HP Distributed Smalltalk: A Tool for
Developing Distributed Applications

An easy-to-use object-oriented development environment is provided
that facilitates the rapid development and deployment of multiuser,

enterprise-wide distributed applications.

by Eileen Keremitsis and Ian J. Fuller

HP Distributed Smalltalk is an integrated set of frameworks
that provides an advanced object-oriented environment for
rapid development and deployment of multiuser, enterprise-
wide distributed applications. Introduced in early 1993,

and now in its fourth major release, HP Distributed Smalltalk
leverages the ParcPlace Smalltalk language and the Visual-
Works development environment. Together, HP Distributed
Smalltalk and VisualWorks enable rapid prototyping, devel-
opment, and deployment of CORBA-compliant applications.t

In the global marketplace, corporate information technology
needs are increasingly demanding because worldwide com-
petition requires geographically dispersed operations, chang-
ing markets require agility to remain competitive, pressure to
improve return on investment requires strong cost controls,
timely access to complete information is crucial for business
success, and finally, corporate users require access to both
legacy and newly developed information sources and appli-
cations.

HP Distributed Smalltalk helps answer these business needs
by supporting;:

Easy on-demand access to information and services across
the enterprise

Dynamic interaction of distributed people and resources
Greater application flexibility and ease of use

Insulation from differences in operating environments

An architecture that supports an evolutionary approach in-
cluding legacy system integration

Industry standards that will allow application interoperability
across languages, high productivity, and code reuse.

Customers can take advantage of HP Distributed Smalltalk’s
easy-to-use development environment to create distributed
solutions to compete effectively in the global marketplace.
For example, with HP Distributed Smalltalk, customers might
build on the sample Forum application (described later) so
that their geographically dispersed users can simultaneously
annotate a shared document. Also, customers might use HP
Distributed Smalltalk to create three-tiered database access
applications that extend the advantages of existing client-
server architectures for better isolation between user inter-
faces, data manipulation models, and legacy and new data.

T CORBA, or Common Object Request Broker Architecture, defines a mechanism that en-
ables objects to make and receive requests and responses. HP Distributed Smalltalk's
implementation of this architecture is described later in this article.

[J Hewlett-Packard Company 1995

Three-tiered applications are the most efficient and scalable
form of software design for building complex applications.
They carefully separate the user interface (tier one) from the
business rules governing the application (tier two) and the
persistent storage for the information in a database (tier
three). Each tier can reside on a different machine in a net-
work, making best use of the network resources. HP Dis-
tributed Smalltalk contains objects that enable the straightfor-
ward construction of these applications.

Using HP Distributed Smalltalk

An application written in HP Distributed Smalltalk is able to
respond to service requests from remote systems. Remote
entities that request services of an application do not have to
be written in HP Distributed Smalltalk as long as they are in
a system that implements the standard ORB (object request
broker) and common object services from the Object Man-
agement Group (OMG). See “Object Management Group” on
page 86 for a description of these items.

In many cases an HP Distributed Smalltalk application’s com-
ponent objects are distributed across several systems. These
distributed objects can interact seamlessly so that end users
are unaware of where the objects are located.

An overview of the process of running an HP Distributed
Smalltalk application is shown in Fig. 1. For incoming re-
quests to the service provider, the ORB translates requests
from the implementation-neutral Interface Definition Lan-
guage (IDL) to the local language (ParcPlace Smalltalk) and
forwards them to the correct local object for processing. To
complete the request, the service provider’s ORB takes re-
turn values, translates them to IDL and forwards them to the
remote ORB from which the request was received.

Not only does HP Distributed Smalltalk support distributed
application delivery but it also provides an environment for
distributed application development, which includes:

A complete implementation of the Object Management
Group'’s latest standards

A rich suite of tools for application development and admin-
istration including simulated remote test support, a remote
debugger, and an IDL interface browser and generator

A user interface environment and sample applications that
developers can reuse or extend, or simply use to become
familiar with the system.

