DCE Directory Services

The DCE directory services provide access for applications and users to
a federation of naming systems at the global, enterprise, and application

levels.

by Michael M. Kong and David Truong

The directory services of the Open Software Foundation’s
Distributed Computing Environment (DCE) enable distrib-
uted applications to use a variety of naming systems, both
within and outside a DCE cell. Naming systems make it
possible to give an object a textual name that is easier for
humans to use—easier to read, pronounce, type, remember,
and intuit—than an identifier such as a DCE universal unique
identifier (UUID). Information about the locations of objects
can be stored in naming systems so that users can access an
object by name, with no a priori knowledge of its location.

DCE provides three directory services:

The Global Directory Service (GDS) is the DCE implementa-
tion of the CCITT (International Telegraph and Telephone
Consultative Committee) 1988 X.500 international standard.
GDS is a distributed, replicated directory service that man-
ages a global namespace for names anywhere in the world.
The Cell Directory Service (CDS) is a distributed, replicated
directory service that manages names within a DCE cell.
The Global Directory Agent (GDA) is a daemon that uses
global name services to help applications access names in
remote cells. GDA interacts with either X.500 services such
as GDS or Internet Domain Name System (DNS) services
such as the Berkeley Internet Name Domain (BIND) name
server, named.

Through these services, DCE applications can access several

interconnected namespaces, including X.500, DNS, CDS, the
DCE security namespace (see article, page 41), and the DCE
Distributed File Service (DFS) filespace (see article, page 6).

The DCE Namespace

The DCE namespace is a federation of namespaces at three
levels: global namespaces, an enterprise namespace, and
application namespaces. A DCE name can span one, two, or
all three of these levels. GDS and BIND name servers provide
X.500 and DNS global namespaces in which the names of
DCE cells are stored. Within each DCE cell, CDS provides an
enterprise namespace, and the names of CDS objects in that
namespace are relative to that cell. At the application level,
DCE subsystems including DCE security and DFS define
their own namespaces.

DCE names are hierarchical names consisting of a series of
components delimited by the / character. The first component
of a DCE name is one of three prefixes denoting the root of
a namespace:

e [... is the global root. A name that begins with /... is called a
global name.

1. is the root of the local cell. This prefix is shorthand for
I...I<local-cell-name>. Names that begin with /.: are called local
names.

I: is the root of the DFS filespace. This prefix, shorthand for
I../fs, makes DFS filenames easier to use.

Within the local DCE cell, local and global names for an
object are equivalent and interchangeable. However, when a
user references a local name, the resolution of the name is
relative to whatever cell the user is in. Hence, to access an
object in a remote cell, a user must refer to the object by its
global name.

A DCE cell has a global name that may be either an X.500
name stored in GDS or a DNS name stored in a BIND data-
base. For example, a cell at HP’s Cupertino site could have
the GDS global name /.../lc=uslo=hp/ou=cupertino. In X.500 syntax,
the components of a name are separated by the / character,
and each component describes an attribute of the object.
The component o=hp, for instance, signifies the organization
named HP. The DNS global name /.../cssl.cell.ch.hp.com might
name a cell in HP’s Chelmsford systems software lab (CSSL).
As this example shows, a DNS name is a single component
of a DCE name but is itself a compound name. DNS names
are made up of names in the hierarchical DNS namespace,
separated by periods and ordered right-to-left from the DNS
root.

Objects in a cell have names that are composed of the cell
name, a CDS name, and possibly a name from an application
namespace. Some objects, such as RPC servers, are named
directly in the CDS namespace; their names consist of a cell
name plus a CDS name. Other objects, such as DFS files or
DCE security principals, are managed by a service that im-
plements an application namespace. The name for such an
object is formed by concatenating a cell name, a CDS name
for the root of the application namespace, and an applica-
tion name relative to that root. For example:

If the HP Chelmsford systems software lab cell is running an
RPC server from the Acme Database Company, that server
might be registered under the name /.../cssl.cell.ch.hp.com/ acme/
acme_server (see Fig. 1). Within the CSSL cell, /.:/lacme/acme_server
would be an equivalent name for the server.

If the HP CSSL cell includes a principal named Nijinsky, that
principal would have the global name /.../cssl.cell.ch.hp.com/sec/
principal/nijinksy (see Fig. 2) and the local name /.:/sec/principal/
nijinksy.

e If the DFS filespace in the HP Cupertino cell contains a file

called /users/sergey/mailfigor, that file would have the global

23

December 1995 Hewlett-Packard Journal

... Icssl.cell.hp.com/acme/acme_server

Global Cell Server
Name Name
(in DNS) (inCDS)

Global Object Name

Fig. 1. A DCE global name for a server.

name /.../c=us/o=hp/ou=cupertino/fs/users/sergey/mailligor (see Fig. 3).
Within the Cupertino cell, the names |.: ffslusers/sergey/mailfigor
and /:/users/sergey/mailligor would be equivalent names for the
file.

