DCE: An Environment for Secure
Client/Server Computing

The Open Software Foundation’s Distributed Computing Environment
provides an infrastructure for developing and executing secure
client/server applications that are portable and interoperable over a wide

range of computers and networks.

by Michael M. Kong

The Distributed Computing Environment (DCE) is a suite of
software that enables networked computers to share data
and services efficiently and securely. The initial specification
and development of DCE took place in 1989 under the aegis
of the Open Software Foundation (OSF) through the OSF
RFT (request for technology) process. Several companies in
the computer industry, including HP, contributed technologies
to DCE. HP has since released several versions of DCE as a
product for HP-UX* systems, with added enhancements par-
ticularly in tools for administration and application develop-
ment. HP remains active in the development of future OSF
DCE releases.

The major technologies in DCE include:

Threads. A library of routines that enable several paths of
execution to exist concurrently within a single process.
Remote Procedure Call (RPC). A facility that extends the
procedure call paradigm to a distributed environment by
enabling the invocation of a routine to occur on one host
and the execution of the routine to occur on another.
Security. A set of services for authentication (to verify user
identity), authorization (to control user access to data and
services), and account management. DCE security services
are described in the article on page 41.

Cell Directory Service (CDS). A service that maintains a data-
base of objects in a DCE cell and maps their names (which
are readable by human users) to their identifiers and loca-
tions (which are used by programs to access the objects).
CDS is described in the article on page 23.

Global Directory Service (GDS). A service that maintains a
database of objects that may exist anywhere in the world
and enables DCE programs to access objects outside a cell.
GDS is also described in the article on page 23.
Distributed Time Service (DTS). A service that synchronizes
clocks on DCE hosts with each other and, optionally, with
an external clock.

Distributed File Service (DFS). A service that allows DCE
hosts to access each other’s files via a consistent global file
naming hierarchy in the DCE namespace.

The HP DCE product adds several features to the OSF DCE
offering, including:

An integrated login facility that enables HP-UX login pro-
grams to perform DCE authentication for users. This feature is
described in the article on page 28.

A DCE cell configuration utility integrated with the HP-UX
system administration manager (SAM).

6 December 1995 Hewlett-Packard Journal

* An object-oriented DCE (HP OODCE) programming envi-

ronment that eases DCE application development for C++
programmers. HP OODCE is described in the article on
page 55.

Integration of DCE application development tools with the
SoftBench product and extensions to these tools that sup-
port tracing and logging of distributed application activity.

This article describes the DCE client/server model, intro-
duces DCE cells, and provides an overview of four technolo-
gies in DCE: threads, RPC (remote procedure calls), DTS
(distributed time service), and DFS (distributed file service).
Articles elsewhere in this issue describe DCE security, the
DCE directory services, and other aspects of the HP DCE
product. Unless otherwise specified, these articles describe
version 1.4 of HP DCE/9000 as released for Version 10.10 of
the HP-UX operating system.

The Client/Server Model

DCE applications and the various components of DCE inter-
act according to a client/server model. Functionality is orga-
nized into discrete services; clients are users of services and
servers are providers of services. A client program issues
requests for services and a server program acts on and re-
sponds to those requests. A program may play both client
and server roles at once by using one service while it pro-
vides another. For example, in a distributed application that
relies on secure communication, both the client and server
sides of the application also act as clients of DCE security
services. The client/server model insulates the users of a ser-
vice from the details of how the service is implemented,
allowing the server implementation to be extended, relo-
cated, or replicated without perturbing existing clients.

To make the service abstraction work in practice, clients and
servers must agree on how they will interact. They agree on
what requests the client can make of the server, and for each
request, what data will flow between them. In DCE, these
aspects of a service are described in a definition of the cli-
ent/server interface written in the RPC Interface Definition
Language (IDL). The DCE application development software
ensures that client and server programs will adhere to the
interface definition. Given an RPC interface definition for a
service, an application developer can build and execute
clients and servers on different DCE implementations, and
the resulting programs will interoperate correctly.

In addition to RPC interfaces for distributed services, DCE
defines application program interfaces (APIs) that applica-
tions invoke when they wish to use DCE services. In the
example of the secure application mentioned above, the
application client and the application server will both invoke
DCE security routines provided by the DCE run-time library.
The library will interact as necessary with the DCE security
server on behalf of the application program. The existence
of standard APIs for DCE services ensures the portability of
applications across all DCE implementations.

DCE Cells

DCE services are deployed in administrative units called
cells. A cell can encompass one host or many thousands of
hosts in a single local network or in an internetwork span-
ning continents. The grouping of hosts into a cell does not
necessarily follow physical network topology (though net-
work performance characteristics may make some groupings
more practical than others). Rather, a cell is usually defined
according to administrative boundaries. A cell contains a
single security database and a single Cell Directory Service
(CDS) namespace, so all users and applications within a cell
are subject to the same administrative authority, and re-
sources are more easily shared within the cell than between
cells.