April 1995 Hewlett-Packard Journal 85



Object Management Group

The Object Management Group, or OMG, is a nonprofit international corporation
made up of a team of dedicated computer industry professionals from different
corporations working on the development of industry guidelines and object man-
agement specifications to provide a common framework for distributed application
development.

OMG publishes industry guidelines for commercially available object-oriented
systems, focusing on areas of remote object network access, encapsulation of
existing applications, and object database interfaces. By encouraging industrywide
adoption of these guidelines, OMG fosters the development of software tools that
support open architecture, enabling multivendor systems to work together.

To define the framework for fulfilling its mission, in 1992 OMG published its Object
Management Architecture Guide. This guide provides a foundation for the develop-
ment of detailed interfaces that will connect to the elemental components of the
architecture. Fig. 1 shows the four main components of this architecture:

The object request broker (ORB) enables objects to make and receive requests
and responses in a distributed object-oriented environment.

Object services is a collection of services with object interfaces that provide basic
functions for creating and maintaining objects.

Common facilities is a collection of classes and objects that provide general-purpose
capabilities useful in many applications.

Application objects are specific to particular end-user applications.

Common
Facilities

Application
Objects

Services

Fig. 1. The object management architecture.

The application objects, object services, and common facilities represent groupings
of objects that can send and receive messages. The software components in each
of these primary components have application programming interfaces that permit

their participation in any computing environment that is based on an object tech-
nology framework.

In addition, because HP Distributed Smalltalk is an extension
of VisualWorks, developers are able to do their programming
in a language they already know (ParcPlace Smalltalk) using
the VisualWorks application builder.

VisualWorks is an implementation of the Smalltalk program-
ming language and environment. It provides an excellent
environment for building standalone and simple client/server
applications that are 100% portable between many of the
major computing platforms and operating systems. HP saw

an opportunity to enhance the capabilities of VisualWorks to ¢
be the basis for next-generation applications by adding ob-
jects that enable VisualWorks systems to communicate di-
rectly using a standardized set of communications facilities.

Framework
The HP Distributed Smalltalk framework is an environment
that encompasses everything from communication with other

Remote System

systems through database access to the object-oriented Parc-
Place Smalltalk language and a rich suite of developer’s tools,
all seamlessly integrated to facilitate distributed application
development.

The major components of HP Distributed Smalltalk are
shown in Fig. 2 and briefly defined below:

HP Distributed Smalltalk ORB. This is a full implementation
of the Object Management Group’s Common Object Request
Broker Architecture (CORBA).

Remote Procedure Call (RPC) communication. This compo-
nent supports efficient and reliable transfer of messages
between systems.

HP Distributed Smalltalk object services. This includes all
standard object services required by distributed systems, as
well as support for creating and maintaining objects and the
relationships between them.

HP Distributed

Smalltalk System

Local
Language
to IDL

Apparent
Service I Connection | Service
Requestor Provider
Local IDL to IDL to
Language Local Local
to IDL Language Language
Network Connection

ORB = Object Request Broker
IDL = Interface Definition Language

86 April 1995 Hewlett-Packard Journal

Fig. 1. Overview of the HP
Distributed Smalltalk process.

[ Hewlett-Packard Company 1995



HP Distributed Smalltalk
Sample Applications

HP Distributed Smalltalk
User Environment and Services

HP Distributed Smalltalk
and VisualWorks Developer Tools and Services

OODBMS and RDBMS Access

Multiplatfol pport

HP Distributed Smalltalk
Object Services

HP Distributed Smalltalk ORB
RPC Communications

Fig. 2. The major components of HP Distributed Smalltalk.

Multiplatform support. HP Distributed Smalltalk applications
that run on one platform (hardware and operating system
combination) can run, without porting, on any other sup-
ported platform.

OODBMS and RDBMS access. HP Distributed Smalltalk pro-
vides database access directly to HP’s Odaptert and Servio’s
GemStone as well as to Sybase and Oracle (via Visual-
Works). HP Odapter can be used to provide access to a
variety of other database systems.

