X/Open Federated Naming

The X/Open Federated Naming (XFN) specification defines uniform
naming interfaces for accessing a variety of naming systems. XFN
specifies a syntax for composite names, which are names that span
multiple naming systems, and provides operations to join existing naming
systems together into a relatively seamless naming federation.

by Elizabeth A. Martin

Naming of objects is a fundamental need in a computing
system. A naming service maps human-readable names to
internal location information that programs use to access the
named objects. Current distributed computing environments
that take advantage of large computer networks present new
problems and requirements for the naming service.

Heterogeneous naming systems are a reality. Unlike the
naming service in a single-host system, the naming service in
a distributed system is usually not a monolithic component
but consists of various naming systems embedded in differ-
ent pieces of the system. The naming systems in the Open
Software Foundation (OSF) Distributed Computing Environ-
ment (DCE, see article, page 6) include the X.500 directory
service,! the DCE Cell Directory Service (CDS), and the
DCE Distributed File System (DFS, see page 6). The DCE
security service (see article, page 41) and the DCE daemon
(see article, page 6) also support namespaces. A typical DCE
installation will have applications that have their own nam-
ing systems, such as databases, email, desktops, and spread-
sheets.

These different naming systems have arisen in part because
they meet different requirements. The DCE security server
uses special and somewhat inconvenient measures to protect
the keys of principals in the system. DCE CDS directories are
replicated but a desktop is not. A spreadsheet names fine-
grained objects (its cells) which present unique scaling prob-
lems. New naming systems will continue to appear, particu-
larly in applications.

Up to now, there has been no basic and consistent naming
interface. Each naming system has its own API, so applica-
tion programmers must write custom software for each nam-
ing system that their applications use. When applications are
ported to different systems, they must be modified to use
that system’s naming interfaces. As new naming systems are
introduced, applications that need to use them must be ex-
tended.

There has also been no first-class, generic support for com-
posite names. A few distributed systems support composite
names—names that span multiple naming systems. This sup-
port is limited and specialized. The DCE name /.../ch.hp.com/sec/
principalfjsmith is a composite name. ch.hp.com is resolved in the
Internet DNS3+4 namespace, sec is resolved in the DCE CDS
namespace, and principaljjsmith is resolved in the security ser-
vice’s namespace. In DCE only the security, file system, and

28 December 1995 Hewlett-Packard Journal

DCE daemon namespaces can be accessed through compos-
ite names. UNIX" rcp uses composite names in a different
way from DCE. For example, ajax:/ust/ismithinaming/memo.txt is an
rcp name with two components: ajax is a host name and /ust/
jsmith/naming/memo.txt names a file on ajax. DCE and rcp use their
own syntaxes and conventions for their names.

Another area of inconsistency between naming systems is
their policies for how the namespace is structured. Many
systems have very little policy and what policy there is has
evolved in a haphazard way. Application writers who use
the namespace to advertise their services must follow differ-
ent conventions for the various environments in which their
programs will run or they must invent their own policies for
using the namespace. Administrators who configure a site
are also faced with confusing, inconsistent, or no policy for
how to use the namespace. End users need intuitive ways of
finding and naming objects.

Overview of X/Open Federated Naming (XFN)

Several vendors of distributed computing systems realized
that they shared these naming problems. Engineers from
Digital, HP, IBM, OSF, SNI, and Sunsoft started work on a
naming specification in June 1993. In March 1994 version 1
of the Federated Naming Specification> went to X/ OpenD for
fast-track review. The specification achieved preliminary
status in July 1994. The multivendor team continued to work
on extensions to the specification and on validating it before
it became part of the X/Open Common Application Environ-
ment (CAE) in 1995.

The XFN specification defines application programming in-
terfaces (APIs) and corresponding remote procedure call
(RPC) interfaces. XFN specifies a naming syntax for compos-
ite names and provides operations to join different naming
systems together into a relatively seamless naming federa-
tion. XFN also specifies some naming policy.

Fig. 1 illustrates an XFN configuration. The XFN API is lay-
ered over a framework into which different context imple-
mentations are inserted. A specific context implementation is
required for each naming system in a federation. A context
implementation maps XFN operations into operations that
are native to its naming system. For example, the NIS+° con-
text implementation maps operations in the XFN API to cor-
responding operations in the NIS+ API. A naming system’s
software below the context implementation is not changed.

