An Evolution of DCE Authorization
Services

One of the strengths of the Open Software Foundation’s Distributed
Computing Environment is that it allows developers to consider
authentication, authorization, privacy, and integrity early in the design of a
client/server application. The HP implementation evolves what DCE offers

to make it easier for server developers to use.

by Deborah L. Caswell

In the Open Software Foundation’s Distributed Computing
Environment (DCE),1,2 services are provided by server pro-
cesses. They are accessed on behalf of users by client pro-
cesses often residing on a different computer. Servers need a
way to ascertain whether or not the user has a right to ob-
tain the service requested. For example, a banking service
accessed through an automated teller machine has to have a
way to know whether the requester is allowed to withdraw
money from the account. A medical patient record service
has to be able to know both who you are and what rights
you should have with respect to a patient’s record. A policy
can be implemented such that only the patient or the legal
guardian of the patient can read the record, but doctors and
nurses can have read and write access to the record.

The process of determining whether or not a user has per-
mission to perform an operation is called authorization. It is
common to separate the authorization policy from the autho-
rization mechanism. Authorization policy dictates who has
permission to perform which operations on which objects.
The mechanism is the general-purpose code that enforces
whatever policy is specified. In DCE, the encoding of the
authorization policy is stored in an access control list (ACL).
Every object that is managed by a server such as a bank
account or a patient record has associated with it an ACL
that dictates which clients can invoke each operation defined
for the object.

For example, to encode the policy that the owner of the
bank account can deposit and withdraw money from the
account and change the mailing address on the account, but

Server Process

only a bank teller may close the account, an ACL on a bank
account owned by client Mary might look like:

user:Mary:DWM
group:teller:C

where D stands for permission to deposit, W for permission
to withdraw, M for permission to change the mailing address,
and C for permission to close the account.

Each application is free to define and name its own set of
permissions. The D, W, and C permissions used in the exam-
ple above are not used by every server. An application in
which the D (deposit) permission makes sense could choose
to name it as the “+” permission. Also, many applications will
not have a deposit operation at all. Therefore, the interpreta-
tion of an ACL depends on the set of permissions defined by
the server that uses it.

The first part of this paper describes the specifications and
authorization mechanisms (code) offered in DCE that sup-
port the development of authorization services. The second
part describes our efforts to supplement what DCE offers to
make it easier for the server developer to use authorization
services. The ACL functionality described here pertains to
DCE releases before OSF DCE 1.1 and HP DCE 1.4.

Authorization Based on Access Control Lists

Fig. 1 shows the client/server modules required for an ACL
authorization scheme used in a hypothetical bank applica-
tion that was implemented using DCE. To understand the

Does Jane Have Permission

Client Process

Dispense U.S. $100

Automated
Teller

User = Jane, Account = 1234
Request = Withdraw U.S. $100

Machine Interface

h 4

Modify Account
Permission

Management Process

Give Jane Permission to

Withdraw from Account 1234.

Bank
Administration
Control Account
WERELEIE

Editing
Interface
(rdacl)

to Withdraw from this
Account?

sopicaton s

Manager

Get Account
Permissions

Update ACL
Information

ACL

DEehEes Fig. 1. Flow of information in

the bank automatic teller ma-
chine example.

December 1995 Hewlett-Packard Journal 49



interactions between these modules consider the following
scenario. Jane makes a request to withdraw U.S. $100.00
from her account number 1234. The application interface
passes this information to the ACL manager asking for an
authorization decision. The ACL manager retrieves the autho-
rization policy for account 1234 from the ACL database and
applies the policy to derive an answer. If Jane is authorized,
the machine dispenses the money.

When Jane’s account is first set up, a bank employee would
use an administration tool (from the management process in
Fig. 1) to give Jane permission to withdraw money from
account 1234. The editing interface enables the ACL manager
to change the policy. The ACL manager changes a policy by
retrieving the current policy, modifying it, and writing it
back to the ACL database.

