Synthesis of 100% Delay Fault
Testable Combinational Circuits
by Cube Partitioning

High-performance systems require rigorous testing for path delay faults.
A synthesis algorithm is proposed that produces a 100% path delay fault

testable function with a minimal set of test pins.

by William K. Lam

To ensure that manufactured circuits meet specifications, the
circuits must be subjected to static and dynamic testing.
Static testing considers the steady-state behavior of a circuit
(e.g., whether the output of a combinational circuit computes
the required Boolean function). Dynamic testing examines the
transient behavior of a circuit. In this paper, we focus on a
specific kind of dynamic testing: delay testing, which is test-
ing to determine how long it takes a circuit to settle to its
steady state.

If we define a path in a circuit to be a sequence of gates
from an input to an output of the circuit, then input signals
propagate to outputs along paths in the circuit. Thus, the
time for a circuit to settle to its steady state, called the delay
of the circuit, is determined by the delays of the paths in the
circuit. Hence, testing the delay of a circuit translates to test-
ing the paths in the circuit. A common scheme for testing
delays is shown in Fig. 1.

To test whether path a-b-c-f has a delay less than or greater
than t seconds, a pulse is applied to input a and to input d
where it is delayed t seconds to latch the output f. If the delay
of path a-b-c-f is greater than t, we say the path has a delay
fault. If the steady-state value of f is 0, then latching a 0 im-
plies the delay of the path is less than t, provided the wave-
form at f has only one transition. If there is more than one
transition at f, latching a 0 does not necessarily imply that f
has settled to its steady-state value. The delay of the path
cannot be inferred from latching the steady-state value if

Circuit Under Test

Single
Transition
Okay

No
Multiple
Transitions

d |
Fig. 1. Delay testing scheme.

[J Hewlett-Packard Company 1995

multiple transitions can occur at f. Therefore, a path’s delay
can be tested if there is an input vector such that a single
transition at the input of the path propagates along the path
and causes only one transition at the output, independent of
the delays of the gates in the circuit. The significance of
independence is illustrated in the following example.

In the circuit in Fig. 2, to test the delay of path a-c-f we set
input b to 1 causing d to be 0. With this input value, a single
transition at input a will propagate along path a-c-f and cause
a single transition at f, independent of gate delays in the
circuit. Therefore, path a-c-f can be tested for its delay. Simi-
larly, the delay of path b-d-f can be tested by setting a to 0.
However, for path b-c-f, a single transition at input b might
cause a multiple transition at f, depending on the relative
delays of the AND gate and the inverter. For instance, a rising
transition at b produces a negative pulse (a falling transition
followed by a rising transition) at f if the delay of the AND
gate is longer than that of the inverter. On the other hand if
the input pulse does not propagate to the output, f maintains
a steady 1. Because we don’t have prior knowledge about the
relative delays of the AND gate and the inverter, we conclude
that path b-d-f is not delay testable.

A path is called robustly path delay fault testable (RPDFT) if a
single transition at the input of the path propagates along
the path and produces a single transition at the output, inde-
pendent of the gate delays in the circuit. Only RPDFT paths
can be tested reliably for a delay fault. A necessary and suffi-
cient condition for a path to be RPDFT is that there is an
input vector such that during the course of a transition prop-
agating along the path, for each gate on the path, all the side
inputs of the gate take on noncontrolling values. A control-
ling value is an input to a gate that determines the gate’s
output regardless of the values at other inputs. For example,
the controlling value for an AND gate is 0 and for an OR gate

Fig. 2. Example circuit.

February 1995 Hewlett-Packard Journal 105

the value is 1. Since the delay of a circuit is determined by
the delays of the paths in the circuit, to test the delay of the
circuit, all paths in the circuit should be RPDFT. A circuit is
said to be 100% RPDFT if all of its paths are RPDFT. Unfortu-
nately, most practical circuits have very few RPDFT paths.
This implies that most practical circuits cannot be fully and
robustly tested for delay faults, even though many circuits
are tested despite the presence of hazards.