HP Distributed Smalltalk developer tools and services. This
level of the framework provides support specifically de-
signed for developing, testing, tuning, and delivering distrib-
uted applications. HP Distributed Smalltalk incorporates a
rich development environment, application builder support,
and the ParcPlace Smalltalk language.

HP Distributed Smalltalk user environment and services.
These services include a reusable demonstration user inter-
face and desktop environment support for users’ work ses-
sions and normal desktop activity.

HP Distributed Smalltalk sample application objects. These
objects provide developers with example code that can be
reused or extended, or can provide a source of ideas for
developing alternate applications.

The following sections provide more detailed descriptions of
the components that make up HP Distributed Smalltalk.

HP Distributed Smalltalk Object Request Broker

HP Distributed Smalltalk is a complete implementation of
CORBA, the Object Management Group’s specification of an
object request broker. HP Distributed Smalltalk’s compliance
provides the basis for object and application interoperability.

CORBA specifies core services that are required of an object
request broker to support interoperable distributed comput-
ing. The CORBA specification includes the following core
services.

Interface Definition Language Compiler. OMG has defined the
Interface Definition Language, or IDL, to be independent of
other programming languages. Interfaces for objects that can
provide distributed services are written in IDL so that they

1 HP Odapter is a complementary product from Hewlett-Packard that provides an efficient
and scalable link between objects implemented in an object-oriented language such as
Smalltalk or C++ and the entities in an Oracle relational database.

[J Hewlett-Packard Company 1995

are accessible to service requesters that might be written in
Smalltalk, C, C++, or another language.

OMG recently approved the IDL-to-Smalltalk language bind-
ing proposed by HP and IBM. This is important because it
allows users to build distributed systems using multiple lan-
guages where appropriate, allowing a Smalltalk object to be
able to request services of a C++ object or vice versa.

Interface Repository. This service provides a registry of distribu-
table object interfaces for a given system. Any object that
remote objects can access has an interface in the interface
repository. For example, when objects on two or more sys-
tems at different locations collaborate in an application, they
interact by sending messages to their interfaces. Since exter-
nal clients have access to an object’s services only through
the object’s interface, the implementation of the object is
private. This privacy provides a variety of benefits, including
security, language independence, and freedom to modify the
implementation of how a service is performed without exter-
nal repercussions.

HP Distributed Smalltalk ORB Support. The object request bro-
ker (ORB) is the key to providing support for distributed
objects. By providing an ORB on each system, HP Distrib-
uted Smalltalk makes the location of any object transparent
to clients requesting services from the object.

When a message is sent to a local object, the activity is han-
dled normally. When a message is sent to a remote object,
the remote object’s local surrogate (created automatically by
the ORB) intercepts the message, then uses the ORB to lo-
cate the remote object and communicate with it (see Fig. 3).
Results returned to the calling object appear exactly the
same, whether the message went to a local or remote object.

An ORB’s responsibilities include:

e Marshalling and unmarshalling messages (translating objects

to and from byte streams for network transmission)

 Locating objects in other images or systems
* Routing messages between surrogates and the objects they

represent.

While a request is active, both client and server ORBs ex-
change packet information to track the course of the request

Machine A Machine B
Apparent

X Connection .
Ogmmqd— — — — — — — — Object 2
Object 2
Surrogate

Object Object
Request Broker Request Broker
Actual
T Connection T

Fig. 3. HP Distributed Smalltalk handles remote access so that a
request to a remote object appears the same as a request to a local
object.

April 1995 Hewlett-Packard Journal 87



and resolve any network or transmission errors that might
occur.

Object Services and Policies

Object services extend the core ORB services to support
more advanced object interaction. HP Distributed Smalltalk
implements OMG’s Common Object Services Specification
(COSS), which extends CORBA to provide protocols for com-
mon operations like creating objects, exporting and destroy-
ing objects (life cycle), locating objects (naming), and asyn-
chronous event notification. Additional object services and
policies provide efficient interaction between finer-grained
distributable objects.