ACL Database. A server that needs to authorize requests must
have a way to store and retrieve the ACLs that describe the
access rights to the objects the server manages. One applica-
tion might want to store ACLs with the objects they protect
and another might want a separate ACL database. Depend-
ing on the number of objects protected and access patterns,
different database implementations would be optimal. For
this reason, the requirements for an ACL storage system are
likely to be very dependent on the type of application.

An Authorization Decision. When an application client makes a
request of the application server, control is given to the man-
ager routine that implements the desired operation. The
manager routine needs to know what set of permissions or
access rights the client must possess before servicing the
request.

The manager routine must supply the client’s identity (Jane),
the name of the protected object (Account 1234), and the
desired permissions (withdraw) to a routine that executes
the standard ACL authorization algorithm. If the routine
returns a positive result, the server will grant the client’s
request (dispense U.S. $100). Note that the authorization
system depends on the validity of the client’s identity.
Authentication is a necessary prerequisite for authorization
to be meaningful.

Standard Interface for Editing. Without a standard way of ad-
ministering ACLs, each server developer would have to pro-
vide an ACL administration tool, and DCE administrators
would have to learn a different tool for each server that uses
authorization. To avoid that problem, a standard ACL editing
interface is defined so that the same tool can interact with
any service that implements the standard interface.

What DCE Provides

To meet the requirements for the ACL management scheme
mentioned above, DCE provides code to support ACL
management for some requirements and simply defines a
standard interface without providing any code for other
requirements. Fig. 2 shows the main components that pro-
vide DCE ACL support within the server executable.

Unforgeable Identities. DCE provides the run-time RPC (remote
procedure call) mechanism, which provides the server pro-
cess with information about the client making a request.
Because of the authentication services provided in DCE, the

50 December 1995 Hewlett-Packard Journal

Application From
Interface Stub N
Application
\ Client
From —— rdacl Server Stub
acl_edit

ACL Database Access Routines
For ACL Storage and Retrieval
(e.g., sec_acl_mgr)

Access Control
Database

1 Code that is automatically generated from the interface specification.

I Code that must be provided by the server developers. These routines are
embodied in the ACL manager in Fig. 1.

Fig. 2. Components that provide DCE ACL support in a server
executable.

client’s identity is unforgeable so that the server need not
worry about an impostor.

ACL Database. DCE suggests an interface to an ACL storage
and retrieval subsystem called sec_acl mgr. This interface is
used within the server, and therefore is not mandatory or
enforceable. DCE currently does not provide an implementa-
tion of this interface for use by application developers.
Furthermore, it does not contain operations for adding and
deleting ACLs, so even if the sec_acl_mgr interface is used, it
would have to be supplemented by other ACL database
access operations.

Authorization Decisions. DCE specifies a standard way of
reaching an authorization decision given a client’s identity,
desired operation, and authorization policy encoding. The
OSF DCE 1.0 distribution for application developers does not
supply an implementation of this algorithm, requiring the
server developer to write the authorization algorithm.

Standard Editing Interface. DCE provides a tool called acl_edit
that an administrator can use to change the authorization
policy used by any server that implements the standard rdacl
interface even though each server might use a different set
of permissions.

DCE defines the standard rdacl interface responsible for
enabling modification of the authorization policy. The rdacl
interface is used by acl_edit to access and modify ACL infor-
mation. DCE does not provide an implementation of the rdacl
interface. Without additional help from other sources, each
server developer has to write rdacl routines that call the ACL
database access routines. Servers that implement the rdacl
interface can be administered by any client that uses the
standard interface including the acl_edit tool mentioned
above.



The rdacl interface does not support adding and deleting
ACLs; it only addresses editing existing ACLs. For that
reason, an ACL storage subsystem must be designed and
implemented for an application that supports adding,
modifying, retrieving, and deleting ACLs.