XEN Client System

XFN API

XFN Library/Framework

DNS
Context
Implementation

XDS
Context
Implementation

CDS
Context
Implementation

NIS+
Context
Implementation

libresolv libnsl/NIS

Internet DNS X.500 DUA CDS Clerk NIS+ Client

X.500 server CDS Server NIS+ Server

To join a federation, a naming system must simply provide
its specific context implementation.

In Fig. 1 the client-side software for five naming systems
runs on the XFN client system. In addition, an XFN client
module that imports an XFN protocol is on this system. The
XFN client module may do caching and other typical naming
client jobs. Each naming client on the system uses its native
protocol to communicate with its server.

Definitions

In this section and hereafter in this article, paragraphs in
quotation marks are taken directly from the X/Open Feder-
ated Naming Specification.>

“Every name is generated by a set of syntactic rules called a
naming convention. An atomic name is an indivisible com-
ponent of a name, as defined by the naming convention.

A compound name represents a sequence of one or more
atomic names composed according to the naming conven-
tion.”

Case sensitivity, the choice of escape, quote, and delimiter
characters, and the order of atomic names in a compound
name are common features of a naming convention.

“In UNIX pathnames, atomic names are ordered left to right,
and are delimited by slash (/) characters. The UNIX path-
name ust/locallbin is a compound name representing the se-
quence of atomic names, usr, local, and bin. In names from the
Internet DNS, atomic names are ordered from right to left,
and are delimited by dot () characters. Thus, the DNS name
sales.Wiz.com is a compound name representing the sequence
of atomic names com, Wiz, sales.”

“The reference of an object contains one or more communi-
cation endpoints (addresses). The association of an atomic
name with an object reference is called a binding. A context
is an object whose state is a set of bindings. Every context
has an associated naming convention.”

NDS
Context

Implementation XEN

Client

NDS API

Fig. 1. XFN configuration using
client context implementations.
A program seeking internal loca-
tion information for a human-
readable name passes the name
to the XFN API. The name is
broken apart and processed by
the appropriate naming systems,
and the desired location infor-
mation is returned by the nam-
ing system servers (bottom row).

NDS Client

XFN Protocol-
Exporting
Nameserver

NDS Server

A UNIX directory is a type of context. An atomic name in
one context can be bound to a reference to another naming
context object, called a subcontext.

“A naming system is a connected set of contexts of the same
type (having the same naming convention) and providing
the same set of operations with identical semantics. In the
UNIX operating system, for example, the set of directories in
a given file system (and the naming operations on directo-
ries) constitute a naming system. A naming service is the
service offered by a naming system. It is accessed using its
interface. A namespace is the set of all names in a naming
system.”

The XFN API

XFN defines uniform naming interfaces that support basic
naming functionality. As illustrated in Fig. 1, the XFN inter-
face is layered over specific naming services’ APIs. The de-
tails of the underlying naming system are hidden from the
application. Applications that use the XFN API can access a
variety of current and future naming systems without modifi-
cation.

The operations in the XFN interface range from simple to
complex. Simple naming systems are not expected to sup-
port the more complicated operations, but the functionality
offered by sophisticated naming systems can still be accessed
via the XFN APL

The XFN base context interface includes operations to bind
an atomic name in a context to an XFN reference and to
unbind a name. Other operations in the XFN base context
interface look up a name and return its reference, look up a
link, list all names and bindings in a context, and create a
subcontext.

XFN supports the notion of attributes (or properties) associ-
ated with a name. Attributes can be used to provide summary
characteristics about the object being named. For example, a

December 1995 Hewlett-Packard Journal 29

printer might be named /.../Wiz.com/eng/os/service /prntrl. The name
pmtrl would be bound to an XFN reference that contains the
address of the server for that printer. Attributes could also be
associated with the name pmtrl that describe its type (Laser-
Jet, inkjet, etc.) and the formats it supports.

Attributes are accessed through the XFN attribute interface,
which includes operations to set, modify, and get attributes
associated with a name in a context. An attribute consists of
an identifier, a syntax, and one or more values. Operations
to search for names whose attribute values match a filter
expression are also defined. In the printer example, a search
operation could be used to locate a LaserJet printer in the
englos department that supports the PostScriptl] format.

The XFN API has been mapped to Internet DNS, CCITT
X.500, DCE CDS, and ONC NIS+. Since X.500 provides the
most functionality of these naming systems through its XDS/
XOM API, this naming system presented the most challenges
for XFN. XFN captures the functionality of XDS/XOM but is
a simpler, more intuitive API.

Support for Composite Names

XFN specifies a syntax and parsing rules for composite
names. Operations to manipulate these names are also
provided.