In this paper, we propose an algorithm that always synthe-
sizes 100% RPDFT circuits. First, we consider synthesis of
100% RPDFT two-level circuits from any given function.
Then, we show how multilevel circuits can be derived from
two-level circuits while preserving their delay fault testability.

Previous Work

Devadas and Keutzer! derived a necessary and sufficient
condition for a path to be RPDFT and proposed an algorithm
to synthesize a circuit to achieve a high percentage of
RPDFT paths. However, their algorithm cannot always pro-
duce circuits with 100% RPDFT. It is known that there exist
functions that do not have 100% RPDFT implementations. A
natural question is: can any function be augmented so as to
have a 100% RPDFT implementation? One way of augment-
ing a function is to add extra inputs. With this technique,
Pomeranz and Reddy? demonstrated that many circuits can
be made to be 100% RPDFT. However, it is not known
whether any arbitrary function can be synthesized to be
100% RPDFT by using this technique or any other.

Synthesis of 100% RPDFT Two-Level Circuits

An example of a two-level circuit is an AND-OR implementa-
tion configuration (e.g., a programmable logic array) corre-
sponding to a sum-of-products representation of a Boolean
function. Any Boolean function can be represented as a sum
of products. For example, f = (a + b) (a + b) + bc has the
sum-of-products representation ab + ab +bc, whose corre-
sponding two-level implementation consists of three AND
gates and one OR gate. Each AND gate implements a product
term and the OR gate combines the outputs of the AND gates
as shown in Fig. 3. The circuit in Fig. 3 is called a two-level
implementation because the first level consists of AND gates
and the second level an OR gate.

The path P in Fig. 3 from b through the AND gate for the
term bc is not RPDFT because no matter what value input a
is set to, a rising or falling transition at b through the path
will produce multiple transitions at f or not propagate along
P, depending on the relative delays of the AND gates. For
instance, if input a is set to 1 and the delay of the left AND
gate is shorter than the delay in the right AND gate, then a
falling transition at b along P will be blocked from propagat-
ing to f (Fig. 4a). Thus, the delay of P cannot be reflected at

ab ab bec

Fig. 3. A two-level circuit.

106 February 1995 Hewlett-Packard Journal

Fig. 4. Propagation of transitions. (a) Because the delay in the left
AND gate is shorter than the delay in the right AND gate, a falling tran-
sition at b is blocked from propagating to f. (b) A rising transition at
b causes a negative pulse at f.

f. Under the same setting, a rising transition at b will cause a
negative pulse at f (Fig. 4b). If input a is set to 0, then a rising
transition at b will be blocked from propagating to f because
the output of the AND gate is forced to 0. Thus, path P is not
RPDFT.

For more complicated functions, it would be difficult to
perform the above analysis to determine whether paths are
RPDFT. To make the task of identfying RPDFT paths easier,
an algebraic method? is presented.

Definitions. Before stating the algebraic method, some terms
need to be introduced.

* The cofactor of function f with respect to variable x (for

positive phase), denoted by f, is derived from f by replac-
ing the variable x in f with 1. Similarly for negative phase,
fx is derived by replacing x with 0.

* The smooth operator S on function f with respect to variable

x, denoted by Sx(f), is fx + fx.

* Let C be a product term or cube* in f. Then f - C is the

function derived from f by eliminating C.

Cofactor f is the evaluation of f at x = 1. Smoothing f with
respect to x gives the function independent of x.

Theorem 1: Let f be a function in a sum-of-products form of a
two-level circuit, and m a path starting from primary input x
and going through the AND gate of cube C. Then, path m is
RPDFT if and only if there is an input vector v = (...,x,...)
such that:

$x(C) Sxf-C) (v) = 1.

The vectors v and V' = (...,X,...) are a test vector pair for the
delay fault on .

