An Integrated Graphics Accelerator for
a Low-Cost Multimedia Workstation

Designing with a system focus and extracting as much performance and
functionality as possible from available technology results in a highly
integrated graphics chip that consumes very little board area and power
and is 50% faster and five times less expensive than its predecessor.

by Paul Martin

The graphics subsystem of the Model 712 workstation is a
high-performance, low-cost solution that sits directly on the
system bus of the Model 712 and consists of the graphics
chip, a video RAM-based frame buffer, and a few support
chips (see Fig. 1). The project goals closely reflect those of
the overall HP 9000 Model 712 program. In priority order
these goals were:

Very low manufacturing cost

Leadership graphics performance at entry cost levels
Architectural compatibility

Compelling new functionality.

Achieving these goals required a major step in the evolution
of HP entry-level graphics workstation hardware. Two philos-
ophies helped the team responsible for the graphics chip
achieve these goals. The first guiding philosophy was to
design with a system-level focus. We examined all required
functionality to decide whether it was best to implement it in

PA 7100LC

Graphics
Subsystem

Cache

General System Connect (GSC) Bus

Monitor

LASI Chip
(I0)

Graphics
Chip

Fig. 1. A block diagram of the essential components that make up
the HP 9000 Model 712 workstation.

[J Hewlett-Packard Company 1995

the graphics subsystem, the host processor, or some combi-
nation of the two.

The second philosophy was to extract as much performance
and functionality as possible from readily available technol-
ogy. We avoided leading-edge technology because of the cost
implications. We did make an attempt to use all the features
and performance available in mature technologies such as
video RAMs (VRAMs) and HP’s CMOS26B IC process.

This article describes the features and functionality of the HP
9000 Model 712 graphics subsystem. The considerations that
went into accomplishing the goals mentioned above are also
described.

Architectural Compatibility

The CRX window accelerator card?t introduced by HP in
1991 marked the beginning of a standardized graphics hard-
ware architecture for window system acceleration.! This ar-
chitecture was chosen for its simplicity of implementation
and for the clean model it presents to the software driver
developers. One of our fundamental design decisions was to
accelerate key primitives only—a RISC approach. Many ear-
lier controllers chose to accelerate a large gamut of graphical
operations such as ellipses, arithmetic pixel operations, and
so on. Graphics subsystems designed with these controllers
were typically expensive and exhibited only moderate win-
dow system performance. In the CRX and subsequent accel-
erators, including the Model 712’s graphics chip, we decided
to accelerate a carefully chosen smaller set of primitives,
which are described in the following sections.

Block Transfer. Writing pixels from system memory to the
frame buffer or reading from the frame buffer to system
memory is a block transfer (see Fig. 2). Writes are used to
transfer image data to the frame buffer. Reads are used pri-
marily to save portions of the screen temporarily obscured
by pop-up menus (see Fig. 2b).

t A window accelerator is the hardware that provides the images seen on the workstation
monitor. In particular, an accelerator is geared toward speeding up environments such as
the X Window System. The window accelerator enables the fast movement of windows on
the screen, scrolling of text, painting of window borders and backgrounds, and so on.

April 1995 Hewlett-Packard Journal 43

System Memory System Memory

Frame Buffer

L=

Frame Buffer

'

(@) (b)

Fig. 2. (a) Block transfer write. (b) Block transfer read. Window B
obscures window A. The obscured area is stored in system memory
for restoration when the area of window A is exposed.

Block Move. A block move involves transferring pixels from
one rectangular area in the frame buffer to another (possibly
overlapping) area in the frame buffer (Fig. 3). This is very
useful for moving windows on the screen and scrolling lines
of text within a window. The block move in the graphics
chip supports Boolean operations on the data being moved,
such as highlighting text by complementing colors.

Vectors. The ability to draw vectors (line segments) very
quickly is a requirement of design applications such as sche-
matic capture and mechanical design (Fig. 4). Thus, the
graphics chip has a high-performance vector generator that
creates X Window System-compliant line segments.

