Applying an Improved Economic
Model to Software Buy-versus-Build

Decisions

The decision to buy or build software is a business decision that should
be made using a sound economic model. A comprehensive economic
model has been developed and applied to actual and estimated data to
compare the costs of using a third-party software package to the costs of

internal development.

by Wesley H. Higaki

Hewlett-Packard Laboratories has been recommending the
use of third-party software packages to product divisions
whenever it makes sense economically. We feel that those
divisions whose primary products are not databases, net-
works, or operating systems should purchase these technolo-
gies. There are many readily available, shrink-wrapped, off-
the-shelf products. Hewlett-Packard Company offers many
application-specific software products such as electronic
instruments and measurement systems. The product divi-
sions that offer these applications can be more productive if
they focus their efforts on the applications rather than devot-
ing engineering resources toward developing technologies
that are already available from third-party vendors.

There are, of course, valid reasons for not using third-party
software in an application. Such software should not be used
if the third-party product does not meet the application’s
specific functional requirements, if the third-party vendor is
not reliable, financially stable, or responsive enough to cus-
tomer needs, or if the third-party product costs too much.

While there are valid reasons not to use third-party software,
there seems to be a bias in the engineering community to-
wards building rather than buying software. The decision to
buy or build software is a business decision that should be
made using a sound economic model. Without this model
and a complete analysis, inferior business decisions may be
made.

This article applies a comprehensive economic model to
actual and estimated data to compare the costs of using a
third-party software package to the costs of internal
development.

Past Economic Models

Today, when product teams do an economic evaluation to
build or buy software, they sometimes make assumptions
that can lead to less than optimal business decisions. Some
of these assumptions are:

Initial software development costs are sunk. The common
view is that development engineers are already paid for, so

it is always cheaper to write code internally than to buy it
from the outside. Essentially, internal software development
costs are considered zero. This is an indication that the re-
turn-on-investment model used today is flawed.

Ongoing maintenance costs are invisible. Engineering effort
will be expended over time to repair defects, add product
enhancements and maintain compatibility with system up-
grades. These costs, like initial development costs, are not
visible and not accounted for in calculating returns.

Lost opportunities are not accounted for. While development
engineers are developing what could be bought, they are
missing opportunities to add application value to the prod-
uct. Development engineers may also help get their product
to market earlier by not writing code from scratch.

Licensing costs are added to manufacturing costs and passed
on directly to the customer. This is a flaw in the software
pricing model. If code is developed internally, the product is
priced on market value. If code is bought and a license fee
is attached, the licensing fee is generally considered a manu-
facturing cost.

An Improved Economic Model

To address the issues in the current economic models used, I
propose the use of an improved model. There are four parts
to this improved economic model for evaluating build-ver-
sus-buy decisions. These parts are:

The Malan/Wentzel model

An extensive list of costs and benefits of buying software
Net present value calculations

Estimation techniques for costs and benefits.

This improved economic model enables us to examine the
hidden costs and benefits of buying software. We can then
analyze the economic effects of buying more completely.

Malan/Wentzel Model

HP Laboratories has been researching models that evaluate
the economics of software reuse. Using packaged software is
a form of software reuse. The Malan/Wentzel model! pro-
duces a comprehensive picture of the true costs of software
development and the savings that result from reuse. This

August 1995 Hewlett-Packard Journal 1

model is based on development phase costs, maintenance
phase costs, and other reuse-related benefits and costs. Its
developers point out that the savings in the development
phase represent a conservative estimate of the benefits of
reuse. The complete model takes into account the effects of
increased profits resulting from early time to market and the
exploitation of new opportunities.

List of Benefits and Costs

The following is a modified list from Poulin, Caruso, and
Hancock? showing the benefits and costs of reusing pack-
aged software. This list includes the benefits and costs of
buying software through the development and maintenance
phases. By using this list in conjunction with the Malan/
Wentzel model, we can do a more complete analysis of the
costs involved in making a buy-versus-build decision. In this
discussion, a component is a piece of a software product
whose functionality can potentially be filled by packaged
software. This component may be purchased or it may be
built.

Listed in Table I are the cost savings that may result during
the initial development and maintenance phases if a compo-
nent is bought rather than built.

Table |
Benefits of Buying

Initial Development Savings
Reduced cost to design the component
Reduced cost to implement the component
Reduced cost to test the component
Reduced cost to document the component

Ongoing Maintenance Savings

Reduced cost to fix defects in the component
Reduced cost to enhance the component

Buying software saves development time and thus the prod-
uct can be delivered earlier than if all of the software is writ-
ten from scratch. Earlier time to market can result in in-
creased profits from two effects: added profit from delivering
the product earlier to the marketplace, and added profit from
increased market share over the life of the product.

