An Object-Oriented Application
Framework for DCE-Based Systems

Using the Interface Definition Language compiler and the C++ class
library, the HP OODCE product provides objects and abstractions that
support the DCE model and facilitate the development of object-oriented

distributed applications.

by Mihaela C. Gittler, Michael Z. Luo, and Luis M. Maldonado

HP’s Object-Oriented DCE (HP OODCE) provides a library
of framework and utility C++ classes that hide DCE program-
matic complexity from developers and provide automatic
default behavior to ease the development of distributed ap-
plications. The default behavior is also a great help in short-
ening application development time. HP OODCE offers flexi-
bility by allowing developers to use subclassing and
customized implementation. Fig. 1 shows the product struc-
ture for HP OODCE.

HP OODCE allows clients to view remote objects as C++
objects and to access member functions and receive results
without making explicit remote procedure calls (RPCs). Also,
applications can communicate with each other using inter-
faces specified by the Interface Definition Language (IDL).
Finally, HP OODCE uses the C++ class library and the IDL
compiler (idl++) to create an object-oriented programming
environment that supports RPC-based communications, client/
server classes, POSIX threads, and access to the DCE naming
and security services.
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Fig. 1. HP OODCE product structure.

idl++-Generated Classes

The idl++ compiler takes an IDL specification like the one
shown in Fig. 2 and generates the C++ classes shown in
Fig. 3. The idl++ compiler also generates the header file and
stubs normally produced by the DCE IDL compiler.

The concrete client class* describes the client proxy object
that accesses remote C++ objects implemented by the server.
The proxy object gives the client the impression that the
instantiation of a particular server object is executing locally.
Fig. 4 shows an example of a client proxy class declaration
for an interface to the Sleep function, which is responsible for
putting a process to sleep. This class contains multiple con-
structors that, when called, locate the compatible manager
(server) objects based on location information and the UUID
(universal unique identifier) supplied as arguments to the
constructors.

The abstract server class in Fig. 3 provides declarations for
member functions defined in the IDL specification that cor-
respond to remote operations that can be accessed by the
client proxy object. The default concrete server class de-
clares the member functions specified in the abstract class.
The functions must be implemented by the application de-
veloper. Fig. 5 shows the abstract and concrete server man-
ager declarations for the Sleep function.

The entry point vector contains entry points for each remote
procedure defined in the IDL specification.

HP OODCE Server and Client Classes

The server code that interacts with the DCE subsystems is
embodied in the DCEServer class. An instance of the DCEServer
class, called theServer, manages the remote objects that are
exported by the DCE server application. These objects are

Iffoo.idI
[uuid(DOFCDD70-7DCB-11CB-BDDD-08000920E4CC),
version(1.0)]

interface sleeper

[idempotent] void Sleep

( [in] handle_t h
[in] long time),
}

Fig. 2. IDL specification for the interface Sleep.

* See glossary on page 60 for a brief description of the C++ terminology used in this article.
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DCE IDL File (foo.idl in Fig. 2)

idl++ Compiler
Contains the Client Proxy Abstract Server
Concrete Cli- : )
ent Class Declaration Class Declaration
(fooC.H) (fooS.H)
Server Entry Point Manager
Vector (C++ Stub) Classes

(fooE.C)

Client Proxy
Implementation
(fooC.C)

instances of the concrete server manager classes and each
has a DCE UUID. There is one DCEServer instance per DCE
rpc_server_listen call (currently per UNIXY process), which starts
the server’s run-time listening for incoming RPC requests.
DCEServer has member functions that establish policies such
as object registration with the RPC run-time process or the
naming service and setting security preferences. Object reg-
istration takes place whenever the DCEServer class method
RegisterObject is called. Fig. 6 shows the server main program
for the Sleep object and the implementation of the Sleep func-
tion.

In HP OODCE, server objects are accessed via a client object
(see Fig. 7). The client RPC request specifies a binding han-
dle that locates the interface and the DCE object UUID. The
entry point vector code locates the correct instance of the
requested manager object. Fig. 8 shows the HP OODCE cli-
ent/server run-time organization.

