A New, Flexible Sequencer Architecture
for Testing Complex Serial Bit Streams

Based on a generic model of serial communication systems, this
architecture dramatically reduces the time needed to program functional
and in-circuit tests for devices with serial interfaces. It is implemented in a
new Serial Test Card and Serial Test Language for the HP 3070 family of

board test systems.

by Robert E. McAuliffe, James L. Benson, and Christopher B. Cain

As serial bit streams become more prevalent in electronic
products, the need for high-quality, thorough tests for those
products increases dramatically.! Traditional automatic test
equipment (ATE) architectures have limitations that make it
extremely difficult (if not impossible) to write such tests. In
this paper we discuss those limitations and describe a new
sequencer architecture specifically designed to address the
challenges of serial bit stream testing.

The architecture has been implemented as an enhancement
to the HP 3070 family of board testers and has been used to
emulate many challenging serial protocols and formats, in-
cluding: ISDN S- and U-interfaces, 12C, HDLC control chan-
nels, generic 64-kbit/s streams, IOM-2, ST-Bus, and various
time division multiplexed (TDM) backplanes. Customers
using the architecture have experienced dramatic reductions
(up to 25%) in test development time, as well as significant
increases (8% or more) in test throughput.

We assume the reader has at least some knowledge of man-
ufacturing test procedures and equipment. A basic knowl-
edge of telecommunications concepts may also prove useful,
as many of the examples given are related to telecomm
applications.

Throughout the paper we will refer to a device under test
(DUT). In general the discussion will be in the context of
functional board testing, in which case the DUT would be a
complete printed circuit assembly. In this time of rapid tech-
nological changes, however, functionality that once required
entire boards is now implemented as small clusters of com-
ponents or as single integrated circuits. We will therefore use
the term DUT to refer to whatever is being tested, be it an
IC, a cluster of components, a board, or a complete system.

First we give a brief overview of traditional ATE sequencers
and their shortcomings, and then discuss in more detail some
of the special challenges of serial bit stream testing. We will
show that many test development problems are caused by a
fundamental mismatch between the ATE capabilities and the
features of DUTs with serial interfaces.

76 February 1995 Hewlett-Packard Journal

Next we introduce a generic model of serial communication
systems. This is essentially a definition of the general charac-
teristics shared by all serial bit streams. Using this model, we
were able to develop a test sequencer architecture more
closely matched to the characteristics of serial bit streams
and the DUTs that use them.

We then describe the architecture as implemented in the
HP 3070 board test family. The architecture of the Serial Test
Card (STC) and the Serial Test Language (STL) are described
in these sections.

Finally, we present several case studies showing how the
STC solves real-life testing problems.

Evolution of ATE Sequencers

Traditional ATE systems feature a test pattern sequencer
capable of driving and receiving many simultaneous digital
signals. Sequencers of this type first appeared over a decade
ago. Early versions of these sequencers excelled at testing
SSI/MSI components and simple circuit boards, but had diffi-
culty with microprocessors and other VLSI components.?

In response to the test problems posed by microprocessors,
ATE manufacturers enhanced their sequencers. New features
like formattable pins, algorithmic pattern generation, memory
emulation, and bus emulation were added to make the test
sequencers a better match to these microprocessor-oriented
DUTs.

Today, DUTs embody faster and more powerful micropro-
cessors, concurrent processing technologies, serial communi-
cation channels, mixed signal functions, and a variety of
custom circuitry (such as ASICs and FPGAs). Each of these
characteristics brings with it challenges for the test engineer,
but the widest gap between the DUT and traditional ATE
seems to be in the area of serial communication testing and
its associated concurrent processing technology. The single-
sequencer, massively parallel architecture of traditional ATE
is not suited to the special problems presented by these
DUT characteristics.

[Hewlett-Packard Company 1995

Our goal was to design a sequencer architecture better
matched to the special test requirements of serial-oriented
DUTs. As a first step toward that goal, we surveyed a large
number of DUTs and serial protocols to identify specific
characteristics that make them difficult or impossible to test
with a traditional ATE system.

Characteristics of Serial DUTSs

Serial-oriented DUTs have many characteristics in common
with many other modern electronic devices. Conversely,
they also have many characteristics that are fundamentally
(or sometimes subtly) different. Some of the more common
features of serial-oriented DUTs are:

Complex physical (electrical) interfaces

Multiple interfaces operating at unrelated bit rates
Nondeterministic bit streams

Bit streams with embedded clocks

Hierarchical bit streams.

Complex Physical Interfaces

To maximize utilization of a transmission medium, many
serial protocols abandon traditional binary digital formats in
favor of three-level or four-level digital interfaces. The ISDN
S-interface operates with three logic levels,3 and the ISDN
U-interface (2B1Q) operates with four. Other standard
telecomm protocols are similar.

Many of these protocols require the transmitted waveforms
to correspond to exactly specified shapes, usually to limit
the high-frequency components of the signal to a reasonable
level. Traditional sequencers have binary stimulus and re-
sponse capabilities with programmable high and low logic
levels. Some even provide rudimentary slew-rate control,
but none are designed to interface directly with complex,
nonbinary bit streams.

Multiple Interfaces Operating at Unrelated Bit Rates
Many DUTSs contain more than one serial interface. In many
cases, each interface is asynchronous with respect to the
others (there is no specified alignment between bit centers
from one interface to the next). One can sometimes force
alignment by running each interface from a common clock,
but this technique does not necessarily work with asynchro-
nous protocols (see “Bit Streams with Embedded Clocks,”
below). Moreover, it is quite common to have interfaces
running at entirely different bit rates.

The only viable testing approach for a traditional sequencer
architecture is to apply vectors at a rate equal to the least
common multiple of the clock rate of the two interfaces
(assuming there are only two interfaces). The number of test
vectors required for even simple tests can be formidable
using this approach.

One of the authors has personally written a test for an ISDN
S-interface device using a traditional sequencer and this
“least common multiple” approach. The effort required three
months and 13,000 lines of source code (roughly 90,000
compiled test vectors). Even with this huge effort, only a
small fraction of device functionality was tested. Such long
test development times are simply not acceptable in today’s
competitive markets.

[J Hewlett-Packard Company 1995

Nondeterministic Bit Streams

The response of a DUT to an applied stimulus is not always
deterministic, that is, many different “correct” responses to
the stimulus are possible. An analog-to-digital converter, for
example, will not generally produce exactly the same se-
quence of digital samples in response to different applica-
tions of the same analog stimulus. This does not mean that
any one sequence is more correct than any of the others. It
simply means a different measurement technique must be
applied to the problem.

Some ISDN data link activation procedures include the
transfer back and forth of HDLC-like packets of information.t
According to these procedures, the packet address is, under
some circumstances, generated by a pseudorandom genera-
tor on the DUT. This presents no problem if the address
generated by the DUT is deterministic in response to a partic-
ular initialization sequence. On the other hand, if the address
cannot be predicted, the test sequencer must be able to cap-
ture whatever address was generated and save it for use
later in the test. The authors have not encountered a tradi-
tional sequencer with such on-the-fly storage capabilities.

Bit Streams with Embedded Clocks

Some serial interfaces are asynchronous in nature, that is, the
clock specifying the bit boundaries is embedded in the bit
stream. Traditional sequencers typically sample at predeter-
mined times and are unable to interface properly to such a
bit stream.

Embedded clocks can take many different forms. Some pro-
tocols guarantee data transitions at regular intervals. Other
protocols provide no such guarantee but depend on the
transmitter and receiver operating at a prearranged bit rate
(asynchronous protocols such as those typically used with
RS-232 connections work in this way).

In addition, framing information can also be embedded in
the bit stream. Asynchronous protocols, for example, mark a
frame boundary with a start bit. The HDLC and similar syn-
chronous protocols indicate framing with a special flag pat-
tern, usually eight bits in length. A traditional sequencer may
be able to handle such cases if it has sophisticated branching
capabilities, but it is very difficult to write a test that can
synchronize to a complex framing pattern while simulta-
neously applying test patterns to other interfaces of the DUT.

