The DCE Security Service

A security protocol consisting of encryption keys, authentication
credentials, tickets, and user passwords is used to provide secure
transmission of information between two transacting parties in a DCE

client/server enterprise.

by Frédéric Gittler and Anne C. Hopkins

The Open Software Foundation’s Distributed Computing
Environment (DCE) is a collection of integrated services that
support the distribution of applications on multiple machines
across a network. In most cases, networks are inherently
insecure because it is possible for someone to listen to traffic
or behave as an impostor. Without countermeasures this
threat could prohibit the distribution of business applica-
tions.

The DCE security service described in this article provides a
set of security mechanisms that can be easily used by a dis-
tributed application to remove the security vulnerabilities
mentioned above.

The security functionality provided by the DCE security ser-

vice includes:

Identification and authentication of users to verify that they

are who they claim to be

Authorization for applications to decide if a user can access

an operation or object

* Secure data communications to protect the data communica-
tion of an application against tampering or eavesdropping.

Security Services

The DCE security service, with additional new services and
facilities, is based on the Kerberos system.! The Kerberos
system performs authentication of users and servers based
on cryptographic keys so that communicating parties can
trust the identity of the other. DCE augments Kerberos with
a way to transfer additional security attributes (beyond just
identity) to a server which may choose to perform access
control on those attributes. The DCE communication proto-
col contains support for protected communications that re-
lies on crytographic session keys provided by Kerberos.

Fig. 1 shows the environment in which the DCE security
service operates, and the services provided on the DCE
security server.

Registry. Every DCE security service user is known as a prin-
cipal. Interactive (human) users, systems (computers), and
application servers (processes) are all principals. Each princi-
pal shares a secret keyt with the DCE security server. The
secret key for interactive users is derived from the user pass-
word. This security model relies on the fact that a particular
key is known only to the principal and the DCE security
service.

t As in the Kerberos system, keys are used for encrypting and decrypting data transferred in a
network transaction, and are known only to the DCE security server and the parties involved in
the transaction.

The registry service is the manager of the central registry
database which contains the principal’s name, universal
unique identifier (UUID), secret key, UNIXY account attri-
butes, and other attributes of the principals. These attributes
include the extended registry attributes (ERA), which may be
defined and instantiated by an administrator.

Like other DCE services, access to the registry service is
based on the use of remote procedure calls (RPCs). The reg-
istry’s operation is secure because it uses a protected RPC
for all of its transactions. Extended registry attributes are
covered in more detail later in this article.

Administrator

Security Server

DCE Control Create User

Program

Registry
REE

User

Log Me in Key

Distribution
Center

Security
Database

Authorize Me
(with Ticket)

Privilege
SEE

EPAC + PTGT
PTGT

Authenticate RPC
(with EPAC) Access
Control

List

Application Application

Server

Client

EPAC = Extended Privilege Attribute Certificate
TGT = Ticket-Granting Ticket
PTGT = Privileged Ticket-Granting Ticket

Fig. 1. The components of the DCE security server in relation to the
other components typically found in a distributed environment.

December 1995 Hewlett-Packard Journal 41



Glossary

The following are some of the terminology and associated acronyms frequently
used in this article.

Extended Privilege Attribute Certificate (EPAC). A credential provided by the
DCE privilege service containing user and group identities and attribute-value
pairs. This information is used by an application server to make authorization
decisions.

Extended Registry Attribute (ERA). A mechanism in which attribute-value pairs
are associated with principals. The information in these attribute-value pairs may
be used to deny or grant an authorization request.

Principal. An entity such as a user, an application, or a system whose identity can
be authenticated.

Service Ticket. A credential used by an application client to authenticate itself to
an application server.

Ticket-Granting Ticket (TGT). A credential that indicates that a user has been
authenticated and is therefore eligible to get tickets to other services.

Identification and Authentication. The first interaction between a
user and the DCE security service is the login sequence
when the identity of a user is authenticated by a secret key.
The result of this authentication is a ticket-granting ticket
(TGT) containing the user principal’s credentials. The TGT
indicates that the user has been authenticated. It is used, as
its name implies, to obtain tickets to other services. The life
span of a TGT is limited to ensure that the user represented
by the credentials is the user currently using the system and
that the user’s credentials are up-to-date.