For an arbitrary function in a sum-of-products form,

Sx(C) Sx(f —C) (v) may be 0 for all vectors. This would mean
that the path through C starting at input x is not RPDFT. To
augment a given function so that it has a 100% RPDFT im-
plementation, we add extra inputs called test pins, which
equal 1 under normal operations and may be selected to be
0 in delay testing mode.

To construct a circuit with 100% RPDFT paths the set of
cubes in a given function is partitioned into subsets such that
each subset forms a 100% RPDFT function. Next, a pin is at-
tached to each subset. To test a path in the subset, only the
test pin of the subset is set to 1, while all the remaining test
pins are set to 0. Since the subset is 100% RPDFT, the paths

* A cube is a product term. For example, abc and bc are cubes, but a + ¢ is not a cube.

[Hewlett-Packard Company 1995

are RPDFT under this setting of the test pins. Symbolically,

let f = Z Ci, where C; is a cube which can be partitioned
i
into subsets of cubes, S;, such that each path in each S; is

RPDFT. The new augmented function is now f = Z TjS;,
where Tj is the test pin for cube subset ;. j

To test path & going through a cube in §j, the test pins must
be set such that Tj=1 and T; = 0 for i # j. So f becomes §;,
which is 100% RPDFT by construction, enabling 7 to be
tested for a delay fault. In normal operation, all test pins

are set to 1 allowing the augmented function f = z TjS;j to

restore the original function f = z S;= Z Ci. J
j i

A natural question is: Can an arbitrary function be partitioned
into such subsets? The answer is yes, because a partition in
which S; is a cube is such a partition. Further, the paths
through the test pins do not need to be tested for delay faults
because these pins are held constant during normal opera-
tion. Therefore, for any arbitrary function, a 100% RPDFT
implementation is always possible with this cube-partitioning
scheme. This fact is formally stated in the following theorem.

Theorem 2: Any Boolean function has a prime and irredun-
dant two-level AND-OR implementation with 100% RPDFT
and the possibility of adding new inputs. Further, if C is a
two-level AND-OR implementation of f, then C can always be
resynthesized to be 100% RPDFT.

To resynthesize a two-level circuit to be 100% RPDFT, the
worst case is when a test pin is needed for each cube in the
circuit. In this worst case, the additional area required is at
most twice the original area, assuming each test pin is ANDed
with the cube. This procedure allows designers to synthesize
two-level circuits without considering delay fault testability
because test pins can be added later to achieve the desired
testability.

Because a test pin is provided for each subset, a minimum
partition is desired. Of course, the designer does not have to
make all paths RPDFT because test pins can be added only
to the cubes in which the paths need to be tested. In this
case, the number of test pins to add is bounded by the num-
ber of cubes that involve the paths to be tested. Nevertheless,
we want an algorithm that produces a minimal partition.

The following algorithm produces a minimal cube partition by
partitioning a set of cubes f ={ C; } into {Sj} so that the sum
of cubes in each §; is a function with 100% RPDFT paths.
i=0;
while(f not empty) {
i++;
Si={¢}
for each cube C € f{
if(S; U C is 100% RPDFT) {
Si=SjuC;
remove C from f;

}* end for loop */
} /* end while loop */

The test pins do not need to be connected directly to the
outside world through pins on the package. A shift register,
which can be an existing scan chain, can be used to shift in
the test patterns. The extra pins needed are at most two, one

[J Hewlett-Packard Company 1995

Scan Chain

Shift

Register <€ Circuit /0

Decoder

TloooTn

Fig. 5. 100% robustly path delay fault testable (RPDFT) implemen-
tation.

for the shift register input and the other for its clock. A pos-
sible implementation is shown in Fig. 5. In the figure T;... T,
are the test pins whose values are set by the output of the
decoder, which decodes the test patterns from the shift
register. Each subset S; needs one test pin.

