A Software Solution Broker for
Technical Consultants

A distributed client-server system gives HP’s worldwide technical
consultants easy access to the latest HP and non-HP software products

and tools for customer demonstrations and prototyping.

by Manny Yousefi, Adel Ghoneimy, and Wulf Rehder

On a typical working day an HP consultant, one of thousands
worldwide, sits down with a customer to solve a business
problem. The challenge, the customer may tell the consultant,
is to move sales data to headquarters more quickly so that
management can make timely strategic decisions. For a solu-
tion, the consultant might propose a decision support system
that integrates the customer’s older legacy system where the
sales data has been stored traditionally with a faster “ware-
house” database and easy access tools that present the in-
formation in just the form needed, right on the customer’s
desktop. “Let me show you what I mean,” the consultant
says, turning on a laptop computer (which had previously
been connected to a LAN or telephone socket). Navigating
through the windows on the screen, the consultant invites
the customer to look through a virtual shelf filled with data-
bases and access tools, all represented by icons, together
with middleware and application development toolkits (see
page 98). The consultant clicks on an icon and the tool
becomes immediately available for browsing or for self-
paced learning. From here the consultant may show one of
the demos that are included, or navigate the customer
through a hypertext document to more information, alternate
products, additional options, and prefabricated software
building blocks. No wonder that this virtual software labora-
tory is called by HP consultants, “the software sandbox.”
This consultant is actually building—from the tool and prod-
uct portfolio in front of them—a prototypical decision sup-
port system for this customer. How much of this is fantasy
and how much reality?

The answer is that it is all reality now. The software sandbox
that the consultant was starting to “play in” is called the HP
Software Solution Broker (or Broker, for short) and is avail-
able now to HP consultants. Defining and creating a deci-
sion support system is, of course, not play but serious work.
However, the ease and immediacy of the Broker, the ample
choices, and many helpful hints make even urgent business
problem solving an experimental sport. Best of all, the con-
sultant receives these products and tools, together with sup-
port and on-line documentation, free of charge. For this con-
venience, substantial research efforts had to be poured into
building such a virtual software depot, using HP’s own hard-
ware platform and the most advanced object technology.
Before explaining this implementation more systematically, it
is useful to watch our technical consultant and the customer
at work.

[J Hewlett-Packard Company 1995

Using the Software Solution Broker

To get a feeling for how the Software Solution Broker is used
we will briefly watch the technical consultant show the cus-
tomer how to build a prototypical decision support system.

After clicking on the icon in the ORB control panel, which
starts the object request broker (an action that in effect
opens the lid covering the sandbox), the consultant activates
the Software Solution Broker icon. Another window opens
offering the Broker’s classification of products, either by ven-
dor, by technology, or by product name. (Alternative paths
into the Software Solution Broker, such as a classification by
business problem, are under development.) Choosing the
i(nformation request) button for technology, the consultant
asks whether the customer wants to see database informa-
tion first or options for the user interface. As an executive,
the customer is eager to see or build a nice GUI. Clicking
on the graphic user interface 1 button brings up several
choices of which three are shown in Fig. 1. Having heard
about VisualWorks the customer selects it and is presented
with the VisualWorks Showcase.

The consultant then shows a VisualWorks demonstration to
explore with the customer what kind of data display win-
dows, control buttons, analysis tools, and other features
would be appropriate. After jotting down these initial re-
quirements the consultant is ready to build a first prototype.
The help button launches a palette of GUI building tools,
and it takes only minutes to draw an example of a transac-
tion entry tool for the transactions underlying the decision
support system the customer wants built (see Fig. 2). Here
the customer interrupts and requests that the data be shown
in spreadsheet form as well as graphically. They agree on
bar chart and pie chart presentations for a first cut and pro-
ceed to discuss the requirements for the underlying data-
base. The Software Solution Broker has a “virtual shelf” of
relational databases that work with VisualWorks, and among
these the customer may have a favorite system, or an already
installed legacy database. They again discuss the pros and
cons while viewing various product demonstrations.

We meet the customer and the consultant again after another
hour or so. By then the VisualWorks front-end tool displays
some real data pulled from a database (Fig. 3). At this point
we leave the executive’s office and describe how the Soft-
ware Solution Broker is constructed.