Fast Text. Characters are accelerated by the graphics chip
because of their pervasive use in window systems and the
large potential for performance improvement over software-
only solutions. A character is defined as a rectangular array
of pixels that contains only two colors called foreground and
background colors. Because there are only two choices, a
single bit is sufficient to specify the color of each pixel in a
character. This improves performance by reducing the
amount of data that is transmitted from the processor to the
graphics chip. For example, the hp character in Fig. 5 requires
only 8 bytes of data versus 48 bytes if this optimization had
not been made.

Rectangular Area Fill. This primitive is widely used by window
systems to generate window borders, menu buttons, and so
on (Fig. 6). It is also important for applications such as
printed circuit board layout and IC physical design. Rectan-
gular areas can be patterned using two colors or contain
only a single color. Hardware acceleration again gives a
large speedup over software-only solutions.

Cursor. Until the late 1980s when hardware cursors started
appearing in video ICs, screen cursors were typically gener-
ated using software routines. Hardware support is a good
trade-off because the circuitry is relatively simple, and a sys-
tem without hardware acceleration can spend a significant
portion of its time updating the cursor. A 64-by-64-pixel,
two-color cursor is supported directly in the graphics chip.

Frame Buffer

A ™~
N

Fig. 3. Block move. Rectangular area A is moved to a new, possibly
overlapping location.

44 April 1995 Hewlett-Packard Journal

Frame Buffer

Fig. 4. Vector primitive. A vector is drawn by turning on successive
pixels using the Bresenham algorithm.

More complex functionality such as wide lines, circles and
ellipses, and 3D primitives are not accelerated directly by the
graphics chip because the application performance im-
provement was determined to be too low for the cost of
implementation. These functions can be efficiently imple-
mented in software. This is an example of the system-level
design trade-offs mentioned above.

An important aspect of this standardized architecture is
software leverage. It is estimated that several software engi-
neering years were saved on the graphics chip because the
architecture is virtually identical to that of the CRX graphics
subsystem. The savings in software engineering time was
applied to tuning and adding new functionality instead of
rewriting drivers.

Graphics Chip Operation

To get a better understanding of the operation of the graphics
chip let’s follow a graphics primitive through the block dia-
gram shown in Fig. 7. A vector is a good example because it
involves all of the blocks in the chip. Assume we have a
vector that starts at x,y coordinates 0,0, is 8 pixels long, and
has a slope of 1/2.

First, several parameters are calculated to set up the vector
in the graphics chip. This is done by graphics software (e.g.,
the X Window System) running on the PA 7100LC CPU. The
high-level specification of a vector is:

e Starting X,y coordinate
* Ending x,y coordinate.

System Memory

A O T
SIS K ATAC IS
SHQBQRUIIRAPI

j Frame Buffer
1 =Foreground Color e
0 =Background Color — @
x =Not Affected P -
| >
~
7
7
/
7
7

Fig. 5. Fast text primitive. A character is a rectangular array contain-
ing two colors, foreground and background colors. Only a single bit
is needed to specify each color.

[Hewlett-Packard Company 1995

This data is transferred across the GSC bus, through the GSC
interface, and into a set of registers in the macro function
unit. If these registers are already in use by the macro func-
tion unit the data is placed in a 32-word-deep FIFO buffer
that the unit can access when it becomes free. This increases
efficiency by allowing overlap between the software and
hardware processes. The macro function unit’s basic job is to
break down the high-level descriptions of graphics primi-
tives such as vectors, text, and rectangles into a series of indi-
vidual requests to draw pixels.

Drawing the vector is automatically triggered when the last
of the parameters described in the specification is written
into the macro function unit. The macro function then steps
its way along the vector using the Bresenham algorithm? and
issues requests to draw pixels. Since the slope of our vector
is 1/2, the y-coordinate is incremented after every two steps
along the x-axis as indicated in Fig. 8.