Hierarchical Bit Streams

Many serial interfaces contain bit streams within bit streams.
We call these hierarchical bit streams. A basic-rate ISDN
interface is an example of a hierarchical bit stream. A basic
frame of this interface consists of 16 bits of B channel data
and 2 bits of D channel data.tt If the D channel bits from
each frame are extracted and assembled one after the other
into a separate serial bit stream, they form an HDLC-like bit
stream.

T See references 3 and 4 for a complete description of ISDN and associated activation
procedures. Details of HDLC and other bit-oriented protocols can be found in references
5and 6.

t1 This is a simplified description of an ISDN basic rate frame. Actual frame length and content
vary depending on which reference point (S, U, etc.) is being considered.

February 1995 Hewlett-Packard Journal 77

This situation is very difficult to handle with a traditional
sequencer because the logical channel the test engineer
wants to communicate with is surrounded by a great many
other bits of little interest. Complicated subroutines must be
written to extract the data of interest from the large frame of
bits or insert the data of interest into the large frame of bits.
Furthermore, the test engineer must somehow attain bit and
frame alignment for both the main frame and the embedded
logical frame. This may make the test impossible to imple-
ment with a traditional sequencer.

Solutions

For many serial interfaces, the above problems can be
solved using custom electronics, ranging from special circuits
in the test system fixture to a “hot mockup” of the final sys-
tem application of the DUT, or by simplifying and eliminat-
ing tests so that they can be more readily implemented with
a traditional sequencer. We propose a third solution: use of a
test sequencer designed specifically to address the special
challenges of serial bit stream testing. By using the right tool
for the job, the test programmer can develop a thorough,
high-quality test quickly and without the need for complex
fixture electronics.

Generic Model
of Serial Communication Systems

In the last section we discussed the difficulties of serial test-
ing using traditional sequencer architectures. For the most
part, these difficulties are caused by an inherent mismatch
between the DUT and the tester.” In each case, the problems
presented could certainly be solved with custom circuitry
provided by the customer or by the ATE vendor. However,
this approach undermines one of the key advantages of com-
mercial ATE systems: the advantage of being able to use the
same tester to test many different DUTs (or many different
pieces of the same DUT).

A better approach is to design an architecture that is specific
enough to handle the peculiarities of serial testing but general
enough to be usable for many different types of serial DUTs
and serial protocols. To aid in the definition of such an archi-
tecture, we looked deeper into the test problems described
in the last section in an effort to understand the fundamental
nature of each. This led to the development of our generic
model of serial communication systems, described below.

We designed our new sequencer architecture using this model
as a guide, so essentially any bit stream compatible with the
model is compatible with our architecture. Our particular
implementation of the architecture was targeted at telecomm
applications, so cost/performance trade-offs appropriate to
that market have been made. The model (and thus the archi-
tecture) is more general and could theoretically be imple-
mented in other ways for other serial test markets.

Definitions

The following terms are used throughout this section:
Communication System. A means of transferring
information from one place to another.

Serial Communication System. A communication system that
encodes information into digital signals and transfers this

78 February 1995 Hewlett-Packard Journal

digital information from one place to another in a time-serial
fashion, that is, the bits of digital information are transferred
sequentially one after another according to a prearranged
protocol. A serial communication system is typically com-
posed of subparts made up of various bit processors (see
below), which process and transform serial communication
bit streams (see below).

* Serial Communication Bit Stream. A physical transmission
path connecting two bit processors (see below) in a serial
communication system. Bits are transmitted in a serial fash-
ion, that is, the bits of a message are transmitted sequentially
one after another on a common transmission medium. “Serial
communication bit stream” will be abbreviated to simply
“serial bit stream” or “bit stream” throughout the following
discussions.

* Bit Processor. A hardware or software device that connects
one bit stream to another. A bit processor usually transforms
or filters the bit stream in some manner, but can also serve
as a source or sink. A source generates the information to
be transmitted over the communication system, and a sink
receives and analyzes that information at the other end.

A serial communication system is composed of numerous
pieces, each piece defined as either a bit stream or a bit pro-
cessor. Bit processors serve to connect (transform) one bit
stream to another. Or, equivalently, bit streams serve to con-
nect one bit processor to another. Each of these elements—
bit streams and bit processors—has certain well-defined
properties. These properties are discussed below.

Properties of Bit Streams
Every serial bit stream possesses the following four
properties:

* Physical specifications

e Symbol synchronization algorithms

* Framing algorithms

* Logical channel identification (multiplexing).

Physical Specifications. The physical specifications describe
the electrical properties of the bit stream, the number of logic
levels defined, and any other properties related to the physics
of transferring the bit stream from one place to another.

Symbol Synchronization Algorithms. Since a serial bit stream is
inherently composed of bits, there must be a way of demar-
cating the bit boundaries within the bit stream. A device
designed to interpret the bit stream would use a symbol syn-
chronization algorithm to locate the bit boundaries. The syn-
chronization property of the bit stream is either explicit (a
dedicated signal path for clocking is provided) or implicit
(symbol synchronization information is encoded within the
serial bit streamT).

Framing Algorithms. A raw serial bit stream is capable of
transferring very little information. For example, a binary bit
stream can represent only one of two states at any given
moment (1 or 0, on or off). However, if a time reference is
provided with the bit stream (an indication of when the bit
stream “starts”), then bits can be assembled into larger units
capable of carrying more information (bytes, words, mes-
sages, etc.). This is the purpose of framing: to provide a

t Asynchronous protocols are also considered implicitly clocked. In that case the symbol rate is
defined as part of the bit stream symbol synchronization algorithm.

[Hewlett-Packard Company 1995

Start Stop Start Stop
Bit Bit Bit Bit

l T l Bit
IFF | | Data I L | Data I I ElEEESEE

IFF = Interframe Fill Pattern

reference point so the bits of the serial stream can transfer
more complex information.

There are two types of framing. Framing can be either
explicit (a dedicated signal path for framing is provided), or
implicit (framing information is encoded within the serial bit
stream). An implicit framing algorithm may indicate framing
using either a bunched framing pattern or a distributed fram-
ing pattern. A bunched pattern is made up of a group of
contiguous bits. A distributed pattern is made up of a group
of bits interspersed among the data bits.

The time interval between the end of one frame and the
beginning of the next is called the interframe gap. This gap
may be either zero-length (frames are back-to-back) or non-
zero-length. If it is nonzero-length, the interframe gap is
filled with an interframe fill (IFF) pattern.

Logical Channel Identification. Many serial bit streams simulta-
neously carry more than one independent logical channel of
information. We say that these bit streams are multiplexed or
bierarchical. If the independent logic channels are ever to
be recovered from a multiplexed bit stream, there must be a
means of uniquely identifying each individual logical chan-
nel. The multiplexing scheme specifies the method used to
multiplex the logical channels and may be categorized as either
explicit or implicit.

With explicit multiplexing, each frame contains a group of
information from each multiplexed logical channel. The
frame boundary provides a reference for the bit groupings.
Time division multiplexed (TDM) highways, such as those
found on telecomm line cards, and the ISDN S-bus are
examples of explicitly multiplexed bit streams.

With implicit multiplexing, each frame contains a group of
information from only one of the multiplexed logical chan-
nels. Information from other logical channels may follow in
subsequent frames. In this case, logical channel identification
is encoded in the bit stream (for example the address field
of an HDLC frame or other packetized data.)

Properties of Bit Processors

The job of a bit processor is to convert one bit stream into
another according to some specified algorithm. A bit proces-
sor therefore has two distinct properties: port definitions and
transformation algorithms.

Port Definitions. A bit processor interfaces to bit streams
through one or more ports. Most bit processors will have an
input port and an output port, but some will have only one
or the other.t Each port must have a data interface and
must of course match the physical specifications of the bit
stream. The directional sense of the data interface determines

t These are called sources or sinks and occur at the ends of a communication system. This is
where the information sent back and forth in the serial bit stream is ultimately generated or
analyzed.

