Real-Time Software MPEG Video
Decoder on Multimedia-Enhanced PA

7100LC Processors

With a combination of software and hardware optimizations, including the
availability of PA-RISC multimedia instructions, a software video player
running on a low-end workstation is able to play MPEG compressed video

at 30 frames/s.

by Ruby B. Lee, John P. Beck, Joel Lamb, and Kenneth E. Severson

Traditionally, computers have improved productivity by
helping people compute faster and more accurately. Today,
computers can further improve productivity by helping
people communicate better and more naturally. Towards this
end, at Hewlett-Packard we have looked for more natural
ways to integrate communication power into our desktop
machines, which would allow a user to access distributed
information more easily and communicate with other users
more readily.

We felt that adding audio, images, and video information
would enrich the information media of text and graphics
normally available on desktop computers such as work-
stations and personal computers. However, for such en-
riched multimedia communications to be useful, it must be
fully integrated into the user’s normal working environment.
Hence, as the technology matured we decided to integrate
increasing levels of multimedia support into both the user
interface and the basic hardware platform.

In terms of user interface, we integrated a panel of multi-
media icons into the HP VUE standard graphical user inter-
face, which comes with all HP workstations. These multi-
media icons are part of the HP MPower product.! HP
MPower enables a workstation user to receive and send
faxes, share printers, access and manipulate images, hear and
send voice and CD-quality stereo audio, send and receive
multimedia email, share an X window or an electronic white-
board with other distributed users, and capture and play back
video sequences. The HP MPower software is based on a
client/server model, in which one server can service around
20 clients, which can be workstations or X terminals.

In terms of hardware platforms, we integrated successive
levels of multimedia support into the baseline PA-RISC work-
stations.23:4 First, we integrated support for all the popular
image formats such as JPEG (Joint Photographic Experts
Group)t compressed images.> Then, we added hardware
and software support for audio, starting with 8-kHz voice-
quality audio, followed by support for numerous audio for-
mats including A-law, pu-law, and 16-bit linear mode, with up
to 48-kHz mono and stereo. This allowed high-fidelity,
44.1-kHz stereo, 16-bit CD-quality audio to be recorded,

t JPEG is an international digital image compression standard for continuous-tone (multilevel)
stillimages (grayscale and color).

60 April 1995 Hewlett-Packard Journal

manipulated, and played back on HP workstations. At the
same time, we supported uncompressed video capture and
playback.

In January 1994, HP introduced HP MPower 2.0 and the
entry-level enterprise workstation, the HP 9000 Model 712,
which is based on the multimedia-enhanced PA-RISC proces-
sor known as the PA 7100LC.%7:8 The video player integrated
in the MPower 2.0 product is the first product that achieves
real-time MPEG-1 (Moving Picture Experts Group)? video
decompression via software running on a general-purpose
processor. Typically real-time MPEG-1 decompression is
achieved via special-purpose chips or boards. Previous at-
tempts at software MPEG-1 decompression did not attain
real-time rates.10 The fact that this is achieved by the low-
end Model 712 workstation is significant.

In this paper, we discuss the support of MPEG-compressed
video as a new (video) data type. In particular, we discuss
the technology that enables the video player integrated into
the HP MPower 2.0 product to play back MPEG-compressed
video at real-time rates of up to 30 frames per second.

Digital Video Standards

We decided to focus on the MPEG digital video format be-
cause it is an ISO (International Standards Organization)
standard, and it gives the highest video fidelity at a given
compression ratio of any of the formats that we evaluated.
MPEG also has broad support from the consumer electronics,
telecommunications, cable, and computer industries. The
high compression capability of MPEG translates into lower
storage costs and less bandwidth needed for transmitting
video on the network. These characteristics make MPEG an
ideal format for addressing the need for detail in the video
used in technical workstation markets and computer-based
training in commercial workstation markets.

MPEG is one of several algorithmically related standards
shown in Fig. 1. All of these digital video compression stan-
dards use the discrete cosine transform (DCT) as a funda-
mental component of the algorithm. Alternatives to discrete
cosine-based algorithms that we looked at include vector
quantization, fractals, and wavelets. Vector quantization

[Hewlett-Packard Company 1995

International
Video
Standards

__ Nonstandard
Video Format

H.261(P*64),
H.320
JPEG
I I |nternational

Image Standard

Fig. 1. Digital video standards based on the discrete cosine trans-
form.

algorithms are popular on older computer architectures be-
cause they require less computing power to decompress, but
this advantage is offset by poorer image quality at low band-
width (high compression) compared to MPEG for practical
vector quantization methods. Algorithms based on wavelet
and fractal technology have the potential to deliver video
fidelity comparable to MPEG, but there is presently a lack of
industry consensus on standardization, a key requirement for
our use.

Another advantage of a high-performance implementation of
MPEG is the ability to leverage the improvements to the
other DCT-based algorithms. Although the relationships
shown in Fig. 1 do not represent a true hierarchy of algo-
rithms is useful for illustrating increased complexity as one
moves from JPEG to MPEG-2, or from H.261 to MPEG-2.

All of these formats have much in common, such as the use
of the DCT for encoding. The visual fidelity of the algorithms
was the key selection criterion and not ease of implementa-
tion or performance on existing hardware.

Although JPEG supports both lossy and lossless compres-
sion, the term JPEG is typically associated with the lossy
specification.t The primary goal of JPEG is to achieve high
compression of photographic images with little perceived
loss of image fidelity. Although it is not an ISO standard, by
convention, a sequence of JPEG lossy images to create a
digital video sequence is called motion JPEG, or MJPEG.