Fig. 1 shows a relatively simple DCE cell containing servers
and clients. The minimal set of services in a cell consists of a
security server, a CDS server, and some means of synchro-
nizing time among the hosts. In this cell, the security and
CDS databases are replicated for increased performance and
reliability, so there are two security servers and two CDS
servers. The DCE time service, DTS, is used to synchronize
clocks throughout the cell with an external time source.
Other DCE services such as DFS and GDS (Global Directory
Service) need not be configured in a minimal DCE cell but

CDS Server CDS Server
GDA Daemon DTS Time Provider
DTS Server DTS Server

DCE Client Daemons

and Run-Time Library
Security Server
(Master)

DCE Client Daemons
and Run-Time Library

Security Server

(Slave)

can be added at any time. A DCE-based application is
installed in the cell in Fig. 1, with an application server run-
ning on an HP 9000 Series 800 server and application clients
running on PCs and workstations. Finally, each host in the
cell has a DCE run-time library and runs DCE client daemons.

Threads

In a distributed environment the need often arises for one
program to communicate concurrently with several others.
For example, a server program may handle requests from
many clients. The DCE threads facility provides the means to
create concurrent threads of execution within a process and
hence eases the design and enhances the performance of
distributed applications. The threads facility is not itself dis-
tributed, but virtually all distributed services in DCE rely on
threads, as do most DCE-based applications.

POSIX (Portable Operating System Interface)! has defined an
industry-standard programming interface for writing multi-
threaded applications: the POSIX 1003.4a specification. DCE
threads is a user-space implementation of Draft 4 of this
specification.

One way to introduce the notion of a thread is to describe
an ordinary singled-threaded process and contrast this with a
multithreaded process. A process is a running instance of a
program. When a process starts, the text of the program is
loaded into the address space of the process and then in-
structions in the program text are executed until the process
terminates. The instructions that are executed can be thought
of as a path or thread of execution through the address space
of the process. An ordinary process can thus be considered
to be single-threaded.

A threads facility allows several threads of execution to exist
within one process. An initial thread exists when a process
starts, and this thread can create additional threads, making

DTS Clerk DCE Software
DCE Client Daemons
and Run-Time Library
Application Server
HP 9000 Series 800
Machines

Workstations

Network

Clients

Application Clients

DTS Clerk

DCE Client Daemons

DCE Processes

and Run-Time Library

Fig. 1. A single DCE cell containing security, CDS, time, and application servers and application clients running on PCs and workstations.

December 1995 Hewlett-Packard Journal 7

the process multithreaded. Each thread executes indepen-
dently and has its own stack. However, the threads in a pro-
cess share most process resources, such as user and group
identifiers, working directories, controlling terminals, file
descriptors, global variables, and memory allocated on the
heap.

Resource sharing and concurrent execution can lead to
several performance benefits for multithreaded programs:
Threads can be created, synchronized, and terminated much
more efficiently than processes.

If one thread blocks, waiting for I/O or for some resource,
other threads can continue to execute.

A server program can exhibit better responsiveness to
clients by dedicating a separate thread to each client
request. The server can accept a new request even while it
is still executing older requests.

On a multiprocessor computer, several threads within a pro-
cess can run in parallel on several processors.

Of course, the execution of threads in a process can be truly
concurrent only on a computer that has multiple processors
and has a threads implementation that can take advantage of
multiprocessing (even then, concurrency is limited by the
number of processors). In reality, the threads in a process
take turns executing according to a scheduling policy and a
scheduling priority that are assigned to each thread. Depend-
ing on the policy that governs a thread, the thread will run
until it blocks, until it consumes a time slice that was allo-
cated to it, or until it voluntarily yields the processor. A con-
text switch then occurs, and the next thread to execute is
chosen from a queue of threads that are ready to run, based
on their priorities.

Threads programmers can use condition variables to synchro-
nize threads so that a thread will run only after a specified
condition has been satisfied. A thread can wait on a condition
variable either for a specified time to elapse or for another
thread to signal that variable. The waiting thread does not
reenter the ready queue until the condition is satisfied.

Because threads run concurrently and share process re-
sources, programmers must protect regions of code that ac-
cess shared resources. For example, if a context switch oc-
curs in code that manipulates global variables, one thread
may have undesired side effects on another thread. The
threads API allows programmers to use mutual exclusion
(mutex) locks to prevent such effects. Only one thread can
hold a given mutex lock at any time, and any other thread
that attempts to take the lock will block until the lock is re-
leased, so only the thread that holds the lock can execute
the critical region of code.

Like global data, static data can be a conduit for side effects
between threads when a context switch occurs, and this
imposes another constraint on code that executes in multi-
threaded processes. Routines that can be called by multiple
threads must not return pointers to static data.

The requirements mentioned above for code in multithreaded
programs apply not only to DCE executables and DCE appli-
cation programs, but also to any libraries used by those pro-
grams. A library is considered thread safe to the extent that it
behaves correctly when used by a multithreaded program.
The HP-UX operating system defines several levels of thread
safeness for libraries. The HP-UX C library, for instance, can

8 December 1995 Hewlett-Packard Journal

safely be called by several threads in one program, whereas
some other libraries can be called by only one thread per
program.

A kernel-space implementation of the final POSIX threads
specification may ultimately replace the user-space imple-
mentation of Draft 4 that is currently supplied with HP DCE.
Kernel threads would make true concurrency possible on
multiprocessor computers and probably improve perfor-
mance on uniprocessor machines as well.

Remote Procedure Call

The remote procedure call (RPC) facility is the basis for all
DCE client/server communications and therefore is funda-
mental to the distribution of services in DCE applications
and in DCE itself.

The RPC mechanism enables a procedure invoked by one
process (the client) to be executed, possibly on a remote
host, by another process (the server). The client and server
hosts need not have the same operating system or the same
hardware architecture. However, they do need to be able to
reach each other via a transport protocol that is supported
by the DCE implementations on both hosts.