Naming.t There is a standard for assigning each object a
unique user-visible name. Names are used to identify and
locate both local and remote objects.

Event Notification.t This is a service that allows objects to notify
each other of an interesting occurrence using an agreed pro-
tocol and set of objects.

Basict and Compound Life Cycle. There are standard ways for
objects to implement activities such as create and initialize,
delete, copy, and move both simple and compound objects,
externalize (prepare for transmission to remote systems), and
internalize (accept objects transmitted from remote systems).
Compound objects, built from simple objects, can include
application components, anything that appears on a user’s
desktop (such as a document, a mail handler, or a graphics
toolbox), complete applications, and so on.

Relationships: Containment and Links. Links allow net-
worked relationships among objects. Objects can be linked
together with various levels of referential integrity (determin-
ing how to handle situations when one of the parties to the
link is deleted), and in one-to-one, one-to-many, and many-
to-many relationships.

Together with links, containment establishes and maintains
relationships between objects. Each object has a specific
location within some container. Containers are related hierar-
chically. HP Distributed Smalltalk provides objects that im-
plement a generic distributed container. Programmers can
use these objects to build specific implementations such as
an electronic mail envelope (containing components of a
message) or a bill of sale (containing information about
items in a shipment) with minimal extra programming.

Properties and Property Management. Properties are part of an
object’s external interface (owner, creation date, modification
date, version, access control list, and so on). They are a dy-
namic version of attributes.

Application Objects and their Assistants. Application objects are
relatively large-grained compound objects that end users
deal with (e.g., a file folder or an order entry form). Applica-
tion assistants are lightweight objects that implement most of
the policies and participate in most of the services that desk-
top objects need to participate in. Application assistants func-
tion as the developer’s ambassador into the object services.
Application assistants can be stored and activated efficiently
and provide the basis for future transaction support.

t This service is specified in COSS 1.0.

88 April 1995 Hewlett-Packard Journal

Machine A Machine B Machine C

Chart Object
(Semantic)

}
.|I|||
!

User C

¢

User A

N
!

User B

Presentation Objects

Fig. 4. The bulk of user interaction is with local presentation ob-
jects, minimizing and condensing the need to propagate semanti-
cally relevant changes over the network. Here for example, a user
might choose to look at a chart (semantic object) as a pie, line, or
bar chart presentation object.

Presentation/Semantic Split. A logical split between distributed
objects, the presentation/semantic split provides an efficient
architecture for distributed applications. Local presentation
objects handle the bulk of user interaction, while a semantic
object (which can be anywhere on the network) holds a
shared persistent state of the object (see Fig. 4).

By using the presentation/semantic split, the designer can
choose what part of the application should be shared and
what should be unique to each user. Applications that might
use the presentation/semantic split include a team white-
board where all behavior is shared but each user can write
comments, or a common document with pages that are
unique to each user so that all users can read at their own
pace. A variety of sample applications included with HP
Distributed Smalltalk provide illustrations of how to use the
presentation/semantic split.

While use of the presentation/semantic split is optional, it
facilitates and optimizes distributed application development
and execution. Advantages of using the presentation/seman-
tic split include:

Acceptable performance levels even over wide area
networks

Association of a single semantic object with multiple presen-
tation objects, a critical feature in distributed computing en-
vironments where it is common for many users to work with
the same application

Application access independent of local windowing systems
Better code reusability.

The HP Software Solution Broker described on page 93 is a
good example of using the presentation/semantic split in an
application.

Developer Services

HP Distributed Smalltalk also extends VisualWorks with ser-
vices that support development and test of distributed appli-
cations.

