HP Encina/9000: Middleware for
Constructing Transaction Processing

Applications

A transaction processing monitor for distributed transaction processing
applications maintains the ACID (atomicity, consistency, isolation, and
durability) properties of the transactions and provides recovery facilities
for aborting transactions and recovering from system or network failures.

by Pankaj Gupta

Transaction processing systems are widely used by enter-
prises to support mission-critical applications, such as airline
reservation systems and banking applications. These applica-
tions need to store and update data reliably, provide concur-
rent access to the data by hundreds or thousands of users,
and maintain the reliability of the data in the presence of
failures.

The HP Encina/9000 transaction processing monitor ! pro-
vides the middleware for running transaction processing ap-
plications. It maintains ACID (atomicity, consistency, isolation,
and durability) properties for transactions (see the glossary
on page 65). It ensures that applications that run concur-
rently will maintain data consistency. Encina/9000 also pro-
vides recovery facilities for aborting transactions and recov-
ering from failures such as machine or network crashes.

DCE and Distribution

Encina/9000 provides the ability to write distributed applica-
tions. Encina/9000 applications can be written as client/server
applications with the client and server possibly running on
different machines. Encina/9000 servers can communicate
and cooperate with each other in updating data on several
different machines.

Distributed applications provide several advantages. The
data maintained by an enterprise may itself be distributed
because of historical and geographical considerations.
Furthermore, distributed applications are able to exploit par-
allelism by running concurrently on several machines.

Distributed computing offers the advantage of improved
performance, availability, and access to distributed data. Per-
formance is improved by spreading the computing among
various machines. For example, the application’s user inter-
face can be run on a PC while the user code could be split
to run on several machines. The use of multiprocessing ma-
chines to provide parallelism for multiple users can improve
the throughput of the system. Availability can be increased
by a distributed system in which replication is used to keep
several copies of the data. Access to distributed data or to
data that is maintained in several databases is also facilitated
by distributed computing.

Data may be distributed because the database becomes too
large or the CPU on the database machine becomes a bottle-
neck. Data can also be distributed to increase availability
and improve the response time by keeping the data close to
the users accessing it. Finally, data can be distributed to
keep separate administrative domains, such as different divi-
sions in a corporation that want to keep their data local.

Encina/9000 uses the Open Software Foundation’s DCE 2
(Distributed Computing Environment) as the underlying
mechanism for providing distribution. It uses the DCE RPC
mechanism to provide client/server communication. Encina/
9000 is also very closely tied to DCE naming and security
services (see the articles on pages 28 and 41 for more about
these services). For example, an Encina/9000 server can be
protected from unauthorized use by defining access control
lists (ACLs). ACLs contain an encoding of the authorization
policy for different users and are enforced by DCE at run
time. ACLs are described on page 49. Encina/9000 also
makes use of the threading package provided by DCE.

To achieve optimum price and performance, careful consid-
eration needs to be given to how the data and the applica-
tion are partitioned. Throughput and response times are
often the key criteria by which users judge the performance
of a system. Encina/9000 provides the flexibility of being
able to specify the distribution topology of the application.
In addition, users can specify data replication if it will help
to ensure higher availability of mission-critical data.

Two-Tiered versus Three-Tiered Architectures
In the past, transaction processing applications were imple-
mented using a two-tiered architecture (see Fig. 1). In this

Client

Database
Server

l
=

Fig. 1. Two-tiered architecture for transaction processing.

GUl and
Application
Logic

Data
Stored

December 1995 Hewlett-Packard Journal 61



paradigm an application is written as a client, which accesses
a database server. The client implements the graphical user
interface (GUI) and the application logic. The database
server handles access to the data stored in a database.

The advantage of this approach is simplicity. The disadvan-
tage is that it is not scalable beyond a certain point. It is also
less flexible and harder to modify to meet new business
needs.

Encina/9000 allows the development of applications using a
three-tiered architecture like the one shown in Fig. 2. In this
paradigm, an application is partitioned into a client that imple-
ments the graphical user interface to the user, an application
server that implements the business logic of the application,
and a database server that implements the database access.

The Encina/9000 three-tiered architecture provides the fol-
lowing advantages over traditional two-tiered architectures:
Decoupling the GUI from the business logic

Scalability of the architecture to support a very large number °
of users and a high transaction throughput

Accessibility to multiple database servers from an applica-
tion server

Freedom from being tied into any particular database
vendor

Tight integration with the distributed computing facilities °
offered by DCE

Choice of transactional applications that support any combi- *°
nation of RPC, CPI-C (Common Programming Interface for
Communications), and queued message communication

Ability to retain data on a mainframe or other legacy com-
puter and reengineer by adding HP-UX* application servers,
providing lower cost and higher price/performance relative

to some mainframe systems.

Three-tiered architectures are more complicated in general
but provide greater flexibility of application design and de-
velopment. Among the reasons why users are willing to give
up the simplicity of the two-tiered architecture is the faster
response times and the more effective user interfaces pro-
vided by the three-tiered architecture. The ability to provide
a front-end workstation that supports graphical user inter-
faces gives an application a more effective user interface. For
applications that require access to data distributed across large
geographic regions, a three-tiered architecture offers more
flexibility to tune the communications to compensate for
WAN delays and improve availability. This results in a faster
response time because the user is accessing local data most
of the time. Propagation of the data to other machines can
be queued and performed offline. Therefore, geographically
distributed data can be maintained without having to perform
expensive distributed two-phase commit protocols online.

Application
Client Server
Database
GuUI Application Server

Logic

Data
Stored

Fig. 2. Three-tiered architecture for transaction processing.

62

December 1995 Hewlett-Packard Journal

Two-phase commits that happen over wide area networks
are expensive and care must be taken when designing dis-
tributed applications to minimize the amount of two-phase
commits over the network. Queued communications also
improve availability. See page 65 for a definition of commit.

Components of Encina/9000

Fig. 3 shows the architecture for the implementation of
Encina/9000 that runs on the HP-UX* operating system.

Each of the components shown in Fig. 3 is packaged inde-
pendently. A machine that runs Encina/9000 clients only can
be configured without the Encina/9000 server software.
Machines that run Encina/9000 servers must be configured
with both the Encina/9000 client and server components.

Encina/9000 applications that can be configured to run on
top of the Encina/9000 server component include:
Peer-to-peer communication, which provides transactional
access to data stored on mainframes and workstations run-
ning the HP-UX operating system

Structured file system, which is a record-oriented file system
base on the X/Open[j ISAM (index sequential access
method) standard

Recoverable queueing service, which provides applications
with the ability to enqueue and dequeue data

Monitor, which is an infrastructure for application develop-
ment, run-time support, and administration.

The DCE components used by Encina/9000 include: RPC, the
directory service, the security service, and threads.

Encina/9000 Toolkit

The Encina/9000 client component is also called the Encina/
9000 toolkit executive and the Encina/9000 server component
is also called the Encina/9000 toolkit server core. Together
these components are called the Encina/9000 toolkit.

Fig. 4 shows the components that make up and support the
Encina/9000 toolkit.