One might expect that a separate x- and y-address would be
specified for each pixel to be written. However, with vectors

System Bus (GSC)

Video Block

GSC
Interface

Video
Controller

Macro
Function
Unit

Color
Recovery
Decode

Color
Lookup
Table #1

Color
Lookup
Table #2

Data

Red
B Green
Blue

Formatter

Frame Buffer Controller

To Random Ports

Frame Buffer

Random Port
VRAM
(2M Bits)
Video Port

VRAM
(2M Bits)

VRAM
(2M Bits)

VRAM
(2M Bits)

Optional Frame Buffer Memory

VRAM
(2M Bits)

VRAM VRAM

(2M Bits)

VRAM
(2M Bits)

(2M Bits)

Frame Buffer
[——1n

Fig. 6. Rectangular area fill primitive. A rectangle is defined by
corner, width, and height. Color or pattern may be applied.

there is excellent coherence between successive x- and y-ad-
dresses as pixels are drawn sequentially along the vector.
Thus, there are special bus cycles between the macro func-
tion unit and the data formatter that specify that the previous
x- or y coordinate should be incremented or decremented to
generate the new coordinate. This saves sending a full x,y
coordinate pair for each pixel drawn and significantly im-
proves bandwidth use on the bus. This optimization is also
useful for other primitives such as text and rectangles.

To Monitor

From Video Ports

[J Hewlett-Packard Company 1995

Fig. 7. A block diagram of the
components inside the graphics
chip.

April 1995 Hewlett-Packard Journal 45

Increment y

| 3 oo 1
|

0 1 2 3 5 6 7 8

X Axis — >

Fig. 8. Pixel representation of a vector that starts at coordinate 0,0,
is 8 pixels long, and has a slope of 1/2.

The data formatter’s job is to take requests and data from the
macro function unit and format them in a way that is best
for the frame buffer. In the case of our vector, the pixel ad-
dresses received by the data formatter are coalesced into
rectangular tiles that are optimized for the frame buffer. The
data formatter also recognizes when special VRAM modes
may be enabled to improve performance, based on the se-
quence of data it receives from the macro function unit. For
example, page mode (which is described in more detail later
in this article) would be enabled during a vector draw. The
data formatter also stores the current pixel address, vector
color, and a host of other parameters for other primitives.

The frame buffer controller generates signals for the VRAMs
based on the requests from the data formatter. The controller
looks at the sequence of writes and reads requested and
adjusts the timing on the VRAM signals to maximize perfor-
mance. For our vector, we only need to do simple writes
into the frame buffer, and cycles can be as fast as 37.5 ns per
pixel. More complex primitives might require data to be
read, modified, and written back, possibly to a different
frame buffer location.

The graphics chip supports an 8-bit-per-pixel frame buffer.
This means that, using normal techniques, only 256 colors
can be displayed simultaneously. This is not always ade-
quate for today’s graphics-oriented systems. Two methods
can be employed to increase the perceived number of colors.
The first is dithering, in which an interleaved pattern of two
available colors is used to visually approximate a requested
color that is not directly available. The second approach is
color recovery. Color recovery is visually superior to dither-
ing and is described later.

The Model 712’s entry-level configuration frame buffer uses
four 2M-bit VRAM parts which allows screen resolutions of
up to 1024 by 768 pixels. Adding four more VRAM chips on a
daughter card enables screen resolutions up to 1280 by 1024
pixels.

In addition to the screen image data, data for the cursor,
color lookup table, and attributes are stored in offscreen
frame buffer memory. This is an area in the video RAM
frame buffer that is never directly displayed on the CRT.
Data in this region is accessed in exactly the same fashion as
the screen image data, presenting a consistent interface to
software driver writers.

At this point our vector exists in the frame buffer, but cannot
be seen by the user. The video block is responsible for

46 April 1995 Hewlett-Packard Journal

getting the screen image data from the frame buffer and
converting it for display on the monitor. This display process
is asynchronous to the rendering process which placed our
vector in the frame buffer.

