Shortening the Time to Volume
Production of High-Performance

Standard Cell ASICs

Coding guidelines for behavioral modeling and a process for generating
wire load models that satisfy most timing constraints early in the design
cycle are some of the techniques used in the design process for standard

cell ASICs.

by Jay D. McDougal and William E. Young

As time-to-market pressures continue to increase, the need
for shorter design cycle times is more urgent than ever. At the
same time, the demand for high performance in standard cell
ASICs is also increasing. These trends are expected to con-
tinue as customers look to get the most return on investment
from the latest IC process technologies. Many of the design
considerations needed to achieve these high-performance
goals compete directly against achieving quick time to
market.

A typical standard cell design process includes several itera-
tions in which individual steps must be repeated to adjust
for data determined at later steps. A common example of
this is the need to redesign portions of the circuit when
physical results such as extracted parasitics are fed back into
a simulator and performance goals have not been met.

This paper presents methods that help reduce or even elimi-
nate the need for design iterations by increasing the chance
of “first time perfect” at each design step. First, we discuss
the methods developed for each of the steps in our ASIC
design process (see Fig. 1) to get shortened throughput
time and reduced design iterations while still producing
high-performance components. Next, we present the results
of applying these methods to the design of a CMOS ASIC
that is used in HP’s X-terminal products.

Behavioral Modeling

Since high-level behavioral modeling is done very early in
the design flow, the way in which the code is written can
have a dramatic effect on the downstream processes. We
have developed a set of hardware description language
(HDL) guidelines that, if followed, will reduce throughput
time for the entire design flow. These guidelines were col-
lected from several designers within HP and have been up-
dated and modified as areas for improvement have been
identified in each of the downstream processes.

The HDL coding guidelines include sections on clocking
strategies, block hierarchy and structure, flip-flops and
latches, state machines, design for test, techniques for en-
suring consistent behavioral and structural simulation, and
Synopsys-specific issues (Synopsys is an automatic design
synthesis tool from Synopsys, Inc.).

[J Hewlett-Packard Company 1995

Following these guidelines allows us to avoid many time-
intensive steps later in the design process such as name
remapping, race analysis, and iterative structural and
behavioral simulation.

Synthesis

Our goal during synthesis is to be able to produce a design
that, when routed, will meet performance goals with the
smallest possible area. We also want to do this with as few
iterations in the behavioral model and the synthesis scripts
as possible.

Behavioral
Model (HDL)

Custom Wire
Models

Logic
Synthesis
(Synopsys)

Netlist and Timing
Constraints

Placement and

Routing
(Cell3)

Capacitance

Static Timing
Verification
(Synopsys)

Artwork
Verification
and Output

Fig. 1. Basic ASIC design flow.

February 1995 Hewlett-Packard Journal 91

Coding Guidelines. The HDL coding guidelines mentioned
above enable the creation of behavioral models that syn-
thesize predictably in a shorter amount of time with better
performance than those created without guidelines.

Generic Synthesis Script. To streamline synthesis we create
generic synthesis scripts for our design that contain all of the
design-specific constraints such as flip-flop types, clock
speed, behavioral model locations, and so on. These scripts
also include input and output timing constraints, external
loading, and drive capability. The scripts are used to synthe-
size all submodules in the design from the bottom up. Only
those modules that do not meet timing requirements when
incorporated into their parent module are resynthesized with
scripts written specifically for them. This allows the majority
of the blocks to be synthesized very quickly. Fig. 2 shows a
portion of a generic synthesis script.

Custom Wire Load Models. One of our primary goals is to per-
form a single route without any iteration. To accomplish this,
the wire loading (capacitance on the line) estimates that are
used during synthesis have to be conservative. However, if
they are too conservative then it is not possible to meet per-
formance goals. To determine a wire loading model with the
appropriate amount of conservative estimation for our library
and tool methodology, we performed several wire loading
experiments. These experiments consisted of synthesizing
modules of various sizes and design types, routing them,
and then verifying that their performance with actual wire
loads satisfies the timing constraints defined for the module.
Several passes were done for each module using a wire load
model with varying levels of conservatism. Fig. 3 summarizes
the process we used to generate the wire

[* These are fragments from the generic Synopsys dc_script */
[*the full script can be easily modified for a given model */
/*