The user and group identity and the extended registry attri-
butes are not part of the TGT issued by the authentication
service. The privilege service supports an additional autho-
rization by providing user and group identities and attributes
in the form of an extended privilege attribute certificate
(EPAC). During a login sequence, after the TGT is obtained,
the run-time DCE security service makes a request to the
privilege server to issue a privilege TGT. This ticket is a
combination of the TGT and a seal of the EPAC.

The privilege TGT is stored in the user’s environment and is
used by the secure communication mechanisms to obtain a
service ticket from the authentication service. The service
ticket is used by the communication mechanisms to per-
form mutual authentication between the application client
and the application server.

In each of these exchanges, secret session keys, which are
known only to the DCE security service server, are generated
for a particular session between the client and server. The
DCE security run-time environment, RPC, and GSS (Generic
Security Service)? API use these keys for data encryption or
integrity protection generation in any network communica-
tion during a particular session. A brief description of the
GSS API is given later in this article.

Authorization. DCE security provides application servers with
multiple options for authorization. A server can choose to
grant access to a user based on one of the following three
models.

Name-based authorization. The simplest but least scalable
way of doing authorization is to compare the name of the

42

December 1995 Hewlett-Packard Journal

remote principal with the names stored in an application-
specific database. This method is called name-based autho-
rization and is available when using the DCE secure com-
munication mechanisms.

Privilege-based authorization with access control lists. DCE
servers can choose to protect their resources with access
control lists (ACLs). An ACL contains entries that describe
the particular permissions granted to various principals. An
ACL entry may specify an individual user (principal) name, a
group name that implies several principals, or “other” to
indicate any principal not already matching a user or group
entry. Users, groups, and others from a foreign cell may also
be specified in an ACL entry.

When a server receives a remote request, it asks the authen-
ticated RPC run-time environment for the caller’s EPAC. The
EPAC contains the caller’s principal and group identities,
which are compared against the ACL to determine if access
is granted. If the caller’s principal identity matches the prin-
cipal in an ACL entry, and if that ACL entry contains the re-
quired permissions, then access is granted. If there is no
match on the principal, but one of the caller’s groups matches
a group ACL entry, then the permissions in the group entry

apply.

The DCE library includes facilities to manage ACLs and per-
form authorization checks based on ACLs. ACLS are de-
scribed in the article on page 49.

Other authorization. Other authorization mechanisms are
made possible by the ERA facility. A server can use the
value of any given attribute in a user’s EPAC to decide
whether it should service or deny any given request.

Secure Data Communication

DCE provides the remote procedure call (RPC) communica-
tion mechanism as one of its core services. The DCE security
service is designed to support protected RPC communication.

Not all distributed applications in a DCE environment will
use RPC. Most client/server applications in existence today
are message-based, and changing them to use the RPC para-
digm is expensive and time-consuming. It is also not practi-
cal for certain applications to use RPC. These applications
nonetheless require security. For this reason the DCE secu-
rity service now supports the Generic Security Service API
(GSS API), which allows an application to authenticate itself
to a remote party and secure data for transmission over an
arbitrary communication mechanism.

Four basic levels of protection are available with either RPC
or GSS API:

No protection. The DCE security service does not mediate or
participate in the connection.

Authentication. The user of the client application is authenti-
cated to the server.

Data integrity. A cryptographic checksum is included with
the data transmitted. The DCE security service guarantees
the data received is identical to the data transmitted.

Data privacy. The data is transmitted in an encrypted form
and is therefore private to the sender and the receiver.
United States export regulations limit the availability of this
level of protection outside of the United States and Canada.

The higher protection levels include the protections offered
by the lower levels.



Security beyond DCE

Logically, two login sequences are required: the login to the
system and the login to DCE. Entries in the DCE security
service registry contain all the attributes associated with a
UNIX account. These entries can be used instead of the
traditional /etc/passwd file or NIST database as the source of
information for the UNIX system login. The HP-UX* operating
system integrates the system and DCE login sequences into
an integrated login facility, which is described in the article
on page 34.

The DCE security service can be used as the core security
service for the enterprise because it features an extensible
registry through the ERA facility. Products from HP and other
manufacturers licensing DCE from the Open Software
Foundation (OSF) will undoubtedly use the extended regis-
try attribute facility either to provide other integrated login
facilities or to synchronize the DCE security service registry
with other user databases.

The secure data communication mechanisms described
above can be used by system vendors to secure the standard
network communication protocols, such as the file transfer
protocol (ftp).