H.261 is a digital video standard from the telecommunica-
tions standards body ITU-TSS (formerly known as CCITT).
H.261 is one of a suite of conferencing standards that make
up the umbrella H.320 specification. H.261 is often referred
to as P*64 (where P is an integer) because it was designed to
fit into multiples of 64 kbits/s bandwidth. The first frame

T Inlossless compression, decompressed data is identical to the original image data. In lossy
compression, decompressed data is a good approximation of the original image data.

(image) of an H.261 sequence is for all practical purposes a
highly compressed lossy JPEG image. Subsequent frames are
built from image fragments (blocks) that are either JPEG-like
or are differences from the image fragments in previous
frames. Most video sequences have high frame-to-frame co-
herence. This is especially true for video conferencing. Be-
cause the encoding of the movement of a piece of an image
requires less data than an equivalent JPEG fragment, H.261
achieves higher visual fidelity for a given bandwidth than
does motion JPEG. Since the encoding of the differences is
always based on the previous frames, the technique is called
Sforward differencing.

The MPEG-1 specification goes even further than H.261 in
allowing sophisticated techniques to achieve high fidelity
with fewer bits. In addition to forward differencing, MPEG-1
allows backward differencing (which relies on information in
a future frame) and averaging of image fragments. (Forward
and backward differencing are described in more detail in
the next section.) MPEG-1 achieves quality comparable to a
professionally reproduced VHS videotape even at a single-
speed CD-ROM data rate (1.5 Mbits/s).?11 MPEG-1 also
specifies encodings for high—fidelity audio synchronized with
the video.

MPEG-2 contains additional specifications and is a superset
of MPEG-1. The new features in MPEG-2 are targeted at
broadcast television requirements, such as support for frame
interleaving similar to analog broadcast techniques. With
widespread deployment of MPEG-2, the digital revolution for
video may be comparable to the digital audio revolution of
the last decade.

The approximate bandwidths required to achieve a level of
subjective visual fidelity for motion JPEG, H.261, MPEG-1,
and MPEG-2 are shown in Fig. 2. Motion JPEG will primarily
be used for cases in which accurate frame editing is impor-
tant such as video editing. H.261 will be used primarily for
video conferencing, but it also has potential for use in video
mail. MPEG-1 and MPEG-2 will be used for publishing,
where fidelity expectations have been set by consumer ana-
log video tapes, computer-based training, games, movies on
CD, and video on demand.

MPEG Compression

MPEG has two classes of frames: intracoded and non-
intracoded frames (see Fig. 3). Intracoded frames, also called
I-frames, are compressed by reducing spatial redundancy
within the frame itself. I-frames do not depend on compari-
sons with past or “reference” frames. They use JPEG-type
compression for still images.>

Fig. 2. Compressed video band-
width versus subjective visual
fidelity. The ideal format achieves

. Uses
30,000 + w@
1 Production and Broadcast
@ 10,000 MPEG-Z}
1] -
S 3,000 Computer-Based Training,
= 1,000 MPEG-1 Analysis, and Monitoring
2 a0l H.261
g
3 100 T Conferencing and Video Mail
30T
Ideal Format
10 -
Poor Adequate Good Very Good Excellent Exceptional

Visual Fidelity

[J Hewlett-Packard Company 1995

exceptional visual fidelity at the
lowest bandwidth.

April 1995 Hewlett-Packard Journal 61

Forward Prediction

NN AN AN AN NN

Bidirectional Prediction
. |=Intracoded Frame (Like JPEG)
. P=Predicted Frame
D B =Bidirectionally Predicted Frame

Nonintracoded frames are further divided into P-frames and
B-frames. P-frames are predicted frames based on compari-
sons with an earlier reference frame (an intracoded or pre-
dicted frame). By considering temporal redundancy in addi-
tion to spatial redundancy, P-frames can be encoded with
fewer bits. B-frames are bidirectionally predicted frames that
require one backward reference frame and one forward ref-
erence frame for prediction. A reference frame can be an
I-frame or a P-frame, but not a B-frame. By detecting the
motion of blocks from both a frame that occurred earlier and
a frame that will be played back later in the video
sequence, B-frames can be encoded in fewer bits than I- or
P-frames.

Each frame is divided into macroblocks of 16 by 16 pixels
for the purposes of motion estimationt in MPEG compression
and motion compensation in MPEG decompression. A frame
with only I-blocks is an I-frame, whereas a P-frame has P-
blocks or I-blocks, and a B-frame has B-blocks, P-blocks, or
I-blocks. For each P-block in the current frame, the block in
the reference frame that matches it best is identified by a
motion vector. Then the differences between the pixel values
in the matching block in the reference frame and the current
block in the current frame are encoded by a discrete cosine
transform.

The color space used is the YCbCr color representation
rather than the RGB color space, where Y represents the
luminance (or brightness) component, and Cb and Cr repre-
sent the chrominance (or color) components. Because
human perception is more sensitive to luminance than to
chrominance, the Cb and Cr components can be subsampled
in both the x and y dimensions. This means that there is one
Cb value and one Cr value for every four Y values. Hence, a
16-by-16 macroblock contains four 8-by-8 blocks of Y, and
only one 8-by-8 block of Cb and one 8-by-8 block of Cr
values (see Fig. 4). This is a reduction from the twelve
8-by-8 blocks (four for each of the three color components)

t Motion estimation uses temporal redundancy to estimate the movement of a block from one
frame to the next.

62 April 1995 Hewlett-Packard Journal

Fig. 3. MPEG frame sequencing.

if Cb and Cr were not subsampled. The six 8-by-8 blocks in
each 16-by-16 macroblock then undergo transform coding.