April 1995 Hewlett-Packard Journal 93



File Configure About

Action

Object View Help

Stop ORB |
Broker  Adel Ghoneimy

adel Ghoneimy’s Office

Clips
|

| | —
[

J||

a

Action

Object View Help

Product Classification Mode

Products can be found in th
Solution Broker through sev
schemes.

Top Level Help Topics (listed alphabe

+ By Vendaor

+ By Technology

+ By Praduct name (an
all the products in the Sand

There are two possible methads for di
hottam view of any help window.

To see the Broker's product
specific classification, open
icon in the bottom view.

METHOD 1. To digplay a topic:

1. Flace the cursor on the icon c

This category of products supports
the development a Graphic User
Interface

interest.

£. Double click the left mouse bu
3. A new window displays the cc

Fig. 1. Software Solution Broker user interface.

Constructing the Software Solution Broker

Two considerations determined the architecture and conse-
quently the implementation of the Software Solution Broker.
First, since the products on the Broker have to be accessible
worldwide but will be updated and maintained locally, the
global partitioning between distributed users and a central
server functionality called for a client/server implementation
on a wide area network (WAN). Secondly, the need to ac-
commodate many different types of clients and to be able to
encapsulate many different products in the software server
strongly suggested vendor independence (openness) and
adherence to certain industry standards such as the Common
Object Request Broker Architecture (CORBA).

Software Substrate

Here we will not focus on the WAN implementation but
instead will concentrate on the software substrate on which
the Software Solution Broker is built. In the software sub-
strate (see Fig. 4) we include the entire software kit com-
posed of server and client development tools, tools for
building the client/server interaction components of the sys-
tem, and repository tools. Repository tools are essential for
the construction of a depot that contains the information in
the system, including the logic for accessing this information.
After a careful technical analysis of five alternative complete

94 April 1995 Hewlett-Packard Journal

substrate kits, VisualWorks from ParcPlace Systems was cho-
sen as the development software for the PC, UNIX client,
and UNIX server, while HP’s Distributed Smalltalk (see ar-
ticle, page 85), which also works with VisualWorks, was the
tool of choice to build and manage the client/server interac-
tion. All system information (e.g., documentation) at this
time of writing (release 2.0) still resides with the products
and a central repository has not yet been chosen. Tools such
as Object Lens (working with VisualWorks) or HP Odapter
make relational databases look like object databases, so we
know that the selection of a repository can be made very
quickly when needed.

VisualWorks was the easy winner because it provides a com-
plete environment for the development of true graphic ap-
plications that run unchanged on UNIX-system-based, PC,
and Macintosh computers under their native windowing sys-
tems. Three of VisualWorks’ features made it especially appro-
priate for the Software Solution Broker:

VisualWorks is built on Smalltalk, a pure object-oriented

language designed for fast modular design.

* VisualWorks possesses a tested set of development tools,
including browsers for object classes, a thread-safe debug-
ger, and a change manager to track modifications to the
code, as well as an inspector for use in testing.

[ Hewlett-Packard Company 1995



|

File Browse Tools Changes Database Window Help

Action Object View Help

EBEE WEH ﬁl ]

r

DssSalesFaorm class=windowspecs
DesSalesForm class=windowspec:
T Dss3alesForm class=windowSpec

Tables

Columns

Pattern: I sh00adel.” Fetch|

0 sshdb.shO0adel. ds: | A

|

region

uarer
revenue

DataForm  Help

Model Entity View Help

Reference | Application:

D&

Class: DssSalesForm

Canvas: #windowsSpecd

- = -

Data Model: dat

Type:
—— | Map |YF' maney

hust Mot be Mull

Template: Tabular Editor

Edit Policy: When Told

= = ragion [
Dss5ale I}%D fuarter 1
- revARIIR

Ll

Entity Variahle Tahle View Help

- [T region
7 dssSale D—<b— 7 quarter
B T Irp.vp.nue

~Variable Column

Type: Type:

|

| _1 Mot Hull

| Mot Hil Length:

-1

-]

= region regian hdb.sh00adel.dss_sale
DssSale%quaner_wuane»:/
T2 B || prm < [ 2 B[ LI

Hew | Delete | Edit | Accept || cancel |

oh |

iss3ale region

Y

|dssSale quarter | dssSale rev

Fig. 2. A window within the Software Solution Broker showing VisualWorks tools for prototyping a customer application.

