data to the workstation at the same time. Using this tech-
nique data throughput can be maintained by both processes
in a controlled manner.

The virtual printer receives the encoded printer data and
decodes it. This data is then displayed in the X Windows HP
ThinkJet printer simulation. The simulator can display both
text and graphics. At the same time as the printer data is
displayed it is appended to a data buffer. This buffered data
can be saved to a named file or sent to a printer spooler by
the operator. The online buffer can be cleared on demand.

Fig. 8 shows the virtual printer application. The main portion
of the application is the “virtual paper,” where the text and
graphics of the printer data are displayed. A scroll bar along
the side of the screen can be used to scroll the paper back-
wards and forwards. Pushbuttons along the bottom of the
screen are used to control the functions described above.

Instrument Customization

In addition to the development of the workstation applica-
tion code the instrument firmware must also be modified for
virtual remote operation. The modifications required affect
the following areas:

Instrument communications drivers (RS-232 interrupt
service routine)

Instrument display library code

Instrument keyboard processing code

Instrument external interface selection

Instrument simulation data.

October 1994 Hewlett-Packard Journal 81



The first three areas above are contained in the common
code distributed to all projects using the Queensferry Tele-
communications Operation common platform. The remain-
ing areas are instrument-specific and must be done on an
instrument-by-instrument basis.

First, the instrument external interface selection code must
be enhanced slightly. A new external connection mode, vir-
tual remote, must be added alongside the existing selections
such as printer and remote control. This is a very minor
change to the instrument ISS definition file. Two new C
functions must be provided. These functions are called by
the common code when a virtual connection is being estab-
lished. These functions are used to make one or two minor
configuration changes to the instrument. They cannot be
common since they relate to variables defined in individual
instrument ISS definition files.

The second instrument customization is the instrument simu-
lation data. In the past the simulation data has only been
used internally for instrument simulation during develop-
ment. In this application it is the simulation of the instrument
operator-machine interface that is important, not the quality
of the displayed instrument image. The virtual remote appli-
cation, on the other hand, uses an image of the instrument
to make remote operation by a customer easy. In this case
the quality of the image displayed is very important. The in-
strument designer must ensure that the instrument simulation
data is as accurate as possible. The areas of concern are in-
strument dimensions, key positions, text labels, and connec-
tor positions and accuracy. Using the syntax of the ISS simu-
lator it is possible to construct a fairly accurate
representation of the instrument.

The use of the Queensferry Telecommunications Operation
common firmware platform has enabled the virtual remote
firmware to be retrofitted in a complete family of instruments
with only a small amount of effort. All new instruments devel-
oped using the platform will build in virtual remote support
from the start.

Summary

Since its release, virtual remote has proved to be a very pop-
ular product. A broad spectrum of customers have put vir-
tual remote to work, sometimes in interesting applications:
A major network operator has installed virtual remote as
part of their network monitoring and maintenance system.
Virtual remote has been used in the installation of cable tele-
vision networks, allowing centralized testing of the network.
Virtual remote has been used to test satellite communica-
tions channels, allowing simultaneous monitoring of the
data links at geographically separate ground stations from a
central control center.

The success of virtual remote for HP-UX workstations led to
a demand for virtual remote on PCs. HP 15801A PC virtual
remote was developed so that as far as possible the source
code is shared with the HP 15800A HP-UX product.

Fig. 9 shows an operator using virtual remote on a PC in an
office environment. The instrument being controlled is at a
remote site and the connection is through a modem and a
telephone line.

A new generation of instruments designed at the Queens-
ferry Telecommunications Operation have for the first time

82 October 1994 Hewlett-Packard Journal

Fig. 9. The virtual remote software is also available for PCs.

provided a LAN TCP/IP communications interface. This inter-
face will allow us to have direct network communications
between a workstation running virtual remote and the instru-
ments that are being monitored. Almost all advance orders
for this new family of instruments have included the instru-
ment virtual remote option. The close links between virtual
remote and the common firmware platform allowed the new
instrument to be developed with no additional work required
to provide virtual remote operation.

The concept of virtual remote has stimulated our customers
to find interesting new ways to test their networks. Sugges-
tions for enhancements have come from within the Queens-
ferry Telecommunications Operation and also from our
customers. These ideas will be evaluated and may be used
to develop virtual remote into a product that can help our
customers still further.

Acknowledgments

The author would like to thank everyone who has contrib-
uted to the development of virtual remote: past and present
members of the Queensferry Telecommunications Operation
common firmware group, the engineers responsible for
installing virtual remote into individual instruments, and the
engineers from our marketing and quality departments. We
would also like to thank the engineers of the software house
Ascada, who contributed to this program under contract to
Hewlett-Packard. Special thanks should go to Malcolm Rix
for his work on the first prototype version of virtual remote.

Reference

1. M. Rix, “Case Study of a Successful Firmware Reuse Program,”
Proceedings of the 1992 HP Software Engineering Productivity
Conference.

HP-UX is based on and is compatible with Novell's UNIX" operating system. It also complies
with X/Open’s] XPG4, POSIX 1003.1, 1003.2, FIPS 151-1, and SVID2 interface specifications.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a trademark of X/Open Company Limited in the UK and other countries.
OSF/Motif is a trademark of the Open Software Foundation in the U.S. and other countries.