It also costs something to buy software. The process in-
volved in the build-versus-buy decision for software as de-
scribed by Malan and Wentzel has four steps:

Define the requirements of the component.

Search for and acquire the component, determine what the
component does, and verify that it meets the requirements.
Integrate the component into the rest of the product.
Customize the product to meet the specific application re-
quirements.

There are costs associated with each of these steps relative
to buying software. Table II shows a more detailed list of
these costs.

Net Present Value Calculations

Since benefits and costs occur at different times in the prod-
uct’s life cycle, the time value of money must be taken into

2 August 1995 Hewlett-Packard Journal

account. The net present value (NPV) equation? calculates
the true net benefit of software reuse.

NPV = 2. (B — C)/(+K)\
i=o0

where n is the number of years in the product’s life cycle, k
is the annual discount rate, B; is the benefit realized in year
i, and C; is the cost incurred in year i.

Table II
Costs of Buying

Acquisition Costs
Licenses or royalties for the third-party package

Customization Costs
Cost of customizing the third-party package
Cost of maintaining the customized component
Assessment and Integration Costs

Cost of performing the cost-benefit analysis
Cost of locating and assessing the third-party package

Cost of integrating the third-party package
Cost of training on the third-party package

Benefits of Buying

Initial Development Savings. The most immediate benefit of
buying software over building it is that the initial engineer-
ing effort and costs are saved. This saving can be measured
directly, based on the estimated engineering cost to build
the component. This cost can be estimated using schedule
estimates to design, develop, and debug the component
multiplied by the run rate for the engineers involved.

Ongoing Maintenance Savings. Harris3 estimates that software
maintenance costs for internally developed software are
about 55% of the total cost of the product life cycle. This
estimate includes costs associated with fixing defects as well
as implementing enhancements. We can estimate the re-
duced maintenance costs using the actual initial develop-
ment costs of the internally developed software by the fol-
lowing formula:

Cy = (0.55/0.45)Gy,

where Cy is the cost of maintenance over the life of the

product and Cp is the initial development cost of the prod-
uct. Thus, using the estimate from the initial development,
we can calculate the expected ongoing maintenance costs.

Increased Profits. Patterson? states that for every month a
product release is delayed, one month of sales is lost. Con-
versely, delivering a product early results in increased sales.
Patterson asserts that once a product with a given set of ca-
pabilities is released, the date the product will become obso-
lete is set. Thus, if two products are released at different
times with the same capabilities, they will both be obso-
lete on the same date because of marketplace and competi-
tive pressures. If these two products are released on differ-
ent dates, then the product released earlier will have the
greater sales. Fig. 1 illustrates the effect of an early

Skarly *Swikt share
< SEarly
c
£
2 State
[%]

2
<
9]
L
]
>
o
[=2]
[=2]
<

.)

¥ ¥ t

TEarIy TLate Tobsolete

Time

Fig. 1. Effect on sales of earlier time to market. Curve Sgyy repre-
sents the sales of the product introduced at time Tgy1y. The curve
State is the sales curve for the product introduced at time Tyae. The
curve Sgarly + SMkt Share illustrates the total effect on sales of more
time in the marketplace and increased market share.

product introduction on sales revenues. Curve Sgyly repre-
sents the sales of the product introduced at time Tgy1y. The
curve Sy is the sales curve for the product introduced at

time Tpate-

Software reuse can improve a product’s time to market. If
the product reaches the market two months early with the
same functionality, then there will be an additional two
months’ revenue. To estimate this effect, we will use the
projected annual sales and estimate the improvement in time
to market.

S =STw

where Sy is the sales increase resulting from early time to
market, Sy is the original projected volume per month, and
Ty is the improvement in time to market in months.

Moreover, Smith and Reinertsen> suggest that market share
increases over the life of the product as a result of earlier
time to market. This is expressed as an increase in market
share percentage throughout the life of the product. This
estimate is based on competition, market demand, and time
to market. This effect can be estimated by using market re-
search data to determine how sales volumes would be af-
fected by providing features earlier than the competition.
This can be expressed as more units sold per year or per
month. The curve Sgarly + Smkt share in Fig. 1 illustrates the
total effect on sales of more time in the marketplace and
increased market share.

Costs of Buying

Acquisition Costs. Sometimes there are up-front acquisition
costs for third-party software. More typically, there are li-
censing costs or royalties associated with using a software
package. These costs can be easily estimated by using sales
volume estimates for the end product and determining how
many copies of the third-party package will be required.

Customization Costs. This model assumes that no modification
of the third-party software is required to meet the product
requirements. However, customization may be required. An
example of such customization is using Microsoft™ Excel to
build a spreadsheet that calculates car payments. The cus-
tomization is the act of developing the spreadsheet to do

the appropriate calculations. The Excel product itself is not
modified. The customization costs are derived by estimating
the engineering effort for customizing the third-party package.