VisualWorks has a large class library of more than 350 types
of portable objects. These include a rich user interface de-
velopment toolkit suitable for all major windowing systems.

HP Distributed Smalltalk extends VisualWorks’ capability for
developing standalone systems into an environment for
creating distributed object systems (see Fig. 5) by adding the
following:

A full implementation of the Object Management Group
(OMG) Common Object Request Broker Architecture
(CORBA) core services

Common Object Services for life cycle operations such as
creating objects and the relationships between them
Sample application objects, for example for the modular
partitioning of client/server functionality into semantic and
presentation objects.

These objects and services for building distributed applica-
tions are portable to all platforms supported by VisualWorks.
Furthermore, they are compatible with the OMG CORBA
standards. HP’s Distributed Smalltalk provides seamless sup-
port of client/server interactions between VisualWorks

* OSF DCE is the Open Software Foundation’s Distributed Computing Environment.

[J Hewlett-Packard Company 1995

images. CORBA compliance makes our Software Solution
Broker implementation open and capable of interoperability,
for instance with C++ CORBA-compliant applications, and as
soon as HP Distributed Smalltalk is OSF DCE-compliant,*
also with DCE remote procedure calls (RPCs). For the cur-
rent release, TCP/IP or HP Sockets are being used.

Product Encapsulation

Everybody who has worked with spreadsheets, word proces-
sors, or CAD systems knows that similar or identical func-
tionality does not mean that the user interfaces and more
generally the visual, iconic, and mental models are compara-
ble. For the Software Solution Broker, too, each product has
its own artifacts and idiosyncrasies, its own look and person-
ality by which we can identify it when we see it in use or on
the shelf of a vendor. This unavoidable fact poses challenges
for the “virtual shelf” of the Broker. Without wanting to blot
out the individuality of a vendor’s offering it was the objec-
tive of the development team to minimize the effort needed
for the user to get accustomed to this diversity. Generally
speaking, the variety has to be hidden behind a simple and
consistent, product independent mode of access with uni-
form and intuitive graphical symbolism. A particular example
is the double click used consistently to launch an applica-
tion.

April 1995 Hewlett-Packard Journal 95



] | ]
| . [ —

File Browse Tools Changes Database Window Help | Action Object View Help

EBEC YEZ @ O

DssChart class=windowSpecd defined A
DssChart1 class=windowSpecs defined
DssChart class=windowSpec defined
DssChart class=windowSpec defined
| |

== |0
IE View Class Resources |
= Browse | Start Add... Remove...l Edit | 10.0% 105
[ ] Class Resources —
"~ | |DssChart A [%% windowSpec A — 34.6%
E EmbeddedDetailSpec S windowspec] ]
' ExamplesBrowser | | %% windowSpec3
ExternalDatabaselnstallation
_| |ExternalinterfaceBuilder / |
] ]
.
= 25.0%
= 60 _ 24.1%
=
=]
i)
=
T a0 12.5%
z 10.5% i
o
@ 60 6L
20 40 40 4]
a0 35
H
1] T T T
g3an J3ce 9333 acL
u ‘ W Facific Rim [ africa lUSa CIEurope []South america ‘

Fig. 3. Prototype display for a customer application constructed using the Software Solution Broker to select user interface and database
software.

Encapsulation, in the context of the Software Solution Bro- customer. This means the consultant can access editors, exe-
ker, describes a body of activities and software mechanisms cutable code, and documentation, but isn’t able to change the
that have two purposes: to integrate each product within the  internal product configuration, the way it is stored and ad-
overall product portfolio so that the consultant can use it in ministered in folders, or the source code. Because of the

its native mode, and to provide a uniform way to access the intrinsic symmetry between Software Solution Broker servers
products, their associated tools, and other artifacts. This ac- and clients (see Fig. 4) the encapsulation can be done
cessibility, it should be noted, is restricted to the features either on the server side or on the client side, provided the

and artifacts that are relevant to consulting work with the

Broker Server(s) Broker Clients

Network
—
—

Central
Repository VisualWorks VisualWorks
Object-Oriented (Server Side) (Client Side) Fig. 4. Software Solution Broker