Security Mechanisms

The mechanisms used by the DCE security service to pro-
vide secure data communication are a combination of key
distribution, data encryption, and data hash tables. The pur-
pose of this section is to give more details about these
mechanisms. Some details have been omitted for brevity and
readability. More formal and complete descriptions of the
algorithms can be found in the references indicated below.

Data Encryption. The DCE security service uses the Data
Encryption Standard (DES)3 algorithm to protect the data it
transmits. This algorithm is used by both RPC and the GSS
API to protect user data and guarantee its integrity. DES re-
quires that the two parties exchanging information share a
secret key, which is only known to the two parties. This key
is 64 bits long and has 56 bits of data and 8 bits of parity.

DES encrypts plain text in blocks of 64 bits. The encryption
is obtained by the iteration of a basic operation which com-
bines permutation of bits for both key and data with exclu-
sive-OR operations. The result of the encryption is a block of
cipher text in which each bit depends on all the bits of the
key and the plain text. Decryption of the cipher text involves
the inverse of the same basic operation. The party receiving
the cipher text and performing the decryption has a copy of
the key used for encryption.

The DCE security service uses DES in cipher-block-chaining
mode in which plain text blocks are exclusive-ORed with the
previous cipher text block before being encrypted. The DCE
security service also uses confounder data, which is a
dummy block of random data placed before the application
data. Confounder data is used to prevent guessing by cor-
relation between blocks of encrypted data. The same block
of plain text can result in two completely different blocks of
data once encrypted with the same key because of the fact

NIS, or Network Information Services, is a product from Sun Microsystems.

that the confounder data will be different. These two tech-
niques render security attacks particularly difficult because
each block of cipher text depends on the previous cipher
block and some random data.

One-Way Hash. The DCE security service uses the message
digest 5 (MD5) algorithm4 coupled with the DES encryption
algorithm to guarantee the integrity of the data being trans-
mitted and verify the success of the decryption operations.
MD5 produces a 128-bit signature (also called a message
digest) that represents the data being transmitted. This mes-
sage digest is obtained by processing the data in blocks of
512 bits. The algorithm is driven by a fixed table containing
64 operations. It uses four 32-bit variables and involves rota-
tion, exclusive-OR, OR, negation, AND, and addition operations
on these variables and the 16 32-bit segments contained in
each block. Like all one-way hash functions, MD5 is designed
to be easy to compute and difficult to break (i.e., derive
plain text from a given hash). DCE uses CCITT-32 CRC,5 a
checksum algorithm, to verify data integrity in certain cases.

Keys. The DCE security service uses two types of keys: long-
term principal secret keys and conversation or session keys.
Principal keys. The DCE authentication protocol (described
below) requires that the DCE security server and the princi-
pal requesting authentication share a secret key. For a ma-
chine or process principal, this key is stored in a file and is
protected by the local operating system protection mecha-
nisms. In the case of a human principal, the secret key is
derived from the user’s password by a one-way hash func-
tion.1 All the principal keys are stored in the DCE registry.
Conversation or session keys. Conversation and session keys
are used to encrypt the data and checksums exchanged be-
tween the application client , the application server, and the
DCE security server. The designs of the DCE and Kerberos
security mechanisms avoid the need to establish a long-term
secret key for each pair of communicating principals by
creating short-lived session keys and communicating them
securely to each principal engaging in a data exchange. In
addition, session keys reduce the vulnerability of long-term
principal keys because the latter are used less often and
therefore are less susceptible to offline attacks.

The conversation and session keys are generated as random
numbers by the DCE security service and are not reused.
These keys have typical lifetimes measured in minutes.
Session keys are keys communicated to principals in tickets,
whereas conversation keys are established dynamically by
the RPC run-time environment to protect the data transmis-
sion. Session keys are used in the establishment of commu-
nication keys.

Authentication Protocol

A simplified illustration of the authentication protocol is
shown in Fig. 2. The circled numbers in this section corre-
spond to the circled numbers in Fig. 2.