Assessment and Integration Costs. To determine if in fact a
third-party package will meet the product requirements,
some engineering evaluations must take place. Estimates of
how much effort and cost are involved in the evaluation,
assessment, and integration of the third-party package into
the application can be made.

Case Study

In a project that HP Laboratories recently completed with an
HP product division, the product team made extensive use
of third-party tools and components, but chose to build a
report writer subsystem rather than buy a report writer pack-
age. The product required that reports be generated from
data stored in a dBASE IVF database on a PC running Micro-
soft Windows 3.1. Several off-the-shelf packages were avail-
able ranging in price from $200 to $2,500 per copy (all
amounts in this paper are in U.S. dollars). One package
seemed to meet the requirements and cost $400 per copy,
but the product team decided to develop the report writer
internally. This decision was made based on the assumption
that $400 per copy was more than what it would cost to
build the report writer internally.

The report writer is only one component in the product. If
the recommended third-party package had been used in
place of the internally developed report writer, the project
would have been completed about two months earlier. This
third-party package is a tool that enables the developer to
create custom reports from data stored in dBASE IV. It would
take an engineer about one week to learn this package, an-
other week to develop the report formats, and one more
week to integrate it into the rest of the product. An ongoing
enhancement effort of about one week per year to add new
report formats is expected to continue throughout the prod-
uct’s life.

Table IIT summarizes the costs and benefits determined
using the economic model to compare the use of this third-
party package with an internally developed report writer.
According to the model, the net savings of buying the soft-
ware in this case would have been $213,754 over the life of
the product.

Initial Development Savings. The actual time it took to design,
implement, integrate and test the report writer for this proj-
ect was one engineer-year. A fully loaded engineer costs the
company about $100,000 per year. So, the savings in initial
development would be $100,000. These savings would have
been realized in the year before the product release.

Ongoing Maintenance Savings. Using the maintenance cost
estimate formula, the estimated maintenance cost for the
lifetime of the product is:

Cyw = (0.55/0.45)($100, 000)= $122,222.

Assuming this cost is evenly distributed over the four-year
life of the product, the cost is about $30,500 per year.

August 1995 Hewlett-Packard Journal 3

Introducing the time value of money at a 6% discount rate
results in a $105,686 benefit.

Table Il
Cost-Benefit Analysis
Benefits Savings or
(Costs)
Initial Development Savings $100,000
Reduced cost to design
Reduced cost to implement
Reduced cost to test
Reduced cost to document
Ongoing Maintenance Savings $105,878
Reduced defect fixing costs
Reduced enhancement costs
Increased Profits $72,387
Added profit from delivering
product sooner to the market
Costs
Acquisition Costs ($41,581)
Licenses or royalties for reusing parts
Customization Costs
Cost of customizing the
third-party package ($2,000)
Cost of maintaining the
customized component ($6,930)
Assessment and Integration Costs
Cost of performing the cost-benefit analysis ($5,000)
Cost of locating and assessing the third-
party package ($5,000)
Cost of integrating the third-party package ($2,000)
Cost of training on the third-party package ($2,000)
Net Savings $213,754

The maintenance effort includes not only defect fixes,® but
also updates for new fonts, printers, and report formats. The
internally built report writer was only a set of report tem-
plates and not a template generation tool like the recom-
mended third-party package. This means that whenever
there is a request for a new report template, more software
needs to be written. With the third-party package, a new
template can be created quickly. Since much of the division’s
sales are for custom systems, the Harris estimate3 seems to
be consistent with this example.

There are also quality and competitive issues involved with
developing an internal report writer. Since the third-party
company is in the business of developing and selling report
generators, they (and their competitors) will invariably do a
more complete job of developing report generators than this
HP division will. The HP division will be forced to compete
with them as customers demand greater functionality to
match that offered in packaged report writers and this will
increase the enhancement effort.

Increased Profits. Based on projected sales for this product
and the anticipated earlier product introduction, the division
would realize $500,000 additional revenue. It is also esti-
mated that there would be more units sold per year through

out the entire product life because of the earlier initial prod-
uct introduction and the availability of engineering resources

4 August 1995 Hewlett-Packard Journal

to develop value-added features. Using an appropriate profit
margin on the increased sales volume and applying the NPV
calculation yields the $72,387 benefit shown in Table III.

Acquisition Costs. There are no fees associated with the initial
acquisition of the third-party product, only licensing fees of
$400 per copy. Applying the NPV formula to the estimated
unit sales for the life of the product results in a $41,581 cost
to pay for the licenses.