Database software substrate, showing the
client/server architecture, the user

HP Distributed Smalltalk interface engine (VisualWorks),
and the client/server framework
. . HP Distri lltalk).
Object Request Broker TCP/IP or HP Sockets Object Request Broker (¢ istributed Smalltalk)

96 April 1995 Hewlett-Packard Journal O Hewlett-Packard Company 1995




Fig. 5. HP Distributed Smalltalk
and VisualWorks provide a full

Development Tools Database Access Other Reusable Objects
VisualWorks Canvas Oracle Building, Office, Desk
Browsers, Debugger Sybase Folder, File Cabinet,
Change Manager EDA/SQL Orphanage,
Platform Inspector Others Clipboard,
i) 3 od t Dynamic Compiler Wastebasket
e bencel Control Panel
Interface Repository Sample Applications
Browser
HP Distributed Smalltalk
Object Request Broker (ORB)
alltalk Virtual Machine
FELy) Operating Systen NIX, NeXTStep, MacOS, Windows, Windows
Dependent perating Sy: ] P, , Windows, Window:

Network: TCP/IP or HP Sockets

classes FolderPlusPO and EncapsulationDialog are present in the
client. These two classes will be discussed below.

It is the already mentioned semantic/presentation split, to-
gether with object-oriented features such as inberitance and
polymorpbism that make the encapsulation effortless. The
semantic/presentation object distribution model is HP Dis-
tributed Smalltalk’s implementation of a distributed client/
server architecture. In this model, classes always appear in
logical pairs, one representing the server semantics, the
other their presentation in the client. Consequently, the class
instances or objects also come in pairs. Take for instance the
window object. Every window is composed of two logical
parts: its shared (semantic) properties such as its rectangular
shape, and its local and personal (presentation) attributes
such as color. In general, a semantic object often has (and
controls) many different presentation objects, which in the
case of the Software Solution Broker handle the remote user
interactions, thus reducing network traffic. For instance, one
semantic data display object creates and controls different
presentations of the data as a bar chart and a pie chart in a
decision support system. HP Distributed Smalltalk allows
various modes of collaboration between the semantic and
presentation objects, including messages that are handled by
the object request broker. (For a simple but complete exam-
ple see the HP Distributed Smalltalk User’s Guide, chapter
10.)

After this abstract introduction of HP Distributed Smalltalk’s
semantic/presentation split architecture we will describe in
more concrete terms how it works for the encapsulation
procedure. As stated above, encapsulation must achieve two
goals: it has to present a graphical representation of the arti-
fact (product, tools, demos, documentation) in its native
mode to the remote client, and it must allow the remote user
to launch the artifact at the server side through this represen-
tation. HP Distributed Smalltalk has a pair of classes, MediaSO
and MediaPO, that accomplish exactly this. (The suffixes SO
and PO imply that semantic and presentation objects, respec-
tively, are spawned by these classes). Tracing the interaction
diagram between two objects of these classes we found that
there exists a ready-made method called updatePresenter, vis-
ible in the MediaSO class, that creates the remote presentation
object of a product or other artifact in the server. To custom-
ize the generic MediaSO and MediaPO classes and the method

[J Hewlett-Packard Company 1995

development and run-time
environment for distributed com-
puting.

updatePresenter for the encapsulation of specific artifacts we
first created the narrower subclasses ArtifactSO and ArtifactPO.
Then we augmented ArtifactSO with the attributes of artifacts
such as vendor and product names. Finally, using overload-
ing, we extended the method updatePresenter to include,
among several other administrative tasks, the crucial behav-
ior required for launching the artifacts while exporting their
display to the client platform.

Concurrent with this architectural design of the classes and
methods that bring about encapsulation in the Software
Solution Broker, a few product dependent steps must also
be taken. This is done at the instance or object level of every
concrete artifact (such as a product) so that it will behave in
its expected, native mode. This is a simple matter of insert-
ing the right environment variables and parameters in an
encapsulation dialog window. The required information can
easily be gleaned from the installation manual of the particu-
lar product that is being encapsulated. Finally, products,
tools, and other components are put into folders and the
encapsulation is done.