At the start of a user login sequence the computer estab-
lishes a session with the DCE security service. The user’s
password is transformed into a secret key (O. The client sys-
tem has a file containing a machine TGT and a machine ses-
sion key. Knowledge about the machine session key and

43

December 1995 Hewlett-Packard Journal



Client System

dced Process

o=r 2

Machine
TGT

O=r

@

Login Program DCE Security Library

User: Mary
Password=h1ll

U@V

- 2

Machine @

Security Server System

Mary

Security Server
o Machine
TGT

Tirﬁmp Q Q » @

A

Time Stamp
o= 2

A

TGT

Time Stamp
o= |22

TGT

TGT

O=r

e@.‘i’e

TGT

O=r

h Machine Session Key
h User Secret Key (Created from Password)

h Conversation Key from dced

h Conversation Key from the Security Library
h Client Session Key

®? Internally Generated Keys

TGT = Ticket-Granting Ticket

Data item encrypted first with key x and then with key y. To
Q Q get to the data item, the token must be decrypted in re-
verse order (i.e., first key y and then key x).

Fig. 2. Creation of a ticket-granting ticket (TGT) via the authentication protocol..

the user secret key is shared between the client system and
the DCE server system (see keys a and b in Fig. 2).

The protocol used for authentication is known as the DCE
third-party preauthentication protocol. The protocol starts
with the DCE security library requesting, on behalf of a login
utility, a conversation key and a machine TGT from the DCE
daemon, dced @. Dced provides the first conversation key and
the machine TGT along with a copy of the conversation key
encrypted with the machine session key 3. The security
library then generates a token containing a time stamp and a
second conversation key. The library encrypts that token

44 December 1995 Hewlett-Packard Journal

twice: once with the key derived from the user password
and once with the first conversation key (@. This encrypted
token is passed to the DCE security server along with the
machine TGT and the encrypted conversation key received
from the dced process ®.

Upon receipt of the token and other items, the DCE security
server decrypts the first conversation key using the machine
session key (8. It then decrypts the token containing the
time stamp and the second conversation key using the first
conversation key (0. Next, the token is decrypted using the
user’s secret key stored in the registry database ®. If the



time stamp is within acceptable limits, the DCE security
server creates a token containing a TGT and a client session
key (©. The security server passes the token back to the
client encrypted with the second conversation key @ . The
client decrypts the token, validates its content, and stores the
TGT and the client session key in the login context for use
in future requests for service tickets @ .

At this point the user and the DCE security server are mutu-
ally authenticated. Note that the user’s secret key was never
sent (in plain or ciphered format) to the DCE security server.
Proof that the user knows the correct password is verified by
the fact that the time stamp is successfully decoded by the
DCE security server.

Privilege Service. The TGT described above does not contain
the information necessary for the advanced authorization
mechanisms such as groups and ERAs. The privilege service
provides this information by creating an EPAC and a privi-
lege TGT, which contains the TGT and a seal (checksum) of
the EPAC.

When an authenticated RPC is attempted and a valid privi-
lege TGT is not available, the privilege service is contacted
by the security library. First the library obtains a service ticket
for the privilege service in a manner similar to what is de-
scribed below, but using a TGT instead of the privilege TGT.

The privilege service then prepares the extended privilege
attribute certificate, creates the privilege TGT, and communi-
cates it back to the client. Application servers will be able to
request the EPAC through the RPC run-time environment.

Secure Communication. The authentication and key exchange
protocol needed to establish a secure communication chan-
nel between a client and its associated server is transparent
to the application. The RPC and GSS API facilities and the
DCE security service library cooperate in establishing a
secure communication channel.

Fig. 3 is a simplifiedt representation of the sequence of
events for establishing a protected RPC communication chan-
nel, assuming a valid privilege TGT has already been estab-
lished by the privilege service as described above. The
circled numbers in Fig. 3 correspond to the circled numbers
in this section. First, the application client makes a request to
the application server by calling an RPC stub@ .

Since the application client needs a service ticket to authenti-
cate itself to the application server, the security library gener-
ates a request to get a ticket and a conversation key from
the security server. This results in the creation of a token
containing the request for the ticket and the privilege TGT
encrypted by the client session key learned during the login
sequence. The token is sent to the key distribution center
(KDC) which is in the security server® .

The KDC decrypts and validates the request and then gener-
ates a conversation key for use between the application cli-
ent and the application server. It encrypts the conversation
key and the authentication information (in the service ticket)
with the secret key it shares with the application server (3. It
attaches another copy of the conversation key

t In particular, the conversation key is established in more steps than shown, and the protocol
implements caching so as not to require all steps to be executed every time.

to the service ticket and encrypts the whole structure with
the client session key @. This token is then sent to the ap-
plication client system (&, which decrypts it and learns the
conversation key (®.