DCE RPC conforms to a set of specifications collectively
known as the Network Computing Architecture (NCA). The
NCA specifications define the protocols that govern the inter-
action of clients and servers, the packet format in which RPC
data is transmitted over the network, and the Interface Defi-
nition Language (IDL) that is used to specify RPC interfaces.
DCE RPC is based on Version 2 of NCA. Version 1 of NCA
was a set of architecture specifications for another remote
procedure call facility, the Network Computing System
(NCS), which has been in use on the HP-UX operating sys-
tem and other platforms since the late 1980s. DCE RPC
evolved from NCS, supports the interoperation of NCS and
DCE applications, and offers features that assist in the con-
version of applications from NCS to DCE.

NCA defines two RPC protocols, one for use over connection-
based transports (called NCA CN RPC) and one for use over
datagram-based transports (NCA DG RPC). The connection-
based protocol relies on the underlying transport to manage
connections between clients and servers, whereas the
datagram-based protocol assumes an unreliable transport
and performs its own connection management. A DCE imple-
mentation can support each of these protocols over several
transports. HP DCE currently supports NCA connection-
based RPC over TCP/IP and NCA datagram-based RPC over
UDP/IP. The NCA protocols ensure that remote procedure
call semantics are not affected by the underlying transport
used. This characteristic of NCA, sometimes referred to as
transport independence, is essential for the portability and
interoperability of DCE and DCE applications over many
types of networks and computers.

How RPC Applications Work. To understand how an RPC ap-
plication works, first imagine an ordinary nondistributed
program consisting of a main module, which performs vari-
ous initialization tasks and handles user interaction, and a
second module, which does the real work of the application
such as interacting with a database. The main module can be
thought of as a client of the services implemented and
provided by the database module. In DCE terminology, a

module that implements a service is called a manager, and
the set of manager routines that the client calls constitutes the
interface between client and manager.

Fig. 2a illustrates this simple program and a representation of
the interface between the client and the manager pieces.
Note that the modularization of this program demands only
that the client and manager pieces adhere to the declared
signature (calling syntax) of each routine in the interface.
This implies that the manager module could be replaced by
any other module containing routines that have the same
names, return the same data type, and pass the same argu-
ments. In an ordinary C application, routine signatures are
typically declared in header files that get included in other
modules.

Now imagine that this application is to be distributed so that
the database management code executes on a minicomputer
and the user interface code executes on a graphical work-
station. The first step in building a DCE RPC application is to
write an IDL interface definition. An interface definition
specifies the UUID (universal unique identifier) and version
of the interface, declares the signatures of the operations
(routines) in the interface, and declares data types used by
those operations (Fig. 2b). The declarations of types and
operations in an IDL file resemble those in a C header file,
but an IDL file contains additional information required to
make the operations callable via RPC. For example, the op-
eration declarations in an IDL file are embellished with attrib-
utes that specify explicitly whether the routine’s arguments
are inputs or outputs, so that when the routine is called,
arguments pass over the network only in the direction
needed.

User Interface
Module

Database M
(a) Module

IDL File
db.idl

IDL Compiler
(©

Client Program Server Program

User Interface
Module

ServerStubModule
db_sstub.c

Batabase Manager Mod
ule

Fig. 2. The process of creating an RPC application. (a) Original
application showing the part that will run on the client and the
part that will run on a server. (b) Creating an IDL file. (¢) Compil-
ing the IDL file to create a header file and client/server stubs.

Apparent
Interface

Client Program Server Program

Manager

Return

Return

Return Call @

. P .
RPC Run-Tlme l Network Messages RPC _Run-Tlme
Lib > Library

Fig. 3. Flow of events when a client program calls db_lookup on the
server.

The next step in building a distributed application is to com-
pile the interface definition with the DCE IDL compiler

(Fig. 2¢). The IDL compiler takes the IDL file as input and
emits three C source files as output: a client stub module, a
server stub module, and a header file. The IDL compiler
derives the names of the emitted files from the name of the
IDL file.

The client stub presents to the application client module the
same interface that the manager module did in the local case.
For example, if the manager module contained a routine
called db_lookup, so will the client stub. Likewise, the server
stub presents to the manager module the same interface that
the application client module did. Continuing the example,
the server stub calls the db_lookup routine in the manager just
as the client did in the local case. The header file contains
the declarations needed to compile and link the client and
server programs.

The final step in building the application is to link these
developer-written and IDL-compiler-generated modules into
two programs: a client program consisting of the old client
module and the client stub and a server program made up of
the old manager module and the server stub. (This descrip-
tion is rather simplified. In reality, a number of DCE library
APIs are typically invoked by application code in both the
client and server programs.) Both programs are dynamically
linked with the DCE shared library, which must be present
as part of the DCE run-time environment on the client and
server hosts.

Fig. 3 describes the flow of events that occur when the client
program calls db_lookup. The call to db_lookup is resolved in the
client stub module @. The db_lookup routine in the client stub
marshalls the operation’s input parameters into a request
buffer and then invokes routines in the DCE library to send
the request to the server host @. On both the sending and
receiving sides, RPC code in the DCE library deals as neces-
sary with any issues involving the underlying transport, such
as fragmentation and window sizes. When the server program
receives the request, DCE library code calls the db_lookup rou-
tine in the server stub module 3, which unmarshalls the
input parameters and passes them to the actual implementa-
tion of db_lookup in the application manager module (@.