To get the data in the frame buffer to the monitor, the video
controller first sends a request to the frame buffer controller
to access the frame buffer data. This data is requested in
sequential or scan-line order to match the path of the beam
on the monitor. Next, the data from the frame buffer is run
through a color lookup table to translate the 8-bit values into
8 bits each of red, green, and blue. The graphics chip sup-
ports two independent color lookup tables which are selected
on a per-displayed-pixel basis by the attribute data. This fea-
ture helps eliminate color contention between applications
sharing the frame buffer. Finally, cursor data is merged in by
the video block and the digital video stream is converted to
analog signals for the monitor.

This completes an overview of the life of a vector primitive,
from a high-level description in the software driver to dis-
play on the monitor. This basic data flow is the same for
other primitives such as rectangles and text.

Low Manufacturing Cost

Low cost was the primary objective for the graphics chip
design. As a measure of our success, the manufacturing cost
for the Model 712 graphics subsystem is 1/3 the cost of the
original CRX graphics subsystem. In addition, the entry-level
1024-by-768-pixel version of the graphics chip costs five
times less than the CRX subsystem.

These cost reductions were achieved primarily through an
aggressive amount of integration, which is summarized in
Fig. 9. The graphics chip represents the culmination of a
series of optimizations of the CRX family, combining almost
the entire GUI (graphical user interface) accelerator onto a
single chip. The only major function not currently integrated
is the frame buffer. Frame buffer integration is not feasible
today because RAM and logic densities are not quite high
enough and there is currently a cost advantage to using
commodity VRAM parts.

Since the introduction of the CRX subsystem, industry trends
such as denser and cheaper memory and inexpensive IC
gates have contributed to cost reductions in graphics hard-
ware. However, the graphics chip’s high level of integration
also contributes cost reductions in the following areas:

* Elimination of value-priced parts. The color lookup table

and the digital-to-analog converter (DAC) have traditionally
been an expensive component of the graphics subsystem.
This is especially true for systems capable of high resolution
(1280 by 1024 pixels, 135 MHz) and having multiple color
lookup tables, such as the one built into the graphics chip.
The digital phase-locked loop in the graphics chip replaces
another expensive external part.

* The density of FETs achieved with the graphics chip, over

4500/mm?, is significantly higher than with previous genera-
tions. This is important because silicon area is a major
contributor to overall design cost.

* IC packaging and testing contribute significantly to the cost

of each chip in a system. Reducing the number of chips elim-
inates this overhead. The graphics chip has a full internal
scan path and many internal signature registers to reduce
test time and chip cost significantly.

[Hewlett-Packard Company 1995

Data Formatter and
Frame Buffer Controller

Bus Interface and
Macro Function Unit

Graphics Subsystem,
Date of Introduction,
and HP 9000 Models

CRX/GRX
March 1991
720/730/735

C
September 1991
705/710

C
August 1992
715/725

HC
January 1994
712

Graphics
Chip

e Printed circuit board area is a significant system cost. The
elimination of a large number of chips not only reduced the
printed circuit board area from about 60 in? for the CRX to
14 in? for the graphics subsystem in the Model 712, but
allowed the graphics to be integrated directly onto the
motherboard, eliminating connectors, a bulkhead, and other
mechanical components.

* Power consumption for the graphics subsystem in the Model

712 is only six watts. This low power consumption reduces

power supply capacity and cooling requirements and there-

fore cost.

Manufacturing costs associated with parts placement, test,

and rework are proportional to the number of discrete com-

ponents in a system. The graphics chip and and other chips
in the Model 712 include JTAG (IEEE 1149.1) capability and
signature generators to reduce the cost of printed circuit
board test.

Several factors made this high level of integration practical.
First, improved VLSI capabilities such as increased FET den-
sity, decreasing wafer costs and the availability within HP of
video DAC technology. Secondly, the desktop availability of
design and simulation tools capable of handling a model of
over 300,000 gates and 500,000 transistors. VLSI design and
verification were accomplished on HP 9000 Series 700 work-
stations using Verilog, Synopsys, and many in-house IC de-
velopment tools. The performance of the workstations al-
lowed the gate-level simulation of entire video frames (1/60
s of operation) of over 1.2 million pixels, which was the first
time this was accomplished within HP.