RPC then encrypts the RPC request with the conversation
key @D and sends it to the application server. The application
server learns the conversation key and checks the client’s
authenticity. To accomplish this, the application server sends
a challenge, which is just a random number (®. The client
receives this challenge and replies by sending a token con-
taining the encrypted challenge and the encrypted service
ticket and conversation key obtained from the security
server (9. The server decrypts the ticket and obtains the
client privileges and the conversation key @ . It decrypts the
challenge with this conversation key @ , and if it matches
what is sent, the authenticity of the client is assumed. It then
proceeds to decrypt the request from the client @ . The client
and server now share a secret conversation key.

Additional Functionality

Extended Registry Attributes

The DCE registry contains principal account data in a well-
defined format (i.e., a static schema). Every account record
contains the same number and types of data fields, all tar-
geted to meet the requirements of either DCE security or
UNIX platform security. To support integration with other
platforms and security systems, the DCE registry needed a
way to store non-DCE or non-UNIX security data for princi-
pals. To meet this need, the DCE registry was augmented
with a dynamic schema facility called the extended registry
attribute (ERA) facility, which supports the definition of new
types of data fields called attribute types and the assignment
of specific values for those attribute types to principals and
other registry objects like groups and organizations.

In the ERA schema, administrators define new attribute types
by specifying a unique attribute name (e.g., X.500_Distin-
guished_Name), the appropriate data type (e.g., string), the type
of registry object (e.g., principal) that supports attributes of
this type, and other related information. Once the attribute
type has been defined in the schema, an administrator can
attach an instance of that attribute type to any registry object
that supports it. For example, an attribute instance whose
type is X.500_Distinguished_Name and whose value is /C=US/o=HP/
OU=0SSD/G=JOE/S=KING could be attached to the principal
Joe.tt From then on applications that require knowledge of
Joe’s X.500 distinguished name could query the registry for
that attribute type on the principal Joe.

In some cases, attribute values of a certain type are more
appropriately created and maintained outside of the DCE
registry. These could include attributes that are already main-
tained in a preexisting legacy database or attributes whose
values differ depending on discriminating factors such as time
of day or operation to be invoked. The ERA trigger facility
supports cases such as these by providing an automatic trig-
ger (or callout) to a remote trigger server that maintains the
attributes of interest. For example, if the registry receives a

t1 See the article on page 23 for an explanation of the fields in this string.

December 1995 Hewlett-Packard Journal 45



Application Client System

Application Client

Application Server System

Application Server

® RPC Stubs oCE Library
DCE Library @
—»()>—» FRrRC |@ » rC (@ @
Challenge [« Challenge
®
\ v
Rg%ﬁ-ﬂ Q Service Ticket Q Challenge Q @ Challenge Q 4&
a Q Service Ticket Q g Service Ticket Q <
A A
@ ® |®
PTGT

O=r

Security Server System

Authentication
Server

Request
PTGT

Service Ticket

%Qg
v

O=r

h Client Session Key
h Server Secret Key
h Conversation Key
®? Generated Keys

PTGT = Privilege TGT

Fig. 3. Setting up a secure communication between a client and server.

query for a particular attribute type that is marked as a
trigger, the registry forwards the query to a preconfigured
trigger server. The server will return the appropriate attribute
value to the registry, which will then respond to the original
query with this value. A query for a trigger attribute may
include input data required by the trigger server to deter-
mine the appropriate attribute value to return. Trigger serv-
ers are not provided as part of the DCE package; they are
provided by third-party integrators of security systems. The
ERA trigger facility provides the rules, interfaces, and mecha-
nisms for integrating trigger servers with the DCE security
service.

Some application servers need to make decisions, especially
authorization decisions, based on the calling principal’s
attribute values. The DCE privilege service supports this by
providing a way for applications to request that specific
attributes be included in a principal’s EPAC. As described
earlier in the “Identification and Authentication” section, the
RPC run-time environment supports queries for obtaining the

46

December 1995 Hewlett-Packard Journal

calling principal’s EPAC. This enables application servers to
base decisions on the caller’s attribute values and the iden-
tity and groupset information in the EPAC.