Transform coding concentrates energy in the lower fre-
quencies. The transformed data values are then quantized by
dividing by the corresponding quantization coefficient. This
results in discarding some of the high-frequency values, or
lower-frequency but low-energy values, since these become
zeros. Both transform coding and quantization enable further
compression by run-length encoding of zero values.

Finally, the nonzero coefficients of an 8-by-8 block used in
the discrete cosine transform can be encoded via variable-
length entropy encoding such as Huffman coding. Entropy
encoding basically removes coding redundancy by assigning
the code words with the fewest number of bits to those co-
efficients that occur most frequently.

XX XX XX XX‘XX XX XX XX
XX XX XX XX‘XX XX XX XX
XX XX XX XX‘XX XX XX XX
XX XX XX XX\XX XX XX XX
XX XX XX XOX\XOX XX XX XX
XX XX XX XX\XX XX XX XX
XX XX XX XX\XX XX XX XX
XX XX XX XX XX XX XX XX
XX XX XX XOX\XOX XX XX XX
XX XX XX XX\XX XX XX XX
XX XX XX XX[XX XX XX XX
XX XX XX XX\XX XX XX XX
XX XX XX XX‘XX XX XX XX
XOX XOX XOX XOX‘XOX XOX XOX XOX
XX XX XX XOX‘XOX XX XX XX
XX XX XX XX‘XX XX XX XX
X = Luminance (Y)

0 = Chrominance (Cb, Cr)

Fig. 4. Subsampling of the chrominance components (Cb, Cr) with
respect to the luminance (Y) component.

O Hewlett-Packard Company 1995

MPEG Decompression

MPEG decompression reverses the functional steps taken for
MPEG compression. There are six basic steps involved in
MPEG decompression.

1. The MPEG header is decoded. This gives information such
as picture rate, bit rate, and image size.

2. The video data stream is Huffman or entropy decoded
from variable-length codes into fixed-length numbers. This
step includes run-length decoding of zeros.

3. Inverse quantization is performed on the numbers to
restore them to their original range.

4. An inverse discrete cosine transform is performed on the
8-by-8 blocks in each frame. This converts from the frequency
domain back to the original spatial domain. This gives the
actual pixel values for I-blocks, but only the differences for
each pixel for P-blocks and B-blocks.

5. Motion compensation is performed for P-blocks and B-
blocks. The differences calculated in step 4 are added to the
pixels in the reference block as determined by the motion
vector for P-blocks and to the average of the forward and
backward reference blocks for B-blocks.

6. The picture is displayed by doing a color conversion from
YCbCr coordinates to RGB color coordinates and writing to
the frame buffer.

Methodology

Our philosophy was to improve the algorithms and tune the
software first, resorting to hardware support only if neces-
sary. We set a goal of 10 to 15 frames/s for software MPEG
video decompression because this is the rate at which mo-
tion appears smooth rather than jerky.

We started by measuring the performance of the MPEG soft-
ware we had purchased. This software initially took two
seconds to decode one frame (0.5 frame/s) on an older
50-MHz Model 720 workstation. This decoding was for video
only and did not include audio. Profiling indicated that the
inverse discrete cosine transform (step 4) took the largest
chunk of the execution time, followed by display (step 6),
followed by motion compensation (step 5). The decoding of
the MPEG headers was insignificant.

With this data we set out to optimize every step in the
MPEG decompression software. After we applied all the al-
gorithm enhancements and software tuning, we measured
the MPEG decode software again. While we had achieved an
order of magnitude improvement, the rate of 4 to 5 frames/s
was not sufficient to meet our goal.

Hence, we looked at possible multimedia enhancements to
the basic PA-RISC processor and other system-level enhance-
ments that would not only speed up MPEG decoding, but
also be generally useful for improving performance in other
computations. In addition, any chip enhancements we added
could not adversely impact the design schedule, complexity,
cycle time, and chip size of the PA-RISC processor we were
targeting, the PA 7100LC, which was already deep into its
implementation phase at the time. The PA 7100LC is de-
scribed in detail in the article on pagel2.

We approached this problem by studying the distribution of
operations executed by the software MPEG decoder. Then,

[J Hewlett-Packard Company 1995

we found ways to reduce the execution time of the most
frequent operation sequences. The application of algorithm
enhancements, software tuning, and projected hardware
enhancements was iterated until we attained our goal of
being able to decompress at a rate greater than 15 frames/s
via software.

Algorithm and Software Optimizations

In terms of MPEG video algorithms, we improved on the
Huffman decoder, the motion compensation, and the inverse
discrete cosine transform. A faster Huffman decoder based
on a hybrid of table lookup and tree-based decoding is
used. The lookup table sizes were chosen to reduce cache
misses. For motion compensation, we sped up the pixel
averaging operations.

For the inverse discrete cosine transform, we use a faster
Fourier transform, which significantly reduces the number of
multiplies for each two-dimensional 8-by-8 inverse discrete
cosine transform. In addition, we use the fact that the 8-by-8
inverse transform matrices are frequently sparse to further
reduce the multiplies and other operations required.

The MPEG audio decompression is also done in software.
This algorithm was improved by using a 32-point discrete
cosine transform to speed up the subband filtering.12

In terms of software tuning, we “flattened” the code to re-
duce the number of procedure calls and returns, and the
frequent building up and tearing down of contexts present
in the original MPEG code. We also did “strength reductions’
like reducing multiplications to simpler operations such as
shift and add or table lookup.