Multilevel Synthesis

A two-level implementation is a special case of a multilevel
implementation and usually requires much more silicon area.
This is because a multilevel implementation does more shar-
ing of gates. For example, the multilevel circuit in Fig. 6a,
which uses four two-input gates, would require eight two-
input-equivalent gates if the same function were implemented
using a two-level structure (Fig. 6b).

The multilevel implementation can be represented as f = (a
+ b) (¢ + d) + e, while the two-level representation is f = ab
+ ad + bc + bd + e. The multilevel implementation is simply
a factored form of the two-level implementation. Thus, a
two-level implementation can be transformed into an area-
saving multilevel implementation by factoring out common
terms. The question that comes up after these transforma-
tions is whether testability is preserved. That is, will a RPDFT
path in the original two-level implementation remain RPDFT
in the factored multilevel implementation and will a path
newly created by these transformations be RPDFT? In the
Boolean domain, factorizations like ab = a(a + ab) and (a +
b) = (a+ b) (a + a) are valid. Factorizations involving the use
of Boolean rules suchasa+a=1,a-a=0,anda -a=a

f f

Five-Input
OR Gate

ab cde
(@) (b)

Fig. 6. (2) A multilevel circuit. (b) A two-level equivalent of the
multilevel circuit in (a).

February 1995 Hewlett-Packard Journal 107

are called Boolean factorizations, and factorizations that don’t
use such rules are called algebraic factorizations. Hachtel,
Jacoby, Keutzer, and Morrison? proved that a multilevel im-
plementation derived from a two-level implementation using
only algebraic factorizations preserves RPDFT of the paths in
the original two-level implementation. This concept is sum-
marized in the following theorem.

Theorem 3: If C, a two-level multiple-output circuit, is 100%

RPDFT, and A is a multilevel circuit derived from C through
the application of algebraic operations, then A is also 100%
RPDFT.

Therefore, synthesis for a multilevel circuit with 100% RPDFT
can be done in two steps. First, a two-level circuit with 100%
RPDFT paths is synthesized using the cube partitioning
method. Then, a multilevel circuit is derived from this two-
level circuit by applying algebraic factorizations.

Selective Critical Path Testing

Because making all paths in a chip delay fault testable may
not be area-efficient, only some representative paths are
selected to be made delay fault testable. Theoretically, test-
ing only a fraction of paths may not guarantee freedom from
faults for the entire chip. However, because of the nature of
delay tracking in IC processing, proper selective schemes
can offer high confidence in testing.

Also, because gate delays within a chip track well, a long
path is more likely to fail a timing specification than a short
path, making longer paths good candidates to be selected
for testing. If a selected path is not RPDFT, it can be made
so by using one of the synthesis techniques discussed
above. Specifically, to make a selected path RPDFT, find a
maximal set of RPDFT cubes that contain the path and intro-
duce a new test pin to isolate the set of cubes from the rest
of the cubes using the minimal cube partitioning algorithm.

This step is repeated until all selected paths are RPDFT.
Finally, the number of test pins can be minimized by first
repartitioning the cubes in the cube sets so that each cube
belongs to only one new cube set, and then using one test
pin for each new cube set.

Experimental Results

The cube partitioning algorithm was implemented on the
Berkeley SIS (sequential interactive synthesis) platform and
runs on an HP 9000 Model 735 workstation, which has
about 150M bytes of RAM. Two benchmarks from the Inter-
national Symposium on Circuits and Systems (ISCAS) and the
Microelectronic Center of North Carolina were used on the
algorithm. Table I shows the results of running these bench-
marks through the cube partitioning algorithm.