Delegation

In a distributed environment, an application server process-
ing a client request may have to make a request on its own
to another server to complete the client request. We will call
the application server with the request an intermediate
server. The identity reported by the intermediate server to
the server it contacts can be either its own identity or the
identity of the client that made the original request. This
latter case is called delegation because the intermediate
server acts as a delegate of the client. A delegation chain is
built as intermediate servers call other intermediate servers.

For delegation to be possible, the client has to enable this
feature explicitly. Two types of delegation are available:



* Traced delegation in which the identity and privileges of
each intermediary are kept and can be used for access
control

» Impersonation in which only the originator’s identity and
privileges are carried in the extended privilege attribute
certificate.

ACLs have been extended to support delegation, making it
possible to grant access based not only on the originator of
the request, but also on the intermediaries. This allows ad-
ministrators to grant access to servers acting as delegates on
behalf of particular originators without granting access to the
same servers operating on their own behalf.

Compatibility with Kerberos

The authentication service provided in the DCE security is
derived from Kerberos version 5.1 The protocol used be-
tween a client and server using the DCE security service is
the native Kerberos protocol and has been adapted for RPC
transport.

DCE security supports Kerberos version 5 clients (e.g., a
telnet, or a terminal server that uses Kerberos version 5).
This removes the need to manage a separate Kerberos realm
because DCE security supports the registration and authenti-
cation of Kerberos principals.

DCE security also provides an API that can be used to pro-
mote Kerberos credentials that have been forwarded to a
DCE client into full DCE credentials. Full DCE credentials
represent an authenticated DCE principal, thereby enabling
use of DCE services.

Auditing

DCE offers an auditing service that is part of DCE security.
The DCE security and time services use auditing to record
security-relevant events like account creation, ticket granting,
and system time changes.

DCE auditing is controlled by the DCE control program, with
which DCE administrators can select the events to audit and
control the operation of the audit subsystem.

Authenticated RPC

The DCE remote procedure call (RPC) facility is described in
more detail in the article on page 6. The RPC facility is inte-
grated with the DCE security service and is referred to as the
authenticated RPC run-time environment.

When an application client wants to make a protected re-
mote call, it calls the authenticated RPC run-time environ-
ment to select:

e The authentication service, which can be either no authenti-
cation or secret key authentication

» The protection level, which specifies whether authentication
should occur only at the beginning of an RPC session or at
each message or packet and whether message data should
be integrity or confidentially protected

e The authorization service, which can be name-based, in
which case only the name of the caller is known to the
server, or privilege-based, in which case all the privileges of
the client, in the form of an EPAC, are made available to the
server for authorization.

The application developer can trade off the resources con-
sumed by an application with the level of security required.

Generic Security Service API

The GSS API improves application portability by reducing
security-mechanism-specific code. It also provides transport
independence since the data protection is not tied to a par-
ticular communication mechanism (e.g., DCE RPC). GSS API
calls are used to authenticate and establish a security context
between communicating peers and to protect blocks of data
cryptographically for transmission between them. The data
protection includes data origin certification, integrity, and
optionally, confidentiality.

The GSS API supports many different underlying security
mechanisms. The GSS API implementation provided with
DCE supports both the DCE and the Kerberos version 5
mechanisms.

Security Run-Time Environment

Applications can access security functions directly through
the security library, which is part of the DCE library on the
HP-UX operating system. The security library provides APIs
to make access decisions based on ACLs, manage key tables,
query and update registry data, login and establish creden-
tials, and so on.

System administrators and users can use a series of com-
mands to administer the security service or manage their
local security resources such as credentials, ACLs, or key
tables. Most of the administrative commands are part of the
DCE control program.

Multicell Configurations

In large enterprise networks, it is often impractical or unde-
sirable to configure a single cell. For this reason, DCE fea-
tures intercell communication mechanisms. See the article on
page 6 for a brief description of cells.

The DCE security service is an actor in this intercell environ-
ment. Through a mechanism of key exchange, a relationship
of trust can be established between two cells. When an ap-
plication client wants to communicate with a server in a for-
eign cell, it must obtain a service ticket for that server. To do
so, the DCE security service automatically generates a for-
eign privilege TGT, which contains the privilege information
about the principal (application client) in its local cell en-
crypted using the foreign cell’s keys. This key, shared be-
tween the two cells, is used to authenticate and secure this
protocol. The DCE security service then proceeds to get a
service ticket to the foreign server by contacting the foreign
authentication service as it would do for the local cell by
using the foreign privilege TGT instead of the privilege TGT
used in the example given earlier.