Directory Service Interfaces

DCE offers two sets of programming interfaces to directory
services. The RPC Name Service Independent (NSI) API is a
generic naming interface provided by DCE RPC. The X/OpenD
Directory Service (XDS) and X/Open OSI Abstract Data
Manipulation (XOM) APIs are interfaces based on CCITT
X.500 standards.

Transparently to an application, the DCE directory services
interact with each other as necessary to resolve names. Fig. 4
illustrates some of the interrelationships between these ser-
vices.

When a DCE application passes a name to the RPC NSI API,
CDS client software (in the DCE run-time library and in CDS
client daemons) uses DCE RPC to contact a CDS server
either in the local cell or in a remote cell to look up the
name. Names in the local cell are passed directly to a CDS
server in the cell. Names in a remote cell are passed to a
GDA daemon, which performs a lookup in X.500 or DNS,
depending on the syntax of the cell name, to obtain the lo-
cation and identity of a CDS server in the remote cell. The
CDS client software then uses this information to contact the
remote CDS server.

When an application passes a name to the XDS/XOM APIs,
the XDS code in the DCE run-time library resolves the name
according to its syntax. If the name consists purely of com-
ponents such as c=us and o=hp, the XDS library passes the
name to the GDS client code, which contacts the GDS server
to look up the name. If any portion of the name is not in
GDS syntax, the name is passed to the CDS client code and
resolved in the same way as names passed through the RPC
NSI APIL

GDS Directory Structure

The GDS directory is a collection of information about ob-
jects that exist in the world. Information about objects is
stored in a database called a directory information base. A
directory information base contains an entry that completely

1.... Iessl.cell.hp.com/sec/principal/nijinsky

Global Cell Principal
Name Name
(in DNS) (in Security)
Name of
Security Root
(in CDS)

Global Object Name

Fig. 2. A DCE global name for a principal.

24 December 1995 Hewlett-Packard Journal

I.... Ic=uslo=hplou=cupertino/fs/users/sergey/mail/igor

Global Cell Name File Name
(in X.500) (in DFS)
Name of DFS
Root (in CDS)

Global Object Name

Fig. 3. A DCE global name for a file.

describes each object and may also contain an alias entry
that provides an alternative name for an object entry.

An entry in the directory information base consists of a set
of attributes, each of which stores information about the
object to which the entry refers. An attribute is made up of
an attribute type and one or more attribute values. For ex-
ample, an entry for a person might include attributes whose
attribute types are surname, common name, postal address,
and telephone number. Attributes that have more than one
value are called multivalued attributes. A person with more
than one telephone number would have a multivalued tele-
phone number attribute.

Each entry can belong to one or more object classes. An

object class of an entry restricts the permitted attributes for
that entry. The mandatory and optional attributes of entries
in an object class are determined by object class rules, and

DCE
Applications

.

XDS/XOM

APIs RPC NSI API

XDS Library

GDS Client
(Run-Time)

CDS Client
(Run-Time)

GDS Server CDS Server

X.500
(e.g., GDS)

Internet DNS
(e.g., BIND)

Fig. 4. Interrelationships between DCE directory services. The appli-
cation program interfaces (APIs) are the DCE remote procedure call
name service independent API (RPC NSI API) and the X/Open Di-
rectory Service (XDS) and X/Open OSI Abstract Data Manipulation
(XOM) APIs. GDS is the DCE Global Directory Service and CDS is
the DCE Cell Directory Service. GDA is the DCE Global Directory
Agent. X.500 is an international standard implemented by the DCE
GDS. DNS is the Internet Domain Name System. The Berkeley Inter-
net Name Domain (BIND) is an implementation of DNS.

these rules are part of a schema. For example, an entry rep-
resenting an organization must contain an attribute called
Organization-Name, which has the name of the organization as its
value. An entry can contain optional attributes that describe
the organization: the state or locality in which the organiza-
tion resides, the postal address of the organization, and so
on. As a general rule, all entries must contain the Object-Class
attribute, which contains the list of object classes to which
the entry belongs. If an entry belongs to more than one ob-
ject class, all object classes must be listed in this attribute.