Performance

The integration described above has also resulted in signifi-
cant performance benefits. The two major reasons for the
performance benefits are wider buses and increased clock
rates.

Wider buses are possible between blocks when they are on
the same piece of silicon. Wider buses allow better commu-
nication bandwidth at a given clock rate, with very little cost
impact. A good example on the graphics chip is the much
improved communication between the macro function unit
and the data formatter which once existed as separate chips.

[J Hewlett-Packard Company 1995

Video Block Frame Buffer
RAM
EEEEER
Color Lookup EEEEEN
Table + DAC EEEEEE
with Cursor EEmmmE
Increasing
Density
Color Lookup
Table + DAC
with Cursor EEEEEE
EEEEER
Color Lookup
Table + DAC
with Cursor
EEEEER
sEmm Fig. 9. The evolution of HP’s
O\‘/’Sgr’\‘ﬂa' graphical user interface (GUI)
oooo accelerator.

Increased clock rates are possible because of the elimination
of chip-to-chip synchronization delays, pad delays, and
printed circuit board trace delays. This compounds the band-
width benefit of wider buses. HP’s CMOS26B technology
allows the bus interface, macro function unit, and frame
buffer controller blocks of the graphics chip to operate at 80
MHz while the three DACs and two color lookup tables of
the video block operate at 135 Mhz.

Intelligent system-level design also made major contributions
to performance. A simple example is the block transfer com-
mands which are responsible for transferring data from sys-
tem memory to the graphics chip and its frame buffer. A
special mode was introduced to the memory and I/O con-
troller in the PA 7100LC which allows fast sequential double-
word transfers without incurring the overhead of two single-
word transfers. This simple change boosted block transfer
performance by 50%.

Besides designing with a system-level focus, the other
driving philosophy was to extract as much performance and
utility as possible from available technology. A good example
of this is the use of the advanced features available in the
latest 2M-bit and 4M-bit VRAMs. HP has been instrumental in
proposing and driving many of these enhancements within
the JEDEC committee over the last few years. The more im-
portant features include:

* Page mode. This feature eliminates the need to send redun-

dant portions of the pixel address when writing into the
frame buffer. The result is that many operations can write a
pixel in as little as 37.5 ns versus the more typical 70 ns (see
Fig. 10). The key here is that these operations must occur
within a page of VRAM or a significant penalty is incurred.
By default this page is long and narrow, which is good for
block move and block transfer operations but bad for ran-
domly oriented vectors and rectangles. To achieve a better
performance balance, we made use of the next feature.
Stop register/split transfer. This feature allows the frame
buffer to be organized in pages that are more square than
long and narrow. Moving to this organization improves ran-
dom vector and small rectangle performance significantly
while only slightly reducing large horizontal primitive
performance (see Fig. 11).

April 1995 Hewlett-Packard Journal 47

Page Mode

Nonpage Mode

11 Cycles
First Pixel 137.5ns First Pixel 11 Cycles
137.5ns
Second Pixel 3Cycles
ird Pi 37.5ns Second Pixel 11 Cycles
Third Pixel for Each 1375ns
Fourth Pixel Pixel
Time Total
20 Cycles DI 11 Cycles
250 ns at 80 MHz Third Pixel 1375ns
: 11 Cycles
Fourth Pixel
ourth Pixe } 137515

Total
44 Cycles
550 ns at 80 MHz

Fig. 10. An illustration of the performance improvement possible
using the page mode to write pixels into the frame buffer. This ex-
ample compares the performance of each mode when just four
pixels are transferred to the frame buffer.

Block write. As mentioned earlier, operations such as text
and rectangular fill frequently require only one or two colors
to be selected on a per-pixel basis. For this reason VRAMs
provide a mode (via a single bit) in which a pixel’s color
can be selected from an 8-bit foreground or background
color stored in the VRAMs. This translates into an 8x perfor-
mance improvement for these types of operations.