[J Hewlett-Packard Company 1995

Juuuuuuuu

LTl

Fig. 1. Processing an RS-232 bit
stream.

whether a port is an input port or an output port. Data always
flows into an input port and out of an output port.

Other requirements are determined by the serial bit stream
to which the port attaches. If the bit stream is explicitly
clocked (uses an explicit symbol synchronization algorithm),
the port must have a clock interface. Similarly, if the bit
stream uses an explicit framing algorithm, the port must
have a frame synchronization interface. These interfaces
may consist of one or more physical signals that flow either
into or out of the port. The implementation details can be
determined by studying the bit stream specifications and the
transformation algorithm.

Logical channel grouping algorithms do not directly affect
the requirements of the port, although they may influence
the design of the clock interface. For example, a bit proces-
sor designed to demultiplex a logical channel from a multi-
plexed bit stream could be implemented in one of several
ways. One method might use gated clock signals: clock
edges only occur when bits from the logical channel of inter-
est are output from the data interface. Another method might
use a continuous clock (all bits from the original bit stream
are output at the data interface) and generate a separate
“data valid” signal when bits from the logical channel of
interest are present at the output data interface.

Transformation Algorithms. A transformation algorithm simply
defines the function to be performed by the bit processor.
The bit processor must manipulate the incoming bit stream
in whatever manner is necessary to make it conform to the
requirements of the outgoing bit stream.

A simple example will help to clarify the functions of bit
processors and bit streams.

Applying the Generic Model

Fig. 1 shows an example of the generic model applied to a
simple asynchronous communication system. The bit stream
on the left is the incoming bit stream. Using conventional
terminology, it would be described as an asynchronous bit
stream using one start bit and one stop bit, no parity check-
ing, and an eight-bit data field. The definition using the
generic model would be something like this:

Physical Specifications:
Logic levels: 2
Voltage levels: RS-232-C levels; logic high = -3 volts;
logic low = 3 volts

Symbol Synchronization Algorithm:
Type: Implicit, known symbol rate
Symbol Rate: 9600 per second

Framing Algorithm:
Type: Implicit, bunched framing pattern
Framing Pattern: “10” (at least one stop bit or IFF bit
followed by the start bit)

February 1995 Hewlett-Packard Journal 79

Interframe Gap: >= 0 symbols
IFF Pattern: “1”

Logical Channel Identification:
Type: Explicit (none really, since there is a single
eight-bit data field)

The bit processor receives this bit stream on the data inter-
face of its input port. As shown in Fig. 1, the job of this par-
ticular bit processor is to generate a clocked, synchronous
version of this bit stream on its output port. Here is the defi-
nition of the bit stream output from the bit processor (the bit
stream on the right side of the figure):

Physical Specifications:
Logic levels: 2
Voltage levels: Standard TTL levels

Symbol Synchronization Algorithm:
Type: Explicit
Clock Rate: 9600 Hz

Framing Algorithm:
Type: Implicit, bunched framing pattern
Framing Pattern: “10” (at least one stop bit or IFF bit
followed by the start bit)
Interframe Gap: >= 0 symbols
IFF Pattern: “1”

Logical Channel Identification:
Type: Explicit

Notice that the framing algorithm and logical channel identi-
fication specifications have not changed. The bit processor
has merely generated a clock signal synchronized to the in-
coming bit stream. In this case another bit filter upstream of
this one could further transform the bit stream and perhaps
extract the data field. Since the output bit stream uses an
explicit clock, it is not really necessary to specify the clock
rate. Another bit processor that conforms to our generic
model should be able to accept the bit stream knowing only
that there is an explicit clock signal. Any practical implemen-
tation, however, will have a finite clock rate specification, so
it is a good idea to specify all such performance requirements
as part of the bit stream description.

The definition of the bit processor in our example looks
like this:

Input Port:
Data Interface: Required. See bit stream definition for
physical requirements.
Clock Interface: Not required, bit stream is implicitly
clocked.
Frame Sync Interface: Not required, bit stream is
implicitly framed.

Output Port:

Data Interface: Required. Standard TTL output
specifications.

Clock Interface: Required, bit stream is explicitly
clocked. The interface consists of a single clock
output signal meeting standard TTL logic
specifications.

Frame Sync Interface: Not required, bit stream is
implicitly framed.

80 February 1995 Hewlett-Packard Journal

Transformation Algorithm:

1. Use a combination of the given baud rate, an internal
high-speed clock, and data signal transitions to locate bit
centers.

2. Sample the input data at the bit centers and retransmit on
the output data interface. Transmit the sampling clock on the
output clock interface.

The actual algorithm would probably need to be more so-
phisticated, but this simple example illustrates the process of
mapping a real communication system onto the generic
model. A more complex example is given in Fig. 2.

Modularity

The example just given was quite simple but can serve to
illustrate an important feature of the model. As mentioned
before, another bit processor upstream of the one described
might further transform the bit stream, perhaps aligning itself
to the framing markers and extracting the data field. The data
field could then be passed to yet another bit processor, and
so on. We call this feature of the model modularity. Using
this idea, we can conceptually break up a serial communica-
tion system into smaller, simpler pieces consisting of a series
of bit processors connected by a series of serial bit streams.

Modularity also aids the processing of hierarchical bit
streams. The functions of demultiplexing and logical bit pro-
cessing can be divided among more than one bit processor.

Hardware Architecture

As we have seen, real-world bit streams and communication
systems can be described by carefully specifying each prop-
erty of the generic model. In other words, the model can
effectively mimic any serial communication system. A se-
quencer architecture that exactly implements the generic
model would therefore be easily programmed to test any
serial bit stream or protocol.

We knew of course that a variety of constraints (the laws of
physics, for example) would limit our ability to implement
the model exactly. We also knew an abstract model that
could not be implemented well enough to solve real test
problems would be useless, so we revisited the test prob-
lems described earlier. We examined each test problem,
looking for issues that might affect the way in which we
chose to implement the model.

Complex Physical (Electrical) Interfaces. The model handles this
quite easily. One simply describes the characteristics on a
sheet of paper. An actual implementation, however, is quite
different. We decided early on that it was not feasible to
implement hardware compatible with any possible electrical
interface! Instead, we chose to implement hardware of sev-
eral different classes, each class capable of handling a family
of related physical bit streams.

Multiple Interfaces Operating at Unrelated Bit Rates. The generic
model does not address this issue, although the model can
be used to describe each individual interface. We decided
that this implied a multichannel architecture in which each
channel was capable of operating essentially independently
of the others.

[Hewlett-Packard Company 1995

Framing Bits

1

~

Bit Processor

(Personality Module)

B1 Bits B1 Bits

D Bits

|

Clock IlI””|||I””|I”””””””””””l

Frame
Sync . LI—]
Data -{ BL | B2 |o | B

1

Physical Specifications: CCITT 1.430 (3-Level Logic)
Symbol Synchronization: Implicit

Framing: Implicit, Distributed Pattern

IFF Length =0

Logical Channel Identification: Explicit

Algorithm: Sync to symbols and frame.
Regroup bits and transmit synchronously.

Physical Specifications: Binary TTL
Symbol Synchronization: Explicit
Framing: Explicit

IFF Length =0

Logical Channel Identification: Explicit

coce_JUTUTUUUUUUULLN
paa-{0]0]0[o|p|D[D[D[D[D]D]

I 1

Bit Processor
(Channel Splitter)

Bmm 4 Processor

Bit Frame
Sync . b
(Filter)
Data -{ Data Packet | Frame Check Sequence |

Clock||||||||||||||Illllll””””l

1 L

Algorithm: Use frame Physical Specifications: Binary TTL
sync signal to locate Symbol Synchronization: Explicit
D bits and transmit Framing: Implicit, bunched
them upstream. pattern = 01111110

IFF Length > = 0 Symbols

IFF Pattern: 1

Logical Channel Identification: Implicit
(channel ID embedded in data field)

Algorithm: Sync to framing pattern
(01111110) and transmit synchronous
frame sync bounding the frame.
Check for correct frame check
sequence. Extract data packet and
frame check sequence and transmit
upstream.