The rdacl operations listed below are described in the DCE
reference manual.3 They are listed here to give an idea of
the size and functionality of the interface.

rdacl_get_access: lists the permissions granted to a principal to
operate on a particular object

rdacl_get_manager_types: gets the list of databases in which the
ACL resides

rdacl_get_printstring: gets the user description for each
permission

rdacl_get_referral: gets a reference to the primary update site
rdacl_lookup: gets the ACL for an object

rdacl_replace: replaces the ACL for an object

rdacl_test_access: returns true if the principal is authorized to
perform the specified operation on an object
rdacl_test_access_on_behalf: returns true if both the caller and a
specified third-party principal are authorized to perform the
specified operation on an object.

An implementation of these operations has to call the re-
trieve and modify operations of the ACL storage subsystem,
invoke the authorization decision routine, and describe the
permissions that are used in the ACLs for the particular
implementation.

Component Relationships. Some of the boxes in Fig. 2
represent code that is automatically generated from the inter-
face description, and other boxes represent code that must
be supplied by server developers.

The modules on the right side of the block diagram in Fig. 2
represent the application-specific interfaces and code. The
application interface stub is the code generated by the Inter-
face Definition Language (IDL) compiler when given the
application interface files. For example, if we have a bank
account server, the application interface stubs would receive
the call and direct it to the application manager. The applica-
tion managers are the modules that implement the applica-
tion server functionality. In our bank example, this is the
code that implements the deposit and withdrawal
operations.

On the left side of Fig. 2 is the code that is specific to ACL
management of the DCE standard rdacl interface. The rdaclif
(rdacl interface file) server stubs are generated by running the
IDL compiler over the rdaclifidl file which is delivered with the
DCE product. The rdacl routines implement the operations
defined in the rdacl interface. The bottom of Fig. 2 shows the
ACL storage and retrieval code. The rdacl routines make calls
to the storage layer either to get the ACLs that will be sent
over the wire to a requesting client or to replace a new ACL
received from an ACL administration tool. The database ac-
cess routines must also implement the standard ACL check-
ing authorization algorithm and a routine to compute the
effective permissions of a client with respect to a specific
object. The application managers call the database access
layer to get an authorization decision. For example, the code
that implements the withdrawal operation needs to first
make sure that the client making the request is authorized to
withdraw money from a particular account.

Although they do not interact directly with each other, the
application manager routines and rdacl routines coexist within
the same process and call common ACL manager routines.

Summary

DCE supports a server process’s ability to make an autho-
rization decision in several ways, but as shown in Fig. 2,
there is a lot of code left for the server developer to write.
Some of the required code, such as the authorization deci-
sion routine, can be reused in other applications because it
is application independent. Other code, such as the storage
subsystem, is more application-specific and might have to be
developed for each new service.

Help for the Server Developer

This section describes three evolutionary steps that we took
to supplement DCE’s authorization support. The approach
we took to each step is not novel. Each approach has value
by itself in addition to being a stepping stone to a more
sophisticated approach.

Note that although the outputs from each of these steps did
not directly become products, they did form the basis for HP
Object-Oriented DCE (HP OODCE). HP OODCE is briefly
described later in this article and completely described in the
article on page 55.

Sample Applications. The first step was simply to provide an
example of server code that performs ACL management. The
application acl_manager is one of a set of sample applications
written to demonstrate the use of various DCE facilities.
These sample applications are a valuable learning tool and
are also useful for cutting and pasting working code into a
real-world application.

The acl_manager is based on the ACL manager reference imple-
mentation distributed with DCE source code. The sample
application uses a static table of ACLs, and there is no opera-
tion for adding or deleting ACLs and no general storage
manager. However, acl_edit can interact with this primitive
ACL manager to view or modify the ACL for one of these
static objects .

The acl_manager includes a description of how to tailor the
code to one’s own application server and provides more
background on how ACL management works than is avail-
able in the DCE manual set.

Another sample application, the phone database, demon-
strates the use of an ACL manager inside an application. This
more complex sample application demonstrates how appli-
cation interfaces and the ACL management interface coexist
within the same server and how they interact. The phone
database application uses an in-memory binary tree storage
facility with a simple checkpoint facility for committing
changes to stable storage. The persistent representation of
ACLs can be modified by an editor for bulk input. At startup,
the server parses and interprets this file.