December 1995 Hewlett-Packard Journal 9

When the manager routine returns &, the server stub mar-
shalls the operation’s output parameters and a return value
into a response buffer and invokes DCE library routines to
send the response to the client (®. Library code on the client
side receives the response and returns control to the client
stub db_lookup routine (), which finally unmarshalls the out-
puts and returns to the main client module (®.

RPC Protocols. DCE RPC clients and servers communicate
over a network by exchanging messages, such as the request
and response messages described in Fig. 3. Each message,
called a protocol data unit (PDU), consists of up to three
parts:

A header, which contains RPC protocol control information
An optional body, which contains data

An optional authentication verifier, which contains data for
use by an authentication protocol.

The PDU itself is of course encapsulated by control informa-
tion specific to the transport and network underlying a re-
mote procedure call. For example, when a datagram-based
RPC PDU is transmitted as a UDP/IP packet, it is preceded
by UDP/IP header information.

A few examples of information that might be carried in the
header of a DCE RPC PDU include:

The version of the DCE RPC protocol in use

The PDU type (Both connection-based RPC and datagram-
based RPC define request and response PDU types. In addi-
tion, each RPC protocol defines several PDU types specific
to the protocol. For example, because datagram-based RPC
implements its own connection management, it defines PDU
types for pings and acknowledgments.)

The UUID that identifies the interface being used

The operation number that identifies the operation being
called within that interface

The UUID that identifies the object on which the operation
is to be performed

A label that identifies the data representation format in
which the PDU header and body data are encoded

The length of the PDU body.

Many PDU types serve only to convey protocol control infor-
mation between a client and server and hence have no
body. Request and response PDUs, of course, do have bod-
ies containing the input and output parameters of the remote
procedure call. These parameters are encoded according to a
transfer syntax identified by the data representation format
label in the header. DCE RPC currently specifies only one
transfer syntax, the network data representation (NDR) syn-
tax.

NDR defines the representation of each IDL data type in a
byte stream. For scalar types like integers and floating-point
numbers, NDR addresses issues such as byte order and float-
ing-point format. For constructed types like arrays, struc-
tures, and unions, NDR sets rules for flattening data into a
byte stream. Thus, the set of input and output values in
every remote procedure call has a byte stream representation
determined by NDR syntax. The byte stream is passed be-
tween client and server as the body in one or more request
and response PDUs. Table I lists the data types supported by
RPC.

10 December 1995 Hewlett-Packard Journal

Some scalar data types have several supported formats in
NDR. Integers, for example, may be in either big-endian
(most significant byte first) or little-endian (least significant
byte first) format. For these primitive types, the format that
governs a particular PDU is indicated as part of the data rep-
resentation format label in the PDU header. On any given
hardware architecture, the DCE library will send outgoing
data in the representations native to that architecture. If the
receiving host has different native representations, its DCE
library will convert incoming data (for example, by swapping
bytes in integers) as necessary. DCE RPC thus has what may
be called a multicanonical approach to data representation.
This approach tends to minimize data conversion, and in
particular, two hosts of the same architecture can usually
communicate without ever converting data. By contrast, if a
data representation scheme dictates a single canonical format
for each scalar type, and the client and server hosts share a
common format other than the canonical one, data will be
converted both when sent and when received.

The third part of a DCE RPC PDU, the authentication verifier,
is present only for authenticated remote procedure calls. It
contains data whose format and content depend on the au-
thentication protocol being used. Use of the authentication
verifier is explained further in the description of authenti-
cated RPC below.

Client/Server Binding. A key question in the design and imple-
mentation of a DCE RPC application is, how will the client
locate an appropriate server? When making a remote proce-
dure call, a client program must specify to its DCE run-time
library the location of a server that can perform the requested
operation. The server location incorporates an RPC protocol
sequence (the combination of NCA protocol and network
protocol), a network address or host name, and an endpoint
(for the IP protocols, the endpoint is simply a port number).
This information is encapsulated in a structure called a bind-
ing. A binding may also include the UUID of the object to be
operated on, if any, and authentication and authorization
information, if the call is to be authenticated.

The RPC API supports a range of techniques for obtaining
and manipulating bindings. Most applications either con-
struct a textual representation of a binding (called a string
binding) from information supplied by the user or obtain a
binding from a name service.

A string binding represents in a textual format the object
UUID and server location portions of a binding. For exam-
ple, in the string binding:

858c02¢-e42b-11ce-a344-080009357989@ncadg_ip_udp: 192.18.59.131[2001]

the object UUID appears in the standard string format for
UUIDs, the ncadg_ip_udp protocol sequence specifies the NCA
DG RPC protocol over UDP/IP, an Internet address identifies
the server host, and a port number specifies the endpoint on
which the server is listening. (The object UUID and the end-
point are optional.)

Table |
Data Types Supported in RPC

Primitive Data Types

Integers

Floating-point

numbers
Characters
booleant

bytet

voidt

handle_tf

error_status_tt

International
character

types

A type usually used in arrays or structures
to transmit opaque data. Data of type byte
is guaranteed not to undergo format
conversion.

A type used for operations that return no
value, for null pointer constants, and for
context handles.

A type used to store binding information
in a format that is meaningful to the run-
time DCE library but opaque to applica-
tions.