The idl++-generated client proxy class has methods corre-
sponding to the operations defined in the IDL specification.
Idl++ provides an implementation of the client proxy object
methods. These methods locate the server and call the corre-
sponding C ++ stub generated by the idl++ compiler. The
proxy implementation handles rebinding, sets security pref-
erences, and maps DCE exceptions returned by RPC into
C++ exceptions (described below).

class sleeper_1_0 : public DCEInterface {
public:
sleeper_1_0(DCEUuid& to = NullUuid):
DCElInterface(sleeper_v1_0_c_ifspec, to) { }
sleeper_1_0(rpc_binding_handle_t bh, DCEUuid& to = NullUuid) :
DCElnterface(sleeper_v1_0_c_ifspec, bh, to) { }
sleeper_1_0(rpc_binding_vector_t* bvec) :
DCElInterface(sleeper_v1_0_c_ifspec, bvec){ }
sleeper_1_0(unsigned char* name,
unsigned32 syntax = rpc_c_ns_syntax_default,
DCEUuid& to = NullUuid) :
DCElnterface(sleeper_v1_0_c_ifspec, na,e, syntax, to) { }
sleeper_1_0(unsigned char* netaddr,
unsigned char* protseq, DCEUuid& to = NullUuid) :
DCElnterface(sleeper_v1_0_c_ifspec, netaddr, protseq, to) { }
sleeper_1_0(DCEObjRefT* ref) :
DCElInterface(sleeper_v1_0_c_ifspec, ref) { }

/I Member functions for client
void Sleep(
[*[in] */ idl_long_int time
)i
e

Fig. 4. Client proxy class declaration. The class contains several

constructors for the Sleep function. The highlighted constructor is
the one used in the examples in this article.
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Concrete Server
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(fooS.H)

Fig. 3. The files created after an
IDL specification is processed by
the idl++ compiler.

(Fig. 5b)

HP OODCE Framework and Utility Classes

The framework classes represent the HP OODCE object
model abstraction and provide the basis for DCE functional-
ity and default behavior (see Fig. 9). Classes, such as DCE-
Server, DCEInterfaceMgr, and DCElnterface interact with DCE
through the DCE application programming interface.

The idl++-generated manager classes (server side) inherit
from the DCEObj and DCElnterfaceMgr classes. DCEObj associates a
C++ object instance, which may export several DCE inter-
faces, with a specific DCE object. Each DCE object is identi-
fied by its object UUID. DCEObj holds the UUID for the DCE
object (see Fig. 5b).

class sleeper_1_0_ABS : public virtual DCEObj, DCEInterfaceMgr {
public:
/I Class constructors must initialize virtual base classes
sleeper_1_0_ABS(uuid_t* obj, uuid* type):
@ DCEODbj(obj),
DCElnterfaceMgr(sleeper_v1_0_s_ifspec, (DCEObj&)*this, type,
(rpc_magr_epv_t)(&sleeper_v1_0_mgr)){}
sleeper_1_0_ABS(uuid_t* type) :
@ DCEODbj(uuid_t¥)(0)),
DCElInterfaceMgr(sleeper_v1_0_s_ifspec, (DCEObj&)*this, type,
(rpc_mgr_epv_t)(&sleeper_v1_0_mgr)){}
/I Pure virtual member functions corresponding to remote procedures
virtual void Sleep(
[*[in] */ idl_longint time
)=0;

class sleeper_1_0_Mgr : public sleeper_1_0_ABS {
public:
Il Class constructors pass constructor arguments to base classes
sleeper_1_0_Mgr(uuid_t* obj) :
DCEODbj(obj),
sleeper_1_0_ABS(obj, (uuid_t*)(0)) { }

sleeper_1_0_Mgr() :
DCEODbj((uuid_t*)(0)),
sleeper_1_0_ABS(uuid_t*)(0)) { }

virtual void Sleep(// This is what the developer must implement
[*[in] */ idl_long_int time

)i
(b)

@ Corresponds to @
@ Corresponds to @

Fig. 5. File fooSH server-side declarations generated by idl++.(a) An
example of an abstract server manager declaration. (b) An exam-
ple of a concrete server manager declaration.



void main()