As mentioned before, in addition to being a valuable learn-
ing tool, the sample applications provide reuse of code and
ideas at the source-code level.

Common ACL Management Module Interface. Cutting a sample
application and pasting it into a new application with an

December 1995 Hewlett-Packard Journal 51



understanding of how it needs to be modified is surely bet-
ter than starting from scratch. Reuse through a code library is
better yet. The problem was how to provide a single library
for ACL management when so much of it is application-spe-
cific. There is so much flexibility in how ACLs are managed.
We wondered if it were possible to anticipate what most
developers would need and if we would be able to satisfy
those needs by creating a general-purpose library.

The first task was to partition the aspects of ACL manage-
ment into those that are application-specific and those that
are application independent. The application independent
portion would be provided as library routines. Our approach
to the application-specific portions was threefold:

Limit the flexibility by providing routines that would be suf-
ficient for most developers. For example, although DCE
allows a server to implement more than 32 permissions,
limiting support to 32 or less simplified the design
considerably.

Parameterize routines such that their behavior can be deter-
mined when the library is initialized at startup. For example,
each application defines its own set of permissions. A table
of permissions can be downloaded into the library rather
than hard-coded into the library routines.

Identify a well-defined interface to the storage and retrieval
routines. As mentioned earlier, the storage requirements are
the one aspect of ACL management that will vary the most
among applications. By partitioning the functionality in this
way, customers with special storage needs can write their
own ACL storage management, and provided that they con-
form to the published interface guidelines, would still be
able to use the library for other ACL management functions.

Fig. 3 shows a different view of the ACL components de-
picted in Fig. 2. The application server component is not
called out separately in Fig. 2. The server initialization code
(server.c) is typically located in this component. The applica-
tion server also contains the code that directs the DCE run-
time code to start listening for incoming client requests.

The application manager component in Fig. 3 contains the
same functionality as the application manager component
shown in Fig. 2.

The ACL manager component in Fig. 3 represents the code
needed to support the rdacl interface, the ACL checking algo-
rithm, the computing of effective permissions, and other
general utilities. Basically, the ACL manager contains all the
ACL code that is independent of how an ACL is stored

Application
Server

From acl_edit ACL Manager

Manager

52 December 1995 Hewlett-Packard Journal

ACL Storage

within a database. It also encapsulates the implementation of
the ACL structure itself. In other words, if the data structure
that represents an ACL were to change, only the ACL man-
ager component would need to be rewritten to accommo-
date the changes.

The ACL storage manager contains the ACL database access
routines and the ACL database. The ACL storage manager
can manage ACL storage in memory, on disk, or a hybrid of
the two.

The circled numbers in Fig. 3 correspond to the following
interactions between ACL manager components.

1. The application server must call the ACL manager to ini-
tialize its internal data structures and to download applica-
tion-specific information such as permission print strings and
reference monitor callback functions. The reference monitor
implements a general security policy that screens incoming
requests based on the client’s identity and the authentication
or authorization policies it is using. The monitor does not
base an authorization decision on the requested operation or
the target object. The ACL manager performs that job. A de-
fault reference monitor is provided by the ACL manager. If
an application has its own reference monitor, it will be in-
voked instead of the default monitor supplied with the ACL
manager.

2. The application server must call the ACL storage manager
to allow it to initialize itself. The initialization calls performed
by the application server are only done once when the whole
system is initialized.

3. The application manager calls the ACL manager to per-
form an authorization decision or to invoke a general ACL
utility.

4. The application manager calls the ACL storage manager to
add a new ACL to the database or to delete an old ACL from
the database.

5. The ACL manager calls the ACL storage manager to trans-
fer an ACL to or from the database in response to rdacl
requests coming from acl_edit.