The second, third, fourth, and fifth columns in Table I contain
the total number of I/O pins, gates, paths, and non-RPDFT
paths, respectively, in each circuit. The sixth column defines
the original fault testability, that is, the fraction of paths that
are RPDFT in a particular circuit. After these circuits were
resynthesized, they became 100% testable (i.e., final testability
= 1.0). The eighth column reflects the total number of test
pins inserted to make the circuit fully delay fault testable.
With the exception of circuit b12, after all the circuits were
resynthesized they were made fully delay fault testable with
six or fewer test pins. The ninth column is the area over-
head, which is the ratio of the area increase over the original
circuit area. Since any additional area adds some delay, the
delay overhead for each circuit results from a layer of two-
input AND gates for each test pin insertion. Finally, the last
column is CPU execution time for each circuit. These times
vary directly with the number of cubes in the circuit.

Circuits with very few non-RPDFT paths and circuits that did
not finish within the 12-hour preset time limit are not listed
in Table I.

Table |
Two-Level Synthesis of 100% RPDFT Circuits
Circuit I/0 Pins Gates Paths Non-RPDFT Initial TestPins Area Overhead CPU
Paths Testability* (%) (Seconds)

tables 32 188 7259 495 0.93 4 3.25 141
table3 28 203 7381 687 0.90 4 3.38 282
rd84 24 263 3280 1456 0.55 2 0.48 821
apex1 90 296 9109 1515 0.83 6 6.16 25834
b12 24 449 1922 1845 0.04 23 5.53 423
ex1010 20 830 14710 2096 0.85 4 0.89 17434
75xpl 17 148 4032 2558 0.36 4 5.26 336
z9sym 10 422 3780 3276 0.13 2 0.14 21694
ex4 156 676 4404 3632 0.17 3 1.14 175
alu4 22 1044 7875 3955 0.49 4 0.53 134
apex4 28 476 14958 4354 0.70 5 3.11 12368
misex3 28 1876 17971 5258 0.70 6 5.84 15936

* Final testability = 1.0.

108

February 1995 Hewlett-Packard Journal

[Hewlett-Packard Company 1995

Conclusion

In this paper, we studied the problem of synthesizing circuits
with 100% RPDFT. We proved that for an arbitrary function,
there exists a 100% RPDFT implementation, and we pro-
posed a synthesis algorithm that always produces a 100%
RPDFT implementation for any function and a minimal set of
test pins. Further, we showed that a circuit synthesized using
the proposed algorithm uses at most twice as much area as
any two-level implementation of the circuit. For most practi-
cal circuits, the additional areas are small. Finally, we dem-
onstrated how area-efficient multilevel circuits with 100%
RPDFT can be constructed by applying

algebraic factorizations to the synthesis algorithm.

Acknowledgments

The author would like to thank Barbara Fredrick for her
enthusiastic support, Cheryl Harkness for a lesson on Frame-
Maker, Mark Heap for the many insightful discussions on the
algorithms presented in this paper, and Robert Aitken and
Peter Maxwell for reviewing the paper.

[J Hewlett-Packard Company 1995

References

1. S. Devadas and K. Keutzer, “Synthesis of delay-fault-testable cir-
cuits: Theory,” IEEE Transactions on Computer-Aided Design, Vol.
11, no. 1, January, 1992, pp. 87-101.

2. I. Pomeranz and S. Reddy, “Achieving Complete Delay Fault Test-
ability by Extra Inputs,” International Test Conference 91, Oct.
1991, pp. 273-282.

3. W. Lam and R. Brayton, Timed Boolean Functions—A Unified
Formalism for Exact Timing Analysis, Kluwer Academic Publishers,
1994.

4. G. D. Hachtel, R. M. Jacoby, K. Keutzer, and C. R. Morrison, “On
the Relationship Between Area Optimization and Multifault Testability
of Multilevel Logic,” IEEEJACM International Conference on Computer-
Aided Design ’89, November 1989, pp. 422-425.

Bibliography

1. W. Lam, A. Saldanha, R. Brayton, and A. Sangiovanni-Vincentelli,
“Delay Fault Coverage, Test Set Size, and Performance Tradeoffs,”
IEEE/ACM Design Automation Conference 93, June 1993, pp.
446-452.

109

February 1995 Hewlett-Packard Journal