Physical Specifications: Binary TTL
Symbol Synchronization: Explicit
Framing: Explicit

IFF Length =0

Logical Channel Identification: Explicit

process XDLC_receive
receive into Data, into FCS
if Data = TEI_assignment_packet then
call Process_TEI
end if
receive into Data, into FCS

Serial Test

Sequencer

end process T

Serial Test Language Fragment

Fig. 2. Processing an ISDN S-bus D channel.

Although our original goal was to make test development
faster and easier, we also realized that a multichannel, con-
current architecture could dramatically increase test through-
put. For example, a long bit error rate test could be run
simultaneously on all channels of a multichannel DUT.

Nondeterministic Bit Streams. In the model, any sort of calcula-
tion or adjustment of information in the bit stream is speci-
fied by the transformation algorithm. We thought there were
two areas of implementation that could be affected by this
issue. First, we thought it might sometimes be necessary for
an algorithm to access information from both the transmit
and receive bit streams simultaneously. This implied the
need to process both bit streams within the same bit proces-
sor. Secondly, we knew that any actual implementation of a
bit processor would have limits, so we wanted to be able to
cascade or chain bit processors.

Bit Streams with Embedded Clocks. Our solution to the prob-
lem of complex physical interfaces applies to this problem as
well: sets of different hardware each tuned to a class of em-
bedded clock schemes.

O Hewlett-Packard Company 1995

Hierarchical Bit Streams. Hierarchical bit streams imply multi-
plexing, so we knew that our implementation needed to be
good at handling multiplexed bit streams. This again implied
the need for cascadable bit processors.

The architecture that eventually emerged from these consid-
erations is shown in Fig. 3. The architecture is multichannel
in nature. The figure shows a single channel of the architec-
ture in the center with adjacent channels above and below.

Each channel is designed to attach to a single bit stream of

the DUT.

Each channel of the architecture contains two information
sources/sinks called serial test sequencers (STS). In a typical
application, each STS would process independent subchan-
nels (logical channels) of the bit stream. In Serial Test Lan-
guage, each logical channel is called a substream and is con-
trolled by a process running on the STS. When required by
the test program, STS resources from adjacent processing
channels can also be attached to the bit stream, providing up
to four substreams for each bit stream.

February 1995 Hewlett-Packard Journal 81

Personality Module Bit Processor

(RBP)3

Reconfigurable
Bit Processor
(RBP)

To DUT Interface

Circuitry

Bit Processor
(RBP) 4

Reconfigurable

Reconfigurable

Adjacent Processing Channel

Serial Test
Sequencer
(STS)

Reconfigurable
Bit Processor
(RBP) 1

Reconfigurable
Bit Processor
(RBP) 2

Serial Test
Sequencer
(STS)

Fig. 3. A single processing channel of the Serial Test Card (STC) for the HP 3070 board test family.

Four channels of the architecture are implemented on the
HP 3070 Serial Test Card (STC) and up to 12 STCs can be
installed in a system.

Bit Processors

As shown in Fig. 3, each STC processing channel is com-
posed of a series of bit processors connected by serial bit
streams. The bit processors are implemented with the
XC3000 series of field-programmable gate arrays (FPGAs)
from XILINX Company. An important feature of the XC3000
series is their RAM-based configurability. The XC3000 can be
programmed on-the-fly in the system, so no preprogrammed
ROMs are needed. This feature allows the transformation
algorithm of a bit processor to be changed on the fly and
makes these devices ideal for this application. The trans-
formation algorithms are implemented by circuits inside the
XILINX devices. They are not really either hardware or soft-
ware, so we have coined the word circuitware to describe
this sort of reconfigurable circuitry.

Fig. 4 shows a more detailed view of our standard bit pro-
cessor, called a reconfigurable bit processor, or RBP. In addi-
tion to the XILINX XC3042 FPGA, each RBP also includes a
pair of 2K-by-8-bit RAMs. The RAMs are connected to I/O
pins on the FPGA and are used as required by the circuit-
ware designer. This RAM resource complements the architec-
ture of the FPGA and provides a large, dense local storage
element.t Each RBP has a downstream port (towards the
DUT) and an upstream port (towards the STS), and each of
these ports supports data transmission in both directions
simultaneously.

t The XC3000 series of parts is structured as an array of D-type flip-flops fed by Boolean func-
tion generators. This structure makes them well-suited for state machine and random logic
designs, but unsuitable for applications requiring a lot of storage elements.

82 February 1995 Hewlett-Packard Journal

The bit streams that interconnect the RBPs are defined ac-
cording to the generic model. All internal bit streams are
binary TTL logic signals and are explicitly clocked and ex-
plicitly framed. The RBP clock interface ports include data
valid and ready signals to support multiplexed bit streams.

Personality Modules

We use personality modules to implement each interface
class. There are currently personality modules available for
TTL, ISDN S-bus and ISDN U-bus electrical formats. As a
whole, the personality module serves as a bit processor and
is responsible for converting the external serial bit stream
into a format compatible with the internal STC serial bit
stream definition.

Serial Test Sequencer

The serial test sequencer (STS) is the final bit processor in
the chain. As such, it will often be an information source or

2Kx 8-Bit RAM

Downstream Upstream
Receive Port XILINX XC3042 Receive Port
Field-Programmable
Gate Array

Downstream (GRC2) Upstream

Transmit Port Transmit Port

v

2Kx 8-Bit RAM

Fig. 4. Reconfigurable bit processor architecture.

O Hewlett-Packard Company 1995

sink. Recall that sources and sinks are where information is
generated or analyzed by a communication system. In our
case, sources and sinks are the means by which the test pro-
grammer communicates with the DUT (in traditional ATE
terms, the sequencer or test pattern generator.)

The STS connects on one side to the internal STC bit stream
format (as do all of our bit processors). The test programmer
controls the transformation algorithm of the STS through a
high-level programming language called the Serial Test Lan-
guage (STL). The STS is implemented with a Motorola
DSP56001 digital signal processor. The processor is well-
suited to computationally-intensive transformation algorithms
as well as general-purpose bit stream I/0.

Bit Processor Interconnect

When testing a multiplexed or hierarchical bit stream, the test
engineer will typically choose to process (drive and receive)
data for each logical channel independently of the others. At
the same time, we have seen that it is often advantageous to
be able to process a bit stream in a series of sequential steps.
There is then a conflict, given a finite number of bit proces-
sors, between having a large multiplexing capability and
having a large number of sequential processing stages. This
is because multiplexed bit streams are best addressed by a
wide, shallow array of bit processors, but multistep process-
ing of a bit stream is best addressed by a narrower, deeper
array of bit processors. Our RBP interconnect scheme and
special resource assignment software minimize this conflict
by allowing a wide variety of multiplexing and processing
arrangements.

As shown in Fig. 3, there are several different interconnect
paths between the RBPs and the STSs. Fig. 5 shows the
topology of each possible interconnect combination. Multi-
plexing is supported by channel splitter circuitware loaded
into two of the RBPs (the RBPs labeled 3 and 4 in Fig. 3).
The channel splitters are labeled CS in Fig. 5. Resources can
also be borrowed from adjacent processing channels, so
additional branches can be attached to a personality module.

The system software manages this borrowing, minimizing
the total resources required for a customer’s test. If even

wider multiplexing is needed, personality modules can be
connected together at the same physical port of the DUT.

Performance
The STC serial processing pipeline was designed to accom-
modate maximum bit rates of up to 12.5 Mbits per second.

There are obviously some applications that exceed this bit
rate and cannot be addressed, but the performance of the
architecture is a good match for proprietary telecomm PCM
backplanes, automotive applications, LANs, asynchronous
protocols at modem rates, ISDN basic rate interfaces, and
many other similar applications.

