Development and Use of Electronic
Schematic Capture in the Specification
and Simulation of a Structured-

Custom ASIC

ASIC designers must sometimes provide the ASIC vendor with
documentation describing the data path of the chip and its relationship to
the control portion. This paper describes a method and attendant tools
that facilitate the employment of commonly available electronic schematic
capture software to ensure that the documentation given to the ASIC
vendor always matches the Verilog HDL descriptions used by the ASIC

designers for simulation.

by David A. Burgoon

This paper briefly recounts the development and use of
schematic capture in the design of a structured-custom ASIC
(application-specific integrated circuit). The ASIC was devel-
oped through a partnership of two teams of engineers, one
from our laboratory and one from the ASIC vendor, which in
this case was the HP Integrated Circuits Business Division.
The team from our laboratory was responsible for defining
the overall architecture of the chip, that is, the overall hierar-
chical block diagram consisting of data path and control, and
the functional description of each module. The vendor
team’s main contribution was custom design of the data path
and implementation of the ASIC’s infrastructure, such as
pads, scan chain, JTAGT circuitry, clocking network, and the
like. Our team was responsible for conveying the logical
architecture and functional description of the chip to the ven-
dor team, and was also responsible for verifying the func-
tional design through (primarily) Verilog simulation. The
vendor team was responsible for turning the Verilog HDL
(hardware description language) functional descriptions into
an equivalent physical design.

It soon became clear that if this division of labor was going
to succeed, the quality and accuracy of the documentation
used to convey the chip’s functional behavior to the vendor
had to be ensured. Most of our designers preferred to docu-
ment the overall architecture graphically, and had often
done so by drawing block diagrams with their favorite
graphics editor. However, to verify the functional design
through simulation, Verilog HDL descriptions have to be
developed. These descriptions are also used for synthesis
of the chip’s control logic via the Synopsys toolset (from
Synopsys, Inc.). This presented an apparent dilemma: the
best way to convey the high-level functional design to the

t JTAG is the Joint Test Action Group, which developed IEEE standard 1149.1, IEEE Test
Access Port and Boundary-Scan Architecture.

88

June 1995 Hewlett-Packard Journal

vendor was through schematic graphics, but the only way to
describe the functionality precisely was through textual HDL
models. If our designers attempted to maintain both forms of
description, we faced duplication of effort (essentially de-
scribing the block diagram twice, once graphically and once
textually), and the possibility of differences between the
functional schematic block diagram given to the vendor and
the Verilog HDL used for simulation (see Fig. 1).

Goals and Tactics

One way to solve this dilemma would be to develop tools to
compare the topology represented by the schematic docu-
mentation to that of the Verilog models, and manually recon-
cile any differences. Another approach would be to try to
convert the Verilog models into schematic diagrams program-
matically. This approach was discarded because it entailed a
lack of control over the aesthetic form of the drawings. The
goal we ended up pursuing was to find a way to simulate
the documentation, that is, to remove the possibility of dis-
parity between the schematic documentation and the Verilog
HDL.

We chose three tactics to achieve this goal:

Use electronic schematic capture to produce the documenta-
tion and the Verilog HDL models. Develop a set of tools and
processes that ensure that the hierarchical block diagrams
and the Verilog netlists are products of one and the same
database.

Design the tools and processes to enforce a policy that pre-
vents the extracted Verilog text files from being indepen-
dently altered. All changes to the Verilog models must be
effected through the schematics so that disparities are rig-
orously eliminated.



Graphics
Editor

e

I

Vendor Schematic
Database

iRecapture

Design
Verification

Physical
Design

Fig. 1. The designers’ dilemma: the block diagram had to be de-
scribed twice, once graphically and once textually, and there was a
possibility of differences between the block diagram given to the
vendor and the Verilog description used for simulation. The brick
wall symbolizes the lack of connection between the two forms of
description.

Design the tools and processes to be integrated smoothly
with the existing simulation and regression testing environ-
ment. This allows the extracted Verilog models to be easily
verified alongside the handwritten models.

Major Components of the Solution

Our goals were achieved by knitting together tools we had
“lying around the house” by means of some tool enhance-
ments, bug fixes, and shell scripts. This approach was in
keeping with the grass-roots nature of the effort: we had
neither the time, the funds, nor the inclination to search the
commercial marketplace for a solution. We were committed
to choosing the best tools from among those currently avail-
able in our laboratory and integrating them into a solution.
Some pieces of the solution were internal and some were
commercial. The major components of the solution are de-
scribed in the following paragraphs (see Fig. 2).