Use of Object Technology

The design and building of the Software Solution Broker
were characterized by a short development time, a minimal
amount of new coding, and a high degree of reuse. The
major reason is the application of object-oriented technol-
ogy. The object-oriented use is pervasive throughout the
design, as indicated above, but it is helpful to point to spe-
cific examples. We'll give two examples for the object-ori-
ented features inheritance and polymorphism in the context
of encapsulation.

One of the examples has just been described: the subclass
ArtifactSO of the class MediaSO inherited the method update-
Presenter, which in turn, through the feature of polymorphism,
was overloaded (that is, extended to include additional
functional behavior).

The encapsulation dialog window provides another example.
As an administrative tool, it is not available to the user. It is
an object built from a subclass of the existing HP Distributed
Smalltalk class called SimpleDialog. From this class, the win-
dow inherits characteristics such as its property to pop up in
front of other windows (it’s not obscured), its basic layout

April 1995 Hewlett-Packard Journal 97



HP Software Solution Broker Accessible Products

Vendors

 Cognos Corp.

* ParcPlace System
* XVT Software

* Itasca System

* Informix

* Neuron Data

* Sybase

« Unison Software
* ProtoSoft

* Oracle
 Dynasty

* NetLabs

Tools

HP-UX*
* Cognos Corp.
O PowerHouse 4GL 7.23
* ParcPlace System
O VisualWorks 2.0
O VisualWorks with Sybase connectivity
* XVT Software
O XVT-Design (C Developer Kits)
O XVT/XM (C Developer Kits)
O XVT-Power++
O XVT/XM (C ++ Developer Kits)
O XVT-PowerObject Pak |
* |tasca System
O ODBMS Server
© Developer Tool Suite
o C Interface
O Lisp Interface
O API Libraries (C++, CLOS, Ada)
* Informix
O Informix Online R4GL
O Informix WingZ
O Informix SE R4GL
O Informix SE ISQL
© Informix Hyperscript Tools
O Informix Online ISQL
* Neuron Data
© Smart Elements (Nexpert object)
© Smart Elements (Openedit)
© Open Interface Elements (Open edit)
O CS Elements (Openedit)
* Sybase
O SA Companion (client & server)
© SQL Monitor (client & server)
O SQL Debugger inspector
O SQL Debugger console
O SQL Data Workbench
O SQL APT Edit
O SQR Workbench (Easy SQR)
© Open Client/Server
O ISQL/SQL Server
* Unison Software
O Maestro
O Load Balancer
O Express
© RoadRunner
* ProtoSoft
O Paradigm Plus
* Oracle
* NetLabs
O Net Labs/AssetManager

O NetLabs/Vision

O NetLabs/Assist

O NetLabs/NerveCenter

O NetLabs/Manager

O NetLabs/OverLord Manager
O NetLabs/Discovery

MS Windows

« Cognos Corp.

© PowerHouse Windows 1.2E

O Axiant

O Impromptu

O PowerPlay

ParcPlace System

O VisualWorks 2.0

O VisualWorks with Sybase connectivity
XVT Software

O XVT-Design (C Developer Kits)
O XVT/Win (C Developer Kits)

O XVT-Power++

O XVT/Win (C ++ Developer Kits)
O XVT-PowerObject Pak | for MS Windows
Itasca System

© ODBMS Server

O API Libraries (C++)

Informix

O New Era

Neuron Data

O Smart Elements (Nexpert object)
O Smart Elements (Openedit)

© Open Interface Elements (Open edit)
O CS Elements (Openedit)
Sybase

O Net-Library

© Open Client /C

O SQL Monitor Client

O SQR Workbench

O APT Execute

ProtoSoft

O Paradigm Plus

Oracle

Dynasty Technologies

O Dynasty

NetLabs

O NetLabs/Vision DeskTop

Artifacts

« Cognos Corporation
O QUICK Application
O QUIZ Application
© PDL Application
O QDESIGN Application
O QTP Application
O QUTIL Application
O PDL And Utilities Reference Manual
O PowerHouse for UNIX — Primer
ParcPlace System
O Product Overview
* XVT Software
O Product Overview
O XVT Design Tutorial
O XVT Database Demo
O XVT-Power++ Overview
O XVT-Power++ Demo Guide
O XVT Power ++ Earth Demo
* |tasca System