Extensibility

The test capabilities of the STC are formidable, but there are
still test cases that will require special capabilities or slightly
different functionality. STC capabilities can be modified or
increased by adding features to current circuitware, adding
functionality to existing personality modules, developing
new circuitware, or developing new personality modules.
Since all of the circuitware is supplied with the system soft-
ware and resides on disk, the first three of these can be
achieved through simple software updates. The last requires
a replacement of an existing personality module, but can
easily be performed in the field.

Technologies

Several important technologies contributed to make the STC
possible. The most important of these is the XILINX FPGA
technology. Our architecture relies on the ability to load
different circuitware (transformation algorithms) for each
customer test.

To provide a great deal of functionality in as little space as
possible, we wanted to use the smallest possible packages
for the FPGAs and other parts. Surface mount technology
was therefore a necessity, and fine-pitch surface mount was
a very strong want. Unfortunately, because of mechanical
registration limits, fine-pitch surface mount technology is
extremely difficult to implement on large printed circuit as-
semblies like those used in the HP 3070 family of testers. To
solve this problem, we decided to implement each channel
of the STC architecture on smaller modules that would plug
into the larger main printed circuit assembly. This provided
two major benefits. First, we could use fine-pitch parts on
these smaller modules, and second, trace routing on the
main board was simplified considerably. Trace routing on
the modules was still quite dense, but it only needed to be
done once.

We also relied heavily on digital simulation technology. All
of the circuitware developed for the STC was simulated and
debugged before attempting bench turn-on. It was important
to minimize debugging on the bench because of the highly

CS = Channel Splitter

PM = Personality Module
RBP = Reconfigurable Bit Processor
STS = Serial Test Sequencer

[J Hewlett-Packard Company 1995

Fig. 5. Processing channel
configurations.

February 1995 Hewlett-Packard Journal 83

integrated nature of the design. Although it is possible to
probe internal FPGA nodes on the bench, it is much easier
to probe during simulation.

Early in the project we also experimented with board-level
simulation. The primary module, containing the STS and four
RBPs, was simulated as a whole. These simulations were
mostly intended to verify the circuitry surrounding the
DSP56001 and to verify the RBP interconnect scheme. We
decided not to simulate the entire STC card, mostly because
of the lack of complete simulator models. In retrospect, this
may have been a mistake because the vast majority of defects
on the first STC prototype were in areas of the circuitry for
which off-the-shelf models were available.t

Software Architecture

Up to now, we have discussed the generic model of serial
communication systems and the hardware architecture based
on that model. This section will provide a software overview
of the Serial Test Language (STL).

Design Goals
To set the stage for the software discussion, we’ll review the
guiding design objectives for the STC and STL.

The process of studying serial bit streams, developing the
generic model, and implementing our serial test architecture
originally grew out of a desire to ease the test programming
problems presented by serial-oriented DUTs. This led to our
first design goal: to shorten the test development time by a
factor of ten for DUTs with serial interfaces. As described
earlier, existing test systems use a single parallel sequencer
for controlling several serial bit streams. The resulting pro-
grams become very cumbersome and complex to create and
maintain.

To address this problem, the STC uses a multiple-processor
architecture to subdivide the overall programming task. With
STL, we did not hide the hardware architecture from the
programmer. Rather, we designed the STC user interface
software to embody the generic serial protocol model. The
software allows the programmer to segment a serial bit
stream into logical pieces. Each logical piece can be pro-
grammed independently. This allows the programmer to
concentrate on specific functions without keeping track of
all the additional overhead found in the bit stream.

The hardware and software were designed concurrently.
Several hardware changes were made to allow the software
interface to better match the generic model. Many of these
changes were facilitated by use of the FPGAs since they
could be easily redesigned without a printed circuit board
revision.

The concurrent nature of our architecture not only greatly

eases the test programming burden, but also provides a clear

test throughput advantage for multichannel DUTs. All chan-
nels of the DUT can be tested simultaneously, dramatically
reducing the test time, especially for long bit error rate

t This part of the design consisted mostly of discrete logic gates and flip-flops, so it was quite
similar in character to the RBP circuitware designs. Experience has shown that these types of
designs are more prone to design defects than higher-level, “cookbook” designs.

84 February 1995 Hewlett-Packard Journal

tests. We quantified this concurrent test strategy as our sec-
ond design goal: to improve test throughput for multichan-
nel DUTs by a factor of ten.tT We decided to address this
problem through a parallel test strategy. The sequencer was
carefully integrated into a complete ATE system which sup-
ports the use of many parallel sequencers. The software
challenge was to provide an easy-to-program system capable
of supporting many concurrently executing processors.

User Environment

Typical DUTs require system resources such as power sup-
plies, nonserial digital drivers and receivers, and other signal
sources and detectors to recreate the DUT’s normal operat-
ing environment. The platform providing these system re-
sources is the HP 3070 family of automatic test equipment.

The HP 3070 family supports both in-circuit and functional
styles of testing.t1T Both styles can be used together or sep-
arately on the HP 3070 system. The STC was designed pri-
marily for board-level functional testing, but can be used for
device-level functional test.

The software user interface of the HP 3070 supports the
entire process of creating a suite of tests for a DUT. The in-
circuit test development process involves describing the
components and connections to the system. Using this infor-
mation, the system generates the information required to
build a mechanical interface between the DUT and the sys-
tem. This information is also used to generate individual
tests for each component.

The functional test process is similar. Only the edge connec-
tor need be described instead of all the components. The
user then creates resource libraries describing the connection
of HP 3070 resources to the DUT edge connector. The sys-
tem uses the libraries and edge connector description to
generate the mechanical interface description.

The highest-level user interface on the HP 3070 system uses
the HP VUE environment running on the HP-UX* operating

system. Specific portions of the test hardware are controlled
by textual languages. These languages are similar in structure
and syntax conventions and were designed for the specific

purpose of testing DUTs. Overall test sequencing is controlled
through a textual interface running an interpretive editor for
the HP Board Test BASIC (BT-BASIC) programming language.

The standard digital sequencer is controlled by using the
Vector Control Language (VCL). This sequencer provides
parallel digital capability. The analog sources and detectors
and external instrumentation access are controlled using the
Analog Test Language (ATL). Both languages can be used
together to test a particular DUT. A graphical Motif/X11

t1 The choice of a factor of ten as a goal was somewhat arbitrary because the actual through-

put improvement depends on the number of DUT channels. An eight-channel DUT might be
tested only eight times faster, whereas a sixteen-channel DUT might be tested sixteen times
faster.

t11 In-circuit testing refers to methods for testing the various components of a DUT separately

while they are in place on the board. This form of testing is based on the assumption that
testing all components and connections between components ensures that the DUT as a
whole has been properly tested. This form of testing produces excellent fault diagnosis to
the failing component for repair. Functional testing refers to methods for testing a DUT by
emulating the system environment into which it will later be integrated. Many DUTs have an
edge connector interface, so this is also commonly called edge connector functional testing.

[Hewlett-Packard Company 1995

Board Test BASIC
(BT-BASIC)

Test Statement

Mixed Test

Serial Test
Language
(STL)

Vector Control
Language
(veL)

Analog Test

Language
(ATL)

Fig. 6. Structure of HP 3070 testing languages.

environment supports development of VCL and ATL tests.
Fig. 6 illustrates this software structure.

All textual sources are compiled before execution. The test is
then executed from the BT-BASIC environment by use of the
test statement. BT-BASIC is also used to control test resources
like power supplies, test system operator interfaces, test
results capture, and so on.

Serial Test Language Overview

STL was designed specifically for testing serial interfaces.
Typically, these interfaces require the following capabilities:
Simple, flexible input/output. All serial I/O can be segmented
into a collection of bits called frames. The size of the frame
varies depending on the application.

Frame and bit manipulation features including comparison,
modification, formatting, and concatenation.

Complex conditional constructs that execute in real time.
For many serial protocols, this means being able to perform
10 to 20 statements within 125 microseconds.

Support for conversion of frame data to and from numeric
data types. Many protocols require numeric processing of
signals or numeric control.