’

The last column of Table I shows the percentage of execu-
tion time spent in each of the six MPEG decompression steps
after the algorithm and software tuning improvements were
made. The first two columns of Table I show the millions of
instructions executed in each of the six decompression steps
and the percent of the total instructions executed (path
length) each step represents. The input video sequence was
an MPEG-compressed clip of a football game. The total time
taken was 7.45 seconds on an HP 9000 Model 735 99-MHz
PA-RISC workstation, with 256K bytes of instruction cache
and 256K bytes of data cache.

Table |
Instructions and Time Spent in each MPEG Decompression Step
on an HP 9000 Model 735

Millions of ~ Path Length Time (%)
Instructions (%)
Header decode 0.6 0.1 0.1
Huffman decode 55.3 10.2 7.5
Inverse quantization 8.7 1.6 2.4
Inverse discrete 206.5 38.3 38.7
cosine transform
Motion 79.9 14.8 18.3
compensation
Display 188.7 35.0 33.0
Total 539.7 100.0 100.0

April 1995 Hewlett-Packard Journal 63

The largest slice of execution time (38.7%) and the largest
chunk of instructions executed (38.3%) were still the inverse
discrete cosine transform. We studied the frequencies of ge-
neric operations in this group and attempted to execute
them faster. This resulted in new PA-RISC processor instruc-
tions for accelerating multimedia software.

PA-RISC Processor Enhancements

The new processor multimedia instructions implemented in
the PA 7100LC processor allow simple arithmetic operations
to be executed in parallel on subword data in the standard
integer data path. In particular, the integer ALU is partitioned
so that it can execute a pair of arithmetic operations in a
single cycle with a single instruction. The arithmetic opera-
tions accelerated in this way are add, subtract, average, shift
left and add, and shift right and add. The latter two opera-
tions are effective in implementing multiplication by con-
stants.

PA-RISC Multimedia Extensions 1.0. The PA 7100LC PA-RISC
processor chip contains some instructions that operate inde-
pendently and in parallel on two 16-bit data fields within a
32-bit register. These operations are independent in that bits
carried or shifted out of one of the fields never affects the
result in the other field. These operations occur in parallel in
that a single instruction computes both 16-bit fields of the
result. Table II summarizes these instructions.

HADD does two parallel 16-bit additions on the left and the
right halves of registers ra and rb, placing the two 16-bit re-
sults into the left and right halves of register rt.

HSUB does two parallel 16-bit subtractions on the left and
right halves of registers ra and rb, placing the two 16-bit re-
sults into the left and right half of register rt.

Both HADD and HSUB perform modulo arithmetic (modulus
216) that is, the result wraps around from the largest number
back to the smallest number and vice versa. This is the usual
mode of operation of twos complement adders when over-
flow is ignored.

HADD and HSUB also have two saturation arithmetic options.
With the signed saturation option, HADD.ss, both operands
and the result are considered signed 16-bit integers. If the
result cannot be represented as a signed 16-bit integer, it is
clipped to the largest positive value (215-1) if positive over-
flow occurs, or it is clipped to the smallest negative value
(-215) if negative overflow occurs.

With the unsigned saturation option, HADD.us, the first operand
(ra) is considered an unsigned 16-bit integer, the second
operand (rb) is considered a signed 16-bit integer, and the
result (in rt) is considered an unsigned 16-bit integer. If the
result cannot be represented as an unsigned 16-bit integer, it
is clipped to the largest unsigned value (210-1) if positive
overflow occurs, or it is clipped to the smallest unsigned
value (0) if negative overflow occurs.

The signed saturation and unsigned saturation options for
parallel halfword subtraction are defined similarly.

HAVE, or halfword average, gives the average of each pair of
halfwords in ra and rb. It takes the sum of parallel halfwords
and does a right shift of one bit before storing each 16-bit
result into rt. During the one-bit right shift, the carry is

64 April 1995 Hewlett-Packard Journal

Table Il
PA-RISC Multimedia Instructions in PA 7100LC
ra contains al; a2
rb contains b1; b2
rt contains t1; t2

Instruction Parallel Operation
HADD ra,rb,rt t1 = (al+h1) mod216;
t2 = (a2+h2) mod21,
HADD.ss ra,rb,rt t1 =IF (al+b1) > (215-1) THEN (215-1)
ELSEIF (al+b1) < 215 THEN (-215)
ELSE (altbl);
t2 =IF (a2+b2) > (215-1) THEN (215-1)
ELSEIF (a2+b2) < —215 THEN (-215)
ELSE (a2+h2);
HADD.us ra,rb,rt t1 =IF (al+b1) > (216-1) THEN (216-1)
ELSEIF (al+b1) < 0 THEN O
ELSE (al+b1);
12 =IF (a2+b2) > (216-1) THEN (216-1)
ELSEIF (a2+h2) < 0 THEN 0
ELSE (a2+h2);
HSUB ra,rb,it t1 = (al-b1) mod216;
12 = (a2-b2) mod216;
HSUB.ss ra,rb, 1t t1 =IF (al-b1) > (215-1) THEN (215-1)
ELSEIF (a1-b1) < —215 THEN (-219)
ELSE (al-b1);
t2 =IF (a2-b2) > (215-1) THEN (215-1)
ELSEIF (a2-h2) < —215 THEN (-215)
ELSE (a2-b2);
HSUB.us ra,rb,rt t1=IF (al-b1) > (216-1) THEN (216-1)
ELSEIF (a1-b1) < 0 THEN 0
ELSE (al-b1);
t2 =IF (a2-b2) > (216-1) THEN (216-1)
ELSEIF (a2-b2) < 0 THEN 0
ELSE (a2-b2);
HAVE ra,rb,rt tl = (al+h1)/2;
t2 = (a2+h2)/2;
HSLKADD ra,k,rb,rt t1 = (al<k) + b1;
t2 = (a2«k) + b2;
(fork=1,2,0r3)
HSRKADD ra,k,rb,rt t1=(al>>k) + b1,

12 = (a2>>k) + b2;
(fork=1,2,0r3)

ss = signed saturation option

us = unsigned saturation

shifted in on the left and unbiased rounding* is performed on
the least-significant bit on the right. Because the carry is
shifted in, no overflow can occur in the HAVE instruction.