A type used to store DCE status values.
A set of types constructed from the byte
primitive that support international stan-

dards for character and string representa-
tion.

Constructed Data Types

Structures

Unions

Enumerations

Pipes

Arrays

Strings

Pointers

Context
handles

This type is somewhat like a C union op-
eration, but embeds a discriminator, which
at run time specifies which member of the
union is stored.

An open-ended sequence of elements of
one type that is used to transfer bulk data.

Arrays may be one-dimensional or multidi-
mensional and may be of fixed size, con-
formant (the array size is determined at
run time), or varying (a subset of the array
to be transmitted is determined at run
time).

Strings are one-dimensional, null-
terminated arrays of characters or bytes.

Context handles are not really distinct
types, but pointers to void data. They are
specified by applying the context_handle at-
tribute to a parameter. A context handle
denotes state information that a server
manager will maintain on behalf of a cli-
ent. Use of a context handle allows this
state to persist across several remote pro-
cedure calls from the client.

tIDL Keywords

String bindings are easy to generate and manipulate and are
suitable for applications in which the user of the client pro-
gram knows in advance the location of the desired server.
The user can supply server location information to the client
program interactively or as 2 command line argument or via a
configuration file, and client application code can invoke
RPC API routines to compose a string binding and then gen-
erate a binding handle that can be passed to the RPC run-
time library.

String bindings are well-suited for some RPC applications,
but many distributed services require a more flexible and
transparent way of establishing bindings. DCE RPC provides
an application interface, the RPC name service independent
(NSI) API, through which servers and clients can export and
import binding information to and from a name service. The
use of a name service to store binding information insulates
clients from knowledge of where objects and servers reside.
The client has only to specify an object and an interface and
then use the name service to look up the location of an
appropriate server. Thus, the relocation or replication of a
server can be made transparent to clients.

As its name suggests, the RPC NSI interface is independent
of any particular name service. Thus, applications coded to
this interface will potentially be portable across DCE imple-
mentations incorporating a variety of name services. In the
current HP DCE implementation, DCE CDS underlies the
RPC NSI interface, so that the generic RPC name service rou-
tines invoke corresponding DCE CDS routines. In principle,
another name service such as X/Open Federated Naming (see
article on page 28) could supersede CDS in the DCE run-
time environment, and existing RPC applications would con-
tinue to work.

DCE security, which is described in the article on page 41, is
an example of a service that takes advantage of both RPC
binding methods. The security client code in the DCE run-
time library can bind to a security server either through RPC
name service calls or through a string binding generated
from a configuration file on the client host. The configuration
file solves a bootstrapping problem by making the security
service locatable even when CDS is unavailable.

Authenticated RPC. The ability to perform authenticated RPC
is crucial to the usefulness of DCE in the real world, where
the integrity and privacy of data often must be assured even
when the data is transmitted over physically insecure net-
works. DCE supports several levels of authenticated RPC so
that applications will incur only the performance overhead
necessitated by the desired degree of protection. These
levels include:

None. No protection is performed.

Connection. An encryption handshake occurs on the first
remote procedure call between the client and the server,
exchanging authenticated identities for client and server.
Call. In addition to connection-level protection, the integrity
of the first PDU of each request and response is verified.
Packet. In addition to call-level protection, replay and mis-
ordering detection is applied to each PDU, ensuring that all
data received is from the expected sender.

December 1995 Hewlett-Packard Journal 11

e Packet Integrity. In addition to packet-level protection, the
integrity of every PDU is verified. This level can be thought
of as protection against tampering.

Packet Privacy. In addition to packet-integrity-level protec-
tion, all remote procedure call parameters are encrypted.
This level can be thought of as protection against both eaves-
dropping and tampering. The privacy protection level is not
available in all DCE implementations because of restrictions
on the export of encryption technology from the United
States.

When data integrity is protected, the sender computes a
checksum of the data, encrypts the checksum, and inserts
the encrypted checksum in the authentication-verifier por-
tion of the RPC PDU for verification by the receiver. When
data privacy is protected, the sender encrypts the actual pa-
rameters in the RPC PDU body, and the receiver decrypts
them.

The authenticated RPC facility is intended to accommodate
more than one authentication and authorization service. A
server program registers with the DCE run-time library the
authentication protocol it supports. A client specifies an au-
thentication protocol, an authorization protocol, and a pro-
tection level in its binding. When the server receives a re-
quest, application code in the manager can extract
authentication and authorization information from the re-
quest. HP DCE currently supports only the shared-secret
authentication protocol implemented by DCE security.

Distributed Time Service

The distributed time service, or DTS, is a distributed service
that synchronizes the clocks of all hosts in a cell with each
other and, optionally, with an external time source. In a typi-
cal cell configuration, a few hosts (perhaps three) run a DTS
server daemon, and all other hosts run a DTS client daemon
called a DTS clerk. One of the DTS server hosts may also run
a daemon called a time provider which obtains time from an
external source. DTS clerks and servers communicate via
RPC and also rely on CDS and security services for naming
and authentication.

Clock synchronization is essential for the operation of a DCE
cell. The various methods used in several DCE technologies
to cache or replicate data, for example, require that clocks
agree closely.

In addition to the daemons that synchronize clocks, DTS
includes a library of programming interfaces that allow appli-
cations to generate and manipulate time values in binary
format or in any of several standard textual formats. DTS
associates an estimated inaccuracy with every time value, so
a time value can also be treated as an interval that is likely
to include the correct time. Internally, DTS always keeps
time values in the Universal Coordinated Time (UTC) stan-
dard governed by the International Time Bureau. The DTS
API allows applications to display time values in local time
ZOnes.