“A composite name consists of an ordered list of zero or
more components. Each component is a string name from
the namespace of a single naming system and uses the nam-
ing syntax of that naming system. A component may be an
atomic name or a compound name from that namespace.”
The string form of a composite name is “the concatenation
of the components from left-to-right with the XFN compo-
nent separator (/) between each component.”

In the DCE composite name /...Ich.hp.com/sec/principal/jsmith men-
tioned earlier, the ch.hp.com component is a compound name
in the DNS naming system, whose syntax is right-to-left *’
separated. The second component, sec, is in the DCE CDS
naming system, whose syntax is left-to-right /" separated, like
XFN’s syntax. The final two components, principalfjsmith, are in
the DCE security naming system. This naming system’s syn-
tax is also left-to-right /" separated. Since a component is
defined as the name between two XFN separators, principal/
jsmith is two components even though both are in the same
naming system.

Composite names are formed when naming systems are
joined by binding location information about a context in
one naming system into its parent context in another naming
system. This location information about a context in another
naming system is called a next-naming-system pointer. For
most naming systems a next-naming-system pointer is bound
to a leaf name in its namespace and is treated like any other
name in its namespace. The location information is repre-
sented in an XFN reference. The XFN bind operation can be
used to create next-naming-system pointers.

Fig. 2 shows how the name /.../Wiz.com/user/jsmith/fs/naming/memo.txt
is composed. /... is a reserved token that indicates the root of
a global naming system. The Wiz.com component is a name in
the DNS naming system, userfjsmith/fs is in the DCE CDS nam-
ing system, and naming/memo.txt names a DFS file. Location

30 December 1995 Hewlett-Packard Journal

Starting Context

DNS Naming System

Context Named

By com
Context Named By Wiz
DCE CDS
Naming Context Named
System By user

Context Named
By jsmith

Context Named
By fs

File System

Context Named
By naming

Fig. 2. Next-naming-system pointers (Wiz and fs).

information about the DCE CDS context in which user is
bound is associated with the name Wiz in DNS. The atomic
name fs is bound in the CDS context user/jsmith to an object
reference with location information of jsmith’s home directory
in DFS. Wiz and fs are next-naming-system pointers.

The XFN framework controls path resolution of a composite
name. To resolve /... Wiz.com/user/jsmith/fs/naming/memo.txt the XFN
framework first invokes the DNS context implementation to
resolve Wiz.com. The DNS context implementation makes libre-
solve calls to gather the information it needs to form the XFN
reference associated with Wiz.com, which it returns to the
framework. The framework inspects the reference and in-
vokes the context implementation specified in the reference.
The framework passes to the context implementation the
location of the starting context for resolution and the remain-
ing components to be resolved. In this example, the context
implementation is for DCE CDS, the starting context is the
one named by Wiz.com, and the name to be resolved is user/
jsmith/fs/naming/memo.txt. CDS can only resolve user/jsmith/fs. It re-
turns the XFN reference bound to user/jsmith/fs and the remain-
ing components to be resolved back to the framework. The
framework then passes the remaining name, naming/memo.txt, to
the file system to complete the resolution.

XFN Protocols and Configurations

XFN specifies client-server RPC interfaces for use with two
RPC protocols: DCE RPC and ONC RPC. The protocols sup-
port the operations in the XFN API. New naming systems
and some current ones are expected to use one of these
protocols for their client/server communications.

“The advantage for naming systems that export an XFN pro-
tocol is that any existing XFN client that imports the protocol
can be used to communicate with it. This is particularly use-
ful for applications that need to export naming interfaces.
Application programmers do not have to duplicate the client-
side implementation and they do not have to invent new
naming interfaces. This provides additional benefits such as
the ability to use caching and other mechanisms provided by
the XFN client implementations, and a direct (and possibly
more efficient) mapping of XFN operations to the naming
operations.”

The XFN naming model presents a hierarchical namespace
that incorporates different naming systems. The naming sys-
tems are connected together into three levels. The top level
is a global namespace; X.500 and DNS are expected to con-
trol this level. The next level is an enterprise namespace;
DCE CDS, ONC NIS+, Banyan Streettalk, and Novell NDS”
are considered enterprise naming systems. The third level is
the application namespace. The DCE security service, a file
system, and a desktop support application namespaces.