{
try { /1 Handle exceptions from constructor or DCE calls
@ sleeper_1_0_Mgr * sleeper = new sleeper_1_0_Mgr; // Dynamic UUID
DCEPthread * exitThd = new DCEPthread(DCEServer : : ServerCleanup, 0) ;

/1 theServer->SetName(” /. ;/mysleeper”);
@ /1 Register Sleeper object with server object
theServer->RegisterObject(sleeper);

/1" Accept all other defaults and activate the server
@ /1 Defaults are : Use all protocols, don’t use CDS, no security
theServer—>Listen();

/1 Catch any DCE related errors and print out on message if any occur
catch (DCEErr& exc) {
traceobj << "Caught DCE DCEException\ n” << (const char*)exec;

/1 Destructors are called at this point and take care of DCE cleanup

}
@)
/1 Developer simply implements one method to provide the implementation
void sleeper_v1_0_Magr:: Sleep(long int time) {
/1 Call the (reentrant!) libc sleep function
sleep(time) ;
(b)
@ Instance of Concrete Server Class
@ Register Interface with the Object
@ Setup for Listen

Fig. 6. () The server program that handles requests for the Sleep
interface. (b) The implementation of the Sleep function.
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main(int, char** argv)
{

try { /1 Handle exceptions from constructor or DCE calls

/1 Constructor takes a network address and protocol sequence
sleeper_1_OsleepClient( (unsigned char*)argv[1]
(unsigned char*)“ip”);

/1 The Sleep method invokes the remote procedure on the server
sleepClient.Sleep(10);
}

catch (DCEErr& exec) {
printf(“DCEException: %s\ n”, (const char*)exec);

}
exit(0);

b

Fig. 7. A client main program that invokes the Sleep function on
the server.

DCElnterfaceMgr is an abstract base class used by the server side
of the application to encapsulate object and type information
as well as the entry point vector called by the RPC subsys-
tem when an incoming RPC is received (see Fig. 5a). The
manager interface is registered with the DCE run-time setup
and optionally with the naming service. DCElnterfaceMgr can
retrieve the UUID of a particular implementation object in-
stance, the entry point vector, and the pointer to the security
reference monitor described by the DCERefMon class.

DCElnterface is an abstract base class used by the client side of
the application. This class controls binding and security poli-
cies and can retrieve object references. The idl++-generated
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Object 1 Object n

Entry Point
Vector Stub
For RPCy

Entry Point
Vector Stub
For RPC,

<— > EEN
Preferences

DCE Server Stub
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@ Sets up security preferences, which have to be compatible
with the server’s security preferences

@ Obtains the binding handle to the server
@ C++ object instances defined in the IDL Interface

@ C++ entry point vectors generated by idl++

Fig. 8. The HP OODCE client/server architecture.

@ RPC run-time server endpoint and server stub

Checks security preferences before allowing the
request access to the selected object

@ Locates objects

Set up by user
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client proxy class inherits from the DCElnterface class (see
Fig. 4).

The HP OODCE utility classes add convenience to the HP
OODCE development environment. These classes encapsu-
late DCE types and provide direct DCE functionality. For
example, DCEUuid deals with the DCE C language representa-
tion of the uuid_t type* and its possible conversions to other
types, while DCEBinding encapsulates DCE binding handle

types.

Other utility classes include:

Security services: DCERefMon for setting security preferences

and DCERegistry for accessing the DCE registry database

* Naming services to model and access objects in the
directory namespace

» Thread services to encapsulate the use of pthread mutexes,**

condition variables, and thread policies

Error handling and tracing services to support an exception

mechanism and log information.

The security, naming, and thread services are described in
the articles on pages, 41, 28, and 6 respectively.

Additional Classes

Additional classes can be derived from the abstract manager
class to allow for multiple implementations for a given DCE
interface. Each class must be registered with the global
server (DCEServer) via the theServer object (remember that
theServer is an instance of the DCEServer class). This allows the
entry point vector code to locate the object manager in-
stance, verify security preferences, and allow access to the
manager methods (see Fig. 8). If the manager object is not
immediately located in the HP OODCE internal map man-
aged by theServer object, the entry point vector code can call
a user-defined method to activate the manager object ac-
cording to user-defined polices. Once activated, the manager
object is reregistered with theServer and mapped into the ob-
ject map. An object manager can be deactivated (removed
from the object map) when requested by the user applica-
tion.