Base Development Environment. The lowest layer of the
Encina/9000 toolkit is the base development environment.

It provides developers of other Encina/9000 components
with a uniform set of features independent of the underlying
operating system. The base development environment library

Encina/9000

Monitor Structured
File System

Encina/9000

Recoverable
eing Service

Encina/9000
PPC Gateway
PPC Executive

Encina/9000 Server

Encina/9000
Toolkit

PPC = Peer-to-Peer Communication

Fig. 3. The architecture of Encina/9000 on the HP-UX operating
system.



provides a common platform independent threading inter-
face and an abstraction for low-level functions so that the
upper layers that use the base development environment
can be independent of differences in the operating system or
the hardware platform on which Encina/9000 runs.

The base development environment provides support for
multiple threads of execution by using DCE threads. Also, it
provides thread-safe routines for the following functionality:
Memory management

File I/O

Process management

Signal handling

Timers and alarms

Native language support.

The base development environment is intended primarily for
the development of other Encina/9000 components.

Transaction Manager. The transaction manager provides the
ability to demarcate transactions, which means that it is able
to specify the beginning, the commit, and the abort of a
transaction. Internally it supports a distributed two-phase
commit management protocol, including the ability to per-
form coordinator migration.

The transaction manager supports nested transactions capa-
bility,> which allows nested transactions to be defined within
a top-level transaction. Nested transactions have isolation
and durability properties similar to regular transactions, but
the abort of a nested transaction does not cause the top-level
transaction to abort. This allows a finer granularity of failure
isolation in which the main transaction can handle the failure
of certain components implemented with a nested transac-
tion. Nested transactions are defined in the glossary on

page 65.

The application must be carefully designed since failures
such as crashed server nodes, which cause a nested trans-
action to fail, could in some cases also cause the top-level
transaction to fail. The Encina/9000 structured file system
provides support for nested transactions for data stored in
structured files. However, database vendors like Oracle do
not currently support nested transactions in their products,
making it impossible to exploit the advantages of Encina/
9000’s nested transaction capabilities for data stored by these
relational databases.

Tran-C

Toolkit
Server

Server

Extensions | KelJ(]
Encin
c a/900_0 Transaction Thre.ad Transactional Toolkit
Toolkit M |dentifier RPC Tran-C Erecuti
Components anager | = p) Xecutive

Common

Utilities Base Development Environment

DCE

Operating System

Fig. 4. A detailed view of the components that make up and support
the Encina/9000 toolkit.

The Encina/9000 transaction manager provides an applica-
tion program with the ability to issue callbacks on events
related to the transaction’s commit protocol. This enables the
programmer to write routines that are invoked before the
transaction prepares or aborts or after the coordinator de-
cides to abort or commit the transaction.

The transaction manager allows transactions to be heuristi-
cally committed by a system administrator. This should only
be used in rare cases in which the transaction coordinator is
unavailable and the administrator does not want to block
access to locked data and has to trade off data availability to
avoid possible data inconsistency.

Thread-to-TID. Since Encina/9000 makes use of DCE threads,
the work done on behalf of a user transaction can be com-
posed of several different threads. The thread-to-TID service
associates a transaction with a thread and maintains the
mapping between a thread and a transaction identifier (TID).
This service is used by other Encina/9000 components and is
rarely used by programmers directly.

Transactional RPC. The Encina/9000 transactional RPC service
enhances the DCE RPC mechanism to provide transactional
semantics for remote procedure calls. Unlike remote proce-
dure calls, transactional RPCs have once-only semantics. If a
transaction performing an RPC commits, then the RPC is
guaranteed to have executed once and once only. If the
transaction performing an RPC aborts then the RPC is guar-
anteed not to have executed (if the RPC was executed its
effects are undone by the transaction abort).

A transaction can make transactional RPC calls to multiple
servers, and a server can in turn make a transactional RPC
call to another server.

The transactional RPC service extends the DCE RPC model.
The interface definition for the service executed on behalf of
a transaction is defined in a TIDL (Transactional Interface
Definition Language) file, which is similar to a DCE IDL file.*
This file must be preprocessed with a TIDL compiler (similar
to an IDL compiler). The TIDL preprocessor generates client
stubs, server stubs, a header file, and an IDL file. The DCE
IDL preprocessor is run on the IDL file to generate addi-
tional stubs and header files. The client and the server exe-
cutables are generated by compiling and linking the various
stub sources and libraries. This process is illustrated in Fig. 5.

Transactional RPC also supports nontransactional RPCs (a
nontransactional RPC call can be made by calling the trans-
actional RPC service). The TIDL file for the service interface
must specify that the service is nontransactional.

Log. This component of Encina/9000 provides logging capa-
bilities. It provides write-ahead logging (see glossary) for
storing log records that correspond to updates to recoverable
data and log records that correspond to transaction out-
comes. The log records are used by the transaction manager
to undo the effects of transactions that have aborted and to
ensure that the committed transactions are durable.

* See the article on page 55 for more about IDL files.

63

December 1995 Hewlett-Packard Journal



jill.tidl

client.c jill_client.c jill_cswtch.c _jillidl

_jill_sstub.c

Client

@ Preprocess transaction through the TIDL compiler.

@ Run the IDL file created in @through the IDL compiler.
@ Create the client program.

@ Create the server program.

For earlier versions of Encina/9000, the log service was
implemented to provide a log server that could be used by
many different clients to store log records. The latest version
of Encina/9000 supports the log service as a library which is
linked into the client code.

The log service supports archiving of log data for crash and
media recovery. It also supports mirroring of data.

Lock. This component provides two-phase locking (see glos-
sary) facilities to ensure the isolation and consistency prop-
erties of transactions. Applications can request locks on re-
sources before accessing them, and the lock manager
ensures that the lock request on behalf of a transaction will
not be granted if another transaction holds a conflicting lock
on that resource. Locks are released automatically when the
transaction completes, and the application may also request
early release of locks when it is safe to do so. The lock ser-
vice also supports locking for nested transactions.

The locking service implements logical locking in which the
programmer defines lock names and associates the lock
names with physical resources. When a programmer wants
to lock a physical resource, the logical lock name associated
with that resource is specified in the call to the locking
service.

In addition to supporting the conventional read/write locks,
Encina/9000 also supports intention locks and instant dura-
tion locks. Intention locks are used to declare an intent to
subsequently lock a resource. The use of intention locks can
reduce the potential for deadlock among concurrent transac-
tions. Instant duration locks are locks that are granted but

64 December 1995 Hewlett-Packard Journal

jill_manager.c server.c

libEncina.a manager.c

Fig. 5. The steps involved in turning
a transaction into client and server
executables.

not held and can be used to implement complex locking
algorithms.

The lock service also provides the ability to determine if a
transaction is deadlocked or not.

Volume. This component maintains the data storage in terms
of logical data volumes. It provides the ability to manage
very large files and view multiple physical disks as a virtual
file. It also supports the ability to mirror a data volume trans-
parently to the client. The volume component sometimes
sacrifices speed for increased reliability and may be inap-
propriate for certain applications. This component is cur-
rently not used by the log component.