[ Hewlett-Packard Company 1995



= [
File Action Configuration Security Help |
} &2 =
e 'F-_' BLL
Stop ORB e o L
Chantal ~ Chantal’s Office  Crphans Waste Clips

Active Conversalions

O pebugging TYPE STATE OPERATION
[ Message Logging:

tevel: [0 [T |

[ Local RPC Testing

_| O perfarmance Profile

Fig. 5. The control panel provides an easy-to-use interface to
administrative and developer services.

Control Panel. The technical user interface to HP Distributed
Smalltalk for administrators and developers is invaluable for
testing and maintenance (Fig. 5). The control panel provides:
 Controls to start and stop the system cleanly

e Tracing facilities to log network conversations between ob-

jects
Performance monitoring.

Interface Repository Browser and Editor. The interface repository
browser provides an iconic view of the contents of the inter-
face repository where publicly available interfaces are speci-
fied (see Fig. 6). It is organized hierarchically so that devel-
opers can explore and edit interfaces and construct requests
to use the interfaces.

Shared Interface Repository. In HP Distributed Smalltalk, users
can share an interface repository on a remote system so they
do not have the overhead of keeping a copy of all of the
interfaces on every system. The product also supports ver-
sion management of interfaces, which is very important in
large-scale, evolving distributed systems.

Remote Context Inspector and Debugger. This service is an ex-
tension that allows debugging on remote images when ap-
propriate. It supports object inspection and debugging for

 Support for local RPC testing (simulated distribution)

Action  Edit View Tester Help

GenericContainer

presentationsdd  presentat

ff This module defines the types and aperations on farum ohjects
it
module Farum {

#pragma IDENTITY = 5a79e5h6-bbia-0000-020f-1cAS13000000
i

£ This interface defines the operations on the forum presenter

i

interface ForumPres : CaontainerPres, TransparencyPres
#pragma IDEMTITY = 5a79e605-06ckh-0000-020-1c6513000000
it

# This interface defines the operations on farum semantic

i ohjects

i

interface ForumSem : ContainerSem, TransparencySem |

#pragma SELECTOR = presenterAdd:username:
£ Activate the presentation abject. This will result in an
i update sequence callback to the requesting PO befare it
£ retums
void presentationAdd
in ForumPres presentation,
in UserCaontext user,
in string username);

#pragma SELECTOR = presenterDelete:username:

FactoryRepresentative Lifecycle
l 1 I
|
= JI
Action Edit  View Tester Help
———————————— Claim
care [Fs Farum
DETIFs Hierarchy
COS IFs Layout
policy IFs rap
media IFs Motehoaok
ContainerSem  Transparen; (| container IFs Table
I | userifs - |-
If Forum

[J Hewlett-Packard Company 1995

Fig. 6. The interface repository
browser can be used to view or
edit interfaces that remote clients
can use to call local objects.

April 1995 Hewlett-Packard Journal 89



=i

hpdocp1d: smallinteger(inegen==quolientr rominteger:
hpdocpld: Smalllntegers=/

hpdocpl4: ShapesO==setShape:by:

local: ShapePO==shapeChanged

Iocal: DependencyTransfomers=update:with:rom
Iocal: DependentsCollectionz>update:withfram

Open a debugger where you
can trace the full stack on all
involved machines.

->

=

<

step send

shapeChanged
“my shape has changed. Inform my semantic”

self semantic setShape: shape value hy: self.

Step through the code. >

self update
I |
= Bl
x e |
—————————— A" HPShape (local Shape3S0) Al
self I| I|
dependents | |
accessCont [ .
abjectld s | - |
rperiéipclz;;g oo A remate "ShapeSem” T
assistant ) gonandents
. . ;Ei'ila”me- builder
Inspect objects in the debugger o enl] PP eventchanr || St
or open inspectors on any of the builder eventSuppli 1 wiswport
h semantic shape state
objects, regardless of the system viewlnk || L viewpane
they are running on. 7| viepert | testvien
1 style
| wigwparent
windowdtitle
| = accessContr]
shape
calor
Inspectors ————» | TTTTTTTT i i i
P = +  Fig. 7. Screens associated with a
- T remote debugger.

the entire distributed execution context, including communi- ¢ User object. This object contains information held about end

cation between images. Fig. 7 shows using the debugger to
step through code and inspect objects that might be located
anywhere in a distributed environment.

