Design and Development of a 120-MHz
Bus Interface Block Using Standard
Cells and Automatic Place and

Route Tools

The RW_IO block runs at 120 MHz and interfaces the master memory
controller chip’'s 60-MHz core with the 120-MHz processor bus drivers. A
design approach using standard cells, automatic place and route tools,
and a powerful database management and build tool was used to
construct the RW_IO block. This approach was chosen over a full custom
or data-path solution because of its reduced risk and the flexibility of the

design tools.

by Robert E. Ryan

The master memory controller chip is one of three ASICs
(application-specific integrated circuits) that make up the
memory subsystem of certain HP workstations and business
servers. The chip interfaces with the processor via the pro-
cessor bus, which runs at 120 MHz. It also connects to the
other memory subsystem components via the memory bus,
which runs at 60 MHz. Most of the internal logic of the chip
runs at 60 MHz. The RW_IO block, a portion of the chip’s
logic that runs at 120 MHz, transfers data between the pro-
cessor bus drivers and the 60-MHz core logic.

Functional Description

The RW_IO high-speed interface block is designed to trans-
fer data and control between the processor bus running at
120 MHz and the core logic of the master memory controller
chip, which runs at 60 MHz. To transfer data from the pro-
cessor bus efficiently requires twice the bandwidth at the
60-MHz interface. In operation, two cycles of the 120-MHz
data and control signals are registered and then the regis-
tered information is transferred on the next rising edge of
the 60-MHz clock. Fig. 1 is a schematic diagram of the
RW_IO input logic.

The data transfer is synchronized by delaying the 60-MHz
clock by 4.166 ns with respect to the rising edge of the

P D Q DoutA
120 MHz —52 60 MHz —
Synchronous
H—P 1/0 Driver
120 MHz > » DoutB
60 MHz —9

Fig. 1. Input logic of the RW_IO block.

92 June 1995 Hewlett-Packard Journal

120-MHz clock (Fig.2). This synchronization scheme requires
that the register-to-register transfer of data from the 120-MHz
to the 60-MHz clock domains occur within 4.166 ns worst
case. The reverse principle is used for transferring data from
the core of the master memory controller chip out onto the
processor bus. Data and control information is transferred
from the 60-MHz to the 120-MHz domains within the RW_IO
block. This information is then multiplexed at the 120-MHz
rate and presented to the processor bus drivers.

A special case exists when the processor bus is idle and we
wish to present the data directly from the 60-MHz core to
the processor bus without registering and multiplexing at the
120-MHz rate. A special path (fast path) exists to handle this
case. This path also has the requirement of transferring data
from the 60-MHz to the 120-MHz domains within 4.166 ns.
Fig. 3 illustrates the timing of the fast path, and Fig. 4 is a
schematic diagram of the RW_IO output logic.

Design Architecture
Five distinct functions are required to transfer data between
the processor bus and the core logic. With these five

~— 833ns —~| |
|

CKRW
120 MHz

CK1X
60 MHz

| 166605 ————

4.16 ns

Fig. 2. Relationship of the 120-MHz clock to the 60-MHz clock.

basic functions defined, a bit slice design approach was
taken to implement the entire functionality. A bit slice macro
was built for each of the five functions using standard cells
and Cell3 place and route tools from Cadence Design Sys-
tems, Inc. The bit slices were stacked together horizontally
to create the complete RW_IO interface block. The following
table defines the five bit slice functions and their macro
names.

Function Name
Input only, 2 bits RWI2BS
Input only, 3 bits RWI3BS
Bidirectional transfer with fast path RWIOBS
Bidirectional transfer with fast path RWIOVBS
and processor bus output gated
with data_valid
Bidirectional transfer with fast path RWADIOBS

and multiplexing for address
and data

Physical Bit Slice Construction

Because each of the five functions required a limited number
of design elements, a semicustom implementation using
standard cells was chosen. The most complicated function,
RWADIOBS, required 19 cells. The five functions were placed
and routed using a proprietary tool called Autopr! and
Cadence Cell3. Autopr was used to generate the bit slice
bounding box and standard cell rows and to place the I/O
ports. Special care was taken in cell placement and the rout-
ing of the clock signals. Scan control signals and power and
ground signals were routed so that connections could be
made by abutment when the bit slices were stacked to-
gether. Once the construction of the bit slices was complete,
Cell3 abstracts were generated for each bit slice using the

4.16 ns

CKRW
120 MHz

60 MHz
Register 60-MHz _.|
Core Data

Transfer Fast Path Data
to Processor Bus Driver

|
|
|
|
CK1X |
|
|
|
|

Fig. 3. Fast path timing.