* Informix
© Product Overview
© Informix R4GL Demo
© Six demos with source codes
© Informix ISQL Demo
© Informix Hyperscript Demo
Neuron Data
© Product Overview
© Notepad Widget example with source files
© Pack example with source files
© Print widget example with source files
O Resize widget example with source files
© Resource Picker example with source files
O Scripting example with source files
o Scroll area usage example with source files
o Scroll bar usage with source files
o Sliders usage with source files
© Special widget example with source files
O String search example with source files
O Text edit validation example with source files
© Windows MD example with source files
© Alert Windows example with source files
© Browsex example with source files
© Browsinc example with source files
© Cbox example with source files
O Chart example with source files
© Clock Widget example with source files
O C++ Notepad widget example with source files
© Drag drop example with source files
© Draw example with source files
© DropDown pale example with source files
© File manager example with source files
O File name translator example with source files
O File Picker example with source files
O Floating window example with source files
O Cantt chart example with source files
© Help engine example with source files
O Help viewer example with source files
© ICON generator example with source files
o List Box example with source files
O Local drag drop example with source files
© Menu example with source files
© Multiple font text example and source code
© Notepad example with source files
 Sybase
O SyBooks
© APT Demo
O Compute example with source files
O Csr_disp example with source files
© i18n example with source files
O blktxt example with source files
© Five other examples with source files
« Unison Software
* ProtoSoft
* Oracle
 Dynasty
* NetLabs

HP-UX is based on and is compatible with Novell's UNIX"
operating system. It also complies with X/Open’s* XPG4,
POSIX 1003.1, 1003.2, FIPS 151-1, and SVID2 interface
specifications.

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company
Limited.

X/Open is a trademark of X/Open Company Limited in the UK
and other countries.

MS Windows is a U.S. trademark of Microsoft Corporation.

98 April 1995 Hewlett-Packard Journal

[ Hewlett-Packard Company 1995



with a text box and O.K. and cancel buttons, and its link to
a value holder that holds the environmental variables,
names, and other information needed for the encapsulation.
The only method needed in addition to inherited ones is the
one requesting the encapsulation parameters mentioned
above.

The same procedure, that is, the use of predefined classes
and thus minimal coding, applies to HP Distributed Small-
talk’s folders containing the encapsulated product with its
tools and other artifacts. The HP Distributed Smalltalk class
FolderPO (PO indicates it is the folder class spawning presenta-
tion objects) has a method windowMenu, which creates a win-
dow with several pop-up menus that have labels such as
Action, Edit, and so on. For a subclass of FolderPO called Folder-
PlusPO, these properties of windowMenu are inherited, but win-
dowMenu is also changed (while keeping the same name), by
the addition of a method artifactCreate and its label in one of
the pop-up menus of windowMenu. The method artifactCreate is
responsible for the inner workings of the encapsulation dia-
log window mentioned above.

Development Methodology

Funding for the Software Solution Broker project was subject

to the condition that the development team find, justify, and
implement a design that brings the tools to the consultants in
the fastest possible way with the least amount of resources,

including development, maintenance, and support resources.

At the same time, every released version, even the very first
one, had to find immediate user acceptance. Based on these
stipulations the team chose a development method that is a

hybrid of iterative prototyping and the Fusion method.

Our reasons for favoring iterative prototyping over a classical
software design paradigm that starts with a complete specifi-
cation (such as the so-called waterfall model) were:

Time constraints. There are never enough engineer-months

to write a complete specification, implement and test it into

production strength.!

Constraints imposed by the intrinsic nature of the Software

Solution Broker tool we were building, that is:

O Client-side usability. The GUI that was eventually chosen
is the result of repeated testing by potential users to
achieve maximum ease of use and intuitiveness, and this
amount of trial-and-error cannot be specified in advance.

O Tool accessibility. The different products on the virtual
shelf have different behaviors and their own requirements
for resources and administration, and creating the encap-
sulation process again requires much experimentation and
gradual maturation based on experience that cannot be
specified a priori.

O Using the object paradigm. The software substrate chosen
(HP Distributed Smalltalk with VisualWorks) is well-suited
for the rapid development of GUI and client/server
applications.