Customization Costs. While no changes need be made to the
third-party package, report templates would have to be gen-
erated for the HP product. The effort required to generate
the initial report templates and to integrate the report gener-
ator with the rest of the application is estimated to cost
about $2,000. The engineer would have to develop the re-
port formats using the third-party package. It is also esti-
mated to cost about $2,000 per year to add any new report
formats requested by customers. The NPV formula is applied
to these costs for the life of the product to yield $6,930.

Assessment and Integration Costs. It is estimated that an engi-
neer would cost $10,000 to do the domain analysis, locate
and assess the packaged software, and do a cost-benefit
analysis. It is also estimated to take another $2,000 to inte-
grate the package into the rest of the HP product.

The cost of learning the third-party product is estimated to
be about $2,000.

Cost-Benefit Analysis. First, we compare just the costs of de-
velopment with the licensing costs. The total cost of devel-
oping and supporting the report writer is about $206,000
($100,000 initial development plus $106,000 for ongoing
maintenance). Divide this by the number of units expected
to be sold during the product’s life, and the cost per copy of
this report writer is estimated to be over $1,000. These costs
far exceed the $400 per copy licensing fee for the third-party
package. This alone indicates a decision to buy rather than
build.

To do the complete analysis, increased profit factors and
package assessment costs are introduced. The net benefit of
using the third-party package rather than developing a re-
port writer is $213,754.

The greatest benefit comes from delivering the product
early. Arguments from Stalk and Hout,” Patterson,? and
Smith and Reinertsen? list the advantages of delivering prod-
ucts early, and this model demonstrates the impact time to
market has on a product’s revenues. The time-to-market
benefits dwarf the $400 per copy licensing costs of the pack-
aged software.

Conclusions

The product team thought they would have to add the $400
cost of the third-party product as a separate line item on the
customers’ purchase orders. They were concerned that this
would confuse the customer, causing discussions that could
hinder the sale and reduce overall sales. If the third-party
package were bundled with the product so that the cus-
tomer could not see what was included in the product, there
could have been no objections. For accounting purposes,
this $400 cost could have been recorded as an R&D expense
and not a manufacturing expense since manufacturing ex-
penses automatically have multipliers attached. The total

price would remain the same, but profit would be greater
because costs would be lower.

Risks

While the focus of this article has been on the cost-benefit
analysis of buy-versus-build decisions, this analysis is useful
only after the preliminary evaluations have taken place and
the package has been proven to meet the requirements of
the product. These requirements must be carefully evaluated
first.

Product quality and reliability are especially important to HP,
a company for which quality is a major differentiator in the
marketplace. The packaged software must meet the func-
tional and quality requirements before any further consider-
ation. Using a packaged product that comes from a proven
vendor and has a history in the marketplace of providing
complete functionality and solid support mitigates the risk of
choosing an inadequate package.

Another major risk is the longevity of the vendor. No one
wants to rely on a package that is no longer supported by
the vendor. Again, using packages from proven vendors will
help reduce this risk. Also, choosing components that are
supported by a number of qualified packages from compet-
ing vendors allows the replacement of one package with
another in case the initial vendor cannot maintain the pack-
age any longer.

There are several risks involved in developing software in-
ternally. The more obvious risk is the effort required for de-
fect fixing. There is also the risk that internally developed

software will have to compete with other packaged software.
This is a battle that cannot be won, since report writer ven-
dors, for example, expend much more effort developing
report writers than does a product team trying to deliver a
measurement system.

Acknowledgments

Many thanks to Ruth Malan of HP Laboratories, who has
encouraged me, helped direct me to the proper sources, and
provided inputs on the approach to take in presenting my
ideas.

References

1. R. Malan, K. Wentzel, Economics of Software Reuse Revisited, HP
Laboratories Technical Report HPL-93-31, April 1993.

2.].S. Poulin, J.H. Caruso, and D.R. Hancock, “The Business Case for
Software Reuse,” IBM Systems Journal, Vol. 32, no. 4, 1993.

3. K. Harris, “Using an Economic Model to Tune Reuse Strategies,”
Proceedings of the Fifth Annual Workshop on Software Reuse, 1992.
4. M. Patterson, Accelerating Innovation, Van Nostrand Reinhold,
1993.

5. P.G. Smith, and D.G. Reinertsen, Developing Products in Half the
Time, Van Nostrand Reinhold, 1991.

6. W.T. Ward, “Calculating the Real Cost of Software Defects,”
Hewlett-Packard Journal, Vol. 42, no. 4, October 1991, pp. 55-58.
7. G. Stalk, Jr. and T.M. Hout, Competing Against Time, The Free
Press, 1990.

Microsoftis a U.S. registered trademark of Microsoft Corporation.

Windows is a U.S. trademark of Microsoft Corporation.

dBASE IV is a U.S. registered trademark of Borland International, Inc.

August 1995 Hewlett-Packard Journal 5