Stripping Tool. To prepare an application for delivery, devel-
opers use the HP Distributed Smalltalk stripping tool to re-
move unneeded classes and interfaces and seal source code
when application development is complete. The stripping
tool’s user interface suggests likely items for removal (see
Fig. 8).

User Services
User services allow developers to build a desktop or office
environment and control activities during a session.

System Objects. HP Distributed Smalltalk supports a variety of *©

system objects: user, session, clipboard, wastebasket, and
orphanage.

| osTSEWpper | ]

Select classes 1o be removed:

Autioso A
BookCaseFO
BookCase50
v ChartPO 1
[v Charts0
Checker - .
ClaimPO Stripper options
Claim30 O Remove compiler classes
CliphoardPO
Cliphoard30 O Remove extra classes
[ e ar [ Remove *do it’, ‘print it’, “inspect’
DadBenchmark
DaAComponentTest
DaAcontainer?O
DadcontainersO
DadmappedContainerPO
DAaAmappedContainerso i

Repository hint Strip system create files | |[ Exit I

Fig. 8. Interface for the HP Distributed Smalltalk stripping tool.

920 April 1995 Hewlett-Packard Journal

users of the system including who they are, how to contact
them, and so on. User objects may be included by reference
in other objects. For example, a user might include a busi-
ness card in a memo that would enable the receiver to get
in touch with the sender.

Session object. All the information required about the state
of a user’s environment, including user login, preferences,
layout, and so on are contained in a session object. The
session object also supports the notion of workspaces, with
the potential for developing richer workspace environments.
It has no icon on the desktop but it interacts with and sup-
ports other application objects.

Clipboard. This is a container for objects that are being cut,
moved, or copied from one location to another.
Wastebasket. This container receives objects that users throw
away. The wastebasket can be cleared when it gets too full.
Orphanage. This is a container for holding objects that are
no longer needed.

Security. Developers can use or extend HP Distributed Small-
talk’s access control services in the applications they build,
setting controls for host systems, users, or both. Host-system
access control lets developers determine whether an image
can receive messages from another system. User-level access
control lets a developer determine whether a given user has
any one of several kinds of privileges (e.g., read or write
privilege) for a given object.

Developers can administer access control programmatically
or from the default user interface.

Example Code

While all HP Distributed Smalltalk code is available to read,
reuse, or extend, the default user interface and certain sam-
ple applications may be the best place to start.

[ Hewlett-Packard Company 1995



fction Edit  Object View Tester Help

Fig. 9. The screen for presenting the office metaphor and some
typical objects in an office.

User Interface. HP Distributed Smalltalk uses and provides
support for a user interface based on an office metaphor
which is designed for easy use and understanding. In the
default user interface, all the objects a user works with lo-
cally (folders, file cabinets, documents, and so on) are con-
tained in an office. All offices on the same system are in the
same building. Users can navigate between buildings to ac-
cess objects in other offices. Fig. 9 shows a typical office and
some of the objects available in an office.

Sample Applications. Sample applications illustrate the use of
distributed objects. For example, the Forum (Fig. 10) pro-
vides a shared window in which several users can view and
annotate a picture or document. The Notebook is a place to
store both local and remote objects on a desktop.

Users can also build their own objects from any of the sim-
ple objects available, including a table, chart, input field,

BEl

picture, and text window (see Fig. 11). The sample applica-
tions can be extended and customized to create a variety of
simple distributed applications.

Creating Applications

HP Distributed Smalltalk allows VisualWorks programmers to
create distributed applications quickly and easily. Building on
the benefits of Smalltalk and VisualWorks, HP Distributed
Smalltalk users can build CORBA-compliant applications
either from scratch or by modifying existing applications.
Like any Smalltalk application, the distributed development
process is iterative and designed for dynamic refinement.