Support of multiple STCs running concurrently emulating a
single serial bit stream or multiple serial bit streams.
Triggering capabilities between concurrent processes

(i.e., serial test sequencers) and the existing HP 3070 digital
sequencer.

Run-time control of STC personality modules and
reconfigurable bit processors.

Extremely flexible setup of STC personality modules and
reconfigurable bit processors (RBPs). New RBP personalities
and personality modules have been designed after initial
product release. The user interface is designed to accept
these with minimum software rework and without disturbing
existing customer tests.

Easy programming of the clock signal sources on the STC.
These clock signal sources are used to simulate the bit and
framing clocks found on many serial interfaces.

Each serial test for a particular DUT is contained within one
source file. This source file controls all of the STCs required
for that test. The number of tests depends on the level of
diagnostics desired by the user. Generally, the user will write
multiple tests to exercise the DUT fully.

All major units of the serial source code are organized as
blocks. Each unit begins with a starting block statement and
is terminated with an ending block statement. This greatly

[J Hewlett-Packard Company 1995

serial;Countl,R1_frames

serial clock IOM_clock is 2048 events
events every 61.03515625n internal
connect clkl to "DCL”
connect clk2 to ”2048”
at event 0 set clkl to "1100”
at event 0 set clk2 to ”11110000”
end serial clock

stream IOM2_Master type "synchronous”
connect "tx_clock” to ”2048”
connect "tx_data” to "DD”
transmit length unknown
substream TX_All
filter "xdlc CRC-CCITT”
transmit bits all
end substream
end stream

stream IOM2_Slave type "synchronous”
connect "rx_clock” to "2048”
connect "rx_data” to "DD”
set "rx_clock edge” to "falling”
receive length unknown
substream RX_All
receive bits all
filter "xdlc CRC-CCITT”
end substream
end stream

process TX_All
loop
transmit "\n5555”
transmit "\haaaa”
end loop
end process

process RX_All;Countl,R1_frames
dim AAAAS[16]
loop
receive into AAAAS,"\hxxxx”
exit if AAAAS = "\hAAAA”
end loop
Count=0
loop
receive "\h5555”,"\hxxxx”
receive "\hAAAA” "\hxxxx”
Count = Count +1
exit if Count = Countl
end loop
R1_frames = Count
initiate trigger digital
end process

Fig. 7. An example of a Serial Test Language (STL) program.

simplifies parsing and dramatically improves error diagnostic
messages.

The overall structure for a serial test is illustrated in the
example shown in Fig. 7.

The serial statement, serial;Count1,R1_frames, is used to define
variables passed to or from the test execution environment
(BT-BASIC). This allows flexibility in changing test execution
parameters without needing to recompile. For instance, the
user can pass in the number of seconds a bit error rate
(BER) test is to be executed.

The optional serial clock block, serial clock IOM_clock ..., pro-
grams the STC clock sources to output specific clock signal
patterns. Each clock section controls the four synchronous
clock resources found on one STC. These clock generators
can be synchronized to an internal or an external clock
source. The clock signals can have variable lengths ranging
from 2 to 65535 pattern changes (called events). The large
number of events provides a very flexible format for defining

February 1995 Hewlett-Packard Journal 85

custom clock and frame sync signals. The width of each
event is defined in nanoseconds or microseconds.

The stream block, stream IOM2_Master type “synchronous”, is used to
define the physical characteristics of the serial bit stream and
protocol to the corresponding personality module. There are
three personality module types: TTL, ISDN SBUS, and ISDN
UBUS. The ISDN personality modules are used specifically
for connection to ISDN interfaces. The TTL personality mod-
ule is a flexible collection of programmable TTL-voltage
level drivers and receivers used to interface to generic TTL-
level serial bit streams. The stream type determines the per-
sonality module’s mode of operation. In the above com-
mand, the keyword “synchronous” programs the personality
module bit processor to expect an explicitly clocked bit
stream. This type of serial bit stream requires a TTL person-
ality module. An error would be signaled if this keyword
were used and a TTL personality module didn’t exist. The
electrical levels of the personality modules are fixed, but the
stream protocols are programmable. The example in Fig. 7 is
an explicitly clocked and implicitly framed bit stream. There-
fore, the TTL personality module uses two signal lines to
receive data: rx_data and rx_clock. The explicit framing signal
line, rx_frame_sync, isn’t required by the bit processor because
the HDLC format has the framing information embedded in
the actual data transmitted. Different TTL modes are used to
reprogram the bit processor to emulate a variety of serial
protocols ranging from synchronous TDM interfaces to
asynchronous interfaces like RS-232.

The mode of the ISDN personality modules can be changed
as well. For example, the ISDN S-bus module can simulate
terminal equipment or a network terminator. The automatic
ISDN synchronization sequences are different depending on
the ISDN mode selected. The mode type reprograms the
personality module’s circuitware to conform to different
stream requirements.

The programmer connects the personality module to the
DUT by using the connect statement, connect “tx_data” to “DD".
This statement physically closes the correct STC relays to
connect a personality module’s resources to the DUT. The
personality module’s resources are multiplexed. During the
test generation process, the system software will automati-
cally determine the optimal connection method to the DUT.
This connection method is then used to build the correct
fixture interface to the DUT.

Each personality module mode has a set of programmable
features. These are controlled by use of set statements: set
“rx_clock edge” to “falling”. The set statement is quite generic:

set “mode description” to <value>

The <value> parameter can be a numeric or string identifier
like “enabled”. Each mode has a specific set of features. If a
feature is not explicitly set, then a default value is used.

By definition from our generic serial protocol model, each
stream will have a structure of bits called a frame. A frame of
bits is continuously (or on demand) transmitted or received.
Depending on the protocol, we may or may not know the
frame length. Certain serial protocols have the frame length
embedded in the actual stream of logical bits; HDLC is an
excellent example.

86 February 1995 Hewlett-Packard Journal

The transmit frame length and receive frame length statements are used
to capture this information. This may be unknown (which is
allowed as a keyword) or a number between 2 and 4096.
This information is used by the channel splitter circuitware
as it inserts or extracts bits from the stream.

This leads us to the next block structure, the substream.
Each stream can have between one and four substreams.
The substreams are defined as a block structure within each
stream block. The substream programs the channel splitter to
target specific bits within the frame. Each substream can
receive and transmit bits from within each stream frame. The
bits targeted by the channel splitter are therefore either ex-
tracted or inserted into the stream frame. Each substream has
an associated serial test sequencer called a process. Associ-
ated substreams and processes have the same name. The
substream defines which bits of the frame are passed to or
received from the process. The process contains the actual
program used to control the bit values.

If the stream frame length is known, then each substream is
defined as a portion or all of the stream frame. Particular bits
in the stream frame are enumerated from 1 to the frame
length. The user tags certain stream bits for the substream to
transmit or receive by use of the transmit or receive bits
statements: transmit bits all, transmit bits 1 to 8, receive bits all. Multiple
transmit or receive bits statements accumulate tagged bits.
All these bits are concatenated (by the STC hardware) in
order (bit 1 to bit n) and treated as a frame by the process
associated with that substream.

If the stream frame length is unknown because it must be
recovered from the bit stream, as is the case shown in Fig. 7,
then the programmer must define a reconfigurable bit pro-
cessor to transform the bit stream. This is identified in the
substream block as a filter statement or block, filter “xdlc CRC-
CCITT". Set statements can be used to control the filter in
much the same way as set statements are used to control the
personality module in the stream block.

Our generic model allows infinite levels of bit stream hierar-
chy. The STC hardware supports two levels (stream and a
single layer of substreams). Additional levels can be emulated
in the serial language. This has not proved too restrictive
since most protocols require no more than two levels. Refer
to Fig. 2 for an example of how this works.

Multiple substreams can receive the same bits, but only one
substream can transmit a particular bit. A substream may

have no bits being transmitted or received. This capability is
used to create a process that simply controls other processes.