HSLKADD, or halfword shift left and add, allows one operand
to be shifted left by k bits (where k is 1, 2, or 3) before
being added to the other operand.

HSRKADD, or halfword shift right and add, allows one oper-
and to be shifted right by k bits (where k is 1, 2, or 3), be-
fore being added to the other operand.

Both HSLKADD and HSRKADD use signed saturation.

* Unbiased rounding means that the net difference between the true averages and the averages
obtained after unbiased rounding is zero if the results are equally distributed in the result range.

[Hewlett-Packard Company 1995

Saturation Arithmetic. In saturation arithmetic a result is said to
have a positive overflow if it is larger than the largest value
in the defined range of the result. It is said to have a nega-
tive overflow if it is smaller than the smallest value in the
defined range of the result. If the saturation option is used
for the HADD and HSUB instructions, the result is clipped to
the maximum value in its defined range if positive overflow
occurs and to the minimum value in its defined range if neg-
ative overflow occurs. This further speeds up the processing
because it replaces using about ten instructions to check for
positive and negative overflows and performs the desired
clipping of the result for a pair of operations in one instruc-
tion.

Saturation arithmetic is highly desirable in dealing with pixel
values, which often represent hues or color intensities. It is
undesirable to perform the normal modulo arithmetic in
which overflows wrap around from the largest value to the
smallest value and vice versa. For example, in 8-bit pixels, if
0 represents black and 255 represents white, a result of 256
should not change a white pixel into a black one, as would
occur with modulo arithmetic. In saturation arithmetic, a
result of 256 would be clipped to 255.

Effect on MPEG Decoding. These parallel subword arith-
metic operations significantly speed up several critical parts
of the MPEG decoder program, especially in the inverse dis-
crete cosine transform and motion compensation steps. More
than half of the instructions executed for the inverse trans-
form step are these parallel subword arithmetic instructions.
Their implementation does not impact the processor’s cycle
time, and adds less than 0.2% of silicon area to the PA
7100LC processor chip. Actually, the area used was mostly
empty space around the ALU, so that these multimedia en-
hancements can be said to have contributed to more effi-
cient area utilization, rather than adding incremental chip
area. See “Overview of the Implementation of the Multi-
media Enhancements” on page 66.

Since the PA 7100LC processor has two integer ALUs, we
essentially have a parallelism of four halfword operations
per cycle. This gives a speedup of four times, in places
where the superscalar ALUs can be used in parallel. Because
of the built-in saturation arithmetic option, speedup of cer-
tain pieces of code is even greater.

System Optimization

The second longest functional step (see Table I) in MPEG
decompression was the display step. Here, we leveraged the
graphics subsystem to implement the color conversion step
together with the color recovery already being done in the
graphics chip.” Color conversion converts between color
representations in the YCbCr color space and the RGB color
space. Color recovery reproduces 24-bit RGB color that has
been color compressed into 8 bits before being displayed.
Color compression allows the use of 8-bit frame buffers in
low-cost workstations to achieve almost the color dynamics
of 24-bit frame buffers. This leveraging of low-level pixel
manipulations close to the frame buffer between the graph-
ics and video streams also contributed significantly to the
attainment of real-time MPEG decompression. Color recovery
and the graphics chip are described in the articles on pages
51 and 43, respectively.

[J Hewlett-Packard Company 1995

Other PA 7100LC processor enhancements streamline the
memory-to-I/O path. By having the memory controller and
the I/O interface controller integrated in the PA 7100LC chip,
overhead in the memory-to-frame-buffer bandwidth is re-
duced. Overhead in the processor-to-graphics-controller-chip
path is also reduced for both control and data.

Path Length Reduction

Table III shows the same information as Table I but for the
low-end Model 712 workstation which uses the multimedia-
enhanced PA 7100LC processor and the graphics chip
mentioned above.

Table IlI
Instructions and Time Spent in each MPEG Decompression Step
on a Model 712 Workstation

Millions of ~ Path Length Time (%)
Instructions (%)
Header decode 0.60 0.2 0.3
Huffman decode 55.0 16.1 14.5
Inverse quantization 8.9 2.6 4.5
Inverse discrete 138.5 40.6 34.4
cosine transform
Motion 74.8 21.9 25.6
compensation
Display 63.0 18.5 20.7
Total 340.8 100.0 100.0

The Model 712 executes consistently fewer instructions than
the Model 735 for the same MPEG decompression of the
same video clip. It is also faster in MPEG decompression
even though it operates at only 60% of the 99-MHz rate of
the high-end Model 735 and has only one eighth of the
cache size. This shows the performance benefits from the
path length reduction enabled by the PA-RISC processor and
system enhancements for multimedia acceleration.

Performance

The performance of the PA-RISC architectural enhancements
and the leveraging of the graphics subsystem for video de-
compression can be seen in Fig. 5. This data is for a

3BT 33.1
30
25

20

Frames/s

15

10 1

Model 715
50 MHz

Model 735
99 MHz

Model 712
60 MHz

Model 712
80 MHz

Fig. 5. Maximum MPEG decode frame rates for different models of

HP 9000 Series 700 workstations. These rates are for a 352-by-240-
pixel clip that was encoded at 30 frames/s.