Development. Distributed application development is a
four-step process.

1. Design and test the application objects locally.

2. Define the object interfaces and register them in the
interface repository.

3. Use HP Distributed Smalltalk’s simulated remote testing
tools (which actually use the ORB to marshall and unmar-
shall object requests) to verify the interfaces specified in the
interface repository.

4. Track messages and tune performance.

Distribution. Once an application is developed, tested, and
tuned locally, it is easy to set it up for distributed use.

5. Copy the application classes to the Smalltalk images they
will run on.

6. Update the interface repositories in these images.

The application can then run in the fully distributed environ-
ment without further change. Except for actual packet trans-
fer, the distributed application is identical to the simulated
remote application developed, tuned, and tested during
development.

Action Edit Object View Tester Help |
:I;g’
char
| I

Sales History |Gl @z R — ==

Hardw. 45 47 43 - N N

e = r Action  Edit Ohject View Tester Help

Faints 25 28 N 26 A

Lumb 27 L= ) az

Tools 15 M7 ) 23 o Title

— [
/I Labft
o~ B
0 H Label
Sales |21 Qe Q3 Q4
Hare]25 a7 |43 |48
Elect]3s (33 |31 |s6
Faintzs |26 |ep ez
Lumb (27 36 42 23
oo e 1 1
- (f'la vi Fig. 10. User interfaces to the
| 7| Page: =1 Append Page | | sample applications Forum and
! ! Notebook.

[J Hewlett-Packard Company 1995

April 1995 Hewlett-Packard Journal 91



ﬁ Delivery. Once the application is tested, developers can
Action_Edit_Object_View Tester Help deliver it to their users by stripping the environment of

[ E__-ﬁ'H unneeded objects and tools. Once stripped, the application

Sales Histon| @1 (e 03 Q4 Action  Edit Object View Tester Help
Hardy. |5 4 £ % looks exactly the same as applications developed in other
Elect. 35 33 31 36 Sales History
Panis |25 28 26 2| languages and can be executed on any supported platform,
| Lumb. 27 36 42 29 LEGENT . : . ; 0
Toos |15 7 23 i1 T m.. including: HP-UX,* SunOS/Solaris, IBM AIX, Microsoft
) e —| L Windows, Microsoft Windows NT, or IBM OS/2. Support for
- __—a_ Paints.
___/./\ - these platforms is available under a run-time license from
ok Hewlett-Packard.
o a o2 [EH] ]
X
Acknowledgements

We would like to thank the program team manager for HP
Distributed Smalltalk, William Woo, for his unflagging sup-

::Zn = ;[Erm:| port and encouragement. Dr. Jeff Eastman deserves immense

Units [Fedans | credit for designing and building the first implementation of

Description [ radians pr 350 degroes | the project. We would also like to thank the HP Distributed
Smalltalk program team in Cupertino, California and Fort

R (CEdIRICTE) E Collins, Colorado for all their contributions: Lynn Abbortt,
Jerry Boortz, Jim Borchert, Kevin Chesney, Jurgen Failensch-
mid, Warren Greving, Robert Larson, Lynn Rowley, Terry
Rudd, and Brent Wilkins.

HP-UX is based on and is compatible with Novell's UNIX" operating system. It also complies
with X/Open's* XPG4, POSIX 1003.1, 1003.2, FIPS 151-1, and SVID2 interface specifications.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a trademark of X/Open Company Limited in the UK and other countries.
Microsoftis a U.S. registered trademark of Microsoft Corporation.

~
~
-
~
~
~
~
+
>
+
+
-+
+
-
+

Windows is a U.S. trademark of Microsoft Corporation.

Fig. 11. Sample objects provided with HP Distributed Smalltalk.

92 April 1995 Hewlett-Packard Journal [ Hewlett-Packard Company 1995