6. The ACL storage manager calls the ACL manager utility
routines to manipulate ACL data structures. One manipula-
tion operation involves converting permissions from human
readable form into a bitmap and vice versa.

Application L .
Interface Stub From Application Client

Application
Manager

ACL
PEIELEN]

Fig. 3. Architecture for modules
that make up the common ACL
management module interface.



7. The ACL manager must make a callback to an application-
specific reference monitor routine to screen an incoming rdacl
request according to the application’s general security policy.

The goal for the common ACL management module interface
was to explore appropriate programmatic interfaces. Our
implementation was a proof of the concept for the design
and was not intended to be the best ACL manager package.
The implementation provided the same functionality as the
sample application except that it used an in-memory binary
tree to allow applications to add ACLs at run time. The main
contribution of the common ACL management module inter-
face from an application developer’s standpoint is the ability
to link with a general-purpose library rather than cutting and
pasting source code. The application developer can use
higher-level interfaces for creating ACLs and get authoriza-
tion decisions without having to understand and write the
underlying mechanism.

Although the common ACL management module interface
was never sold as an HP product, it was useful in several
ways. First, we learned a great deal about ACL management
and what developers would want to be able to do with it.
Second, we used the modules in an internal DCE training
class that allowed us to teach ACL management concepts
and have the students add ACL management to an applica-
tion they developed during a two-to-three-hour laboratory
exercise. The common ACL management module interface
allowed the students to spend their lab time reinforcing the
concepts presented in the lecture rather than getting bogged
down in writing a lot of supporting code just to make their
application work. The experiences of the class reinforced
our belief that it is possible to support application develop-
ers in the creation of ACL management functionality without
every developer having to understand all of the complicated
details of ACL management that are DCE-prescribed but not
application-specific.

The version of DCE provided by OSF only supports C pro-
grammatic interfaces. It made sense to implement the com-
mon ACL management modules in C for two reasons:

Since we were layering on top of DCE, it was more conve-
nient to use the supported language.

We expected that users of the common ACL management
modules would also be programming in C, and so would
want C interfaces to the common ACL management module
interface library.

However, there is growing interest in C++ interfaces to DCE
as well as support for object-oriented programming. In
response to that need, a C++ class library for DCE called
OODCE (object-oriented DCE) has been developed.

HP OODCE: A C++ Class Library for DCE

The common management module interface acted as a
springboard for design and implementation of the C++ ACL
management classes which are part of HP’s OODCE
product. Since it is much easier to create abstract interface
definitions in C++ than in C, these DCE ACL management
classes make it easier to provide access control within a DCE
server. Application developers can reimplement specific
classes to customize the ACL manager to fit their

DCEAcIMgr DCEAcIStorageManager

DCEAcIDb

DCEAcl DCEModifyableAcl

DCEAcISchema

Fig. 4. HP OODCE ACL management class interrelationships.

needs. The classes supplied with OODCE and their interrela-
tionships are shown in Fig. 4. The classes shown in Fig. 4
represent further modularization of the ACL manager and
ACL storage manager components shown in Fig. 3.

Class Descriptions. The DCEAcIMgr class implements the rdacl
interface for use by the acl_edit tool and other management
tools. There is one instance of an DCEAcIMgr per application
server. The DCEAcIStorageManager manages all ACL databases for
this server. The DCEAclStorageManager is responsible for finding
the database in which the ACL is stored and returning a han-
dle to that database. Programs invoke the DCEAcIStorageManager
interface to create or register a new ACL database and to
access existing ones.

The DCEAcIDB class defines the interface to an ACL database.
An ACL database may define multiple 32-bit words of per-
missions. The interpretation of the permission bits is stored
in a DCEAcISchema object, and each database has exactly one
DCEAcISchema associated with it.

The DCEAcl class defines an interface for accessing DCE ACL
information. In addition to the DCE ACL information, the
DCEAcl class contains information about the database in which
it resides, the owner and group of the protected object, and
other information that is needed by an implementation. The
DCEACcl’s state is read-only. The DCEModifyableAc! class is a modi-
fiable version of the DCEAc! class.