The XFN model, API, and protocols provide a toolkit for
configuring naming federations in various ways. Fig. 1 illus-
trates a heavyweight XFN client system with context imple-
mentations and client-side code for five naming systems and
a module that imports an XFN protocol. Fig. 3 shows a light-
weight XFN client system that only runs the naming module
that imports an XFN protocol. Multiple name servers export
the XFN protocol. Two of the name servers use a variation
of their context implementations to map arriving XFN calls to
their naming systems’ native operations. These servers also
export their native protocols to support clients running

XFN System (Lightweight Client)
XFN API

XFN Library/Framework

XFN
Client

XFN System on Server (Acting as Surrogate Client)

XFN
Protocol

XFN API

XFN System (Lightweight Client)

XFN AP|
XFN Library/Framework

v

XFN Protocol NS_2 Protocol

XFN Protocol
XFN Protocol
Implementation

NS_2 Context
Implementation
NS_1 Server

Fig. 3. Lightweight XFN client configuration with multiple name
servers.

Desktop

legacy software. The desktop application was originally writ-
ten to export its namespace with the XFN protocol.

The two systems shown in Fig. 4 are a lightweight XFN cli-
ent and a server that acts as an intermediary. Like the client
in Fig. 3, the XFN client in Fig. 4 only runs the naming mod-
ule that imports an XFN protocol. None of the legacy sys-
tems’ client-side software needs to run on this system. De-
pending on the client system’s requirements, the XFN client
can be implemented and configured to consume more or
less resources. For example, the XFN client might defer to
the caching mechanisms provided by the native naming

XFN Library/Framework

DNS
Context
Implementation

XDS
Context
Implementation Implementation

-
X.500 DUA CDS Clerk NIS+ Client

CDS
Context
Implementation

NIS+
Context

libresolv

Internet DNS

NDS
Context
Implementation

NDS API

ADSICliEnE Fig. 4. Lightweight XFN client

configuration with surrogate
client on server.

December 1995 Hewlett-Packard Journal 31

system clients. “The legacy naming system clients in Fig. 4
reside on a remote system (similar to Fig. 1) that also ex-
ports the DCE XFN protocol. This remote client can be
viewed as a surrogate or proxy client that acts on behalf of
the initial requestor and performs the native naming system
functions.”

Another common XFN configuration combines Figs. 3 and 4.
Some name servers export the XFN protocol and can be
accessed directly from the lightweight XFN client. Other
name systems are accessed via an XFN surrogate client.

XFN Enterprise Policies

The three-level hierarchy of global, enterprise, and applica-
tion namespaces is an XFN policy that was mentioned in an
earlier section. Major entities, such as countries and organi-
zations, are named in the global namespace. Names in a
global naming system change infrequently and require sanc-
tion from a global authority to do so. The enterprise name-
space is assumed to contain names that are local to an orga-
nization. XFN policies provide some guidelines for
structuring an enterprise namespace. These policies do not
apply to the global or application namespaces.

XFN policy recognizes that there are commonly named
objects in an enterprise. These are organizational units,
users, hosts, services, and files. XFN policy reserves tokens
to identify namespaces for these objects and also applies a
relationship between them. Table I summarizes XFN enter-
prise policies. Some examples of names that use XFN poli-
cies are:

I.../Wiz.com/_orgunit/r-d/englos/_user/jsmith/_fs/naming/memo.txt. Names
jsmith’s file naming/memo.txt. jsmith is a user in the r-dlenglos depart-
ment of the Wiz.com company.
I...IWiz.com/_orgunit/sales/_user/mjones/_service/calendar. Names the cal-
endar service for mjones who is a user in the sales depart-
ment of the Wiz.com company.
1.../Wiz.com/_orgunit/newton/bldg300/conf-rm/chaos/_service/calendar. Names
the calendar service for the Chaos conference room in build-
ing 300 of the Newton site of the Wiz.com company.

Programs that use XFN policies are more portable across
computing environments and enterprises. A distributed ap-
plication, such as a calendar service, has a standard place (a
_service context) to put its binding information. An administra-
tor can put information about each user and each host in a
central, predictable place. An end user can more easily fig-
ure out how to name another user’s files, for example.

Despite the fact that XFN policies are minimal, they are
controversial. Standard token names raise concerns of name
collisions. XFN specifies these tokens on the premise that
the benefits of a more structured namespace outweigh the
risk that XFN tokens will collide with names that are already
in a namespace. An XFN implementation can sacrifice its
portability and customize its own tokens to identify the
namespaces for common objects. An XFN implementation
can conform to the XFN API but to some or none of the
XFN policies. An enterprise namespace will normally have
many contexts that are outside of the XFN policy domain
and may have additional policies of its own.