DTS Clerks. Most hosts in a DCE cell run a DTS clerk. A clerk
periodically (at a randomized interval of roughly ten minutes)
obtains time values from DTS servers in the cell. The clerk
then reconciles these results to compute a single value and
inaccuracy that it applies to the local host. This computation

12 December 1995 Hewlett-Packard Journal

takes into account the inaccuracy of each server and an
estimate of the time lost to processing and communications.
If one DTS server has a faulty clock that disagrees sharply
with the others, the clerks will ignore that value, preventing
the faulty clock from influencing time throughout the cell.
Usually, the time intervals from the servers (time values plus
or minus inaccuracies) intersect, and the computed time lies
within this intersection (see Fig. 4).

The clerk adjusts time on the local host in such a way that
the clock is corrected gradually and continues to advance
monotonically. It is especially important to avoid a sudden
backward correction because many software systems, includ-
ing some components of DCE, depend on the monotonicity
of the clock. In most computers, a hardware oscillator gener-
ates an interrupt at some fixed interval, and this interrupt,
called a tick, causes the operating system to advance a soft-
ware register by some increment. Slight inaccuracies in os-
cillators cause clocks to drift relative to each other. To adjust
time, rather than write the computed correct time directly to
the clock register, the DTS clerk changes the increment by
which the register advances with each tick. In effect, the
software clock rate is increased or decreased to bring the
local host into agreement with the servers.

DTS Servers. DTS servers can be configured in two ways:

If a DTS time provider is running on one of the server hosts,
the DTS servers on all other hosts synchronize with the DTS
server on that host (roughly every two minutes). Thus, time
obtained by the time provider from an external source is
propagated to the DTS servers in the cell.

If there is no DTS time provider in the cell, the DTS servers
synchronize with each other (roughly every two minutes).
This process is similar to the one used by clerks, except that
each DTS server also uses its own time as one of the input
values.

External time sources can include telephone and radio ser-
vices, such as those operated in the United States by the
National Institute of Standards and Technology and various
satellite services. DTS can also use an Internet network time
protocol (NTP) server as an external time source. Though
DTS and NTP cannot both be allowed to control the clock
on any one client host, the DTS NTP time provider can be
used to synchronize a set of DTS-controlled hosts with a set
of NTP-controlled hosts.

t1£Xg

Server 1 ——
thy Xy
Server 2 ——
t3+ X3
Server 3 + Faulty
ta Xy

Server4 = =——f—
Computed tEx
Correct Time

tj =Time Values From DTS Servers
Xj =Inaccuracies

Fig. 4. DTS computing the correct time from several reported
times.

DTS servers and time providers attempt to compensate for
processing and communications delays when they obtain
time values, just as the DTS clerks do.

Distributed File Service

As the UNIX operating system has spread from standalone
computers to networked workstations, the need to combine
file systems in heterogeneous collections of computers has
grown. A few solutions have evolved to meet this need,
including the Network File System (NFS) from Sun Micro-
systems and the Andrew File System (AFS) from Transarc
Corporation. The Distributed File Service (DFS) is a succes-
sor to AFS that is integrated into DCE.

DFS adds a global filespace to the DCE namespace (see the

article on page 23 for a description of DCE naming). Filesets,

the logical units of file system manipulation in DFS, are
mounted within the DFS filespace for access by DFS clients.
DFS cleanly separates the logical and physical aspects of file
service, so that a user can always access a file in the DFS
filespace by the same name, regardless of where the file or
the user physically resides. All DFS file system operations
comply with the POSIX 1003.1 specifications for file access
semantics. A token-based file access protocol ensures that
readers and writers always see the latest changes to a file.

DFS is a distributed service whose major components are a
cache manager that runs on DFS client hosts, a fileset server
and file exporter that run on DFS server hosts, and a fileset
location server that can run on any DCE host. Communica-
tion among these components is via RPC; some DFS pro-
cesses run in the operating system kernel and make use of a
special in-kernel implementation of the datagram-based RPC
protocol. Fig. 5 illustrates the relationships between these
processes and the logical roles that a host can assume. In an
actual DFS deployment, one host may play one, two, or all
three of these roles.

Other DFS software in the HP DCE product includes a DFS-
to-NFS gateway which exports the DFS filespace to NFS,
providing secure access to DFS files from hosts outside a
DCE cell, an update service that keeps files in synchroniza-
tion between hosts, a basic overseer server that monitors

Local Cache
DFS Server Host
Fileset O\?jrsslger
. Server
DFS Client Host Server

File Token

Cache
¢— P
Exporter Manager

Manager

Token
Manager

DFS Fileset Location
Server Host

Local File System

Basic Overseer
Server

Fileset Location [€—

Server Fileset Location

¢ ’ Database

- Kernel Processes
|:| User Processes

Fig. 5. Relationships between DFS processes.

Disk

Aggregate

Aggregate

Fileset

Aggregate

Fileset

Fig. 6. The relationship between DFS aggregates and filesets.

DFS daemons on each DFS host and supports various remote
administrative operations, and other administrative utilities.