TM-XA. The Encina/9000 TM-XA component implements the
X/Open XA interface. The XA interface is a bidirectional
interface between a transaction manager and a resource
manager such as a database. The XA interface provides a
standard way for transaction managers to connect to data-
bases.

The use of TM-XA with the Encina/9000 monitor is recom-
mended. In this case the server registers each resource man-
ager with a call providing the name of the resource manager
and an associated switch structure, which gives the Encina/
9000 TM-XA component information about the resource
manager. In addition, the server must also be declared as a
recoverable server. TM-XA allows Encina/9000 to hook up
with standard database products such as Oracle, Informix,
and so on.



Glossary

The following are brief definitions of some of the transaction-related terminology
used in the accompanying article.

Transactions and ACID

A transaction is the logical grouping of a user function performed as a unit so that
it maintains its ACID (atomicity, consistency, isolation, and durability) properties.
Transactions allow users to execute their programs and modify shared resources
like databases in the presence of simultaneous access and updates by multiple
users and in the presence of various kinds of failures.

Atomicity of a transaction means that either all the actions specified within the
transaction will be performed or none of them will be performed. This ensures that
a transaction is not partially applied, which is desirable since a partial application
of the user transaction could leave the database in an inconsistent state. Consis-
tency means that the database consistency is preserved in the presence of con-
currency among multiple users. Isolation means that while the transaction is exe-
cuting, its effects will not be visible to other concurrently running transactions.
Durability means that once a transaction has been successfully completed the
effects of that transaction are made permanent and survive failures.

Commit, Abort, and Prepare

A successful completion of a transaction is called a commit of the transaction.
Before a transaction commits, it can be aborted either by the user or by the trans-
action processing system.

A user organizes a set of actions in a transaction with the intent that all of these
actions should happen or none of these actions should happen. An example of
such a transaction is a transfer of money between a person’s savings account and
checking account. This transaction consists of the actions of changing the savings
account balance and the checking account balance. If the transaction is successful
then both these account balances should be changed, one debited by amount X,
and the other credited by amount X. Any other outcome would be in error. When
the user submits this transaction and all operations in the transaction are success-
fully carried out, the transaction is said to have committed.

It may not always be possible to commit a transaction. For example, the machine
that maintains the checking account balance may be down, or the user may have
supplied an incorrect personal identification number (PIN) or decided to cancel the
request after submitting it. If the transaction cannot be performed, then it is said to
have been aborted or simply to have aborted. If a transaction is aborted (aborts),
then none of the actions of the transaction are performed (or if they had been
performed they are undone).

Transaction processing systems use mechanisms like two-phase locking to ensure
the isolation properties, and two-phase commit protocols to ensure that all the
participants within a transaction can be atomically committed or aborted.

A two-phase commit protocol is typically used to commit a transaction in which
multiple participants are performing actions requested by the transaction. One of
these participants is called the coordinator. In the first phase of the two-phase
commit protocol, the coordinator sends a prepare message to all the participants,
asking them to prepare the transaction and send a message back indicating
whether or not they can prepare the transaction. If all the participants respond that
they can prepare the transaction, the coordinator writes a record in its log indicat-
ing that the transaction is committed and instructs all the participants to commit the
transaction (this is the second phase of the protocol). If any participant responds
back to the coordinator that it is unable to prepare the transaction, the coordinator
notes in its log that the transaction is aborted and instructs all participants to abort
the transaction.

When a participant receives a commit message from the coordinator in the second
phase, it must ensure that all the actions of the transaction are durably stored on
disk. When a participant receives an abort message from the coordinator in the
second phase, it must ensure that all the actions of the transaction are undone.
Therefore, in the first phase of the two-phase commit protocol, the participant must
ensure that data is stored reliably in logs that enable it subsequently to undo the
effects of a transaction or make permanent the effects of a transaction.

Nested Transaction

In the nested transaction model, a transaction (also called a top-level transaction)
can be decomposed into a tree-like hierarchy. For example, a debit-credit transac-
tion can be decomposed into two subtransactions, one for debit and one for credit.
The debit or credit subtransactions could be further decomposed into smaller
subtransactions. A subtransaction maintains the durability and consistency proper-
ties of its parents. The difference is that a subtransaction can be aborted and
reexecuted without aborting its parent. In the debit-credit example, the debit sub-
transaction can be aborted and reexecuted without having to abort the entire
transaction. In this case the top-level transaction verifies that each subtransaction
can be committed at the time of transaction commit.

Two-Phase Locking

Two-phase locking means that a transaction will have two phases. In the first
phase the transaction can only acquire and not release locks, and in the second
phase it can only release and not acquire locks.

Write-Ahead Logging

For data recovery, transaction processing systems use a log to log data that is
being modified. In write-ahead logging, data is copied to the log before it is over-
written. This ensures that if the transaction is aborted, the data can be restored to
its original state.

Reference

1.J. Gray and A. Reuters, Transaction Processing Concepts and Techniques, Morgan Kauf-
man, 1993.

TM-XA allows an Encina/9000 application to make calls to
one or more resource managers that support the XA inter-
face. The Encina/9000 application starts a transaction,
accesses a resource manager using its native SQL interface,
and then commits the transaction. The TM-XA software coor-
dinates the commit of the transaction among the various
resource managers and other Encina/ 9000 components (like
the structured file system or the recoverable queuing system)
which might be accessed by the user transaction.

Recovery. This component drives the recovery protocols to
recover from failures. It provides recoverable memory man-
agement. Recovery also provides the ability to perform:

* Abort recovery. This ensures that after a transaction is
aborted, it is rolled back at all participating sites.

Crash recovery. This provides a recovery after a system fail-
ure by rolling back all the transactions that had not been

committed and rolling forward all the committed trans-
actions.

Media recovery. This is used to provide recovery when data
written to the disk is destroyed.

The recovery component produces and uses the records
written by the log service and ensures the consistency of
transactional data. In the case of a transaction failure, the
recovery component undoes the effects of a transaction.
During recovery from a system failure, this component will
examine the records in the log, appropriately commit or
abort transactions for which it finds records in the log, and
bring the data to a consistent state.

For media failures, the system administrator must provide
archives that are used by the recovery component to restore
the data to the state it was in when the archive was created.

December 1995 Hewlett-Packard Journal 65



There may be a loss of data in the case of media recovery.
Encina/9000 also provides the ability to perform online back-
ups to create the media archives necessary for recovery.

Tran-C

Encina/9000 provides extensions to the C programming lan-
guage to make it easy to invoke the functionality provided
by the Encina/9000 toolkit. Tran-C consists of library func-
tions and macros that provide a simple programming para-
digm so that the user does not have to access the toolkit
module interfaces directly. The user can invoke high-level
Tran-C constructs rather than the lower-level toolkit calls.
The use of Tran-C versus toolkit calls is analogous to using a
high-level language versus assembly language. Using the
toolkit primitives directly is much more flexible, but the flex-
ibility comes at the price of far greater complexity.