[* Read in Verilog HDL: *

I *
read -f verilog mymodule.v

check_design

* *
[+ Set the wire load model: *
* ¥
set_wire_load block library wire_loads

* ¥

* Define the clocks: ¥

I *

create_clock CLK —period 20 —~waveform {0 10}

set_clock_skew —plus_uncertainty 0.5 -minus_uncertainty 0.5 —propagated CLK

I *
I+ Set block operating environment: *
I *

loader_pin = hp_cmos26g_table_slow/INVFF/A
driver_pin = hp_cmos26g_table_slow/NINVFF/Q
set_load 3 * load_of(loader_pin) all_outputs()
set_load load_of(loader_pin) all_inputs()

set_drive drive_of(loader_pin) all_inputs()
set_input_delay 10 —clock CLK all_inputs()
set_output_delay 10 —clock CLK all_outputs() -max

I *
[+ Compile the design
/*

compile

* *
[*Write out results *

* *
write —hierarchy —f verilog —output mymodule.vopt

write_constraints —format sdf —output mymodle. sdf -max_paths 1000
report_design >> mymodule.sn_rpt

report_hierarchy —full >> mymodule.sn_rpt

report_timing >> mymodule.sn_rpt

Fig. 2. A portion of a generic synthesis script.

92 February 1995 Hewlett-Packard Journal

Original Wire
Load Models

Capacitance*

Logic
BUGESS

Place and
Route

Actual
Capacitance

Check
Timing

Timing
Constraints
Met?

Create more pessimistic
capacitance models based
on data from route.

Wire Load Model
Is Sufficiently
Pessimistic

*Estimated Capacitance Based on Fanout

Fig. 3. The process for generating wire load models.

load model. This process was necessary because initial wire
load estimates might be too optimistic. For example, the
initial capacitance estimate for one connection between two
inverters might be 0.04 pF, but after placement and routing
the actual capacitance could be 0.1 pF, which might cause
the chip’s timing constraints not to be met.

During these experiments, each module was first synthesized
using average wire load estimates. After routing, if the mod-
ules failed timing, additional experiments were performed
using a progressively more pessimistic wire load model. The
wire load model that was used was generated by selecting a
point in the distribution of actual capacitances for each fan-
out that is greater than a given percentage of nets. Fig. 4
shows a sample distribution of interconnect capacitance for
nets with a fanout of two in a typical module. In this exam-
ple, we wanted to use a model that would predict a capaci-
tance such that 90% of the wires would typically have actual
capacitance less than the predicted value. To do this we sim-
ply used the capacitance value from the distribution that was
greater than 90% of the other wire capacitances. This was
done for each fanout to create a synthesis wire load model
called a “90% model.”

We used this method to test models that fell within the
50-to-95-percent range. We found that unless we used at
least a 90% wire loading model we had some timing viola-
tions after back-annotation* that were not present during
synthesis with estimated loads.

We also discovered that the magnitude and distribution of
the routed capacitance were fairly consistent across a wide

* Back-annotation in this context refers to the process of taking the actual capacitance values
extracted from routing and using them during static timing analysis.

O Hewlett-Packard Company 1995

Library Default
(Average)

~— 90% Point (90% of Nets Are below this Value)

Number of Nets

150 200 250 300 350 400 450 500
Interconnect Capacitance (fF)

0 50 100

Fig. 4. A sample distribution of interconnect capacitance for a
fanout of two in a typical module.

range of module sizes and design types. This was a surprise
and it allows us to use the same wire load models for all
designs done in the same library without having to repeat
the experiment for each design.

We use the 90% wire load model derived from the above
process to help guarantee single-pass routing for all modules
using our library. In addition, we create another model for
wires that are used for global* module interconnect. This is
done using the same method described above except that
the wires used to create the capacitance distributions are
limited to global wires. This model more accurately predicts
the higher capacitance associated with top-level intercon-
nect. Synopsys, our logic synthesis tool, can automatically
select the appropriate wire load model to use for each global
wire.

Table-Driven Models. Another factor in our ability to achieve
high performance and minimize cycle time is the accuracy of
the Synopsys library timing models.

The biggest problem created by inaccurate synthesis timing
models is the requirement for numerous iterations between
synthesis and timing verification to fix timing violations.
These iterations involve changing synthesis constraints, over-
constraining, and replacing cells by hand in some cases.
Timing inaccuracy also leads to poor optimization decisions,
resulting in nonoptimal circuits in terms of performance and
area.

These and other problems are essentially removed by the
new nonlinear table-driven timing models in Synopsys. With
these models, timing can be made to match the Spice char-
acterization tables for each cell in the library. The transition
time definition can also be made to match exactly so that it
can be constrained properly.