As stated previously, each substream has an associated pro-
cess, process RX_All;Countl,R1_frames. Each process represents an
independent program that is executed concurrently with all
other processes defined in a particular serial source program.
Variables passed into the serial test are subsequently passed
to individual processes. The STL process statements were
modeled after BT-BASIC. Therefore, the statements and
structures allowed in STL processes include:

e If-then conditionals
* Logical operators
* Assignment

Loop/exit if/end loop construct

[Hewlett-Packard Company 1995

Subroutines (with data scoping control)

Bit error rate test functions

Numeric functions

Access to stream and filter features through control and
status functions.

Bits to be transmitted or received are formatted as a data
type called a frame. Frame data can be stored in a variable,
A$, or as a constant, such as 10001. Each frame variable is
simply a linear array of packed bits. From a programming
perspective, the frame variable is treated like a string data
type. Each frame variable has a maximum length declared by
the dim statement. The default length is 16 bits.

Data is transmitted by the transmit statement, transmit \h5555", A$,
or received into the process by the receive statement, receive
“\h5555", into AS.

All process frames are buffered internally within the serial
test sequencer. These buffers allow the serial test sequencer
to continue to execute the program and not be tied directly
to the DUT transmit or receive rate.

All string operations like substring, concatenation, equality,
insertion, and deletion are supported with the frame data
type. Each bit of a frame works just like a character in a
string. The user can use various notations (binary, octal, hex-
adecimal, decimal, or ASCII) to assign a value to a frame
variable. Since string operations were modeled after those in
BT-BASIC, programmers familiar with BASIC languages can
quickly learn STL frame operations.

An STL process also supports integer, real, integer array and
real array data types. Conversion between integers and
frame data types is supported. These data types are used to
support complex control algorithms and digital signal pro-
cessing of data. One application requiring this capability is
testing analog line cards. Line cards interface subscriber
equipment, such as a phone, to the public data network.
Typical tests require a significant amount of digital signal
processing for testing analog-to-digital transmission transfer
functions.

Time-order sequence control between processes and the
digital sequencer is handled by use of level-sensitive, named
triggers. The triggering mechanism has been implemented
using a simple mailbox approach. The process sending a
trigger places the appropriate trigger number in its assigned
mailbox. Processes receiving triggers are told in which mail-
box and for which number to look. This implementation
allows any process to send or receive a trigger to or from
any other process. It also allows multiple processes to re-
ceive the same trigger. Ten different triggers can be sent to
any other process defined in the serial source. In addition to
interprocess triggering, the system supports triggering to and
from the parallel digital sequencer. For example, Fig. 8 shows
two processes, A and B, sending and receiving triggers.

This simple trigger scheme allows a wide variety of sequence
control among concurrently executing processes and the HP
3070 digital sequencer.

All statements in the process section are optimized for speed.
Testing and use have shown that STL can perform a fairly
complex set of operations in 125 pst to a few milliseconds.

[J Hewlett-Packard Company 1995

Process A Process B
Trigger from B.5 / Initiate Trigger 5
Wait for Trigger

Trigger from A.4

Initiate Trigger 4 Loop
\ Receive A$

Exit if Triggered
Trigger from Digital.2

End Loop
End Process [End Process

HP 3070 Digital
Sequencer

Fig. 8. Triggering in STL.

Debugging Serial Tests

The HP 3070 test debugging environment consists of a
Motif/X11 interface that communicates with the HP 3070
system hardware through the BT-BASIC interactive editor.

The original debugging environment supports both the digi-
tal sequencer and the analog measurement subsystem. It
provides an easy-to-use pull-down menu structure to control
the analog and digital test functions, view digital test vectors
graphically within a logic analyzer display, create measure-
ment histograms, and so on. A serial mode was added to
allow the user to view the status of variables, processes,
connections, and so on. All modes support viewing of the
textual source code and commands to execute the source
program and view the data. If necessary, the source program
can be modified, recompiled, and executed from the debug
environment.

Fig. 9 shows the serial debug environment. The largest box
contains the serial source program. It can be modified by the
user in this pane. The compile-and-go button allows the user
to quicklyft recompile just the serial source code and exe-
cute the test. The pane on the left side contains a list of STL
processes. Clicking on one of these places the source pro-
gram at the first line of that process.

The command pull-down shows the list of debugging com-
mands available, such as viewing the current contents of
variables, trigger log, current process status and line number,
and status and contents of the transmit and receive buffers.

By various pull-down menu selections, specific variables or
groups of variables of a particular type can be displayed.
Frame variables can also be displayed in a variety of formats
(binary, octal, hexadecimal, decimal).

The trigger log on each processor captures the last 20 trigger
events. The events are displayed in chronological order. This
helps resolve difficulties when triggering between processes
or the digital sequencer. Each trigger event is displayed in
the same syntax as the trigger statements in STL.

Each process keeps track of its own status and line number.
The status debug command displays the current status and

t 125 us is an important number in telecommunications applications because it corresponds to
the basic 8-kHz frame rate used throughout the network.

11 Usually in under 15 seconds. The largest serial test to date takes 44 seconds to compile.

February 1995 Hewlett-Packard Journal 87

HP Pushbutton Debug

File Debug Edit Hacraos Hode Execute

riggers

substream XMIT {Connections
ransmitc bi v
end substream
Array Variables
substream RCY [
receive bi
end substream {Real Variables
nd stream

Integer Variables

Frame Variables
nst Patternl$:

nst Pattern2$:
nst Patternds=|Transmit Buffer

Receive Buffer

rocess XHIT
transmit Patternl$
transmit PatternZ$

trigger from RCV,1

loop
transmit Pattern2$
transmit Pattern3$
exit if triggered

end loop

n iate trigger digital

Console | | Boardl rH

[3o, =

==—--a———— &

places the source pane at the line number the process was
last executing.

Special commands are available to display the contents of
the transmit and receive buffers. This allows the user to see
what has been recently transmitted (in the transmit buffer),
what was about to be received in STL, and what has been
received by the STC hardware.

Breakpoints can be set by the user by means of the halt serial
failing statement. Single-step execution is not possible be-
cause of the real-time nature of the STC. The serial test must
execute until either the test ends normally or an exception
occurs. If any exception occurs, all serial processes are im-
mediately halted (this is implemented by a hardware signal)
and the current status of all serial processes is available.

It is possible to switch to the digital (VCL) or analog (ATL)
test modes by the mode pull-down menu. The interface for
these modes is very similar to the STL interface.

Implementation

The STL compiler was written using C++ and object-oriented
programming techniques. In an attempt to improve our soft-
ware development process, the STC/STL group set several
goals:

Learn and use object-oriented programming development
techniques (using C++ as a development language).
Leverage libraries and tools as much as possible.
Dramatically improve the quality of our products.

Object-Oriented Programming. When we started, object-
oriented programming was a new technique in the realm of
software development. After investigation and some training,
we knew this technique was not going to be easy or im-
mediately rewarding. In retrospect, the definition of classes
is a time-consuming task, but is critical to the success of a
project.

88 February 1995 Hewlett-Packard Journal

HP Pushbutton Debug

Process Hame:

Variable Types:

> Integer > Integer Array
- Real Real Arvay

* Frame 4 ALl

Variables:

51
52
5

veak Command

B

Fig. 9. Serial debug environment.

Use of an object-oriented design provides two primary ad-
vantages: better hardware abstraction and extensibility. An
object-oriented abstraction models a given hardware con-
struct like the STC quite naturally. Object-oriented program-
ming allows a hierarchy of classes defining the various
hardware levels to be created easily.

The abstraction of object-oriented programming made the
STL compiler design much easier and more readable. Both
the language constructs and the STC hardware are encapsu-
lated in a hierarchy of classes. They meet at the code-
generation phase of the compile, where language constructs
(which are simply an instance of the statement class) invoke
a message to the hardware code-generation classes.

An enhancement to the original software was the support of
real and array data types. Typically, the addition of these
data types would have taken approximately one engineering
year. Because of the object-oriented programming benefits,
the addition took only three engineering months.