ACLs support the intercell operations by allowing foreign
users, groups, and others to be granted permissions.

High Availability

The DCE security service is an essential piece of the distrib-
uted computing environment. Thus, the security service must
stay operational around the clock even when systems are

December 1995 Hewlett-Packard Journal 47



down or network connections are unavailable, which could
happen frequently in wide area network environments.

For this purpose, the DCE security service features a server
replication mechanism. The master replica is the only one
that can accept requests for updates such as password
changes or account modifications. These modifications are
sent securely to slave replicas, which contain a duplicate
image of the registry database, but support only query, not
update operations. The use of slave replicas improves perfor-
mance in busy environments since additional DCE security
servers are available to process queries and requests for se-
cure communication.

The DCE security service administrative commands allow the
role of master to be moved between replicas. In case the
machine hosting the master is not available for some time,
the administrator can force a slave to become the master.

In the rare case in which no network connection is available
to reach a DCE security server, the DCE security login client
will use a local cache of credentials that have been granted
recently to perform authentication. However, the credentials
usually cannot be used to obtain service tickets.

System Security Requirements

The use of the DCE security service alone does not guarantee
a secure distributed computing environment. The security
service relies on protection features offered by the local op-
erating system to store its data and credentials.

The systems hosting a DCE security server must be protected
from unauthorized access. They should be placed in a se-
cure area, such as a locked room, and be given the highest
security considerations. In particular, certain network ser-
vices should be disabled and a limited number of users
should be given access. This security is required because the
DCE security server holds the keys to all the principals in the
enterprise.

The systems hosting the application servers should also be
managed with care, mainly to protect the enterprise data,
which is often not protected by the DCE security service.

Application clients do not need such stringent management
guidelines. On multiuser systems, the user environment
should be partitioned so that one user cannot steal the cre-
dentials of another active user, which could be done by
reading the other user’s credential files.

The DCE security service does not guarantee that there are

no undetected intruders in the system. It offers no protection
if the program used for login has been modified to steal the
password, saving it for future retrieval by an intruder.

48 December 1995 Hewlett-Packard Journal

If a system other than one hosting a DCE security server is
compromised, only the application servers residing on that
system and the users who performed a login on that system
during the period of compromise are affected. The overall
distributed computing environment protected by the DCE
security service is not affected. This is because the keys are
known only by the owner (server, machine, or application)
and the DCE security servers, and they are never communi-
cated to a third party.

Acknowledgments

The DCE security service was developed by Hewlett-Packard
for the Open Software Foundation as part of the Distributed
Computing Environment project. The DCE security service
finds its roots in the Domain operating system, the Network
Computing System (NCS), and the Athena project at the Mas-
sachusetts Institute of Technology, which created Kerberos.
Over the years, many different engineers and managers, too
numerous to recognize by name, have worked on the prod-
uct. The DCE security service continues to evolve as new
services are added through the prestructured technology pro-
gram under the auspices of the OSF.

The authors would like to thank Sue Kline, Mike Kong, Sean
Mullan, Joe Pato, Bill Sommerfeld, and Rob Stanzel for their
contributions to this article.

References

1. J. Kohl, et al., The Kerberos Network Authentication Service, Ver-
sion 5, RFC-1510, September 1993.

2. Generic Security Service API, Preliminary Specification P308, X/
Open Company Ltd., January 1994.

3. Data Encryption Standard, NBS FIPS PUB 46-1, National Bureau
of Standards, U. S. Department of Commerce, January 1988.

4. R. Rivest, The MD5 Message Digest Algorithm, RFC-1321, April
1992.

5. Error-Correcting Procedures for DCEs Using Asynchronous-to-Syn-
chronous Conversions, Recommendation V.42, CCITT, 1988.

6. M. Erdos and J. Pato, “Extending the OSF DCE Authorization Sys-
tem to Support Practical Delegation,” Proceedings, Privacy and Secu-
rity Research Group Workshop on Network and Distributed System
Security, February 1993.

HP-UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX
93 branded products.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a registered trademark and the X device is a trademark of X/Open Company Lim-
ited in the UK and other countries.

Open Software Foundation and OSF are trademarks of the Open Software Foundation in the
U.S.A. and other countries.