The HP C26102SH library supports this new model and

allows us to get accurate timing from our synthesis package
so that there are no timing or operating condition violations
in the timing verification step. Besides the obvious benefit of
reducing iterations, this new library and timing model gives

* Global wires are the interconnecting wires between submodules on a chip.

[J Hewlett-Packard Company 1995

us performance and density improvements. The performance
is improved because the synthesis tool is now working on the
correct paths and is able to generate faster circuits. Density
is also improved for the same reason. Since incorrect paths
are no longer being optimized incorrectly and overconstrain-
ing is not necessary, the overall design size is smaller. In
addition, the improvement in transition-time modeling and
constraints avoids the need to apply a global transition-time
constraint to the design which can lead to oversizing many
cells.

Timing Constraints

As an additional method of ensuring that our performance
goals are met without having to do multiple routing passes,
we have added the process of driving the placement with
constraints derived from synthesis.

Because Synopsys timing is very accurate with table-driven
models, it can be used directly to create timing constraints
imposed on the router. This is done using the Standard Delay
Format timing output in Synopsys. Critical path timing is writ-
ten in Standard Delay Format which can then be converted
to Design Exchange Format and input to Cell3** with the
netlist. These timing constraints become part of the overall
constraint equation for the placer.

Several thousand constraints can be quickly and easily gen-
erated using this method. However, only those paths that are
within a few percent of failing with estimated loads should
be constrained. If an appropriate wire load model is used,
the rest of the paths should meet their timing without being
constrained. Having too many paths constrained will slow the
placement process and may produce inferior results. How-
ever, we have successfully constrained up to a thousand
paths.

Place and Route

Our goals during placement and routing are to implement
the design in the smallest possible area, meet all specified
performance goals, and minimize the number of iterations
through the process.

Timing-Driven Placement. Timing-driven placement is the pro-
cess of driving the placer with the timing constraints output
from a timing analyzer (Synopsys, in this case). The following
factors are important in successfully using this technique.

* Accurate timing models used for static timing analysis. As

mentioned above, accurate timing models are critical to en-
sure that the synthesis program works on the right paths
and that the timing constraints are accurate.

Accurate cell delay information fed to the placer. Our place-
ment program, Cell3, uses a two- or three-parameter delay
equation. The two-parameter equation calculates delay with
an intrinsic component and a load dependent component.
The three-parameter equation modifies the intrinsic delay to
reflect its dependency on the input slope. To drive the placer
with accurate data, it is important that Cell3’s delay calcula-
tion match that used by the timing analyzer as closely as
possible. Table I shows the correlation obtained from each
of these models compared to the data used by the timing
analyzer. The data in the table is for 100 representative
paths, varying in length from 4 to 71 cells.

** Cell3 is the placement and routing program we use, which comes from Cadence Design

Systems.

February 1995 Hewlett-Packard Journal 93

Table |
Cell3 to Synopsys Correlation
Timing Cell3 (two- Cell3 (three-

Analyzer Data parameter) parameter)
Minimum 3.47 ns 3.56 ns 3.43 ns
Path
Maximum 15.54 ns 18.51 ns 14.55 ns
Path
Least Error +1.4% 0.0%
versus Synopsys
Greatest Error +26.2% +7.4%
versus Synopsys
Error Range 1.4% to =7.3% to
versus Synopsys 26.2% 7.4%

As shown in Table I, Cell3’s three-parameter model pro-
vides greatly improved delay modeling compared to the
two-parameter model. Because of its improved accuracy, the
three-parameter model is now used as the standard during
timing-driven placement.

Accurate estimates of interconnect. For synthesis, intercon-
nect delay is specified by the 90% wire load models. For
placement, it is important that the placer has a good idea of
what it can expect in terms of average per-layer wiring ca-
pacitance for each signal. These numbers are determined by
analyzing wiring distributions on previously routed chips.

Clock Tree Synthesis and Verification. Typical ASICS are driven
by single or multiple high-speed clocks. These clocks drive
thousands of flip-flops and must have low insertion delay
and skew to meet performance requirements. To implement
these balanced clocks, special placement and routing fea-
tures must be used. Cell3’s clock tree synthesis tools are
used to insert a buffer tree for each clock (see Fig. 5). The
clocks are then prerouted using various forms of Cell3’s bal-
anced routing techniques. This method has met with mixed
success. Excellent results can be obtained by using

the detailed balanced router, which is included as part of
Cell3’s clock tree synthesis option. However, since this tool

To Flip-Flops

£

Clock Input —»@ °

=

(
AR}
C
)
o0

v

Fig. 5. A typical clock buffer tree. Insertion delay for this configura-
tion is the average delay from the clock input to the flip-flops. Skew
is the difference between the shortest and longest delays.