April 1995 Hewlett-Packard Journal 65

Overview of the Implementation of the PA 7100LC Multimedia Enhancements

One goal in adding the multimedia instructions was to minimize the amount of new
circuits to be added to the existing ALUs and to minimize the impact on the rest of
the CPU. This goal was accomplished. The only circuit changes to the CPU were
in the ALU data path and decoder circuits. These instructions reuse most of the
existing functionality and very small modifications and additions were required to
implement them.

All of the new instructions implemented require two 16-bit adds or subtracts to be
done in parallel. The existing ALU adder was modified to provide this functionality.
These instructions required that the existing 32-bit adder be conditionally split into
two 16-bit halves without sacrificing the performance of the 32-bit add. Conceptu-
ally this is equivalent to blocking the carry from bit 16 to bit 15 in a ripple-carry
adder. To accomplish this, we made the following modifications.

The ALU adder is similar to a carry lookahead adder. The first stage of the adder
calculates a carry generate and a carry propagate signal for each single bit in the
adder. In this case, 32 single-bit generate and 32 single-hit propagate signals are
calculated. These single-bit carry generate and carry propagate signals are used
in subsequent stages of the carry chain to calculate carry generate and carry
propagate signals for groups of bits.

The 32-bit adder was divided into two 16-bit halves between bits 15 and 16 by
providing alternate signals for the carry generate and carry propagate signals
from bit 16 (Fig. 1). The new generate and propagate signals from bit 16 are
created with a two-input multiplexer. When a 32-bit addition or subtraction is being
performed, the multiplexer selects the original generate and propagate signals
to be passed onto the next stage of the carry chain. When 16-bit addition or
subtraction is being performed the multiplexer selects the value for generate and
propagate from the second input which is false (logical 0) for additions and true
(logical 1) for subtractions.

The new generate and propagate signals can be forced to be false for instructions
requiring halfword addition. This stops the carry from being generated by bit 16 or

Carry Chain Outputs
S50

Carry
Lookahead
Logic

LSB

dddd dddddd

Carry Chain Inputs

A[16] Old Gen[16]
B[16] Gen[16]
16-Bit Carry-in
A[16] (0 for Add,

Old Gen[16]
B[16] Dl for Subtract)

Al16] :. Old Prop[16] A[16] 0Old Prop[16]
B[16] B[16] Prop[16]
16-Bit Carry-i
(0 for Add,

1 for Subtract)
After Halfword Modification

Before Halfword Modification
to Block-Carry Propagation

Fig. 1. Modifications to the carry lookahead adder to accommodate the halfword instructions.

Force High

16 Normal Data
16

ALU and Signed or Unsigned
Preshifter —p JRESSIOEURNEEIYEL
Results Overflow Logic

Force Low

Force High

16 Normal Data
16

Force Low

Fig. 2. Saturation logic. There is one of the these circuits for each halfword.

propagating from bit 16 to bit 15, even if this generate and propagate signal is not
used directly to calculate the carry signal (as is the case in this adder). The gener-
ate and propagate signals can also be forced to be true for instructions requiring
halfword subtraction. This will force a carry into the more significant halfword of the
adder by generating a carry from bit 16 into bit 15. This technique is used along
with the ones complement of the operand to be subtracted to perform subtraction
as twos complement addition.

The original carry generate and propagate signals from bit 16 are still generated to
calculate overflows from the less significant halfword addition. This overflow is
used by the saturation logic, which can be invoked by some of these instructions.

Saturation requires groups of bits of the result to be forced to states of true or
false, or passed unchanged. This is accomplished with an AND-OR gate (Fig. 2).
The AND function can force the output of the gate to be false and the OR function
can force the output of the gate to be true. Thus, the output is either forced high,
forced low, or forced neither high nor low. It is never simultaneously forced high
and low. The key is to determine when to force the result to a saturated value.

The saturation circuit is added at the end of the ALU’s data path after the result
selection multiplexer selects one of the results from the adder after it performs
additions, subtractions, or logical operations such as bitwise AND, OR, or XOR
(Fig. 3). The saturation circuit does not impact the critical speed paths of the ALU
because it is downstream from the point where the cache data address is driven
from the adder and where the test condition logic (i.e., logic for conditional branch
instructions) obtains the results from which to calculate a test condition.

If signed saturation is selected, the ALU will force any 16-bit result that is larger
than Ox71ff to 0x7fff (215-1) and any 16-hit result that is smaller than 0x8000 to
0x8000 (—215). These conditions represent positive and negative overflow of
signed numbers. Positive and negative overflow can be detected by examining the
sign hit (the MSB) of each operand and the result of the add. If both operands are
positive and the result is negative then a positive overflow has occurred and the
result in this case is saturated by forcing the most-significant hit to a logical 0 and
the rest of the bits to a logical 1. If both operands are negative and the result is
positive then a negative overflow has occurred and the result in this case is satu-
rated by forcing the most significant bit to a logical 1 and the rest of the bits to a
logical 0. Unsigned saturation is implemented in a similar way.

The average instruction, HAVE, requires manipulating the result after the addition
is finished. Before the implementation of the halfword instructions the ALU se-
lected between the results of a bitwise AND, a bitwise OR, a bitwise XOR, or the
sum of the two input operands. The halfword average instruction adds an addi-
tional choice. The average result is the sum of the two input operands shifted right
one hit position with a carry out of the most-significant bit (MSB) becoming the
MSB of the result. To perform rounding of the result, the least-significant bit (LSB)
of the result is replaced by an OR of the two least-significant bits before shifting
right one bit.