Cadence Opus framework tools. These abstracts were then
used to build up the complete RW_IO functionality.

Physical Block Assembly

The top-level Verilog netlist for the RW_IO block was gener-
ated by a script in such a manner that the individual bit slice
functions were declared in the order which they physically
appear from left to right within the RW_IO block. As part of
the netlist generation a stackup file was created which de-
fined the order of the bit slice elements, the pins on each bit
slice corresponding to ports on the top and bottom of the
block, and the direction of each pin (in or out). A simple awk
program was developed that read the stackup file and
created two command files for Cell3. The first file directed
the placement of the pins on the block to line up with the
appropriate bit slice. The second command file directed
Cell3 to place the bit slice components in the order defined

RW_IO
Fast Path
From
Core DO
Logic D1 Q
60 MHz ——5 HOLDAB —P>HE
120 MHz %
—>
HOLDCD DMUXCTL
120 MHz
120 MHz %
Synchronous
1/0 Driver
From
Core DO
Logic —o——> N)
60 MHz ——>3 HoLoco —>{EN RINDCTLL - RUMUXCTL O 120z
120 MHz %

HOLDAB — P& DMUXCTL

120MHz = 120 MHz

Fig. 4. Output logic of the RW_IO block (RWADIOBS function).

June 1995 Hewlett-Packard Journal 93

Clock Signal

Bit Slices Bit Slices Bit Slices

Bit Slices

[[T]] standardcells [[]]

[[[[Standard Cells

[T]

bt

Power and GND

by the stackup file. The RW_IO block was separated into
four sections to allow the main power, ground, and clock
signals to pass through the center of the block and to allow
for clock tree taps (see Fig. 5).

The block has a single standard cell row along the bottom
where clock buffers and a small amount of combinational
logic reside. Cell3’s clock tree synthesis capabilities were
used to insert buffers in the global data control signals
(hold_abL, hold_cdL, mux_ctrl_rw_0, mux_ctrl_rw_1, mux_ctrl_rdata, re-
turn_byte_swap). The routing of clock, Vqq, and GND signals was
customized using specific Cell3 commands.

Characterization

In the early stages of development each bit slice function
was characterized separately using Aida’s Timver static tim-
ing analysis tool, with lumped capacitance and distributed
RC delay information back-annotated from Cell3. Timing
libraries were generated automatically by Timver for each
function. A total of eight Timver runs were required to char-
acterize all the functional paths in each bit slice. The results
of the eight analysis runs were merged into a single timing
model of the bit slice. A new Verilog netlist was generated
from the physical Cell3 database that included the buffers
inserted by Cell3. The libraries and the new Verilog netlist
were used for the initial master memory controller chip top-
level timing analysis. Final top-level timing analysis used a
Verilog netlist back-annotated from Cell3 and full distributed
RC back-annotation for the block, instead of the Timver-
generated timing libraries. This reduced the potential for
error during final timing analysis.

Metal Migration Analysis and Power Bus Sizing

The RW_IO block consists of 87 bit slices, 68 of which are
the RWADIOBS design. Because the RWADIOBS is the most com-
plex macro and makes up most of the RW_IO block, it was
assumed that all 87 bit slices were of this type for the

Fig. 5. RW_IO block layout.

metal migration analysis. The first step in the analysis was to
determine the current required by each element in the RWA-
DIOBS macro. This was done by first calculating the amount
of capacitance being switched by each input of every cell
and then the capacitance being switched by each output,
which was the sum of the device output drivers and the wire
load (back-annotated from the layout). Once this was done,
the equation I,y = CVf was used to determine the current
switching of each element. The current requirements of the
elements were summed to determine the total for the RWA-
DIOBS block. This value was used to determine the total cur-
rent required by the RW_IO block and to size the power and
ground buses appropriately.