In general, Tran-C is recommended for application
programming.

The most important constructs provided by Tran-C are the
transaction, onCommit, and onAbort clauses. These constructs pro-
vide a mechanism for the programmer to start a transaction
and declare code to execute when the transaction commits
or aborts. This is illustrated in Fig. 6. The application pro-
grammer is freed from the task of initializing all the underly-
ing toolkit components and manually managing transaction
identifiers, transactional locks, and other transactional meta-
data. All the code bracketed by the transaction clause is exe-
cuted on behalf of the same transaction. When a transaction
bounded by the transaction construct aborts (or commits),
control in the program automatically transfers to the associ-
ated onAbort (or onCommit) clause.

Tran-C also supports nested transactions and multiple threads
of control. The concurrent and cofor constructs can be used to
create multiple concurrent threads within a transaction. The
concurrent construct is used to enable an application to concur-
rently execute a predetermined number of threads, while the
cofor construct enables the application to concurrently exe-
cute a variable number of threads. Both constructs provide
the ability to create multiple threads which can be run either

transaction ~— Starts a Transaction
transaction ~— Transactional Logic
commands

onCommit

Control Passes Here
after Commit

code to execute
onCommit

onAbort

Control Passes Here
after Abort

code to execute
onAbort

Fig. 6. A code fragment illustrating the use of the Tran-C constructs
Transaction, onCommit, and onAbort.

66 December 1995 Hewlett-Packard Journal

as subtransactions or as concurrent threads within the transac-
tion. The subTran construct allows a created thread to be exe-
cuted as a subtransaction within the parent transaction. The

subThread construct allows a created thread to be executed as

a separate thread within a nested transaction.

Toolkit Example

Fig. 7 shows an example of the interactions between the
components of the Encina/9000 toolkit. In this example a
client makes a call to update data stored by a database and
then commits the transaction. The following steps are associ-
ated with the circled numbers in Fig. 7.

1. The client starts a transaction by making a call to the
transaction manager.

2. The client performs a transactional RPC by making a call
to the transactional RPC component.

3. The transactional RPC component makes a call to the
transaction manager to obtain transactional data for the
transaction.

4. The transactional RPC component calls DCE RPC to trans-
mit the user data and transactional data to the server.

5. DCE RPC (on the server) makes a call to the transactional
RPC.

6. The transactional RPC component passes the transactional
information to the transaction manager.

Client

Begin Transaction
Call Function on a Remote Server

DCE RPC Transaction

Manager

Server

Transaction

MUERFE Manager Log

Transactional Resource

RPC Manager Recovery

Execute Function

SQL Calls
L]

End Function Call

Fig. 7. An example of the interactions between components of
the Encina/9000 toolkit.



7. The transaction manager uses the TM-XA interface to call
the resource manager.

8. The transactional RPC component calls the user function
that makes SQL calls to the resource manager. The resource
manager performs the appropriate locking and updating of
its data.

9. The user function on the server returns to that trans-
actional RPC component which then returns to the client via
DCE.

10. The client calls the transaction manager to commit the
transaction.

11. The transaction manager uses a two-phase commit proto-
col to commit the transaction. It contacts all the transaction
manager participants that have participated in the transac-
tion. Each transaction manager uses the recovery and log
components to log the prepare and commit decisions during
various phases of the commit protocol for the transaction.

Peer-to-Peer Communications

Encina/9000 peer-to-peer communications, or PPC, provides
transactional access to data stored on mainframes, and it
performs a distributed two-phase commit of data stored on
mainframes and HP 9000 servers. This allows mainframe
applications to participate in an Encina/9000 transactional
application, and conversely, an Encina/9000 application is
able to participate in a mainframe transactional application.
Encina/9000 PPC uses a two-phase commit sync protocol
(sync level 2) to commit a transaction that accesses data on a
mainframe and an HP 9000 server.

PPC services are implemented as a PPC executive and a PPC
gateway product. These products can be purchased sepa-
rately. The PPC executive is a library that runs in a DCE cell,
and the PPC gateway is a server that acts as a gateway be-
tween DCE and SNA communications protocol. This gateway
allows Encina/9000 applications to communicate with LU 6.2
applications.”

A typical PPC configuration involves an Encina/9000 PPC
application running in a DCE cell and communicating with a
PPC gateway server running in the same DCE cell. The PPC
gateway server communicates with the mainframe using an
SNA communications package. PPC provides the ability to
write Encina/9000 applications that act as either the coordi-
nator or the subordinate in a transaction between an Encina/
9000 system and a mainframe host. Encina/9000 application
programmers use the CPI-C API for coding the PPC compo-
nent. The PPC gateway translates the CPI-C conversations
from TCP/IP to LUG.2. This is illustrated in Fig. 8.

Structured File System

The structured file system is a record-oriented file system
based on the X/Open ISAM standard. It provides an alterna-
tive to other commercial resource managers and the ability
to support nested transactions that access data in the struc-
tured file system. It also provides full transactional integrity.

The records in the structured file system contain different
fields that can be indexed by primary keys and secondary
keys. The structured file system’s field and record types are
similar to those used by the recoverable queuing service
(described below), allowing applications to have easy access

* LU 6.2 applications are mainframe applications that are written to run on top of IBM's LU 6.2
protocol.

HP-UX Machine

Application

PPC
Executive

HP-UX Machine Mainframe

TCP/IP PPC
Gateway

LUG.2
Application

Fig. 8. A PPC configuration showing the PPC gateway translating
TCP/IP protocol to SNA protocol.

to both systems. In addition, the structured file system sup-
ports a COBOL interface with the structured file system’s
external file handler.

Files in the structured file system are organized in one of the
following three ways: entry-sequenced, relative, and B-tree
clustered (see Fig. 9). Records in an entry-sequenced file are
stored in the order in which they are written into the file.
New records are always appended to the end of the file. A
relative file is an array of fixed-length slots. Records can be
inserted in the first free slot found from the beginning of the
file, at the end of the file, or in a specified slot in the file. A
B-tree clustered file is a tree-structured file in which records
with adjacent index names are clustered together.

Entry-Sequenced File Structure

First Record Second Record .
Inserted Inserted °

« As records are inserted in time they are
appended to the end.

« Deleted records leave a blank space.

Relative File Structure

Recordl U

« To look up, insert, or delete
record n, go to (n X record size).

B-Tree Cluster

Record

« Records are organized as a B tree. The
record key is used to traverse the tree to
locate the appropriate record.

Fig. 9. File organizations supported in the structured file system.

December 1995 Hewlett-Packard Journal 67



The structured file system is simple and fast, but limited in
flexibility when compared to relational databases. Relational
databases provide powerful and complex access semantics
with operations such as select, join, aggregate, and so on.
The structured file system provides low-level access to rec-
ords whose formats are user-defined and controlled.

Recoverable Queueing Service

Encina/9000 provides a recoverable queueing service which
is layered on top of the basic toolkit and server core compo-
nents. This service provides applications with the ability to
transactionally queue and dequeue data. Application devel-
opers can write applications that transactionally update data
in a resource manager like a database and queue or de-
queue data with the guarantee that either both operations
will succeed or both operations will abort.