Design Capture System. We chose the Design Capture System
(DCS), version 5.10, from Zuken (formerly from HP) as our
schematic capture tool. Some of the attributes of DCS that
made it an attractive choice are:

It is a true hierarchical schematic capture tool, not merely a

graphics editor that has been coerced into capturing ASIC

topology. It implements hierarchy naturally, and has a rich
set of built-in features that promote circuit consistency and
discourage wiring errors.

» All of our designers were proficient at using it because it
had been the tool of choice for many years for the capture
of printed circuit board designs.

* A Verilog extraction tool, dcs2ver, had already been written
for it.

des2ver. DCS comes with a powerful language called DDL
(Design Database Language) for accessing the database rep-
resenting a schematic. Several years ago, a DDL program
called des2ver was written by our productivity group to facili-
tate the functional verification of hierarchical printed circuit
board schematics through Verilog simulation.! It was a natu-
ral choice for our application.

Briefly, dcs2ver traverses the hierarchy of the schematic and
produces a Verilog module definition for each unique symbol
(called a design) in the schematic. Each module definition
contains the required port declarations, as well as module
instantiations representing all instantiations of symbols on
the circuit pages of the design. The result is a set of files,
one module declaration per file, that represents the hierar-
chy of the ASIC as a component-oriented netlist expressed in
Verilog HDL.

NgleTalkll. NgleTalKII is a name given to our laboratory’s
latest generation of simulation, configuration, debugging,
and regression testing tools.23 It is listed here because it
facilitated the regular testing of dcs2ver-extracted Verilog
modules against a mature suite of test scripts written in the

DCS Schematic
Database

Plot

-

des2ver I
iRecapture

Strictly
Vendor Schematic

Database

Structural Verilog

Behavioral Verilog

Design
Verification

Physical
Design

=
Fig. 2. The solution forces the graphical and textual descriptions to

be equivalent.

June 1995 Hewlett-Packard Journal 89



NgleTalkII language. In other words, NgleTalkIl made it easy
to “simulate the documentation” on a daily basis.

History Management System. The History Management System
(HMS), the internal predecessor of HP’s SoftBench CM prod-
uct, is a set of tools that manage versioned files in a net-
worked environment.# It provides mutually exclusive edit
access and revision control through a set of client commands
reminiscent of the standard RCS (Revision Control System)
commands of the UNIX" operating system.

The consistent and universal use of HMS by our design team
on all design files made it easy to enforce the policy of disal-
lowing independent modification of the DCS files and the
derived Verilog files. This was achieved simply by checking
in (placing under HMS control) the original DCS database
files, and purposely not checking in the des2ver-extracted text
files. We used HMS to help ensure that the Verilog embodied
in the DCS schematics was extracted strictly from those sche-
matics. Since the Verilog files were absent from the HMS
server, the only way to get them (and be sure they were
correct) was to play by the rules and use dcs2ver. Thus a typi-
cal design change to the high-level structural Verilog re-
quired locking the necessary DCS files, making the necessary
graphical edits via DCS, checking in the modified DCS files,
and running dcs2ver.

Glue and Enhancements

The major components of our solution were integrated
through a set of “glue” programs and procedures and
enhancements to the existing components.

dcs2ver Enhancements. As mentioned previously, dcs2ver was
originally written for board simulation. Our use exposed
several weaknesses and bugs, which we fixed. Some of the
more notable enhancements were:

The ability to allow DCS net aliases and splitters with alias
labels.t

The ability to use DCS net “bundles” (heterogeneously
named buses),t and to control whether a given bundle is
translated to a Verilog concatenation or a set of scalar port
connections.

e Control over whether a module is instantiated with ports
connected by position or by name.

Detection of duplicate module names.

HMS Enhancements. As mentioned above, HMS was a key
component in our solution. Unfortunately, at the time we
were developing our solution, HMS did not “version” (keep
old revisions of) non-ASCII files. Not willing to lose this ca-
pability for our DCS files, we wrote a set of Korn shell
scripts, called rawfci, rawfco, rawfutil, and rawfhist, on top of the
similarly named standard HMS client commands. These
scripts allowed the DCS files to be fully versioned in a man-
ner that is transparent to the user. This enhancement saw
wide use for other types of non-ASCII files, and has since
been incorporated into standard HMS.