As discussed above, attribute types and object classes have
human-readable names that are meaningful and unique, but
they are not used in the protocols; an object identifier is
used instead. An object identifier is a hierarchical number
assigned by a registration authority. The possible values of
object identifiers are defined in a tree. The standards com-
mittees ISO and CCITT control the top of the tree and define
portions of this tree. These standards committees delegate
the remaining portions to other organizations so that each
object class, attribute type, and attribute syntax has a unique
object identifier. For example, the object identifier of the
country object class is 2.5.6.2, which can also be written more
verbosely as:

joint-iso-ccitt{2}modules{5}object classes{6}country{2}.

X.500 Naming Concepts

Information in the directory information base is organized in
a hierarchical structure called a directory information tree. A
hierarchical path, called a distinguished name, exists from
the root of the tree to any entry in the directory information
base. Each entry in the directory information base must have
a name that uniquely describes that entry. For example, the
employee (entry) David has the distinguished name
C=US/O=hp/OU=hpind/CN=David, where C denotes the country, O

the organization, OU the organization unit, and CN the com-
mon name.

The distinguished name is a collection of attribute type and
attribute value pairs called relative distinguished names.
From the example above, C (country) is an attribute type
and US (United States) is an attribute value.

Alternative names are supported in the directory information
tree through special entries called alias entries. An alias
entry is a leaf entry in the directory information tree that
points to another name. Alias entries do not contain any
attributes other than their distinguished attributes because
they have no subordinate entries.

GDS Components

As shown in Fig. 5, GDS is made up of four main com-
ponents:

Directory User Agent (DUA). This process is the user’s
representative to the directory service. The user can be a
person or an application.

Directory System Agent (DSA). This process controls and
manages access to directory information.

DUA Cache. This process keeps a cache of information
obtained from the directory DSAs. One DUA cache runs on
each client machine and is used by all the users on that
machine. The DUA cache contains copies of recently
accessed object entries and information about DSAs.
Directory Information Base. This is where GDS stores
information.

The DUA and DSA communicate by using the directory
access protocol. DSAs use the directory system protocol to
communicate with each other.

GDS Server

GDS Client

Directory Access Protocol

Application

DUA
Cache

Directory Access Protocol

GDS Server

A4

DUA
DSA

Directory User Agent
Directory System Agent

Application
DUA
Cache
Directory
Access
Protocol
Directory
Information
Base
Directory
System
Protocol
Directory
Information
Base
Directory
Access
Protocol
DUA
Cache

Fig. 5. Global Directory Service
(GDS) components.

Application

25

December 1995 Hewlett-Packard Journal

Since directory information is distributed over several DSAs,
a DUA first directs any queries to a specific DSA. If this DSA
does not have the information, there are two standard request
methods that the DUA can use. The first method is referral—
the DSA addressed returns the query to the DUA together
with a reference indicating the other DSAs that have the
information. Chaining is the second request method—the
addressed DSA passes on the query directly to another DSA
via the directory system protocol.

CDS Directory Structure

Every DCE cell must have at least one CDS server. The CDS
servers in a cell collectively maintain a cell namespace, orga-
nized into a hierarchical directory structure. As mentioned
above, the prefix /.. is shorthand for the global name of the
cell and hence denotes the root of the cell namespace.

A CDS name is simply a series of directory names followed
by an entry name. The directory names are ordered left-to-
right from the cell root and are separated by the / character.
For example, in the name /.:/acme/acme_server, the directory
acme is a child of the cell root and the object acme_server is an
entry in acme.

In a cell that contains more than one CDS server, CDS direc-
tories can be replicated, with each replica of a directory
managed by a different CDS server. Among the replicas in a
set, only one, the master replica, is modifiable; all other rep-
licas are read-only. Replication increases the availability and
reliability of CDS service and can ease recovery from hard-
ware or network failure.

A CDS directory can contain three types of entries:
* Object entries contain information about objects in the cell.
An object can be a host, a user, a server, a device, or any
other resource that has a CDS name.
Soft links provide alternate names for objects, directories, or
other soft links.
 Child pointers are pointers to the directories contained by a
parent directory. A child pointer is created when a new direc-
tory is created and is used by CDS to locate replicas of that
directory when resolving the directory’s name. Child pointers
are created only by CDS itself, not by applications.

Like GDS, CDS stores information about named objects by
associating attributes with names. Object entries might have
attributes to store the object’s UUID, its location, its access
control list (ACL), the time it was created, and the time it
was last updated. A soft link has an attribute to store the
name of the object to which the link points.

Two special classes of CDS object entries warrant particular
mention:

» RPC server entries store information about servers, including
their location and the objects they manage, in the CDS data-
base. Servers register this binding information, and clients
look it up, via the RPC NSI interface.