An example of a transactionally recoverable queue would be
a banking application that sends a letter to a customer if the
customer’s balance goes below zero. The action to generate
the letter can be queued and processed later at the end of
the day. The recoverable queue ensures that this action will
always be performed even in the event of system failures.

One advantage of the queueing model is that applications
can offload some work to be done at a later time. This de-
ferred mode of computing is in contrast with the RPC style
of communication in which an application invokes a service
to do the processing as soon as it can.

A queue is a linear data structure. Elements in the data struc-
ture are queued in a particular configurable order and the
dequeue occurs on a FIFO (first in, first out) basis. An ele-
ment of a recoverable queueing service queue is structured in
a record-oriented format. Encina/9000 supports queues that
may contain elements of different data types. An element
key is a sequence of one or more fields of an element type
that are used to retrieve an element.

Encina/9000 provides the ability to define one or more re-
coverable queueing service servers in an Encina/9000 cell.
Each server can internally support multiple queue sets. A
queue set is a collection of queues within a recoverable
queueing service server. Applications can queue or dequeue
to or from a particular queue set. Queues within a queue set
can be assigned priority classes relative to each other. Also,
service levels define how to distribute the dequeues so that
the queues with lower priority are not starved.

The recoverable queueing service supports a weak FIFO
locking behavior. For example, when two transactions con-
currently dequeue from a queue, each obtains a lock on the
first element that it can lock on the queue. It is possible for
the transaction that obtained a lock on the second element
in the queue to commit before the transaction that obtained
a lock on the first element in the queue. Another conse-
quence of the weak FIFO locking policy may be that a trans-
action that consecutively queues multiple elements may not
be able to place all these elements in that queue in an unin-
terrupted sequence.

The recoverable queueing service uses the DCE security
mechanisms to secure access to the queue. Administratively,

68 December 1995 Hewlett-Packard Journal

ACLs (access control lists) can be set up to authorize users

or groups to be able to perform queue operations like read
from queue, queue to the queue, dequeue from the queue,
delete a queue, and so on.

A recoverable queueing service queue can be scanned using
element keys, cursors (for sequential access), or element
identifiers.

Finally, the recoverable queueing service provides the ability
to register callbacks with the service’s server on callback
quantities such as the number of elements, size in bytes, and
work accumulation. For example, with this feature it is pos-
sible to write applications that can ask the recoverable
queueing service server to inform them when ten elements
have been queued.

Monitor

The Encina/9000 transaction processing monitor provides an
infrastructure for application development, run-time support,
and administration. It supports the development of a three-
tiered architecture in which multiple clients can access data
stored in multiple resource managers.

Like DCE, the Encina/9000 monitor also has the concept of a
cell. For the Encina/9000 monitor the cell is called an Encina
cell. The Encina cell is a subset of the DCE cell, and multiple
Encina cells can be defined within a DCE cell. (DCE cells are
described in the article on page 6.) An Encina cell may con-
sist of multiple nodes. A node is either a public node or a
secure node. A secure node is a node on which the Encina/
9000 servers can be securely run. Public nodes are nodes
where only clients are run. Servers are not configured to run
on public nodes. An example of an Encina cell is shown in
Fig. 10. Like DCE, an Encina cell has a cell administrator
who is responsible for performing administrative tasks.

Public Node

l—’

Secure Node
Node
Manager

Secure Node

Secure Node

Node
Manager

Application

Server

Cell
Manager

Structured

File System
Server

Node
Manager

Recoverable
Queueing

Service
Server

Application

Server

Fig. 10. The components in an Encina/9000 cell.



The encina cell contains the following server processes:

Cell Manager. There is one cell manager process in an Encina
cell. The cell manager maintains the data needed to config-
ure and administer the Encina cell. This data is stored in a
data repository managed by the structured file system. The
data describes how the application servers are configured to
run on the secure nodes and includes the authorization in-
formation for those servers. The cell manager also monitors
the state of the node managers and keeps statistics on the
use of the servers by the clients.

Node Manager. There is one node manager process in each
secure node in an Encina cell. The node manager monitors
the application servers that are running in that node. If an
application server fails, the failure is detected by the node
manager which then restarts the application server.
Application Server. The server part of a user application is an
application server. Typically, application servers accept calls
from an Encina cell’s clients and then process the user re-
quests by accessing one or more resource managers. Appli-
cation servers may be recoverable or ephemeral. A recover-
able application server is one that uses the underlying
Encina/9000 facilities to provide the ACID (atomicity, consis-
tency, isolation, and durability) transactional properties.
When a recoverable server fails, it performs recovery on
restart which guarantees the consistency of the data. An
ephemeral server does not provide the ACID properties to
the data it accesses. An application server consists of a
scheduling daemon process (called mond) and one or more
processes (called PAs) that accept client requests. PAs are
multithreaded processes. The mond coordinates the clients’
requests for servers and assigns a PA to a requesting client.
In this respect the role of the mond is similar to that of the
RPC daemon rped in DCE. The mond also monitors the PAs
and automatically restarts a PA in the event that the PA dies.
An example of an application running in an Encina/9000 cell
is shown in Fig. 11.

In the Encina/9000 monitor environment, a client can make
a server request using explicit binding or transparent bind-
ing. With transparent binding the client simply makes a call
to the server and the monitor environment is responsible for
routing the client request to an appropriate server. With ex-
plicit binding, a client explicitly binds to a particular server.
The Encina/9000 monitor provides a call to request a list of
all servers exporting a particular interface, a call to get a
handle to a mond for one of those servers, and a call to get a
handle to a PA that is under the control of a particular mond.
When using explicit binding, a client can specify that the

Interface 1 Interface 2

Application Server 1 Application Server 2

DD DOQDD

Scheduling Daemon
Multithreaded Process

mond
PA

Fig. 11. An example of an encina cell’s application servers.

client block if the PA is busy or that it get back a status if the
PA is busy. In addition, the client can request that the PA be

reserved for that client by specifying a long-term reservation
to the server.

In general it is easier to code the client to use transparent
binding. This also has the advantage that the monitor code
can perform load balancing of client requests among the
available PAs. The monitor software uses a probabilistic algo-
rithm to route client requests to the available PAs in a ratio
predefined by a system administrator. With transparent bind-
ing the monitor software will use an existing binding if one
exists, or it will create a binding to an appropriate server if
no such binding exists. If all the available servers are busy,
the client waits at the server for a free PA.

Although it is more complicated to write clients that use ex-
plicit binding, it does provide the user with the ability to
select the PA on which the call is executed. There are certain
situations in which explicit binding used in conjunction with
long-term reservation of PAs is advantageous. For example,
consider a client process servicing a large number of users.
In this case it would be advantageous for that process to
reserve a PA and then direct the various user requests to that
PA. Having a direct connection to a PA reduces the time
needed to connect to a PA on subsequent calls. Long-term
reservation makes the PA unavailable to other clients, and it
must be used with care. Administratively, a timeout interval
can be specified so that if there are no client calls to the PA
within that interval, the long-term reservation is canceled.