While HP OODCE adheres to the object model provided by
DCE, two extensions have been made to enhance object
functionality. An ObjRef class contains a reference to an object
and may be used to pass remote object identities

* uuid_tis a C structure containing all the characteristics for a UUID.
** Mutexes, or mutual exclusion locks, are used to protect critical regions of code in DCE threads.
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OODCE Server

Fig. 9. HP OODCE framework and
utility class library components.

between remote objects. When an ObjRef is used to establish
the binding to an object, the referenced object may need to
be activated by bringing its persistent data into memory from
a file. HP OODCE provides an activation structure that
allows this behavior to be implemented easily by the server.

The application developer can add framework or utility
classes and provide additional implementations as well as
change some HP OODCE default behavior. Additionally, the
developer continues to have access to the C language-based
DCE API. Direct use of this API is governed only by the cor-
rect mapping of exceptions and the corresponding rules for
C++ with regard to the C language.

HP OODCE Exception Model

One goal of the HP OODCE system was to create a consis-
tent error model. C++ exception handling was the natural
choice as the basis for this model since this mechanism is
already well integrated into the language. C++ provides
benefits such as object destruction and reduced source code
size and is similar in principle to the current DCE exception
handling mechanism.

Despite their similarity, the C++ and DCE exception mecha-
nisms do not integrate well. Exceptions raised by one imple-
mentation cannot be caught by the other, and more impor-
tant, those generated by the DCE implementation can cause
memory leaks if they are allowed to propagate through C++
code. This latter problem is a result of the use of the setjmp
and longjmp functions in the DCE exception implementation,
which do not allow run-time C++ to call destructors for
temporary and explicitly declared objects before exiting a
particular scope.

DCEException

DCEOSException

DCEErr DCECmaErr

RPCErr

DirErr SecErr

Fig. 10. Exception class hierarchy.
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To solve the problems raised by the use of two different
exception mechanisms, HP OODCE maps DCE exceptions
into C++ exceptions. The HP OODCE classes are arranged
into a C++ class hierarchy (see Fig. 10). DCEException is the
base class for the hierarchy and provides pure virtual opera-
tors to convert exceptions to status codes or ASCII strings.
The hierarchy contains subclasses derived from the base
class for each of the DCE subcomponents (RPC, security,
directory services, configuration, CMA (common multi-
threaded architecture) threads, and so on) so that each indi-
vidual DCE exception can be caught by type.

HP OODCE takes particular care to prevent DCE exceptions
from being propagated directly into C++ code. At the bound-
aries between DCE C and HP OODCE C++ code, DCE ex-
ceptions and error status codes are mapped into HP OODCE
exceptions and propagated into C++ code. One area that
needed particular attention was in passing exceptions be-
tween the server and client. We wanted to use the RPC run-
time implementation of the server’s communication fault
transmission, but to do so required a “translation” layer to
isolate RPC exceptions from HP OODCE C++ code. This
translation layer is implemented within the idl++-generated
client proxy implementation and server entry point vector
classes (see Fig. 11). C++ exceptions raised in the HP
OODCE server are caught in the server entry point vector
and mapped to a DCE status code. This status code is then
returned to the server stub, which translates the code into a
DCE exception and raises it to the attention of the run-time
RPC. The run-time RPC takes care of mapping the exception
to one of the currently implemented RPC fault codes and

* Handle Exception

« Catch Exception

* Throw
» Map DCE Exception
to OODCE Exception
» Throw Exception

* Receive Fault

* Map Fault to DCE
Exception

* Raise Exception . .
Fig. 11. Exception handling in

HP OODCE.

then transmits the fault to the client. Basically the reverse
happens on the client side, except that here, the client im-
plementation class will catch the DCE exception raised from
the client stub and throw the HP OODCE exception back to
the client.
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Glossary

Although the terminology associated with object-oriented programming and C++
has become reasonably standardized, some object-oriented terms may be slightly
different depending on the implementation. Therefore, brief definitions of some of
the terminology used in this paper are given below. For more information on these
terms see the references in the accompanying article.