* Junctions enable a service that implements its own name-
space to splice that namespace into the DCE namespace. A
junction is somewhat analogous to a mount point in a
UNIXU file system; the junction entry stores binding infor-
mation for a service and becomes the root for the name-
space managed by that service. The CDS entry /.:/sec, for

26 December 1995 Hewlett-Packard Journal

example, is the junction for the DCE security service. Appli-
cations can use names such as /.:/sec/principal/stravinsky to iden-
tify principals in the security registry and to obtain bindings
to a security server. Similarly, /.:ffs is the junction for DFS,
and /.:/hosts/<host-name>/config is the junction for the configura-
tion services provided on each host by the DCE host dae-
mon, dced.

CDS Components

CDS is a distributed service based on a client-server model.
Fig. 6 illustrates the software components that implement
this service.

All CDS directory data is stored in databases called clearing-
bouses, which are managed by CDS server daemons. The
server daemon responds to requests from CDS clients for
lookups in or updates to the database. When an RPC server
invokes an RPC NSI API routine to export binding informa-
tion to the namespace, for example, this routine triggers a
CDS update operation. Similarly, when an RPC client imports
bindings from the namespace, a CDS lookup operation is
executed. Each CDS server keeps an image of its clearing-
house in memory and writes the clearinghouse periodically
to disk.

A cell often includes more than one CDS server, each with
its own clearinghouse. Running several CDS servers in one
cell allows administrators to replicate CDS directories. If a
directory is replicated, one clearinghouse stores the master
replica of the directory, and other clearinghouses store read-
only replicas. Clients can perform lookups from any replica
but can perform updates only to the master replica. After a
CDS entry is updated in the master replica of its directory,
the CDS server that manages the master replica propagates
the update to all CDS servers that manage read-only replicas.
Replication improves responsiveness to clients by distribut-
ing work among several servers and ensures the availability
of CDS service if a server machine fails or the network fails.

The architecture of CDS insulates applications from direct
communication with CDS servers. To add, delete, or modify
CDS data, applications call APIs such as the RPC NSI rou-
tines in the DCE run-time library. CDS client code in the
library interacts with a daemon on the local host called the

Client Host CDS Server Host

DCE
Applications

CDS
Server

CDS
Client Daemon

Clearinghouse Cache

II

Client Library

CDS Server Host

CDS CDS CDS
Client Daemon Server Client Daemon

Cache

Clearinghouse

Cache

Fig. 6. Cell Directory Service (CDS) components.

CDS aduvertiser, which uses RPC to communicate as neces-
sary with CDS servers. A CDS advertiser runs on every host
in a DCE cell. (In many DCE implementations, several CDS
client daemons execute on each host: one CDS advertiser
and a number of CDS clerks. In the HP DCE/9000 product, a
single CDS advertiser process subsumes all advertiser and
clerk tasks.) To increase client performance, reduce server
load, and reduce network traffic, each advertiser saves the
results of its lookups in a cache. Frequently accessed data
can be retrieved locally from the cache rather than via RPC
from a server. The advertiser writes the cache to disk period-
ically, so cached data persists through reboots of the CDS
client host.

Conclusion
DCE provides a three-level naming system and two naming
APIs.

Names of cells are stored in a global namespace managed by
a DNS server such as named or by an X.500 server such as the
DCE Global Directory Service (GDS). The Global Directory
Agent (GDA) oversees resolution of global cell names.

The cell namespace consists of two levels: the enterprise
namespace managed by the DCE Cell Directory Service
(CDS) and application namespaces such as those managed
by DCE security and the DCE Distributed File Service (DFS).
The roots of application namespaces are named by CDS
junctions.

DCE offers two naming APIs. The RPC NSI interface is used
by servers to register their names and locations in CDS and

by clients to look up names and get back binding informa-
tion. The XDS/XOM API can access names and their associ-
ated attributes in GDS and CDS.

The DCE name services have some limitations that X/Open’s
Federated Naming specification attempts to solve (see article,
page 28). The RPC NSI API is a specialized interface that
manages only RPC binding handle information; it cannot
read or manipulate other attributes associated with a name.
Many programmers find the XDS/XOM API cumbersome;
this interface is also difficult to layer over other existing
naming APIs. The RPC NSI API and the XDS/XOM API do
not offer a way to create or delete directories programmati-
cally, so an application that needs to create directories cur-
rently must use an internal CDS interface. The CDS and GDS
protocols are complicated and not very general. New nam-
ing services that are introduced are unlikely to use either of
these protocols or the XDS API. Finally, CDS does not sup-
port an easy, general way to create and resolve through
junctions to application namespaces.

Acknowledgments

Liza Martin and Paul Smythe each reviewed several drafts of
this article and made valuable suggestions, for which we are
grateful.

References

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

XIOpen is a registered trademark of X/Open Company Limited in the UK and other countries.

December 1995 Hewlett-Packard Journal 27