When an application server is initialized, it can specify one
of the three scheduling policies: exclusive, concurrent shared,
and shared. Shared scheduling is provided primarily for
compatibility with previous releases, and its use is not
recommended. The default policy is exclusive scheduling.
With this scheduling only one client RPC can be executing
within a given PA at any time, and the PA is scheduled ex-
clusively for the entire duration of the client transaction. This
has the advantage that the programmer does not have to be
concerned about issues related to threading. This is required
when the PA is accessing a database that is not thread safe
(which is currently the case for most RDBMSs).

With concurrent shared scheduling, many clients can be exe-
cuting within a PA at the same time, and the multithreaded
PA assigns a different thread for each client request. If the PA
accesses global or static variables, they must be protected by
DCE synchronization facilities such as mutexes.* Concurrent
shared scheduling should only be used when linking with
thread-safe libraries. Concurrent shared scheduling provides
the best performance with the lowest use of resources.

The monitor allows the creation and access of monitor-
shared memory (HP 9000 virtual memory) which can be
shared among the PAs within an application server. This
allows a quick and easy way for the PAs to share transac-
tional data. Monitor-shared memory is much cheaper than,
say, using an external RDBMS, but care should be exercised
when using the monitor-shared memory because it is the
user’s responsibility to perform the appropriate locking
when accessing the shared memory. Since locks must be

* Mutexes, or mutual exclusion locks, are used to protect critical regions of code in DCE
threads.

December 1995 Hewlett-Packard Journal 69



used, it also has the potential of introducing deadlocks.
Transactional timeouts can be declared for aborting such
transactions.

The monitor allows the use of the recoverable queueing
service for queueing work items which are eventually pro-
cessed by a monitor application server. Using the queued
request facility, entries of the appropriate type are queued to
the recoverable queueing service. A queued request facility
daemon will then dequeue the request and forward the
request to the appropriate PA.

The Encina/9000 monitor also provides a timer mechanism
to allow servers to schedule a call to be issued at a later
time. This functionality is provided transactionally so that the
call made within the scope of a transaction is scheduled if
the transaction commits. The call does not occur if the trans-
action aborts.

The Encina/9000 monitor provides support for application
developers who wish to integrate their Encina/9000 client
with forms-based user interface tools. Encina/9000 is inte-
grated with JAM, a forms-based tool from JYACC Inc.

In summary, the Encina/9000 monitor provides the following
benefits:

Simplified programming for writing clients and servers
Automatic detection of failures and restarts of monitor
daemons and PAs

Automatic load balancing between clients and servers
Collection of statistics by the monitor for server use
Simplified central place of administration for distributed cli-
ents and servers

Support for highly concurrent access to relational databases.

Standards Supported by Encina/9000
Encina/9000 supports the following standards:
X/Open:

O XA

O TX

O TxRPC API

O CPI-C

O ISAM

SAA:

O CPIC

O CPI/RR

OSF DCE.

Encina/9000 interoperates with the following products:
Oracle

Informix

Ingres

Sybase

Open CICS

IBM mainframe CICS

IBM mainframe IMS/DC.

The Encina/9000 toolkit has been used to support other
transaction processing products and provide the base func-
tionality to support other products like Open CICS and STDL
each running on top of Encina/9000 on the HP-UX operating
system.

70 December 1995 Hewlett-Packard Journal

Value-Added Features

HP Encina/9000 provides value-added features in the areas
of system administration and high availability.

System Administration

An Encina/9000 system administrator must configure the
Encina cell and define the administrative interfaces for the
various servers in the system.

An Encina cell must be closely tied to a logical administra-
tive unit of work, and the data accessed to do this work
should be in the same cell. It is possible for applications to
interoperate across Encina cells using explicit bindings.
Therefore, the exact boundaries of an Encina cell must be
defined by carefully analyzing the applications running in
the system with careful consideration being given to secu-
rity, number of users and machines, location of data, and the
applications that access the data.

A system administrator must create the log space used by
Encina/9000 and then bring up the following Encina/9000
components:

Structured file system

Cell manager

* Node manager
 Servers such as the recoverable queueing service and the

PPC gateway if they are needed

* The required application servers.

Encina/9000 provides administration tools for the following
components: log, structured file system, monitor, recoverable
queueing service, PPC, and the rest of the toolkit. These
tools provide the appropriate low-level commands for ad-
ministering these components. Encina/9000 also provides a
perl-based” tool called encsetup, which provides higher-level
system administration facilities. The HP value-added system
administration facilities are described later in this section.
Finally, Encina/9000 also provides libraries for developing
system administration products, which are very useful for
customers developing these kinds of products.

Encina/9000 system administration is very closely tied to
DCE system administration. The DCE cell must be config-
ured before the Encina cell can be configured. Encina/9000
also makes use of the DCE directory service. The default
Encina root cell directory is defined as /./fencina (this default
can be changed if needed). Encina/9000 components regis-
ter their name under this directory. Within this directory
there are directory entries for the recoverable queueing ser-
vice, the structured file system, the Encina/9000 monitor,
transactional RPC, and peer-to-peer communication (PPC).
For example, each recoverable toolkit server registers an
entry in the /./encinaltrpc directory (trpc = transactional RPC),
and each recoverable monitor server registers an entry in the
I.:fencinaltpmitrpc directory (tpm = Encina/9000 monitor).

The use of the directory allows the Encina/9000 system
administrator to restrict access to various resources. The

* Perl (Practical Extraction Report Language) is a UNIX programming language that is designed
to handle system administrator functions.



system administrator can use DCE tools like acl_edit to grant a
user, a group, Or an organization permission to access a par-
ticular resource. Encina/9000 uses the DCE authentication
and authorization mechanisms to maintain security. An
Encina/9000 server can specify the level of authorization a
user of the server must have to access that server. A client
wishing to access a secure server must be authenticated with
DCE and when the client calls the server, the server uses the
DCE security mechanisms to verify whether it should allow
access to the user. DCE access control and security are dis-
cussed in the articles of pages 49 and 41 respectively.

HP provides a DCAM layer for Encina/9000. DCAM stands
for distributed computing application management. DCAM is
an architecture and methodology for providing uniform sys-
tem management for products that enable distributed com-
puting such as DCE, Encina/9000, and CICS. An advantage
of DCAM is that it provides a consistent look and feel for all
of these products to the user and aids in the overall ease of
use of these products. It provides a graphical user interface
as well as a DCAM shell. DCAM provides a set of action
verbs that can be modified by options and operate on ob-
jects.

Fig. 12 shows the relationship between the DCAM CLI
(command-line interface) layer, the DCAM shell, and SAM
(system administration manager).

SAM is a menu-driven interface used to manage an Encina/
9000 system. The DCAM shell is a command-line interface
which can be used to type in administrative commands. SAM
and the DCAM shell are layered on top of the DCAM CLI
scripts which convert the DCAM commands to native En-
¢ina/9000 administration commands.