94 February 1995 Hewlett-Packard Journal

has proven not to be as robust as we would like, we have
found that an easier and much more robust method is to use
Cell3’s balanced global routing, which meets the needs of
most high-performance standard cell ASICs.

Actual clock delay and skew are verified using the RC ex-
traction capability provided in CheckMate.* The general
steps involved in using this approach include:

Complete the physical implementation of the clocks.
Extract (via CheckMate) RC information for all nets in the
design.

Create a Spice netlist containing only the cells and nets in
the clock trees. (The desired nets and cells are specified to
CheckMate’s Spice writer.)

Add custom circuit conditions (external loads, etc.).

Run the Spice job.

Cell3 can also provide clock and skew information, but the
steps listed allow us to obtain more accuracy and to build
confidence in the Cell3 numbers.

Automatic Scan Insertion. Automatic scan insertion is done
during the routing process. This makes it possible to include
scan logic without having to design it in during behavioral
coding. However, there are rules in the HDL coding guide-
lines that must be followed to make automatic insertion pos-
sible. Using automatic insertion reduces the complexity of
the behavioral design and eliminates iteration because of
scan clock skew, scan chain ordering, and timing perfor-
mance issues. The use of automatic scan insertion is made
possible by the use of an internal tool that performs insertion
and optimization.!

Results

A chip in which the processes described above have been
applied is a CMOS ASIC that is used in HP’s X-terminals. Its
main functions are memory and data path control. The chip
contains 270,000 transistors and runs at multiple clock
frequencies of 50, 100, and 33 MHz.

For this chip, the 1000 timing paths with the smallest timing
margin were input as constraints fed to the Cell3 placer.
Cell3 met all of the constraints on the first pass and subse-
quent timing analysis verified that all the paths were satisfied.
More important, no other timing violations were created
because of the constraints on the tightest paths. If that had
occurred, we were prepared to exercise the Synopsys in-
place optimization flow. This flow does in-place up and down
sizing of cell drives as necessary to meet timing constraints.
This step proved to be unnecessary for our X-terminal ASIC.
The 90% wire load models were adequate.

The multiple clock domains on the ASIC are all derived from
a 100-MHz input clock. The chip has three domains and
each contains approximately 600 flip-flops. To meet perfor-
mance goals, the skew across all of these domains had to be
less than 0.5 ns and the insertion delays had to be matched
within 1 ns. After placement and routing, clock delay and
skew verification was done using the CheckMate RC extrac-
tion tool. Fig. 6 shows the Spice results obtained on one
representative clock tree. All clock trees were found to have
acceptable skew. This tight clock skew was a key factor in
achieving the ASIC’s aggressive performance goals.

* CheckMate is an artwork verification and parasitic extraction tool from Mentor Graphics Corp.

[Hewlett-Packard Company 1995

100 +

Number of Flip-Flops

Delay (ns)

Fig. 6. Spice clock delay and skew results.

It is our goal to characterize Cell3’s delay calculation to the
point at which we can use its delay numbers for clock skew
verification without the additional complexity of using Spice.
Table II shows the correlation obtained between Cell3 and
Spice for the clocks on the X-terminal ASIC.

Table Il
Cell3 to Spice Correlation
Cell3 Spice Delta
Best Case 2.84 ns 2.56 ns -9.9%
Worst Case 2.96 ns 2.57 ns -13.2%

The results of this correlation are very encouraging. The offset
is relatively constant, and the Cell3 numbers are always
more conservative than the Spice numbers. This is because
Cell3’s per-layer capacitance constants are intentionally
skewed toward the conservative end of the range.

Contributing Factors

The following factors played a part in producing the
results mentioned above and providing a chip that met the
specifications.