The graphics chip’s performance is summarized in Table L.
The table compares the performance of the graphics chip at
its theoretical hardware limit to its performance in 80-MHz
and 60-MHz Model 712 workstations and the Model 720
CRX. The final row in Table I, Xmark, is an industry-standard
metric that is an average of several hundred X Window Sys-
tem tests.

Note that the graphics chip’s hardware limit is significantly
higher than the Model 712 system performance limits. This
headroom means that future systems with higher levels of
CPU performance or even more highly tuned software drivers
will be capable of even better window system performance.

Table |
Summary of the Graphics Chip’s Performance
Benchmark Hard- Model Model CRX
ware 712/80 712/60 720
Limit
Block transfer 8-bit 96M O60M 5S2M 42M
pixels/s (frame buffer to
system memory)
Block transfer 8-bit 20 M M 8 M 2M
pixels/s (system memory
to frame buffer)
Block move pixels/s 47M 40M 31M 40M
(frame buffer to frame
buffer, 500 by 500 pixels)
Vectors/s (10-pixel, X 21 M 14M 11M 11M
compliant)
Text characters/s (6 by 1.0M 681k 38k 295k
13 pixels/character)
Rectangles/s (10 by 10 17M 790k 588k 270k
pixels/rectangle)
Xmark — 7.9 6.0 5.6

Compelling Functionality

Beyond improving performance and dropping cost substan-
tially it was an important goal to include useful new func-
tionality in the graphics chip. Below are some of the more
important additions.

Software Video Support. One of the design goals for the Model
712 was to be able to play MPEG and H.261 video se-
quences without expensive hardware acceleration. Through
careful analysis of the decoding process it became clear that
this was possible at full frame rates and high visual quality
using a combination of the following algorithmic, PA 7100LC,
and graphics enhancements:

Rewriting the standard decode algorithms to make them as
efficient as possible

Adding key instructions to the PA 7100LC

Implementing YUV-to-RGB color space conversion in the
graphics chip.

With Stop Register

Page Is
256 Pixels Wide by
8 Pixels High

Page

Page

Page - 17

Page

Page

Page

Page

Page -—>

Page

I

I

Page

Total Cycles to
Draw a 10-Pixel Vector:
11+(4x3)+11+(4x3) = 46

48 April 1995 Hewlett-Packard Journal

Without Stop Register

Page Is
1024 Pixels Wide by
2 Pixels High

11
I

11
I

Total Cycles to
Draw a 10-Pixel Vector:
11+(11+3)+(11+3)+(11+3)+(11+3)+11 = 78

Fig. 11. Improving performance
with frame buffer pages that are
more square than long and
narrow.

[Hewlett-Packard Company 1995

Graphics Chip

True Color 24 Bits HP Color HP Color 24 Bits
Primitive or Recovery Recovery
Bitmap Data Encode Decode

Frame Buffer
(8 Bits per Pixel)

YUV encoding is used in many video formats. It allocates
proportionately more bits to encode the brightness or lumi-
nance (Y) of the image, and fewer bits to represent the color
(UV) in the image. Since the human eye is more sensitive to
brightness than color, this is an efficient scheme. However,
since the graphics chip’s frame buffer is stored in RGB for-
mat, a conversion from YUV to RGB is necessary.

This conversion is a good example of an operation that was
relatively expensive in software (a 3-by-3 16-bit matrix multi-
ply) but simple to do in the the graphics chip hardware. This
simple addition alone improves video playback performance
by as much as 30% and helps enable full 30-frame/s
320-by-288-pixel resolution MPEG playback on a Model
712/80.

HP Color Recovery. The graphics chip incorporates a new dis-
play technology called HP Color Recovery. Using a low-cost
8-bit frame buffer and HP Color Recovery, the graphics chip
can display images that are in many cases visually indistin-
guishable from those of a 24-bit frame buffer costing three
times more. This feature is useful for the following applica-
tion areas:

Visual multimedia (JPEG, MPEG, etc.)