The shift right and add and the shift left and add functions were added by modifying
the x-bus preshifter in the operand selection logic of the ALU. The original ALU was
capable of shifting 32-bit inputs left by zero, one, two, or three bits. To implement
the 16-hit shift left and add instructions, the left-shift circuits had to be broken at

66 April 1995 Hewlett-Packard Journal

[Hewlett-Packard Company 1995

General

Register

Register

and 1 Selection
d Preshifter

Operand 1 Selection and
One’s Complement

Preshifter 32-Bit Partitioned
Overflow Adder
16-Bit Adder 16-Bit Adder
+ +

¥ Cache

» Address
Adder Adder
Overflow Result Selection MUX Overflow
\

Saturation Logic

General

Register

Fig. 3. Flow of halfword instructions showing the location of the saturation logic in
relation to the ALU.

the halfword boundary. This was done by ANDing the hits shifted from the least-
significant halfword to the most-significant halfword with a control signal that indi-
cates when a 32-bit shift is being done. The 16-bit shift right and add instructions
were implemented by adding the ability to shift one, two, or three bits right. This
shift is always broken at the halfword boundary.

One challenging aspect of implementing the 16-bit shift left and add instructions
was detecting when the results of shifting an operand left by one, two, or three bits
causes a positive or negative overflow. A positive overflow occurs when the un-
shifted operand is positive and a logical one is shifted out of the left, or when the
result of the shift is negative. A negative overflow occurs when the unshifted oper-
and is negative and a logical zero bit is shifted out of the left, or when the result of
the shift is positive. These overflow conditions are combined with the overflows
calculated by the adder and used to saturate the final result. The final result is
saturated if either the left shift or the adder causes an overflow.

The result of selecting instructions that can provide the most useful functionality
while costing the least to implement was a relatively small increase in the area of
the ALU. About 15% of the ALU's area is devoted to halfword instructions. Since
the ALU's circuits were the only ones modified on the processor chip, only about
0.2% of the total processor’s chip area is devoted to halfword instructions.

video clip that was compressed at 30 frames/s. The Model
715 and Model 735 are based on the PA 7100 processor. The
Model 712 is based on the PA 7100LC processor, which is a
derivative of the PA 7100. The PA 7100LC contains the multi-
media enhancements and system integration features and is
described in the article on page 12. The older, high-end
Model 735 running at 99 MHz achieves 18.7 frames/s while
the newer entry-level Model 712 achieves 26 frames/s at 60
MHz and 33.1 frames/s at 80 MHz. These frame decompres-
sion rates are quoted for MPEG video only (no audio) with

[J Hewlett-Packard Company 1995

Berkeley Software with-

Berkeley Software
out Hardware and Soft-

HP Decoder with

ware Enhancements Software and
HP Decoder Hardware
0T with Software 26, Enhancements
254 Enhancements, but :
" without Hardware En-
E 204+ hancements
: l
=BT 11v1
10.9 .
10 T >/
5 ~+
0 , ,

Model 720 50 MHz Model 712 60 MHz

. Berkeley D HP

Fig. 6. Comparison between the performance of the enhanced
Berkeley MPEG decoder and the HP MPEG decoder (without audio).

no constraints on how fast the decoding can proceed. In
other words, the decoding rate is not constrained by the rate
at which the MPEG stream has been compressed. Hence,
although the video clip used was MPEG compressed at 30
frames/s, the 80-MHz Model 712 can decode it faster than 30
frames/s in unconstrained mode. This implies that there is
some processor bandwidth left after achieving real-time soft-
ware MPEG video decoding.

In the video player product in HP MPower 2.0, frames are
skipped if the decoder cannot keep up with the desired real-
time rate. This results in a lower effective frame rate, since
skipped frames are not counted, even though execution time
may have been used for partial decoding of a skipped frame.

Fig. 6 shows a comparison between the enhanced Berkeley
software MPEG decoder and the HP software MPEG decoder
running on the older HP 9000 Model 720 (with no hardware
multimedia enhancements) and the newer Model 712 work-
station (with hardware multimedia enhancements). The
fourth column in Fig. 6 illustrates the performance obtain-
able with synergistic software and hardware enhancements.

In the Model 720, the Berkeley and HP software decoders
have comparable performance. For the Model 712, the per-
formance of the HP decoder was 2.4 times greater than the
Berkeley decoder because of the synergistic coupling of the
algorithms and software optimized with the PA-RISC multi-
media instructions and the system-level enhancements in the
Model 712.

Fig. 7 shows the performance when MPEG audio of various
fidelity levels is also decompressed by software running on
the general-purpose PA 7100LC processor. The highest-fidel-
ity audio is stereo with no decimation. This means that every
audio sample comes as a pair of left and right channel val-
ues, and every sample is used. Half decimation means that
one out of every two audio samples is used. (3/4 decimation
means that only one out of every four audio samples is
used.) Mono means that every audio sample is a single value
(channel) rather than a pair of values.

While software decompression of MPEG audio degrades the

performance in terms of frames decoded per second, the PA

7100LC-based workstations achieved rates of 15.1 frames/s at
60 MHz, 24.2 frames/s at 80 MHz, and 27.4 frames/s at

April 1995 Hewlett-Packard Journal 67

3BT

w04 29.8 29.3 300
27.3]
il 274
254 24.2 7 7
° .
8 20T
£
©
I 15+ :
10T
5 4+
0 t t + f/ + f/
Model 715 Model 712 Model 715
60 MHz 80 MHz 100 MHz

. Stereo No Audio

Fig. 7. Performance when MPEG video and MPEG audio are de-
coded in software.