The common look and feel provided by DCAM enables a
system administrator to manage the different distributed sys-
tems and applications based on DCE with a consistent and
user-friendly interface. DCAM does this by providing consis-
tent use of vocabulary to represent actions. The consistent
use of syntax and semantics is important because of the dif-
ferent subsystems that DCAM is built upon. The consistency
provided by DCAM improves user efficiency and lowers
error rates.

DCAM provides a natural way for system administrators to
express the actions that they want. For example, to create a
structured file system server, a system administrator would
type the command: create sfsserver. This command is converted
by DCAM to the underlying Encina/9000 low-level commands
needed to create the server.

User

DCAM Shell

DCAM CLI Layer

Underlying Encina/9000 Components

Fig. 12. System administration tools with DCAM.

The SAM interface of DCAM is more useful for people who
are familiar with SAM or are getting acquainted with Encina/
9000. The DCAM shell is generally used for efficiency by
experienced Encina/9000 system administrators. In addition,
the DCAM shell is also used for writing and customizing
system administration scripts.

DCAM is object-oriented. Objects represent items that can be
encapsulated and acted upon. Encina/9000 objects can be an
Encina cell, a server, or a transaction. Objects have attri-
butes. For example, a structured file system server has an
associated attribute that describes the log volume associated
with the server. Actions are verbs that act upon the objects.
For example, the actions create, start, modify, and stop can
be used to act upon an object. Actions have object indepen-
dent semantics in that they have similar semantics regardless
of the type of object they are working on. For example, the
verb create can be used to create an Encina cell, a structured
file system server, an application server, and so on. Actions
have options. An action can be specified with the default
options, or the administrator can specify task-specific options
with the action.

A task defines a pairing of an action with an object. A task
consists of one action, one object, zero or more options, and
one or more attributes. For example, start cell -Name name,
which tells DCAM to start up the named cell along with
other optional parameters, is a task that can be specified
with the DCAM shell. If the parameters are not specified, the
DCAM shell will prompt for the parameters. In SAM, the
parameters are displayed as fields in the SAM panel and can
be entered. If the required parameters are not entered, an
error is displayed.

Another useful feature of DCAM is the help facility, which
can be used by the system administrator to interactively ob-
tain help on a topic. This is also useful for someone who is
learning Encina/9000 administration since it lists the various
alternatives and options to a command and provides an easy
way for administrators to get a feel for the various com-
mands and options.

To many users the real value of DCAM is the added capabili-
ties it has that go beyond what native Encina/9000 adminis-
tration supports. This includes high-level server configura-
tion tasks which are much easier, complete support for
transparent remote configuration from anywhere in the DCE
cell, autorestart of toolkit servers like the structured file sys-
tem and the recoverable queueing service, and support for
ServiceGuard/UX’s failover” feature.

High-Availability Features

Many customers have a strict requirement for data to be
available at all times. Data replication with Encina/9000 can
be provided by the use of data mirroring with mirrored
disks. In addition, to provide data availability in the case of
machine failures, Encina/9000 can be integrated with the
Switchover/UX and the ServiceGuard/UX products (de-
scribed below). These products allow node failures to be
handled, and they provide a set of scripts that facilitate the
administration of a highly available system.

* Failover refers to the process that occurs when a standby node takes over from a failed node.

December 1995 Hewlett-Packard Journal 71



In a distributed system there can be many causes of failures,
and failures of disks, networks, and machines can all impact
availability. Since the system is composed of several nodes
connected with network links, there are more points of fail-
ure that could impact availability. Network failures are not
described here, but users who need highly available Encina/
9000 applications should try to avoid single points of net-
work failure.

Many techniques exist for dealing with disk failures. The
preferred method of dealing with disk failures is to use
HP-UX mirrored disks with a logical volume manager. Other
choices are to use RAIDS or to use Encina/9000 mirrored
disks. The advantage of the HP-UX mirrored disk technique
is that it is a general-purpose solution with applicability to all
kinds of data like the structured file system and DBMSs. If
the database can handle the logical volume manager config-
ured for no consistency then it should be used for database
data. Mirror write consistency, or mirror consistency, should
be used for Encina/9000 data or for database data that can
handle consistency mirroring. RAID can be used as a rela-
tively inexpensive solution to handle disk failures, but it has
many single points of failure in the disk I/O path and is not
good for the short random write updates that are typically
found in transaction systems. Encina/9000 mirroring has the
disadvantage that it is not integrated in the HP-UX operating
system and can therefore only be used for Encina/ 9000 data
and not for, say, DCE or DBMS. Its advantage is that it can
automatically handle more failure conditions than HP-UX
mirroring. Encina/9000 mirroring is slower than HP-UX mir-
roring, but it has a faster recovery time.

There are two primary solutions for node failures: Switch-
over/UX and ServiceGuard/UX. In Switchover/UX, a primary
node and a standby node are configured with multihosted
disks. The primary node runs in the normal case. The standby
node is also connected to the disks and uses a heartbeat
protocol to detect failure of the primary node. When the
standby node detects that the primary node has failed, it
assumes the primary node’s identity by booting off the pri-
mary node’s disks and using the primary node’s IP address.
The standby node then uses the primary node’s disks to
reboot and to restart the system processes and applications.
This allows a fast restart after the primary node has crashed,
resulting in a small downtime. The primary and standby
nodes should be from the same hardware family.

With Switchover/UX the Encina/9000 processes are restarted
when the standby node reboots. Using Encina/9000’s trans-
parent binding, clients are automatically reconnected to the
servers. However, in this case client transactions will keep
aborting until the failover is complete.

In ServiceGuard/UX, applications and data are encapsulated
as packages that can be run on various nodes of a cluster.
ServiceGuard/UX allows the user to define the packages,
and each package has a prioritized list of nodes it can run
on. ServiceGuard/UX ensures that a package only runs on
one node at a time. A package is defined by a startup/shut-
down script and can represent any application. The nodes
running packages monitor each other’s status and restart
packages when they detect the failure of another node.

A package can be an Encina/9000 application server running
under a single Encina/9000 node manager. The package can

72 December 1995 Hewlett-Packard Journal

also include assorted toolkit servers like the structured file
system, a recoverable queueing service, or an Encina/9000
monitor. Optionally, a package can have one or more IP
addresses. If specified, a package’s IP address is associated
with the network interface on the machine currently execut-
ing the package. With ServiceGuard/UX a user can configure
a simple failover scheme. The user can also define a single
package that can execute on a primary or a backup node.
This scheme is general and can be used for the Encina/9000
log, structured file system, recoverable queueing service,
monitor, and DBMS and DCE core servers.

Encina/9000 servers can be integrated with ServiceGuard/
UX. In this case the Encina/9000 servers should be config-
ured in a ServiceGuard/UX cluster, and a package should be
created for the servers. The package should contain run and
halt scripts for the servers, which specify the actions to take
when a package is started or terminated. The actions in a
run script include adding the relocatable IP address to the
network interface, mounting all logical volumes, and calling
an Encina/9000 script to start all the Encina/9000 servers.
The actions in a halt script include calling an Encina/9000
script to halt all the Encina/9000 servers, unmounting all the
logical volumes, and removing the relocatable IP address.