Based on these considerations, our overall approach was
that of evolutionary prototyping, in which a fully functional
prototype is ushered through repeated refinement steps into
a production-strength end product. We realize that often a
prototype leads only to an executable specification or a vali-
dated model, not a high-quality, stable product. However, in
our case the sophisticated framework of HP Distributed

[J Hewlett-Packard Company 1995

Smalltalk with its semantics/presentation split and Visual-
Works with its Model View Controller ensured full function-
ality and high quality at each refinement step because we
reused the existing, high-quality code (including the library
of classes) and very sparingly added new, thoroughly tested
code, preferably as instances (objects) of the existing class
library.

Fusion Method

While iterative prototyping can be seen as a software devel-
opment philosophy that is primarily dictated by business
requirements such as time to market, break-even time, or
optimal return on investment, the Fusion method? was de-
veloped with the goal of creating a language independent,
comprehensive, software project management method.
Being a systematic object-oriented development method, it
blends well with our software substrate, which we chose
based on openness, compliance with industry standards,
ease of use, and the ability to separate the server (semantics)
from the remote clients (presentation). The Fusion method
emphasizes a modular design process in clearly demarcated
phases, so it synchronizes well with the iterative prototyping
approach, which requires the repetition and refinement of
certain development stages without impacting others. Fur-
thermore, the Fusion method insists that a software develop-
ment process of the complexity encountered today must
cover the entire software development life cycle. The Fusion
method’s phased development process served as the blue-
print for the Software Solution Broker. It can be summarized
as follows?2 (our italics):

Starting from a requirements document, the analysis phase
produces a set of models that provide a declarative descrip-
tion of the required system behavior. The analysis models
provide high-level constraints from which the design models
are developed. The design phase produces a set of models
that realize the system behavior as a collection of interacting
objects. The implementation phase shows how to map the
design models onto implementation-language constructs.

In our hybrid approach we take an early, loosely defined
functional prototype as our initial requirements definition
(an executable specification), to be modified and refined in
subsequent iterations through the three phases of analysis,
design, and implementation. After each of these phases a
review of the phase outputs is conducted by the develop-
ment team in conjunction with users. The results of this
audit are prioritized and, if deemed important, incorporated
into the prototype which, through several of such review
loops, evolves after a full cycle into the production product.
(For details about the outputs mentioned and the complete
Fusion process breakdown see reference 2, especially
Appendix A.)

In summary, the two complementary methods of iterative
prototyping and Fusion serve two main purposes. First, at
the end of each prototyping cycle a fully functional produc-
tion-strength product is released. Second, the three Fusion
phases—analysis, design, and implementation—of every
cycle are independent of the phases in another cycle. There-
fore, we are in effect working towards several releases at the
same time (see Fig. 6).

April 1995 Hewlett-Packard Journal 99



Cycle 2

Cycle 1

4 System Model 1 System Model 2
=
E Identify Product Set 1 Identify Product Set 2
Identify Classes 1 Identify Classes 2
Loop . Loop .
Review Review

Design Product Model 1 Design Product Model 2

Design Encapsulation
Classes 1

Loop

Design Encapsulation
Classes 2

Loop

Design

Review Review

Encapsulate Product Set 1 Encapsulate Product Set 2

é Integrate (Folders 1) Integrate (Folders 2)

©

5 Test Test

£ Loop . Loop .

K] Review Review

g

- Release Release

Fig. 6. Software Solution Broker development used iterative proto-
typing and the Fusion method, resulting in parallel development
cycles.

Customizing the Software Solution Broker

In addition to being a productivity tool and a hub of product
expertise for HP’s technical consultants, the Broker can be
customized to meet the business needs of end customers as
well. To sketch how such a customization can be done using
the object-oriented framework of HP Distributed Smalltalk,
imagine a vendor of CAD (computer-aided design) software.
Rather than offering shrink-wrapped software packages on
the shelves of the store the retailer wants to offer customers
an environment where they can, by navigating through vir-
tual shelves, choose interesting products and “test drive”
them in the store before deciding what to buy.