Leverage. Leverage of existing tools and libraries saved a
great amount of time and effort. We leveraged many areas of
the STL/STC software development. We used the Codelibs
library of C and C++ classes for data abstractions and algo-
rithms. We used a third-party assembler for the STS se-
quencer programming. Debugging assembly code during
development of the STL compiler was far easier than editing
binary downloads. We eventually replaced the assembler
with a direct binary output to speed up the compiler, but we
left the assembly output mode as a debugging tool. We used
wacco, a top-down recursive descent parsing tool, to simplify
the parser and improve error handling, and we used and
improved internal C++ classes for error reporting and file 1/O.

The quality of the existing tools or libraries should be inves-
tigated carefully before leveraging them into the product. We

O Hewlett-Packard Company 1995

did not suffer any problems, but we were careful with our
dependency on leveraged code.

Software Quality Assurance. There is no shortcut to quality.
30% of the product development time was spent in quality
assurance.

There is no doubt that defects are far more easily fixed in
earlier phases of software development, but a high-quality
product is not ensured until the boundary conditions have
been tested. The object-oriented programming design pro-
cess and leverage of high-quality software components con-
tributed greatly, but we also spent a great deal of effort in
testing our software.

Our testing effort focused on two areas: early users (alpha
sites) and automated regression testing. We developed tests
on several customer DUTs and used two alpha sites to build
our confidence in the ability of the STC to test serial DUTs
and meet our project goals. We also created a set of tools
that allowed our group to develop over 900 automatic re-
gression tests. We used branch flow analysist to refine these
tests to get to 92% coverage within the STL compiler. The
regression test suite is also used to verify that a particular
change or defect fix has not introduced any other defects.

STL Summary

The key STL objectives were to shorten test development
time and to increase test throughput for DUTSs using serial
devices. The ability to divide and conquer the serial bit
stream using multiple processors has proved very successful
in reducing the time to implement tests. In some cases, test
development has been reduced from 4 to 6 months to 1 to 2
weeks. The ability to easily test multiple bit streams concur-
rently increases test throughput dramatically, especially in
BER tests.

Customer Application Case Studies

The sequencer architecture we have described in this paper
was derived from studies of our generic model of serial
communication systems, which was itself developed from
the study of a wide variety of serial protocols and DUTs. To
test the effectiveness of the new architecture, we wrote func-
tional tests for many serial protocols and customer boards.
Two customer boards used in these case studies are
described in more detail below.

Case Study I

The first customer board was a telecomm multiplexer. The
board is used to multiplex and demultiplex four 2.048-Mbit/s
bit streams to and from a single 8.448-Mbit/s bit stream. Con-
verters in the fixture were used to translate the HDB3 signals
in these streams to TTL-compatible levels. An additional se-
rial bit stream is used to send and receive control informa-
tion to and from the board. Each of the six serial bit streams
was attached to an STC processing channel.

The customer had been manufacturing this particular board
for five years, and had brought up their suite of functional

t This tool inserts probes into the source code that allow reporting of coverage of particular
execution paths within a program.

[J Hewlett-Packard Company 1995

tests for the board on two previous testers, both of which
used a traditional pattern sequencer. Their test suite con-
sisted of 15 functional tests, and they reported test develop-
ment times of nine months and five months using the two
previous board testers. Using the STC, they implemented
their 15-test suite and 16 additional tests in four days—a
25-fold decrease from their best previous test development
time. The tests implemented included a BER test on all four
channels simultaneously and other tests they simply could
not perform with the sequencer architecture available on the
other testers.

Case Study II

The second customer board was an ISDN U-interface central
office line card. This board has an ISDN U-interface for each
of four subscribers and a serial backplane interface. Each of
the five bit streams was attached to an STC processing chan-
nel. At the time this test was developed, we had not yet in-
troduced our U-interface personality module, so commercial
network terminators were used to translate the subscriber
channels to ISDN S-interface format. The backplane of this
board is a 2.048-Mbit/s serial bit stream conforming to the
IOM-2 protocol.

Each subscriber port was split by the STC processing chain
into two substreams, one to handle data transfer and the
other to handle activation control of the ISDN interface. The
backplane bit stream was also split into substreams, but in
this case we chose to use a single process to handle all four
control channels. This reduced the total number of STC
channels that would otherwise have been required and did
not overly complicate the test program. We also handled the
four data channels with a single process, using a special,
optimized BER function built into STL. This function can
receive up to 32 independent BER data streams simulta-
neously with no intervention or special programming
required of the test engineer.

Other Applications

During product development, we tested the architecture
against many other serial protocols and formats, including
ISDN S- and U-interfaces, RS-232-style asynchronous proto-
cols, CEPT-30, T1, automotive serial interfaces, I2C, HDLC
control channels, generic 64-kbit/s bit streams, IOM-2, ST-Bus,
and various TDM backplanes. In each case we were able to
communicate with the bit stream with a minimum of pro-
gramming time and effort.

Summary and Conclusions

Based on the case studies and other applications described
above, we have found that when testing serial-oriented
DUTs, the new architecture offers the following advantages
over traditional sequencers:

* Much faster test development
* Much better test coverage (more functionality of the DUT

can be tested more easily)

Much better throughput (because of the ability to test
multiple channels of a DUT simultaneously)

A reduction in fixture electronics.

February 1995 Hewlett-Packard Journal 89

The only potential disadvantage of the architecture is a slight
increase in the capital cost of the test system. The relative
weight of the advantages and disadvantages is determined
by the type of DUT being tested and the type of test being
run on that DUT. When testing boards with multiple identi-
cal channels, especially when the board tests include long
conformance tests like BER, the n:1 increase in throughput
one can achieve using n STC channels easily offsets the
slight price premium of the hardware. Board tests that do
not include long conformance tests and that involve signifi-
cant overhead because of handling or heavy in-circuit testing
will not see such a clear cost advantage, but even then the
significant reduction in test development time may offset the
cost of the hardware.

Acknowledgments

We would like to thank the following people for their work
on the STC/STL project: John Siefers for the design and de-
velopment of the STC main board and personality modules,
John Algiere for his system design work, Greg Stander and
Bud Cribar for the design and implementation of the serial
test compiler, Eric Waldheim for the design and implementa-
tion of the DSP56001 assembler routines, Sunit Bhalla for
writing the hardware confirmation and diagnostics test rou-
tines, Wilson Spence for his always enthusiastic suggestions
and feedback, and Cullen Darnell and Lynn Schmidt for their
management leadership.

920 February 1995 Hewlett-Packard Journal

References

1. R.E. McAuliffe, “Practical Production Testing of ISDN Circuit
Boards,” Proceedings of the IEEE International Test Conference,
1988, pp. 39-46.

2. J.T. Healy, Automatic Testing and Evaluation of Digital Integrated
Circuits, Reston Publishing Company Inc., 1981.

3. CCITT, “Integrated Services Digital Network (ISDN), Overall
Network Aspects and Functions, ISDN User-Network Interfaces,”
CCITT Blue Book, Recommendations 1.310-1.470, Volume III,
Fascicle II1.8, 1988.

4. W. Stallings, ISDN and Broadband ISDN, Second Edition,
Macmillan Publishing Company, 1992.

5. H.S. Stone, Microcomputer Interfacing, Addison-Wesley Publishing
Company, Inc., 1982.

6. D.N. Chorafas, The Handbook of Data Communication and
Computer Networks, Petrocelli Books, Inc., 1985.

7. R.E. McAuliffe, “Board Testing Modern DUTs: Solving the ISDN
Test Challenge,” Hewlett-Packard internal communication, 1988.

HP-UX is based on and is compatible with Novell's UNIX" operating system. It also complies
with X/Open's* XPG4, POSIX 1003.1, 1003.2, FIPS 151-1, and SVID2 interface specifications.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

XIOpen is a trademark of X/Open Company Limited in the UK and other countries.
Motif is a trademark of the Open Software Foundation in the U.S.A. and other countries.

[Hewlett-Packard Company 1995