ServiceGuard/UX offers a more flexible solution for high
availability. It can be configured with a dedicated standby
solution similar to Switchover/UX, or it can be configured in
a more cluster-like configuration. It also has a faster recovery
time since failover nodes do not need to reboot.

Encina/9000 also provides the ability to perform application-
level replication of data. An alternative to application-level
replication is the replication of data provided by databases.
Database-level replication has the advantage of being trans-
parent to the user, and it is relatively efficient. Application-
level replication, on the other hand, is less dependent on
specific DBMS platforms and can be used to provide replica-
tion across DBMS platforms. In addition, it is more flexible
and can be performed in a synchronous or asynchronous
manner. It may be important to perform asynchronous repli-
cation across a WAN to achieve a faster response time. The
disadvantage of application-level replication is that the appli-
cation developer must design and implement the replication
scheme.

An example of replication using Encina/9000 is master/slave
replication of data with deferred updates to the slave. In this
scheme, the master copy of the database is maintained on a
machine. The application updates the master database and
stores a copy of the update in the recoverable queueing
service. With this setup the application can transactionally
update the master database and store a copy of the updates
in the recoverable queueing service. At a later time the data
is transactionally dequeued from the recoverable queueing
service and applied to the slave database on another ma-
chine. The strength of this approach is that the two ma-
chines holding copies of the data do not have to be running
at the same time, and the update can be deferred to a time
when the load on the system is low. It also avoids having to
do online a two-phase commit across the machines. How-
ever, there is the drawback that the replica is not consistent
with the master, and the updated data would be unavailable
while the master node is down.



Encina/9000-Based Architectures

Some of the common Encina/9000-based architectures in-
clude corporate centralized data architecture, region central-
ized data architecture, and branch data architecture. In each
of these architectures we consider a corporation to be an
entity that has a central data processing center located at its
headquarters. The corporation’s business is geographically
spread over several regions, and each regional center has a
data processing center. Each region also contains multiple
branch offices, and the branch office has a number of users
who are executing transactions. In the past, companies em-
ployed mainframes at the corporate headquarters, where all
the data was maintained. This was expensive to maintain,
and the response time got worse as the data on the main-
frame increased.

In a corporate centralized data architecture, data is still main-
tained at the mainframe host. Connection to the mainframe
is through gateway machines that run the Encina/9000 PPC
executive. Depending on the availability requirements, the
gateway machines could be implemented with the high-
availability solutions mentioned earlier. One option would
be not to have any machines at the branch offices or the
region offices but rather to have PCs at these offices which
talk directly to the mainframe. Alternately, the regional cen-
ters or the branches could have machines, and the regional
machine could route a request from a branch to the corpo-
rate center. All the data is maintained at the corporate center
and there is no local business data at either the regional of-
fices or the branch offices. This architecture is shown in

Fig. 13.

This architecture is useful if it is hard to replace the main-
frame machines and data. Alternately, it may be possible to
offload some of the data from the mainframe to machines
running the HP-UX operating system at the corporate data
center.

The regional centralized data architecture is similar to the
corporate centralized data architecture, except that the data
is partitioned across the regional data centers. The data
could also be stored with the mainframe at the corporate
data center. Clients can run at the branch machines or at the
regional center. Optionally, there could be a database at

Corporate Center

Maintains All Data

Regional Office

Regional May Route Branch
Machine Connections
Branch Office
Connects to Corporate
Directly or Through Region

Fig. 13. A corporate centralized data architecture.

either the corporate center or the regions that assists in rout-
ing a request to the appropriate regional center. This archi-
tecture is shown in Fig. 14.

In the regional centralized data architecture, Encina/9000
servers typically run on the regional machines. Clients can
run at the branch or regional offices. Clients employ lookup
mechanisms to locate the appropriate server and then make
calls to the servers. An Encina/9000 PPC can be used to
transactionally read or update data stored at the corporate
center.

The regional centralized data architecture has the advantage
of avoiding CPU bottleneck problems when a large number
of transactions have to be processed on a single database.
Since the databases are spread throughout the regions, they
all can handle transactional access to the data allowing a
higher volume of transactional traffic. In addition, if users
frequently access data at the nearby regional center, network
traffic will be localized.

In the branch data architecture, each branch maintains its
local branch data. The data can also be aggregated and
maintained at the corporate center, but users primarily ac-
cess the data at a branch machine. Optionally, corporate or
regional centers can maintain a cross-reference database to
assist with routing a user request to the appropriate branch.
This architecture is shown in Fig. 15.

The main advantage of this solution is the fast response time,
since for most transactions data can be looked up locally
and expensive two-phase commits over the WAN can be
minimized. The drawback of this scheme is having to main-
tain a large number of databases and administering them.

Conclusion

The Encina/9000 product provides an application develop-
ment environment for developing OLTP applications and the
run-time support for running and administering the applica-
tions. Its strengths are the flexibility it provides for distributed
OLTP applications compared to the traditional database
products, and its strong integration with the HP DCE product.
It provides an infrastructure for customers to write reliable

Corporate Center

Consolidated Data

Mainframe and Backup

Some Data

Regional Offices

Regional
Machine

Regional
Machine

4—‘ Holds Regional Data

Branch Offices

Use Applications in
Regional Office

Fig. 14. A regional centralized data architecture.

December 1995 Hewlett-Packard Journal 73



Corporate Center
- Hold Some
Consolidated
Data
Some Data
Regional Center
- Regional Regional @, Hold Some
Machine Machine 4_’- %‘;T;Ohdatw

Some Data

Branch Office

- Branch Branch

Machine Machine * Use Applications
in Branches

« Maintain Own Data

Fig. 15. Branch data architecture.

74 December 1995 Hewlett-Packard Journal

and secure applications for their mission-critical data. Addi-
tionally, the Encina/9000 product provides added value in
the areas of system administration and fault tolerance.

Acknowledgments
I would like to thank Jay Kasi for his insightful discussions
on several topics mentioned in this paper.

References:

1. Encina/9000 Reference Manuals, Part Number B 3789AA, Hewlett
Packard Company, 1995.

2. OSF DCE Application Development Guide, Revision 1.03, Prentice
Hall, 1993.

3. J.E.B. Moss, Nested Transactions: An Approach to Reliable Distrib-
uted Computing, MIT Press, 1985.

4. CAE Specification Distributed Transaction Processing: The XA
Specification, X/Open, 1991.

5. M. Rusnack and T. Skeie, HP Disk Array: Mass Storage Fault Toler-
ance for PC Servers, Hewlett-Packard Journal, Vol. 46, no. 3, June
1995, pp. 71 to 81.

HP-UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX
93 branded products.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a registered trademark and the X device is a trademark of X/Open Company Lim-
ited in the UK and other countries.

Open Software Foundation and OSF are trademarks of the Open Software Foundation in the
U.S. and other countries.