Library Design. One of the major contributing factors for
meeting our density and performance goals is the use of
high-quality libraries such as the new HP C26102SH (0.8 wm)
standard cell library. This library is a scaled-up version of the
HP C14104SH library developed for our CMOS14 (0.5 um)
process.2

One major improvement introduced with the HP C26102SH
library is that it is tuned for Cell3 while maintaining com-
patibility with other routers. For a roughly square core, the
library allows a very even distribution of horizontal and ver-
tical routing resources. This gives the placer more freedom
to find an optimal solution. The use of advanced layout
techniques, along with the exploitation of new process de-
sign rules, allows smaller cells that provide the same func-
tionality as previous library versions. Finally, advanced

[J Hewlett-Packard Company 1995

550 +

500 +

450 +

400 +
HP C26101SH

350 L Library

300 +

250 +

Capacitance (fF)

HP C26102SH
Library

200 +
150 +
100 +

50 +

0 t t t t t
0 2 4 6 8 10
Fanout

Fig. 7. Wire capacitance versus fanout in two cell libraries. The HP
C26101SH library is the older CMOS26 library.

router model generation provides fully gridded routing and
optimum pin locations, which improves both density and
run time. These factors result in a reduction in average wire
length for a given fanout. The improvement in wire capaci-
tance as compared to the previous cell library is shown in
Fig. 7.

Another area of improvement is in the drive sizes of the
cells. The “stairstep design” approach was used to deter-
mine appropriate drive increments. The stairstep design ap-
proach is a method of sizing gates to provide optimum area
versus performance characteristics for each cell in the li-
brary. As a result of using this approach, the HP C26102SH
library provides more drive increments for Synopsys to map
to, avoiding the excessive area penalty imposed when a
higher drive cell must be swapped into a path that is just
missing timing.

Finally, this is the first library to use the more accurate table-
driven Synopsys models. As discussed previously, this allows
more accurate delay calculations and eliminates correlation
issues with other timing verification tools.

Since the HP C26102SH library is a scaled-up version of the
HP C14104SH library, all these advantages will continue into
the next process generation.

Design Methodology. Our design methodology was carefully
constructed to produce a chip that met aggressive timing
goals in a reasonable amount of time. The 90% wire load
models improved the chances of first time perfect through
the routing cycle, albeit at some loss of performance and die
size. This was an intentional choice designed to minimize the
design cycle time, while still meeting performance targets.

The HDL coding guidelines enabled the creation of a design
that was easily synthesized. They also enabled the use of
automatic scan insertion and test vector generation.

February 1995 Hewlett-Packard Journal 95

Finally, by imposing a set of automated naming rules during
synthesis, tool compatibility issues were minimized. These
naming restrictions eliminated name remapping and cross-
referencing throughout the design flow.

Point Tools. Several key point tools are necessary to support
the design flow discussed in this paper. Synopsys with table-
driven delay models is required to provide accurate static
timing analysis and valid constraints to the placer. Cell3’s
timing-driven placement is required to implement the critical
path timing output from Synopsys. An automatic test genera-
tion (ATG) tool is required to insert and optimize the scan
chain automatically and produce appropriate test vectors.

Possible Improvements

Although we have been successful with the methods de-
scribed in this paper, there are still some areas for
improvement.

Timing Verification in Synopsys. Eliminate Verilog functional
timing simulation by relying on Synopsys static timing
analysis for verification.

More Automation of Clock Insertion. As mentioned, further char-
acterization of Cell3’s delay calculation is necessary to elimi-
nate the need for Spice clock verification. Another area of
improvement here is to work with Cadence to improve the
balanced routing capability of Cell3.

96 February 1995 Hewlett-Packard Journal

Alternate Ways of Prelayout Capacitance Estimation. Other meth-
ods for accurate early capacitance estimation are available
that don’t require a preliminary route. Promising improve-
ment areas here include using advanced floor planning ear-
lier in the design cycle and netlist-based capacitance estima-
tion that includes not just fanout but other factors such as
estimated chip size and types of cells connected to each
wire.

In-Place Optimization. Use less conservative wire loads for
preroute estimation with expanded use of links-to-layout
during the synthesis and placement loop to enable higher
performance with minimal impact on cycle time.

References

1. B. Jung and J. McDougal, “An Optimal Scan Chain Auto-Connection
Methodology and Scan Signal Insertion Scheme to Reduce Chip
Area,” 1993 HP Design Technology Conference Proceedings, pp.
343-347.

2. S. Ratner, J. Eaton, A. Martinez, and H. Youn, “Development of a
New Dense and Router Independent BiICMOS Compatible, Standard
Cell Library Floorplan for (Bi)CMOS14,” 1993 HP Design Technology
Conference Proceedings, pp. 477-484.

3. J. Eaton, “Stairstep Library Design: The Application of Optimiza-
tion Techniques to the Design of the CMOS14 Standard Cell Library,”
1993 HP Design Technology Conference Proceedings, pp. 391-398.

[Hewlett-Packard Company 1995