Server support for some DFS features is dependent on the
level of functionality provided by the local file system soft-
ware on the server host. For the purposes of this article, a
local file system can be classified as either a traditional UNIX
file system or an extended file system that offers more ad-
vanced functionality. DFS server software can support the
full range of DFS features only if the underlying file system
provides extended file system functionality. HP-UX file sys-
tems currently provide only UNIX file system functionality,
so HP-UX DFS server hosts do not support the DFS features
that depend on extended file system functionality. If DFS is
deployed across a heterogeneous set of platforms, DFS
server machines from other vendors may have file systems
that do allow full DFS support. When accessing files from
such a machine, an HP-UX DFS client host can take advan-
tage of the entire DFS feature set.

Aggregates and Filesets. The DFS filespace is a hierarchy of
directories and files that forms a single logical subtree of the
DCE namespace. The root of the DFS filespace in a cell is
the directory whose global name is /... /<cell-name>/fs. This
directory can also be accessed from within the cell by the
local name /.. ffs or by the special prefix /.. The directories
and files in the DFS filespace can reside physically on many
different DFS server hosts in the DCE cell. Two types of DFS
resources reside on DFS server hosts: aggregates and filesets
(see Fig. 6).

An aggregate is the DFS reference to the physical entity from
which one or more filesets are created. From the perspective
of the local operating system, this entity is a logical disk
managed by local file system software. For example, an ag-
gregate could refer to a logical volume or to a physical parti-
tion on a disk.

A fileset is a hierarchy of directories and files that are stored
in an aggregate. An extended file system aggregate can store
several extended file system filesets, whereas a UNIX file

December 1995 Hewlett-Packard Journal 13

system aggregate can store only one UNIX file system fileset.
Each fileset has a name (assigned by an administrator) and a
number (generated automatically) that are unique in the
DCE cell. A DFS client uses the fileset name to locate the
fileset, and thus the files it contains, by looking up the name
in the fileset location database.

Many DFS features involve manipulations of filesets. The
operations an administrator can perform on a fileset include:
Mounting it in the filespace so that DFS clients can see its
files

Backing it up

Setting its quota so that when several filesets reside in one
aggregate, the disk space in the aggregate is not dispropor-
tionately consumed by one fileset

Moving it to another aggregate to balance the load among
aggregates and DFS server hosts

Replicating it for performance and reliability.

The last three of these operations are supported only by
extended file system aggregates.

Mounting a fileset in the DFS filespace makes the tree of
directories and files in the fileset visible to DFS clients. The
fileset is mounted at an entry in the filespace, called the
mount point, which then names the root directory of the
fileset. For example, a fileset containing the home directory
for the user Joe might be named users.joe. An administrator
might decide to mount the home directories for all users
under one directory in the DFS filespace, such as /.../<cell-
name>/fsfusers. The administrator would issue a command to
mount users.joe at, say, /../<cell-name>/ffsfusersfjoe. Joe could then
use this pathname to access his home directory from any-
where. DFS mount points are permanently recorded in the
file system as special symbolic links and, unlike UNIX file
system mount points, need not be recreated each time a host
boots.

A DFS fileset can also be locally mounted, by the UNIX
mount command in the directory hierarchy of the local host.
For example, the users.joe fileset could be mounted at /usersfjoe.
A file in a DFS fileset thus can be accessed by several
names: a local pathname specific to the local host (like /users/
joe/mail.txt), a pathname relative to the local cell (like /:fusers/joe/
mail.txt), and a global pathname (like /../<cell-name>/ fsiusers/joe/
mail.txt). DFS guarantees that operations on the file adhere to
POSIX semantics, regardless of which way the file is ac-
cessed.

DFS Client Components. Each host that accesses the DFS file-
space runs a set of DFS client processes that execute in the
kernel, which are collectively called the cache manager. The
cache manager interacts with the client host kernel, which
makes file requests, and with file exporters, which service
file requests. It also maintains a local cache of files that have
been accessed. The cache can reside either on disk or in
memory.

When a file in the DFS filespace is referenced, the virtual file
system layer of the kernel invokes the DFS cache manager
to handle the reference. The cache manager checks to see
whether the local cache can satisfy the requested mode of
access to the requested file. If not, it consults the fileset loca-
tion server to locate the file exporter that manages the re-
quested file and then forwards the request to the file

14

December 1995 Hewlett-Packard Journal

exporter. All data returned by file exporters is cached to re-
duce load on the servers and on the network.

The interactions of the cache manager with fileset location
servers, file exporters, and the local cache are entirely hid-
den from the operating system on the client host. To the
user, accessing a DFS file is no different from accessing a file
in a local file system.

DFS Server Components. Each DFS server host runs a set of
DFS processes that provide access to its filesets and files.

The fileset server process responds to fileset management
requests from administrative clients for filesets residing on
the DFS server host. The RPC interface exported by the file-
set server includes operations to create and delete filesets,
dump and restore them, and get and set status information.
Fileset servers cooperate with each other, with fileset loca-
tion servers, and with file exporters to implement operations
such as fileset movement and fileset replication.

The file exporter process responds to file access requests
from clients for files residing on the DFS server host. The file
exporter is responsible for reading and writing data to the
file and for managing attributes of the file such as its modifi-
cation time.

DFS Fileset Location Server. DFS keeps information about the
current state of all filesets in the fileset location database.
This replicated database tracks the aggregate and the DFS
server host at which each fileset resides. A set of daemons
called fileset location servers maintains the fileset location
database. Fileset location servers can run on any hosts in a
cell but are typically configured to run on a subset of the
DFS server hosts.