Abstract Class. Abstract classes represent the interface to more than one imple-
mentation of a common, usually complicated concept. Because an abstract class
is a base class to more than one derived class, it must contain at least one pure
virtual function. Objects of this type can only be created through derivation in
which the pure virtual function implementation is filled in by the derived classes.

The following is an example of an abstract base class:

class polygon {

public:
/I constructor, destructor and other member functions
/I could go here...
virtual void rotate (inti) = O; //a pure virtual function
Il other functions go here...

2

Other classes, such as square, triangle, and trapezoid, can be derived from poly-
gon, and the rotate function can be filled in and defined in any of these derived
classes.

Base Class. To reuse the member functions and member data structures of an
existing class, C++ provides a technique called class derivation in which a new
class can derive the functions and data representation from an old class. The old
class is referred to as a base class since it is a foundation (or base) for other
classes, and the new class is called a derived class. Equivalent terminology refers
to the base class as the superclass and the derived class as the subclass.

Catch Block. One (or more) catch statements follow a try block and provide excep-
tion-handling code to be executed when one or more exceptions are thrown.
Caught exceptions can be rethrown via another throw statement within the catch
block.

Class. A class is a user-defined type that specifies the type and structure of the
information needed to create an object (or instance) of the class.

Concrete Data Class. Concrete data classes are the representation of new user-
defined data types. These user-defined data types supplement the C++ built-in
data types such as integers and characters to provide new atomic building blocks
for a C++ program. All the operations (i.e., member functions) essential for the
support of a user-defined data type are provided in the concrete class definition.
For example, types such as complex, date, and character strings could all be
concrete data types which (by definition) could be used as building blocks to
create objects in the user’s application.

The following code shows portions of a concrete class called date, which is re-
sponsible for constructing the basic data structure for the object date.

typedef boolean int;
#define TRUE 1
#define FALSE O

class date {

public:
date (int month, int day, int year); //Constructor
~date(l; /IDestructor

boolean set date(int month, int day, int year);
/I Additional member functions could go here. . .

private
int year;
intnumerical_date;
/I Additional data members could go here...

h

Constructors. A constructor creates an object, performing initialization on both
stack-hased and free-storage allocated objects. Constructors can be overloaded,
but they cannot be virtual or static. C++ constructors cannot specify a return type,
not even void.

Derived Class. A class that is derived from one (or more) base classes.

Destructors. A destructor effectively turns an object back into raw memory. A
destructor takes no arguments, and no return type can be specified (not even
void). However, destructors can be virtual.

Exception Handling. Exception handling in C++ provides language support for
synchronous event handling. The C++ exception handling mechanism is sup-
ported by the throw statement, try blocks, and catch blocks.

Member Functions. Member functions are associated with a specific object of a
class. That is, they operate on the data members of an object. Member functions
are always declared within a class declaration. Member functions are sometimes
referred to as methods.

Object. Objects are created from a particular class definition and many objects
can be associated with a particular class. The objects associated with a class are
sometimes called instances of the class. Each object is an independent object with
its own data and state. However, an object has the same data structure (but each
object has its own copy of the data) and shares the same member functions as all
other objects of the same class and exhibits similar behavior. For example, all the
objects of a class that draws circles will draw circles when requested to do so, but
because of differences in the data in each object’s data structures, the circles may
be drawn in different sizes, colors, and locations depending on the state of the
data members for that particular object.

Throw Statement. A throw statement is part of the C++ exception handling mecha-
nism. A throw statement transfers control from the point of the program anomaly to
an exception handler. The exception handler catches the exception. A throw state-
ment takes place from within a try block, or from a function in the try block.

Try Block. A try block defines a section of code in which an exception may be
thrown. A try block is always followed by one or more catch statements. Exceptions
may also be thrown by functions called within the try block.

Virtual Functions. A virtual function enables the programmer to declare member
functions in a base class that can be redefined by each derived class. Virtual
functions provide dynamic (i.e., run-time) binding depending on the type of object.
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