Shaded mechanical CAD models

Geographical imaging system

Document image management

Visualization

High-quality business graphics.

A block diagram of the HP Color Recovery pipeline is shown
in Fig. 12.

The HP Color Recovery encoding scheme causes no loss of
performance for rendering operations and is related to tradi-
tional ordered dithering. Dithering is widely used to approxi-
mate a large number of colors with an 8-bit frame buffer and
is also available in the graphics chip.

The HP Color Recovery decode is much more sophisticated
and based on advanced signal processing techniques. This
circuitry cycles at 135 MHz and achieves over 9 billion op-
erations per second. HP Color Recovery is described in more
detail in the article on page 51.

Multiple Color Lookup Tables. Typically, entry-level workstation
and personal computer graphics subsystems have had only a
single color lookup table with a limited number of entries,
usually 256. In the X Window System this results in the an-
noying flashing of backgrounds or window contents when a
new application is started that takes colors from existing

[J Hewlett-Packard Company 1995

Analog RGB

Monitor

True Color

Image

Fig. 12. The HP Color Recovery
pipeline.

applications. The graphics chip solves this problem in a ma-
jority of cases by providing two 256-entry color maps. For
most interactions in which the user is focused on a single
application and the window manager, this completely elimi-
nates the resource contention and results in a visually stable
screen (see Fig. 13).

Software Programmable Resolutions. One of the problems of
past workstation graphics subsystems is that they operate at
a fixed video resolution and refresh rate. This has posed
problems in configuring systems at the factory and during
customer upgrades. The graphics chip incorporates an ad-
vanced digital frequency synthesizer that generates the
clocks necessary for the video subsystem. This synthesizer,
based on HP proprietary digital phase-locked loop technol-
ogy, allows software configurability of the resolution and
frequency of the video signal. Thus, alternate monitors can be
connected without changing any video hardware. Currently
supported configurations include:

* 640 by 480 pixels 60 Hz, standard VESA timing
* 800 by 600 pixels 60 Hz
* 1024 by 1024 pixels 75 Hz and flat panel

1280 by 1024 pixels 72 Hz.

As new monitor timings appear, the graphics chip can sim-
ply be reprogrammed with the parameters associated with
the new monitor.

Summary

We created the graphics chip with the philosophies of system-
level-optimized design and optimal use of technology. This
enabled us to meet our goals of very low manufacturing
cost, leadership performance at our cost point, architectural
compatibility, and introduction of some important new
functionality.

Acknowledgments

This paper briefly summarizes the work of many dedicated
and creative members of the graphics chip development team
in the graphics hardware and software laboratories in Fort
Collins and the Integrated Circuits Business Division. Many
thanks to Harry Baeverstad, Tony Barkans, Raj Basudev,
Dale Beucler, Rand Briggs, Joel Buck-Gengler, Mike Diehl,
Ales Fiala, Randy Fiscus, Dave Maitland, Bob Manley, Dave
McAllister, Peter Meier, John Metzner, Brian Miller, Gordon
Motley, Donovan Nickel, Cathy Pfister, Larry Thayer, Brad
Reak, Cal Selig, James Stewart, and Gayvin Stong for their
exceptional efforts.

49

April 1995 Hewlett-Packard Journal

HEWLETT
| 5 et

Fig. 13. Comparison between
single and multiple color lookup
tables. (a) One color lookup
table. (b) Two color lookup
tables.

References 2. J. Bresenham, “Algorithm for Computer Control of a Digital Plot-
1. D. Rhoden and C. Wilcox, “Hardware Acceleration for Window ter,” IBM System Journal, Vol. 4, no. 1, 1965, pp. 25-30.

Systems,” Proceedings of SIGGRAPH ’89, in Computer Graphics, Vol.

23, no. 9, July 1989, p. 67.

50 April 1995 Hewlett-Packard Journal O Hewlett-Packard Company 1995