D Mono with 1/2 Decimation

100 MHz even with the highest-fidelity 44.1-kHz stereo
16-bit linear audio format with no decimation. With further
enhancements of audio decoding and audio-video synchro-
nization, we should be able to do even better.

Conclusion

We wanted a software approach to MPEG decoding because
we felt that if video is to be useful it has to be pervasive,
and to be pervasive, it should exist at the lowest incremental
cost on all platforms. With a software video decoder, there is
essentially no additional cost. In addition, the evolving stan-
dards and improving algorithms pointed to a flexible solu-
tion, like software running on a general-purpose processor.
Using special-purpose chips designed for MPEG decoding,
or even for JPEG, MPEG, and H.261 compression and de-
compression, would not allow one to take advantage of im-
proved algorithms and adapt to evolving standards without
buying and installing new hardware.

Furthermore, since the performance of general-purpose
microprocessors continues to improve with each new gen-
eration, we wanted to be able to leverage these improve-
ments for multimedia computations such as video decom-
pression. This approach also allows us to focus hardware
design efforts on improving the performance of the general-
purpose processor and system without having to replicate
performance efforts in each special-purpose subsystem, such
as the graphics and video subsystems. The PA-RISC multime-
dia instructions are also useful for graphics, image, and
audio computations, or any computations requiring arithme-
tic on a lot of numbers with precision less than 16 bits.

The net result is that we achieve real-time MPEG decoding
of video streams at 30 frames/s with a software decoder.
This was achieved by a synergistic combination of algorithm
enhancements, software tuning, PA-RISC processor multime-
dia enhancements, combining video and graphics support
for color conversions and color compression, and system
tuning. The PA-RISC multimedia enhancements allow parallel
processing of pixels in the standard integer data path at an
insignificant addition to the silicon area. The total area used
is less than 0.2% of the PA 7100LC processor chip with no
impact on the cycle time or the control complexity.

The real-time software MPEG decoding rate of the final
video player product exceeds our original goal of 10 to 15

68 April 1995 Hewlett-Packard Journal

frames/s for a software-based MPEG video decoder. It is also
significant that MPEG video decoding at 30 frames/s is
achieved by an entry-level rather than a high-end work-
station. This is in the context of a full-function video player
on the HP MPower 2.0 product. With MPEG audio decoding
(also done by software), the frame rate is usually above 15
frames/s, even for the low-end Model 712/60 workstation,
and around 24 frames/s for the Model 712/80 workstation.

We expect to see continuous improvement in the MPEG
decoding rate as the performance of the general-purpose
processors increases. With PA-RISC processors, there has
been roughly a doubling of performance every 18 to 24
months. This would imply that larger frames sizes, multiple
video streams, or MPEG-2 streams may be decoded in the
future by such multimedia-enhanced general-purpose
processors.

Acknowledgments

The success of the MPEG software decoder performance
tuning depended on close, interdivisional teamwork distrib-
uted across four HP sites at Chelmsford, Cupertino, Palo Alto,
and Fort Collins. We would like to thank all the other mem-
bers of the multimedia architecture team, especially Vasudev
Bhaskaran, Peter Kaczowka, Behzad Razban, Pat McElhatton,
Larry Thayer, Konstantine Konstantinides, and Larry McMa-
han. We would also like to thank the HP MPower team, the
PA-RISC extensions team, especially Michael Mahon, the PA
7100LC team, especially Mark Forsyth and Charlie Kohlhardt,
the Model 712 team, the performance lab, especially the late
Tian Wang, and the compiler lab, especially Pat Kwan, for
their support.

References

1. Hewlett-Packard Journal, Vol. 45, no. 2, April 1994.

2. R. Lee, “Precision Architecture,” IEEE Computer, Vol. 22 no. 1,
January 1989, pp. 78-91.

3. R. Lee, M. Mahon, and D. Morris, “Pathlength Reduction Features in
the PA-RISC Architecture,” Proceedings of IEEE Compcon, February
1992, pp. 129-135.

4. L. McMahan and R. Lee, “Pathlengths of SPEC Benchmarks for
PA-RISC, MIPS and SPARC,” Proceedings of IEEE Compcon,
February 1993, pp. 481-490.

5. Digital Compression and Coding of Continuous-Tone Still Images,
CCIT REC. T.81 0918-1, July 1992.

6. P. Knebel, et al, “HP’s PA7100LC: A Low-Cost Superscalar PA-RISC
Processor,” Proceedings of IEEE Compcon, February 1993, pp.
441-447.

7. S. Undy, et al, “A VLSI Chip-Set for Graphics and Multimedia
Workstations,” IEEE Micro, Vol. 14, no. 2, April 1994, pp. 10-22.

8. L. Gwennap, “New PA-RISC Processor Decodes MPEG Video,”
Microprocessor Report, Vol. 8, no. 1, January 1994, pp . 16-17.

9. Coding of Moving Pictures and Associated Audio for Digital Stor-
age Media up to 1.5 Mbit/s, ISO/IEC JTCI CD 11172, 1991.

10. K. Patel, B. Smith, and L. Rowe, “Performance of a Software
MPEG Video Decoder,” Proceedings of First ACM International Con-
ference on Multimedia, August 1993, pp. 75-82.

11. D. LeGall, “MPEG - A Video Compression Standard for Multi-
media Applications,” Communications of the ACM, April 1991, Vol.
34 no. 4, pp 46-58.

12. K. Konstantinides, “Fast Subband Filtering in MPEG Audio Cod-
ing,” IEEE Signal Processing Letters, Vol. 1, no. 2, February 1994, pp.
26-28.

[Hewlett-Packard Company 1995