Using the OODCE ACL Management Classes. The application
server invokes a simple macro that initializes the ACL sys-
tem. OODCE, by default, handles all the details of making
the rdacl interface ready to be invoked by remote clients. This
includes registering the interface with the RPC run-time rou-
tines so that an incoming request for that interface is re-
ceived and ensuring that the correct entry point for the rdacl
routines is invoked. The application server also handles ex-
porting location information to the endpoint mappert and
CDS (cell directory service) database so that clients can find
the server’'s ACL management interface. That is the only re-
quired involvement of the application server. However, the
application server may create DCEAcIDb objects that can be
shared across manager objects. These databases must be
registered with the DCEAcIStorageManager.

T The mapper maintains a list of interfaces and the corresponding port numbers where services
of the interfaces are listening.

53

December 1995 Hewlett-Packard Journal



Application managers create new ACL objects by first re-
questing the DCEAcIDb object to create a DCEModifyableAcl object
and adding ACL entries to it. When done, the DCEModifyableAcl
object is committed (added) to the database. To get an au-
thorization decision, an application manager retrieves an
ACL object from the database and interacts with it to get an
authorization decision.

Overall, it is easier for the application developer to use the
OODCE ACL manager classes than any of the previous
solutions. Many of the routine tasks are done by default by
the library, but they can be overridden if there are special
circumstances. The ACL management objects are written to
the abstract class definition so that users can provide their
own implementations of DCEAcIDb, DCEAcl, and DCEModifyableAcl
classes and have them plug into the rest of the system.

A DCEAcIDb implementation encapsulates the database access.
This allows the flexibility of storing ACLs either with the
objects managed by the server or in some other database.
Any commercial database product can be used. The server
developer need only implement DCEAcIDb so that it conforms
to the abstract interface and makes the calls to the commer-
cial database of choice.

The DCEModifyableAc! class allows for fine-grained editing. The
rdacl interface only supports the atomic replacement of an
entire ACL, whereas the DCEModifyableAcl design supports
changing individual elements within an ACL.

HP OODCE ACL objects are more general-purpose than the
common ACL management module interface described ear-
lier because the abstract class design of HP OODCE accom-
modates more features. Its design supports more than 32
permissions, and registration of the rdacl interface with CDS
and the endpoint mapper is automatic and transparent to the
server developer.

54 December 1995 Hewlett-Packard Journal

Current Status. HP OODCE is now a product. It includes de-
fault implementations for all the classes, but we expect that
customers will write their own implementations of DCEAcIDb
and possibly of DCEAcl and DCEModifyableAcl. There is still much
to learn about what distributed application developers really
need from an ACL management package, but with the HP
OODCE library as a product, we have more opportunity to
get feedback. HP OODCE is described in more detail in the
article on page 55.

Acknowledgments

I would like to thank Bob Fraley who is the codeveloper, my
object-orientation mentor for the HP OODCE portion of this
project, and the principal reviewer of this paper. Jeff Morgan
and John Dilley were developers of HP OODCE and contrib-
uted to discussions of design and implementation of the ACL
management portion. Mickey Gittler enhanced and made the
HP OODCE ACL manager classes into a product. Thanks
also to Jeff Morgan and Cas Caswell who reviewed this
paper and gave helpful suggestions for improvement.

References

1. W. Rosenberry, D. Kenney, and G. Fisher, Understanding DCE,
O'Reilly & Associates, Inc., September 1992.

2. J. Shirley, Guide to Writing DCE Applications, O’Reilly & Associ-
ates, Inc., June 1992.

3. DCE Application Development Reference Manual, Open Software
Foundation, Cambridge, Massachusetts, 1991.

HP-UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX
93 branded products.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open™ Company Limited.

XIOpen is a registered trademark and the X device is a trademark of X/Open Company Lim-
ited in the UK and other countries.

Open Software Foundation and OSF are trademarks of the Open Software Foundation in the
U.S. and other countries.