If a DFS client encounters a DFS mount point while resolving
a pathname, it contacts a fileset location server to obtain the
current location of the fileset mounted at that mount point.
Given the fileset’s host and aggregate, the DFS client can
then issue a file access request to the correct file exporter.
Because clients look up fileset locations dynamically, a
fileset can be moved or replicated without users and applica-
tions being aware of the change. DFS fileset servers auto-
matically update the fileset location database whenever
necessary.

Underlying the fileset location database is a data replication
subsystem that implements quorum and voting algorithms to
maintain the consistency of fileset location data among all
fileset location servers, even in the event of hardware or
network failure. A DFS client can thus get current, correct
data from any fileset location server.

DFS Token Management

One of the major benefits offered by DFS is its provision of
single-site file system semantics. With respect to the file sys-
tem, programs running on different machines behave in gen-
eral as though they are all running on the same machine. All
clients see a consistent view of the file system. If a process
modifies a file in any way, that change is immediately re-
flected in any operations performed on that file by other
processes. To ensure this behavior, each DFS server host
must know how clients are using its files. The DFS client

and server processes exchange this knowledge and synchro-
nize their actions by exchanging tokens. A token is a guar-
antee from a server to a client, granting that client permis-
sion to use a file from the server in a particular way. Tokens
are handled by a DFS subsystem called the token manager,
which interacts closely with the cache manager on the client
side and the file exporter on the server side.

The following information is encapsulated in a token:
Token Type. A bit mask that encodes one or more of the
values listed in Table II. The token type describes the rights
granted to a client by the token.

File ID. A unique low-level name for a file. It consists of a
DCE cell identifier, a DFS fileset identifier, a file identifier,
and a version number.

Byte Range. For data and lock token types, the byte range
indicates the portion of the file to which the token applies.

A DFS client cannot perform any operation on a file unless it
possesses all the tokens required for that operation. For ex-
ample, the stat() system call requires a read status token, the
read() system call requires both read status and read data to-
kens , and the open() system call requires an open token. In
some cases, the required token is already being held and the
operation can proceed immediately. However, in other cases
the client machine must contact the token manager on the
server host to obtain the necessary tokens.

When the token manager on a DFS server host receives a
request for a token from a client, it first decides whether the
requested token can be legally granted, based on a set of
token compatibility rules. For example, several clients can
have read-data tokens for a file, but if one client has a write-
data token for a portion of a file, then no other clients can
have a read-data or write-data token that overlaps that
portion. If the requested token does not conflict with any
outstanding tokens, it is granted immediately. Otherwise, the
token manager first revokes any conflicting tokens from
other clients before granting the requested token.

The rules by which tokens are expired, returned, or revoked
are also important for correct semantics and optimal perfor-
mance. A token has a finite lifetime, which a client can re-
quest to extend if necessary. By default, tokens expire after
two hours, which is short enough that a token usually will
time out before the server has to revoke it, but long enough
that the client usually will not need to refresh it. Data or
status tokens generally remain with a client until they either
time out or are revoked. Before returning a write token, of
course, a client must first send back to the server any modifi-
cations that it made to the file while it possessed the token.

The file-version information in a token helps clients use
cached data efficiently. When a client is granted a token by a
server for a file that remains in its cache from a previous
access, the client uses the file-version information to deter-
mine whether the cached data needs to be obtained again.

Conclusion
The Distributed Computing Environment (DCE) integrates
technologies for threads, remote procedure calls, security,

Table Il

Token Types Used by the Token Manager
Token Type Rights Granted to a Client

Entitles a client to read the attributes of
a file and cache them locally

Read Status

Write Status Entitles a client to modify the attributes

of a file

Read Data Entitles a client to read some portion of
a file designated by an associated byte
range and to cache it locally

Write Data Entitles a client to modify some portion
of a file designated by an associated
byte range

Read and Indicates that the client has an advisory

Write Lock lock on some portions of a file desig-
nated by an associated byte range

Open Indicates that a process on that client
has a file open

Delete Technically a type of open token which

is used during the deletion of files

Whole Volume
Token

A special token that applies to the fileset
as a whole and is used to coordinate the
interaction between ordinary operations
on single files and operations on entire
filesets, such as the movement of a file-
set from one server to another.

naming, time synchronization, and remote file access. DCE
eases the development and execution of secure client/server
applications and ensures the portability and interoperability
of these applications across many kinds of computers and
networks.

Acknowledgments

The description of DEFS in this article is derived largely from
a white paper by John Brezak, Daryl Kinney, Rick Kissel,
Charleen Maunsell, Steve Moriarty, and Al Sanders. Parts of
the section on threads are based on training materials pre-
pared by Will Hopkins. Rick Kissel, Larry Pare, Al Sanders,
Joe Sanfilippo, and Seiichi Tatsukawa provided helpful
reviews of this article.

References
1. R. Lalwani, “POSIX Interface for MPE/iX,” Hewlett-Packard
Journal, Vol. 44, no. 3, June 1993.

HP-UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX
93 branded products.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open” Company Limited.

XIOpen is a registered trademark and the X device is a trademark of X/Open Company Lim-
ited in the UK and other countries.

Open Software Foundation, OSF, and OSF/Motif are a trademarks of the Open Software
Foundation in the U.S.A. and other countries.

15

December 1995 Hewlett-Packard Journal