T Net aliases are a DCS construct; they allow a net to be referred to by another name, an alias.
Splitters with alias labels are a means of aliasing net names when splitting off elements of
buses. Bundles are like buses, except that each element of a bundle can have a name that is
not related to any other element.

90 June 1995 Hewlett-Packard Journal

make netlists. Not all users of our des2ver-extracted Verilog files
had the training, license, or inclination to run DCS to extract
the netlist files. To accommodate these users, scripts were
developed whose invocation was initiated from a make(l)
command. This approach was congruent with the existing
NgleTalkII environment, in which users were accustomed to
performing the sequence

fupdate; make; vsim

which causes new copies of out-of-date files to be fetched,
C-language models to be compiled if necessary, and a Verilog
simulation to be started. We added a netlists target to the
makefiles which was referenced by the default target.

Briefly, the netlists target conditionally causes a shell script
named extract_neffiles to be started which runs dcs2ver under the
terminal form of DCS, called DDAS (Design Database Access
System). If the user has a license to run DDAS, dcs2ver is exe-
cuted locally; otherwise, an HP Task Broker job is sub-
mitted to a DDAS server. In either case, the needed dcs2ver-
extracted files are deposited on the user’s machine in a few
minutes.

Observations

Our approach to the use of schematic capture in the design
of this ASIC was a tolerant one: our designers were free to
use DCS as much or as little as desired. The typical designer
did not capture a DCS design for every module in the hierar-
chy of the ASIC, but only went a few levels below the top
level and then switched over to hand-generated textual Veri-
log for those modules that were predominantly behavioral as
opposed to structural. One designer had a depth of zero (as
measured from the top level) in the DCS hierarchy. Another
used DCS only for the data path, leaving the control to a text
editor, vi(1). The other two designers fully embraced the ex-
periment, having a depth of five in some places.

Our use of DCS for high-level hierarchical capture was gen-
erally successful at meeting our goals. The most significant
complaint was directed at our strict enforcement of the
policy of not checking extracted netlists into HMS. The path
to get extracted Verilog was somewhat complex in its imple-
mentation, especially for those who relied on the remote
DDAS service. We had some occasional downtime because
of licensing and HP Task Broker administration problems. In
retrospect, it probably would have been more reasonable to
check the extracted Verilog into HMS as nonversioned raw
files, and use a cron(lm) job to do a daily make netlists to keep
them up to date, thereby also ensuring that any direct textual
edits were obliterated.

Another flaw in our approach was that it entailed a duplica-
tion of schematic capture effort. The vendor designers nor-
mally captured schematics in their environment from
textual Verilog supplied by us. In the case of this ASIC, they
found themselves capturing schematics whose top levels
were essentially identical to the corresponding DCS schemat-
ics. As a result, we are already taking the next obvious evo-
lutionary step: our designers are now directly capturing top-
level schematics using the vendor’s environment and are
sharing files with the vendor via HMS.



Acknowledgments

Our ASIC design team consisted chiefly of Frank Bennett,
Larry Mahoney, Bryan Prouty, and the author. The vendor
team from the Integrated Circuits Business Division (ICBD)
consisted of John Pessetto, Brian Miller, and John Morgan.
The design team would like to thank our ICBD partners as
well as our peers for having patience with us while we de-
veloped our tools and processes for schematic capture. We
would also like to thank Tim Carlson, the original author of
des2ver, and all those who enhanced the tool significantly,
especially George Robbert.

References

1. L. Mahoney, “GTD Board and ASIC Simulation Tools: The New
Generation,” Proceedings of the 1991 HP Design Technology
Conference, 1991, pp. 519-524.

2. R. Jayavant, NgleTalkll Users Guide, Version 1.5, internal HP docu-
ment, May 27, 1993.

3. R. Jayavant, NgleTalkll Environment Reference, Version 1.0, inter-
nal HP document, May 27, 1993.

4. S.A. Kramer, “History Management System,” Proceedings of the
Third International Workshop on Software Configuration Manage-
ment (SCM3), June 14, 1991, page 140.

5. T.P. Graf, et al, “HP Task Broker: A Tool for Distributing Computa-
tional Tasks,” Hewlett-Packard Journal, Vol. 44, no. 4, August 1993,
pp. 15-22.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open™ Company Limited.

XIOpen is a registered trademark and the X device is a trademark of X/Open Company Lim-
ited in the UK and other countries.

June 1995 Hewlett-Packard Journal 91