32

December 1995 Hewlett-Packard Journal

Table |
XFN Enterprise Policies
Context
Context Type Type Parent Subordinate
Token Context Context
Organizational _orgunit enterprise root user, host,
Unit file system,
service
User _user enterprise root, service,
organizational file system
unit
Host _host enterprise root, service,
organizational file system
unit
Service _service enterprise root, not
organizational specified
unit, user, host
File System fs enterprise root, not
organizational specified
unit, user, host
Other Naming APIs

Some naming APIs, such as the DCE RPC Name Service
Independent (NSI) Interfaced and the OMG Common Object
Service’s Naming Service Interface,” are customized inter-
faces that may be layered over an XFN API and its
implementation.

The RPC NSI provides a high level of abstraction for navigat-
ing a namespace and yielding DCE RPC location information
in the form of RPC binding handles. The OMG naming inter-
face is a subset of the XFN basic context interface. The OMG
interface maps names to CORBA object references. Unlike
RPC NSI and the OMG naming interface, XFN accepts many
different types of object references and provides mecha-
nisms to extend the set of object references. Also, neither
the DCE RPC NSI nor the OMG naming interface has support
for attributes.

When these customized interfaces are implemented over
XFN, they take advantage of XFN benefits such as portability
and federation and they leverage all the software that sup-
ports the XFN API.

Conclusions

Among the benefits that XFN provides are:

A uniform naming interface for accessing different naming
systems.

Application programming interfaces as well as RPC inter-
faces.

A naming syntax for composite names.

Operations to join different naming systems together into a
naming federation.

A framework that supports the addition of new naming sys-
tems to an XFN federation with no changes to applications
or to current member naming systems. A naming system that
joins a federation must only supply a context implementa-
tion that maps the XFN API or an XFN protocol to its native

operations. Otherwise, the naming system’s software is not
changed.

Support for small clients.

Easier administration of the various naming systems in a
distributed computing environment. Browsers and editors
that are written to the XFN API can access an entire feder-
ated namespace.

Application power. XFN applications can access a wide vari-
ety of naming systems through the same simple, yet func-
tional APL

Future Directions

Future work needs to be done on policy. Different vendors
that offer similar applications need guidelines for sorting out
their uses of the namespace. Users sometimes want to select
among similar or replicated services based on network
topology or load balance. Administrators often have com-
mon information about a group of users and customized
per-user information. Namespace policies and software
could support these requirements.

Acknowledgments

This paper is a summary of the X/Open Federated Naming
Specification. Quoted paragraphs are taken directly from the
specification as are some of the figures and tables. The X/
Open Federated Naming architecture team includes: Ranga-
swamy Vasudevan, Rosanna Lee, and Vinnie Ryan from Sun-
soft, Ellen Stokes and Dave Bachmann from IBM, Norbert
Lesser and Arthur Harvey from OSF and the author from HP.
Joseph Pato from HP, Arthur Gaylord from the University of
Massachusetts at Amherst, and Richard Curtis from Banyan

were early reviewers and are consultants to the architecture
team. Peter Dejong, Larry Derany, Michael Kong, and Joseph
Pato provided valuable review comments.

References

1. Information Technology—Open Systems Interconnect—T7The Direc-
tory, CCITT X.500 (1988, 1993)/ISO Directory, ISO/IEC 9594: 1988,
1993.

2. X/Open DCE: Directory Services, X/Open Preliminary Specifica-
tion, December 1993.

3. P.V. Mockapetris, Domain Names—Concepts and Facilities, Inter-
net RFC 1034, November 1987.

4. P.V. Mockapetris, Domain Names—Implementation and Specifica-
tion, Internet RFC 1035, November 1987.

5. Federated Naming: The XFN Specification, X/Open Preliminary
Specification, July 1994.

6. R.Ramsey, All About Administering NIS+, SunSoft Press.

7. D. Bierer, et al, Netware 4 for Professionals, New Riders Publish-
ing, 1993.

8. X/Open DCE: Remote Procedure Call, X/Open Preliminary Specifi-
cation, October 1993. Specifies RPC NSI.

9. “Naming Service Specification,” OMG Common Object Services
Specification, Volume 1, March 1994.

OSF and Open Software Foundation are trademarks of the Open Software Foundation in the
U.S.A. and other countries.

UNIX" is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/OpenH is a registered trademark and the X device is a trademark of X/Open Company
Limited in the UK and other countries.

PostScript is a trademark of Adobe Systems Incorporated which may be registered in certain
jurisdictions.

December 1995 Hewlett-Packard Journal 33