For an end customer such as the CAD software vendor, the
Broker can be customized by mapping the particular cus-
tomer requirements into several levels of design complexity.
These levels describe in technical terms what level of inter-
vention into the framework of HP Distributed Smalltalk is
needed to alter and customize the existing classes and meth-
ods. On the lowest level, the requirements fit the HP Distrib-
uted Smalltalk framework exactly, and the system can be
built from existing classes without change. A higher level of
intervention would be needed to construct the Software
Solution Broker for the CAD software vendor. Slight modifi-
cations of core services (relating to containment and life
cycle semantics), in addition to class augmentation and over-
loading of methods, would be recommended. Working with
predefined, well-documented levels of intervention that are
necessary to meet a customer’s requirements has the advan-
tage of communicating to the customer in advance, during
the analysis and before system design begins, how much
reuse of the framework is possible, and how much non-
framework augmentation is necessary. Intervention levels are
thus not only technical assessments but also indicators of the
final costs for the system.

100 April 1995 Hewlett-Packard Journal

Conclusion

The Software Solution Broker was not a typical client/server
application development project. We were not primarily con-
cerned about two-tier or three-tier architectures, about ob-
jects per se, about the one “right” programming language, or
about coding. In fact, we went the opposite route. Based on
the working requirements of HP’s technical consultants and
our own analysis of how consultants work with customers,
we resolved to translate these requirements into a system
built from distributed objects. The building, however, con-
sisted mainly in the skillful choice of existing classes and the
exploitation of HP Distributed Smalltalk’s framework. The
novelty in our approach lies not in the coding of new struc-
tures, but in the extensive application of reuse. In fact,
whenever new code seemed required, we took it as a warn-
ing that further analysis was needed to look for prefabricated
code within the framework of HP Distributed Smalltalk. This
simple principle, essential for a fast time to market, also
guaranteed a short turnaround time and high quality.

Through its first two releases, 1.0 and 2.0, the Software Solu-
tion Broker can be viewed as a distributed productivity tool
offering three overlapping types of services. These three
types can be described metaphorically as a virtual software
shop for the display of individual products, a consultative
workbench or simulated classroom for studying and experi-
menting with several collaborating products, and a virtual
demo center with remote satellite offices where the technical
consultants can build prototypes and create demos for a
customer. Looked at from a broader perspective, however,
the Software Solution Broker architecture and implementa-
tion are, with small customization, also ideal for other, re-
lated applications that require one (or a few) persistent cen-
ters and many locally distributed and individually presented
clients. One example is software distribution. Another is the
establishment of a worldwide software application develop-
ment lab where each satellite group can develop its own
part locally, check it in with a central repository where it is
available to the other satellites, and participate remotely in
the integration of the parts into a system. Furthermore, ob-
ject technology, with its concept of containers, makes avail-
able compound documents (text, picture, voice, video, etc.)
that can be employed also on the nontechnical side of busi-
ness as vehicles for elaborate project proposals and other
communication with business customers—for instance, to
propose a solution by showing a video of a prior, successful
installation (this would take the place of a paper document
of reference sites). In this role, the Software Solution Broker
can be a worldwide business solutions exhibit and a conve-
nient repository for a portfolio of repeatable solutions from
which the customer, advised by a consultant, can select
products the way we now choose from mail-order catalogs.

Acknowledgments

A project survives by the benevolent patience of its sponsors,
the enthusiasm of the project team, and the acceptance of the
receiving customers. In the case of the Software Solution
Broker we've tried to justify this benevolence by turning our
research ideas into a useful tool in the shortest possible time.

[ Hewlett-Packard Company 1995



This feat was only possible with the support of our managers
David Kirkland and Sherry Harvey. Special thanks are due
Chu Chang, general manager of the Professional Services
Division, for his encouragement. We are also very grateful
for the contributions and for the heated (but object-ive) dis-
cussions with friends and partners from many HP’s entities.
Nothing, however, would have happened without the quick
and thorough feedback from our customers, the technical
consultants in the field. The Software Solution Broker is ded-
icated to them.

[J Hewlett-Packard Company 1995

References

1. E.P. Brooks, The Mythical Man-Month: Essays in Software Engi-
neering, Yourdon Press, Englewood Cliffs, 1982.

2. D. Coleman, et al, Object-Oriented Development—The Fusion
Method, Prentice Hall, 1994.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open* Company Limited.

X/Open is a trademark of X/Open Company Limited in the UK and other countries.

April 1995 Hewlett-Packard Journal 101