Verification and Extraction

The fully placed and routed block-level database was
brought into the Cadence Opus framework where a GDSII
and CDLT netlist of the complete RW_IO block was gener-
ated. This data was then transferred to Mentor Graphics™
CheckMate tool where layout-versus-schematic, design rule,
and electrical rule checks were performed. Checkmate was
instructed to flatten the database to the standard cell level
and then perform a complete distributed RC extract. This
data along with the back-annotated netlist was then used for
final full-chip static timing analysis.

Build and Design Data Management

The entire design process, from the construction of the bit
slices to final analysis of the RW_IO block was managed by
the Atria ClearCase tools. ClearCase is designed for manag-
ing large software development projects. The ClearCase
tools provided a development environment with configura-
tion management, revision control, and build management.
ClearMake, ClearCase’s make-compatible build tool, was
used to build all the parts of the RW_IO block automatically.

t GDSIl and CDL are industry-standard formats for data interchange.

Processor Bus 1/0 Drivers

Bit Slices Bit Slices Bit Slices

Bit Slices

[T [111 [111

T]

94 June 1995 Hewlett-Packard Journal

Fig. 6. First version of the RW_IO
block.

Processor Bus /0 Drivers

TAP
Controller

Fig. 7. RW_IO block redesigned
for area conservation and inclu-
sion of little endian functionality.

Processor Bus I/O Drivers

TAP
Controller

Makefiles were generated to optimize the overall construc-
tion process and to allow for efficient rebuilding if necessary.
ClearMake’s parallel distributed building capabilities greatly
improved the efficiency of the build process by parallelizing
the construction of the independent sections and distributing
the build processes across the networked machines. During
all build steps ClearMake performs auditing of the build pro-
cesses. ClearMake keeps track of all the files read and writ-
ten during the build and creates an audit trail called a con-
figuration record which is kept with the built object (derived
object). The configuration records are used by future builds
to determine if the object is out of date and needs to be
rebuilt. ClearMake examines the versions of all the elements
referenced in the configuration record to determine if a re-
build is necessary. It does not rely on the “date-time-modi-
fied” of the object. The configuration records can be exam-
ined by the developer and used as a source of history
information regarding any derived object.

Summary

During the course of the master memory controller chip de-
sign the RW_IO block went through many changes. The
initial specification required that the block be long and nar-
row and cover the entire side of the chip that interfaces with
the processor bus (see Fig. 6).

Later in the project, area became critical, and it was neces-
sary to reduce the size of the block. An additional require-
ment on the master memory controller chip was that it had to
support little endian byte order (least-significant byte is byte
0). The structure of the RW_IO block was ideally suited to
implement the little endian functionality which required byte
swapping the data returned from memory before delivering
it to the processor bus (see Fig. 7).

Fig. 8. RW_IO block with
relocated power rails.

The original specifications called for the main power and
ground buses to pass through the center of the RW_IO
block. Toward the end of the chip development the power
buses changed and the Vpp bus had to be moved. This
again required reconstructing the RW_IO block (see Fig. 8).

The use of standard cells and automatic place and route
tools for the construction of the RW_IO block proved to be
very advantageous. Because of the speed and flexibility of
the tools the design team was not hindered when making
changes to the high-speed interface block as they might
have been if a full custom approach had been pursued. The
most complex change to the block, which required rebuild-
ing all of the bit slices and resizing and reconstructing the
block, took only three days to complete, at which time the
block was fully verified.

The design approach of using standard cells and semicustom
layout techniques was favored over a data-path or full custom
implementation because of its reduced risk. However, GDT
schematics were generated for documentation purposes as
well as a fallback position if a data-path solution had been
required. The combination of standard cells, custom Cell3
layout, and accurate static timing analysis proved to be an
effective solution for the RW_IO high-speed interface block.

Reference

1. S. Clayton, et al, “The Automation of Standard Cell Block Design
for High-Performance Structured Custom Integrated Circuits,” Pro-
ceedings of the 1993 HP Design Technology Conference.

Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S.A. and other
countries.

June 1995 Hewlett-Packard Journal 95

